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AbstratWe initiate a systemati study of boundary onditions in onformal �eld theorieswith target spae supersymmetry. The WZNW model on GL(1j1) is used as aprototypial example for whih we �nd the omplete set of maximally symmetribranes. This inludes a unique brane of maximal super-dimension 2j2, a 2-parameterfamily of branes with super-dimension 0j2 and an in�nite set of fully loalized branespossessing a single modulus. Members of the latter family an only exist alongertain lines on the bosoni base, muh like frational branes at orbifold singularities.Our results establish that all essential algebrai features of Cardy-type boundarytheories arry over to the non-rational logarithmi WZNW model on GL(1j1).
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1 IntrodutionField theories with target spae supersymmetry have reeived onsiderable attentionlately, beause of their interesting appliations in both ondensed matter theory andin string theory. This applies in partiular to 2-dimensional onformal �eld theories withspae-time (internal) supersymmetry. They desribe ritial behavior in many systemswith disorder [1, 2, 3, 4, 5, 6, 7, 8, 9, 10℄ and they provide building bloks for string theoryin AdS bakgrounds [11, 12, 13, 14℄.1Conformal �eld theories with target spae supersymmetry have some properties that,for a long time, were onsidered rather exoti. In fat, the orrelators of suh theories veryoften possess logarithmi singularities on the world-sheet. In ondensed matter theory,these had been seen in various examples starting from [15℄. But it was only reently [16℄that the appearane of logarithms in orrelation funtions was understood as a rathergeneri onsequene of internal supersymmetry in CPT invariant loal quantum �eldtheory.In many respets, logarithmi onformal �eld theories behave rather di�erently fromthe well studied unitary rational models (see, e.g., [17, 18℄ and referenes therein). Ithas proven partiularly diÆult to onstrut examples of loal logarithmi onformal �eldtheories. Until reently, the only example that was fully understood was that of a tripletmodel [19℄. The problems may be traed bak to the non-diagonalizability of the generatorD = L0 + �L0 of sale transformations whih is one of the harateristi features of anylogarithmi onformal �eld theory. Sine loality implies that the generator R = L0� �L0 ofrotations must be diagonalizable with integer valued spetrum, the left and right movingsetor in a logarithmi onformal �eld theory must onspire in an intriate way to ensureloality.Against all these odds, reent work on WZNW models on type I supergroups [16,20, 21, 22℄ is now supplying us with a large number of loal logarithmi onformal �eldtheories. This remarkable progress is losely linked to the existene of an ation priniplefor these logarithmi models. The latter furnishes valuable geometri insights in additionto eÆient omputational tools. These provide an expliit solution of the WZNW modelfor the supergroups GL(1j1) [16℄, SU(2j1) [21℄ and PSL(2j2) [20℄ along with powerful1We should stress that in latter ontext, gauge �xing the Green-Shwarz superstring leads to non-relativisti theories whih may have very di�erent properties from what we are about to desribe.1



results and preditions for generi supergroups of type I [22℄.It is natural and important to extend these developments beyond the bulk theory andto inlude world-sheets with boundaries. Systems with boundaries are highly relevant forappliations (see e.g. [23, 24, 25℄ for an inomplete review of appliations and many furtherreferenes), often more so than theories on losed surfaes. Moreover, boundary onformal�eld theory also displays rather rih mathematial strutures (see e.g. [26, 27, 28, 29, 30℄or [31, 32, 33, 34℄ for various diretions and further referenes), in partiular related tomodular properties, fusion et. All this is very poorly understood for general logarithmionformal �eld theories, see however [35, 36, 37, 38, 39, 40℄ and espeially [41℄ for reentprogress in spei� models. WZNW models on supergroups present themselves as anideal playground to extend many of the beautiful results of unitary rational onformal�eld theory to logarithmi models. Even the simplest models are mathematially rih andphysially relevant.The aim of this work is to initiate a systemati study of boundary onditions in WZNWmodels on supergroups based on the example of GL(1j1).2 Let us list the main resultsof this paper in more detail. Reall that maximally symmetri boundary onditions inonformal �eld theories arry two labels. The �rst one refers to the hoie of a gluingondition between left and right moving hiral �elds. The seond label parametrizes dif-ferent boundary onditions assoiated with the same gluing ondition. In unompati�edfree �eld theory, for example, the two labels orrespond to the dimension of the braneand its transverse position. The relation between these labels and the branes' geometrybeomes more intriate when the world-sheet theory is interating.In the seond setion we shall desribe the possible ways in whih we an glue leftand right movers in the GL(1j1) WZNW model. We shall see that there are essentiallytwo hoies, orresponding to what we shall all untwisted and twisted branes. Most ofthis work is then devoted to the untwisted branes. We shall disuss in setion 3 that alluntwisted branes satisfy Dirihlet boundary onditions for the two bosoni oordinates.Hene, they desribe objets that are fully loalized in the bosoni base of the supergroupGL(1j1). The position of these branes is parametrized by a pair (z0; y0) of real numbers.For generi hoies of y0, the untwisted branes extend along the two fermioni diretionsof GL(1j1) and there exists a non-vanishing B-�eld. But on the lines y0 = 2�s, for any2Spetra of supersymmetri oset models with open boundary onditions were also studied previously,in partiular in [42, 43℄. 2



integer s, there exists an additional set of branes whih are loalized in the fermionidiretions as well as the bosoni ones, i.e. they are truly point-like.After a detailed study of the branes' geometry we shall provide exat boundary statesfor generi and non-generi untwisted branes on GL(1j1) in setion 4. There, we shallalso disuss what happens when a generi brane is moved onto one of the lines y0 = 2�s:It turns out to split into a pair of non-generi branes with a transverse separation that isproportional to the level of the WZNW model. Setion 5 ontains a detailed disussion ofthe relation between our �ndings for boundary onditions in a loal logarithmi onformal�eld theory and the usual Cardy ase of unitary rational models [44℄. We shall see that inboth ases branes are parametrized by irreduible representations of the urrent algebra.Furthermore, the spetra between any two branes an be determined by fusion. Similarresults for the p = 2 triplet model have been obtained in [41℄. In the ase of GL(1j1)WZNW model we will establish that most of the boundary spetra are not fully reduible.This applies in partiular to the spetrum of boundary operators on a single generi brane.Setion 6 is devoted to a brief study of twisted branes on GL(1j1). We shall �nd thatthese satisfy Neumann boundary onditions in the bosoni oordinates.2 Gluing Conditions for bgl(1j1) Symmetri BranesBranes on supergroups ome in di�erent families or types. They are haraterized by theway in whih left and right moving hiral �elds are glued along the boundary (see e.g. [45℄).Mathematially, the various possible gluing onditions orrespond to automorphisms ofthe hiral symmetry. If two gluing automorphisms di�er by an inner automorphism, theassoiated branes are related to eah other by simple translation on the target spae.The hiral symmetry of the GL(1j1) WZNW model is a bgl(1j1) urrent superalgebra.Its metri preserving automorphisms will be lassi�ed in the �rst subsetion up to thepossible omposition with an inner automophism. In addition to the trivial automorphismwe shall �nd one non-trivial outer automorphism 
. Some general fats about the assoi-ated gluing onditions for superurrents and their geometrial interpretation are olletedin the seond subsetion.
3



2.1 Automorphisms of the bgl(1j1) urrent superalgebraIn this subsetion, we determine the relevant gluing automorphisms 
 for branes in theGL(1j1) WZNW model. An automorphism of the bgl(1j1) urrent superalgebra is admissi-ble as a gluing automorphism if it ats trivially on the Virasoro Sugawara �eld T . Whenrestrited to the zero mode algebra, any suh automorphisms 
 gives rise to an auto-morphism ! of the underlying �nite dimensional Lie superalgebra gl(1j1). If 
 leaves Tinvariant, the orresponding automorphism ! ats trivially on the assoiated quadratiCasimir element C of gl(1j1). Our �rst goal is therefore to lassify all automorphisms !of gl(1j1) with the additional property that !(C) = C.The Lie superalgebra gl(1j1) is generated by two bosoni elements E;N and twofermioni elements 	�, subjet to the relations[N;	�℄ = �	� ; f	�;	+g = E : (2.1)In addition, the element E is entral, i.e. it ommutes with all other elements of gl(1j1).The relevant quadrati Casimir element C of gl(1j1) is given byC = (2N � 1)E + 2	�	+ + 1kE2 : (2.2)Sine E is entral, one has the freedom of adding a quadrati polynomial in E. Thehoie we have made here is the one that orresponds to the Virasoro Sugawara �eld ofthe bgl(1j1) urrent superalgebra at level k that has been used in [16℄. In this ontext thesubleading term in k should be thought as a quantum renormalization. Adding additionalontributions in E2 does not hange the qualitative features of the model.A straightforward alulation shows, that the Casimir preserving automorphisms ofgl(1j1) ome in two families,!(0)� (E) = E ; !(0)� (N) = N ; !(0)� (	�) = e�i�	� (2.3)!(1)� (E) = �E ; !(1)� (N) = �N ; !(1)� (	�) = �e�i�	� : (2.4)With E being entral, the only non-trivial bosoni inner automorphisms Ad� are providedby onjugation with exp(i�N). Looking bak onto the eqs. (2.3), we observe that !(0)� =Ad�, i.e. the automorphisms !(0)� are all inner. Furthermore, any two members of theseond family !(1)� are related by onjugation with some exp(i�N). Hene, it suÆes to4



onsider one representative ! = !(1)�=0. We onlude that, up to omposition with innerautomorphisms, there exist two admissible automorphisms of gl(1j1), namely the trivialautomorphism !(0) = id and the non-trivial ! = !(1)0 . Note that the latter squares to aninner automorphism.Let us now show that both automorphisms lift to admissible automorphisms of theurrent superalgebra bgl(1j1). This urrent algebra is generated by the modes of the hiral�elds E(z); N(z) and 	�(z) with relations,[En; Nm℄ = �kmÆn+m ; [Nn;	�m℄ = �	�n+m ; f	�n ;	+mg = En+m + kmÆn+m : (2.5)All other (anti-)ommutators vanish and the number k is known as the level of bgl(1j1).The ation of !(0) = id on gl(1j1) lifts to the trivial automorphism 
(0) = id on bgl(1j1).In ase of !(1), its properties guarantee that
(En) = �En ; 
(Nn) = �Nn ; 
(	�n ) = �	�nis onsistent with the level dependent terms in eqs. (2.5). Furthermore, the modes of thestress energy tensor take the form [15℄Ln = 12k (2NnE0 � En + 2	�n	+0 + 1kEnE0)+1k Xm>0 (En�mNm +Nn�mEm + 	�n�m	+m � 	+n�m	�m + 1kEn�mEm)It is easy to hek that the Ln are indeed invariant under the ation of 
. Consequentlywe have found two lasses of automorphisms of bgl(1j1) that are admissible as gluingautomorphisms.2.2 Types of boundary onditionsLet us onsider a WZNW model on the upper half of the omplex plane. Boundaryonditions along the boundary at z = �z preserve onformal invariane of the model ifand only if the two hiral omponents of the stress energy tensor T agree all along theboundary, i.e. T (z) = T (�z) for z = �z : (2.6)In any WZNW model, the stress energy tensor T is onstruted out of the hiral urrents.A boundary ondition is said to be maximally symmetri if left and right moving urrents5



an be identi�ed along the boundary, up to the ation of an automorphism 
,Ja(z) = 
� �Ja(�z)� for z = �z : (2.7)where Ja = E;N;	� when we deal with the GL(1j1) model. For 
 we an insert any ofthe automorphisms we have disussed in the previous subsetion.It will be onvenient to rewrite the gluing onditions (2.7) in terms of those �elds thatappear in the ation of the GL(1j1) WZNW model. In priniple, there exist various hoiesthat ome with di�erent parametrizations of the supergroup GL(1j1). One possible set ofoordinate �elds is introdued throughg = ei�	� eiXE+iY N ei+	+ : (2.8)The �elds X and Y are bosoni while � are fermioni. Let us also reall that the(anti-)holomorphi urrents of the WZNW model are given byJ(z) = �k�gg�1 and �J(�z) = kg�1 ��g :Inserting our spei� hoie of the paramerization (2.8), the urrents take the followingform�J = kieiY ���	� + k�i��X � (���)+eiY �E + ki��Y N + k(i��+ � + ��Y )	+ (2.9)andJ = �k(i�� � ��Y )	� � k�i�X � �(�+)eiY �E � ki�Y N � kieiY �+	+: (2.10)The various omponents of these Lie superalgebra valued (anti-)holomorphi urrents anbe projeted out with the help of the super-traestr(NE) = str(	+	�) = �1 : (2.11)We onlude that E(z) = str(J(z)E) = ki�Y and similar expressions hold for the otherthree holomorphi urrents and their anti-holomorphi ounterparts.Let us briey reall how to extrat the branes' geometry from the gluing onditions.Loally, the ation of a WZNW model on any (super-)group looks as followsS(X) � Z� d2z(g�� +B��)�X� ��X�: (2.12)6



with a (graded) antisymmetri 2-form potential B of the WZ 3-form H = dB and a(graded) symmetri metri g. Vanishing of the boundary ontributions to the variationleaves us with two hoies: We an either impose Dirihlet boundary onditions �pX� = 0or require that g�� �nX�(z; �z) = iB�� �pX�(z; �z) for z = �z : (2.13)In general, some ombination of these two possibilities ours. The gluing onditions (2.7)for our urrents (2.9) and (2.10) an always be brought into standard form by splittingthe derivatives � and �� into �p and �n. Following the reasoning that was �rst proposedin [46℄ for bosoni WZNW models (see also [47℄ for a di�erent approah), one may showthat maximally symmetri branes on super-groups are loalized along ! twisted super-onjugay lasses C!(b) = �!(g)bg�1 �� g in G	 (2.14)where b an be any element of the bosoni subgroup and ! is now regarded as an auto-morphism of the supergroup rather than its Lie superalgebra. For the GL(1j1) WZNWmodel, a more detailed derivation of this statement along with an expliit desription ofthe resulting brane geometries will be given below.3 Untwisted Branes: Geometry and Partile limitThis setion is devoted to the geometry of branes assoiated with the trivial gluing auto-morphism. We shall show that suh branes are loalized at a point (x0; y0) on the bosonibase of GL(1j1). For generi hoies y0, they streth out along the fermioni diretions,i.e. the fermioni �elds obey Neumann type boundary onditions. When y0 = 2�s; s 2 Z,on the other hand, the orresponding branes are point-like. These geometri insights fromthe �rst part of the setion are then used in the seond part to study branes in the partilelimit in whih the level k is sent to in�nity. Most importantly, we shall provide minisu-perspae analogues of the boundary states for both generi and non-generi untwistedbranes, see eqs. (3.25) and (3.27), respetively.3.1 Geometri interpretation of untwisted branesIn the previous setion we have made a number of general statements onerning thegeometry of maximally symmetri branes on (super-)group target spaes. Here, we want7



to step bak a bit and work out the preise form of the boundary onditions for oordinate�elds. We shall ontinue to use the spei� parametrization (2.8) of GL(1j1). Insertionof our expliit formulas (2.9) and (2.10) for left and right moving urrents into the gluingondition (2.7) with 
 = I gives�pY = 0 ; �pZ = 0 ; for z = �z ;where Z = X + i�+(e�iY � 1)�1 (3.1)and �p denotes the derivative along the boundary. In other words, both bosoni �elds Yand Z satisfy Dirihlet boundary onditions. Untwisted branes in the GL(1j1) WZNWmodel are therefore parameterized by the onstant values (y0; z0) the two bosoni �eldsY; Z assume along the boundary. For the two basi fermioni �elds we obtain similarly� 2 sin2(Y=2)�nd� = sin(Y ) �pd� ; for z = �z ;where d� = �eiY=2 sin�1(Y=2)=2i : (3.2)Thereby, the fermioni diretions are seen to satisfy Neumann boundary onditions witha onstant B-�eld whose strength depends on the position of the brane along the bosonibase. We shall provide expliit formulas below. For the moment let us point out that theondition (3.2) degenerates whenever the value y0 of the bosoni �eld Y on the boundaryapproahes an integer multiple of 2�. In fat, when y0 = 2�s; s 2 Z we obtain Dirihletboundary onditions in all diretions, bosoni and fermioni ones,�pY = �pZ = �pd� = 0 for z = �z: (3.3)In the following, we shall refer to the branes with parameters (z0; y0 6= 2�s) as generi(untwisted) branes. These branes are loalized at the point (z0; y0) of the bosoni baseand they streth out along the fermioni diretions. A loalization at points (z0; 2�s); s 2Z, implies Dirihlet boundary onditions for the fermioni �elds. We shall refer to theorresponding branes as non-generi (untwisted) branes.We have seen in the desription of our gluing onditions that it was advantageousto introdue �elds Z and d� instead of X and �. They orrespond to a new hoie ofoordinates on the supergroup GL(1j1)g = ei�	�eixE+iyNei+	+ = eid�	�e�id+	+eizE+iyNeid+	+e�id�	� (3.4)that is partiularly adapted to the desription of untwisted branes. In fat, we reallfrom our general disussion that untwisted branes are loalized along onjugay lasses.8



It is therefore natural to introdue a parametrization in whih supergroup elements gare obtained by onjugating bosoni elements g0 = exp(iz0E + iy0N) with exponentialsof fermioni generators. From equation (3.4) it is also easy to read o� that onjugaylasses ontaining a bosoni group element g0 ontain two fermioni diretions as longas y0 6= 2�s. In ase y0 = 2�s, onjugation of g0 with the fermioni fators is a trivialoperation and hene the onjugay lasses onsist of points only.It is instrutive to work out the form of the bakground metri and B-�eld in our newoordinates. To this end, let us reall thatds2 = str�(g�1dg)2� = 2dxdy � 2eiyd��d�+ : (3.5)Here, the super-oordinates x; y; �� orrespond to our oordinate �elds X; Y; �. Similarly,the Wess-Zumino 3-form on the supergroup GL(1j1) is given byH = 23 str(g�1dg)^3 = 2ieiyd�� ^ d�+ ^ dy : (3.6)After the appropriate hange of oordinates from (x; y; ��) to (z; y; ��), the metri readsds2 = 2dzdy + 8 sin2(y=2)d��d�+ (3.7)and the H �eld beomes H = 4i�os(y)� 1�d�� ^ d�+ ^ dy : (3.8)It is easy to hek that H = dB possesses a 2-form potential B given byB = 4i sin(y) d�� ^ d�+ + 2i�+d�� ^ dy � 2i��d�+ ^ dy : (3.9)Upon pull bak to the untwisted branes we an set dy = 0 and the B-�eld beomes��braneB = 4i sin(y) d�� ^ d�+ : (3.10)This expression together with our formula (3.7) for the metri allow to reast the bound-ary onditions (3.2) for the fermioni �elds in theories with generi untwisted boundaryonditions in the familiar form (2.13).
9



3.2 Boundary states in the minisuperspae theoryAs in the analysis of the bulk GL(1j1) model [16℄ it is very instrutive to study theproperties of untwisted branes in the so-alled partile or minisuperspae limit. Therebywe obtain preditions for several �eld theory quantities in the limit where the level ktends to in�nity. Our �rst aim is to present formulas for the minisuperspae analogue ofIshibashi states. Using our insights from the previous subsetion we shall then proposeandidate boundary states for the partile limit and expand them in terms of Ishibashistates.Let us begin by realling a few basi fats about the supergroup GL(1j1) or rather thespae of funtions  L2 it determines, see [16℄. The latter is spanned by the elementse0(e; n) = eiex+iny ; e�(e; n) = ��e0(e; n) e2(e; n) = ���+e0(e; n) : (3.11)where the oordinates are the same as in the previous subsetion. Right and left invariantvetor �elds take the following formRE = i�x ; RN = i�y + ���� ; R+ = �e�iy�+ � i���x ; R� = ��� ; (3.12)andLE = �i�x ; LN = �i�y � �+�+ ; L� = e�iy�� � i�+�x ; L+ = �+ ; (3.13)These vetor �elds generate two (anti-)ommuting opies of the underlying Lie superal-gebra gl(1j1). For the reader's onveniene we also wish to reprodue the invariant Haarmeasure on GL(1j1), d� = e�iydxdyd�+d�� : (3.14)The deomposition of  L2 with respet to both left and right regular ation was analyzedin [16℄. Here, we are most interested in properties of the adjoint ation adX = RX + LXsine it is this ombination of the symmetry generators that is preserved by the untwistedD-branes.Our �rst aim is to onstrut a anonial basis in the spae of (o-)invariants. Byde�nition, a (o-)invariant j ii (hh j) is a state (linear funtional) satisfyingadX j ii = (RX + LX)j ii = 0 ; hh j adX = hh j(RX + LX) = 0 : (3.15)10



These two linear onditions resemble the so-alled Ishibashi onditions in boundary on-formal �eld theory. In the minisuperspae theory, it is easy to desribe the spae ofsolutions. One may hek by a short omputation that a generi invariant takes the formje; nii0 = 12�pe�e0(e; n)� e0(e; n� 1) + ee2(e; n)� : (3.16)The pre-fator 1=2�pe is determined by a normalization ondition to be spelled out below.We note that the funtion je; nii0 is obtained by taking the super-trae of supergroupelements in the typial representation he; ni.3 To eah of the invariants je; nii0 we anassign a o-invariant 0hhe; nj :  L2 ! C through0hhe; nj = Z d� 12�pe�e0(�e;�n + 1)� e0(�e;�n)� ee2(�e;�n + 1)� : (3.17)Our normalization of both je; nii0 and the dual invariant 0hhe; nj ensures that0hhe; nj(�1)Fu 12 (LE�RE)1 u 12 (LN�RN )2 je0; n0ii0 = Æ(n0 � n) Æ(e0 � e)�he;ni(u1; u2)where �he;ni(u1; u2) = ue1 �un�12 � un2� is the super-harater of the typial representationhe; ni of gl(1j1). If we re-sale the invariants je; nii0 and then send e to zero we obtainanother family of invariants,j0; nii0 := lime!0pe je; nii0 = e0(0; n)� e0(0; n� 1) : (3.18)Similarly, we de�ne the dual 0hh0; nj as a limit of 0hh�e;�n+1jpe. By onstrution, thestates j0; nii0 and the assoiated linear forms possess vanishing overlap with eah otherand with the states je; nii0,0hh0; nju 12 (LE�RE)1 u 12 (LN�RN )2 je0; n0ii0 = 0 (3.19)for all e0, inluding e0 = 0. This does ertainly not imply that 0hh0; nj ats trivially onthe spae of funtions.It is easy to see that the funtions j0; nii0 do not yet span the spae of invariants.What we are missing is a family of additional states jnii0 whih is given byjnii0 = 12� e0(0; n) for n 2 [0; 1[ :3Our onventions for the representation theory of gl(1j1) are the same as in [48℄. In partiular, he; nidenotes a 2-dimensional graded representation of gl(1j1). Let us agree to onsider the state with smallerN -eigenvalue as even (bosoni). The same representation with opposite grading shall reeive an additionalprime, i.e. it is denoted by he; ni0. 11



The orresponding dual o-invariants are given by the presription0hhnj = 12� Z d� Xm2Ze2(0;�n +m+ 1) : (3.20)Our normalization ensures that0hhnj(�1)Fu 12 (LE�RE)1 u 12 (LN�RN )2 jn0ii0 = Æ(0) Æ(n0 � n)�hni(u1; u2) (3.21)where �hni(u1; u2) = un2 . The divergent fator Æ(0) stems from the in�nite volume of ourtarget spae and it ould absorbed into the normalization of the Ishibashi state. Let usobserve that the o-invariants 0hhnj may be obtained by a limiting proedure from 0hhe; nj,0hhnj = � lime!0 1pe Xm 0hhe; n +mj : (3.22)A similar onstrution an be performed with the Ishibashi states je; nii0 to give theformal invariants Pm e2(0; n + m). They are formally dual to o-invariants given byR d�e0(0;�n+ 1). In our disussion, and in partiular when we wrote eq. (3.20), we haveimpliitly equipped  L2 with a topology that exludes to onsider Pm e2(0; n + m) as atrue funtion. While the dual funtional R d�e0(0;�n+ 1) does not su�er from any suhproblem, it so happens not to appear in the onstrution of boundary states. This is whywe do not bother giving it a proper name.It is our aim now to determine the oupling of bulk modes to branes in the minisuper-spae limit. In the partile limit, the bulk 1-point funtions are linear funtionals f 7! hfion the spae  L2 of funtions suh that hadXfi = 0, i.e. they are o-invariants. The �rstfamily of o-invariants we shall desribe orresponds to branes in generi positions (z0; y0).Sine these are loalized at a point (z0; y0) on the bosoni base and deloalized along thefermioni diretions, their density is given by�(z0;y0) = �2i sin(y0=2) Æ(y � y0) Æ(z � z0)= �2i sin(y0=2) Æ(y � y0) Æ�x� i���+(1� e�iy)�1 � z0� : (3.23)The onstant prefator �2i sin(y0=2) was hosen simply to math the normalization ofour boundary states below. Obviously, the density �(z0;y0) is invariant under the adjointation. It gives rise to a family of o-invariants through the presriptionf 7! hfi� := Z d� �(x; y; ��) f(x; y; ��) : (3.24)12



Geometrially, the integral omputes the strength of the oupling of a bulk mode f to abrane with mass density �. It is not diÆult to hek that our funtional h�i(z0;y0) admitsan expansion in terms of dual Ishibashi states as follows,h � i(z0;y0) � 0hz0; y0j = Z dednpe ei(n�1=2)y0+iz0e 0hhe; nj= Ze 6=0 dednpe ei(n�1=2)y0+iz0e 0hhe; nj+ Z dn ei(n�1=2)y0 0hh0; nj : (3.25)In the seond line of this formula we have separated typial and atypial ontributions tothe boundary state. Considering that the state 0hh0; nj is obtained through the limitingproedure 0hh0; nj = lime!0pe 0hhe; nj, the seond term is the natural ontinuation of the�rst. In this sense, we may drop the ondition e 6= 0 in the �rst integration and ombinetypial and atypial terms into the single integral appearing in the �rst line. We observethat all h�i(z0;y0) vanish on funtions e0(e; n) with e = 0.Let us now turn to the non-generi branes. These are loalized also in the fermionidiretions. Hene, their density takes the form�sz0 = (�1)s Æ(y � 2�s) Æ(x� z0) Æ(�+) Æ(��) (3.26)where s is an integer. When this density is inserted into the general presription (3.24),we obtain another family of o-invariants. Its expansion in terms of Ishibashi states readsh � isz0 = 0hz0; sj = Z dedn 1pe e2�i(n�1=2)s+iez0 0hhe; nj= Ze 6=0 dedn 1pe e2�i(n�1=2)s+iez0 0hhe; nj � Z 10 dn e2�i(n�1=2)s 0hhnj : (3.27)One more, the seond line displays typial and atypial ontributions to the boundarystate separately. In passing from the �rst to the seond line, we exploited s 2 Z alongwith our observation (3.22).The two families h�i(z0;y0) with y0 6= 2�s and h�isz0 are not entirely independent. In fat,we note that boundary states from the generi family may be `re-expanded' in terms ofmembers from the non-generi family when the paremeter y0 tends to 2�s. The preiserelation is limy0!2�s hfi(z0;y0) = 1i ��z0 hfisz0 (3.28)13



for all elements f 2  L2. We shall �nd that both families of o-invariants an be lifted tothe full �eld theory. An analogue of relation (3.28) also holds in the �eld theory. It tellsus that, for speial values of the parameters, branes from the generi family deomposeinto a superposition of two branes from the non-generi family. Their distane is �nitefor �nite level but tends to zero as k is sent to in�nity.4 Untwisted Boundary States and Their SpetraWe are now prepared to spell out the boundary states and boundary spetra for maximallysymmetri branes with trivial gluing onditions. As we have argued in the previoussetion, they ome in two di�erent families. After a few omments on the relevant Ishibashistates, we onstrut the boundary states for branes in generi positions in the seondsubsetion. Branes in non-generi position are onstruted in the third part of this setion.4.1 Charaters and Ishibashi statesIn this subsetion we shall provide a list of untwisted Isibashi states from whih theboundary states of the GL(1j1) WZNW model will be built in onseutive subsetions.By de�nition, an untwisted Ishibashi state is a solution of the following set of linearrelations �Xn + �X�n� j	ii = 0 for X = E;N;	� : (4.1)These relation lift our invariane onditions (3.15) from the partile model to the full �eldtheory. It is obvious that solutions must be in one-to-one orrespondene to invariants inthe minisuperspae theory.To begin with, there exists a 2-parameter family of typial Ishibashi states je; nii withe 6= mk and n 2 R. They an be uniquely haraterized by their relative overlapshhe; nj(�1)F qL0� 24uN0 je0; n0ii = Æ(n0 � n)Æ(e0 � e) �he;ni(u; q) (4.2)where L0 = (L0 + �L0)=2; N 0 = (N0 � �N0)=2 and �̂he;ni denotes the unspeialized super-haraters for typial representations. It takes the form�̂he;ni(u; q) = un�1q e2k (2n�1+e=k)+1=8 ���� 12(� + 1); ��=�(�)3where � is related to u by u = exp(2�i�) and similarly for q = exp(2�i�), as usual.In omparison to the minisuperspae theory we have set u1 = 1 and u2 = u. Sine E014



and �E0 are entral the dependene on u1 an be re-introdued simply by multiplying theharater funtions with ue1. When e is a multiple of the level, �̂he;ni are the haratersof reduible representations whih ontain two atypial irreduible building bloks. As inthe partile theory, we shall also de�ne jmk; nii and hhmk; nj by a limiting proedure,jmk; nii = lime!mk sin1=2(�e=k)je; nii ; hhmk; nj = lime!mk sin1=2(�e=k)hhe; nj : (4.3)The Ishibashi states j0; nii possess vanishing overlap among eah other and with thetypial Ishibashi states.In addition, we introdue a family of atypial Ishibashi states jnii(m) and (m)hhnj forn 2 [0; 1[; m 2 Z. These orrespond to the states jnii0 and 0hhnj that appeared in ourdisussion of the partile limit. One more, we may haraterize the Ishibashi states bytheir overlaps(m)hhnj(�1)F qL0� 24uN0 jn0ii(m) = Æ(n0 � n)Æ(m�m0) �̂(m)hni (u; q) : (4.4)Here, �̂(m)hni denotes the unspeialized super-harater of the atypial representation hni(m),see Appendix A.3 for details, i.e.�̂(m)hni (u; q) = un1� zqm qm2 (m+2n+1)+1=8���� 12(� + 1); ���(�)3 : (4.5)It is important to stress that most atypial states are obtained in eqs. (4.3) as limits oftypial Ishibashi states.To summarize, we have onstruted a family of Ishibashi states je; nii; e; n 2 R, onefor eah Ka module of the aÆne urrent algebra bgl(1j1). In addition, there is one `small'family of Ishibashi states jnii(m) with m 2 Z and n 2 [0; 1[. This seond set of states isin one-to-one orrespondene with the set of atypial bloks of bgl(1j1).44.2 The generi boundary stateIn this setion, we propose the boundary state orresponding to a generi brane loalized at(z0; y0) with y0 6= 2�s and perform a non-trivial Cardy onsisteny hek [44℄. Therefore,we need to know the modular properties of the haraters. They are easily omputedwith the help of [49℄ and we list them in appendix A.4.4Two atypial irreduibles � and �0 are said to be part of the same blok if there exists a sequeneof irreps �0 = �; �1; : : : ; �N�1; �N = �0 suh that any pair �i; �i+1 of onseutive irreps in the sequeneappears in the omposition series of some indeomposable. The two bgl(1j1) representations hni(m) andhni(m) are part of the same blok whenever m = m0 and n� n0 2 Z.15



Proposition 4.1. (Generi boundary state) The boundary state of branes assoiated withgeneri position parameters z0, y0 isjz0; y0i = r2ik Z dedn exp�i(n� 1=2)y0 + iez0� sin1=2(�e=k) je; nii : (4.6)We shall argue below that these boundary states give rise to elementary branes if and onlyif the parameter y0 62 2�Z.Before we show that our Ansatz for the generi boundary states produes the expetedboundary spetrum, let us make a few omments. To begin with, it is instrutive toompare the oeÆients of the Ishibashi states in jz0; y0i with the minisuperspae resulteq. (3.25). If we send k to in�nity, the fator sin1=2(�e=k) is proportional to the fatorpe that appears in the 1-point oupling of bulk modes in the minisuperspae theory.The replaement pe! sin1=2(�e=k) is neessary to ensure that the �eld theory ouplingsare invariant under spetral ow. Let us also stress that the integration in formula (4.6)extends over all e, inluding e = mk. Using our Ishibashi states jmk; nii from eq. (4.3),we may rewrite the generi boundary states asjz0; y0i = r2ik Ze 6=mk dedn exp�i(n� 1=2)y0 + iez0� sin1=2(�e=k) je; nii+ r2ik Xm Z dn exp�i(n� 1=2)y0 + imkz0� jmk; nii :The seond line displays expliitly how losed string states in atypial representationsouple to generi branes.In order to hek the onsisteny of our proposal for the boundary states with world-sheet duality, we ompute the spetrum between a pair of generi branes,hz0; y0j(�1)F  ~qL0~zN0 jz00; y00i = 2ik R de0dn0ei(n0� 12 )(y00�y0)+ie0(z00�z0) sin(�e0=k)�̂he0;n0i(~�; ~�)= �̂he;ni(�; �) � �̂he;n+1i(�; �) (4.7)where the momenta e; n are related to the oordinates of the branes aording toe = k(y00 � y0)2� ; n = k(z00 � z0)2� � y00 � y02� :To begin with, the result is a ombination of haraters with integer oeÆients. Hene,it an be onsistently interpreted as the partition funtion for open strings that streth in16



between the two branes. If we put both branes into the same position (z0; y0), then theresult speializes tohz0; y0j(�1)F ~qL0 ~uN0 jz0; y0i = �̂h0;0i(�; �) � �̂h0;1i(�; �) = �̂P0(�; �): (4.8)In the last step we have observed that the super-haraters of the representation spaesover the two atypial Ka modules h0; 0i and h0; 1i0 ombine into the harater of therepresentation that is generated from the projetive over P0. This outome was expeted:it signals that the state spae of open strings on a generi branes ontains no bosoni zeromodes and two fermioni ones. The latter give rise to the four ground states of theprojetive over. This is in agreement with the fat that generi branes streth out alongthe fermioni diretions.There is one important subtlety in our interpretation of the result (4.8) that we donot want to gloss over. While the harater of the projetive over P̂0 is the same asthat of the two aÆne Ka modules, the orresponding representations are not. Theharaters are blind against the nilpotent parts in L0 and hene they annot distinguishbetween an indeomposable and its omposition series. But for the onformal �eld theory,the di�erene is important. In partiular, the generator L0 is diagonalizable on all Kamodules, atypial or not, but it has a nilpotent ontribution in the bgl(1j1)-module over P0.Hene, if the boundary spetrum does transform in P̂0, then some boundary orrelatorsare guaranteed to display logarithmi singularities when two boundary oordinates omelose to eah other. The information we obtained from the boundary states using world-sheet duality alone is not suÆient to make any rigorous statements on the existene ofsuh logarithms. But in the minisuperspae limit k ! 0 we have learly identi�ed theprojetive over P0 as the relevant struture. Sine L0 is not diagonalizable in that limit,it annot be so for �nite level k.4.3 Non generi point-like branesLet us now turn to the boundary states of non-generi untwisted branes in the GL(1j1)WZNW model. From our disussion of the geometry we expet them to be parametrizedby a single real modulus z0 and to possess a spetrum without any degeneray of groundstates. These expetations will be met. Let us begin by spelling out the formula for thenon-generi boundary states. 17



Proposition 4.2. (Non-generi boundary states) The boundary states of elementary bra-nes assoiated with non-generi position parameters z0 and y0 = 2�s; s 2 Z; are givenby jz0; si = 1p2ki Z dedn exp�2�i(n� 1=2)s+ iez0� sin�1=2(�e=k) je; nii : (4.9)If we send the level k to in�nity in the boundary states jz0; si, then the oeÆient ofthe Ishibashi state je; sii gets replaed by 1=pe and thereby it reprodues the oupling(3.27) of bulk modes in the minisuperspae theory. One more, the replaement 1=pe 7!sin�1=2(�e=k) is neessary to ensure spetral ow symmetry of the �eld theoreti ouplings.Just like their ousins jz0; si0 in minisuperspae (see eq. (3.27)), the boundary statesjz0; si ouple to atypial Ishibashi states, though this is again somewhat hidden in ournotations. We an make this oupling more expliit by rewriting jz0; si in the form,jz0; si = 1p2ki Ze 6=mk dedn exp�2�i(n� 1=2)s+ iez0� sin�1=2(�e=k) je; nii� 1p2ki Xm Z 10 dn exp�2�i(n� 1=2)s+ imkz0� jnii(m) : (4.10)Note that the non-generi boundary states only involve to the speial family jnii(m) ofatypial Ishibashi states. In ase of generi boundary states, we had found non-vanishingouplings to the regular atypial Ishibashi states jmk; nii.Let us verify that the proposed boundary states produe a onsistent open stringspetrum. In order to do so, we investigate the overlap between two non-generi boundarystates jz0; si and jz00; s0i,hz0; sj(�1)F ~qL0~zN0 jz00; s0i = Z de0dn02ki e2�i(n0�1=2)(s0�s)+ie0(z00�z0)sin(�e0=k) �̂he0;n0i(~�; ~�)= �̂(m)hni (�; �) (4.11)where the labels n and m in the harater are related to the branes' parameters throughn = k(z00 � z0)2� + s� s0 ; m = s0 � s : (4.12)�̂(m)hni are haraters of atypial irreduible representation of bgl(1j1). For m = 0 the orre-sponding representations are generated from the 1-dimensional irreduible atypial repre-sentations hni of the �nite-dimensional Lie superalgebra gl(1j1) by appliation of urrent18



algebra modes. The representations with m 6= 0 are obtained from those with m = 0 byspetral ow (see Appendix A).We also want to look at the spetrum of boundary operators that an be insertedon a boundary if we impose non-generi boundary onditions with parameters z0 and s.Speializing eq. (4.11) to the ase with z00 = z0 and s0 = s we �ndhz0; sj(�1)F ~qL0 ~uN0 jz0; si = �̂(0)h0i(�; �) :Hene, the spetrum onsists of states that are generated from a single invariant groundstate j0i by appliation of urrent algebra modes with negative mode indies. In partiular,the zero modes of the fermions at trivially on ground states. This is in agreement withour geometri insights aording to whih non-generi branes are loalized in all diretions,inluding the two fermioni ones.We may now ask what happens if we send the parameter y0 of the generi brane toy0 = 2�s. From our formulas for boundary states we dedue thatjz0; 2�si = Z dednp2ki eie(z0+�k ) � eie(z0��k )sin1=2(�e=k) e2�i(n�1=2)s je; nii = jz0+�=k; si�jz0��=k; si :In other words, when a generi brane is moved onto one of the speial lines y0 = 2�s, itdeomposes into a brane-anti-brane pair. Its onstituents sit in positions z0 � �=k andpossess the same disrete parameter s. This relation between non-generi branes andgeneri branes in non-generi positions is a �eld theoreti analogue of the equation (3.28)we disovered in the minisuperspae theory.5 Comparison with Cardy's TheoryLet us reall a few rather basis fats onerning branes in rational unitary onformal �eldtheory. For simpliity we shall restrit to ases with a harge onjugate modular invariantand a trivial gluing automorphism 
 (the so-alled `Cardy ase'). This will allow aomparison with the results of the previous subsetions. In the Cardy ase, elementaryboundary onditions turn out to be in one-to-one orrespondene with the irreduiblerepresentations of the hiral algebra [44℄. Let us label these by J , with J = 0 beingreserved for the vauum representation. The boundary ondition with label J = 0 has arather simple spetrum ontaining only the vauum representation H0. More generally, ifwe impose the boundary ondition J = 0 on one side of the strip and any other elementary19



boundary ondition on the other, the spetrum onsists of a single irreduibleHJ . Finally,the spetrum between two boundary onditions with label J1 and J2 is determined by thefusion of J1 and J2. We shall now disuss that all these statements arry over to untwistedbranes in the GL(1j1) WZNW model. The fusion proedure, however, an provide spetraontaining indeomposables that are not irreduible.5.1 Brane parameters and representationsWe proposed that the GL(1j1) WZNW model possesses two families of elementary branes.The �rst one is referred to as the generi family and its members are parametrized by(z0; y0) with y0 6= 2�s; s 2 Z. Boundary states for the generi branes were providedin subsetion 4.2. These are also de�ned for integer y0=2� but we have argued thatthe orresponding branes are not elementary. They rather orrespond to superpositionsof branes from the seond family. This seond family onsists of branes with only oneontinuous modulus z0 and a disrete parameter s. Their boundary states an be foundin subsetion 4.3.There is one distinguished brane in this seond family with z0 = 0 and s = 0. Wepropose that it plays the role of the J = 0 brane in rational onformal �eld theory. Inorder to on�rm this idea, we ompute the spetrum of open strings strething betweenz0 = 0; s = 0 and any of the other elementary branes. If the seond brane is non-generiwith parameters z0; s, the relative spetrum readsh0; 0j(�1)F ~qL0 ~uN0 jz0; si = �̂(m)hni (�; �) (5.1)where the parameter n on the harater isn = n(z0; s) = kz02� � s ; m = m(z0; s) = s : (5.2)Indeed, we see that the open string spetrum orresponds to a single irreduible atypialmodule of bgl(1j1), in agreement with the expetations from rational onformal �eld theory.Let us now onsider the ase in whih the seond brane is loated in a generi position(z0; y0). From the boundary state we �ndh0; 0j(�1)F ~qL0 ~uN0 jz0; y0i = �̂he;ni(�; �) ; (5.3)where the parameters of the harater on the right hand side aree = e(z0; y0) = ky02� ; n = n(z0; y0) = kz02� � y02� + 12 : (5.4)20



As long as y0=2� is not an integer, e is not a multiple of the level and therefore, �̂he;ni isthe harater of a single irreduible representation of bgl(1j1).At this point we have found that all our elementary branes are labelled by irreduiblerepresentations of bgl(1j1). In ase of the elementary generi branes, the relation be-tween the position moduli (z0; y0); y0 6= 2�m; and representation labels he; ni; e 6= mk; isprovided by eq. (5.4). All typial irreduible representations of bgl(1j1) appear in this or-respondene. For the non-generi branes the relation between their parameters (z0; s) andthe representation labels of an atypial irreduible an be found in eq. (5.2). One more,all atypial irreduibles appear in this orrespondene. Hene, branes in the GL(1j1)WZNW model are in one-to-one orrespondene with irreduible representations of theurrent superalgebra bgl(1j1), just as in rational onformal �eld theory.5.2 Brane spetra and fusionLet us now analyze whether we an �nd the spetrum between a pair of elementary branesthrough fusion of the orresponding urrent algebra representations. For the onvenieneof the reader we have listed the relevant fusion rules for irreduible representations of theurrent superalgebra bgl(1j1) in Appendix A.5.The spetrum between two typial branes with parameters (z0; y0) and (z00; y00) has beenomputed in eq. (4.7). We an onvert the brane parameters into representation labelswith the help of eq. (5.4) and then exploit the known fusion produt of the orrespondingrepresentations. In ase y00 � y0 6= 2�Z we �ndDky02� ; kz02� � y02� + 12E� 
F Dky002� ; kz002� � y002� + 12E (5.5)�= Dk(y00 � y0)2� ; k(z00 � z0)2� � y00 � y02� + 1E � Dk(y00 � y0)2� ; k(z00 � z0)2� � y00 � y02� E0Here, 
F denotes the fusion produt and we used the rule he; ni� = h�e;�n+ 1i0 for theonjugation of representations. Then we inserted the known fusion rules while keepingtrak of whether the representation is fermioni or bosoni. The result agrees niely withthe true spetrum we omputed earlier.When the di�erene (y00 � y0)=2� = m is an integer, the fusion of the two representa-tions on the left hand side of (5.5) results in a single indeomposable. It is the image ofthe aÆne representation over the projetive over P̂(k(z00�z0)�(y00�y0))=2� under m units of21



spetral ow, i.e.Dky02� ; kz02� � y02� + 12E� 
F Dky002� ; kz002� � y002� + 12E = �P(m)(k(z00�z0)�(y00�y0))=2��0 (5.6)where m = (y00 � y0)=2�. Our minisuperspae theory along with the boundary stateson�rm this result in the ase y0 = y00 and z0 = z00 (see our disussion at the end ofsetion 4.2). For other hoies of the parameters, we only see that the fusion rules providea representation with the orret harater. Whether the true state spae is given bya single indeomposable or by a sum of Ka modules or even irreduibles annot beresolved rigorously with the methods we have at our disposal. Nevertheless, it seems verylikely that the projetive over is what appears sine this is the only result whih is alsoonsistent with spetral ow symmetry.The fusion between atypial irreduibles is rather simple. It leads to a predition forthe spetrum between two non-generi branes that should be heked against our earlierresult (4.11),�Dkz02� � sE(s)�� 
F Dkz002� � s0E(s0) �= Dk(z00 � z0)2� + s� s0E(s0�s) :One more, the �ndings from world-sheet duality are onsistent with the fusion presrip-tion. There is one �nal hek to be performed. It onerns the spetrum between anon-generi brane with parameters (z0; s) and a generi one with moduli (z0; y0). Fromthe fusion we �nd�Dkz02� �sE(s)��
F Dky002� ; kz002� � y002�+ 12E = D�sk+ ky002� ; k(z00 � z0)2� � y002�+s+ 12E : (5.7)It may not ome as a big surprise that this fusion rule orretly predits the spetrumbetween a generi and a non-generi brane. In fat, from our formulas for boundary statesand modular transformation we �nd
z0; s��(�1)F  ~qL0 ~uN0 ��z00; y00� = �̂he;ni(�; �)where e = �ks+ ky002� ; n = k(z00 � z0)2� � y002� + s+ 12 : (5.8)In onlusion we found that the spetra between any pair of elementary branes may bedetermined by the fusion of the orresponding irreduible representations. It is importantto stress that the fusion produt of irreduible representations an produe representationsthat are not fully reduible. 22



6 Twisted Brane: Geometry and Boundary StateThis �nal setion ontains a brief disussion of twisted branes. By de�nition, twistedbranes in the gl(1j1) model preserve one opy of the aÆne Lie superalgebra bgl(1j1). Theonstrution of the relevant generators di�ers from the ase of untwisted branes by theation of an outer (gluing) automorphism 
 on anti-holomorphi bulk urrents. We shall�nd that there is a single twisted brane boundary ondition orresponding to a branewhih extends in both bosoni and fermioni diretions. As for untwisted branes, we shall�rst extrat the brane's geometry from the gluing onditions. Thereafter, we study theunique Ishibashi and boundary state in the partile limit. Finally, the minisuperspaeresults are lifted to the full �eld theory.In the ase of the automorphism 
, we an easily bring the assoiated gluing onditions(2.7) for super-urrents into the form�nY = 0 ; �n �� = ie�iY �p��nX � 2ieiY ��n�� = 0 ; �n� = �ieiY �p�� ; (6.1)for all z = �z. Here, we have rede�ned the fermioni �elds � = eiY2 (+ + �) and �� =12(��+). The bosoni �elds, on the other hand, remain unaltered. This parametrizationis motivated by a new hoie of oordinates on the supergroup GL(1j1)g = ei�	�eixE+iyNei+	+ = ei��	�e�i�	+eizE+iyNe�i�	�e�i��	+= 
(ei��	+ei�	�)eizE+iyNe�i�	�e�i��	+ (6.2)whih is obtained by twisted onjugation of bosoni elements with fermioni ones.We an re-express the metri and H-�eld in terms of the new oordinates x; y; � ��,ds2 = 2dxdy + 4d�d�� � 4i�dyd��;H = 2ie�iyd� ^ d� ^ dy � 2ieiyd�� ^ d�� ^ dy) :Using our expression for the metri we infer the following formula for the B-�eld from ourgluing onditions (6.1), B = �2e�iyd� ^ d� � 2eiyd�� ^ d�� :It is straightforward to verify that that dB = H. We onlude that twisted branes arestrethed out into all diretions of our supergroup.23



Consequently, the spae of funtions on a twisted D-brane is given by  L2. Sinetwisted branes admit an ation of GL(1j1) the spae of funtions arries an ation of theLie superalgebra gl(1j1), namely the twisted adjoint ation ad
X = RX + L
X whereL
E = i�x ; L
N = i�y + �+�+ ; L
� = ��+ ; L
+ = e�iy�� � i�+�x :The generators RX are given by the same formulas as above. Analyzing the representationontent of  L2 we then �nd three di�erent kinds of representations. These inlude thetypials h�2k;�2l+ 1i whih are generated by e0(k; l) = exp(ikx+ ily); �e0(k; l� 1). Wereall that in our onventions for he; ni the state with smaller N eigenvalue is taken to bebosoni. Furthermore, there exist typials h�2k;�2l+ 2i0 generated by ��e0(k; l); e0(k; l�1)+2k� ��e0(k; l�1). In this ase, the state with lower N eigenvalue is fermioni, hene theprime 0. Finally, representations with vanishing eigenvalue of E deompose into projetiveovers of atypials. In summary, under the twisted adjoint ation, the spae of funtionsdeomposes as  L2twisted �= Ze 6=0 dedn h he; ni � he; ni0 i � Z dnPn :We see that fermioni and bosoni states with any given eigenvalue of E and N ome inpairs. Therefore, the supertrae of uL
E�RE1 uL
N�RN2 vanishes identially.Conerning the onstrution of minisuperspae Ishibashi states j ii
0 satisfying thetwisted invariane ondition �RX + L
X� j ii
0 = 0 (6.3)we observe that the spae of funtions on GL(1j1) ontains a single element invariantunder the twisted adjoint ation, namely the onstant funtionj0ii
0 = e0(0; 0) :Its dual is given by 
0 hh0j = Z d� e0(0; 0) = Z d� :The linear funtional 
0 hh0j is indeed the unique twisted o-invariant on GL(1j1). We notethat j0ii
0 and 
0 hh0j possess vanishing overlap, i.e.
0 hh0j(�1)FuL
E�RE1 uL
N�RN2 j0ii
0 = 0simply beause the relevant integrand ontains no fermioni zero modes.24



Having the semi-lassial Ishibashi state at our disposal, we an turn to the boundarystate. Our geometri interpretation of twisted branes suggests that their semi-lassialdensity is given by �(x; y; �; ��) = 1, orresponding to a brane that �lls the entire targetspae. We see that h � i
 = 0h
j = Z d� = 
0 hh0j :All this lifts straightforwardly to the full �eld theory. We obtain unique Ishibashi statesj0ii
 and 
hh0j whih we an identify with the boundary states,j
i = j0ii
 ; h
j = 
hh0jjust as in the ase of Neumann boundary onditions for a free unompati�ed boson. Theinteration between two suh branes is enoded in the overlaph
j(�1)F  ~qL0uN0 j
i = 0 ;where N 0 = �
(N0)� �N0�=2. Through the modular bootstrap, vanishing of this overlapimplies that the boundary partition funtion vanishes as well. In our minisuperspaeapproximation we did observe already that ontributions from bosoni and fermionistates to the partition funtion anel eah other. The same holds true for the full �eldtheory sine reation operators also ome in pairs. Hene, our results are onsistent withthe world-sheet duality.Admittedly, the simplest version of the modular bootstrap does not onstrain the formof our boundary states very signi�antly. But there exists more stringent tests, suh asbootstrap relations involving the overlap between twisted and untwisted D-branes [50, 51℄.We have no doubt that these an be worked out to on�rm our proposal for the twistedboundary state.7 ConlusionsIn this work we have studied maximally symmetri branes in the WZNW model on thesimplest supergroup GL(1j1). Following previous reasoning for bosoni models [46℄ wehave shown that suh branes are loalized along (twisted) super-onjugay lasses, an in-sight that generalizes straightforwardly to other supergroup target spaes. As in the aseof the p = 2 triplet theory [41℄, untwisted branes turn out to be in one-to-one orrespon-dene with irreduible representations of the urrent algebra. This orrespondene relies25



on the existene of an `identity' brane whose spetrum onsists of the irreduible vauumrepresentation only. The spetrum between the identity and any other elementary braneis built from a single irreduible of bgl(1j1) and any suh irreduible appears in this way.Moreover, one an ompute the spetrum between any two elementary branes by fusionof aÆne representations. What we have just listed are harateristi features of Cardy'stheory for rational non-logarithmi onformal �eld theories. Our work proves that theyextend at least to one of the simplest logarithmi �eld theory and it seems very likelythat they hold more generally in all WZNW models on (type I) supergroups, see also [41℄for related �ndings in the p = 2 triplet theory.In spite of these parallels to bosoni WZNW models, branes on supergroups possessa muh riher spetrum of possible geometries. Whereas Dirihlet branes on a purelybosoni torus, for example, are all related by translation, we disovered the existene ofatypial lines on the bosoni base of the GL(1j1) WZNW model. The distane between anytwo suh neighboring parallel lines is ontrolled by the level k. When a typial untwistedbrane is moved onto one of these lines, it splits into two atypial ones. Individual atypialbranes possess a single modulus that desribes their disloation along the atypial lines.In order for them to leave an atypial line they must ombine with a seond atypialbrane. Proesses of this kind model the formation of long multiplets from shorts. Hene,on more general group manifolds, more than just two atypial branes may be requiredto form a generi brane. Let us stress, however, that the notions of long (typial) andshort (atypial) multiplets whih are relevant for suh proesses derive diretly from therepresentation theory of the aÆne Lie superalgebra. Thereby, all spetral ow symmetriesare built into our desription. We also wish to point out the obvious similarities with so-alled frational branes at orbifold singularities, see e.g. the disussions in setion 4.3 of[52℄.Another interesting and new feature of branes on GL(1j1) is the ourrene of bound-ary spetra that annot be deomposed into a diret sum of irreduibles. In partiularwe have shown that the spetrum of boundary operators on a single generi brane is de-sribed by the projetive over of the vauum module. For more general group manifolds,we expet the orresponding projetive over to be present as well, though along with ad-ditional stu�. The generator L0 of dilatations is not diagonalizable on projetive overs,see e.g. [16℄. Aording to the usual reasoning, this implies the existene of logarithmisingularities in boundary orrelation funtions on branes in generi positions. As we have26



remarked before, the modular bootstrap alone did not allow for suh a strong onlusionas it is blind to all nilpotent ontributions within L0. But in addition to the standardonformal �eld theory analysis, our investigation of the GL(1j1) WZNW model also drawsfrom the existene of the geometri regime at large level k. The presene of projetiveovers is easily understood in the minisuperspae theory and it must persist when �eldtheoreti orretions are taken into aount.There are a few obvious extensions of the above analysis that seem to merit loserinvestigation. These inlude the omputation of boundary orrelation funtions for twistedand untwisted branes in the GL(1j1) model. We expet that orrelators with a smallnumber of bulk and/or boundary insertions may be omputed using free �eld tehniques,as in the ase of bulk models [16, 20℄. It would also be interesting to study the variousbrane geometries that an ome up on other supergroup manifolds. We plan to report onboth issues in the near future.Note added: While we were in the �nal stages of preparing this manusript, a relatedpaper [53℄ appeared whih disusses branes in triplet models with p � 2. The results ofGaberdiel and Runkel show that branes in triplet models share many features with theoutome of our analysis. In partiular, for trivial gluing automorphism, branes in bothmodels are labelled by irreduible representations of the hiral algebra. Also the labels forrelevant Ishibashi states follow the same pattern: We have found one `generi' Ishibashistate for eah Ka module and an exeptional family with members being assoiated toatypial bloks. When the same rules are applied to the triplet models, we obtain a set ofIshibashi states that seems losely related to those used in [53℄. Furthermore, Gaberdieland Runkel also �nd that the partition funtion for any pair of boundary onditions maybe determined by fusion of representations. The existene of a geometri regime for theGL(1j1) WZNW model allows us to go one step further. It gives us full ontrol overthe struture of the state spae and thereby also over the nilpotent ontributions to L0whih are not visible in partition funtions. Fusion of bgl(1j1) representations was shown toorretly reprodue the state spaes of boundary theories in the GL(1j1) WZNW model.Let us stress, however, that the triplet and the GL(1j1) WZNW model are lose ousins(see e.g. the disussion in [22℄). It would therefore be somewhat premature to laim thatall these strutures will be present in more general logarithmi onformal �eld theories.27



AknowledgementsWe are grateful to Matthias Gaberdiel, Gerhard G�otz, Ingo Runkel, Hubert Saleur andAliosha Semikhatov for useful disussions and omments. This researh was supportedin part by the EU Researh Training Network grants \ForesUniverse" (ontrat num-ber MRTN-CT-2004-005104), \Superstring Theory" (ontrat number MRTN-CT-2004-512194) and by the PPARC rolling grant PP/C507145/1. Part of this work has beenperformed while Thomas Quella was working at King's College London, funded by aPPARC postdotoral fellowship under referene PPA/P/S/2002/00370.A The Representation Theory of bgl(1j1)A.1 Spetral ow automorphismsA useful tool for the investigation of the urrent algebra bgl(1j1) and its representationsare spetral ow automorphisms. The �rst one, m, leaves the modes Nn invariant andats on the remaining ones asm(En) = En + kmÆn0 ; m(	�n ) = 	�n�m : (A.1)The previous transformation also indues a modi�ation of the energy momentum tensorwhih is determined by m(Ln) = Ln +mNn : (A.2)Sine the rank of GL(1j1) is two, there is a seond one parameter family of spetral owautomorphisms ~� whih is parametrized by a ontinuous number �. It is rather trivialin the sense that its ation does not at on the mode numbers,~�(Nn) = Nn + k � Æn0 and ~�(Ln) = Ln + � En : (A.3)All other modes of the urrents are left invariant.The two spetral ow symmetries above indue a map on the set of representations ofbgl(1j1). Given any representation � we obtain two new ones by de�ning �m = � Æ m and~�� = � Æ ~� . The latter is not very exiting but the former will play a ruial role below.Let us thus state in passing that the super-haraters of these representations are relatedby ��m(�; �) = ��(�+m�; �) : (A.4)This formula gives severe restritions on the nature of the representations �m.28



A.2 Some formulas onerning Theta funtionsLet us reall some fats about the theta funtion in one variable, the referene is Mum-ford's �rst book [49℄. �(�; �) is the unique holomorphi funtion on C � H , suh that�(�+ 1; �) = �(�; �);�(�+ �; �) = e��i�e�2�i��(�; �);�(�+ 12 ; � + 1) = �(�; �);�(�=�;�1=�) = p�i� e�i�2=��(�; �)limIm(�)!1 �(�; �) = 1 : (A.5)
The theta funtions has a simple expansion as an in�nite produt,�(�; �) = 1Ym=0�1� qm� 1Yn=0�1 + u�1qn+1=2��1 + uqn+1=2� ; (A.6)where q = e2�i� and u = e2�i�. The bgl(1j1) haraters in the RR setor we shall presentin the next setion have a simple expression in terms of the variant���� 12(� + 1); �� = (1� u) 1Yn=1�1� qn��1� uqn��1� u�1qn� : (A.7)Its behavior under modular S transformations whih send the arguments of the thetafuntion to ~� = �1=� and ~� = �=� an be dedued from the properties above. Onesimply �nds��~�� 12(~� + 1); ~�� = ip�i~� e�i~�2=~� u1=2~u�1=2 q�1=8~q1=8 ���� 12(� + 1); �� : (A.8)A.3 Representations and their haratersIn this appendix we review the representations of the urrent superalgebra bgl(1j1) that arerelevant for our disussion in the main text. We shall slightly deviate from the presentationin [16℄ in putting even more emphasis on the role of the spetral ow automorphism(A.1). The latter is the only onstituent whih leads to a substantial di�erene betweenthe representation theory of the �nite dimensional subalgebra gl(1j1) and that of itsaÆnization bgl(1j1). 29



All irreduible representations of bgl(1j1) are quotients of Ka modules. Just as forgl(1j1), we distinguish between Ka modules he; ni and anti Ka modules he; ni. Thesesymbols have been hosen sine the ground states transform in the orresponding repre-sentations of the horizontal subalgebra gl(1j1).5 For e 62 kZ both types of representationswill be alled typial, otherwise atypial. Typial representations are irreduible and onehas the equivalene he; ni �= he; ni. The super-harater of (anti) Ka modules an easilybe found to be�̂he;ni(�; �) = �̂he;ni(�; �) = un�1q e2k (2n�1+e=k)+1=8���� 12(� + 1); ��Æ�(�)3 : (A.9)When writing down this expression we assumed the ground state with quantum numbers(E0; N0) = (e; n) to be fermioni. The spetral ow m transforms the haraters of Kamodules aording tom : �he;ni(�; �) 7! (�1)m�he+mk;n�mi(�; �) : (A.10)This equation should be interpreted as de�ning a map between representations. Wereognize that he; ni is transformed into he+mk; n�mi under m and that the parity ofthe module is hanged if m is odd. A hange of parity ours if the interpretation of whatare bosoni and what are fermioni states is altered ompared to the standard hoie.The equivalene between Ka modules and anti Ka modules is destroyed for e 2 kZ.For these values the representations hmk; ni and hmk; ni degenerate and exhibit a singlesingular vetor whih an be found on energy level jmj, see [16℄ for details.6 This statementis partiularly lear for m = 0 when the singular vetor is a ground state. In view ofeq. (A.10) the attentive reader will have antiipated that the residual ases e = mksimply arise by applying the spetral ow automorphism m.The struture of the Ka modules may be inferred from their omposition series.Aording to our previous statements the Ka module hmk; ni ontains preisely oneirreduible submodule denoted by hn� 1i(m). The quotient of hmk; ni by the submodulehn�1i(m) turns out to be the irreduible representation �hni(m)�0. Hene, one an desribe5We would like to stress that the representations hmk; ni and hmk; ni are inequivalent for m 2 Z eventhough their ground states transform identially as long as m 6= 0. The reason beomes lear below.6In order to avoid onfusion we would like to emphasize that the onstrution in [16℄ gives rise to Kamodules for m < 0 and anti Ka modules for m > 0. The remaining modules annot be obtained throughVerma modules of the sort onsidered there. 30



the representation using the omposition serieshmk; ni : �hni(m)�0 �! hn� 1i(m) : (A.11)Again, all this an be understood best for m = 0 where the statement redues to well-known fats about Ka modules of the �nite dimensional subalgebra gl(1j1). This remarkespeially implies that the atypial irreduible representations hni(0) are built over the one-dimensional gl(1j1)-module hni. They are transformed into the remaining representationshni(m) under the spetral ow automorphism m. For m 6= 0, the ground states of hni(m)an easily be seen to form the gl(1j1)-module hmk; n � mi. The information ontainedin the omposition series (A.11) may be used to alulate the super-haraters of theatypial irreduible representations hni(m). Following the ideas of [54℄ one simply �nds�̂(m)hni (�; �) = 1Xl=0 �̂hmk;n+l+1i(�; �)= un1� uqm qm2 (2n+m+1)+1=8���� 12(� + 1); ���(�)3 : (A.12)Analogous results hold for anti Ka modules.Finally we need to disuss the projetive overs of irreduible representations. Thetypial representations he; ni with e 62 kZ are projetive themselves. But the atypialrepresentations hni(m) have more ompliated projetive overs whose omposition seriesreads P(m)n : �hni(m)�0 �! hn+ 1i(m) � hn� 1i(m) �! �hni(m)�0 : (A.13)An alternative desription of the projetive overs is in terms of their Ka ompositionseries P(m)n : hmk; ni ! hmk; n + 1i0. Consequently, the haraters of projetive oversare given by �̂P(m)n (�; �) = �̂hmk;ni(�; �)� �̂hmk;n+1i(�; �) : (A.14)These statements an one again be heked expliitly for m = 0 and then generalized toarbitrary values of m by means of the spetral ow transformation. For future onvenienewe shall silently omit the supersript (m) in the ase that m = 0.
31



A.4 Some modular transformationsIn this setion we list the modular transformations of all the aÆne haraters appearingin the previous setion. Sine all these representations may be expressed in terms of Kamodules it is suÆient to know the transformation�̂he0;n0i(�; �) = �1k Z dedn exp 2�ik he0(n�1=2)+e(n0�1=2)+e0e=ki �̂he;ni(~�; ~�) : (A.15)to derive the remaining ones. Using the series representation (A.12) one, e.g., obtains thefollowing behavior for haraters of atypial representations,�̂(m)hn0i(�; �) = 12ki Z dedn exp 2�i�e=k(n0 +m) +m(n� 1=2)�sin(�e=k) �̂he;ni(~�; ~�) : (A.16)Similarly, using the Ka omposition series for projetive overs we dedue�̂P(m)n0 (�; �) = �̂hmk;n0i(�; �)� �̂hmk;n0+1i(�; �)= 2i(�1)mk Z dedn exp 2�ihe=k(n0 +mk) +mn� sin(�e=k) �̂he;ni(~�; ~� ) :(A.17)The alternating signs in these formulas arise sine the spetral ow hanges the parity ofrepresentations for odd values of m.A.5 Fusion rules of the bgl(1j1) urrent algebraUp to the need to inorporate the spetral ow automorphism and the additional atypialrepresentations indued from it, the fusion rules of bgl(1j1) agree preisely with the tensorprodut deomposition of gl(1j1)-modules, see e.g. [48℄. Given any two integers, m1; m2 2Z, we thus �ndhe1; n1i 
 he2; n2i �= 8<:he1 + e2; n1 + n2i0 � he1 + e2; n1 + n2 � 1i ; e1+e2 62 kZP(m)n1+n2�1 ; e1+e2 = mkhn1i(m1) 
 hn2i(m2) �= hn1 + n2i(m1+m2)hn1i(m1) 
 he2; n2i �= hm1k + e2; n1 + n2i : (A.18)The prime 0 in the �rst line indiates that the representation has the opposite parityompared to our standard hoie. 32
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