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Dispersion representations for hard ex
lusive pro
esses:beyond the Born approximationM. Diehl1 and D. Yu. Ivanov21 Theory Group, Deuts
hes Elektronen-Syn
hroton DESY, 22603 Hamburg, Germany2 Sobolev Institute of Mathemati
s, 630090 Novosibirsk, RussiaAbstra
tSeveral hard ex
lusive s
attering pro
esses admit a des
ription in terms of generalizedparton distributions and perturbative hard-s
attering kernels. Both the physi
al amplitudeand the hard-s
attering kernels ful�ll dispersion relations. We give a detailed investigationof their 
onsisten
y at all orders in perturbation theory. The results shed light on theinformation about generalized parton distributions that 
an be extra
ted from the real andimaginary parts of ex
lusive amplitudes. They also provide a pra
ti
al 
onsisten
y 
he
kfor models of these distributions in whi
h Lorentz invarian
e is not exa
tly satis�ed.
1 Introdu
tionDispersion relations play an important role in the des
ription of ex
lusive pro
esses, relating the realand imaginary parts of the amplitude. They are for instan
e required to derive the operator produ
texpansion for Compton s
attering in Bjorken kinemati
s. In this 
ontext they have re
ently been usedto establish a representation of the deeply virtual Compton amplitude whi
h allows the in
lusion oftwo-loop 
orre
tions in a pra
ti
able way [1℄. In a di�erent 
ontext, dispersion relations have beenemployed in [2℄ to simplify the 
al
ulation of the hard-s
attering kernels for ex
lusive quarkoniumprodu
tion at next-to-leading order.For hard ex
lusive pro
esses that 
an be 
al
ulated using 
ollinear fa
torization, one may writedown dispersion relations both for the physi
al pro
ess and for the parton-level subpro
ess. Thequestion of 
onsisten
y between both representations turns out to be nontrivial and has already been1
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raised in the seminal work [3℄ giving the proof of fa
torization for meson produ
tion. Importantprogress has re
ently been reported in [4℄, where it was shown that this 
onsisten
y is ensured byLorentz invarian
e in the form of the polynomiality property for generalized parton distributions(GPDs). The studies in [4℄ were 
arried out using the Born-level approximation of the hard-s
atteringsubpro
ess. In parti
ular, they showed that to this a

ura
y not only the imaginary but also the realpart of the pro
ess amplitude 
an be represented in terms of GPDs F (x; �; t) along the line x = � inthe x{� plane. This 
onstitutes both a simpli�
ation and a limitation for extra
ting information onGPDs from hard ex
lusive amplitudes at leading-order a

ura
y. It is natural to ask how the situation
hanges when in
luding radiative 
orre
tions to the hard-s
attering kernel.In the present work we therefore investigate dispersion representations for hard ex
lusive pro
essesto all orders in perturbation theory, generalizing the leading-order results derived in [4℄. In additionwe 
onsider in detail the distributions for polarized quarks and for gluons, for whi
h spe
ial issuesarise. Our paper is organized as follows. In the next se
tion we re
all a number of results whi
h willbe needed in our subsequent work. Se
tion 3 gives a detailed analysis of dispersion representationsin the unpolarized quark se
tor. The spe
i�
s of other distributions are dis
ussed in Se
t. 4. As anappli
ation of our results, we investigate in Se
t. 5 the model for GPDs proposed by M
Dermott,Freund and Strikman [5℄, where polynomiality is not satis�ed. In Se
t. 6 we summarize our �ndingsand draw 
on
lusions.2 Some remindersLet us begin by re
alling some well-known properties of generalized parton distributions and of dis-persion relations, whi
h we will need in the subsequent se
tions.2.1 Lorentz invarian
e and 
rossing propertiesAn essential property of generalized parton distributions is the polynomiality of their Mellin moments.This property dire
tly follows from the Lorentz 
ovarian
e of the operator matrix elements whi
h areparameterized by GPDs [6℄. With the 
onventional de�nitions (given e.g. in [7℄) we have for quarksZ 1�1 dxxn�1Hq(x; �; t) = n�1Xk=0even(2�)k Aqn;k(t) + (2�)nCqn(t) ;Z 1�1 dxxn�1Eq(x; �; t) = n�1Xk=0even(2�)k Bqn;k(t)� (2�)nCqn(t) ;Z 1�1 dxxn�1 eHq(x; �; t) = n�1Xk=0even(2�)k eAqn;k(t) ;Z 1�1 dxxn�1 eEq(x; �; t) = n�1Xk=0even(2�)k eBqn;k(t) (1)with n � 1, where Cqn is nonzero only for even n. For gluons we have2



Z 10 dxxn�2Hg(x; �; t) = n�2Xk=0even(2�)k Agn;k(t) + (2�)nCgn(t) ;Z 10 dxxn�2Eg(x; �; t) = n�2Xk=0even(2�)k Bgn;k(t)� (2�)nCgn(t) ;Z 10 dxxn�2 eHg(x; �; t) = n�1Xk=0even(2�)k eAgn;k(t) ;Z 10 dxxn�2 eEg(x; �; t) = n�1Xk=0even(2�)k eBgn;k(t) ; (2)where n � 2 is even forHg and Eg and n � 3 is odd for eHg and eEg. Sin
eHg, Eg are even and eHg, eEgare odd fun
tions of x, we 
an restri
t the integrals in (2) to the range 0 < x < 1. The 
onvention forthe moment index n is su
h that quark and gluon form fa
tors with the same n mix under evolution,i.e. Aqn;k with Agn;k, Bqn;k with Bgn;k et
. The di�erent powers of x in the integrals (1) and (2) re
e
tthe di�erent forward limits of the distributions, e.g. Hq(x; 0; 0) = q(x) and Hg(x; 0; 0) = xg(x) forx > 0.An important ingredient in the subsequent dis
ussion will be the high-energy behavior of s
atteringamplitudes. A

ording to the prin
iples of Regge theory, this behavior is 
onne
ted with the quantumnumbers ex
hanged in the t-
hannel. Let us brie
y re
all how the relevant quantum numbers 
an bedetermined in the 
ontext of generalized parton distributions [8℄. For negative or zero t the form fa
torsAqn;k(t) et
. parameterize the matrix elements of quark or gluon operators between single-proton states.Their analyti
 
ontinuation to positive t gives the 
orresponding matrix elements between the va
uumand a proton-antiproton state. De
omposing those matrix elements into 
ontributions with de�niteangular momentum, one 
an asso
iate the form fa
tors with the relevant quantum numbers in thet-
hannel. The relevant de
omposition for the GPDs of the proton is given in Chapt. 4.2 of [7℄, andwe list the resulting JPC quantum numbers of the t-
hannel ex
hange in Table 1. From this one 
anreadily establish the ex
hange quantum numbers for the generalized parton distributions, whi
h aregiven in Table 2. In parti
ular we see that for positive 
harge 
onjugation there are distributionsallowing for spin-zero ex
hange. This 
orresponds to energy independent 
ontributions in s
atteringamplitudes, whi
h play a prominent role in dispersion relations as we will see.A way to ensure polynomiality of the moments (1) is the double distribution representation [9, 8℄Hq(x; �; t) = Hqf (x; �; t) + sign(�)Dq�x� ; t� ; Eq(x; �; t) = Eqk(x; �; t)� sign(�)Dq�x� ; t� (3)with Hqf (x; �; t) = Z d� d� Æ(x� �� � �) f q(�; �; t) ;Eqk(x; �; t) = Z d� d� Æ(x� �� � �) kq(�; �; t) ; (4)3



Table 1: Quantum numbers of t-
hannel ex
hanges for the form fa
tors in (1) and (2) as explainedin the text. The entries with positive 
harge 
onjugation parity C = +1 refer to both quarks gluons,and those with C = �1 only to quarks.form fa
tor n JPCAn;k + t4m2 Bn;k even 0++; 2++; : : : ; (n� k)++Cn even 0++An;k +Bn;k even 2++; : : : ; (n� k)++eAn;k + t4m2 eBn;k odd 0�+; 2�+; : : : ; (n� k � 1)�+eAn;k odd 1++; 3++; : : : ; (n� k)++An;k + t4m2 Bn;k odd 1��; 3��; : : : ; (n� k)��An;k +Bn;k odd 1��; 3��; : : : ; (n� k)��eAn;k + t4m2 eBn;k even 1+�; 3+�; : : : ; (n� k � 1)+�eAn;k even 2��; : : : ; (n� k)��
Table 2: Quantum numbers of t-
hannel ex
hanges for 
ombinations of generalized quark distributionsof de�nite 
harge 
onjugation parity. The entries with C = +1 also hold for the 
orresponding gluondistributions. distribution JPCHq(x; �; t) �Hq(�x; �; t) 0++; 2++; : : :Eq(x; �; t) �Eq(�x; �; t) 0++; 2++; : : :eHq(x; �; t) + eHq(�x; �; t) 1++; 3++; : : :eEq(x; �; t) + eEq(�x; �; t) 0�+; 1++; 2�+; 3++; : : :Hq(x; �; t) +Hq(�x; �; t) 1��; 3��; : : :Eq(x; �; t) +Eq(�x; �; t) 1��; 3��; : : :eHq(x; �; t) � eHq(�x; �; t) 2��; 4��; : : :eEq(x; �; t) � eEq(�x; �; t) 1+�; 2��; 3+�; 4��; : : :
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where f q and kq are 
ommonly referred to as double distributions and Dq as the D-term. The supportregion of f q(�; �; t) and kq(�; �; t) is the rhombus j�j + j�j � 1, whereas Dq(�; t) has support forj�j < 1 and is odd in �. More general representations have been dis
ussed in the literature [8, 10, 11℄but will not be needed in the following. For gluons one hasHg(x; �; t) = Hgf (x; �; t) + j�jDg�x� ; t� ; Eg(x; �; t) = Egk(x; �; t) � j�jDg�x� ; t� (5)with Hgf (x; �; t) = Z d� d� Æ(x� �� � �)�fg(�; �; t) ;Egk(x; �; t) = Z d� d� Æ(x� �� � �)�kg(�; �; t) : (6)The support properties of fg, kg and Dg are as for their quark 
ounterparts, and Dg(�; t) is evenin �. One readily �nds that the Mellin moments of the D-term are related to the form fa
tors Cn(t)as Z 1�1 d��n�1Dq(�; t) = 2nCqn(t) ; Z 10 d��n�2Dg(�; t) = 2nCgn(t) : (7)The polarized quark distributions eHq and eEq have double distribution representations analogous to(3) and (4) but without a D-term, sin
e the highest power appearing in their Mellin moments (1) is�n�1 instead of �n. We will dis
uss the 
ase of eHg and eEg in Se
tion 4.3.2.2 Dispersion relationsThe ex
lusive pro
esses we 
onsider in this work are deeply virtual Compton s
attering (DVCS) andlight meson produ
tion,
�(q) + p(p)! 
(q0) + p(p0) ; 
�(q) + p(p)!M(q0) + p(p0) ; (8)where four-momenta are indi
ated in parentheses. Our arguments 
an be extended to the produ
tionof heavy mesons like the J=	, but we shall not dwell on this here. Sin
e the pro
esses in (8) involveparti
les with nonzero spin, the appropriate quantities for dis
ussing dispersion relations are invariantamplitudes, whi
h have simple analyti
ity and 
rossing properties. An expli
it de
omposition forCompton s
attering 
an be found in [12℄, where these invariant amplitudes are 
alled Compton formfa
tors.To des
ribe the kinemati
s of (8) we use the Mandelstam variables s = (p + q)2, t = (p � p0)2,u = (p� q0)2. Consider now an invariant amplitude F [�℄(�; t) with de�nite signature � under s$ u
rossing, so that F [�℄(��; t) = �F [�℄(�; t) ; (9)where 2� = s� u. We will work in kinemati
s where t � 0 and external photons are on shell or havespa
elike virtuality, so that the imaginary part of the amplitude is due to the s-
hannel dis
ontinuityfor � > 0 and to the u-
hannel dis
ontinuity for � < 0. The �xed-t dispersion relation with nosubtra
tion then readsReF [�℄(�; t) = 1� Z 1�th d� 0 ImF [�℄(� 0; t) � 1� 0 � � + � 1� 0 + � � ; (10)5



where �th is the value of � at threshold. Here and in the following Cau
hy's prin
ipal value pres
riptionis understood for the singularities at � 0 = �� of the dispersion integral. For the dispersion relation(10) to be valid, the integral of F [�℄(� 0; t) times the term in square bra
kets must vanish when takenover an in�nite semi
ir
le in the � 0 plane. This requiresF [+℄(�; t) !j�j!1 0 ; ��1F [�℄(�; t) !j�j!1 0 : (11)A dispersion relation with one subtra
tion,ReF [�℄(�; t)�ReF [�℄(�0; t)= 1� Z 1�th d� 0 ImF [�℄(� 0; t) � 1� 0 � � + � 1� 0 + � � 1� 0 � �0 � � 1� 0 + �0� ; (12)is valid if ��2F [+℄(�; t) !j�j!1 0 ; (13)whereas for � = �1 we have the same 
ondition (11) as with no subtra
tion.We will study dispersion relations for the pro
esses (8) in the Bjorken limit of large �q2 at �xedq2=� and t. It is then useful to trade � for the s
aling variable� = � (q + q0)22(p+ p0) � (q + q0) = � q2s� u = � q22� ; (14)where we have negle
ted q02 and t 
ompared with q2 in the numerator. The fa
torization theoremsestablished in [3, 13℄ state that in the Bjorken limit 
ertain invariant amplitudes be
ome dominantand 
an be written as the 
onvolution of partoni
 hard-s
attering kernels with generalized quark orgluon distributions (and the light-
one distribution amplitude of the produ
ed meson).1 To establishdispersion relations we will need information on the high-energy behavior of these amplitudes. Em-piri
ally the small-x behavior of the usual quark and gluon distributions, obtained from �ts mainly toin
lusive deep inelasti
 s
attering data, is well des
ribed by a power law. With 
urrently used modelsfor generalized parton distributions, based either on double distributions or on Gegenbauer moments,one �nds a 
orresponding power-law behavior for the invariant amplitudes of DVCS [12, 14, 15, 1℄and of meson produ
tion [16℄. Whether this 
orresponden
e may be model-independent is not known,see the dis
ussion in Se
t. 3.2 of [15℄. We will take it as a guideline in the following, bearing in mindthat deviations between the power laws of parton densities and ex
lusive amplitudes (or deviationsfrom a stri
t power behavior in the asymptoti
 limit) do not invalidate our dispersion relations aslong as the invariant amplitudes do not grow faster than the 
riti
al power of energy spe
i�ed in (11)and (13).3 Unpolarized quark distributionsIn this se
tion we dis
uss in detail the 
ontribution of unpolarized quark distributions to the leadinginvariant amplitudes for DVCS or meson produ
tion. Here and in the following we de
ompose all1Up to terms suppressed by inverse powers of p�q2, the leading invariant amplitudes for DVCS 
orrespond totransverse photon polarization and those for meson produ
tion to longitudinal photon and meson polarization in the
ollision 
.m. 6



amplitudes into terms of de�nite signature �. A

ording to the fa
torization theorem we 
an writeFq[�℄(�; t; q2) = Z 1�1 dx 1� Cq[�℄�x� ; q2�F q(x; �; t) (15)with F q = Hq; Eq. For simpli
ity we have omitted the dependen
e on the renormalization andfa
torization s
ales; in the following will also omit the arguments q2 in the hard-s
attering kernel2and t in the generalized parton distributions. The hard-s
attering kernel satis�es the symmetryrelation Cq[�℄��x� � = ��Cq[�℄�x� � ; (16)so that the fa
torization formula 
an be written asFq[�℄(�) = Z 10 dx 1� Cq[�℄�x� �F q[�℄(x; �) (17)in terms of the 
ombinations F q[�℄(x; �) = F q(x; �)� �F q(�x; �) (18)for quark ex
hange of de�nite signature. We remark that F q[+℄ 
orresponds to positive and F q[�℄ tonegative 
harge 
onjugation parity in the t-
hannel. With the relationF q[�℄(x;��) = F q[�℄(x; �) (19)from time reversal invarian
e one �nds Fq[�℄(��) = �Fq[�℄(�) as required. In the Bjorken limit theMandelstam variables for the hard-s
attering subpro
ess are given byŝ = xs+ 12(1� x)q2 ; û = xu+ 12(1� x)q2 ; (20)so that one has x� = � ŝ� ûq2 : (21)To leading order (LO) in �s the kernel readsCq[�℄(!) / 11� ! � i� � � 11 + ! � i� ; ImCq[�℄(!) / ��Æ(! � 1)� �Æ(! + 1)� (22)for both DVCS and meson produ
tion, where we have omitted any global fa
tors whi
h are irrelevantfor our dis
ussion of �xed-t dispersion relations here. At higher orders in �s one �nds bran
h 
utsin the ŝ and û 
hannels for ! > 1 and ! < �1, respe
tively. For the dispersion relations to bedis
ussed shortly, we need to know the behavior of the kernels for j!j ! 1. The NLO kernels forDVCS 
an be found in [17℄, and those for meson produ
tion in [18℄. For negative signature, one �ndsCq[�℄(!) � !�1 up to logarithms for both DVCS and meson produ
tion. For positive signature, theNLO 
orre
tions give Cq[+℄(!) � !�1 for DVCS, and Cq[+℄(!) � !0 for meson produ
tion, again upto logarithms. The power behavior as !0 is due to two-gluon ex
hange in the t-
hannel. For DVCSsu
h graphs only start at NNLO, so that at this level one will also have Cq[+℄(!) � !0. This 
hange inenergy behavior between NLO and NNLO is the same as in the hard-s
attering kernels for in
lusivedeep inelasti
 s
attering [19℄, obtained from 
�p! 
�p in forward kinemati
s via the opti
al theorem.In fa
t, the kernels for DVCS and for deep inelasti
 s
attering are intimately related, see e.g. [1, 17℄.2We refer to Cq[�℄ as hard-s
attering kernel for ease of language, keeping in mind that for meson produ
tion it ismore pre
isely the 
onvolution of a hard-s
attering kernel with the meson distribution amplitude.7



3.1 Dispersion relationsThe invariant amplitude satis�es a �xed-t dispersion relation. Using 1=� = �2�=q2 as energy variableand making one subtra
tion, one hasReFq[�℄(�)�ReFq[�℄(�0) = 1� Z 11 d!0 ImFq[�℄(1=!0) � 1!0 � 1=� + � 1!0 + 1=� � f� ! �0g� ; (23)where �0 denotes the subtra
tion point and the Cau
hy prin
ipal value pres
ription is understood at!0 = �1=�. As is appropriate in the Bjorken limit, we have negle
ted t and the hadron masses whendetermining the lower limit of the !0 integration.A

ording to the dis
ussion at the end of the previous se
tion, the validity of a dispersion re-lation with one subtra
tion requires that �2Fq[+℄(�) and �Fq[�℄(�) vanish for � ! 0, whereas anunsubtra
ted dispersion relation would require Fq[+℄(�) ! 0 in the same limit. Given the phe-nomenologi
al observed small-x behavior of valen
e and sea quark distributions, we expe
t a small-�behavior Hq[�℄(�) � ��� with 1 < � < 2 for � = +1 and 0 < � < 1 for � = �1. For � = +1 we hen
edo require one subtra
tion in the dispersion relation. We have also taken one subtra
tion for � = �1although this would not be ne
essary. We shall see that our �nal results for negative signature wouldbe the same with no subtra
tion. A

ording to Table 2 the distributions Hq[�℄ and Eq[�℄ involve thesame quantum numbers in the t-
hannel, and we therefore expe
t that the high-energy behavior ofHq[�℄ and Eq[�℄ is similar.Inserting the fa
torization formula (17) into (23) and using that Cq[�℄(!) has a vanishing imaginarypart for j!j < 1, one obtainsReFq[�℄(�)�ReFq[�℄(�0)= 1� Z 11 d!0 Z 11=!0 dx!0 ImCq[�℄(x!0)F q[�℄(x; 1=!0) � 1!0 � 1=� + � 1!0 + 1=� � f� ! �0g�= 1� Z 11 d! Z 10 dx !x2 ImCq[�℄(!)F q[�℄�x; x!� � 1!=x� 1=� + � 1!=x+ 1=� � f� ! �0g� ; (24)where from the se
ond to the third line we have 
hanged the order of integration, R11 d!0 R 11=!0 dx =R 10 dx R11=x d!0, substituted ! = x!0, and 
hanged the order of integration again. Straightforwardalgebra �nally givesReFq[�℄(�) = ReFq[�℄(�0)+ 1� Z 11 d! ImCq[�℄(!)Z 10 dxF q[�℄�x; x!� � 1!� � x � � 1!� + x � 1!�0 � x + � 1!�0 + x� : (25)Note that ImCq[�℄(!) 
ontains terms proportional to Æ(! � 1), as is already seen in the leading-order expression (22). These terms are understood to be in
luded in the integration over ! in (25).A remark is in order on the behavior of the integrand for x ! 0. Let us �rst 
onsider the 
aseF q[�℄ = Hq[�℄. It is natural to expe
t that Hq[�℄(x; x=!) has a singular behavior for x ! 0 that issimilar to the forward distribution q(x)+��q(x). With the small-x behavior of quark densities obtainedin typi
al phenomenologi
al analyses, one then has an integrable singularity of Hq[�℄(x; x=!), whereasthe 
orresponding singularity of Hq[+℄(x; x=!) is stronger than x�1 but weaker than x�2. For � = +1the expression in square bra
kets in (25) is however proportional to x, so that the integrand is againsuÆ
iently well behaved at x = 0. A similar dis
ussion 
an be given for Eq[�℄(x; x=!), assuming thatits small-x behavior is similar to the one of Hq[�℄(x; x=!).8



We now dis
uss the dispersion relation for the hard-s
attering kernel itself. Noti
e that a

ordingto (16) the kernel Cq[�℄ has opposite symmetry behavior under 
rossing than the 
orresponding pro
essamplitude Fq[�℄, so that Cq[+℄ satis�es a negative-signature dispersion relation and Cq[�℄ a positive-signature one. With the large-! behavior dis
ussed after (22) we hen
e need no subtra
tion in either
ase and 
an write ReCq[�℄�x� � = 1� Z 11 d! ImCq[�℄(!) � 1! � x=� � � 1! + x=�� ; (26)where again the Cau
hy prin
ipal value pres
ription is implied at ! = �x=�. Insertion into thefa
torization formula (17) yieldsReFq[�℄(�) = 1� Z 11 d! ImCq[�℄(!)Z 10 dxF q[�℄(x; �) � 1!� � x � � 1!� + x� : (27)This 
an in parti
ular be used to evaluate the subtra
tion 
onstant ReFq[�℄(�0) in (25), whi
h thenreadsReFq[�℄(�) = 1� Z 11 d! ImCq[�℄(!)Z 10 dx�F q[�℄�x; x!� � 1!� � x � � 1!� + x�+ �F q[�℄(x; �0)� F q[�℄�x; x!�� � 1!�0 � x � � 1!�0 + x�� : (28)Noti
e that the terms in the se
ond line give the amplitude in the limit � ! 1, whi
h 
orrespondsto the point s = u = q2=2 in the unphysi
al region. The negative-signature amplitude must vanishat this point for symmetry reasons. Comparison of the �0 independent terms in (24) and (25) showsthat an unsubtra
ted dispersion relation for Fq[�℄(�) has indeed the same form as (28) without theterms in the se
ond line. The same is however not true for Fq[+℄(�).Consisten
y of the representations (27) and (28) implies1� Z 11 d! ImCq[�℄(!)Z 1�1 dx �F q(x; �)� F q�x; x!�� � 1!� � x � � 1!� + x�= 1� Z 11 d! ImCq[�℄(!)Z 1�1 dx �F q(x; �0)� F q�x; x!�� � 1!�0 � x � � 1!�0 + x� ; (29)i.e. the l.h.s. must be independent of �. In (29) we have restored the integration over negative xand traded F q[�℄ for F q, making use of the symmetry relation (19). The Cau
hy prin
ipal valuepres
ription should be applied at x = 0 if � = �1, so that a possible nonintegrable singularity of the� = +1 part of F q(x; x=!) = 12�F q[+℄(x; x=!) + F q[�℄(x; x=!)� 
an
els under the integral be
ause itis antisymmetri
 in x. At this point we 
an make two 
omments:1. To leading order in �s the dispersion representation (25) involves only distributions F q[�℄(x; �)at the point x = � be
ause of the simple form (22) of the hard-s
attering kernel, as was foundin [4℄. At higher orders in �s it involves however the distributions in the full DGLAP regionjxj � �. Knowledge of F q[�℄(x; x) for all x is hen
e only suÆ
ient to re
onstru
t the amplitude(up to a subtra
tion term) at leading order in the strong 
oupling. The re
onstru
tion is howeverpossible to any order in �s without dire
t knowledge of the distributions in the ERBL regionjxj < �. 9



2. The 
onsisten
y of dispersion relations for the pro
ess amplitude and for the hard-s
atteringkernel was already dis
ussed in the 
ontext of the fa
torization proof in [3℄. Translated into ournotation, the analog of our eq. (25) in that work was mistakenly written with F q[�℄(x; �) insteadof F q[�℄(x; x=!) and without a subtra
tion term, so that 
onsisten
y with (27) was trivial. The
orre
t 
onsisten
y relation (29) follows from the polynomiality property of GPDs, as we nowshow.3.2 Consequen
es for generalized parton distributionsClearly (29) is satis�ed ifIq[�℄(!) = Z 1�1 dx �F q(x; �)� F q�x; x!�� � 1!� � x � � 1!� + x� (30)is independent of � for all ! � 1. To show that this is the 
ase, we Taylor expand F q(x; x=!) in itsse
ond argument, Iq[�℄(!) = 1! 1Xn=1 1n! � ����n Z 1�1 dx�x! � ��n�1F q(x; �) ����=�+ � 1! 1Xn=1 1n! � ����n Z 1�1 dx�x! + ��n�1F q(x; �) ����=�� ; (31)where we have inter
hanged the order of di�erentiation and integration. For de�niteness we 
onsider�rst the 
ase F q = Hq. Using the polynomiality property (1) and the fa
t that Cqn is only nonzerofor even n, we �nd Iq[+℄(!) = 2 1Xn=2even� 2!�n Cqn ; Iq[�℄(!) = 0 ; (32)whi
h is independent of � as required. We re
all that we have suppressed the dependen
e on t in thedistributions F q, as well as in the form fa
tors Cqn. Alternatively one may use the double distributionrepresentation in (3) and (4). One readily �nds that the double distribution part of Iq[�℄ is zero, withZ 1�1 dx �Hqf (x; �)�Hqf�x; x!�� 1!� � x= Z 1�1 dxZ d� d� f q(�; �) �Æ(x� �� � �)� Æ�x [1� �! ℄� ��� 1!� � x= Z d� d� f q(�; �) � 1!� � �� � � � 1=(1 � �! )!� � �=(1 � �! )�= 0 (33)and an analogous relation for the term with 1=(!�+x). The only nonzero 
ontribution to Iq[�℄ 
omeshen
e from the D-termIq[+℄(!) = sign(�)Z 1�1 dxDq�x� � � 1!� � x � 1!� + x� = 2Z 1�1 d� Dq(�)! � � ;Iq[�℄(!) = 0 ; (34)10



where we have used the support and symmetry properties of Dq(�) stated after (4). Expanding1=(! � �) in a geometri
 series and using (7) one readily sees that (32) and (34) are equivalent. Forthe 
ase F q = Eq the dis
ussion pro
eeds in full analogy, with the opposite sign of Cqn in (32) and ofDq in (34). As a 
orollary one �nds the integral relationsZ 1�1 dx �Hq(x; �)�Hq�x; x!�� � 1!� � x � 1!� + x�= �Z 1�1 dx �Eq(x; �) �Eq�x; x!�� � 1!� � x � 1!� + x� = 2Z 1�1 dx Dq(x)! � x (35)and Z 1�1 dx �Hq(x; �)�Hq�x; x!�� � 1!� � x + 1!� + x�= Z 1�1 dx �Eq(x; �) �Eq�x; x!�� � 1!� � x + 1!� + x� = 0 : (36)They re
e
t the polynomiality properties of the distributions and in this sense are non-trivial 
onse-quen
es of Lorentz invarian
e. Using them to evaluate the �0 dependent terms in (28) givesReHq[+℄(�) = 1� Z 11 d! ImCq[+℄(!)Z 1�1 dx�Hq�x; x!� � 1!� � x � 1!� + x�+ 2Dq(x)! � x � ;Re Eq[+℄(�) = 1� Z 11 d! ImCq[+℄(!)Z 1�1 dx�Eq�x; x!� � 1!� � x � 1!� + x�� 2Dq(x)! � x � ; (37)andReHq[�℄(�) = 1� Z 11 d! ImCq[�℄(!)Z 1�1 dxHq�x; x!� � 1!� � x + 1!� + x� (38)with an analogous representation for Eq[�℄(�). We note that a

ording to our 
omment after (28) onehas lim�!1Fq[�℄(�) = 1� Z 11 d! ImCq[�℄(!)Iq[�℄(!) : (39)For � = �1 this is zero, and in fa
t we 
ould have immediately obtained (38) from an unsubtra
teddispersion relation, where the �0 dependent terms in (28) are absent as remarked earlier. For � = +1,the subtra
tion term in the dispersion relation (25) is �xed by the D-term if one takes �0 ! 1. Inthe leading-order approximation for the hard-s
attering kernel this was already observed in [4℄, andfor the general 
ase in [1℄. A

ording to Table 1 the D-term parameterizes a part of Hq and Eqwhi
h is asso
iated with spin-zero ex
hange in the t-
hannel.3 From (17) one readily �nds that its
ontribution to the invariant amplitudes Hq[+℄(�) and Eq[+℄(�) is energy-independent and purely real.3Note that this is not restri
ted to the ex
hange of spin-zero resonan
es. In the 
ontext of 
hiral dynami
s [20℄ thedominant ex
hange is in fa
t given by two pions in an S-wave.
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3.3 The Compton amplitude with both photons o� shellSo far we have dis
ussed deeply virtual Compton s
attering, 
�p! 
p, where the photon in the �nalstate is on shell, and obtained the integral relations (35) and (36) for the generalized parton distri-butions. It is natural to ask whether any further relations 
an be derived by 
onsidering dispersionrelations for the Compton amplitude
�(q) + p(p)! 
�(q0) + p(p0) (40)with both photons o� shell. For q2 < 0 and q02 > 0 this pro
ess 
an be studied experimentally, withthe timelike �nal-state photon de
aying into a lepton pair [21℄. The analyti
ity properties of theamplitude are however more 
ompli
ated in this 
ase, be
ause there are simultaneous bran
h 
uts ins and q02 or in u and q02. Instead we 
onsider the 
ase where both q2 and q02 are spa
elike, so thatthe only singularities are in s and u, as in the previous subse
tions. We have two s
aling variables� = � (q + q0)22(p+ p0) � (q + q0) = �q2 + q02s� u ; # = q2 � q02q2 + q02 ; (41)where in the se
ond expression for � we have negle
ted t 
ompared with q2+q02. For # = 1 we re
overthe 
ase of DVCS, whereas with two spa
elike photon virtualities we have �1 < # < 1. In the Bjorkenlimit of large �q2 at �xed �, # and t one has a fa
torization formula for the invariant amplitudesFq[�℄(�; #; t; q2) = Z 1�1 dx 1� Cq[�℄�x� ; #; q2�F q(x; #�; t) (42)with F q = Hq; Eq as before. We will again omit the arguments q2 and t in the following. TheMandelstam variables of the hard subpro
ess now readŝ = xs+ 12 (1� x)(q2 + q02) ; û = xu+ 12(1� x)(q2 + q02) ; (43)in the Bjorken limit, so that x=� = �(ŝ � û)=(q2 + q02). For a dispersion relation at �xed t and�xed photon virtualities, # plays the role of a 
onstant parameter, and we 
an use 1=� and x=� asrespe
tive energy variable of the overall pro
ess and the hard subpro
ess. In the Bjorken limit the
orresponding amplitudes have bran
h 
uts in 1=� or x=� from 1 to 1 and from �1 to �1. Thehard-s
attering kernel has the symmetryCq[�℄��x� ; #� = ��Cq[�℄�x� ; #� (44)in analogy to (16). At leading order in �s it readsCq[�℄(!; #) / 11� ! � i� � � 11 + ! � i� ; ImCq[�℄(!; #) / ��Æ(! � 1)� �Æ(! + 1)� ; (45)and at higher orders it has the same high-! behavior as dis
ussed for DVCS after (22). In otherwords, the high-energy behavior of the hard-s
attering kernel for the virtual Compton amplitude(40) remains un
hanged if q02 ! 0. Similarly, the small-� behavior of Fq[�℄(�; #) is as dis
ussed forDVCS after (23). One 
an thus derive dispersion relations for the invariant amplitude and for thehard-s
attering kernel as in Se
t. 3.1 and �ndsReFq[�℄(�; #) = 1� Z 11 d! ImCq[�℄(!; #)Z 10 dxF q[�℄(x; #�) � 1!� � x � � 1!� + x� (46)12



and ReFq[�℄(�; #) = 1� Z 11 d! ImCq[�℄(!; #)Z 10 dx�F q[�℄�x; # x!� � 1!� � x � � 1!� + x�+ �F q[�℄(x; #�0)� F q[�℄�x; # x!�� � 1!�0 � x � � 1!�0 + x�� : (47)These relations read exa
tly as their 
ounterparts (27) and (28) for DVCS, ex
ept that the se
ondargument of F q[�℄ is now multiplied with # and that Cq[�℄ depends on # as well. The 
onsisten
y of(46) and (47) is ensured ifZ 1�1 dx �F q(x; #�)� F q�x; # x!�� � 1!� � x � � 1!� + x� (48)is independent of � for all ! � 1. Res
aling �0 = #� and !0 = !=#, we readily see that this inensured by the �-independen
e of the integral Iq[�℄(!) in (30), whi
h we have already established.Thus the dispersion relations for doubly virtual Compton s
attering give no new relations for GPDs.Of 
ourse, one obtains dispersion representations for Hq[�℄(�; #) and Eq[�℄(�; #) as in (37) and (38),with # as an additional argument in Cq[�℄ and with the repla
ements Hq(x; x=!) ! Hq(x; #x=!),Eq(x; x=!)! Eq(x; #x=!) and Dq(x) (! � x)�1 ! Dq(x) (!=#� x)�1.Let us now 
onsider the 
ase q = q0, relevant for deep inelasti
 s
attering, where we have � = xBand # = 0. The representations (46) and (47) are then trivially 
onsistent, be
ause the se
ondargument of F q[�℄ is zero everywhere. In other words, the usual parton densities appearing in in-
lusive pro
esses do not depend on an external kinemati
al variable, unlike the generalized partondistributions appearing in ex
lusive pro
esses.In the following se
tion we investigate the 
ontributions from polarized quark distributions andfrom gluons to DVCS and to meson produ
tion. The results we will obtain 
an readily be generalizedto the Compton amplitude with two spa
elike photons. We note that for the unpolarized quarkdistributions we have just 
onsidered, only the amplitudes with � = +1 appear in Compton s
attering,whereas � = �1 is relevant for the polarized quark and gluon distributions.4 Polarized and gluon distributionsContributions from polarized quarks and from unpolarized or polarized gluons to invariant ampli-tudes 
an be treated in a similar manner as the 
ase of unpolarized quarks in the previous se
tion.Parti
ularities arise for ea
h of the distributions, whi
h we will now dis
uss in turn.4.1 Polarized quark distributionsLet us �rst investigate invariant amplitudes involving polarized quark distributions, whi
h appear inboth DVCS and in the produ
tion of pseudos
alar mesons. The fa
torization formula reads as in (15),where now F q = eHq or eEq. We de�ne 
ombinations eHq[�℄ and eEq[�℄ of de�nite signature as in (18),and the relations (16) to (19) are again valid. Note that, in 
ontrast to their unpolarized 
ounterparts,eHq[+℄ and eEq[+℄ 
orrespond to negative 
harge 
onjugation and eHq[�℄ and eEq[�℄ to positive 
harge
onjugation in the t-
hannel. The leading-order expression of the hard-s
attering kernel for DVCSand for meson produ
tion is the same as in (22). At NLO one �nds a large-! behavior Cq[�℄(!) � !�113



up to logarithms in both 
ases. Note that t-
hannel two-gluon ex
hange in the polarized se
tor doesnot give rise to a power behavior as !0. This is also expli
itly seen in the NNLO kernels for in
lusivedeep inelasti
 s
attering [22℄.For the polarized quark and antiquark densities we assume that x�q(x) and x��q(x) vanish atx ! 0, as it is found in global �ts and required for the existen
e of the moments R 10 dx�q(x) andR 10 dx��q(x). One should then have a small-� behavior � eHq[�℄ ! 0 for both positive and negativesignature, so that the on
e-subtra
ted dispersion relation (23) is valid. The argument pro
eeds as inSe
tions 3.1 and 3.2. A

ording to (1) the xn�1 moment of eHq(x; �) has �n�1 as highest power, sothat the integral I [�℄(!) in (30) is zero for both � = +1 and � = �1 in this 
ase. We therefore obtainthe integral relation Z 1�1 dx � eHq(x; �)� eHq�x; x!�� � 1!� � x � 1!� + x� = 0 (49)and dispersion representationsRe eHq[�℄(�) = 1� Z 11 d! ImCq[�℄(!)Z 1�1 dx eHq(x; �) � 1!� � x � � 1!� + x�= 1� Z 11 d! ImCq[�℄(!)Z 1�1 dx eHq�x; x!� � 1!� � x � � 1!� + x� : (50)We further �nd that eHq[�℄(�)! 0 for � !1. As in the unpolarized 
ase, we 
ould have obtained these
ond representation in (50) from a dispersion relation without subtra
tion in the 
ase � = �1. For� = +1, the high-energy behavior of the invariant amplitude does however require one subtra
tion,even though the subtra
tion term is zero when taking the subtra
tion point �0 !1. An unsubtra
teddispersion relation for positive signature would di�er from (50), as remarked after (28).For eEq[�℄ the situation is more involved. A

ording to Table 2 this distribution admits more t-
hannel ex
hanges than eHq[�℄, so that the small-� behavior of eEq[�℄(�) and eHq[�℄(�) may be di�erent.In parti
ular there is a known spin-zero ex
hange 
ontribution to eEq[�℄, whi
h is due to pion ex
hangeand dominates the distributions for u and d quarks at small t [23, 24℄. It readseEu�(x; �; t) = � eEd�(x; �; t) = 
m2� � t 1j�j ���x� � ; (51)where the 
onstant 
 
an be 
al
ulated in 
hiral perturbation theory [20℄ and the light-
one distributionamplitude ��(�) of the pion is an even fun
tion with support for j�j < 1. Inserting this into thefa
torization formula (15) one obtains a 
ontribution going like ��1 to the invariant amplitudes eEu[�℄and eEd[�℄. This rises too strongly at � ! 0 for the on
e-subtra
ted dispersion relations we have usedso far. At this point we noti
e that due to the prefa
tor in its de�nition, the distribution eEq always
ontributes to matrix elements as � eEq, and 
orrespondingly it is � eEq[�℄ whi
h appears in physi
als
attering amplitudes. Note that be
ause of its prefa
tor � eEq[�℄(�) is even in � and thus has positiveinstead of negative signature. The pion ex
hange term (51) gives a � independent 
ontribution to� eEq[�℄(�), as it should be for spin-zero ex
hange. We 
an thus write down a on
e-subtra
ted dispersionrelation for � eEq[�℄(�), assuming only that its small-� behavior is less singular than ��2 for � = �1and less singular than ��1 for � = +1. The analog of (27) is nowRe � eEq[�℄(�) = 1� Z 11 d! ImCq[�℄(!)Z 1�1 dx � eEq(x; �) � 1!� � x � � 1!� + x� ; (52)14



and the analog of (28) readsRe � eEq[�℄(�) = 1� Z 11 d! ImCq[�℄(!)Z 1�1 dx��0 eEq(x; �0) � 1!�0 � x � � 1!�0 + x�+ x! eEq�x; x!� � 1!� � x + � 1!� + x � 1!�0 � x � � 1!�0 + x�� ; (53)whi
h 
an be rewritten asRe � eEq[�℄(�) = 1� Z 11 d! ImCq[�℄(!) Z 1�1 dx�� eEq�x; x!� � 1!� � x � � 1!� + x�+ �0� eEq(x; �0)� eEq�x; x!�� � 1!�0 � x � � 1!�0 + x�� : (54)With the methods of Se
t. 3.2 one �ndsZ 1�1 dx � eEq(x; �)� eEq�x; x!�� � 1!� � x � 1!� + x� = 0 ; (55)whi
h ensures 
onsisten
y of the two dispersion representations and allows us to omit the se
ond lineof (54). We thus �nd that the analog of the representations (50) also holds for eEq[�℄. In the 
ase� = +1, where spin-zero ex
hange does not 
ontribute, we 
ould indeed have obtained this resultfrom a on
e-subtra
ted dispersion relation for eEq[�℄.Noti
e that the terms in the se
ond line of (54) need not give � eEq[�℄(�) at the unphysi
al point� !1, in 
ontrast to the 
ase dis
ussed after (28). In fa
t � eEq[�℄(�) is nonzero at this point. Taylorexpanding 1=(!� � x) and 1=(!� + x) in (52) and using the polynomiality relation (1) one readily�nds lim�!1 � eEq[�℄(�) = 1� Z 11 d! ImCq[�℄(!) 1Xn=1odd � 2!�n eBqn;n�1 ; lim�!1 � eEq[+℄(�) = 0 : (56)In Table 1 we see that the form fa
tors eBqn;n�1(t) are asso
iated with pure spin-zero ex
hange. Atsmall t they are dominated by the the pion-ex
hange term (51). Having support only in the ERBLregion jxj < �, this term does not 
ontribute to the imaginary part of � eEq[�℄(�), and one may wonderhow it 
an appear in the representation (54) for the real part. The answer is that it indu
es a
ontribution proportional to Æ(x) in eEq(x; x=!). To see this we observe that the double distributiongenerating (51) has the form Æ(�) e�(�; t), where we have abbreviated e�(�; t) = 
(m2� � t)�1��(�).For ! � 1 one then haseEu��x; x! ; t� = Z d� d� Æ�x [1� �! ℄� �� Æ(�) e�(�; t) = Æ(x)! Z 1�1 d� e�(�; t)! � � : (57)One may avoid this Æ(x) 
ontribution by taking the limit �0 !1 in (53), whi
h yieldsRe � eEq[�℄(�) = lim�0!1 �0 eEq[�℄(�0)+ 1� Z 11 d! ImCq[�℄(!)Z 1�1 dx x! eEq�x; x!� � 1!� � x + � 1!� + x� (58)with the subtra
tion term given in (56). The Æ(x) 
ontribution in eEq(x; x=!) is now removed by theextra fa
tor x and instead appears expli
itly in the subtra
tion term.15



4.2 Unpolarized gluon distributionsThe 
ontribution from unpolarized gluon distributions to invariant amplitudes 
an be written asFg(�) = Z 1�1 dx 1� Cg�x� � F g(x; �)x ; (59)where F g(x; �) = Hg(x; �); Eg(x; �) is even in x and in �, and the hard-s
attering kernel Cg(!) is oddin !. The singularity introdu
ed by the fa
tor 1=x is spurious be
ause Cg(!) � ! at ! ! 0. Forve
tor meson produ
tion, the hard-s
attering kernel readsCg(!) / 11� ! � i� � 11 + ! � i� ; ImCg(!) / ��Æ(! � 1)� Æ(! + 1)� (60)at LO in �s, whereas for DVCS the kernel for gluon distributions starts only at NLO. The high-!behavior of Cg(!) at higher orders is the same as dis
ussed for Cq[+℄(!) after (22). We assume asmall-x behavior like g(x) � x�� with � < 2 for the unpolarized gluon density. The small-� behaviorHg(�) � ��� is then less singular than ��2 and hen
e admits a on
e-subtra
ted dispersion relation.The symmetry properties of Cg(!) and of x�1 F g(x; �) are identi
al to those of Cq[+℄(!) andF q[+℄(x; �) in the unpolarized quark se
tor, so that the dispersion relations for the pro
ess amplitudeand for the hard-s
attering kernel read exa
tly as for unpolarized quark distributions in (27) and(28) if one repla
es Fq[+℄ ! Fg, Cq[+℄ ! Cg and F q[+℄ ! 2x�1F g. Consisten
y of these dispersionrelations is ensured ifIg(!) = Z 1�1 dxx �F g(x; �)� F g�x; x!�� � 1!� � x � 1!� + x� (61)is independent of �. Using the symmetry properties of F g we 
an repla
e 1=(!� � x)� 1=(!� + x) by2=(!��x) under the integral, with the prin
ipal value pres
ription taken to regularize the singularityat x = 0. Repeating the pro
edure of Se
tion 3.2 we Taylor expand F g(x; x=!) in its se
ond argumentand obtain Ig(!) = 2! 1Xn=1 1n! � ����n Z 1�1 dxx �x! � ��n�1F g(x; �) ����=� : (62)Sin
e F g(x; �) is even in x, a nonzero integral is only obtained from the odd powers of x in theexpansion of (x=!� �)n�1, so that the fa
tor x�1 in the integrand is 
an
eled. Using the polynomialproperty (2) one �nally obtains Ig(!) = 4 1Xn=2even� 2!�nCgn (63)for F g = Hg, whi
h is independent of � as required. Alternatively, one may insert (5) and (6) into(61). For the double distribution part of Hg this givesZ 1�1 dxx �Hgf (x; �)�Hgf�x; x!�� � 1!� � x � 1!� + x�= 2Z 1�1 dxZ d� d� �fg(�; �) �Æ(x� �� � �)� Æ�x [1� �! ℄� ��� 1x(!� � x)= � 2! Z d� d� �fg(�; �)�� + � ; (64)16



whi
h is zero be
ause �fg(�; �) is odd in both � and in �. The D-term 
ontribution to Hg givesIg(!) = 2! Z 1�1 d� Dg(�)! � � (65)in agreement with (7) and (63). For F g = Eg one �nds analogous results with the opposite sign forCg and Dg. One thus obtains integral relationsZ 1�1 dxx �Hg(x; �)�Hg�x; x!�� � 1!� � x � 1!� + x�= �Z 1�1 dxx �Eg(x; �)�Eg�x; x!�� � 1!� � x � 1!� + x� = 2! Z 1�1 dx Dg(x)! � x (66)and dispersion representationsReHg(�) = 1� Z 11 d! ImCg(!)Z 1�1 dx� 1xHg�x; x!� � 1!� � x � 1!� + x�+ 2! Dg(x)! � x� ;Re Eg(�) = 1� Z 11 d! ImCg(!)Z 1�1 dx� 1xEg�x; x!� � 1!� � x � 1!� + x�� 2! Dg(x)! � x� : (67)Furthermore one �ndslim�!1Hg(�) = � lim�!1Eg(�) = 1� Z 11 d!! ImCg(!) Z 1�1 dx 2Dg(x)! � x (68)for the invariant amplitudes at � ! 1. We remark in passing that (66) and (67) may be rewrittenusing 1x � 1!� � x � 1!� + x� = 1!� � 1!� � x + 1!� + x� : (69)4.3 Polarized gluon distributionsLet us now dis
uss the generalized gluon distributions in the polarized se
tor, whi
h appear in DVCSstarting at NLO in �s. As in the previous se
tion we begin with the fa
torization formula (59), wherenow F g(x; �) = eHg(x; �), eEg(x; �) is odd in x. The hard-s
attering kernel Cg is even in ! and vanisheslike !2 for ! ! 0. The invariant amplitudes eHg(�) and eEg(�) have negative signature. The NLO
al
ulation of Cg(!) for DVCS gives a large-! behavior like !�1 up to logarithms, and higher orderswill have the same power behavior as dis
ussed in the �rst paragraph of Se
t. 4.1.Assuming a small-x behavior x�g(x)! 0 of the polarized gluon density, whi
h is required for theexisten
e of the moment R 10 dx�g(x) and 
onsistent with global �ts of parton densities, we expe
tthat � eHg(�)! 0 for � ! 0. We then readily obtain dispersion relations as in (27) and (28) withthe repla
ements Fq[�℄ ! eHg, Cq[�℄ ! Cg and F q[�℄ ! 2x�1 eHg. Their 
onsisten
y requires the�-independen
e of Ig(!) = Z 1�1 dxx � eHg(x; �)� eHg�x; x!�� � 1!� � x + 1!� + x� ; (70)
17



where the prin
ipal value pres
ription is to be taken at x = 0. As in Se
t. 4.2 we 
an rewrite this asIg(!) = 2! 1Xn=1 1n! � ����n Z 1�1 dxx �x! � ��n�1 eHg(x; �) ����=�= 2! 1Xn=1 1n! (��)n�1 � ����n Z 1�1 dxx eHg(x; �) ����=� ; (71)where in the se
ond step we have expanded the fa
tor (x=! � �)n�1 and used the polynomialityproperties (2) of eHg. To pro
eed we need to know the dependen
e of R dxx�1 eHg(x; �) on �.In [7℄ a double distribution representation for eHg was given, whi
h has the same form as (6)for Hgf . Inserting this into (70) one obtains an expression as in (64), whi
h is nonzero be
ause the
orresponding double distribution is even and not odd in �. Su
h a double distribution representationfor eHg (as well as its analog for eEg) is however in
omplete, be
ause for the xn�2 moment of thedistributions it gives a polynomial with highest power �n�3 (with n being odd) instead of �n�1 asrequired in (2). To obtain a 
orre
t representation, we 
an use the 
onstru
tion dis
ussed in [25℄ for thegeneralized quark distribution in the pion. This leads to writing a double distribution representationfor x�1 eHg and x�1 eEg, i.e.eHg(x; �; t) = xZ d� d� Æ(x � �� � �) efg(�; �; t) ;eEg(x; �; t) = xZ d� d� Æ(x � �� � �)ekg(�; �; t) ; (72)where efg and ekg are even in � and �. We note that in the forward limit t = 0 one has R d� efg(x; �; 0) =�g(x), whi
h is mu
h less singular than the 
orresponding limit x�1q�(x) for the double distributionof quarks in the pion 
onsidered in [25℄ and should thus be less problemati
 for the purpose of modelbuilding.Apart from giving the required maximum power of �n�1 for the xn�2 moments of eHg and eEg, therepresentation (72) also has the important 
onsequen
e thatZ 1�1 dxx eHg(x; �) = Z d� d� efg(�; �) (73)is independent of �, so that a

ording to (71)Ig(!) = 0 (74)is independent of �, whi
h we had to show. This is also seen by dire
t insertion of (72) into (70),whi
h leads to an expression of the form (33) we en
ountered for quark distributions. We thus �nallyobtain dispersion representations as in (50) with the repla
ements eHq[�℄ ! eHg, Cq[�℄ ! Cg andeHq ! x�1 eHg, as well as the limit eHg(�)! 0 for � !1.For the invariant amplitude eEg we must take into a

ount a possible spin-zero ex
hange in thet-
hannel (although the ex
hange of an � or �0 in the 
avor singlet se
tor is most likely not of the samephenomenologi
al importan
e as pion ex
hange in eEq). With the double distribution representation(72) one 
an pro
eed exa
tly as for the 
ase of quark distributions in Se
t. 4.1. One thus obtainsanalogs of the dispersion representations (50) with the repla
ements eHq[�℄ ! eEg, Cq[�℄ ! Cg andeHq ! x�1 eEg, as well as the resultsZ 1�1 dxx � eEg(x; �)� eEg�x; x!�� � 1!� � x + 1!� + x� = 0 (75)18



and lim�!1 � eEg(�) = 1� Z 11 d! ImCg(!) 1Xn=1odd � 2!�n 2 eBgn;n�1 : (76)To avoid a Æ(x) 
ontribution in x�1 eEg(x; x=!) due to spin-zero ex
hange one may use the analog of(58), whi
h readsRe � eEg(�) = lim�0!1 �0 eEg(�0) + 1� Z 11 d!! ImCg(!)Z 1�1 dx eEg�x; x!� � 1!� � x � 1!� + x� : (77)4.4 Heli
ity-
ip distributionsWe 
on
lude this se
tion with a few remarks on the generalized parton distributions for quark orgluon heli
ity 
ip, whi
h have been introdu
ed and dis
ussed in [26, 27℄.In the quark 
ase these distributions are 
hiral-odd, and to date there is no simple ex
lusivepro
ess known where they appear. Rea
tions like 
�p ! ��p were proposed in [28℄, but due totheir three-parti
le �nal state the dis
ussion of dispersion relations would be mu
h more 
ompli
ated.However, integral relations analogous to (49) are valid for the quark distributions HqT , EqT , eHqT andeEqT de�ned in [27℄. As we saw in Se
t. 3.2, their derivation only requires the xn�1 moments of thedistributions to be polynomials in � with maximal power �n�1. This is indeed the 
ase, as has beenshown in [29℄.Gluon heli
ity-
ip distributions appear in DVCS starting at order �s, with the hard-s
atteringformula of the form FgT (�) = Z 1�1 dx 1� CgT�x� � F gT (x; �)x (78)for F gT = HgT ; EgT ; eHgT ; eEgT as de�ned in [27℄. Dispersion representations for this 
ase 
an be dis
ussedin analogy to the 
ases 
onsidered in the previous se
tions. To do this requires analysis of the high-energy behavior (see the related work [30℄ for the heli
ity-
ip stru
ture fun
tion F 
3 of the photon)and of the polynomiality properties (in generalization of the quark 
ase treated in [29℄). We shall notdo this here.5 The model of Freund, M
Dermott and StrikmanAs an appli
ation of the dispersion relations dis
ussed in this work, we now investigate the modelfor GPDs proposed by Freund, M
Dermott and Strikman in [5℄. We fo
us on the quark singletdistribution and its generalized 
ounterpart,�(x) =Xq �q(x) + �q(x)� ; H(x; �) =Xq Hq[+℄(x; �) ; (79)where for ease of notation we have not expli
ity indi
ated that H(x; �) refers to the quark singlet.Here and in the following we take t = 0, whi
h does not a�e
t the issue of analyti
ity to be dis
ussed.In our notation, the model introdu
ed in [5℄ readsH(x; �) = 8><>:�(x) for x � ��(�) x� �1 + 152 a(�)�1� x2�2�� for x < � (80)19



with a(�) 
hosen to satisfy the polynomiality 
onditionZ 10 dxxH(x; �) =Xq Z 1�1 dxxHq(x; �) = Z 10 dxx�(x) + 4�2C2 (81)for the lowest nontrivial Mellin moment, where C2 = Pq Cq2(t = 0) a

ording to (1). One readily�nds �(�) a(�) = 1�2 Z �0 dxx�(x)� 13 �(�) + 4C2 : (82)Clearly, higher Mellin moments of (80) are generally not polynomials in � of the order required by (1).At small �, one may expe
t that this does not have an important e�e
t on the moments themselves,in the sense that a Taylor expansionZ 10 dxxn�1H(x; �) = 1Xk=0even(2�)k An;k (83)of a given moment di�ers from a polynomial of order �n by terms vanishing like �n+2 for � ! 0. It ishowever not obvious that this only leads to small in
onsisten
ies in s
attering amplitudes 
al
ulatedwith (80), given that these do not have a simple expression in terms of Mellin moments with integerindex n.We have seen that polynomiality of the Mellin moment ensures the 
onsisten
y of dispersionrelations for the hard-s
attering kernel and for the pro
ess amplitude. Let us 
he
k by how mu
h thedispersion representations (27) and (28) di�er for the above model. We limit ourselves to the lowestorder in �s and take ImCq[+℄(!) = ��Æ(!� 1)� Æ(!+1)�, omitting any global fa
tors in the kernel.The two dispersion representations then readReHdir(�) = Z 10 dxH(x; �) � 1� � x � 1� + x� ;ReH�0(�) = Z 10 dx�H(x; x) � 1� � x � 1� + x�+ �H(x; �0)�H(x; x)� � 1�0 � x � 1�0 + x�� : (84)We note that at Born level ReHdir(�) 
al
ulated from (27) 
oin
ides with the real part 
al
ulateddire
tly from the fa
torization formula (17). For a numeri
al study, we takex�(x) = p1x�p2(1� x)p3(1 + p4x) (85)for the quark singlet distribution, with p1 = 0:34, p2 = 0:25, p3 = 4, p4 = 25:4. This gives a reasonablygood approximation of the CTEQ6M distributions at s
ale � = 2GeV. With p3 taken as an integer,the integrals required for evaluating (82) and (84) are readily 
arried out. One �nds that ReHdir(�0)diverges for �0 ! 1 in this model, so that one 
annot use this point for the subtra
tion requiredin ReH�0 . We take instead the s-
hannel threshold �0 = 1, where the model GPD has the simpleform H(x; 1) / x(1� x2). As an alternative 
hoi
e we take the value �0 = 0:01 in the small-� region.The 
omparison of the two representations in (84) for several values of � is given in Table 3. We seethat their dis
repan
y is severe and does not improve with de
reasing �. By 
onstru
tion, the tworepresentations 
oin
ide of 
ourse for � = �0.The values in the table have been obtained by setting C2 to zero in (82). One readily �nds that thisterm gives a 
ontribution of 20C2 to both ReHdir(�) and ReH�0(�). Taking the value of C2 � �0:820



Table 3: The 
onvolution integrals ReHdir(�) and ReH�0(�) de�ned in (84), evaluated for �0 = 1 and�0 = 0:01. The values are 
al
ulated with the GPD model spe
i�ed by (80) and (82) with C2 = 0.For better legibility, the values of the integrals have been rounded to two signi�
ant digits in the �rsttwo rows and to the next integer in the remaining ones.� ReHdir ReH1:0 ReH 0:01 ReH1:0ReHdir ReH 0:01ReHdir10�4 12� 104 4:4 � 104 4:4� 104 0:37 0:3710�3 6:5� 103 2:3 � 103 2:5� 103 0:35 0:3910�2 318 74 318 0:23 10:1 26 9 253 0:37 100:3 16 11 255 0:70 160:5 10 7 251 0:76 26estimated in the 
hiral quark-soliton model [24℄ would not signi�
antly 
hange the values for small �,and in any 
ase 
annot restore the dis
repan
y between the two integrals in (84). We must 
on
ludethat, even for small �, the model (80) violates polynomiality and thus Lorentz invarian
e in a waywhi
h leads to serious in
onsisten
ies when using it to 
al
ulate the real part of pro
ess amplitudes. Toobtain 
onsistent results, one may use the ansatz (80) for jxj � � to 
al
ulate ImH(�) and to restorethe real part from the dispersion relation (25), with the subtra
tion 
onstant left undetermined bythe model.6 SummaryLorentz invarian
e implies that the Mellin moments of generalized parton distributions are polynomi-als in the skewness � with a maximal power depending on the quantum numbers of the distribution.We have shown that this property leads to integral relationsZ 1�1 dxF (x; �; t) � 1!� � x � � 1!� + x� = Z 1�1 dxF�x; x! ; t� � 1!� � x � � 1!� + x�+ I(!; t) (86)for � = �1 and any ! � 1, where F is one of the distributionsHq; Eq; eHq; eEq; Hgx ; Egx ; eHgx ; eEgx ; HqT ; EqT ; eHqT ; eEqT : (87)In (86) Cau
hy's prin
ipal value pres
ription is to be used at x = �!� and at x = 0. The only 
aseswhere I(!; t) is nonzero o

ur for unpolarized distributions and � = +1, where� I(!; t) = 2 1Xn=2even� 2!�nCqn(t) = 2Z 1�1 dx Dq(x; t)! � x for F = Hq; Eq;21



� I(!; t) = 4 1Xn=2even� 2!�nCgn(t) = 2! Z 1�1 dx Dg(x; t)! � x for F = Hgx ; Egx : (88)Here the sign + on the l.h.s. is to be taken for Hq, Hg and the sign � for Eq, Eg. To establishthe relations (86) in the polarized gluon se
tor, we needed that the moments R dxx�1 eHg(x; �; t) andR dxx�1 eEg(x; �; t) are independent of �, and we had to 
orre
t the double distribution representationof eHg and eEg used so far in the literature.For t � 0 the real part of the leading invariant amplitudes for DVCS or meson produ
tion 
an beobtained from a dispersion relation of the hard-s
attering kernel,ReF(�; t) = 1� Z 11 d! ImC(!) Z 1�1 dxF (x; �; t) � 1!� � x � � 1!� + x� ; (89)or for the invariant amplitude itself,ReF(�; t) = 1� Z 11 d! ImC(!)�Z 1�1 dxF�x; x! ; t� � 1!� � x � � 1!� + x�+ I(!; t)� ; (90)where C = Cq[�℄; Cg is the appropriate hard-s
attering kernel (for the quark transversity distributionsno 
orresponding pro
ess is known). Consisten
y of the two representations is ensured by (86). The
ontribution from I(!; t) in (90) is energy independent and 
an be identi�ed with F(�; t) in the limit� ! 1, i.e. at the point 2� = s � u = 0 below threshold. The 
orresponding terms given in (88)are due to spin-zero ex
hange in the t-
hannel. Spin-zero ex
hange 
ontributions in the parity-oddse
tor appear in eEq and eEg. They do not give a nonzero I(!; t) but 
an instead generate a termproportional to Æ(x) in F (x; x=!; t). In the alternative dispersion representations (58) and (77) forRe �Eq[�℄(�; t) and Re �Eg(�; t) su
h a Æ(x) term is avoided, and the spin-zero ex
hange 
ontributionappears dire
tly as a subtra
tion 
onstant, with1Xn=1odd � 2!�n eBqn;n�1(t) or 2 1Xn=1odd � 2!�n eBgn;n�1(t) (91)playing the same role as I(!; t) in (90).In Se
t. 5 we have seen that the relation (86) 
an be strongly violated in models of GPDs that donot respe
t polynomiality, even for small �. In parti
ular, we found that the model proposed in [5℄leads to serious 
on
i
ts with dispersion relations when used for 
al
ulating the real part of s
atteringamplitudes.The representation (90) has important 
onsequen
es on the information about GPDs that 
an beextra
ted from DVCS and meson produ
tion. To leading approximation in �s, the imaginary partof the amplitude is only sensitive to the distributions at x = �, and the only additional information
ontained in the real part is a 
onstant asso
iated with pure spin-zero ex
hange, given by (88) or (91)at ! = 1. In [4℄ this was referred to as a holographi
 property. Beyond leading order the evaluationof both imaginary and real parts of the amplitude involves however the full DGLAP region jxj � �.In addition, the real part depends on the appropriate spin-zero term in (88) or (91) at all ! � 1. Weremark that in [1℄ the possibility was dis
ussed to re
onstru
t the subtra
tion terms in (88) from theimaginary part of the DVCS amplitude 
ombined with the in
lusive deep inelasti
 
ross se
tion.22



Consider the 
omparison of a given model or parameterization of GPDs with data on DVCSor meson produ
tion. In a leading-order analysis (whi
h should of 
ourse always be restri
ted tokinemati
s where the LO approximation is adequate) it is suÆ
ient to 
hara
terize ea
h GPD by itsvalues at x = �, supplemented by a 
onstant for the spin-zero ex
hange 
ontribution dis
ussed above.On one hand this 
an be a wel
ome simpli�
ation, and on the other hand it indi
ates the limitationsof an LO analysis: when 
onfronting data with a given GPD one is sensitive to x 6= � (and to thedetails of the spin-zero ex
hange 
ontribution) only at NLO or higher a

ura
y.Let us �nally emphasize that the imaginary part of an amplitude involves GPDs with skewnessgiven by the value of � in the measurement, whereas the dispersion representation (90) of the realpart involves all values of the skewness from 0 to 1. For measurements in a limited energy region,the extra information of the real part 
ompared with the imaginary one is thus not limited to thespin-zero ex
hange terms.A
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