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Abstract

The angular correlation of the electrons emitted in the neutrinoless double beta decay (0v2f3) is
presented using a general Lorentz invariant effective Lagrangian for the leptonic and hadronic charged
weak currents. We show that the coefficient K in the angular correlation dI'/dcosf o (1 — K cos#) is
essentially independent of the nuclear matrix element models and present its numerical values for the five
nuclei of interest ("®Ge, 2Se, 1°°Mo, 13°Te, and *6Xe), assuming that the 0v25-decays in these nuclei
are induced solely by a light Majorana neutrino, vas. This coefficient varies between K = 0.81 (for the
"6Ge nucleus) and K = 0.88 (for the ®>Se and '°°Mo nuclei), calculated taking into account the effects
from the nucleon recoil, the S and P-waves for the outgoing electrons and the electron mass. Deviation
of K from its values derived here would indicate the presence of New Physics (NP) in addition to a light
Majorana neutrino, and we work out the angular coefficients in several vys + NP scenarios for the "*Ge
nucleus. As an illustration of the correlations among the 0023 observables (half-life T} /5, the coefficient
K, and the effective Majorana neutrino mass |(m)|) and the parameters of the underlying NP model, we
analyze the left-right symmetric models, taking into account current phenomenological bounds on the
right-handed Wgr-boson mass and the left-right mixing parameter (.
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1 Introduction

It is now established beyond any doubt that the observed neutrinos have tiny but non-zero masses and they
mix with each other, with both of these features following from the observation of the atmospheric and
solar neutrino oscillations and from the long baseline neutrino oscillation experiments [I]. Theoretically, it
is largely anticipated that the neutrinos are Majorana particles. Experimental evidence for the neutrinoless
double beta decay (0v23) would deliver a conclusive confirmation of the Majorana nature of neutrinos,
establishing the existence of physics beyond the standard model. This is the overriding interest in carrying
out these experiments and in the related phenomenology [2].

We recall that 0v2/5-decays are forbidden in the standard model (SM) by lepton number (LN) conser-
vation, which is a consequence of the renormalizability of the SM. However, being the low energy limit of
a more general theory, an extended version of the SM could contain nonrenormalizable terms (tiny to be
compatible with experiments), in particular, terms that violate LN and allow the 0v23 decay. Probable
mechanisms of LN violation may include exchanges by: Majorana neutrinos vys [3, [, 5] (the preferred
mechanism after the observation of neutrino oscillations [I]), SUSY particles [6] [7, 8, @, 10} 1], scalar bilin-
ears (SBs) [12], e.g. doubly charged dileptons (the component (=~ of the SU(2)y, triplet Higgs scalar etc.),
leptoquarks (LQs) [I3], right-handed Wg bosons [5], [14] etc. From these particles light vs are much lighter
than the electron and others are much heavier than the proton. Therefore, there are two possible classes of
mechanisms for the 0v28 decay. With the light vs in the intermediate state the mechanism is called long
range and otherwise it is referred to as the short range mechanism. For both these classes, the separation
of the lepton physics from the hadron physics takes place [15], which simplifies calculations. According to
the Schechter—Valle theorem [I6], any mechanism inducing the 0v23 decay produces an effective Majorana
mass for the neutrino, which must therefore contribute to this decay. These various contributions will have
to be disentangled to extract information from the 0v23 decay on the characteristics of the sources of LN
violation, in particular, on the neutrino masses and mixing. Measurements of the neutrinoless double beta
decay in different nuclei will help in determining the underlying physics mechanism [I7] [18].

Our aim in this paper is to examine the possibility to discriminate among the various possible mechanisms
contributing to the Ov23-decays using the information on the angular correlation of the final electrons in
the process N;(A,Z) — Ny(A,Z +2)+e +e . A preliminary study along these lines was published by
us in 2006 [19], with admittedly simplified treatment neglecting the nucleon recoil and the P-wave effects
in the outgoing electron wave function. We rectify these shortcomings and provide in this paper a detailed
account of the improved treatment. Restricting ourselves to the long-range mechanism, treating the electrons
relativistically but with non-relativistic nucleons, we derive the angular correlation between the electrons
using the general Lorentz invariant effective Lagrangian involving the leptonic and hadronic charged weak
currents. Generally, this angular correlation can be expressed as dI'/dcos@ ~ 1 — K cosf, where 8 is the
angle between the electron momenta in the rest frame of the parent nucleus. Expressing K = B/A, with
—1 < K < 1, we derive the analytic expressions for A and B for the effective Lagrangian characterized by
the coefficients egi encoding the standard, (V — A) ® (V — A), and new physics contributions (see Eq. (1)).
Essential steps of these derivations are presented in section 2. The analytic expressions derived here confirm
the earlier detailed derivations by Doi et al. [5], and we specify where the treatment presented here transcends
the earlier work. Specific cases are relegated to Appendix A (for the decays involving scalar nonstandard
terms), Appendix B (for the vector nonstandard terms), and Appendix C (for the tensor nonstandard terms).
We hope to return to the discussion of including the short-range mechanism, neglected in this paper, in future
work.

Numerical analysis of the electron angular correlation is presented in section 3, and the coefficient K for
the various underlying mechanisms in 0v23-decays are worked out. In particular, numerical values of K for
the five nuclei of current experimental interest: "6Ge, 82Se, 199Mo, 13%Te, and '3%Xe are presented for the
light Majorana neutrino vy case. Their values range from K = 0.81 (for the "®Ge nucleus) and K = 0.88
(for the #2Se and %Mo nuclei). To study the uncertainty in the nuclear matrix elements, we have employed
the so-called QRPA model with and without the p-n pairing for the "®Ge nucleus [20], and a more modern
QRPA model, fixing the particle-particle pairing strength [21]. While the uncertainty due to the nuclear
matrix element model is quite marked for T}/, in some cases, we show that it is rather modest for K, not
exceeding 10% for the models discussed here. For the vy; + NP scenarios, we remark that the nonstandard



coefficients eg;ﬁ, e% , and e;’z do not change the value of the angular coefficient K. The contribution of the

scalar nonstandard term from the e:g;]; coefficients is found to be numerically small. So, what concerns the
angular correlation, we have essentially three distinct scenarios: (i) Standard (vps), (ii) R-parity violating
SUSY (var + e%), and (iii) left-right-symmetric models (vas + egiﬁ). Numerical analysis of the coefficient
K in the extended v; + NP scenario is carried out for the decay of the "Ge nucleus using the nuclear matrix
element model already specified.

We take a closer look at the underlying physics behind the coefficients egiﬁ in section 4. These coefficients
appear in the context of the left-right symmetric models which are theoretically well motivated [22]. Also,
the corresponding nuclear matrix elements are available in the literature. Making use of them, we work out
the correlations among the angular coefficient K, the half-life T, and either the mass of the right-handed
Wgr boson, mw,, or the W boson’s mixing angle ¢, taking into account the current bounds on the various
parameters. Results are presented in Figs. 1 — 4. The differential distribution dI'/d cos @ for the 0v23 decay
of the "®Ge nucleus is shown in Fig. 5 for some representative values of |(m})| for my, = 1, 1.5 TeV and
for an infinitely heavy mw,. It is seen that the effect of the right-handed Wgr-boson is more marked in the
angular correlation for smaller values of |[(m)|.

2 Angular correlation for the long range mechanism of 0v2(5 decay

2.1 General effective Lagrangian

For the decay mediated by light vjss, the most general effective Lagrangian is the Lorentz invariant combi-
nation of the leptonic j, and the hadronic J, currents of definite tensor structure and chirality [23] [24]

GF Vud
V2

where the hadronic and leptonic currents are defined as: J} = u0,d and jf, = eOgv;; the leptonic currents
contain neutrino mass eigenstates and the index i runs over the light eigenstates. Here and thereafter, a
summation over the repeated indices is assumed; «, =V FA,S¥P,Tp r (O1, = 20" P,, 0" = % [, 4],
P, = (1F7s)/2 is the projector, p = L, R); the prime indicates the summation over all the Lorentz invariant
contributions, except for « = f = V — A, Ug; is the PMNS mixing matrix [25] and V4 is the CKM
matrix element [I]. Note that in Eq. (I)) the currents have been scaled relative to the strength of the usual
V — A interaction with G being the Fermi coupling constant. The coefficients egi encode new physics,
parametrizing deviations of the Lagrangian from the standard V' — A current-current form and mixing of the
non-SM neutrinos.

L=

[(Uei + 4 )i AT a+ D €hisd +Hel (1)
a,B

In discussing the extension of the SM for the 0v23 decay, Ref. [5] considered explicitly only nonstandard
terms with

! !
VA _ 9v,nu V4+A ’ V+A _ A\ 9v
€viai = K’g_VUeiﬂ €via; =Meis €yia; = Ag_vvei . (2)

Implicitly, also the contributions encoded by the coefficients e“i:ﬁ,i are discussed arising from the non-SM
contribution to U,; in SU(2)r, x SU(2)g x U(1) models with mirror leptons (see Ref. [3], Eq. (A.2.17)). Here
V, U" and V' are the 3 x 3 blocks of mixing matrices for non-SM neutrinos, e.g., for the usual SU(2), x
SU(2)r x U(1) model V' describes the lepton mixing for neutrinos from right-handed lepton doublets; for
SU(2)r, x SU(2)r x U(1) model with mirror leptons [26] U’ (V') describes the lepton mixing for mirror
left(right)-handed neutrinos [5] etc. The form factors gy and g, are expressed through the mixing angles
for left- and right-handed quarks. Thus, gy = cosfc = V4 and g}, = % cos 8., with §c being the Cabibbo
angle, ¢, is its right-handed mixing analogoue, and the CP violating phase § arises in these models due to
both the mixing of right-handed quarks and the mixing of left- and right-handed gauge bosons (see Ref. [5],
Eq. (3.1.11)). The parameters &, n, and A characterize the strength of nonstandard effects. Below, we give
some illustrative examples relating the coefficients e“f:ﬁﬁ i e“ﬁiﬁ’ , and the particle masses, couplings and the
mixing parameters in the underlying theoretical models.

In the R-parity-violating (RPV) SUSY accompanying the neutrino exchange mechanism [6, [7, [8] [9], [T0} [TT],
SUSY particles (sleptons, squarks) are present in one of the two effective 4-fermion vertices. (The other vertex



contains the usual Wi, boson.) The nonzero parameters are

1
V-A
€v_A,i = (q)RRUn“ €S+Pz = 277(l)LLUm’

1 * 1 *
gillzz = _1 (nal)LR - 4778%LR) Um’ﬂ egg,i = 77(q) Um: (3)

where the index n runs over e, u, 7 (1, 2, 3), and the RPV Minimal Supersymmetric Model (MSSM)
parameters ns depend on the couplings of the RPV MSSM superpotential, the masses of the squarks and
the sleptons, the mixings among the squarks and among the sleptons. Concentrating on the dominant
contributions egigl and eT . (as the others are helicity-suppressed), one can express n(’ql) g and 778} LR a8

follows [10]

n Mgt 1 1
n(ql)LR = Z 21\1/—5 - sm29 (m ) ) )

2
dik) sk

n Y >\n1k si e 1 1
n(l%LR Z 2k\1/1— 20 (k) <7 -3 > ) (4)

Mz, (k)

where k is the generation index, t‘)Eik) and 9?/;) are the squark and slepton mixing angles, respectively, m i

and m 7, are the sfermion mass eigenvalues, and A;j, and /\;jk are the RPV-couplings in the superpotential.
For the mechanism with LQs in one of the effective vertices [13], the nonzero coefficients are

S+P _ V2 ey (SHP V2 es

S=P T T4Gp M2’ StP T TuGr M
L L R R
V=AT TG \ M2 M‘Q, PVHEAT 4G \ M2 Ma ’
where
Eg = Ueiegia (6)

the parameters eg(v), ag(%,), and ag()) depend on the couplings of the renormalizable LQ-quark-lepton

interactions consistent with the SM gauge symmetry, the mixing parameters and the common mass scale
Mg vy of the scalar (vector) LQs [27].
The nonzero €2 for the discussed models are collected in Table 1.

Table 1: Nonzero coefficients €2 for various models.

Model Nonzero es
with Wgs 6“;_‘_12, 5;’3
RPV SUSY | €2IF, €14, ern
with LQs 62;5, egj_rﬁ

The upper bounds on some of the €2 parameters (@) from the Heidelberg-Moscow experiment were
derived in Ref. [28] using the S-wave approximation for the electrons, considering nucleon recoil terms and
only one nonzero parameter egi in the Lagrangian () at a time.

B

The coeflicients €, entering the Lagrangian (IJ) can be expressed as

eni = U, (7)
where U( 8 are mixing parameters for non-SM neutrinos (see, e.g., Eq. (2))). As this Lagrangian describes
also ordlnary B-decays (without LN violation), the coefficients é2 are constrained by the existing data on
precision measurements in allowed nuclear beta decays, including neutron decay [29]. For example, from
these data we obtain the conservative bound

el <7 x107 (8)



From Egs. (@), (@), ®) and the bound |e¥iﬁ| < 7.9 % 1077 (see section 3.2) we can assume that the
nonstandard mixing is small:
[UeiVeil S107°, Vg = UG T4, (9)

2.2 Methods and approximations

We have calculated the leading order in the Fermi constant taking into account the leading contribution of
the parameters eg to the decay matrix elements using the approximation of the relativistic electrons and
non-relativistic nucleons. The wavefunction of an electron with the asymptotic momentum p and the spin
projection s can be expanded in terms of spherical waves as [3], 30]

Sl 2 Pl 2
eps(r) = eps/ (r) + eps/ (r) +... (10)

We take into account the Sy /> and the P/, waves for the outgoing electrons:

S1/2 — ~gles 11
rm=( 10 ) ()
P . Gio-to-p
pm =i (117N, (12)

with # =r/r, p = p/p and the two component spinor x;. We use the approximate radial wave functions [5]

(%) = e |1- gy (13
(pr)? = (;aZ>2 (%)2 +3aZ Lo+ (pr)?, (14)
(2)=tine@p &=jaz+3etmR, (15)

including the finite de Broglie wave length correction (FBWC) for the S/, wave. Here R is the nuclear

radius, € is the electron energy and « is the fine structure constant. For the normalization constants Ay
we use the approximate Eq. ([@3) (see below).
The nucleon matrix elements of the color singlet quark currents are [8), B1], 32} B3]

(PR a1 F 15)dIN(B)) = (k") [FP (@) F B (a2)s] 70 (), (16)

ohv

v + gp(¢*)vsq" | T+ (k),(17)

(PO (L 3N () = D) v (27" F 4 a7 i) G

- )

(P 0™ (15 )N (1) = T 797 F 560 1] m(8), (18)

iT(3) T(3)
T =T (@)t + 2 (y1g” — 4" ") + =25 (0" q,q" — 0" q,q"), (19)

my m3

where
P

v=( %) (20)

is a nucleon isodoublet.

The non-relativistic structure of the nucleon currents in the impulse approximation is derived using Refs
[32, 4], see Appendices A, B, and C. We have calculated the nucleon recoil terms including the recoil terms
due to the pseudoscalar form factor.



Table 2: Expressions for A in Eqs. (ZI) and (22) for the stated choice of 2.

€ .4
v Ao + 4C ullpy " 4lcoz + 401 |y~ 4
Vi Ao + 4Co|pllpy 4lcor + 401+|Mv+21|2
evoa Ao + Cslulley T 4lea + Csley T4
via Ao + Calplleyiler + Caley 4P

€a_p Ao +4C5 T\ ul | Fleos +4C7T | ue F)?
€§+1€ Ao + 4CSP|N| |NS+P|CO3 + 4CSP|NS+P|2

ST Aot Oy lea + OIS 01
TP TP TP
GS;LP Ao + CSP|U||€SIP|C3 + CSP|‘551P|2
er Ao + 4CT ulli; lcos +4CT |ug; |
o i
T T,
€rn Ao + CF |ullezp|cs + CF lert|?

Table 3: Expressions for B in Eq. (22) for the stated choice of €5.

€ B
ev_a Bo + 4D |ullpy4lcos + 4D1|uy, 4
VA By + 4Dl |y 3 4lcor + 4Dy |y 741
e“;"'ﬁ Bo + |u||eV+A (Dsca + D3_s2) + D5|<€V+A|2
e‘gig Bo + |,LL||€V+A|(D201 +D2_31) +D4|€¥Iﬁ|2
€s—p By +4D P|N||N |304 + 4DSP| _P|2
€S By + 4Dosplullus+p|803 + 4D | b
g-‘rg Bo + |U||€S+P (DSPC4 +D2_ 84) +DSP| S+P|2
ST | B 4 e SLEID e + D) + DFISTEP
L L
. Bo + 4D{ |p|p7t |06 + 4D7 |p7t |
GTR’TGTL Bo
€ BO+DT|u||e 2les +DT|6 7|2

2.3 Electron angular correlation

Taking into account the dominant terms introduced in the Appendices A, B, and C in the closure approxi-
mation [5] we obtain the differential width in cos for the 07(A, Z) —0%(A, Z + 2)e~e™ transitions:

dl’ In2
= —|M, 1-K 21
dcosf | GT| A cos ), (21)

where 6 is the angle between the electron momenta in the rest frame of the parent nucleus and the angular
correlation coefficient is

B
K_A’ 1< K<L (22)
The Gamow-Teller nuclear matrix element Mg is deﬁned in Eq. (5I)) below.
The expressions for A and B for different choices of €2, with only one coefficient considered at a time,
are shown in Tables 2 and 3.
In these tables

('3

c; = cosv;, S; =siny; (23)
and

p=(m)/me, g =mg/me, (24)



with the standard effective Majorana mass (m) = >, U%m; and the nonstandard ones:
ms:FP - Z Umes:FP M mVZFA - Z Uelevq:A iMis mTL R Z UEZGTL PRLLLE

The quantities A and B for all zero €2 are
Ao = Ci|ul®,  Bo = Di|uf?

and the relative phases are

Yor = afg((ﬂ)ﬂx‘;+ﬁ*)a ¢02:arg((u>u“; 3*)7
i = arg((meyia®), we = arg((meyh),
Yo3 arg(() s p™),  voa = arg((m)us— 1),
s = arg((m)edir"), ta =arg((n)edthr),
Yos = afg((ﬂ)l‘%*)a

vs = arg((Wert®), s = arg((uerr™).

The coefficients C; and CZ»(SP’T) in Table 2 are

Co = (x¥—1Ao,
Ci = (xr—1)72An,
Ciy = (xr+1)An,
Co = (xr—1)(x2—A03 — X1+ 404),
Cs = —(xr—1)(x2a+A403 — X1-Aos — X'pAos + XrAos),
2 1
Ci = Xj_ Aoz — §X1+X27A03 + §X%+A04,
2 2 1 2 12 ! ! 12
Cs = x3.402 — §X1—X2+A03 + §X1_A04 + XpAos — XpXrAor + X Aos;
CoF = —(xr—Dxi A3,
o = A
3P = (xr = 1)(2x36 — XP6)Ads »
C5P = (2xFo — x20) Ads ;
P
C(%r = (XF - 1)A007
ga
2
T(3)
ClT = ( L Agla
ga
1
CF = ~(xr = 1) (B, + X + X, = o + 3 - 2xF ) 4%,
1 2
Ci = (Xke, +XE + Xkr, — Xir) Aoo + (3XGT 2 T’> A -

The coefficients D; and DESP’T) entering in Table 3 are:

Do = (X%‘ — 1) Bou,
Dy = (xr—1)°Boi, Diy = (xr+1)*Bo,

(28)

(29)



Dy = (xr —1)x2-Bos—, D2=—(xr —1)Xx1+Bou,

D3 = (xr —1)(x2+Bos — XpBos),
Ds_ = —(xr —1)(xai=Bos— — XpBos— + XrBos-),
1
Dy = —X3_Bo+ §Xf+304,
1

Ds = x3.Bo — §Xf_304 — XBBos + XpXrBor — X Boo; (31)
DF = (xr - )X BSE,
DyP = —x§7ByF,
DIP = (xr —1)2x36 — Xp6)Bos s
D3P = (xr—D)(2xFh — xB0)By.
D3 = (2x3h — xPb)?B s (32)

7®)
DOT— = _1—(XF - 1)B00—7
2
73
D'i” - _ (1_ Bg’l’
gaA
1
D] = —(xr-1) [(Xﬁ'c, +XE + Xkr, — X&) Bo + (ngIT — 2%’) Bo@} :
1 2
DY = (o, +xH + K, — xkBon + (338 - 28 B, (33)

where the integrated phase space factors are

R S T S A Drrry ), (34)
B()k;, Bé.:P,T) In2 (ng)2 bOk, b(().]SC'P,T) v

with the phase space element dfg, defined as follows:

dQ, = m;°|p1||p2le1e2d(e1 + 2 + Ef — E;)derdead(Pr - P2) - (35)
The constant ag, and the kinematic factors ag, a(()i’P’T), bor, and b(()%P’T) entering above are defined as follows:

aoy = (Grga)*[Vual'm?/(647°), (36)

2

€21 €21 4

apr =y + By, ae=|—) By, a3z =2—p_, aps= B4,
Me Me 9

4 ( Ca_ 8 1/ 4\
= — -2 = _ = — -2 eR —),
aos 3 (meR a+>, aos meRa , Qg7 3 <m3R> (Cast meRa_)
2\’ 4\’
apg = <3meR> [(Pay +4meR(meRay — Ca )], agy = <m> oy (37)
enR
afe =0, ayl =oy, af = S —len(ay + ) +2mef ],
Me
EQlR 2
agy = <W) €3 00p + (€3, + 4m2)By + deaymef]; (38)
e



r _ 8¢+

Ahe =
02 meR’

8 2
agy = (KC}Z) By (39)

ago = 26—, ag = 16y = 16ag]

2
— — (&
bot =7+ + 04, boz = (m ) oy,

(&

bo3 = 26&5% boz— = 225—,
Me Me

4

4
bos = =0 bos— = =0_
04 = g0+ Dod 90

b — 8 b 4 Cy—
05—§7+7 057—§m,
b — 87_* — E C’7+
06— meRa 07 3 (meR)2 )
16 ¢\ 4\?
bos = 5 -1 boy = ; 40
08 9 l<2meR> ] Y+>  Do9 <m3R> Y45 (40)
bSP _ bSP _ _ §b
00— = V> 01 —’7+—8 055
e R 2
by = 32;1 (4 +04), bos = 5621}2(5,,
e
SP enR\? |, 5
bos = om (€3, (V4 +64) —4m2o, ] ; (41)
e

boo = 4v— = 4b5s, b, = 1674 = 6bos,
2
v 8C0+ 7 ( 8¢ ) 5. 2)

2 = =
0 m.R> % meR

where €21 = 3 — €1 is the difference in the electron energy. The characteristic features of the Py /,-wave are
expressed as

(=3aZ + (81 + SQ)R (43)
and the Coulomb corrections appear as the following combinations

ot = o> £lanl’, Br =laraP a1l
Y+ = 2Re(0¢110£*_1_1), Y- = 211’11(0(110(*_1_1),
(S+ = 2Re(a_11a]*71), o_ = QIm(a_HaIfl), (44)

with Qi = Ai(EQ)Aj(El).
For the normalization constants in the approximation including terms up to («Z)? [5]

- EFMmM
Apr = 5o Fo(Z,e),

4 — - iy
Fo = o,y PP VNG +ig)Pe,

n=v1-(aZ)? y=aZe/p, (45)



we have

(5;)=semenion (5 ) =g6=omaun “
’Y+:5+—%| 1[[p2|Co0, 7~ =0- =0, 4

where
Con — Fo(Z,22)Fo(Z,e1) (48)

£92€1

Note that using Eq. @) the expressions for B from Table 3 are reduced to the form shown in Table 4.

Table 4: Expressions for B in Eq. [22) for the stated choice of €2 for the Ay, from Eq. (@3).

€ B
ev_4 | Bo+4Di|yl |u¥:ﬁ|002 +4D1|uy 4]
evia | Bo+4Do|ul |ule|001 +4D ¢ |y 4l
v By + D3|M||€v A|C2 + Dsley T4
i By + Dslplleyiler + D4|€¥Iﬁ|2
€ap By + 4D |u3 b l?
ngllz BO + DSP|,U||ES+P|C4 +DSP|€S+P|2
€Sip By + D3P |ulled Ples + D5T e DI
er By + 4DT|ulr P
e%q, e;f Bo
e Bo + DY |pllerr|cs + DY lerr|?

In the definitions of C; and D; we use some combinations of nuclear parameters similar to the ones in
Ref. [5]. Thus,

1
X2+ = XGTw £ XFw — §X1;; X1+ = (XIGT - 6XIT) + 3X%;

2
gv Mrp gv M,
= — )  — —— y k = P, R, RT,
xr <9A> Mgt Xk ga Mar
M;,
Xk = Mar’ k=T, GT, RC,, RT,;
P = Fé3)XF' SP _ FéS) <9_V>2 Mro — sp_ FéS)g_VMPo,
F g ’ FO gv ga AIGIJ PO ga ga AIG]J
T(3) T() MT

Xf = "I=xe, k=R, BT, RC;, RT; ] = k=GI,T, (49)
A

ga Mgr’
where the index F' refers to Fermi, GT to Gamow—Teller, T to tensor, P to the P-wave effect and R to
the recoil effect. If x has prime or the index w than the same has the according matrix element in the
numerator. The nuclear matrix elements defined below contain the operator 7¢ = (71 + i72)*/2 converting
the a-th neutron into the a-th proton, and the initial (final) nuclear state are denoted by [0;") ((07])

Mp = Z(O}FH Z hy (rap, EN)TETY]0F), (50)
N a#b
Mar =Y (01D hi(ras, En)oa - op7i7h||0]), (51)
N a#b
- N 1
Mr = ZNXO?” QZ#th(r“b’EN) {(‘Ta “Tap) (0 - Tap) — 3000 o8 107), (52)
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Mé;T = Z(O}_|| Z hi}-(raba EN)Ua o-b7-+7'+||0+>

N a#b
My =Y (OIS 1 (rap, Ex)T 72 ]10F),
N a#b
R . 1
My = (OF(1 Y by (rav, EN) |(0a - Rap) (0 - Fap) — 30 0b i 1107),
N a#b
ir a - N a
Mp =Y "(0F1 > W (ras, Ex) 2: bb {(0a — o) - [Fab X Byap]} 7472107,
N atb .
R
M= Y X011 Y Wy (rans Bx) g —Fan - (00 % Dy + Dy x )77 [0,
N a#b "ab
Moz =Y OF 1Y how(ras, En)aa - ot [0F),
N a#b
Mpo = (O0F11D how(ran, EN)TET4]0F),
N a#b
Mpo = Z(O?H Zhg(rabaEN)f’ £o7e i),
N a#b

iR o
Mpo =Y (0F[1Y oy ho(ran, En)o g - [£ x 4] 7t]0F),
N a#b

iR
My = Z(O?H Zhﬁr(rabaEN)TU'a ‘U'bTiTiHOZr%

N a#b
Tr + ! iR A ~ 1 a _b +
Mp = Z(Of || Zh’Jr(TabaEN)T (Ua - rab)(o-b . rab) - gaa Oy T+T+||Oi ),
N a#b

R
My, = Z 0+||Zh/ rab,EN)2 tap - (To — Tp)7278]|0F),
N a#b

iR, R
MII%CU = Z<O?|| Z h;(rab;EN)Z(rab c0,Cp — CoTyp - Ub)TiTi”Oj):
N a#b

iR "
MII%TU - Z<O}_|| Zhg-(rabaEN)Zrab (o0 x Tp + T, x Ub)7_+7_-?-||0j_> -
N a#b

In the above expressions, the neutrino potentials h;(rqp, (En)) are defined as follows:

with

R [dk 1 1 e -
hy(rap, (EN)) = 4#2/3 <w+A1 +w+A2>ek ~ RH(r, A),

totrann (B) = 5 [ B (- ) e

271'2812 w w+A1 w+A2

_ 0 _
~2H(r, A) + TEH(T, A),

hOw (T‘ab, (EN)) = h+ - ARho, hlJr(’I‘ab, (EN)) - h+ + ARho,
A |2 (R\® .

hi(rans (En)) = — - | 2 (-) _ ARh,
mp m T

)

_ 1 dk ekr
Hr, 4) = ﬁ/:—wm’

Aj=¢;+(En)—E;, i=1,2; A=(En)—(E; +Ey)/2,
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where 74, is the distance between the nucleons a and b, and (Ey) is the average energy of the intermediate
nucleus N.

To derive the expressions for A and B shown in Tables 2 and 3 we have used the formulas:
S—P (3)
m F
CA ES_P — MGT S¥P S XSP
1 ( Sq:P) me gy F
A ( S—P A (. s+Py T S+P_S
C3' (e3zp) =0, C5' (e5tp) o= 2MaTedtpX 7o

)

S— S r s
s (SSq:g) =0, ¢ (ES:T:II;) E = MGTGS%Lin%]()D; (73)
Z¥ (ev.=4) = Mar (p+2uy—%) (xr — 1),
Z¥ (ey34) = Mar [u(xr — 1) + 20374 (xr + 1)]
Z?{( (6“;$ﬁ) = iMGTe\Z;ﬁ(XGTw + XFuw),

1
ZF (&) = Fo Marel s,
T

73 (evt4) P Marey T 4xp,
Zin (V) = Marel F X (74)

73
Wi (€12) = —2Morels: 5 (o, + X+ Xir, = xqr),
7, I\
— > !
= QZMGTGTZ 9a XGT7
(3)
T T 1
W (i) = = —4iMgrefr —— ( sxr +2xr ) - 75
7 Tr r+ GTeTy ga 3XGT XT (75)
For all other arguments eg these nucleon matrix elements have zero values, except for

Zix (6“;;? = 0) = MGTH(XF — 1) (76)

We have calculated the numerical values of the integrated kinematic factors Ap;, A(()‘?R T), By;, and

B(()fp’ ™) for all the five nuclei of current experimental interest. We shall use them in the results shown below

in Table 6 for the angular coefficient K. However, as we will focus in this paper mainly on the 0v23 decay
of the "*Ge nucleus, we give the values of these factors for this nucleus in Table 5, where we have used

Q=E;— E; —2m, = 2.039 MeV (77)
taken from Ref. [35], and the scaling factor for the neutrino potentials is
R=roA'?, ry=1.1"fm. (78)

The values of A}, and Bos are of the order of 10~%* yr—!. Hence these values are not given in Table 5 and
the terms with Al, and Byz can be safely neglected.
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Table 5: The integrated kinematic A- and B-factors [in 10~ **yr~!] for the 0t — 0T transition
of the 0023 decay of "®Ge.

Ao 6.69 By, 5.45
A02 1.09x10 BOQ 8.95
Aos 3.76 Bos —

Ao 1.30 Boa 1.21
A05 2.08)(102 B05 7.27

AOG 169)(103 — —
Ao7 | 1.05x10° || Boy | 7.72x10*
Agg | 6.59x10% || Bog | 4.97x10°
Aoy | 4.14x10° || Boe | 3.00x10°
AST 2.55 — —
AST 3.77 B5T 2.73
ASF 1 1.18x107T || BSF | 7.20x1072
ASY 1 1.27x1073 || Bgf | 3.71x10° 1
Al ] 6.03x10 | BE | 4.36x10
AT 1 150x10° || BT, | 1.40x10°
AL, | 7.67x10° || BEL | 7.16x10°

We recall that the analytic expressions associated with the coefficients egiﬁ given in this section and
the values of Ag; from Table 5 confirm the results of Ref. [5]. The analytic expressions associated with the
coefficients e“f;ﬁ, egig, e%g and the values of A5 By;, B{YPT) from Table 5 transcend the earlier
work.

3 Analysis of the electron angular correlation

3.1 Qualitative analysis

If the effects of all the interactions beyond the SM extended by the vjss, which we call the “nonstandard”
effects, are zero (i.e., all €3 = 0), then K = By;/Ap;. Its values are given in Table 6 for various decaying
nuclei. We will concentrate on the case of "®Ge nucleus in the following. In this case the correlation (ZI)) is
proportional to 1 — 0.81cosf. (Note that in the limit of m./(E; — Ey) — 0 we have ay + 84 = v4 + 04
and K = 1.) Tables 2 and 4 show that the presence of the “nonstandard” parameters e“ﬁ;ﬁ, e% or e%ﬂ
does not change the value of K and therefore the form of the angular correlation. The presence of any other
parameter €2 does change this correlation. From the fact that there are no contributions due to P-wave and
recoil effects to the scalar nonstandard terms in the closure approximation (see Appendix A), it follows that
the values of ASY, A5 BSF, and B are small and there are two additional “nonstandard” parameters

that do not change significantly the form of the angular correlation, namely, eg;rg.

Table 6: The values of angular correlation coefficient K for various decaying nuclei for the SM extended by
the vyss.

TGe | 5280 | T90Mo | 199Te | 13%Xe
K | 0.81 | 0.88 | 0.88 0.85 | 0.84

Using Table 1 and taking into account the fact that |u2| are suppressed in comparison with |¢| by the
factor m;/m. (the chiral suppression), we find the coefficient K and the set {¢} of nonzero €s that change
the 1 — 0.81 cosf form of the correlation for the SM plus vyss, see Table 7 (the lower two entries). They
correspond to the following extensions of the SM: vjss plus RPV SUSY [10], vass plus right-handed currents
(RC) (connected with right-handed W bosons [5] or LQs [I3]). Hence, the angular coefficient K can signal
the presence of these NP interactions.
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Table 7: The angular correlation coefficient K for various SM extensions for decays of "®Ge.

SM extension {e} K

Upnr — 0.81
vu+RPV SUSY | e [ -1<K <1
v +RC aa | 1<K <1

We remark here that in our earlier analysis [19] we had neglected the P-wave and recoil effects, which is
not a good assumption. Our current study shows that these effects give significant contribution to the terms
with e“ff’: and e% Hence, they have to be included in any realistic analysis of the data, as and when it
becomes available. Including them, not only the model called vj;+ RC but also the model vy, + RPV can
essentially change the angular coefficient K from being 0.81 in the decay of the "®Ge nucleus. Left-right
symmetric models belong to the class v+ RC and we have studied these models in detail in section 4, where
the correlations among the parameters K, 77/, and either myy, or ¢ are worked out for the case |(m)| # 0,
cos ¢; = 0 considered in section 3.2.

Note that the decay half-life and angular correlation do not give any bounds on the parameters e% and

e%’; because the according expressions for A and B do not depend on them.

3.2 Quantitative analysis

Let us now consider some particular cases for the parameter space. We will analyze only the terms with
egiﬁ as the corresponding nuclear matrix elements have been workd out in the literature. We use various
types of QRPA model for the "®Ge nucleus [20, 21] as a test case.

Using the case of |(m)| = 0, which gives conservative upper bounds on |u2| and |3, the decay half-life

is expressed from Eq. (ZI) as
1

ZA)T. (79)

From Eq. ([{9), using Tables 2, 5 and the values of the nuclear matrix elements reported in Refs. [20, 21],
we have the following expressions for the half-life [in yr] for various choices of the parameters | u“f;m and

|e“f$’3|, taking only one parameter at a time:

T1/2 = ln2/F = (|MGT

Ty /s = L1(L3) x 10" |uy,— 4172, Tijs = 3.2(4.0) x 10%|uy 412, (80)
Ty o = 4.0(21) x 102|uy 24|72, Tije = 4.5(6.8) x 10"%|uy 74|72, (81)
Ty /s = 3.7(27) x 108|ey.F4172,  Thjo = 1.0(9.7) x 10"3|ey 14|72 (82)

Eq. B0) corresponds to using the pnQRPA model with particle-particle strength parameter g,,=1.02(1.06)
[21] and Eqs BI)-(82) correspond to using the QRPA model without (with) the p-n pairing [20] (note that
the definitions of the nuclear matrix elements x> and xg in Ref. [20] differ from x» and x’, in Ref. [5] by
the factors 1/2 and 4/(m.R), respectively). Comparing the numerical results in these equations, we note
that the dispersion in the half-lifes is less marked for the coefficient | u“f;ﬁ. However, the half-lifes involving
the coefficients |uy, 4| and |e“ff£| show a very strong nuclear matrix element dependence. For the QRPA
model worked out in [20], it is not clear to us if this is due to a numerical artifact or the treatment of the
isoscalar neutron-proton pairing. An important, and related point, is how to fix correctly the particle-particle
strength of the nuclear Hamiltonian. Fixing the particle-particle pairing parameter, and varying it as done
in [21], leads to rather stable values for the half-life of "®Ge nucleus. Clearly, these issues remain to be
further discussed and clarified. A detailed discussion of these nuclear models will take us far afield from the
main point of our paper. The theoretical uncertainty in the nuclear matrix elements [2, 6] plays an essential
role in the numerical analysis. However, as we show below, the nuclear-model dependence of the angular
coefficient K is rather modest.
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The fact that the dependence of K on the nuclear matrix elements is much weaker than the uncer-
tainty in T/, from this source is illustrated in Table 8 for QRPA models [20, 21] for the assumed val-
ues of the parameters: |,uV¥A| = ley 14l = 5 x 1077, |eyt4] = 5 x 107 It is clear from Table 8 that
measuring K with 10% accuracy (or better) produces useful experimental data that could be sensitive
to the new physics. We note that for the parameters ,u“;*ﬁ the angular coefficient does not depend ac-
tually on the nuclear matrix elements as it is seen from Tables 2, 3 (for |u| = 0) and Eqgs. (28), (31):

K=(xr¥ 1)2 B/ [(XF F 1)2 Am] = Bo1/Ap1 ~ 0.81.

Table 8: T;/, and K for the fixed values of the parameters |uV¥ 4, |6V$A| for decay of "®Ge for the case of

[(m)| = 0 in QRPA without (with) p-n pairing [20] [pnQRPA with g,,=1.02(1.06) [21]].

luy—4l=5x10"" | |uy 4l=5x10"" [|egFAl=5x10"° | ey T4 =5x 1077
Ty /5/(10% yr) | 1.6(8.4)[0.44(0.52)] 1.8(2.7)[1.3(1.6)] 1.5(11) 4.0(39)
K 0.81(0.81)[0.81(0.81)] | 0.81(0.81)[0.81(0.81)] | —0.73(—0.73) —0.79(—0.87)

Using the numerical results given above, the current lower bound Tj,5 > 1.6 x 10% yr for the "5Ge
nucleus [37] yields the upper bounds on the parameters | u&;ﬂ and |eg$ﬁ| shown in Table 9. The bound on
|eV+A| is stronger than the others shown in this table due to the relatively large values of the recoil and P-
wave matrix elements in this case. The bounds on |ev¥ A| given in Table 9 are comparable with the bounds
ey 4] < 4 x 1072, [e 4] < 6 x 1077 given in Ref. [28].

Table 9: Upper bounds on |p‘Vq:A| |e¥$£| for decays of ™Ge for the case of |(m)| = 0 in QRPA.

V+A | V+A|

Nuclear model |u¥:ﬁ |Mv+A| ey T V+A

pnQRPA with g,,=1.02(1.06) [21] | 2.6(2.9) x 107 | 4.5(5.0) x 107 —

QRPA without (with) p-n pairing [20] | 5.0(11) x 10~ 7 | 5.4(6.5) x 10 7 | 4.8(13) x 10 ° | 7.9(25) x 107

To be definite, we use the QRPA model without p-n pairing [20] in the following. The bounds given in
Table 9 could be used for deriving the bounds on the parameters of the particular models (see section [2ZT]).
For example, using Eq. (B) we have the following conservative constraints on the couplings of the effective
LQ-quark-lepton interactions:

Il < 1.1 x 1079 My 1\ < 2.6x 1077 My I=5,V. (83)
4 100 GeV ) ri== 100 GeV ) e

e Consider a more general case of |(m})| # 0, cosy; = 0, where the index ¢ depends on «, § (as above,
we take only one nonzero €2 at a time). Using Tables 2 and 4 we have

A= Cilpl® +4Ci|u3 P,
KA = Dy|u|* +4D; |52, (84)

and

A= Ciluf’ + Ciled)?,
KA = Di|uf* + Di|é2 . (85)

Hence, using Eq. ([79) we obtain

> = (At = X K) /Ty o,
|ea]® = (=3 + A K) /Ty 5 = 4], (86)
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with the coefficients

D; C;
N=—" Ny = -t
! 27, 77 [MarPAy
D, Ci
=5, M=——— 87
3 D) i’ 4 |MGT|2Ai ) ( )
where Az = ClDz — chz
Using Eqs [B6)-(&17) we have for E‘Ziﬁ #0
ul? = (7.9 + 10K) x 10'2/Ty o, |y T4 = (5.1 - 6.3K) x 10'2/Ty 5 (88)
and for eV+A #0
|u)? = (7.7 4+ 10K) x 10'2/Ty s, [} F47 = (1.9 — 2.4K) x 10°/T s, (89)
with T/, in years. Fig. 1 shows the correlation among |(m)|, Ti/2, K (left) and the correlation among

|e$iﬁ|, Ty /2, K (right) for the choice of a nonzero egiﬁ Fig. 2 shows the same for the parameter €y,

is clear from Figs 1 and 2 that the closer is K to 1 for the fixed value of T /5, the weaker is bounded |( )
and stronger is bounded |eV$A The correlations among |6V¢A| Ti/o, K will be used in the next section in
the analysis of left-right symmetric models.

Note that if several €2 are nonzero in the considered model than the respective interference terms should
be taken into account.

V+A Tt

e To extract |u|, |u2], |e2], ¢; in the general case of |[(m)| # 0, ¢; # 0 we need to analyze the data on
at least two decaying nuclei. This analysis will be presented for the five nuclei already discussed in a
forthcoming paper [3§].

4 Electron angular correlation in left-right symmetric models

The experimental bounds on the €2 are connected with the masses of new particles, their mixing angles, and
other parameters specific to particular extensions of the SM [5, 4 [8 [10, 12, 13]. To illustrate the kind of
correlations that the measurements of 7'/, and the angular correlation coefficient K in the 0v23 decay would
imply, we work out the case of the left-right symmetric models [22]. In the model SU(2)r x SU(2)r x U(1)
the parameters n and A (see Eq. (@) are expressed through the masses my, and myw, of the left- and
right-handed W bosons and their mixing angle ¢ [5]:

n=—tan(, A= (mWL /mWR)2 ’ (90)
under the condition
mw,; < Mwyg. (91)
Egs. @) and () and the relation [5]
Vei = Veli (92)
of the SU(2)r, x SU(2)g x U(1) model yield
i = X"VU Veiry /T4 = 1U.iVies. (93)

To reduce the number of free parameters, we assume the equality of the form factors of the left- and right-
handed hadronic currents:
av = gy- (94)
The small masses of the observable vs are likely described by the seesaw formula that in the simplest case
gives
mi ~mp /Mg, Mg > mp, (95)
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with the Dirac mass scale mp (for the charged leptons and the light quarks mp ~ 1 MeV) and the mass
scale Mg of right vyss (in the majority of theories Mg > 1 TeV). In the left-right symmetric models these
scales arise usually from the two scales of the vacuum expectation values of Higgs multiplets [22]. In the
seesaw mechanism, the values of the mixing parameters V,; (for ¢ numbering light mass states) have the
same order of magnitude as mp/Mp. In our discussion we use two rather conservative values (compare with
Eq. @)

e=10"°% 5x107" (96)

for the mixing parameter
€ = |UeiVeil- (97)

We recall that here the summation index i runs only over the light neutrino mass eigenstates (the summation
over the total mass spectrum including also heavy states gives strictly zero due to the orthogonality condition
).

From Eqs. (@0), @3), @4), and (@) we have

mwy, = mw, (€/ |e¥iﬁ )1/2, ¢ = —arctan (|e¥f‘3| /€) - (98)

Using Eq. (@) we note the approximate equality of my, and the mass of the observed charged gauge boson
W1 (mw,=80.4 GeV [1]).

The correlation among my,, (¢), K, and Tj/, for the case of [(m)| # 0, cost; = 0 (see section 3.2)
is shown in Fig. 3 (4) for the two chosen values of e. The numerical results for these figures have been
obtained using Eqgs. (88) and (89). It is clear from Fig. 3 (4) that the closer is K to 1 for the fixed value
of Ty, the stronger is the lower bound on my, (the upper bound on (). However this bound is weaker
than the one myy, > 715 GeV, obtained from the electroweak fits [I]. There is still a more stringent bound
mw, > 1.2 TeV, obtained in Ref. [39] for the 0v28 decay mediated by heavy Majorana neutrinos using
arguments based on the vacuum stability [6] and additional theory input. We assume myy, > 1 TeV in the
next figure.

While experiments in the 0v23 decay would measure the product of the quantities called A and the
neutrino mixing matrix elements U,;V.; in Eq. [@3)), collider experiments at the Tevatron and the LHC can,
in principle, measure A by determining mw,. Assuming these logically independent possibilities, we plot
the differential width (2I)) vs. cosé in Fig. 5 for a set of values of |(m)| and my,, taking e“ﬁiﬁ at a time
and assuming € = 1075, In this figure, we consider the values of |(m)|, starting from |[(m)| < 0.03 eV up to
|(m)| = 5 meV, covering two of three scenarios of neutrino mass hierarchies and mixing angles: normal and
inverted mass hierarchies (see Ref. [40] for a recent discussion and update). It is seen that the sensitivity of
the electron angular correlation to the right-handed W-boson mass my, increases with decreasing values
of the effective Majorana neutrino mass |(m)|, as can be seen from Fig. 5 (right), where this correlation is
shown for [(m)|=5 meV, 10 meV.

In conclusion, we have presented a detailed study of the electron angular correlation for the long range
mechanism of 0v2/ decays in a general theoretical context. This information, together with the ability of
observing these decays in several nuclei, would help greatly in identifying the dominant mechanism underlying
these decays. At present, no experiment is geared to measuring the angular correlation in 0v23 decays, as
the main experimental thrust is on establishing a non-zero signal unambiguously in the first place. We note
that the running experiment NEMO3 has already measured the electron angular distribution for the two
neutrino double beta decay, and is capable of measuring this correlation in the future for the 0v2f3 decay
as well, assuming that the experimental sensitivity is sufficiently good to establish this decay [41]. The
proposed experimental facilities that can measure the electron angular correlation in the 0v23 decays are
SuperNEMO [42], MOON [43], and EXO [44]. We have argued in this paper that there is a strong case in
building at least one of them.
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A 0v2p3 decay rate for scalar nonstandard terms

The nucleon currents in the impulse approximation in the nonrelativistic form are used in this paper [32] [34].
Keeping all terms up to order p/m, in the nonrelativistic expansion we have

(3) - p® =%
Js:FP erié X —Tg) (Fs FF,'B ) B, = 2amp ) (99)
J“;tA(X) = ZTi(S(X - ra glt (gVIa - gACa) +9g m(gAUam - gVDZn - gAPz:n)] ) (100)
a
: Og. - m ] m "o,
¢, =% Q_doua pm= I_<1+9_M>M, pr=172% (101)
2my, q’ +m?2 2my, gv 2mp q° +mz;

where g" = p* — p'* is the 4-momentum transferred from hadrons to leptons, Q* = p* + p'#; p* and p'* are
the initial and final 4-momenta of a nucleon; m,, is proton mass and m, is pion mass.

We neglect the dipole dependence of the form factors FéB), Fl(f), gv, g, gy on the momentum transfer
and omit the zero argument of the form factors. Note that gy (0) = 1.

Consider the pure SP case assuming (m) = 0. In terms of the combinations of hadronic currents

T, = (FIIEINYNITEED, i = (FITT INYN|TED, (102)
Jr=eslpdip tesipidie, JE = Egillzvﬁ ptesipidip (103)
Jer = UeiJvJ:A ) (104)

and the combinations

(LR sﬁ’R(2Ya 1x) Sﬁ’R(ly,2X)

_ _ 105
n w+ A w+ A, ’ ( )
L @y 1x) 85, (ly,2%) (106)
Am w+ A w+ A,
of electron currents
s (2y,1x) = ex(y)vu (1 F ys)ef (%), 5%, (2y,1x) = ea(y)a (1 — 5) el (%), (107)
ei(X) = ep;s; (x), the matrix element is expressed as
1 (Gp|Vudl elkr
RyY = — = 2 / dxd
= (e 2]
x Y [ (J* R — ij{;) + & (JiLeM — JE‘JM)] : (108)
where r = y — x. By using the identities
sL’R(ly, 2x) = sf’L(Qx, ly), sfu(ly, 2x) = —leM(Qx, ly), (109)
the algebraic formula
2(am £ bn) = (a+b)(m £n) + (a — b)(m F n), (110)
the constant GVl 2
C L, = F ud me 111
o = Ll 2 (1)



and the neutrino potentials

dk e*T (1,w, k')
2m)? w wH+A4;

(H;, Haj, HL) = 4n / (112)

the matrix element (I08)) is expressed as

Ry =—=Coy Y (%Mglp + M§P> . (113)
i N €

Each part of this matrix element is expressed as a sum of nonvanishing (indexed by n) and vanishing
indexed by ¢) terms, in the closure approximation:
indexed b t in the cl imati

MZE = {MZT", + {M2E ), (114)

R

{Msp}, = 5/dXdyTN(H1 + Ha)

x [(A1 + Aup) P2y + (A5 + Ay p) Fiy + BinF2 + (B + Bip)FL] (115)
R

(M}, = 5 [ dxdyTy(H: - )

x [(A1 + Ay R) FE_ + (A} + A§p) Fi_ + BiaFY + (B} + Bip)Fi] (116)

4 R o
(Mhp}, = 5 / dxdyTy { (Hor — Huo) [~(A} + Aip) By + BonE |
+(Hpy — Hip) [~(42 + Asr) B} + (A + ) BY + (BY + Bip)E-| }, (117)

R o
{M&p}, = %/dXdyTN{ (Ho1 + Huz) [—(AZ + Air)EL + B2RE+]

+(Hpy + Hip) [~(4s + Asp)EL + (A% + AU)EE + (B + Blg) By ] ), (118)
with
Tn = g4 (F| ZTiINMNI ZTiIDfS(X —1,)6(y — 1) . (119)
a b
The electron currents are defined as:
1
Fy = 5 [u(yx) £ u(xy)], Fsy = 3 [us(yx) £ us(xy)],
1
Fi = Lut(yx) £ u*(xy)], Fy = 5 [ (yx) £uf (xy)],
12 v ]‘ 12 12
FI = L [um (yx) + u (xy)], FfY = B [us” (yx) + ug” (xy)],
E, =F, + Fs,, Bl =FY + F%, (120)
with
u(yx) = ex(y)es (x), us(yx) = éa(y)ysef (x),
ut(yx) = ex(y)y e (x), uf (yx) = éa(y)ys7"ef (x),
ut (yx) = —igy(y)otef(x),  ub’(yx) = —iez(y)ys0"ei(x) . (121)

The nucleon operator matrix elements are defined as follows:

A=A+ AP, B=B+BP, (122)
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A1 = 2G(‘)/55, AlR = —G?4€SC+ — G(‘)/EPB+,

AQ = QG(‘)/EIS, AQR = —G%S{gc_i_ + G(‘)/EIPB+,
A% = G%ESUi, AQR = —G%e’:‘prhL — G(‘)/ESDi Agﬁ = —G%e’:‘spi,
1= G%ESUL flR = G?45IPBfr+ - G(x)/glsDia 4R = GAESPJir,
Al = ey AL, AR = e Alg, (123)

BlR = —G%é“scf + G(‘)/EPB,,
Bygp = —G%esC_ — G%e'B_,

= Ghesol, Big=—-GherB,_ —GhesD', Bli=-GhesPl,
B4 =Ghesol, Bip=GhepB, —GYesDY, Bij=—-GiesP!, (124)
with . ' ) . . '
By =B, +I,B, B.,,=0,B,+B,oj, P.=PI,+I,P. (125)

Under the exchange of running indices a and b (i.e. X > y), nuclear operators A, electron currents E
and F and neutrino potentials H; and H,; are even, while B, E_, F_, and Hy; are odd.
The constants are defined as:

v . _ _
Gy = ZA [(Uez +ey 2,2’) + Ex‘i+£,i] ) Ga= (Uei + e\‘;fﬁ,i) - Ex‘i+£,ia
GO = G(e = 0), G =Yy, GY=U., (126)
ga
F§3) S—P S—P Fy S_p S_p
s = —— (65 Pi T €s4p, z) , Ep = gLA (GS—P,z €S+P7z) )

Fs(*B) S+P S+4+P FE) ( sip S+P

£y = —=— ( SiPz + S+P7i) , ep= gLA ( SiPz SiRi) : (127)
Note that in the notations of Ref. [5]:

t=u+us, th = u0 2. (128)

Since the nucleon recoil term P, behaves as an even parity operator while the neutrino momentum k
and the recoil terms B,, C,, D, as odd ones, each of the 4;, k- A;, B;, k- B; has a definite parity. The
operators

Ala A%a A3R7 A4R) BB: B3Ra
I'-B4R, TAQR, T‘ASR , (129)

have even parity and the operators

A1R7 AéR’ AZR? B1R7 B2R7 B§R7
r- By, r-BfR, rtAs, rlAék, rlAspll%k , (130)

have odd parity. The odd-parity operators do not contribute to the 0™ — J* transition in the case where

both the electrons are in the S-wave state (the S — S case) with no de Broglie wave length correction (no
FBWC).

Using the definitions of neutrino potentials

R 1 R
hy = 5(H1 + Hy), ho=—(Hi —H3), how=—(H, —H.,»),
£21 €21
. TR T
B, = i (H}, + Hy,), hyi' = —i (H., — H,) , (131)
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in the S — S case with no FWBC, Eqs. (I13)), (II7) are reduced to

{M3p}, s_s = / dxdyTnhy [ALFY, + (AL + AV FLT, (132)
821R i
{Mgp}t.s 5= dxdyTnho(BL + Bij)FL, (133)
le . .
{MISCP}n,s—S =73 njl dxdyTnhow (A} + ALh)EY
e
le iR
+§il dxdyTNZTh()fl (—AyrEl + Ak EY) (134)
2 iR
k _ N
{MSP}C,Sf.S = m—e_R /dxdyTNZh;r . B4RE+, (135)

where E, F are taken for x=0, y=0.
For the 0T — 0% transition we have

m; m

Zm_Z{MSP}st = ginFs?+a (136)

i ¢ N
2
ZZ{MgP}S_S = giﬁ{CZLBR}CEwLa (137)
i N e
with
A m; B ZR !~
Off = (ZhhiAr), {CHy}e = (5 E - Bun), (138)

where  =r/r and (X) = ; ;(0}'||X||0}'>, with h = h(r, En).
In the S — Py, case with no FBWC for the 07 — 07 transition we have

{Mgbp}mS—Puz = /dXdyTNh+ (AéRFg—i- + B%RFi) ) (139)
521R

(M85 = 5 [ dxayToho (AdgFi_ + BinF}) (140

1 621

{Mgp}n,sfpl/Q - /dxdyTNhOWA4REZ
len

R
52 dxdyTNZTh{)f’ [—A2Ei+(A’k APIYER] (141)

e

1 o
k i i
{Mkp}, SPs = TR / dxdyTnho, AL R B

— / dxdyTN—Rh’ M [—A2EL + (AF + AL ER]. (142)

The squared modulus of the matrix element (I13), summed over the polarizations s; of the electrons and
multiplied by the phase space element (35]), yields the differential decay rate for the 0t — 0% transition

_ Ssz _ Aoy SP _ &~ & PSP
dr = |Ry) "~ (meR)? [A5" = P1 - P2 By "] dQuy, (143)

51,82
with ag, being defined in Eq. (36). Here the coefficients are

4

AF" =DM, (144)
i=1
BSP = Re(My M} + M; My + MsM; + M My), (145)
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with

. 2 meR € R
M=oty d -0+ 2] + C o) o+ 28 ea,
meR meR

3
+Z%Jj (Cs' = G5 = O3 = Cilw) 53 R + % (miR N 2) (163 =G5} (G} {CfR}C)]
; {Q‘fnZe L (1) + (G~ 3CThr)e )] } , (146)
M, = o}, { cit + é{cﬁ%}c [ ng < 2) Ci - 821R{C3R} )

(az)?

+ o B ({04 Yo +{Cir}e — 3{Cirr}e) (147)
[t (42 () et
N %mLR ({C8Ye — {C8Ye — {CL}e — {Cin}e)
+ {éii); ({C'}e +{CiR}e - 3{C4BRF}C):| } ’ (148)
My=a",, { [L{CFR}C] N F%R (% — 2) (C3' — C&t — Oy — Ci) %

({02 }c {054}6 - {C?R}c - {CfR}C)

LY
T 6m

(O + Cnbe 3{04BRF}C)] } , (149)

where «;; = A;(e2)A;(g1) and the nucleon matrix elements are
j j

m; 1 m; @

Csp = (m—e—h+1‘ Bir), {Ofq}.= (—ﬁhgu Bsg),
m; 4 i

Cip = ( 2Rh+r+ Asg), {Cig}e= (——hol‘ Asg),

Cip= (ﬁhwm A4g), {Cirle= (EhOwr - A4uR),

1,
' = <;hsr rids), {C3')e = (B Ao),
A i..d At] A _ 1 1 At d At
C’5<R) :( rr+A5(R)> {C )}C—(;h+r r+A5(R))),

er + 72 ;
{Clrr} = <2_r 2R2bh' -Bur), (150)

with ry =y +x = 2Rr,.

The terms in the first brackets in Eqs. (I46)—-({49) come from the S — S case, the terms in the second
brackets come from the S — P/, case and in the third brackets there are the most important terms due to
the P,/ — P/ case and FBWC.

Assuming now (m) # 0 for the dominant terms we have

. 2
My=a%y 4 { {le —-Cf + ﬁ{cﬁ%}c}

R A P

} , (151)
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. 2
My = oy, { Z¥ + o + m{cﬁz}c}

[t 02 - et g+ (o +2) et - e 132
M;=ai_, { {Zf( + H{CFR}C]
‘ :52;33 (jn_ + 2> (0 = C) g + 5 ({08 - {cg‘}c)] } : (153)
My =a’y, { {Zf‘ + %{CER}C]

In the expressions for My, ..., My, the terms with ¢ are due to the inclusion of the P-wave in the elec-
tron wave function and those with CP, are from the inclusion of the nucleon recoil effect. In the closure
approximation there are no contributions due to the P-wave and the recoil effects. Note that some of the
subdominant terms should be taken into account in case of large cancellation among the dominant terms.

B 0v2(3 decay rate for vector nonstandard terms

In this appendix we in general follow the derivation of Ref. [5]. However in addition to Ref. [5] we keep in
our calculations the terms associated with the parameters eg;ﬁ and the pseudoscalar form factor.

The nucleon currents in the impulse approximation up to order p/m,, in the nonrelativistic expansion are
[32, [34]:

Ty a(x Zu x —1a) [¢"°(gvIa F 94Ca) + 9" (£9A0am — gv DI F gaP™)] (155)

with Cy, DI, P™ given in Eq. (I0I).
In terms of Stuw, Vauw, Jis (a, 8 = L, R) [5] the matrix element

k-r

= Coy Z Z /dxdy 4 —=—— (M I} Sepw + JE Vi + J51 Vauw) (156)
may be expressed as
CO”ZZ ( MVA+MVA> M = (M7} + (M7 e (157)
The analogues of the Egs. (C.2.11), (C.2.23), and (C.2.24) from Ref. [3] are as follows:
My s n = {Mm, }n = g /dXdyTN(H1 + Hy) [(X1 + Xir)Es + (Y + fﬁiR)Ei] , (158)
(MPa)e = (M o = 5 [ dxdyTu(Hy = )[4+ DB + (4 + T EL] (159

R
(M4} = (Mva@) = o0 [ dedyT { (Hor — Hoo)
e
X [(Xs + Xsp)FY + VspFY_ + (XL + Xip)FL + (V) + YG’R)F;_] + (HL, + HL,)
x [(XE+ RER)F + (v + Vip) S, + (X1 + XU FE + (v + Vi) FE ) 3, (160)

(M a)e = (Mya@))e = - [ dxdyTy { (Har + Hao)
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x [(Xs + Xsp) F2 + Yan PRy + (XL + Xip)FL + (V] + Tip) Bl | + (H}, — Hiy)

x [(Xh + KR FY + (V] + V) P + (X + XU FE + (0 + VIR FE ] ), (161)

with X = X + XP, ¥ = Y + YP. The operators X and Y are defined in [5], except for the operator
YﬁlR = —YSIR which is defined to remove the minus sign from the Eqs. [I60) and (I61); X; = Xis, Y1 = Vis.
The additional operators are

Xip=G4P), Xip=Xip=G_P,, Xjp=GacaP,
XEF = —Gaea 0Pl — (P’k P¥)] +iGrean Py,
Vi = GyGaPL +GA15W Ik YR = G EzlkP :
Vi = iGaeacii; P — G P, Yii = —iGacaei; Py, — G P, (162)
with o o
P;J+ =o,P] + P,oj. (163)
Under the exchange of running indices a and b, nuclear operators X, electron currents £ and F, and

neutrino potentials H; and H,,; are even, while Y, E_, F_, and Hy; are odd.
New constants are defined as:

V+A V+A _ _V+A

v =" |€yya; T v A,i) » AT €y Ty Ay (164)

_ v ( V4+A
ga

The operators

X17 XIPR) leia YPi
X37 X57X5R7 X4R7 r- X3R7 TXGRa
Y47 YE}R: r- Y5R,7“ Y4R ) (165)

have even parity and the operators

. i . 1 P I yvlk I v Plk.

XlR; YllR;XBRa X4R7 I"Xs, r 'X3R7 r X4 , T XGR )
Y- Yl .Y A YP lylk lYplk (166)

3R, Ygp, T* X3, I'* Xyp, g, T Iyp",

have odd parity.
Using the definitions of the neutrino potentials from Eq. (I3I)) and

R2
hy, = T(H“ + Hy2) (167)
in the S — S case with no FBWC we have

(MPyhos-s = [ dxdyTho (s + XFp)E, (168)

m 821R i Piy i
{M4}es—s = dxdyTnho(Y) +Yg)E", (169)

{M{gtns s =— / dxdyTnhoo [(Xs + Xig)FY + (X5 + X[p)F}]

h’ VIR P, + VIEFE T, (170)

{MéA}c,s_s = W (Vi + YR FL,
+%/dxdyTN7h0 (XLRFY + X¢hFY), (171)
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where E and F are taken for x = y=0.
For the 0T — 0% transition we have

Z Z{MVA}S s =94(ZF + Z{{)Ey,

i

SN (M=o |2 A+ RO+ 2R
with
2= (e Xa), 28 = (eha XF), 2= (houXs),
o= CRWE Vo), 23 = (hooXbu), {73}, = (NG Xon),

In the S — Py, case with no FBWC for the 07 — 07 transition we have
{M\T/nA}n,S—Pl/z = /dXdyTNh-l‘YliREiv
m enR i i
{M's}Ye,s—Py )y = 5 dxdyTnhoY{rEY,
€
{M\IjA}n,SfFﬁm = %/dXdyTNhOw(XiRFi +YirFy )
e

+

4 iR
— / dxdyTN—h’ (X + XY + (ViR + YN ER]
e
{MeA}as_Pm = 22 [ axdyTun (X4 +inF,)
/ dx dyTN—h’ X+ X FE + (YR YRR T

The decay rate for the 0T — 0T transition takes the form

5
m A A
dl’ = E |R0u|247:3 S, = [A(‘)/A — P p2B(§/A] dQOlM

81,82

(meR)?

where the coefficients are

4

A(‘)/A = Z |Ni|2:

i=1
BY# = Re(N,N; + Nf Ny + N3N + NiNy),

with

. 8 R
Ny =al,_, { [Z1X + 7% - Zir ) 21 {ZIR} )

( ¢ _z) (ZF + 28 +{20n)) == + L E (Z&—%({Z bo + {21} >)}

4 Mmer ¢ e R
Ny =a {[21 + 2% +meRZfR] +{ 5 ((meRH) Zr+ 5, {Zm}>

¢ 1e2,R
() @ 2+ ) o -

meR

+ |2 (2. + 3230

(- 5+ 120 |

e
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(172)

(173)

(174)

(175)

(176)

(177)

(178)

(179)

(180)

(181)

(182)



+ |- (2 4 323m)

} : (183)

No=ai {8+ 25 - 2L 4 23+ (23500 + o (Bl gemCen + 2mO R 2, )
+32 (2 3UZY 12500 ) g - 3 (2 4) @ v 2 -2z | (184
Ny=a’y, { Z1X + 7+ %(Z?f( + 735+ {Z?fgz}c): + é <CZ1YR + %521(621 - 2m6)R2Z2YR>
—%%C (z;fg% - %({Zf}c + {zggg’}c)> ai % (% = 2) (25 + 235F - 22;5%)] } : (185)

where the terms in the first brackets in Eqs. (I82)—(I85) come from the S — S case and the terms in the
second ones come from the S — P, /, case. The terms in the third brackets in Eqs. (I82)-(I83) are the most
important terms of those that come from the P> — Py /5 case and from the S — S case due to FBWC. The
nuclear matrix elements are

Zip = <m—e ﬁh#‘ -Yigr), {Zg}c= <m_eﬁ%h°r+ Y1r),
Z5 = (=g WerrhYyl), Zig = (=g LYY, {ZgR}e = (phot - Yon),
i | 1.,
Zip = (5phowr - Yor), {Z5}e = (;%T’“Yé”% {Zir}e = (;hbr’“%%%
i 1, i wii L, . y
Zﬁz = <ﬁh0wr+ : X4R>7 {Zéf(}c = <;h67‘ ri—X4J>7 {Zgg%P}c = (;hf)r TiXéDRJ%
ir? iRy +ry

1 i i i R R
sz( = <;hI+TZTjX4]>a {Z;(}c = ( hy[ta x £5] - X5), Z;/RF = (5

Y B\t -Ysg). (186)

The dominant terms give

No=a*y_, { {fo - ﬁZ{R] + E (miR - 2) Zﬁyé} } : (187)
M=ot {2+ pzi] v -3 (5 +2) 2 g (188)
Ng:a’{_l{{ZlX—%Zg(] + [—% <%+2> Zf” (189)
N4:a*_11{{Zf(+%Z§(] + E (%—2) Zf]} (190)

that agrees with the Eq. (C.3.7) of Ref. [5] taking into account the correspondence with their notations:

ZiX = Z17 Zg( = Z37 ZGY = Z67
Zip = Zan,  Zin=Tsr,  Zi = Zs, (191)

and the fact that Z, is absent, as we have calculated only the leading contribution of the parameters .
Recall that in Ref. [5] the pseudoscalar form factor is not taken into account. However the terms associated
with this form factor do not contribute to the dominant terms (I87)—(I90). Note that in the expressions for
Nj and N given above, the terms with ¢ are due to the inclusion of the P-wave in the electron wave function
and the ones with Z)p are due to the nucleon recoil effect. We remark that some of the subdominant terms,
like those with Z;%, {ZX}., {Z3x}e, {ZX}e and ZX, 1, should be taken into account in the case of large
cancellation among the dominant terms. The same is valid for the contribution due to the pseudoscalar form
factor g4 P which yields corrections at about 10 % to the dominant terms.
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C 0v2( decay rate for tensor nonstandard terms

The nucleon currents in the impulse approximation up to order p/m,, in the nonrelativistic expansion are
used [32] [34], J&* , from Eq. (I00) and

T = TS rta(x —ra) {(9"F 9" — g"°g"F)TE + ¢" ™ " e kmna
i
+ §8uupa [(gpngO - ng.gak:)Tak + gprga'ssrskgak]} > (192)
rr o= [((0® -2?) ¢ L+ 1o x Q)] T m,), (193)

where, as before, ¢* = p* — p'# is the 4-momentum transferred from hadrons to leptons, Q* = p* + p'¥,
p* and p'" are the initial and final 4-momenta of a nucleon. We neglect the dipole dependence of the form
factors T1(3) and TQ(B) on the momentum transfer and omit the zero argument of the form factors.

Consider the pure Tp g case assuming (m) = 0. In terms of the hadronic currents

Ty = (FIIRFINKNITE D, TS = (FITE INYN IR, (194)
Tt = ek I ek e e = ek I e (195)
Tt = U T8, (196)

and the leptonic tensors

thuw 2y, 1x)  th,,(ly,2x)

0 = - 197
apy — W+ Al w+ A2 ) ( )
61 — oz)\uy(QY7 ]'X) _ t;)\uy(ly72x) (198)
aipv W+ Al W+ AQ )
62 — uuoz (2y7 ]-X) uua(ly, 2X) (199)
e = w+ Aq w+ Ay
ZQ — ul/)\a(2y7 ]'X) ul/)\a(ly7 2X) (200)
prAa w + A1 w + A2 ’
with the electron currents defined as
auu(2Y7 ]'X) - 62( )'Ya(]- - 75)0'1“161 (X)7
a/\uV(QY7 IX) = 62( )7a(1 - 75)7)\0-111’65( )
uua(2Y7 ]-X) - 62(Y)UMV(1 - 75)70461( )
uuAa(QY7 IX) - 62( )Uul/’w\(l - 75)70461 (X) ) (201)
the matrix element is expressed as
1 GF|V d| zk-r
T u
ROV_\@<7 QZ/dxd ) 2
x Z [ (Jz(’f;"ze(lxuu J{I";%K?wa) + k)‘ (Jgg“;ea)\;w + J#";%Kuu)\a)] . (202)
N
For the electron currents we have the identities
oz;u/(]'Y7 2X) uua(2y, ]-X)
oz)\;w(IYa 2X) - t;w)\oz(QY7 1X)- (203)
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Using Eqs (I1I0), (I11), and (IIZ), the matrix element (202) is expressed as

B, =0 Y (Lot +af).
i N ¢

Mjr“n’k = {Mjr“n’k}n + {M;’n’k}m

with nonvanishing (n) and vanishing (c¢) in the closure approximation parts:

(M}, = R [ dxdyTy(H: + )

X [(U)+ Ti) By + (U + D) B+ VanF + (Vi + Vi) FL]

(aa}, = R [ dxayT(# ~ 1)

{Mz}, =

Me

+(H}y + Hiy) [(Vi + Vi) By + Uz + Oap) P2 + (U3 + Udp) FY + (U + U Y

X [(Ul + Uig)FY_ + (Ui + Uip)Fi_ + VigF + (Vi + V;R)Fjr] ,

/ dxdyTy (Han — Ho) [VarE- + (Uf + Uig) FY + (U + Ui FY |

LU+ T

R - . ) L .
{Mr}, = — / dxdyTyn (Ho1 + Heo) [VQRE+ + (Uf + Ujp) F2' + (Ug” + Uéﬁ)FﬁJ]

+(H}y — Hiy) [(V;’ + Vig)E_ + (Uz + Usp) FY' + (U2 + UlR)FY + (U + Uy FY

LU+ TR,

where the nucleon operators are

Ux
Uir

Usr

U=U+UP, V=V4+VPF,

—2G% (e, +en)oa0y, Ulp=G%(er, +en,)Pl,

G(‘)/ (8T1 + gTz)D2i+ - ZG?4 (5T1 + ETZ)T¢£2’7

- ~0 ! ! P - ~0 ! ! 23
2iG'y (e, +em,)000h, Usp = —iGy(eq, +em,) P,
.0 (1 / i 0/ I\
—iGY (e, +em,) Dy + Ga(er, +e,)T5Y,
0 i Pi . 0 ik
_GV(ETl + ET2)0J+7 U3}$ = _lGA(8T1 + STz)Eijknga

0 i -0 jk
Galer, +en)Coy —iGY (emy +em)eijn Dy
. ~0 i - ~0 13
'LGV (z’:‘T1 + ETQ)Ti — 'LGA(ETl + ETQ)EijkTgf,

-0 (1 ! i Pi __ 0 (1 ! . jk
—iGy (e, +em)ol, Uig = —Galeq, +em,)eiinP,
- ~0 (1 ! i 0 (1 i ik
'LGA(ETl + ET2)CO.+ — Gv(ETl + STQ)SijkDO'_

GO(/ —l—l)Ti—l-.GO(l —|—')~Tjk

vIiET e )Ly T xE €, )€ijkL s>

- ~O () ! i Pi _ 0 1 Jk
—iGy (eq, +ep)ol, Usg = GaepeinPs”,

- ~0 (1 ! % 0 _/ . jk
—iGp (e, +e1,)C0y + Gyer cije D)

0 /.1 ’ i - ~O _1 Jk
Gv(f:Tl + €T2)T+ + ZGAgTQEijkTa'—7

Pij

1 -
0 (.1 ! ok 0 1 i ij
§GV(ET1 + €T2)€l]k0'+, UGR = ZGA(ETl +5T2)P¢7+7
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(205)
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(207)

(208)
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Ué% = —§G?4(€ITl +5,Tz)5ijk0§+ — §G(€/(€IT1 + 6’712)5,'3'ka

+ G (el +el) DY —iGY (el + )T,
vl = +G’?,(5'T1 +EIT2)EZ']'kU§:_ — 2iG9,(5'T1 +5'T2)(030g +aia),
Up = —G?4(5'T1 +5'T2)5ijk0§+ - iG(x)/(sér’l + 5&’2)5“ka
+ GV (e, +em,)(Dyy + Dy ) = Gh(er, + ) (T + 1Y),
P . ST
U;pl = +iGY(el, +en) (P + P2L),
3y 1 . ,
U* = +5GA(Er +en)len(ohol + 040}) + 2ea; (o408 + oia})],
g 1 . . -
U = —iGQ/(alTl + e ek DYy — GYeqj(eh, DI, + el DXL
i . _ _ _
- §G?4(€fr’1 + e e T — iG%eu; (e, Tk + e, TEL),
i, 1 . . .
Ut = —§G%(€§r’1 +el ey Pl — Goeuj(el, P + &, P, (211)
ViR = —G%(er1 +er2)DE —iGY%(em1 +er2)TE, Vg = —-G%(er1 +em,) P,
Vo = =G (e +ep)DE +iGY (el + ) TE, Vip = —GY%(ely + 5IT2)P¢£Z;,
V3Z = G(‘)/(sT1 + 8T2)UZ— + 27:G?4(€T1 + st)[o-a X o-b]la
Vi = —GY(er +em)Ci_ +iGY(er, +em)ein DIy
+ Gy (er, +en)TE —iGY (ery +emy)eijn TS,
Vi = iG%(er +em)eir Pk,
Vi = GY(eh +ep,)ol — 2iGY (e, +e,)[oa X o),
Vip = —GY(ehy +epn)Ch_ +iGY (el + el )eijn DIY
. 1 ik
— GV (e, + &) T — GO (e, +e)ein T2y,
Vi = iGY(eh, + el e Pl (212)
with ' ) . g o o o o
Ti =TI, £I,T}, T9 =o'T} +Tiol X9, =0'Xj £ XJoi, X=D,T,P. (213)

Under the exchange of indices a and b, nuclear operators U, electron currents F; and neutrino potentials
H; and H,; are even, while V, F_, and Hy; are odd.
The new constants are defined as:

— 1 TL TL — TL TL
€Ty = g ( Tr,i + TR7i) y €Ty = ga ( Tr,i TR7z) ’
3) (3)
7! T
| Tr Tr D | Tr Tr
ng B g—A (ETR7i + GTL7Z’) ’ €T2 N g—A (ETR7i B GTL77;) ' (214)

The even parity operators are

Ul: Uﬁ%a kiUQRa Ué: Uiflgv Uiv Ufl%v kiUszﬂ Uﬁij7 Uéﬁ?’ kiU’Z%’ kiUSiz%k;
Vl%’ ‘/2113?7 ‘/Sia VBIID%ia k'V4R; (215)

and the odd parity operators are

Urn, K'Us, KU, Uip, Ulp, KUL, KU, Ui, KUY, KUY,
KUZ*, KULT*, Vig, Vag, Vig, k- Vi, k-Vig. (216)
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Using the definitions of the neutrino potentials from Eqs. ([I31) and ([I67), in the S — S case with no

FBWC we have

(M) 55 =2 [ dxdyTyhy (U + Uf) R, + (U3 + UEDEL],

{Mf), o 5= 2 / dxdyTcho, [(U} + URFY + (UF + UG ]

+

4 R,
meR/dXdyTNghg_r-VélRE_i_,

. 2
{M%}c,sfs = moR /dXdyTthV;;%E+

+ 2 [ dxdy Ty “=hpi (Vs FS + Ui Py + U FY + U P
e
where E and F' are taken for x =y = 0.

For the 0t — 07 transition we have

ms
Z m_l Z {M:?n}sfs = 9124 [Q(WlU + WH%P)F& +521R{W1‘;%P}CF£] )
i N
2
SOSMEY = W+ (WEELE
TSs—s meR 4R 2R Jc)H+>
i N

with

W= (b, WP = (CEhoUTR, AW e = (CEho i),
Wi = (5o e - Vag),  {WH}, = (Vi)
In the S — Py /5 case with no FBWC for the 07 — 0T transition we have
{MPYns5-p,, =2 / dxdyTnhy (UigFi, + VigF"),
{MpYes—p,,, = EglR/dxdyTNhO (UigFi_ + VipFL),

€ i 70
(Mnsryo = 20 [ dxdyTito,UlnF?

4 j . . g o
+ /dxdyTNgh;fl [(Uz + Usp)FY + (UY + Ung)FE’] ,

Me
2 1 1
{M§Yes—p,,, = o / dxdyTnh, Ui F°

iR, . o

e

The decay rate for the 0T — 0T transition takes the form

mp ag
dl = JP—£dQo, = Y _ (AT — py - p2BT] dQo,
Z|R0 | 1.3 X (meR)Q[ o — P1-P2Bg | dQ.,

51,82

where the coefficients are
4

Ag = Z |Oi|27

i=1

B(r‘)r = Re(OlOg + OIOQ + 0301 + 0504),
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(218)

(219)

(220)

(221)

(222)

(223)

(224)

(225)

(226)

(227)

(228)

(229)

(230)



with
2

W+ (Wi}

O1=aly, { [_2(W1U + W) +
¢

i -
n mger (m = - 2) W, + EQITT{W&}C] n
2
meR

i )
n —m;r (mCR +2> Wl + 2y c] n

0y = o) { [2<W1U CWHP) + Wt {W&P}c)} n

N 2
0n =i, { [enROWET )+ a0l + ()|

w5 (2 ) Witk (O

# (2 42) (W~ (W) - (V) — (W) — (VT

4 ¢ 1 3(aZ)?

—gmeR(WQU + WYV + Wi + whE — 5{Wﬂ%}c)
* 2
0n =ty { [ear ROV e+ 2o+ (W5
mer [ €21 €217

+ [— 3 (m_e - 2) Wag — CT{WB‘;%}C

e R (en U U U UP UP
+ 3 o 2) (Wyg —{Wy }e =AWz }e —{W3g }e —{WiR }c)

4 ¢ 1 3(aZ)?
SRV WY L WE W — S| + |-

3(aZ)? 1
—1(,”752 (W&F + §{W2‘ﬁr c)] } ,

3(aZ)? 1

(231)

(232)

# [ 202E (i + i) | cos)

1
R (WZ%F + i{Wz‘ﬁ: c>:| } ,(234)

where the terms in the first brackets in Eqs. (231)-(234)) come from the S — S case and the terms in the
second ones come from the S — P/, case. The terms in the third brackets in Eqgs. (231)-(232) are the most
important terms of those that come from the S — S case due to FBWC. Note that in the S — S case there

is the contribution to Eqs. (231)) and ([232) from the (H,; + H,2) combination in Eq.

contribution from the Py, — Py /5 case should not be taken into account.
The nuclear matrix elements are

Wip = (m—ﬁh+1‘+ -Usg), {Wigle= (m—;hol‘ -Usr
Wip = <m—e ;h+1‘ - Vsgr), {Wigle= <m—e ﬁhoh - Vig
)
Wik = <ﬁh0wr+ - Uyg),
U R ,. . Up R ,. . .p
{Wy'}e = <? of - T1Uz), {Wag fe= (;hor -#1Usg),

R, i i R, ... ii
(wly, = (?hgr P Uy, WP = (?hgr UL,

Assuming now (m) # 0 for the dominant terms we have

2

O =a*, | { [zlx —owl + —

(Wl + (05010 +}.
2
02 = qu { |:Z1X + 2W1U + W(W& + {WQ‘%P c):| +} ,
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)

@09). Therefore the

(235)

(236)

(237)



* [ 2 ]
O3 =aj ;4 { _Z1X + —meR(W‘K? + {W2‘;%P}c)_
[ea1R [en U U U 4 C U o |
+ 5 o +2) (Wig —{Wy e —{W}e) — 3 R(W2 + W) + ¢, (238)
* [ 2 ]
Oy =a’y, { _Zix + —meR(WLE% + {WQ‘%P}c)_
[e21R (€21 U U U 4 ¢ U o | 9
#1257 (8 2) = ) = (WF)o) = 5 o W8 ) | 4y (239)

Again, in the above expressions, the terms with ¢ are due to the inclusion of the P-wave in the electron
wave function and the ones with Wy and W%, (X = U, V) are due to the nucleon recoil effect.
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|e¥iﬁ| (right], the angular correlation

case cos

Figure 1: Correlation between the neutrino effective mass |(m)| (left) |
coefficient K, and the half-life T} /5 for the 002 decay of "6Ge for the

Figure 2: Correlation between the neutrino effective mass [(m)| (left) [}, 74| (right)], the angular correlation

coefficient K, and the half-life T} /> for the 0v23 decay of "*Ge for the case cos

0.

35



0 and € = 107 (left) and for

Figure 4: Correlation between the mixing parameter (, the angular correlation coefficient K, and the half-life

Figure 3: Correlation between the right-handed W-boson mass mw,,, the angular correlation coefficient

K, and the half-life T} /5 for the 0023 decay of "6Ge for the case cos

€ =5x 1077 (right).

0 and € = 1078 (left) and for e = 5 x 10~7 (right).

Ty /> for the 0v2f decay of "®Ge for the case cos
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10% yr * dr/dcos 6 10% yr * dr/dcos o
15 N

751

|<m>| = 30 meV

|<m>| =10 meV

50

|<m>| =20 meV

25 ] 5 |<m>| =5 meV

cos 6 cos 6

Figure 5: Left: Differential width in cosf for the 0v23 decay of "®Ge for a fixed value of e = 1076 and
|(m)| = 20,30 meV. The straight and dotted lines correspond to mw, = 1 TeV, oo, respectively (the
latter is the conventional case of the light Majorana neutrino exchange mechanism). Right: The same as
the left figure but for smaller values of [(m)| = 5,10 meV. In addition, the dashed lines correspond to

mw, = 1.5 TeV.
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