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Dispersion representations for hard exlusive proesses:beyond the Born approximationM. Diehl1 and D. Yu. Ivanov21 Theory Group, Deutshes Elektronen-Synhroton DESY, 22603 Hamburg, Germany2 Sobolev Institute of Mathematis, 630090 Novosibirsk, RussiaAbstratSeveral hard exlusive sattering proesses admit a desription in terms of generalizedparton distributions and perturbative hard-sattering kernels. Both the physial amplitudeand the hard-sattering kernels ful�ll dispersion relations. We give a detailed investigationof their onsisteny at all orders in perturbation theory. The results shed light on theinformation about generalized parton distributions that an be extrated from the real andimaginary parts of exlusive amplitudes. They also provide a pratial onsisteny hekfor models of these distributions in whih Lorentz invariane is not exatly satis�ed.
1 IntrodutionDispersion relations play an important role in the desription of exlusive proesses, relating the realand imaginary parts of the amplitude. They are for instane required to derive the operator produtexpansion for Compton sattering in Bjorken kinematis. In this ontext they have reently been usedto establish a representation of the deeply virtual Compton amplitude whih allows the inlusion oftwo-loop orretions in a pratiable way [1℄. In a di�erent ontext, dispersion relations have beenemployed in [2℄ to simplify the alulation of the hard-sattering kernels for exlusive quarkoniumprodution at next-to-leading order.For hard exlusive proesses that an be alulated using ollinear fatorization, one may writedown dispersion relations both for the physial proess and for the parton-level subproess. Thequestion of onsisteny between both representations turns out to be nontrivial and has already been1
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raised in the seminal work [3℄ giving the proof of fatorization for meson prodution. Importantprogress has reently been reported in [4℄, where it was shown that this onsisteny is ensured byLorentz invariane in the form of the polynomiality property for generalized parton distributions(GPDs). The studies in [4℄ were arried out using the Born-level approximation of the hard-satteringsubproess. In partiular, they showed that to this auray not only the imaginary but also the realpart of the proess amplitude an be represented in terms of GPDs F (x; �; t) along the line x = � inthe x{� plane. This onstitutes both a simpli�ation and a limitation for extrating information onGPDs from hard exlusive amplitudes at leading-order auray. It is natural to ask how the situationhanges when inluding radiative orretions to the hard-sattering kernel.In the present work we therefore investigate dispersion representations for hard exlusive proessesto all orders in perturbation theory, generalizing the leading-order results derived in [4℄. In additionwe onsider in detail the distributions for polarized quarks and for gluons, for whih speial issuesarise. Our paper is organized as follows. In the next setion we reall a number of results whih willbe needed in our subsequent work. Setion 3 gives a detailed analysis of dispersion representationsin the unpolarized quark setor. The spei�s of other distributions are disussed in Set. 4. As anappliation of our results, we investigate in Set. 5 the model for GPDs proposed by MDermott,Freund and Strikman [5℄, where polynomiality is not satis�ed. In Set. 6 we summarize our �ndingsand draw onlusions.2 Some remindersLet us begin by realling some well-known properties of generalized parton distributions and of dis-persion relations, whih we will need in the subsequent setions.2.1 Lorentz invariane and rossing propertiesAn essential property of generalized parton distributions is the polynomiality of their Mellin moments.This property diretly follows from the Lorentz ovariane of the operator matrix elements whih areparameterized by GPDs [6℄. With the onventional de�nitions (given e.g. in [7℄) we have for quarksZ 1�1 dxxn�1Hq(x; �; t) = n�1Xk=0even(2�)k Aqn;k(t) + (2�)nCqn(t) ;Z 1�1 dxxn�1Eq(x; �; t) = n�1Xk=0even(2�)k Bqn;k(t)� (2�)nCqn(t) ;Z 1�1 dxxn�1 eHq(x; �; t) = n�1Xk=0even(2�)k eAqn;k(t) ;Z 1�1 dxxn�1 eEq(x; �; t) = n�1Xk=0even(2�)k eBqn;k(t) (1)with n � 1, where Cqn is nonzero only for even n. For gluons we have2



Z 10 dxxn�2Hg(x; �; t) = n�2Xk=0even(2�)k Agn;k(t) + (2�)nCgn(t) ;Z 10 dxxn�2Eg(x; �; t) = n�2Xk=0even(2�)k Bgn;k(t)� (2�)nCgn(t) ;Z 10 dxxn�2 eHg(x; �; t) = n�1Xk=0even(2�)k eAgn;k(t) ;Z 10 dxxn�2 eEg(x; �; t) = n�1Xk=0even(2�)k eBgn;k(t) ; (2)where n � 2 is even forHg and Eg and n � 3 is odd for eHg and eEg. SineHg, Eg are even and eHg, eEgare odd funtions of x, we an restrit the integrals in (2) to the range 0 < x < 1. The onvention forthe moment index n is suh that quark and gluon form fators with the same n mix under evolution,i.e. Aqn;k with Agn;k, Bqn;k with Bgn;k et. The di�erent powers of x in the integrals (1) and (2) reetthe di�erent forward limits of the distributions, e.g. Hq(x; 0; 0) = q(x) and Hg(x; 0; 0) = xg(x) forx > 0.An important ingredient in the subsequent disussion will be the high-energy behavior of satteringamplitudes. Aording to the priniples of Regge theory, this behavior is onneted with the quantumnumbers exhanged in the t-hannel. Let us briey reall how the relevant quantum numbers an bedetermined in the ontext of generalized parton distributions [8℄. For negative or zero t the form fatorsAqn;k(t) et. parameterize the matrix elements of quark or gluon operators between single-proton states.Their analyti ontinuation to positive t gives the orresponding matrix elements between the vauumand a proton-antiproton state. Deomposing those matrix elements into ontributions with de�niteangular momentum, one an assoiate the form fators with the relevant quantum numbers in thet-hannel. The relevant deomposition for the GPDs of the proton is given in Chapt. 4.2 of [7℄, andwe list the resulting JPC quantum numbers of the t-hannel exhange in Table 1. From this one anreadily establish the exhange quantum numbers for the generalized parton distributions, whih aregiven in Table 2. In partiular we see that for positive harge onjugation there are distributionsallowing for spin-zero exhange. This orresponds to energy independent ontributions in satteringamplitudes, whih play a prominent role in dispersion relations as we will see.A way to ensure polynomiality of the moments (1) is the double distribution representation [9, 8℄Hq(x; �; t) = Hqf (x; �; t) + sign(�)Dq�x� ; t� ; Eq(x; �; t) = Eqk(x; �; t)� sign(�)Dq�x� ; t� (3)with Hqf (x; �; t) = Z d� d� Æ(x� �� � �) f q(�; �; t) ;Eqk(x; �; t) = Z d� d� Æ(x� �� � �) kq(�; �; t) ; (4)3



Table 1: Quantum numbers of t-hannel exhanges for the form fators in (1) and (2) as explainedin the text. The entries with positive harge onjugation parity C = +1 refer to both quarks gluons,and those with C = �1 only to quarks.form fator n JPCAn;k + t4m2 Bn;k even 0++; 2++; : : : ; (n� k)++Cn even 0++An;k +Bn;k even 2++; : : : ; (n� k)++eAn;k + t4m2 eBn;k odd 0�+; 2�+; : : : ; (n� k � 1)�+eAn;k odd 1++; 3++; : : : ; (n� k)++An;k + t4m2 Bn;k odd 1��; 3��; : : : ; (n� k)��An;k +Bn;k odd 1��; 3��; : : : ; (n� k)��eAn;k + t4m2 eBn;k even 1+�; 3+�; : : : ; (n� k � 1)+�eAn;k even 2��; : : : ; (n� k)��
Table 2: Quantum numbers of t-hannel exhanges for ombinations of generalized quark distributionsof de�nite harge onjugation parity. The entries with C = +1 also hold for the orresponding gluondistributions. distribution JPCHq(x; �; t) �Hq(�x; �; t) 0++; 2++; : : :Eq(x; �; t) �Eq(�x; �; t) 0++; 2++; : : :eHq(x; �; t) + eHq(�x; �; t) 1++; 3++; : : :eEq(x; �; t) + eEq(�x; �; t) 0�+; 1++; 2�+; 3++; : : :Hq(x; �; t) +Hq(�x; �; t) 1��; 3��; : : :Eq(x; �; t) +Eq(�x; �; t) 1��; 3��; : : :eHq(x; �; t) � eHq(�x; �; t) 2��; 4��; : : :eEq(x; �; t) � eEq(�x; �; t) 1+�; 2��; 3+�; 4��; : : :
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where f q and kq are ommonly referred to as double distributions and Dq as the D-term. The supportregion of f q(�; �; t) and kq(�; �; t) is the rhombus j�j + j�j � 1, whereas Dq(�; t) has support forj�j < 1 and is odd in �. More general representations have been disussed in the literature [8, 10, 11℄but will not be needed in the following. For gluons one hasHg(x; �; t) = Hgf (x; �; t) + j�jDg�x� ; t� ; Eg(x; �; t) = Egk(x; �; t) � j�jDg�x� ; t� (5)with Hgf (x; �; t) = Z d� d� Æ(x� �� � �)�fg(�; �; t) ;Egk(x; �; t) = Z d� d� Æ(x� �� � �)�kg(�; �; t) : (6)The support properties of fg, kg and Dg are as for their quark ounterparts, and Dg(�; t) is evenin �. One readily �nds that the Mellin moments of the D-term are related to the form fators Cn(t)as Z 1�1 d��n�1Dq(�; t) = 2nCqn(t) ; Z 10 d��n�2Dg(�; t) = 2nCgn(t) : (7)The polarized quark distributions eHq and eEq have double distribution representations analogous to(3) and (4) but without a D-term, sine the highest power appearing in their Mellin moments (1) is�n�1 instead of �n. We will disuss the ase of eHg and eEg in Setion 4.3.2.2 Dispersion relationsThe exlusive proesses we onsider in this work are deeply virtual Compton sattering (DVCS) andlight meson prodution,�(q) + p(p)! (q0) + p(p0) ; �(q) + p(p)!M(q0) + p(p0) ; (8)where four-momenta are indiated in parentheses. Our arguments an be extended to the produtionof heavy mesons like the J=	, but we shall not dwell on this here. Sine the proesses in (8) involvepartiles with nonzero spin, the appropriate quantities for disussing dispersion relations are invariantamplitudes, whih have simple analytiity and rossing properties. An expliit deomposition forCompton sattering an be found in [12℄, where these invariant amplitudes are alled Compton formfators.To desribe the kinematis of (8) we use the Mandelstam variables s = (p + q)2, t = (p � p0)2,u = (p� q0)2. Consider now an invariant amplitude F [�℄(�; t) with de�nite signature � under s$ urossing, so that F [�℄(��; t) = �F [�℄(�; t) ; (9)where 2� = s� u. We will work in kinematis where t � 0 and external photons are on shell or havespaelike virtuality, so that the imaginary part of the amplitude is due to the s-hannel disontinuityfor � > 0 and to the u-hannel disontinuity for � < 0. The �xed-t dispersion relation with nosubtration then readsReF [�℄(�; t) = 1� Z 1�th d� 0 ImF [�℄(� 0; t) � 1� 0 � � + � 1� 0 + � � ; (10)5



where �th is the value of � at threshold. Here and in the following Cauhy's prinipal value presriptionis understood for the singularities at � 0 = �� of the dispersion integral. For the dispersion relation(10) to be valid, the integral of F [�℄(� 0; t) times the term in square brakets must vanish when takenover an in�nite semiirle in the � 0 plane. This requiresF [+℄(�; t) !j�j!1 0 ; ��1F [�℄(�; t) !j�j!1 0 : (11)A dispersion relation with one subtration,ReF [�℄(�; t)�ReF [�℄(�0; t)= 1� Z 1�th d� 0 ImF [�℄(� 0; t) � 1� 0 � � + � 1� 0 + � � 1� 0 � �0 � � 1� 0 + �0� ; (12)is valid if ��2F [+℄(�; t) !j�j!1 0 ; (13)whereas for � = �1 we have the same ondition (11) as with no subtration.We will study dispersion relations for the proesses (8) in the Bjorken limit of large �q2 at �xedq2=� and t. It is then useful to trade � for the saling variable� = � (q + q0)22(p+ p0) � (q + q0) = � q2s� u = � q22� ; (14)where we have negleted q02 and t ompared with q2 in the numerator. The fatorization theoremsestablished in [3, 13℄ state that in the Bjorken limit ertain invariant amplitudes beome dominantand an be written as the onvolution of partoni hard-sattering kernels with generalized quark orgluon distributions (and the light-one distribution amplitude of the produed meson).1 To establishdispersion relations we will need information on the high-energy behavior of these amplitudes. Em-pirially the small-x behavior of the usual quark and gluon distributions, obtained from �ts mainly toinlusive deep inelasti sattering data, is well desribed by a power law. With urrently used modelsfor generalized parton distributions, based either on double distributions or on Gegenbauer moments,one �nds a orresponding power-law behavior for the invariant amplitudes of DVCS [12, 14, 15, 1℄and of meson prodution [16℄. Whether this orrespondene may be model-independent is not known,see the disussion in Set. 3.2 of [15℄. We will take it as a guideline in the following, bearing in mindthat deviations between the power laws of parton densities and exlusive amplitudes (or deviationsfrom a strit power behavior in the asymptoti limit) do not invalidate our dispersion relations aslong as the invariant amplitudes do not grow faster than the ritial power of energy spei�ed in (11)and (13).3 Unpolarized quark distributionsIn this setion we disuss in detail the ontribution of unpolarized quark distributions to the leadinginvariant amplitudes for DVCS or meson prodution. Here and in the following we deompose all1Up to terms suppressed by inverse powers of p�q2, the leading invariant amplitudes for DVCS orrespond totransverse photon polarization and those for meson prodution to longitudinal photon and meson polarization in theollision .m. 6



amplitudes into terms of de�nite signature �. Aording to the fatorization theorem we an writeFq[�℄(�; t; q2) = Z 1�1 dx 1� Cq[�℄�x� ; q2�F q(x; �; t) (15)with F q = Hq; Eq. For simpliity we have omitted the dependene on the renormalization andfatorization sales; in the following will also omit the arguments q2 in the hard-sattering kernel2and t in the generalized parton distributions. The hard-sattering kernel satis�es the symmetryrelation Cq[�℄��x� � = ��Cq[�℄�x� � ; (16)so that the fatorization formula an be written asFq[�℄(�) = Z 10 dx 1� Cq[�℄�x� �F q[�℄(x; �) (17)in terms of the ombinations F q[�℄(x; �) = F q(x; �)� �F q(�x; �) (18)for quark exhange of de�nite signature. We remark that F q[+℄ orresponds to positive and F q[�℄ tonegative harge onjugation parity in the t-hannel. With the relationF q[�℄(x;��) = F q[�℄(x; �) (19)from time reversal invariane one �nds Fq[�℄(��) = �Fq[�℄(�) as required. In the Bjorken limit theMandelstam variables for the hard-sattering subproess are given byŝ = xs+ 12(1� x)q2 ; û = xu+ 12(1� x)q2 ; (20)so that one has x� = � ŝ� ûq2 : (21)To leading order (LO) in �s the kernel readsCq[�℄(!) / 11� ! � i� � � 11 + ! � i� ; ImCq[�℄(!) / ��Æ(! � 1)� �Æ(! + 1)� (22)for both DVCS and meson prodution, where we have omitted any global fators whih are irrelevantfor our disussion of �xed-t dispersion relations here. At higher orders in �s one �nds branh utsin the ŝ and û hannels for ! > 1 and ! < �1, respetively. For the dispersion relations to bedisussed shortly, we need to know the behavior of the kernels for j!j ! 1. The NLO kernels forDVCS an be found in [17℄, and those for meson prodution in [18℄. For negative signature, one �ndsCq[�℄(!) � !�1 up to logarithms for both DVCS and meson prodution. For positive signature, theNLO orretions give Cq[+℄(!) � !�1 for DVCS, and Cq[+℄(!) � !0 for meson prodution, again upto logarithms. The power behavior as !0 is due to two-gluon exhange in the t-hannel. For DVCSsuh graphs only start at NNLO, so that at this level one will also have Cq[+℄(!) � !0. This hange inenergy behavior between NLO and NNLO is the same as in the hard-sattering kernels for inlusivedeep inelasti sattering [19℄, obtained from �p! �p in forward kinematis via the optial theorem.In fat, the kernels for DVCS and for deep inelasti sattering are intimately related, see e.g. [1, 17℄.2We refer to Cq[�℄ as hard-sattering kernel for ease of language, keeping in mind that for meson prodution it ismore preisely the onvolution of a hard-sattering kernel with the meson distribution amplitude.7



3.1 Dispersion relationsThe invariant amplitude satis�es a �xed-t dispersion relation. Using 1=� = �2�=q2 as energy variableand making one subtration, one hasReFq[�℄(�)�ReFq[�℄(�0) = 1� Z 11 d!0 ImFq[�℄(1=!0) � 1!0 � 1=� + � 1!0 + 1=� � f� ! �0g� ; (23)where �0 denotes the subtration point and the Cauhy prinipal value presription is understood at!0 = �1=�. As is appropriate in the Bjorken limit, we have negleted t and the hadron masses whendetermining the lower limit of the !0 integration.Aording to the disussion at the end of the previous setion, the validity of a dispersion re-lation with one subtration requires that �2Fq[+℄(�) and �Fq[�℄(�) vanish for � ! 0, whereas anunsubtrated dispersion relation would require Fq[+℄(�) ! 0 in the same limit. Given the phe-nomenologial observed small-x behavior of valene and sea quark distributions, we expet a small-�behavior Hq[�℄(�) � ��� with 1 < � < 2 for � = +1 and 0 < � < 1 for � = �1. For � = +1 we henedo require one subtration in the dispersion relation. We have also taken one subtration for � = �1although this would not be neessary. We shall see that our �nal results for negative signature wouldbe the same with no subtration. Aording to Table 2 the distributions Hq[�℄ and Eq[�℄ involve thesame quantum numbers in the t-hannel, and we therefore expet that the high-energy behavior ofHq[�℄ and Eq[�℄ is similar.Inserting the fatorization formula (17) into (23) and using that Cq[�℄(!) has a vanishing imaginarypart for j!j < 1, one obtainsReFq[�℄(�)�ReFq[�℄(�0)= 1� Z 11 d!0 Z 11=!0 dx!0 ImCq[�℄(x!0)F q[�℄(x; 1=!0) � 1!0 � 1=� + � 1!0 + 1=� � f� ! �0g�= 1� Z 11 d! Z 10 dx !x2 ImCq[�℄(!)F q[�℄�x; x!� � 1!=x� 1=� + � 1!=x+ 1=� � f� ! �0g� ; (24)where from the seond to the third line we have hanged the order of integration, R11 d!0 R 11=!0 dx =R 10 dx R11=x d!0, substituted ! = x!0, and hanged the order of integration again. Straightforwardalgebra �nally givesReFq[�℄(�) = ReFq[�℄(�0)+ 1� Z 11 d! ImCq[�℄(!)Z 10 dxF q[�℄�x; x!� � 1!� � x � � 1!� + x � 1!�0 � x + � 1!�0 + x� : (25)Note that ImCq[�℄(!) ontains terms proportional to Æ(! � 1), as is already seen in the leading-order expression (22). These terms are understood to be inluded in the integration over ! in (25).A remark is in order on the behavior of the integrand for x ! 0. Let us �rst onsider the aseF q[�℄ = Hq[�℄. It is natural to expet that Hq[�℄(x; x=!) has a singular behavior for x ! 0 that issimilar to the forward distribution q(x)+��q(x). With the small-x behavior of quark densities obtainedin typial phenomenologial analyses, one then has an integrable singularity of Hq[�℄(x; x=!), whereasthe orresponding singularity of Hq[+℄(x; x=!) is stronger than x�1 but weaker than x�2. For � = +1the expression in square brakets in (25) is however proportional to x, so that the integrand is againsuÆiently well behaved at x = 0. A similar disussion an be given for Eq[�℄(x; x=!), assuming thatits small-x behavior is similar to the one of Hq[�℄(x; x=!).8



We now disuss the dispersion relation for the hard-sattering kernel itself. Notie that aordingto (16) the kernel Cq[�℄ has opposite symmetry behavior under rossing than the orresponding proessamplitude Fq[�℄, so that Cq[+℄ satis�es a negative-signature dispersion relation and Cq[�℄ a positive-signature one. With the large-! behavior disussed after (22) we hene need no subtration in eitherase and an write ReCq[�℄�x� � = 1� Z 11 d! ImCq[�℄(!) � 1! � x=� � � 1! + x=�� ; (26)where again the Cauhy prinipal value presription is implied at ! = �x=�. Insertion into thefatorization formula (17) yieldsReFq[�℄(�) = 1� Z 11 d! ImCq[�℄(!)Z 10 dxF q[�℄(x; �) � 1!� � x � � 1!� + x� : (27)This an in partiular be used to evaluate the subtration onstant ReFq[�℄(�0) in (25), whih thenreadsReFq[�℄(�) = 1� Z 11 d! ImCq[�℄(!)Z 10 dx�F q[�℄�x; x!� � 1!� � x � � 1!� + x�+ �F q[�℄(x; �0)� F q[�℄�x; x!�� � 1!�0 � x � � 1!�0 + x�� : (28)Notie that the terms in the seond line give the amplitude in the limit � ! 1, whih orrespondsto the point s = u = q2=2 in the unphysial region. The negative-signature amplitude must vanishat this point for symmetry reasons. Comparison of the �0 independent terms in (24) and (25) showsthat an unsubtrated dispersion relation for Fq[�℄(�) has indeed the same form as (28) without theterms in the seond line. The same is however not true for Fq[+℄(�).Consisteny of the representations (27) and (28) implies1� Z 11 d! ImCq[�℄(!)Z 1�1 dx �F q(x; �)� F q�x; x!�� � 1!� � x � � 1!� + x�= 1� Z 11 d! ImCq[�℄(!)Z 1�1 dx �F q(x; �0)� F q�x; x!�� � 1!�0 � x � � 1!�0 + x� ; (29)i.e. the l.h.s. must be independent of �. In (29) we have restored the integration over negative xand traded F q[�℄ for F q, making use of the symmetry relation (19). The Cauhy prinipal valuepresription should be applied at x = 0 if � = �1, so that a possible nonintegrable singularity of the� = +1 part of F q(x; x=!) = 12�F q[+℄(x; x=!) + F q[�℄(x; x=!)� anels under the integral beause itis antisymmetri in x. At this point we an make two omments:1. To leading order in �s the dispersion representation (25) involves only distributions F q[�℄(x; �)at the point x = � beause of the simple form (22) of the hard-sattering kernel, as was foundin [4℄. At higher orders in �s it involves however the distributions in the full DGLAP regionjxj � �. Knowledge of F q[�℄(x; x) for all x is hene only suÆient to reonstrut the amplitude(up to a subtration term) at leading order in the strong oupling. The reonstrution is howeverpossible to any order in �s without diret knowledge of the distributions in the ERBL regionjxj < �. 9



2. The onsisteny of dispersion relations for the proess amplitude and for the hard-satteringkernel was already disussed in the ontext of the fatorization proof in [3℄. Translated into ournotation, the analog of our eq. (25) in that work was mistakenly written with F q[�℄(x; �) insteadof F q[�℄(x; x=!) and without a subtration term, so that onsisteny with (27) was trivial. Theorret onsisteny relation (29) follows from the polynomiality property of GPDs, as we nowshow.3.2 Consequenes for generalized parton distributionsClearly (29) is satis�ed ifIq[�℄(!) = Z 1�1 dx �F q(x; �)� F q�x; x!�� � 1!� � x � � 1!� + x� (30)is independent of � for all ! � 1. To show that this is the ase, we Taylor expand F q(x; x=!) in itsseond argument, Iq[�℄(!) = 1! 1Xn=1 1n! � ����n Z 1�1 dx�x! � ��n�1F q(x; �) ����=�+ � 1! 1Xn=1 1n! � ����n Z 1�1 dx�x! + ��n�1F q(x; �) ����=�� ; (31)where we have interhanged the order of di�erentiation and integration. For de�niteness we onsider�rst the ase F q = Hq. Using the polynomiality property (1) and the fat that Cqn is only nonzerofor even n, we �nd Iq[+℄(!) = 2 1Xn=2even� 2!�n Cqn ; Iq[�℄(!) = 0 ; (32)whih is independent of � as required. We reall that we have suppressed the dependene on t in thedistributions F q, as well as in the form fators Cqn. Alternatively one may use the double distributionrepresentation in (3) and (4). One readily �nds that the double distribution part of Iq[�℄ is zero, withZ 1�1 dx �Hqf (x; �)�Hqf�x; x!�� 1!� � x= Z 1�1 dxZ d� d� f q(�; �) �Æ(x� �� � �)� Æ�x [1� �! ℄� ��� 1!� � x= Z d� d� f q(�; �) � 1!� � �� � � � 1=(1 � �! )!� � �=(1 � �! )�= 0 (33)and an analogous relation for the term with 1=(!�+x). The only nonzero ontribution to Iq[�℄ omeshene from the D-termIq[+℄(!) = sign(�)Z 1�1 dxDq�x� � � 1!� � x � 1!� + x� = 2Z 1�1 d� Dq(�)! � � ;Iq[�℄(!) = 0 ; (34)10



where we have used the support and symmetry properties of Dq(�) stated after (4). Expanding1=(! � �) in a geometri series and using (7) one readily sees that (32) and (34) are equivalent. Forthe ase F q = Eq the disussion proeeds in full analogy, with the opposite sign of Cqn in (32) and ofDq in (34). As a orollary one �nds the integral relationsZ 1�1 dx �Hq(x; �)�Hq�x; x!�� � 1!� � x � 1!� + x�= �Z 1�1 dx �Eq(x; �) �Eq�x; x!�� � 1!� � x � 1!� + x� = 2Z 1�1 dx Dq(x)! � x (35)and Z 1�1 dx �Hq(x; �)�Hq�x; x!�� � 1!� � x + 1!� + x�= Z 1�1 dx �Eq(x; �) �Eq�x; x!�� � 1!� � x + 1!� + x� = 0 : (36)They reet the polynomiality properties of the distributions and in this sense are non-trivial onse-quenes of Lorentz invariane. Using them to evaluate the �0 dependent terms in (28) givesReHq[+℄(�) = 1� Z 11 d! ImCq[+℄(!)Z 1�1 dx�Hq�x; x!� � 1!� � x � 1!� + x�+ 2Dq(x)! � x � ;Re Eq[+℄(�) = 1� Z 11 d! ImCq[+℄(!)Z 1�1 dx�Eq�x; x!� � 1!� � x � 1!� + x�� 2Dq(x)! � x � ; (37)andReHq[�℄(�) = 1� Z 11 d! ImCq[�℄(!)Z 1�1 dxHq�x; x!� � 1!� � x + 1!� + x� (38)with an analogous representation for Eq[�℄(�). We note that aording to our omment after (28) onehas lim�!1Fq[�℄(�) = 1� Z 11 d! ImCq[�℄(!)Iq[�℄(!) : (39)For � = �1 this is zero, and in fat we ould have immediately obtained (38) from an unsubtrateddispersion relation, where the �0 dependent terms in (28) are absent as remarked earlier. For � = +1,the subtration term in the dispersion relation (25) is �xed by the D-term if one takes �0 ! 1. Inthe leading-order approximation for the hard-sattering kernel this was already observed in [4℄, andfor the general ase in [1℄. Aording to Table 1 the D-term parameterizes a part of Hq and Eqwhih is assoiated with spin-zero exhange in the t-hannel.3 From (17) one readily �nds that itsontribution to the invariant amplitudes Hq[+℄(�) and Eq[+℄(�) is energy-independent and purely real.3Note that this is not restrited to the exhange of spin-zero resonanes. In the ontext of hiral dynamis [20℄ thedominant exhange is in fat given by two pions in an S-wave.
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3.3 The Compton amplitude with both photons o� shellSo far we have disussed deeply virtual Compton sattering, �p! p, where the photon in the �nalstate is on shell, and obtained the integral relations (35) and (36) for the generalized parton distri-butions. It is natural to ask whether any further relations an be derived by onsidering dispersionrelations for the Compton amplitude�(q) + p(p)! �(q0) + p(p0) (40)with both photons o� shell. For q2 < 0 and q02 > 0 this proess an be studied experimentally, withthe timelike �nal-state photon deaying into a lepton pair [21℄. The analytiity properties of theamplitude are however more ompliated in this ase, beause there are simultaneous branh uts ins and q02 or in u and q02. Instead we onsider the ase where both q2 and q02 are spaelike, so thatthe only singularities are in s and u, as in the previous subsetions. We have two saling variables� = � (q + q0)22(p+ p0) � (q + q0) = �q2 + q02s� u ; # = q2 � q02q2 + q02 ; (41)where in the seond expression for � we have negleted t ompared with q2+q02. For # = 1 we reoverthe ase of DVCS, whereas with two spaelike photon virtualities we have �1 < # < 1. In the Bjorkenlimit of large �q2 at �xed �, # and t one has a fatorization formula for the invariant amplitudesFq[�℄(�; #; t; q2) = Z 1�1 dx 1� Cq[�℄�x� ; #; q2�F q(x; #�; t) (42)with F q = Hq; Eq as before. We will again omit the arguments q2 and t in the following. TheMandelstam variables of the hard subproess now readŝ = xs+ 12 (1� x)(q2 + q02) ; û = xu+ 12(1� x)(q2 + q02) ; (43)in the Bjorken limit, so that x=� = �(ŝ � û)=(q2 + q02). For a dispersion relation at �xed t and�xed photon virtualities, # plays the role of a onstant parameter, and we an use 1=� and x=� asrespetive energy variable of the overall proess and the hard subproess. In the Bjorken limit theorresponding amplitudes have branh uts in 1=� or x=� from 1 to 1 and from �1 to �1. Thehard-sattering kernel has the symmetryCq[�℄��x� ; #� = ��Cq[�℄�x� ; #� (44)in analogy to (16). At leading order in �s it readsCq[�℄(!; #) / 11� ! � i� � � 11 + ! � i� ; ImCq[�℄(!; #) / ��Æ(! � 1)� �Æ(! + 1)� ; (45)and at higher orders it has the same high-! behavior as disussed for DVCS after (22). In otherwords, the high-energy behavior of the hard-sattering kernel for the virtual Compton amplitude(40) remains unhanged if q02 ! 0. Similarly, the small-� behavior of Fq[�℄(�; #) is as disussed forDVCS after (23). One an thus derive dispersion relations for the invariant amplitude and for thehard-sattering kernel as in Set. 3.1 and �ndsReFq[�℄(�; #) = 1� Z 11 d! ImCq[�℄(!; #)Z 10 dxF q[�℄(x; #�) � 1!� � x � � 1!� + x� (46)12



and ReFq[�℄(�; #) = 1� Z 11 d! ImCq[�℄(!; #)Z 10 dx�F q[�℄�x; # x!� � 1!� � x � � 1!� + x�+ �F q[�℄(x; #�0)� F q[�℄�x; # x!�� � 1!�0 � x � � 1!�0 + x�� : (47)These relations read exatly as their ounterparts (27) and (28) for DVCS, exept that the seondargument of F q[�℄ is now multiplied with # and that Cq[�℄ depends on # as well. The onsisteny of(46) and (47) is ensured ifZ 1�1 dx �F q(x; #�)� F q�x; # x!�� � 1!� � x � � 1!� + x� (48)is independent of � for all ! � 1. Resaling �0 = #� and !0 = !=#, we readily see that this inensured by the �-independene of the integral Iq[�℄(!) in (30), whih we have already established.Thus the dispersion relations for doubly virtual Compton sattering give no new relations for GPDs.Of ourse, one obtains dispersion representations for Hq[�℄(�; #) and Eq[�℄(�; #) as in (37) and (38),with # as an additional argument in Cq[�℄ and with the replaements Hq(x; x=!) ! Hq(x; #x=!),Eq(x; x=!)! Eq(x; #x=!) and Dq(x) (! � x)�1 ! Dq(x) (!=#� x)�1.Let us now onsider the ase q = q0, relevant for deep inelasti sattering, where we have � = xBand # = 0. The representations (46) and (47) are then trivially onsistent, beause the seondargument of F q[�℄ is zero everywhere. In other words, the usual parton densities appearing in in-lusive proesses do not depend on an external kinematial variable, unlike the generalized partondistributions appearing in exlusive proesses.In the following setion we investigate the ontributions from polarized quark distributions andfrom gluons to DVCS and to meson prodution. The results we will obtain an readily be generalizedto the Compton amplitude with two spaelike photons. We note that for the unpolarized quarkdistributions we have just onsidered, only the amplitudes with � = +1 appear in Compton sattering,whereas � = �1 is relevant for the polarized quark and gluon distributions.4 Polarized and gluon distributionsContributions from polarized quarks and from unpolarized or polarized gluons to invariant ampli-tudes an be treated in a similar manner as the ase of unpolarized quarks in the previous setion.Partiularities arise for eah of the distributions, whih we will now disuss in turn.4.1 Polarized quark distributionsLet us �rst investigate invariant amplitudes involving polarized quark distributions, whih appear inboth DVCS and in the prodution of pseudosalar mesons. The fatorization formula reads as in (15),where now F q = eHq or eEq. We de�ne ombinations eHq[�℄ and eEq[�℄ of de�nite signature as in (18),and the relations (16) to (19) are again valid. Note that, in ontrast to their unpolarized ounterparts,eHq[+℄ and eEq[+℄ orrespond to negative harge onjugation and eHq[�℄ and eEq[�℄ to positive hargeonjugation in the t-hannel. The leading-order expression of the hard-sattering kernel for DVCSand for meson prodution is the same as in (22). At NLO one �nds a large-! behavior Cq[�℄(!) � !�113



up to logarithms in both ases. Note that t-hannel two-gluon exhange in the polarized setor doesnot give rise to a power behavior as !0. This is also expliitly seen in the NNLO kernels for inlusivedeep inelasti sattering [22℄.For the polarized quark and antiquark densities we assume that x�q(x) and x��q(x) vanish atx ! 0, as it is found in global �ts and required for the existene of the moments R 10 dx�q(x) andR 10 dx��q(x). One should then have a small-� behavior � eHq[�℄ ! 0 for both positive and negativesignature, so that the one-subtrated dispersion relation (23) is valid. The argument proeeds as inSetions 3.1 and 3.2. Aording to (1) the xn�1 moment of eHq(x; �) has �n�1 as highest power, sothat the integral I [�℄(!) in (30) is zero for both � = +1 and � = �1 in this ase. We therefore obtainthe integral relation Z 1�1 dx � eHq(x; �)� eHq�x; x!�� � 1!� � x � 1!� + x� = 0 (49)and dispersion representationsRe eHq[�℄(�) = 1� Z 11 d! ImCq[�℄(!)Z 1�1 dx eHq(x; �) � 1!� � x � � 1!� + x�= 1� Z 11 d! ImCq[�℄(!)Z 1�1 dx eHq�x; x!� � 1!� � x � � 1!� + x� : (50)We further �nd that eHq[�℄(�)! 0 for � !1. As in the unpolarized ase, we ould have obtained theseond representation in (50) from a dispersion relation without subtration in the ase � = �1. For� = +1, the high-energy behavior of the invariant amplitude does however require one subtration,even though the subtration term is zero when taking the subtration point �0 !1. An unsubtrateddispersion relation for positive signature would di�er from (50), as remarked after (28).For eEq[�℄ the situation is more involved. Aording to Table 2 this distribution admits more t-hannel exhanges than eHq[�℄, so that the small-� behavior of eEq[�℄(�) and eHq[�℄(�) may be di�erent.In partiular there is a known spin-zero exhange ontribution to eEq[�℄, whih is due to pion exhangeand dominates the distributions for u and d quarks at small t [23, 24℄. It readseEu�(x; �; t) = � eEd�(x; �; t) = m2� � t 1j�j ���x� � ; (51)where the onstant  an be alulated in hiral perturbation theory [20℄ and the light-one distributionamplitude ��(�) of the pion is an even funtion with support for j�j < 1. Inserting this into thefatorization formula (15) one obtains a ontribution going like ��1 to the invariant amplitudes eEu[�℄and eEd[�℄. This rises too strongly at � ! 0 for the one-subtrated dispersion relations we have usedso far. At this point we notie that due to the prefator in its de�nition, the distribution eEq alwaysontributes to matrix elements as � eEq, and orrespondingly it is � eEq[�℄ whih appears in physialsattering amplitudes. Note that beause of its prefator � eEq[�℄(�) is even in � and thus has positiveinstead of negative signature. The pion exhange term (51) gives a � independent ontribution to� eEq[�℄(�), as it should be for spin-zero exhange. We an thus write down a one-subtrated dispersionrelation for � eEq[�℄(�), assuming only that its small-� behavior is less singular than ��2 for � = �1and less singular than ��1 for � = +1. The analog of (27) is nowRe � eEq[�℄(�) = 1� Z 11 d! ImCq[�℄(!)Z 1�1 dx � eEq(x; �) � 1!� � x � � 1!� + x� ; (52)14



and the analog of (28) readsRe � eEq[�℄(�) = 1� Z 11 d! ImCq[�℄(!)Z 1�1 dx��0 eEq(x; �0) � 1!�0 � x � � 1!�0 + x�+ x! eEq�x; x!� � 1!� � x + � 1!� + x � 1!�0 � x � � 1!�0 + x�� ; (53)whih an be rewritten asRe � eEq[�℄(�) = 1� Z 11 d! ImCq[�℄(!) Z 1�1 dx�� eEq�x; x!� � 1!� � x � � 1!� + x�+ �0� eEq(x; �0)� eEq�x; x!�� � 1!�0 � x � � 1!�0 + x�� : (54)With the methods of Set. 3.2 one �ndsZ 1�1 dx � eEq(x; �)� eEq�x; x!�� � 1!� � x � 1!� + x� = 0 ; (55)whih ensures onsisteny of the two dispersion representations and allows us to omit the seond lineof (54). We thus �nd that the analog of the representations (50) also holds for eEq[�℄. In the ase� = +1, where spin-zero exhange does not ontribute, we ould indeed have obtained this resultfrom a one-subtrated dispersion relation for eEq[�℄.Notie that the terms in the seond line of (54) need not give � eEq[�℄(�) at the unphysial point� !1, in ontrast to the ase disussed after (28). In fat � eEq[�℄(�) is nonzero at this point. Taylorexpanding 1=(!� � x) and 1=(!� + x) in (52) and using the polynomiality relation (1) one readily�nds lim�!1 � eEq[�℄(�) = 1� Z 11 d! ImCq[�℄(!) 1Xn=1odd � 2!�n eBqn;n�1 ; lim�!1 � eEq[+℄(�) = 0 : (56)In Table 1 we see that the form fators eBqn;n�1(t) are assoiated with pure spin-zero exhange. Atsmall t they are dominated by the the pion-exhange term (51). Having support only in the ERBLregion jxj < �, this term does not ontribute to the imaginary part of � eEq[�℄(�), and one may wonderhow it an appear in the representation (54) for the real part. The answer is that it indues aontribution proportional to Æ(x) in eEq(x; x=!). To see this we observe that the double distributiongenerating (51) has the form Æ(�) e�(�; t), where we have abbreviated e�(�; t) = (m2� � t)�1��(�).For ! � 1 one then haseEu��x; x! ; t� = Z d� d� Æ�x [1� �! ℄� �� Æ(�) e�(�; t) = Æ(x)! Z 1�1 d� e�(�; t)! � � : (57)One may avoid this Æ(x) ontribution by taking the limit �0 !1 in (53), whih yieldsRe � eEq[�℄(�) = lim�0!1 �0 eEq[�℄(�0)+ 1� Z 11 d! ImCq[�℄(!)Z 1�1 dx x! eEq�x; x!� � 1!� � x + � 1!� + x� (58)with the subtration term given in (56). The Æ(x) ontribution in eEq(x; x=!) is now removed by theextra fator x and instead appears expliitly in the subtration term.15



4.2 Unpolarized gluon distributionsThe ontribution from unpolarized gluon distributions to invariant amplitudes an be written asFg(�) = Z 1�1 dx 1� Cg�x� � F g(x; �)x ; (59)where F g(x; �) = Hg(x; �); Eg(x; �) is even in x and in �, and the hard-sattering kernel Cg(!) is oddin !. The singularity introdued by the fator 1=x is spurious beause Cg(!) � ! at ! ! 0. Forvetor meson prodution, the hard-sattering kernel readsCg(!) / 11� ! � i� � 11 + ! � i� ; ImCg(!) / ��Æ(! � 1)� Æ(! + 1)� (60)at LO in �s, whereas for DVCS the kernel for gluon distributions starts only at NLO. The high-!behavior of Cg(!) at higher orders is the same as disussed for Cq[+℄(!) after (22). We assume asmall-x behavior like g(x) � x�� with � < 2 for the unpolarized gluon density. The small-� behaviorHg(�) � ��� is then less singular than ��2 and hene admits a one-subtrated dispersion relation.The symmetry properties of Cg(!) and of x�1 F g(x; �) are idential to those of Cq[+℄(!) andF q[+℄(x; �) in the unpolarized quark setor, so that the dispersion relations for the proess amplitudeand for the hard-sattering kernel read exatly as for unpolarized quark distributions in (27) and(28) if one replaes Fq[+℄ ! Fg, Cq[+℄ ! Cg and F q[+℄ ! 2x�1F g. Consisteny of these dispersionrelations is ensured ifIg(!) = Z 1�1 dxx �F g(x; �)� F g�x; x!�� � 1!� � x � 1!� + x� (61)is independent of �. Using the symmetry properties of F g we an replae 1=(!� � x)� 1=(!� + x) by2=(!��x) under the integral, with the prinipal value presription taken to regularize the singularityat x = 0. Repeating the proedure of Setion 3.2 we Taylor expand F g(x; x=!) in its seond argumentand obtain Ig(!) = 2! 1Xn=1 1n! � ����n Z 1�1 dxx �x! � ��n�1F g(x; �) ����=� : (62)Sine F g(x; �) is even in x, a nonzero integral is only obtained from the odd powers of x in theexpansion of (x=!� �)n�1, so that the fator x�1 in the integrand is aneled. Using the polynomialproperty (2) one �nally obtains Ig(!) = 4 1Xn=2even� 2!�nCgn (63)for F g = Hg, whih is independent of � as required. Alternatively, one may insert (5) and (6) into(61). For the double distribution part of Hg this givesZ 1�1 dxx �Hgf (x; �)�Hgf�x; x!�� � 1!� � x � 1!� + x�= 2Z 1�1 dxZ d� d� �fg(�; �) �Æ(x� �� � �)� Æ�x [1� �! ℄� ��� 1x(!� � x)= � 2! Z d� d� �fg(�; �)�� + � ; (64)16



whih is zero beause �fg(�; �) is odd in both � and in �. The D-term ontribution to Hg givesIg(!) = 2! Z 1�1 d� Dg(�)! � � (65)in agreement with (7) and (63). For F g = Eg one �nds analogous results with the opposite sign forCg and Dg. One thus obtains integral relationsZ 1�1 dxx �Hg(x; �)�Hg�x; x!�� � 1!� � x � 1!� + x�= �Z 1�1 dxx �Eg(x; �)�Eg�x; x!�� � 1!� � x � 1!� + x� = 2! Z 1�1 dx Dg(x)! � x (66)and dispersion representationsReHg(�) = 1� Z 11 d! ImCg(!)Z 1�1 dx� 1xHg�x; x!� � 1!� � x � 1!� + x�+ 2! Dg(x)! � x� ;Re Eg(�) = 1� Z 11 d! ImCg(!)Z 1�1 dx� 1xEg�x; x!� � 1!� � x � 1!� + x�� 2! Dg(x)! � x� : (67)Furthermore one �ndslim�!1Hg(�) = � lim�!1Eg(�) = 1� Z 11 d!! ImCg(!) Z 1�1 dx 2Dg(x)! � x (68)for the invariant amplitudes at � ! 1. We remark in passing that (66) and (67) may be rewrittenusing 1x � 1!� � x � 1!� + x� = 1!� � 1!� � x + 1!� + x� : (69)4.3 Polarized gluon distributionsLet us now disuss the generalized gluon distributions in the polarized setor, whih appear in DVCSstarting at NLO in �s. As in the previous setion we begin with the fatorization formula (59), wherenow F g(x; �) = eHg(x; �), eEg(x; �) is odd in x. The hard-sattering kernel Cg is even in ! and vanisheslike !2 for ! ! 0. The invariant amplitudes eHg(�) and eEg(�) have negative signature. The NLOalulation of Cg(!) for DVCS gives a large-! behavior like !�1 up to logarithms, and higher orderswill have the same power behavior as disussed in the �rst paragraph of Set. 4.1.Assuming a small-x behavior x�g(x)! 0 of the polarized gluon density, whih is required for theexistene of the moment R 10 dx�g(x) and onsistent with global �ts of parton densities, we expetthat � eHg(�)! 0 for � ! 0. We then readily obtain dispersion relations as in (27) and (28) withthe replaements Fq[�℄ ! eHg, Cq[�℄ ! Cg and F q[�℄ ! 2x�1 eHg. Their onsisteny requires the�-independene of Ig(!) = Z 1�1 dxx � eHg(x; �)� eHg�x; x!�� � 1!� � x + 1!� + x� ; (70)
17



where the prinipal value presription is to be taken at x = 0. As in Set. 4.2 we an rewrite this asIg(!) = 2! 1Xn=1 1n! � ����n Z 1�1 dxx �x! � ��n�1 eHg(x; �) ����=�= 2! 1Xn=1 1n! (��)n�1 � ����n Z 1�1 dxx eHg(x; �) ����=� ; (71)where in the seond step we have expanded the fator (x=! � �)n�1 and used the polynomialityproperties (2) of eHg. To proeed we need to know the dependene of R dxx�1 eHg(x; �) on �.In [7℄ a double distribution representation for eHg was given, whih has the same form as (6)for Hgf . Inserting this into (70) one obtains an expression as in (64), whih is nonzero beause theorresponding double distribution is even and not odd in �. Suh a double distribution representationfor eHg (as well as its analog for eEg) is however inomplete, beause for the xn�2 moment of thedistributions it gives a polynomial with highest power �n�3 (with n being odd) instead of �n�1 asrequired in (2). To obtain a orret representation, we an use the onstrution disussed in [25℄ for thegeneralized quark distribution in the pion. This leads to writing a double distribution representationfor x�1 eHg and x�1 eEg, i.e.eHg(x; �; t) = xZ d� d� Æ(x � �� � �) efg(�; �; t) ;eEg(x; �; t) = xZ d� d� Æ(x � �� � �)ekg(�; �; t) ; (72)where efg and ekg are even in � and �. We note that in the forward limit t = 0 one has R d� efg(x; �; 0) =�g(x), whih is muh less singular than the orresponding limit x�1q�(x) for the double distributionof quarks in the pion onsidered in [25℄ and should thus be less problemati for the purpose of modelbuilding.Apart from giving the required maximum power of �n�1 for the xn�2 moments of eHg and eEg, therepresentation (72) also has the important onsequene thatZ 1�1 dxx eHg(x; �) = Z d� d� efg(�; �) (73)is independent of �, so that aording to (71)Ig(!) = 0 (74)is independent of �, whih we had to show. This is also seen by diret insertion of (72) into (70),whih leads to an expression of the form (33) we enountered for quark distributions. We thus �nallyobtain dispersion representations as in (50) with the replaements eHq[�℄ ! eHg, Cq[�℄ ! Cg andeHq ! x�1 eHg, as well as the limit eHg(�)! 0 for � !1.For the invariant amplitude eEg we must take into aount a possible spin-zero exhange in thet-hannel (although the exhange of an � or �0 in the avor singlet setor is most likely not of the samephenomenologial importane as pion exhange in eEq). With the double distribution representation(72) one an proeed exatly as for the ase of quark distributions in Set. 4.1. One thus obtainsanalogs of the dispersion representations (50) with the replaements eHq[�℄ ! eEg, Cq[�℄ ! Cg andeHq ! x�1 eEg, as well as the resultsZ 1�1 dxx � eEg(x; �)� eEg�x; x!�� � 1!� � x + 1!� + x� = 0 (75)18



and lim�!1 � eEg(�) = 1� Z 11 d! ImCg(!) 1Xn=1odd � 2!�n 2 eBgn;n�1 : (76)To avoid a Æ(x) ontribution in x�1 eEg(x; x=!) due to spin-zero exhange one may use the analog of(58), whih readsRe � eEg(�) = lim�0!1 �0 eEg(�0) + 1� Z 11 d!! ImCg(!)Z 1�1 dx eEg�x; x!� � 1!� � x � 1!� + x� : (77)4.4 Heliity-ip distributionsWe onlude this setion with a few remarks on the generalized parton distributions for quark orgluon heliity ip, whih have been introdued and disussed in [26, 27℄.In the quark ase these distributions are hiral-odd, and to date there is no simple exlusiveproess known where they appear. Reations like �p ! ��p were proposed in [28℄, but due totheir three-partile �nal state the disussion of dispersion relations would be muh more ompliated.However, integral relations analogous to (49) are valid for the quark distributions HqT , EqT , eHqT andeEqT de�ned in [27℄. As we saw in Set. 3.2, their derivation only requires the xn�1 moments of thedistributions to be polynomials in � with maximal power �n�1. This is indeed the ase, as has beenshown in [29℄.Gluon heliity-ip distributions appear in DVCS starting at order �s, with the hard-satteringformula of the form FgT (�) = Z 1�1 dx 1� CgT�x� � F gT (x; �)x (78)for F gT = HgT ; EgT ; eHgT ; eEgT as de�ned in [27℄. Dispersion representations for this ase an be disussedin analogy to the ases onsidered in the previous setions. To do this requires analysis of the high-energy behavior (see the related work [30℄ for the heliity-ip struture funtion F 3 of the photon)and of the polynomiality properties (in generalization of the quark ase treated in [29℄). We shall notdo this here.5 The model of Freund, MDermott and StrikmanAs an appliation of the dispersion relations disussed in this work, we now investigate the modelfor GPDs proposed by Freund, MDermott and Strikman in [5℄. We fous on the quark singletdistribution and its generalized ounterpart,�(x) =Xq �q(x) + �q(x)� ; H(x; �) =Xq Hq[+℄(x; �) ; (79)where for ease of notation we have not expliity indiated that H(x; �) refers to the quark singlet.Here and in the following we take t = 0, whih does not a�et the issue of analytiity to be disussed.In our notation, the model introdued in [5℄ readsH(x; �) = 8><>:�(x) for x � ��(�) x� �1 + 152 a(�)�1� x2�2�� for x < � (80)19



with a(�) hosen to satisfy the polynomiality onditionZ 10 dxxH(x; �) =Xq Z 1�1 dxxHq(x; �) = Z 10 dxx�(x) + 4�2C2 (81)for the lowest nontrivial Mellin moment, where C2 = Pq Cq2(t = 0) aording to (1). One readily�nds �(�) a(�) = 1�2 Z �0 dxx�(x)� 13 �(�) + 4C2 : (82)Clearly, higher Mellin moments of (80) are generally not polynomials in � of the order required by (1).At small �, one may expet that this does not have an important e�et on the moments themselves,in the sense that a Taylor expansionZ 10 dxxn�1H(x; �) = 1Xk=0even(2�)k An;k (83)of a given moment di�ers from a polynomial of order �n by terms vanishing like �n+2 for � ! 0. It ishowever not obvious that this only leads to small inonsistenies in sattering amplitudes alulatedwith (80), given that these do not have a simple expression in terms of Mellin moments with integerindex n.We have seen that polynomiality of the Mellin moment ensures the onsisteny of dispersionrelations for the hard-sattering kernel and for the proess amplitude. Let us hek by how muh thedispersion representations (27) and (28) di�er for the above model. We limit ourselves to the lowestorder in �s and take ImCq[+℄(!) = ��Æ(!� 1)� Æ(!+1)�, omitting any global fators in the kernel.The two dispersion representations then readReHdir(�) = Z 10 dxH(x; �) � 1� � x � 1� + x� ;ReH�0(�) = Z 10 dx�H(x; x) � 1� � x � 1� + x�+ �H(x; �0)�H(x; x)� � 1�0 � x � 1�0 + x�� : (84)We note that at Born level ReHdir(�) alulated from (27) oinides with the real part alulateddiretly from the fatorization formula (17). For a numerial study, we takex�(x) = p1x�p2(1� x)p3(1 + p4x) (85)for the quark singlet distribution, with p1 = 0:34, p2 = 0:25, p3 = 4, p4 = 25:4. This gives a reasonablygood approximation of the CTEQ6M distributions at sale � = 2GeV. With p3 taken as an integer,the integrals required for evaluating (82) and (84) are readily arried out. One �nds that ReHdir(�0)diverges for �0 ! 1 in this model, so that one annot use this point for the subtration requiredin ReH�0 . We take instead the s-hannel threshold �0 = 1, where the model GPD has the simpleform H(x; 1) / x(1� x2). As an alternative hoie we take the value �0 = 0:01 in the small-� region.The omparison of the two representations in (84) for several values of � is given in Table 3. We seethat their disrepany is severe and does not improve with dereasing �. By onstrution, the tworepresentations oinide of ourse for � = �0.The values in the table have been obtained by setting C2 to zero in (82). One readily �nds that thisterm gives a ontribution of 20C2 to both ReHdir(�) and ReH�0(�). Taking the value of C2 � �0:820



Table 3: The onvolution integrals ReHdir(�) and ReH�0(�) de�ned in (84), evaluated for �0 = 1 and�0 = 0:01. The values are alulated with the GPD model spei�ed by (80) and (82) with C2 = 0.For better legibility, the values of the integrals have been rounded to two signi�ant digits in the �rsttwo rows and to the next integer in the remaining ones.� ReHdir ReH1:0 ReH 0:01 ReH1:0ReHdir ReH 0:01ReHdir10�4 12� 104 4:4 � 104 4:4� 104 0:37 0:3710�3 6:5� 103 2:3 � 103 2:5� 103 0:35 0:3910�2 318 74 318 0:23 10:1 26 9 253 0:37 100:3 16 11 255 0:70 160:5 10 7 251 0:76 26estimated in the hiral quark-soliton model [24℄ would not signi�antly hange the values for small �,and in any ase annot restore the disrepany between the two integrals in (84). We must onludethat, even for small �, the model (80) violates polynomiality and thus Lorentz invariane in a waywhih leads to serious inonsistenies when using it to alulate the real part of proess amplitudes. Toobtain onsistent results, one may use the ansatz (80) for jxj � � to alulate ImH(�) and to restorethe real part from the dispersion relation (25), with the subtration onstant left undetermined bythe model.6 SummaryLorentz invariane implies that the Mellin moments of generalized parton distributions are polynomi-als in the skewness � with a maximal power depending on the quantum numbers of the distribution.We have shown that this property leads to integral relationsZ 1�1 dxF (x; �; t) � 1!� � x � � 1!� + x� = Z 1�1 dxF�x; x! ; t� � 1!� � x � � 1!� + x�+ I(!; t) (86)for � = �1 and any ! � 1, where F is one of the distributionsHq; Eq; eHq; eEq; Hgx ; Egx ; eHgx ; eEgx ; HqT ; EqT ; eHqT ; eEqT : (87)In (86) Cauhy's prinipal value presription is to be used at x = �!� and at x = 0. The only aseswhere I(!; t) is nonzero our for unpolarized distributions and � = +1, where� I(!; t) = 2 1Xn=2even� 2!�nCqn(t) = 2Z 1�1 dx Dq(x; t)! � x for F = Hq; Eq;21



� I(!; t) = 4 1Xn=2even� 2!�nCgn(t) = 2! Z 1�1 dx Dg(x; t)! � x for F = Hgx ; Egx : (88)Here the sign + on the l.h.s. is to be taken for Hq, Hg and the sign � for Eq, Eg. To establishthe relations (86) in the polarized gluon setor, we needed that the moments R dxx�1 eHg(x; �; t) andR dxx�1 eEg(x; �; t) are independent of �, and we had to orret the double distribution representationof eHg and eEg used so far in the literature.For t � 0 the real part of the leading invariant amplitudes for DVCS or meson prodution an beobtained from a dispersion relation of the hard-sattering kernel,ReF(�; t) = 1� Z 11 d! ImC(!) Z 1�1 dxF (x; �; t) � 1!� � x � � 1!� + x� ; (89)or for the invariant amplitude itself,ReF(�; t) = 1� Z 11 d! ImC(!)�Z 1�1 dxF�x; x! ; t� � 1!� � x � � 1!� + x�+ I(!; t)� ; (90)where C = Cq[�℄; Cg is the appropriate hard-sattering kernel (for the quark transversity distributionsno orresponding proess is known). Consisteny of the two representations is ensured by (86). Theontribution from I(!; t) in (90) is energy independent and an be identi�ed with F(�; t) in the limit� ! 1, i.e. at the point 2� = s � u = 0 below threshold. The orresponding terms given in (88)are due to spin-zero exhange in the t-hannel. Spin-zero exhange ontributions in the parity-oddsetor appear in eEq and eEg. They do not give a nonzero I(!; t) but an instead generate a termproportional to Æ(x) in F (x; x=!; t). In the alternative dispersion representations (58) and (77) forRe �Eq[�℄(�; t) and Re �Eg(�; t) suh a Æ(x) term is avoided, and the spin-zero exhange ontributionappears diretly as a subtration onstant, with1Xn=1odd � 2!�n eBqn;n�1(t) or 2 1Xn=1odd � 2!�n eBgn;n�1(t) (91)playing the same role as I(!; t) in (90).In Set. 5 we have seen that the relation (86) an be strongly violated in models of GPDs that donot respet polynomiality, even for small �. In partiular, we found that the model proposed in [5℄leads to serious onits with dispersion relations when used for alulating the real part of satteringamplitudes.The representation (90) has important onsequenes on the information about GPDs that an beextrated from DVCS and meson prodution. To leading approximation in �s, the imaginary partof the amplitude is only sensitive to the distributions at x = �, and the only additional informationontained in the real part is a onstant assoiated with pure spin-zero exhange, given by (88) or (91)at ! = 1. In [4℄ this was referred to as a holographi property. Beyond leading order the evaluationof both imaginary and real parts of the amplitude involves however the full DGLAP region jxj � �.In addition, the real part depends on the appropriate spin-zero term in (88) or (91) at all ! � 1. Weremark that in [1℄ the possibility was disussed to reonstrut the subtration terms in (88) from theimaginary part of the DVCS amplitude ombined with the inlusive deep inelasti ross setion.22
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