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Abstra
tWe initiate a systemati
 study of boundary 
onditions in 
onformal �eld theorieswith target spa
e supersymmetry. The WZNW model on GL(1j1) is used as aprototypi
al example for whi
h we �nd the 
omplete set of maximally symmetri
branes. This in
ludes a unique brane of maximal super-dimension 2j2, a 2-parameterfamily of branes with super-dimension 0j2 and an in�nite set of fully lo
alized branespossessing a single modulus. Members of the latter family 
an only exist along
ertain lines on the bosoni
 base, mu
h like fra
tional branes at orbifold singularities.Our results establish that all essential algebrai
 features of Cardy-type boundarytheories 
arry over to the non-rational logarithmi
 WZNW model on GL(1j1).
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1 Introdu
tionField theories with target spa
e supersymmetry have re
eived 
onsiderable attentionlately, be
ause of their interesting appli
ations in both 
ondensed matter theory andin string theory. This applies in parti
ular to 2-dimensional 
onformal �eld theories withspa
e-time (internal) supersymmetry. They des
ribe 
riti
al behavior in many systemswith disorder [1, 2, 3, 4, 5, 6, 7, 8, 9, 10℄ and they provide building blo
ks for string theoryin AdS ba
kgrounds [11, 12, 13, 14℄.1Conformal �eld theories with target spa
e supersymmetry have some properties that,for a long time, were 
onsidered rather exoti
. In fa
t, the 
orrelators of su
h theories veryoften possess logarithmi
 singularities on the world-sheet. In 
ondensed matter theory,these had been seen in various examples starting from [15℄. But it was only re
ently [16℄that the appearan
e of logarithms in 
orrelation fun
tions was understood as a rathergeneri
 
onsequen
e of internal supersymmetry in CPT invariant lo
al quantum �eldtheory.In many respe
ts, logarithmi
 
onformal �eld theories behave rather di�erently fromthe well studied unitary rational models (see, e.g., [17, 18℄ and referen
es therein). Ithas proven parti
ularly diÆ
ult to 
onstru
t examples of lo
al logarithmi
 
onformal �eldtheories. Until re
ently, the only example that was fully understood was that of a tripletmodel [19℄. The problems may be tra
ed ba
k to the non-diagonalizability of the generatorD = L0 + �L0 of s
ale transformations whi
h is one of the 
hara
teristi
 features of anylogarithmi
 
onformal �eld theory. Sin
e lo
ality implies that the generator R = L0� �L0 ofrotations must be diagonalizable with integer valued spe
trum, the left and right movingse
tor in a logarithmi
 
onformal �eld theory must 
onspire in an intri
ate way to ensurelo
ality.Against all these odds, re
ent work on WZNW models on type I supergroups [16,20, 21, 22℄ is now supplying us with a large number of lo
al logarithmi
 
onformal �eldtheories. This remarkable progress is 
losely linked to the existen
e of an a
tion prin
iplefor these logarithmi
 models. The latter furnishes valuable geometri
 insights in additionto eÆ
ient 
omputational tools. These provide an expli
it solution of the WZNW modelfor the supergroups GL(1j1) [16℄, SU(2j1) [21℄ and PSL(2j2) [20℄ along with powerful1We should stress that in latter 
ontext, gauge �xing the Green-S
hwarz superstring leads to non-relativisti
 theories whi
h may have very di�erent properties from what we are about to des
ribe.1



results and predi
tions for generi
 supergroups of type I [22℄.It is natural and important to extend these developments beyond the bulk theory andto in
lude world-sheets with boundaries. Systems with boundaries are highly relevant forappli
ations (see e.g. [23, 24, 25℄ for an in
omplete review of appli
ations and many furtherreferen
es), often more so than theories on 
losed surfa
es. Moreover, boundary 
onformal�eld theory also displays rather ri
h mathemati
al stru
tures (see e.g. [26, 27, 28, 29, 30℄or [31, 32, 33, 34℄ for various dire
tions and further referen
es), in parti
ular related tomodular properties, fusion et
. All this is very poorly understood for general logarithmi

onformal �eld theories, see however [35, 36, 37, 38, 39, 40℄ and espe
ially [41℄ for re
entprogress in spe
i�
 models. WZNW models on supergroups present themselves as anideal playground to extend many of the beautiful results of unitary rational 
onformal�eld theory to logarithmi
 models. Even the simplest models are mathemati
ally ri
h andphysi
ally relevant.The aim of this work is to initiate a systemati
 study of boundary 
onditions in WZNWmodels on supergroups based on the example of GL(1j1).2 Let us list the main resultsof this paper in more detail. Re
all that maximally symmetri
 boundary 
onditions in
onformal �eld theories 
arry two labels. The �rst one refers to the 
hoi
e of a gluing
ondition between left and right moving 
hiral �elds. The se
ond label parametrizes dif-ferent boundary 
onditions asso
iated with the same gluing 
ondition. In un
ompa
ti�edfree �eld theory, for example, the two labels 
orrespond to the dimension of the braneand its transverse position. The relation between these labels and the branes' geometrybe
omes more intri
ate when the world-sheet theory is intera
ting.In the se
ond se
tion we shall des
ribe the possible ways in whi
h we 
an glue leftand right movers in the GL(1j1) WZNW model. We shall see that there are essentiallytwo 
hoi
es, 
orresponding to what we shall 
all untwisted and twisted branes. Most ofthis work is then devoted to the untwisted branes. We shall dis
uss in se
tion 3 that alluntwisted branes satisfy Diri
hlet boundary 
onditions for the two bosoni
 
oordinates.Hen
e, they des
ribe obje
ts that are fully lo
alized in the bosoni
 base of the supergroupGL(1j1). The position of these branes is parametrized by a pair (z0; y0) of real numbers.For generi
 
hoi
es of y0, the untwisted branes extend along the two fermioni
 dire
tionsof GL(1j1) and there exists a non-vanishing B-�eld. But on the lines y0 = 2�s, for any2Spe
tra of supersymmetri
 
oset models with open boundary 
onditions were also studied previously,in parti
ular in [42, 43℄. 2



integer s, there exists an additional set of branes whi
h are lo
alized in the fermioni
dire
tions as well as the bosoni
 ones, i.e. they are truly point-like.After a detailed study of the branes' geometry we shall provide exa
t boundary statesfor generi
 and non-generi
 untwisted branes on GL(1j1) in se
tion 4. There, we shallalso dis
uss what happens when a generi
 brane is moved onto one of the lines y0 = 2�s:It turns out to split into a pair of non-generi
 branes with a transverse separation that isproportional to the level of the WZNW model. Se
tion 5 
ontains a detailed dis
ussion ofthe relation between our �ndings for boundary 
onditions in a lo
al logarithmi
 
onformal�eld theory and the usual Cardy 
ase of unitary rational models [44℄. We shall see that inboth 
ases branes are parametrized by irredu
ible representations of the 
urrent algebra.Furthermore, the spe
tra between any two branes 
an be determined by fusion. Similarresults for the p = 2 triplet model have been obtained in [41℄. In the 
ase of GL(1j1)WZNW model we will establish that most of the boundary spe
tra are not fully redu
ible.This applies in parti
ular to the spe
trum of boundary operators on a single generi
 brane.Se
tion 6 is devoted to a brief study of twisted branes on GL(1j1). We shall �nd thatthese satisfy Neumann boundary 
onditions in the bosoni
 
oordinates.2 Gluing Conditions for bgl(1j1) Symmetri
 BranesBranes on supergroups 
ome in di�erent families or types. They are 
hara
terized by theway in whi
h left and right moving 
hiral �elds are glued along the boundary (see e.g. [45℄).Mathemati
ally, the various possible gluing 
onditions 
orrespond to automorphisms ofthe 
hiral symmetry. If two gluing automorphisms di�er by an inner automorphism, theasso
iated branes are related to ea
h other by simple translation on the target spa
e.The 
hiral symmetry of the GL(1j1) WZNW model is a bgl(1j1) 
urrent superalgebra.Its metri
 preserving automorphisms will be 
lassi�ed in the �rst subse
tion up to thepossible 
omposition with an inner automophism. In addition to the trivial automorphismwe shall �nd one non-trivial outer automorphism 
. Some general fa
ts about the asso
i-ated gluing 
onditions for super
urrents and their geometri
al interpretation are 
olle
tedin the se
ond subse
tion.
3



2.1 Automorphisms of the bgl(1j1) 
urrent superalgebraIn this subse
tion, we determine the relevant gluing automorphisms 
 for branes in theGL(1j1) WZNW model. An automorphism of the bgl(1j1) 
urrent superalgebra is admissi-ble as a gluing automorphism if it a
ts trivially on the Virasoro Sugawara �eld T . Whenrestri
ted to the zero mode algebra, any su
h automorphisms 
 gives rise to an auto-morphism ! of the underlying �nite dimensional Lie superalgebra gl(1j1). If 
 leaves Tinvariant, the 
orresponding automorphism ! a
ts trivially on the asso
iated quadrati
Casimir element C of gl(1j1). Our �rst goal is therefore to 
lassify all automorphisms !of gl(1j1) with the additional property that !(C) = C.The Lie superalgebra gl(1j1) is generated by two bosoni
 elements E;N and twofermioni
 elements 	�, subje
t to the relations[N;	�℄ = �	� ; f	�;	+g = E : (2.1)In addition, the element E is 
entral, i.e. it 
ommutes with all other elements of gl(1j1).The relevant quadrati
 Casimir element C of gl(1j1) is given byC = (2N � 1)E + 2	�	+ + 1kE2 : (2.2)Sin
e E is 
entral, one has the freedom of adding a quadrati
 polynomial in E. The
hoi
e we have made here is the one that 
orresponds to the Virasoro Sugawara �eld ofthe bgl(1j1) 
urrent superalgebra at level k that has been used in [16℄. In this 
ontext thesubleading term in k should be thought as a quantum renormalization. Adding additional
ontributions in E2 does not 
hange the qualitative features of the model.A straightforward 
al
ulation shows, that the Casimir preserving automorphisms ofgl(1j1) 
ome in two families,!(0)� (E) = E ; !(0)� (N) = N ; !(0)� (	�) = e�i�	� (2.3)!(1)� (E) = �E ; !(1)� (N) = �N ; !(1)� (	�) = �e�i�	� : (2.4)With E being 
entral, the only non-trivial bosoni
 inner automorphisms Ad� are providedby 
onjugation with exp(i�N). Looking ba
k onto the eqs. (2.3), we observe that !(0)� =Ad�, i.e. the automorphisms !(0)� are all inner. Furthermore, any two members of these
ond family !(1)� are related by 
onjugation with some exp(i�N). Hen
e, it suÆ
es to4




onsider one representative ! = !(1)�=0. We 
on
lude that, up to 
omposition with innerautomorphisms, there exist two admissible automorphisms of gl(1j1), namely the trivialautomorphism !(0) = id and the non-trivial ! = !(1)0 . Note that the latter squares to aninner automorphism.Let us now show that both automorphisms lift to admissible automorphisms of the
urrent superalgebra bgl(1j1). This 
urrent algebra is generated by the modes of the 
hiral�elds E(z); N(z) and 	�(z) with relations,[En; Nm℄ = �kmÆn+m ; [Nn;	�m℄ = �	�n+m ; f	�n ;	+mg = En+m + kmÆn+m : (2.5)All other (anti-)
ommutators vanish and the number k is known as the level of bgl(1j1).The a
tion of !(0) = id on gl(1j1) lifts to the trivial automorphism 
(0) = id on bgl(1j1).In 
ase of !(1), its properties guarantee that
(En) = �En ; 
(Nn) = �Nn ; 
(	�n ) = �	�nis 
onsistent with the level dependent terms in eqs. (2.5). Furthermore, the modes of thestress energy tensor take the form [15℄Ln = 12k (2NnE0 � En + 2	�n	+0 + 1kEnE0)+1k Xm>0 (En�mNm +Nn�mEm + 	�n�m	+m � 	+n�m	�m + 1kEn�mEm)It is easy to 
he
k that the Ln are indeed invariant under the a
tion of 
. Consequentlywe have found two 
lasses of automorphisms of bgl(1j1) that are admissible as gluingautomorphisms.2.2 Types of boundary 
onditionsLet us 
onsider a WZNW model on the upper half of the 
omplex plane. Boundary
onditions along the boundary at z = �z preserve 
onformal invarian
e of the model ifand only if the two 
hiral 
omponents of the stress energy tensor T agree all along theboundary, i.e. T (z) = T (�z) for z = �z : (2.6)In any WZNW model, the stress energy tensor T is 
onstru
ted out of the 
hiral 
urrents.A boundary 
ondition is said to be maximally symmetri
 if left and right moving 
urrents5




an be identi�ed along the boundary, up to the a
tion of an automorphism 
,Ja(z) = 
� �Ja(�z)� for z = �z : (2.7)where Ja = E;N;	� when we deal with the GL(1j1) model. For 
 we 
an insert any ofthe automorphisms we have dis
ussed in the previous subse
tion.It will be 
onvenient to rewrite the gluing 
onditions (2.7) in terms of those �elds thatappear in the a
tion of the GL(1j1) WZNW model. In prin
iple, there exist various 
hoi
esthat 
ome with di�erent parametrizations of the supergroup GL(1j1). One possible set of
oordinate �elds is introdu
ed throughg = ei
�	� eiXE+iY N ei
+	+ : (2.8)The �elds X and Y are bosoni
 while 
� are fermioni
. Let us also re
all that the(anti-)holomorphi
 
urrents of the WZNW model are given byJ(z) = �k�gg�1 and �J(�z) = kg�1 ��g :Inserting our spe
i�
 
hoi
e of the paramerization (2.8), the 
urrents take the followingform�J = kieiY ��
�	� + k�i��X � (��
�)
+eiY �E + ki��Y N + k(i��
+ � 
+ ��Y )	+ (2.9)andJ = �k(i�
� � 
��Y )	� � k�i�X � 
�(�
+)eiY �E � ki�Y N � kieiY �
+	+: (2.10)The various 
omponents of these Lie superalgebra valued (anti-)holomorphi
 
urrents 
anbe proje
ted out with the help of the super-tra
estr(NE) = str(	+	�) = �1 : (2.11)We 
on
lude that E(z) = str(J(z)E) = ki�Y and similar expressions hold for the otherthree holomorphi
 
urrents and their anti-holomorphi
 
ounterparts.Let us brie
y re
all how to extra
t the branes' geometry from the gluing 
onditions.Lo
ally, the a
tion of a WZNW model on any (super-)group looks as followsS(X) � Z� d2z(g�� +B��)�X� ��X�: (2.12)6



with a (graded) antisymmetri
 2-form potential B of the WZ 3-form H = dB and a(graded) symmetri
 metri
 g. Vanishing of the boundary 
ontributions to the variationleaves us with two 
hoi
es: We 
an either impose Diri
hlet boundary 
onditions �pX� = 0or require that g�� �nX�(z; �z) = iB�� �pX�(z; �z) for z = �z : (2.13)In general, some 
ombination of these two possibilities o

urs. The gluing 
onditions (2.7)for our 
urrents (2.9) and (2.10) 
an always be brought into standard form by splittingthe derivatives � and �� into �p and �n. Following the reasoning that was �rst proposedin [46℄ for bosoni
 WZNW models (see also [47℄ for a di�erent approa
h), one may showthat maximally symmetri
 branes on super-groups are lo
alized along ! twisted super-
onjuga
y 
lasses C!(b) = �!(g)bg�1 �� g in G	 (2.14)where b 
an be any element of the bosoni
 subgroup and ! is now regarded as an auto-morphism of the supergroup rather than its Lie superalgebra. For the GL(1j1) WZNWmodel, a more detailed derivation of this statement along with an expli
it des
ription ofthe resulting brane geometries will be given below.3 Untwisted Branes: Geometry and Parti
le limitThis se
tion is devoted to the geometry of branes asso
iated with the trivial gluing auto-morphism. We shall show that su
h branes are lo
alized at a point (x0; y0) on the bosoni
base of GL(1j1). For generi
 
hoi
es y0, they stret
h out along the fermioni
 dire
tions,i.e. the fermioni
 �elds obey Neumann type boundary 
onditions. When y0 = 2�s; s 2 Z,on the other hand, the 
orresponding branes are point-like. These geometri
 insights fromthe �rst part of the se
tion are then used in the se
ond part to study branes in the parti
lelimit in whi
h the level k is sent to in�nity. Most importantly, we shall provide minisu-perspa
e analogues of the boundary states for both generi
 and non-generi
 untwistedbranes, see eqs. (3.25) and (3.27), respe
tively.3.1 Geometri
 interpretation of untwisted branesIn the previous se
tion we have made a number of general statements 
on
erning thegeometry of maximally symmetri
 branes on (super-)group target spa
es. Here, we want7



to step ba
k a bit and work out the pre
ise form of the boundary 
onditions for 
oordinate�elds. We shall 
ontinue to use the spe
i�
 parametrization (2.8) of GL(1j1). Insertionof our expli
it formulas (2.9) and (2.10) for left and right moving 
urrents into the gluing
ondition (2.7) with 
 = I gives�pY = 0 ; �pZ = 0 ; for z = �z ;where Z = X + i
�
+(e�iY � 1)�1 (3.1)and �p denotes the derivative along the boundary. In other words, both bosoni
 �elds Yand Z satisfy Diri
hlet boundary 
onditions. Untwisted branes in the GL(1j1) WZNWmodel are therefore parameterized by the 
onstant values (y0; z0) the two bosoni
 �eldsY; Z assume along the boundary. For the two basi
 fermioni
 �elds we obtain similarly� 2 sin2(Y=2)�nd� = sin(Y ) �pd� ; for z = �z ;where d� = 
�eiY=2 sin�1(Y=2)=2i : (3.2)Thereby, the fermioni
 dire
tions are seen to satisfy Neumann boundary 
onditions witha 
onstant B-�eld whose strength depends on the position of the brane along the bosoni
base. We shall provide expli
it formulas below. For the moment let us point out that the
ondition (3.2) degenerates whenever the value y0 of the bosoni
 �eld Y on the boundaryapproa
hes an integer multiple of 2�. In fa
t, when y0 = 2�s; s 2 Z we obtain Diri
hletboundary 
onditions in all dire
tions, bosoni
 and fermioni
 ones,�pY = �pZ = �pd� = 0 for z = �z: (3.3)In the following, we shall refer to the branes with parameters (z0; y0 6= 2�s) as generi
(untwisted) branes. These branes are lo
alized at the point (z0; y0) of the bosoni
 baseand they stret
h out along the fermioni
 dire
tions. A lo
alization at points (z0; 2�s); s 2Z, implies Diri
hlet boundary 
onditions for the fermioni
 �elds. We shall refer to the
orresponding branes as non-generi
 (untwisted) branes.We have seen in the des
ription of our gluing 
onditions that it was advantageousto introdu
e �elds Z and d� instead of X and 
�. They 
orrespond to a new 
hoi
e of
oordinates on the supergroup GL(1j1)g = ei
�	�eixE+iyNei
+	+ = eid�	�e�id+	+eizE+iyNeid+	+e�id�	� (3.4)that is parti
ularly adapted to the des
ription of untwisted branes. In fa
t, we re
allfrom our general dis
ussion that untwisted branes are lo
alized along 
onjuga
y 
lasses.8



It is therefore natural to introdu
e a parametrization in whi
h supergroup elements gare obtained by 
onjugating bosoni
 elements g0 = exp(iz0E + iy0N) with exponentialsof fermioni
 generators. From equation (3.4) it is also easy to read o� that 
onjuga
y
lasses 
ontaining a bosoni
 group element g0 
ontain two fermioni
 dire
tions as longas y0 6= 2�s. In 
ase y0 = 2�s, 
onjugation of g0 with the fermioni
 fa
tors is a trivialoperation and hen
e the 
onjuga
y 
lasses 
onsist of points only.It is instru
tive to work out the form of the ba
kground metri
 and B-�eld in our new
oordinates. To this end, let us re
all thatds2 = str�(g�1dg)2� = 2dxdy � 2eiyd��d�+ : (3.5)Here, the super-
oordinates x; y; �� 
orrespond to our 
oordinate �elds X; Y; 
�. Similarly,the Wess-Zumino 3-form on the supergroup GL(1j1) is given byH = 23 str(g�1dg)^3 = 2ieiyd�� ^ d�+ ^ dy : (3.6)After the appropriate 
hange of 
oordinates from (x; y; ��) to (z; y; ��), the metri
 readsds2 = 2dzdy + 8 sin2(y=2)d��d�+ (3.7)and the H �eld be
omes H = 4i�
os(y)� 1�d�� ^ d�+ ^ dy : (3.8)It is easy to 
he
k that H = dB possesses a 2-form potential B given byB = 4i sin(y) d�� ^ d�+ + 2i�+d�� ^ dy � 2i��d�+ ^ dy : (3.9)Upon pull ba
k to the untwisted branes we 
an set dy = 0 and the B-�eld be
omes��braneB = 4i sin(y) d�� ^ d�+ : (3.10)This expression together with our formula (3.7) for the metri
 allow to re
ast the bound-ary 
onditions (3.2) for the fermioni
 �elds in theories with generi
 untwisted boundary
onditions in the familiar form (2.13).
9



3.2 Boundary states in the minisuperspa
e theoryAs in the analysis of the bulk GL(1j1) model [16℄ it is very instru
tive to study theproperties of untwisted branes in the so-
alled parti
le or minisuperspa
e limit. Therebywe obtain predi
tions for several �eld theory quantities in the limit where the level ktends to in�nity. Our �rst aim is to present formulas for the minisuperspa
e analogue ofIshibashi states. Using our insights from the previous subse
tion we shall then propose
andidate boundary states for the parti
le limit and expand them in terms of Ishibashistates.Let us begin by re
alling a few basi
 fa
ts about the supergroup GL(1j1) or rather thespa
e of fun
tions  L2 it determines, see [16℄. The latter is spanned by the elementse0(e; n) = eiex+iny ; e�(e; n) = ��e0(e; n) e2(e; n) = ���+e0(e; n) : (3.11)where the 
oordinates are the same as in the previous subse
tion. Right and left invariantve
tor �elds take the following formRE = i�x ; RN = i�y + ���� ; R+ = �e�iy�+ � i���x ; R� = ��� ; (3.12)andLE = �i�x ; LN = �i�y � �+�+ ; L� = e�iy�� � i�+�x ; L+ = �+ ; (3.13)These ve
tor �elds generate two (anti-)
ommuting 
opies of the underlying Lie superal-gebra gl(1j1). For the reader's 
onvenien
e we also wish to reprodu
e the invariant Haarmeasure on GL(1j1), d� = e�iydxdyd�+d�� : (3.14)The de
omposition of  L2 with respe
t to both left and right regular a
tion was analyzedin [16℄. Here, we are most interested in properties of the adjoint a
tion adX = RX + LXsin
e it is this 
ombination of the symmetry generators that is preserved by the untwistedD-branes.Our �rst aim is to 
onstru
t a 
anoni
al basis in the spa
e of (
o-)invariants. Byde�nition, a (
o-)invariant j ii (hh j) is a state (linear fun
tional) satisfyingadX j ii = (RX + LX)j ii = 0 ; hh j adX = hh j(RX + LX) = 0 : (3.15)10



These two linear 
onditions resemble the so-
alled Ishibashi 
onditions in boundary 
on-formal �eld theory. In the minisuperspa
e theory, it is easy to des
ribe the spa
e ofsolutions. One may 
he
k by a short 
omputation that a generi
 invariant takes the formje; nii0 = 12�pe�e0(e; n)� e0(e; n� 1) + ee2(e; n)� : (3.16)The pre-fa
tor 1=2�pe is determined by a normalization 
ondition to be spelled out below.We note that the fun
tion je; nii0 is obtained by taking the super-tra
e of supergroupelements in the typi
al representation he; ni.3 To ea
h of the invariants je; nii0 we 
anassign a 
o-invariant 0hhe; nj :  L2 ! C through0hhe; nj = Z d� 12�pe�e0(�e;�n + 1)� e0(�e;�n)� ee2(�e;�n + 1)� : (3.17)Our normalization of both je; nii0 and the dual invariant 0hhe; nj ensures that0hhe; nj(�1)Fu 12 (LE�RE)1 u 12 (LN�RN )2 je0; n0ii0 = Æ(n0 � n) Æ(e0 � e)�he;ni(u1; u2)where �he;ni(u1; u2) = ue1 �un�12 � un2� is the super-
hara
ter of the typi
al representationhe; ni of gl(1j1). If we re-s
ale the invariants je; nii0 and then send e to zero we obtainanother family of invariants,j0; nii0 := lime!0pe je; nii0 = e0(0; n)� e0(0; n� 1) : (3.18)Similarly, we de�ne the dual 0hh0; nj as a limit of 0hh�e;�n+1jpe. By 
onstru
tion, thestates j0; nii0 and the asso
iated linear forms possess vanishing overlap with ea
h otherand with the states je; nii0,0hh0; nju 12 (LE�RE)1 u 12 (LN�RN )2 je0; n0ii0 = 0 (3.19)for all e0, in
luding e0 = 0. This does 
ertainly not imply that 0hh0; nj a
ts trivially onthe spa
e of fun
tions.It is easy to see that the fun
tions j0; nii0 do not yet span the spa
e of invariants.What we are missing is a family of additional states jnii0 whi
h is given byjnii0 = 12� e0(0; n) for n 2 [0; 1[ :3Our 
onventions for the representation theory of gl(1j1) are the same as in [48℄. In parti
ular, he; nidenotes a 2-dimensional graded representation of gl(1j1). Let us agree to 
onsider the state with smallerN -eigenvalue as even (bosoni
). The same representation with opposite grading shall re
eive an additionalprime, i.e. it is denoted by he; ni0. 11



The 
orresponding dual 
o-invariants are given by the pres
ription0hhnj = 12� Z d� Xm2Ze2(0;�n +m+ 1) : (3.20)Our normalization ensures that0hhnj(�1)Fu 12 (LE�RE)1 u 12 (LN�RN )2 jn0ii0 = Æ(0) Æ(n0 � n)�hni(u1; u2) (3.21)where �hni(u1; u2) = un2 . The divergent fa
tor Æ(0) stems from the in�nite volume of ourtarget spa
e and it 
ould absorbed into the normalization of the Ishibashi state. Let usobserve that the 
o-invariants 0hhnj may be obtained by a limiting pro
edure from 0hhe; nj,0hhnj = � lime!0 1pe Xm 0hhe; n +mj : (3.22)A similar 
onstru
tion 
an be performed with the Ishibashi states je; nii0 to give theformal invariants Pm e2(0; n + m). They are formally dual to 
o-invariants given byR d�e0(0;�n+ 1). In our dis
ussion, and in parti
ular when we wrote eq. (3.20), we haveimpli
itly equipped  L2 with a topology that ex
ludes to 
onsider Pm e2(0; n + m) as atrue fun
tion. While the dual fun
tional R d�e0(0;�n+ 1) does not su�er from any su
hproblem, it so happens not to appear in the 
onstru
tion of boundary states. This is whywe do not bother giving it a proper name.It is our aim now to determine the 
oupling of bulk modes to branes in the minisuper-spa
e limit. In the parti
le limit, the bulk 1-point fun
tions are linear fun
tionals f 7! hfion the spa
e  L2 of fun
tions su
h that hadXfi = 0, i.e. they are 
o-invariants. The �rstfamily of 
o-invariants we shall des
ribe 
orresponds to branes in generi
 positions (z0; y0).Sin
e these are lo
alized at a point (z0; y0) on the bosoni
 base and delo
alized along thefermioni
 dire
tions, their density is given by�(z0;y0) = �2i sin(y0=2) Æ(y � y0) Æ(z � z0)= �2i sin(y0=2) Æ(y � y0) Æ�x� i���+(1� e�iy)�1 � z0� : (3.23)The 
onstant prefa
tor �2i sin(y0=2) was 
hosen simply to mat
h the normalization ofour boundary states below. Obviously, the density �(z0;y0) is invariant under the adjointa
tion. It gives rise to a family of 
o-invariants through the pres
riptionf 7! hfi� := Z d� �(x; y; ��) f(x; y; ��) : (3.24)12



Geometri
ally, the integral 
omputes the strength of the 
oupling of a bulk mode f to abrane with mass density �. It is not diÆ
ult to 
he
k that our fun
tional h�i(z0;y0) admitsan expansion in terms of dual Ishibashi states as follows,h � i(z0;y0) � 0hz0; y0j = Z dednpe ei(n�1=2)y0+iz0e 0hhe; nj= Ze 6=0 dednpe ei(n�1=2)y0+iz0e 0hhe; nj+ Z dn ei(n�1=2)y0 0hh0; nj : (3.25)In the se
ond line of this formula we have separated typi
al and atypi
al 
ontributions tothe boundary state. Considering that the state 0hh0; nj is obtained through the limitingpro
edure 0hh0; nj = lime!0pe 0hhe; nj, the se
ond term is the natural 
ontinuation of the�rst. In this sense, we may drop the 
ondition e 6= 0 in the �rst integration and 
ombinetypi
al and atypi
al terms into the single integral appearing in the �rst line. We observethat all h�i(z0;y0) vanish on fun
tions e0(e; n) with e = 0.Let us now turn to the non-generi
 branes. These are lo
alized also in the fermioni
dire
tions. Hen
e, their density takes the form�sz0 = (�1)s Æ(y � 2�s) Æ(x� z0) Æ(�+) Æ(��) (3.26)where s is an integer. When this density is inserted into the general pres
ription (3.24),we obtain another family of 
o-invariants. Its expansion in terms of Ishibashi states readsh � isz0 = 0hz0; sj = Z dedn 1pe e2�i(n�1=2)s+iez0 0hhe; nj= Ze 6=0 dedn 1pe e2�i(n�1=2)s+iez0 0hhe; nj � Z 10 dn e2�i(n�1=2)s 0hhnj : (3.27)On
e more, the se
ond line displays typi
al and atypi
al 
ontributions to the boundarystate separately. In passing from the �rst to the se
ond line, we exploited s 2 Z alongwith our observation (3.22).The two families h�i(z0;y0) with y0 6= 2�s and h�isz0 are not entirely independent. In fa
t,we note that boundary states from the generi
 family may be `re-expanded' in terms ofmembers from the non-generi
 family when the paremeter y0 tends to 2�s. The pre
iserelation is limy0!2�s hfi(z0;y0) = 1i ��z0 hfisz0 (3.28)13



for all elements f 2  L2. We shall �nd that both families of 
o-invariants 
an be lifted tothe full �eld theory. An analogue of relation (3.28) also holds in the �eld theory. It tellsus that, for spe
ial values of the parameters, branes from the generi
 family de
omposeinto a superposition of two branes from the non-generi
 family. Their distan
e is �nitefor �nite level but tends to zero as k is sent to in�nity.4 Untwisted Boundary States and Their Spe
traWe are now prepared to spell out the boundary states and boundary spe
tra for maximallysymmetri
 branes with trivial gluing 
onditions. As we have argued in the previousse
tion, they 
ome in two di�erent families. After a few 
omments on the relevant Ishibashistates, we 
onstru
t the boundary states for branes in generi
 positions in the se
ondsubse
tion. Branes in non-generi
 position are 
onstru
ted in the third part of this se
tion.4.1 Chara
ters and Ishibashi statesIn this subse
tion we shall provide a list of untwisted Isibashi states from whi
h theboundary states of the GL(1j1) WZNW model will be built in 
onse
utive subse
tions.By de�nition, an untwisted Ishibashi state is a solution of the following set of linearrelations �Xn + �X�n� j	ii = 0 for X = E;N;	� : (4.1)These relation lift our invarian
e 
onditions (3.15) from the parti
le model to the full �eldtheory. It is obvious that solutions must be in one-to-one 
orresponden
e to invariants inthe minisuperspa
e theory.To begin with, there exists a 2-parameter family of typi
al Ishibashi states je; nii withe 6= mk and n 2 R. They 
an be uniquely 
hara
terized by their relative overlapshhe; nj(�1)F 
qL
0� 
24uN
0 je0; n0ii = Æ(n0 � n)Æ(e0 � e) �he;ni(u; q) (4.2)where L
0 = (L0 + �L0)=2; N 
0 = (N0 � �N0)=2 and �̂he;ni denotes the unspe
ialized super-
hara
ters for typi
al representations. It takes the form�̂he;ni(u; q) = un�1q e2k (2n�1+e=k)+1=8 ���� 12(� + 1); ��=�(�)3where � is related to u by u = exp(2�i�) and similarly for q = exp(2�i�), as usual.In 
omparison to the minisuperspa
e theory we have set u1 = 1 and u2 = u. Sin
e E014



and �E0 are 
entral the dependen
e on u1 
an be re-introdu
ed simply by multiplying the
hara
ter fun
tions with ue1. When e is a multiple of the level, �̂he;ni are the 
hara
tersof redu
ible representations whi
h 
ontain two atypi
al irredu
ible building blo
ks. As inthe parti
le theory, we shall also de�ne jmk; nii and hhmk; nj by a limiting pro
edure,jmk; nii = lime!mk sin1=2(�e=k)je; nii ; hhmk; nj = lime!mk sin1=2(�e=k)hhe; nj : (4.3)The Ishibashi states j0; nii possess vanishing overlap among ea
h other and with thetypi
al Ishibashi states.In addition, we introdu
e a family of atypi
al Ishibashi states jnii(m) and (m)hhnj forn 2 [0; 1[; m 2 Z. These 
orrespond to the states jnii0 and 0hhnj that appeared in ourdis
ussion of the parti
le limit. On
e more, we may 
hara
terize the Ishibashi states bytheir overlaps(m)hhnj(�1)F 
qL
0� 
24uN
0 jn0ii(m) = Æ(n0 � n)Æ(m�m0) �̂(m)hni (u; q) : (4.4)Here, �̂(m)hni denotes the unspe
ialized super-
hara
ter of the atypi
al representation hni(m),see Appendix A.3 for details, i.e.�̂(m)hni (u; q) = un1� zqm qm2 (m+2n+1)+1=8���� 12(� + 1); ���(�)3 : (4.5)It is important to stress that most atypi
al states are obtained in eqs. (4.3) as limits oftypi
al Ishibashi states.To summarize, we have 
onstru
ted a family of Ishibashi states je; nii; e; n 2 R, onefor ea
h Ka
 module of the aÆne 
urrent algebra bgl(1j1). In addition, there is one `small'family of Ishibashi states jnii(m) with m 2 Z and n 2 [0; 1[. This se
ond set of states isin one-to-one 
orresponden
e with the set of atypi
al blo
ks of bgl(1j1).44.2 The generi
 boundary stateIn this se
tion, we propose the boundary state 
orresponding to a generi
 brane lo
alized at(z0; y0) with y0 6= 2�s and perform a non-trivial Cardy 
onsisten
y 
he
k [44℄. Therefore,we need to know the modular properties of the 
hara
ters. They are easily 
omputedwith the help of [49℄ and we list them in appendix A.4.4Two atypi
al irredu
ibles � and �0 are said to be part of the same blo
k if there exists a sequen
eof irreps �0 = �; �1; : : : ; �N�1; �N = �0 su
h that any pair �i; �i+1 of 
onse
utive irreps in the sequen
eappears in the 
omposition series of some inde
omposable. The two bgl(1j1) representations hni(m) andhni(m) are part of the same blo
k whenever m = m0 and n� n0 2 Z.15



Proposition 4.1. (Generi
 boundary state) The boundary state of branes asso
iated withgeneri
 position parameters z0, y0 isjz0; y0i = r2ik Z dedn exp�i(n� 1=2)y0 + iez0� sin1=2(�e=k) je; nii : (4.6)We shall argue below that these boundary states give rise to elementary branes if and onlyif the parameter y0 62 2�Z.Before we show that our Ansatz for the generi
 boundary states produ
es the expe
tedboundary spe
trum, let us make a few 
omments. To begin with, it is instru
tive to
ompare the 
oeÆ
ients of the Ishibashi states in jz0; y0i with the minisuperspa
e resulteq. (3.25). If we send k to in�nity, the fa
tor sin1=2(�e=k) is proportional to the fa
torpe that appears in the 1-point 
oupling of bulk modes in the minisuperspa
e theory.The repla
ement pe! sin1=2(�e=k) is ne
essary to ensure that the �eld theory 
ouplingsare invariant under spe
tral 
ow. Let us also stress that the integration in formula (4.6)extends over all e, in
luding e = mk. Using our Ishibashi states jmk; nii from eq. (4.3),we may rewrite the generi
 boundary states asjz0; y0i = r2ik Ze 6=mk dedn exp�i(n� 1=2)y0 + iez0� sin1=2(�e=k) je; nii+ r2ik Xm Z dn exp�i(n� 1=2)y0 + imkz0� jmk; nii :The se
ond line displays expli
itly how 
losed string states in atypi
al representations
ouple to generi
 branes.In order to 
he
k the 
onsisten
y of our proposal for the boundary states with world-sheet duality, we 
ompute the spe
trum between a pair of generi
 branes,hz0; y0j(�1)F 
 ~qL
0~zN
0 jz00; y00i = 2ik R de0dn0ei(n0� 12 )(y00�y0)+ie0(z00�z0) sin(�e0=k)�̂he0;n0i(~�; ~�)= �̂he;ni(�; �) � �̂he;n+1i(�; �) (4.7)where the momenta e; n are related to the 
oordinates of the branes a

ording toe = k(y00 � y0)2� ; n = k(z00 � z0)2� � y00 � y02� :To begin with, the result is a 
ombination of 
hara
ters with integer 
oeÆ
ients. Hen
e,it 
an be 
onsistently interpreted as the partition fun
tion for open strings that stret
h in16



between the two branes. If we put both branes into the same position (z0; y0), then theresult spe
ializes tohz0; y0j(�1)F 
~qL
0 ~uN
0 jz0; y0i = �̂h0;0i(�; �) � �̂h0;1i(�; �) = �̂P0(�; �): (4.8)In the last step we have observed that the super-
hara
ters of the representation spa
esover the two atypi
al Ka
 modules h0; 0i and h0; 1i0 
ombine into the 
hara
ter of therepresentation that is generated from the proje
tive 
over P0. This out
ome was expe
ted:it signals that the state spa
e of open strings on a generi
 branes 
ontains no bosoni
 zeromodes and two fermioni
 ones. The latter give rise to the four ground states of theproje
tive 
over. This is in agreement with the fa
t that generi
 branes stret
h out alongthe fermioni
 dire
tions.There is one important subtlety in our interpretation of the result (4.8) that we donot want to gloss over. While the 
hara
ter of the proje
tive 
over P̂0 is the same asthat of the two aÆne Ka
 modules, the 
orresponding representations are not. The
hara
ters are blind against the nilpotent parts in L0 and hen
e they 
annot distinguishbetween an inde
omposable and its 
omposition series. But for the 
onformal �eld theory,the di�eren
e is important. In parti
ular, the generator L0 is diagonalizable on all Ka
modules, atypi
al or not, but it has a nilpotent 
ontribution in the bgl(1j1)-module over P0.Hen
e, if the boundary spe
trum does transform in P̂0, then some boundary 
orrelatorsare guaranteed to display logarithmi
 singularities when two boundary 
oordinates 
ome
lose to ea
h other. The information we obtained from the boundary states using world-sheet duality alone is not suÆ
ient to make any rigorous statements on the existen
e ofsu
h logarithms. But in the minisuperspa
e limit k ! 0 we have 
learly identi�ed theproje
tive 
over P0 as the relevant stru
ture. Sin
e L0 is not diagonalizable in that limit,it 
annot be so for �nite level k.4.3 Non generi
 point-like branesLet us now turn to the boundary states of non-generi
 untwisted branes in the GL(1j1)WZNW model. From our dis
ussion of the geometry we expe
t them to be parametrizedby a single real modulus z0 and to possess a spe
trum without any degenera
y of groundstates. These expe
tations will be met. Let us begin by spelling out the formula for thenon-generi
 boundary states. 17



Proposition 4.2. (Non-generi
 boundary states) The boundary states of elementary bra-nes asso
iated with non-generi
 position parameters z0 and y0 = 2�s; s 2 Z; are givenby jz0; si = 1p2ki Z dedn exp�2�i(n� 1=2)s+ iez0� sin�1=2(�e=k) je; nii : (4.9)If we send the level k to in�nity in the boundary states jz0; si, then the 
oeÆ
ient ofthe Ishibashi state je; sii gets repla
ed by 1=pe and thereby it reprodu
es the 
oupling(3.27) of bulk modes in the minisuperspa
e theory. On
e more, the repla
ement 1=pe 7!sin�1=2(�e=k) is ne
essary to ensure spe
tral 
ow symmetry of the �eld theoreti
 
ouplings.Just like their 
ousins jz0; si0 in minisuperspa
e (see eq. (3.27)), the boundary statesjz0; si 
ouple to atypi
al Ishibashi states, though this is again somewhat hidden in ournotations. We 
an make this 
oupling more expli
it by rewriting jz0; si in the form,jz0; si = 1p2ki Ze 6=mk dedn exp�2�i(n� 1=2)s+ iez0� sin�1=2(�e=k) je; nii� 1p2ki Xm Z 10 dn exp�2�i(n� 1=2)s+ imkz0� jnii(m) : (4.10)Note that the non-generi
 boundary states only involve to the spe
ial family jnii(m) ofatypi
al Ishibashi states. In 
ase of generi
 boundary states, we had found non-vanishing
ouplings to the regular atypi
al Ishibashi states jmk; nii.Let us verify that the proposed boundary states produ
e a 
onsistent open stringspe
trum. In order to do so, we investigate the overlap between two non-generi
 boundarystates jz0; si and jz00; s0i,hz0; sj(�1)F 
~qL
0~zN
0 jz00; s0i = Z de0dn02ki e2�i(n0�1=2)(s0�s)+ie0(z00�z0)sin(�e0=k) �̂he0;n0i(~�; ~�)= �̂(m)hni (�; �) (4.11)where the labels n and m in the 
hara
ter are related to the branes' parameters throughn = k(z00 � z0)2� + s� s0 ; m = s0 � s : (4.12)�̂(m)hni are 
hara
ters of atypi
al irredu
ible representation of bgl(1j1). For m = 0 the 
orre-sponding representations are generated from the 1-dimensional irredu
ible atypi
al repre-sentations hni of the �nite-dimensional Lie superalgebra gl(1j1) by appli
ation of 
urrent18



algebra modes. The representations with m 6= 0 are obtained from those with m = 0 byspe
tral 
ow (see Appendix A).We also want to look at the spe
trum of boundary operators that 
an be insertedon a boundary if we impose non-generi
 boundary 
onditions with parameters z0 and s.Spe
ializing eq. (4.11) to the 
ase with z00 = z0 and s0 = s we �ndhz0; sj(�1)F 
~qL
0 ~uN
0 jz0; si = �̂(0)h0i(�; �) :Hen
e, the spe
trum 
onsists of states that are generated from a single invariant groundstate j0i by appli
ation of 
urrent algebra modes with negative mode indi
es. In parti
ular,the zero modes of the fermions a
t trivially on ground states. This is in agreement withour geometri
 insights a

ording to whi
h non-generi
 branes are lo
alized in all dire
tions,in
luding the two fermioni
 ones.We may now ask what happens if we send the parameter y0 of the generi
 brane toy0 = 2�s. From our formulas for boundary states we dedu
e thatjz0; 2�si = Z dednp2ki eie(z0+�k ) � eie(z0��k )sin1=2(�e=k) e2�i(n�1=2)s je; nii = jz0+�=k; si�jz0��=k; si :In other words, when a generi
 brane is moved onto one of the spe
ial lines y0 = 2�s, itde
omposes into a brane-anti-brane pair. Its 
onstituents sit in positions z0 � �=k andpossess the same dis
rete parameter s. This relation between non-generi
 branes andgeneri
 branes in non-generi
 positions is a �eld theoreti
 analogue of the equation (3.28)we dis
overed in the minisuperspa
e theory.5 Comparison with Cardy's TheoryLet us re
all a few rather basis fa
ts 
on
erning branes in rational unitary 
onformal �eldtheory. For simpli
ity we shall restri
t to 
ases with a 
harge 
onjugate modular invariantand a trivial gluing automorphism 
 (the so-
alled `Cardy 
ase'). This will allow a
omparison with the results of the previous subse
tions. In the Cardy 
ase, elementaryboundary 
onditions turn out to be in one-to-one 
orresponden
e with the irredu
iblerepresentations of the 
hiral algebra [44℄. Let us label these by J , with J = 0 beingreserved for the va
uum representation. The boundary 
ondition with label J = 0 has arather simple spe
trum 
ontaining only the va
uum representation H0. More generally, ifwe impose the boundary 
ondition J = 0 on one side of the strip and any other elementary19



boundary 
ondition on the other, the spe
trum 
onsists of a single irredu
ibleHJ . Finally,the spe
trum between two boundary 
onditions with label J1 and J2 is determined by thefusion of J1 and J2. We shall now dis
uss that all these statements 
arry over to untwistedbranes in the GL(1j1) WZNW model. The fusion pro
edure, however, 
an provide spe
tra
ontaining inde
omposables that are not irredu
ible.5.1 Brane parameters and representationsWe proposed that the GL(1j1) WZNW model possesses two families of elementary branes.The �rst one is referred to as the generi
 family and its members are parametrized by(z0; y0) with y0 6= 2�s; s 2 Z. Boundary states for the generi
 branes were providedin subse
tion 4.2. These are also de�ned for integer y0=2� but we have argued thatthe 
orresponding branes are not elementary. They rather 
orrespond to superpositionsof branes from the se
ond family. This se
ond family 
onsists of branes with only one
ontinuous modulus z0 and a dis
rete parameter s. Their boundary states 
an be foundin subse
tion 4.3.There is one distinguished brane in this se
ond family with z0 = 0 and s = 0. Wepropose that it plays the role of the J = 0 brane in rational 
onformal �eld theory. Inorder to 
on�rm this idea, we 
ompute the spe
trum of open strings stret
hing betweenz0 = 0; s = 0 and any of the other elementary branes. If the se
ond brane is non-generi
with parameters z0; s, the relative spe
trum readsh0; 0j(�1)F 
~qL
0 ~uN
0 jz0; si = �̂(m)hni (�; �) (5.1)where the parameter n on the 
hara
ter isn = n(z0; s) = kz02� � s ; m = m(z0; s) = s : (5.2)Indeed, we see that the open string spe
trum 
orresponds to a single irredu
ible atypi
almodule of bgl(1j1), in agreement with the expe
tations from rational 
onformal �eld theory.Let us now 
onsider the 
ase in whi
h the se
ond brane is lo
ated in a generi
 position(z0; y0). From the boundary state we �ndh0; 0j(�1)F 
~qL
0 ~uN
0 jz0; y0i = �̂he;ni(�; �) ; (5.3)where the parameters of the 
hara
ter on the right hand side aree = e(z0; y0) = ky02� ; n = n(z0; y0) = kz02� � y02� + 12 : (5.4)20



As long as y0=2� is not an integer, e is not a multiple of the level and therefore, �̂he;ni isthe 
hara
ter of a single irredu
ible representation of bgl(1j1).At this point we have found that all our elementary branes are labelled by irredu
iblerepresentations of bgl(1j1). In 
ase of the elementary generi
 branes, the relation be-tween the position moduli (z0; y0); y0 6= 2�m; and representation labels he; ni; e 6= mk; isprovided by eq. (5.4). All typi
al irredu
ible representations of bgl(1j1) appear in this 
or-responden
e. For the non-generi
 branes the relation between their parameters (z0; s) andthe representation labels of an atypi
al irredu
ible 
an be found in eq. (5.2). On
e more,all atypi
al irredu
ibles appear in this 
orresponden
e. Hen
e, branes in the GL(1j1)WZNW model are in one-to-one 
orresponden
e with irredu
ible representations of the
urrent superalgebra bgl(1j1), just as in rational 
onformal �eld theory.5.2 Brane spe
tra and fusionLet us now analyze whether we 
an �nd the spe
trum between a pair of elementary branesthrough fusion of the 
orresponding 
urrent algebra representations. For the 
onvenien
eof the reader we have listed the relevant fusion rules for irredu
ible representations of the
urrent superalgebra bgl(1j1) in Appendix A.5.The spe
trum between two typi
al branes with parameters (z0; y0) and (z00; y00) has been
omputed in eq. (4.7). We 
an 
onvert the brane parameters into representation labelswith the help of eq. (5.4) and then exploit the known fusion produ
t of the 
orrespondingrepresentations. In 
ase y00 � y0 6= 2�Z we �ndDky02� ; kz02� � y02� + 12E� 
F Dky002� ; kz002� � y002� + 12E (5.5)�= Dk(y00 � y0)2� ; k(z00 � z0)2� � y00 � y02� + 1E � Dk(y00 � y0)2� ; k(z00 � z0)2� � y00 � y02� E0Here, 
F denotes the fusion produ
t and we used the rule he; ni� = h�e;�n+ 1i0 for the
onjugation of representations. Then we inserted the known fusion rules while keepingtra
k of whether the representation is fermioni
 or bosoni
. The result agrees ni
ely withthe true spe
trum we 
omputed earlier.When the di�eren
e (y00 � y0)=2� = m is an integer, the fusion of the two representa-tions on the left hand side of (5.5) results in a single inde
omposable. It is the image ofthe aÆne representation over the proje
tive 
over P̂(k(z00�z0)�(y00�y0))=2� under m units of21



spe
tral 
ow, i.e.Dky02� ; kz02� � y02� + 12E� 
F Dky002� ; kz002� � y002� + 12E = �P(m)(k(z00�z0)�(y00�y0))=2��0 (5.6)where m = (y00 � y0)=2�. Our minisuperspa
e theory along with the boundary states
on�rm this result in the 
ase y0 = y00 and z0 = z00 (see our dis
ussion at the end ofse
tion 4.2). For other 
hoi
es of the parameters, we only see that the fusion rules providea representation with the 
orre
t 
hara
ter. Whether the true state spa
e is given bya single inde
omposable or by a sum of Ka
 modules or even irredu
ibles 
annot beresolved rigorously with the methods we have at our disposal. Nevertheless, it seems verylikely that the proje
tive 
over is what appears sin
e this is the only result whi
h is also
onsistent with spe
tral 
ow symmetry.The fusion between atypi
al irredu
ibles is rather simple. It leads to a predi
tion forthe spe
trum between two non-generi
 branes that should be 
he
ked against our earlierresult (4.11),�Dkz02� � sE(s)�� 
F Dkz002� � s0E(s0) �= Dk(z00 � z0)2� + s� s0E(s0�s) :On
e more, the �ndings from world-sheet duality are 
onsistent with the fusion pres
rip-tion. There is one �nal 
he
k to be performed. It 
on
erns the spe
trum between anon-generi
 brane with parameters (z0; s) and a generi
 one with moduli (z0; y0). Fromthe fusion we �nd�Dkz02� �sE(s)��
F Dky002� ; kz002� � y002�+ 12E = D�sk+ ky002� ; k(z00 � z0)2� � y002�+s+ 12E : (5.7)It may not 
ome as a big surprise that this fusion rule 
orre
tly predi
ts the spe
trumbetween a generi
 and a non-generi
 brane. In fa
t, from our formulas for boundary statesand modular transformation we �nd
z0; s��(�1)F 
 ~qL
0 ~uN
0 ��z00; y00� = �̂he;ni(�; �)where e = �ks+ ky002� ; n = k(z00 � z0)2� � y002� + s+ 12 : (5.8)In 
on
lusion we found that the spe
tra between any pair of elementary branes may bedetermined by the fusion of the 
orresponding irredu
ible representations. It is importantto stress that the fusion produ
t of irredu
ible representations 
an produ
e representationsthat are not fully redu
ible. 22



6 Twisted Brane: Geometry and Boundary StateThis �nal se
tion 
ontains a brief dis
ussion of twisted branes. By de�nition, twistedbranes in the gl(1j1) model preserve one 
opy of the aÆne Lie superalgebra bgl(1j1). The
onstru
tion of the relevant generators di�ers from the 
ase of untwisted branes by thea
tion of an outer (gluing) automorphism 
 on anti-holomorphi
 bulk 
urrents. We shall�nd that there is a single twisted brane boundary 
ondition 
orresponding to a branewhi
h extends in both bosoni
 and fermioni
 dire
tions. As for untwisted branes, we shall�rst extra
t the brane's geometry from the gluing 
onditions. Thereafter, we study theunique Ishibashi and boundary state in the parti
le limit. Finally, the minisuperspa
eresults are lifted to the full �eld theory.In the 
ase of the automorphism 
, we 
an easily bring the asso
iated gluing 
onditions(2.7) for super-
urrents into the form�nY = 0 ; �n �� = ie�iY �p��nX � 2ieiY ��n�� = 0 ; �n� = �ieiY �p�� ; (6.1)for all z = �z. Here, we have rede�ned the fermioni
 �elds � = eiY2 (
+ + 
�) and �� =12(
��
+). The bosoni
 �elds, on the other hand, remain unaltered. This parametrizationis motivated by a new 
hoi
e of 
oordinates on the supergroup GL(1j1)g = ei
�	�eixE+iyNei
+	+ = ei��	�e�i�	+eizE+iyNe�i�	�e�i��	+= 
(ei��	+ei�	�)eizE+iyNe�i�	�e�i��	+ (6.2)whi
h is obtained by twisted 
onjugation of bosoni
 elements with fermioni
 ones.We 
an re-express the metri
 and H-�eld in terms of the new 
oordinates x; y; � ��,ds2 = 2dxdy + 4d�d�� � 4i�dyd��;H = 2ie�iyd� ^ d� ^ dy � 2ieiyd�� ^ d�� ^ dy) :Using our expression for the metri
 we infer the following formula for the B-�eld from ourgluing 
onditions (6.1), B = �2e�iyd� ^ d� � 2eiyd�� ^ d�� :It is straightforward to verify that that dB = H. We 
on
lude that twisted branes arestret
hed out into all dire
tions of our supergroup.23



Consequently, the spa
e of fun
tions on a twisted D-brane is given by  L2. Sin
etwisted branes admit an a
tion of GL(1j1) the spa
e of fun
tions 
arries an a
tion of theLie superalgebra gl(1j1), namely the twisted adjoint a
tion ad
X = RX + L
X whereL
E = i�x ; L
N = i�y + �+�+ ; L
� = ��+ ; L
+ = e�iy�� � i�+�x :The generators RX are given by the same formulas as above. Analyzing the representation
ontent of  L2 we then �nd three di�erent kinds of representations. These in
lude thetypi
als h�2k;�2l+ 1i whi
h are generated by e0(k; l) = exp(ikx+ ily); �e0(k; l� 1). Were
all that in our 
onventions for he; ni the state with smaller N eigenvalue is taken to bebosoni
. Furthermore, there exist typi
als h�2k;�2l+ 2i0 generated by ��e0(k; l); e0(k; l�1)+2k� ��e0(k; l�1). In this 
ase, the state with lower N eigenvalue is fermioni
, hen
e theprime 0. Finally, representations with vanishing eigenvalue of E de
ompose into proje
tive
overs of atypi
als. In summary, under the twisted adjoint a
tion, the spa
e of fun
tionsde
omposes as  L2twisted �= Ze 6=0 dedn h he; ni � he; ni0 i � Z dnPn :We see that fermioni
 and bosoni
 states with any given eigenvalue of E and N 
ome inpairs. Therefore, the supertra
e of uL
E�RE1 uL
N�RN2 vanishes identi
ally.Con
erning the 
onstru
tion of minisuperspa
e Ishibashi states j ii
0 satisfying thetwisted invarian
e 
ondition �RX + L
X� j ii
0 = 0 (6.3)we observe that the spa
e of fun
tions on GL(1j1) 
ontains a single element invariantunder the twisted adjoint a
tion, namely the 
onstant fun
tionj0ii
0 = e0(0; 0) :Its dual is given by 
0 hh0j = Z d� e0(0; 0) = Z d� :The linear fun
tional 
0 hh0j is indeed the unique twisted 
o-invariant on GL(1j1). We notethat j0ii
0 and 
0 hh0j possess vanishing overlap, i.e.
0 hh0j(�1)FuL
E�RE1 uL
N�RN2 j0ii
0 = 0simply be
ause the relevant integrand 
ontains no fermioni
 zero modes.24



Having the semi-
lassi
al Ishibashi state at our disposal, we 
an turn to the boundarystate. Our geometri
 interpretation of twisted branes suggests that their semi-
lassi
aldensity is given by �(x; y; �; ��) = 1, 
orresponding to a brane that �lls the entire targetspa
e. We see that h � i
 = 0h
j = Z d� = 
0 hh0j :All this lifts straightforwardly to the full �eld theory. We obtain unique Ishibashi statesj0ii
 and 
hh0j whi
h we 
an identify with the boundary states,j
i = j0ii
 ; h
j = 
hh0jjust as in the 
ase of Neumann boundary 
onditions for a free un
ompa
ti�ed boson. Theintera
tion between two su
h branes is en
oded in the overlaph
j(�1)F 
 ~qL
0uN
0 j
i = 0 ;where N 
0 = �
(N0)� �N0�=2. Through the modular bootstrap, vanishing of this overlapimplies that the boundary partition fun
tion vanishes as well. In our minisuperspa
eapproximation we did observe already that 
ontributions from bosoni
 and fermioni
states to the partition fun
tion 
an
el ea
h other. The same holds true for the full �eldtheory sin
e 
reation operators also 
ome in pairs. Hen
e, our results are 
onsistent withthe world-sheet duality.Admittedly, the simplest version of the modular bootstrap does not 
onstrain the formof our boundary states very signi�
antly. But there exists more stringent tests, su
h asbootstrap relations involving the overlap between twisted and untwisted D-branes [50, 51℄.We have no doubt that these 
an be worked out to 
on�rm our proposal for the twistedboundary state.7 Con
lusionsIn this work we have studied maximally symmetri
 branes in the WZNW model on thesimplest supergroup GL(1j1). Following previous reasoning for bosoni
 models [46℄ wehave shown that su
h branes are lo
alized along (twisted) super-
onjuga
y 
lasses, an in-sight that generalizes straightforwardly to other supergroup target spa
es. As in the 
aseof the p = 2 triplet theory [41℄, untwisted branes turn out to be in one-to-one 
orrespon-den
e with irredu
ible representations of the 
urrent algebra. This 
orresponden
e relies25



on the existen
e of an `identity' brane whose spe
trum 
onsists of the irredu
ible va
uumrepresentation only. The spe
trum between the identity and any other elementary braneis built from a single irredu
ible of bgl(1j1) and any su
h irredu
ible appears in this way.Moreover, one 
an 
ompute the spe
trum between any two elementary branes by fusionof aÆne representations. What we have just listed are 
hara
teristi
 features of Cardy'stheory for rational non-logarithmi
 
onformal �eld theories. Our work proves that theyextend at least to one of the simplest logarithmi
 �eld theory and it seems very likelythat they hold more generally in all WZNW models on (type I) supergroups, see also [41℄for related �ndings in the p = 2 triplet theory.In spite of these parallels to bosoni
 WZNW models, branes on supergroups possessa mu
h ri
her spe
trum of possible geometries. Whereas Diri
hlet branes on a purelybosoni
 torus, for example, are all related by translation, we dis
overed the existen
e ofatypi
al lines on the bosoni
 base of the GL(1j1) WZNW model. The distan
e between anytwo su
h neighboring parallel lines is 
ontrolled by the level k. When a typi
al untwistedbrane is moved onto one of these lines, it splits into two atypi
al ones. Individual atypi
albranes possess a single modulus that des
ribes their dislo
ation along the atypi
al lines.In order for them to leave an atypi
al line they must 
ombine with a se
ond atypi
albrane. Pro
esses of this kind model the formation of long multiplets from shorts. Hen
e,on more general group manifolds, more than just two atypi
al branes may be requiredto form a generi
 brane. Let us stress, however, that the notions of long (typi
al) andshort (atypi
al) multiplets whi
h are relevant for su
h pro
esses derive dire
tly from therepresentation theory of the aÆne Lie superalgebra. Thereby, all spe
tral 
ow symmetriesare built into our des
ription. We also wish to point out the obvious similarities with so-
alled fra
tional branes at orbifold singularities, see e.g. the dis
ussions in se
tion 4.3 of[52℄.Another interesting and new feature of branes on GL(1j1) is the o

urren
e of bound-ary spe
tra that 
annot be de
omposed into a dire
t sum of irredu
ibles. In parti
ularwe have shown that the spe
trum of boundary operators on a single generi
 brane is de-s
ribed by the proje
tive 
over of the va
uum module. For more general group manifolds,we expe
t the 
orresponding proje
tive 
over to be present as well, though along with ad-ditional stu�. The generator L0 of dilatations is not diagonalizable on proje
tive 
overs,see e.g. [16℄. A

ording to the usual reasoning, this implies the existen
e of logarithmi
singularities in boundary 
orrelation fun
tions on branes in generi
 positions. As we have26



remarked before, the modular bootstrap alone did not allow for su
h a strong 
on
lusionas it is blind to all nilpotent 
ontributions within L0. But in addition to the standard
onformal �eld theory analysis, our investigation of the GL(1j1) WZNW model also drawsfrom the existen
e of the geometri
 regime at large level k. The presen
e of proje
tive
overs is easily understood in the minisuperspa
e theory and it must persist when �eldtheoreti
 
orre
tions are taken into a

ount.There are a few obvious extensions of the above analysis that seem to merit 
loserinvestigation. These in
lude the 
omputation of boundary 
orrelation fun
tions for twistedand untwisted branes in the GL(1j1) model. We expe
t that 
orrelators with a smallnumber of bulk and/or boundary insertions may be 
omputed using free �eld te
hniques,as in the 
ase of bulk models [16, 20℄. It would also be interesting to study the variousbrane geometries that 
an 
ome up on other supergroup manifolds. We plan to report onboth issues in the near future.Note added: While we were in the �nal stages of preparing this manus
ript, a relatedpaper [53℄ appeared whi
h dis
usses branes in triplet models with p � 2. The results ofGaberdiel and Runkel show that branes in triplet models share many features with theout
ome of our analysis. In parti
ular, for trivial gluing automorphism, branes in bothmodels are labelled by irredu
ible representations of the 
hiral algebra. Also the labels forrelevant Ishibashi states follow the same pattern: We have found one `generi
' Ishibashistate for ea
h Ka
 module and an ex
eptional family with members being asso
iated toatypi
al blo
ks. When the same rules are applied to the triplet models, we obtain a set ofIshibashi states that seems 
losely related to those used in [53℄. Furthermore, Gaberdieland Runkel also �nd that the partition fun
tion for any pair of boundary 
onditions maybe determined by fusion of representations. The existen
e of a geometri
 regime for theGL(1j1) WZNW model allows us to go one step further. It gives us full 
ontrol overthe stru
ture of the state spa
e and thereby also over the nilpotent 
ontributions to L0whi
h are not visible in partition fun
tions. Fusion of bgl(1j1) representations was shown to
orre
tly reprodu
e the state spa
es of boundary theories in the GL(1j1) WZNW model.Let us stress, however, that the triplet and the GL(1j1) WZNW model are 
lose 
ousins(see e.g. the dis
ussion in [22℄). It would therefore be somewhat premature to 
laim thatall these stru
tures will be present in more general logarithmi
 
onformal �eld theories.27
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e PPA/P/S/2002/00370.A The Representation Theory of bgl(1j1)A.1 Spe
tral 
ow automorphismsA useful tool for the investigation of the 
urrent algebra bgl(1j1) and its representationsare spe
tral 
ow automorphisms. The �rst one, 
m, leaves the modes Nn invariant anda
ts on the remaining ones as
m(En) = En + kmÆn0 ; 
m(	�n ) = 	�n�m : (A.1)The previous transformation also indu
es a modi�
ation of the energy momentum tensorwhi
h is determined by 
m(Ln) = Ln +mNn : (A.2)Sin
e the rank of GL(1j1) is two, there is a se
ond one parameter family of spe
tral 
owautomorphisms ~
� whi
h is parametrized by a 
ontinuous number �. It is rather trivialin the sense that its a
tion does not a
t on the mode numbers,~
�(Nn) = Nn + k � Æn0 and ~
�(Ln) = Ln + � En : (A.3)All other modes of the 
urrents are left invariant.The two spe
tral 
ow symmetries above indu
e a map on the set of representations ofbgl(1j1). Given any representation � we obtain two new ones by de�ning �m = � Æ 
m and~�� = � Æ ~
� . The latter is not very ex
iting but the former will play a 
ru
ial role below.Let us thus state in passing that the super-
hara
ters of these representations are relatedby ��m(�; �) = ��(�+m�; �) : (A.4)This formula gives severe restri
tions on the nature of the representations �m.28



A.2 Some formulas 
on
erning Theta fun
tionsLet us re
all some fa
ts about the theta fun
tion in one variable, the referen
e is Mum-ford's �rst book [49℄. �(�; �) is the unique holomorphi
 fun
tion on C � H , su
h that�(�+ 1; �) = �(�; �);�(�+ �; �) = e��i�e�2�i��(�; �);�(�+ 12 ; � + 1) = �(�; �);�(�=�;�1=�) = p�i� e�i�2=��(�; �)limIm(�)!1 �(�; �) = 1 : (A.5)
The theta fun
tions has a simple expansion as an in�nite produ
t,�(�; �) = 1Ym=0�1� qm� 1Yn=0�1 + u�1qn+1=2��1 + uqn+1=2� ; (A.6)where q = e2�i� and u = e2�i�. The bgl(1j1) 
hara
ters in the RR se
tor we shall presentin the next se
tion have a simple expression in terms of the variant���� 12(� + 1); �� = (1� u) 1Yn=1�1� qn��1� uqn��1� u�1qn� : (A.7)Its behavior under modular S transformations whi
h send the arguments of the thetafun
tion to ~� = �1=� and ~� = �=� 
an be dedu
ed from the properties above. Onesimply �nds��~�� 12(~� + 1); ~�� = ip�i~� e�i~�2=~� u1=2~u�1=2 q�1=8~q1=8 ���� 12(� + 1); �� : (A.8)A.3 Representations and their 
hara
tersIn this appendix we review the representations of the 
urrent superalgebra bgl(1j1) that arerelevant for our dis
ussion in the main text. We shall slightly deviate from the presentationin [16℄ in putting even more emphasis on the role of the spe
tral 
ow automorphism(A.1). The latter is the only 
onstituent whi
h leads to a substantial di�eren
e betweenthe representation theory of the �nite dimensional subalgebra gl(1j1) and that of itsaÆnization bgl(1j1). 29



All irredu
ible representations of bgl(1j1) are quotients of Ka
 modules. Just as forgl(1j1), we distinguish between Ka
 modules he; ni and anti Ka
 modules he; ni. Thesesymbols have been 
hosen sin
e the ground states transform in the 
orresponding repre-sentations of the horizontal subalgebra gl(1j1).5 For e 62 kZ both types of representationswill be 
alled typi
al, otherwise atypi
al. Typi
al representations are irredu
ible and onehas the equivalen
e he; ni �= he; ni. The super-
hara
ter of (anti) Ka
 modules 
an easilybe found to be�̂he;ni(�; �) = �̂he;ni(�; �) = un�1q e2k (2n�1+e=k)+1=8���� 12(� + 1); ��Æ�(�)3 : (A.9)When writing down this expression we assumed the ground state with quantum numbers(E0; N0) = (e; n) to be fermioni
. The spe
tral 
ow 
m transforms the 
hara
ters of Ka
modules a

ording to
m : �he;ni(�; �) 7! (�1)m�he+mk;n�mi(�; �) : (A.10)This equation should be interpreted as de�ning a map between representations. Were
ognize that he; ni is transformed into he+mk; n�mi under 
m and that the parity ofthe module is 
hanged if m is odd. A 
hange of parity o

urs if the interpretation of whatare bosoni
 and what are fermioni
 states is altered 
ompared to the standard 
hoi
e.The equivalen
e between Ka
 modules and anti Ka
 modules is destroyed for e 2 kZ.For these values the representations hmk; ni and hmk; ni degenerate and exhibit a singlesingular ve
tor whi
h 
an be found on energy level jmj, see [16℄ for details.6 This statementis parti
ularly 
lear for m = 0 when the singular ve
tor is a ground state. In view ofeq. (A.10) the attentive reader will have anti
ipated that the residual 
ases e = mksimply arise by applying the spe
tral 
ow automorphism 
m.The stru
ture of the Ka
 modules may be inferred from their 
omposition series.A

ording to our previous statements the Ka
 module hmk; ni 
ontains pre
isely oneirredu
ible submodule denoted by hn� 1i(m). The quotient of hmk; ni by the submodulehn�1i(m) turns out to be the irredu
ible representation �hni(m)�0. Hen
e, one 
an des
ribe5We would like to stress that the representations hmk; ni and hmk; ni are inequivalent for m 2 Z eventhough their ground states transform identi
ally as long as m 6= 0. The reason be
omes 
lear below.6In order to avoid 
onfusion we would like to emphasize that the 
onstru
tion in [16℄ gives rise to Ka
modules for m < 0 and anti Ka
 modules for m > 0. The remaining modules 
annot be obtained throughVerma modules of the sort 
onsidered there. 30



the representation using the 
omposition serieshmk; ni : �hni(m)�0 �! hn� 1i(m) : (A.11)Again, all this 
an be understood best for m = 0 where the statement redu
es to well-known fa
ts about Ka
 modules of the �nite dimensional subalgebra gl(1j1). This remarkespe
ially implies that the atypi
al irredu
ible representations hni(0) are built over the one-dimensional gl(1j1)-module hni. They are transformed into the remaining representationshni(m) under the spe
tral 
ow automorphism 
m. For m 6= 0, the ground states of hni(m)
an easily be seen to form the gl(1j1)-module hmk; n � mi. The information 
ontainedin the 
omposition series (A.11) may be used to 
al
ulate the super-
hara
ters of theatypi
al irredu
ible representations hni(m). Following the ideas of [54℄ one simply �nds�̂(m)hni (�; �) = 1Xl=0 �̂hmk;n+l+1i(�; �)= un1� uqm qm2 (2n+m+1)+1=8���� 12(� + 1); ���(�)3 : (A.12)Analogous results hold for anti Ka
 modules.Finally we need to dis
uss the proje
tive 
overs of irredu
ible representations. Thetypi
al representations he; ni with e 62 kZ are proje
tive themselves. But the atypi
alrepresentations hni(m) have more 
ompli
ated proje
tive 
overs whose 
omposition seriesreads P(m)n : �hni(m)�0 �! hn+ 1i(m) � hn� 1i(m) �! �hni(m)�0 : (A.13)An alternative des
ription of the proje
tive 
overs is in terms of their Ka
 
ompositionseries P(m)n : hmk; ni ! hmk; n + 1i0. Consequently, the 
hara
ters of proje
tive 
oversare given by �̂P(m)n (�; �) = �̂hmk;ni(�; �)� �̂hmk;n+1i(�; �) : (A.14)These statements 
an on
e again be 
he
ked expli
itly for m = 0 and then generalized toarbitrary values of m by means of the spe
tral 
ow transformation. For future 
onvenien
ewe shall silently omit the supers
ript (m) in the 
ase that m = 0.
31



A.4 Some modular transformationsIn this se
tion we list the modular transformations of all the aÆne 
hara
ters appearingin the previous se
tion. Sin
e all these representations may be expressed in terms of Ka
modules it is suÆ
ient to know the transformation�̂he0;n0i(�; �) = �1k Z dedn exp 2�ik he0(n�1=2)+e(n0�1=2)+e0e=ki �̂he;ni(~�; ~�) : (A.15)to derive the remaining ones. Using the series representation (A.12) one, e.g., obtains thefollowing behavior for 
hara
ters of atypi
al representations,�̂(m)hn0i(�; �) = 12ki Z dedn exp 2�i�e=k(n0 +m) +m(n� 1=2)�sin(�e=k) �̂he;ni(~�; ~�) : (A.16)Similarly, using the Ka
 
omposition series for proje
tive 
overs we dedu
e�̂P(m)n0 (�; �) = �̂hmk;n0i(�; �)� �̂hmk;n0+1i(�; �)= 2i(�1)mk Z dedn exp 2�ihe=k(n0 +mk) +mn� sin(�e=k) �̂he;ni(~�; ~� ) :(A.17)The alternating signs in these formulas arise sin
e the spe
tral 
ow 
hanges the parity ofrepresentations for odd values of m.A.5 Fusion rules of the bgl(1j1) 
urrent algebraUp to the need to in
orporate the spe
tral 
ow automorphism and the additional atypi
alrepresentations indu
ed from it, the fusion rules of bgl(1j1) agree pre
isely with the tensorprodu
t de
omposition of gl(1j1)-modules, see e.g. [48℄. Given any two integers, m1; m2 2Z, we thus �ndhe1; n1i 
 he2; n2i �= 8<:he1 + e2; n1 + n2i0 � he1 + e2; n1 + n2 � 1i ; e1+e2 62 kZP(m)n1+n2�1 ; e1+e2 = mkhn1i(m1) 
 hn2i(m2) �= hn1 + n2i(m1+m2)hn1i(m1) 
 he2; n2i �= hm1k + e2; n1 + n2i : (A.18)The prime 0 in the �rst line indi
ates that the representation has the opposite parity
ompared to our standard 
hoi
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