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AbstratOptial preision experiments are a powerful tool to explore hidden setors of a varietyof standard-model extensions with potentially tiny ouplings to photons. An importantexample is given by extensions involving an extra light U(1) gauge degree of freedom,so-alled paraphotons, with gauge-kineti mixing with the normal photon. These mod-els naturally give rise to miniharged partiles whih an be searhed for with optialexperiments. In this paper, we study the e�ets of paraphotons in suh experiments.We desribe in detail the role of a magneti �eld for photon-paraphoton osillations inmodels with low-mass miniharged partiles. In partiular, we �nd that the upominglight-shining-through-walls experiments are sensitive to paraphotons and an distinguishthem from axion-like partiles.
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1 IntrodutionExtensions beyond the urrent standard model of partile physis often involve a hiddensetor, i.e., an experimentally so far unobserved set of degrees of freedom very weaklyoupled to standard-model partiles. Whereas present and future aelerator experimentsare generally devoted to the searh for new heavy partiles, the potential disovery of a newweakly oupled light partile requires high-preision experiments for whih non-aeleratorsetups often appear most promising.Optial experiments an provide for suh a powerful laboratory tool, sine optial pho-tons an be manipulated and deteted with a great preision. If a hypothetial hiddensetor ouples e�etively to photons, optial experiments an have a signi�ant disoverypotential or, alternatively, an put stringent laboratory bounds on standard-model exten-sions, sine both photon soures and detetors an be under full experimental ontrol.An example of suh experiments are laser polarization experiments, suh asBFRT [1℄, PVLAS [2℄, and Q&A [3℄, where linearly polarized laser light is sent througha transverse magneti �eld, and hanges in the polarization state are searhed for. Thereal and virtual prodution of axion-like [4, 5℄ (ALP) or miniharged [6℄ (MCP) partileswould lead to observable signals suh as an apparent rotation and an elliptiity of theoutgoing laser beam. Similar planned experiments in this diretion are based also onhigh-intensity lasers [7℄.Another powerful tool are so alled light-shining-through-walls (LSW) experiments,suh as BFRT [1, 8℄. Here, laser light is shone onto a wall, and one searhes for photonsthat appear behind the wall. Vauum osillations of photons into paraphotons withsub-eV masses would lead to a non-vanishing rate of photons behind the wall [9℄. In thepresene of a magneti �eld, photons an osillate into axion-like partiles, whih an thenbe reonverted into photons behind the wall by another magneti �eld [10, 11, 12, 13℄.1Presently, there are several seond generation LSW experiments worldwide, suh asALPS [17℄, BMV [18℄, GammeV [19℄, LIPSS [20℄, OSQAR [21℄, and PVLAS [22℄, underonstrution or serious onsideration (for a review, see Refs. [23, 24℄). These e�orts arepartially motivated by the report from the PVLAS ollaboration of evidene for a non-zero apparent rotation of the polarization plane of a laser beam after passage through amagneti �eld [2℄. While the size of the observed e�et greatly exeeds the expetationsfrom quantum eletrodynamis [25, 26, 27, 28℄, it is ompatible with a photon-ALP osil-lation hypothesis or with the prodution of light miniharged partiles [29℄. Although theouplings and masses required for an explanation of PVLAS seem to be in serious onitwith bounds oming from astrophysial onsiderations [30, 31℄, there are various ways toevade them [32, 33, 34, 35, 36, 37, 38, 39, 40, 41℄ (see, however, Ref. [42℄). This makes it1Also, astrophysial observations of light rays from binary pulsar systems [14℄, dimming features inthe spetra of TeV gamma soures [15℄, or regenerated photons from osmi ALPs originating from theCrab pulsar [16℄ ould be a useful optial probe. 1



extremely important to hek these interpretations in laboratory experiments.LSW experiments seem well-suited to distinguish between ALPs and miniharged par-tiles. Only in the former ase, we expet a sizeable rate of regenerated photons. However,natural models with miniharged partiles also ontain at least one paraphoton [43℄. Inthis paper, we inlude the e�ets of paraphotons and disuss in detail how this an lead toa non-vanishing signal in LSW experiments that is nevertheless distinguishable from theone expeted in the ALP ase. Moreover, we show that the presene of the paraphotonsigni�antly alters the signals in polarization experiments.The paper is organized as follows. In Set. 2, we briey review how miniharges arisein models with paraphotons. In Sets. 3 and 4, we show how paraphotons an lead to asignal in LSW experiments. In Set. 5, we disuss how the preditions for rotation andelliptiity measurements hange in models with paraphotons. In realisti experiments, themagneti �eld region has a �nite spatial size. For small, but non-vanishing paraphotonmass, this an have signi�ant e�ets, as we explain in Set. 6. In Set. 7, we giveexpliit examples in whih signals of a paraphoton model are ompared to those of apure miniharged partile model without paraphoton. Furthermore, we use data fromthe BFRT experiment to illustrate the sensitivity of suh optial setups. Finally, wesummarize and onlude in Set. 8.2 Paraphotons and miniharged partilesMiniharged partiles arise very naturally in models with extra U(1) gauge degrees offreedom [9, 43℄. In this setion, we briey review how kineti mixing leads to minihargedpartiles and provide some details on models that have been proposed to explain thePVLAS result.Let us begin with the simplest model with two U(1) gauge groups, one being oureletromagneti U(1)QED, the other a hidden-setor U(1)h under whih all standard modelpartiles have zero harge. The most general Lagrangian allowed by the symmetries isL = �14F ��F�� � 14B��B�� � 12�F ��B�� ; (2.1)where F�� is the �eld strength tensor for the ordinary eletromagneti U(1)QED gauge �eldA�, and B�� is the �eld strength for the hidden-setor U(1)h �eld B�, i.e., the paraphoton.The �rst two terms are the standard kineti terms for the photon and paraphoton �elds,respetively. Beause the �eld strength itself is gauge invariant for U(1) gauge �elds, thethird term is also allowed by gauge and Lorentz symmetry. This term orresponds to anon-diagonal kineti term, a so-alled kineti mixing.From the viewpoint of a low-energy e�etive Lagrangian, � is a ompletely arbitraryparameter. Embedding this into a more fundamental theory, it is plausible that � = 02



holds at a high-energy sale related to the fundamental theory. However, integrating outthe quantum utuations below this sale generally tends to generate non-vanishing � [43℄.In a similar manner, kineti mixing arises in many string theory models [35, 44, 45, 46,47, 48, 49℄.The kineti term an be diagonalized by a shiftB� ! ~B� � �A�: (2.2)Apart from a multipliative renormalization of the gauge oupling, e2 ! e2=(1� �2), thevisible-setor �elds remain una�eted by this shift.Let us now assume that we have a hidden-setor fermion2 h that has harge one underB�. Applying the shift (2.2) to the oupling term, we �nd:eh�hB= h! eh�h ~B=h� �eh�hA= h; (2.3)where eh is the hidden-setor gauge oupling. We an read o� that the hidden-setorpartile now has a harge �e = ��eh (2.4)under the visible eletromagneti gauge �eld A� whih has gauge oupling e. Sine � isan arbitrary number, the frational eletri harge � of the hidden-setor fermion h is notneessarily integer.For small �� 1, we observe that j�j � 1; (2.5)and h beomes a miniharged partile. From now on we will onentrate on this ase3.So far we have onsidered the ase of an unbroken U(1)h symmetry for the paraphoton.Let us now see what happens if we add a mass term,4L� = 12�2B�B�: (2.6)Applying the shift (2.2) results in a termL� = 12�2 � ~B� ~B� � 2� ~B�A� + �2A�A�� (2.7)2Here and in the following, we will speialize to the ase where the hidden-setor partile is a fermion.A generalization to salars is straightforward and does not hange the results qualitatively.3Very small values of � an be obtained in supersymmetri or string theories [44℄. On the otherhand, light partiles with harge � = O(1) are exluded by several kinds of experiments [50, 31℄ andvery massive partiles give negligible ontributions in experiments suh as BFRT, PVLAS, Q&A or theupoming optial experiments that will test the PVLAS partile interpretation.4Adding a mass term is equivalent to breaking the paraphoton U(1)h via a Higgs mehanism andhoosing unitary gauge. 3




�h h �h h�e + ��2eh0 = on shell 0

Figure 1: Two diagrams ontributing to the oupling of the photon to the hidden-setor fermionh in a situation where the paraphoton is massive. The �rst is the diret ontribution via theharge �e that arises from the shift (2.2) of the paraphoton �eld. The seond is due to thenon-diagonal mass term (2.7) and anels the �rst diagram if the external photon is on shelland massless (q2 = 0). Note that the seond diagram is only present if the paraphoton hasnon-vanishing mass �2 6= 0.that mixes photons with paraphotons.To see how this a�ets the oupling of the hidden-setor fermion, let us write downthe inverse propagator in our (A�; ~B�) basis,P�1 = � q2 � �2�2 +��2+��2 q2 � �2 � : (2.8)The e�etive harge of the hidden-setor fermion h is now obtained (to lowest order in �)from Qhe = limq2!0 q2P1jCj = ��e + �eh = 0; (2.9)where C = (��e; eh) (2.10)is the harge vetor of h in the (A�; ~B�) basis. In this limit, the photon is put ontothe mass shell, and the fator q2 is inluded to anel the trivial 1=q2 dependene of theCoulomb potential. The two ontributions orrespond to the two diagrams in Fig. 1. Onshell, the miniharge is \undone" by the mass term. However, o� shell or for massivephotons (as, for instane, in a plasma), this is not the ase.Let us now move on to the slightly more involved ase of the model presented inRef. [34℄ (\MR model"). This model involves two paraphotons B�1 and B�2 . For larity,we will in the following suppress Lorentz indies and use a matrix notation (A;B1; B2),and similarly for the ~B. The Lagrangian for the gauge �elds reads:L = �14F TKF + 12ATMA; (2.11)4



with the kineti mixing and mass matrixK = 0� 1 � �� 0 0� 0 0 1A ; M = 0� 0 0 00 �2 00 0 0 1A : (2.12)Again, we an diagonalize the kineti term by shifting the �elds,B1 ! ~B1 � �A; (2.13)B2 ! ~B2 � �A:This leaves the ordinary eletromagneti gauge �eld una�eted (again up to a small renor-malization).The model of Ref. [34℄ has a hidden-setor fermion that lives in the bifundamentalrepresentation of the two paraphotons with harges (0; 1;�1). Moreover, the two hiddengauge ouplings are assumed to be equal eh;1 = eh;2 � eh. Applying (2.13), we �ndeh�h[B�1 � B�2 ℄�h! eh�h[( ~B�1 � �A�)� ( ~B�2 � �A�)℄�h = eh�h[ ~B�1 � ~B�2 ℄�h: (2.14)For the moment, it seems as if the hidden-setor fermion has no interation with thephoton. However, we should not forget that one of the paraphotons is massive. In thenew basis, the mass matrix reads~M = 0� �2�2 ���2 0���2 �2 00 0 0 1A : (2.15)As in the ase of only one paraphoton, the mass term undoes the e�ets on the minihargesindued by the massive paraphoton (f. Eq. (2.9)). Sine the seond paraphoton is mass-less, its ontribution to the miniharge (f. middle part of Eq. (2.14)) remains una�etedand the partile has an e�etive harge,QMRh e = +�eh: (2.16)Finally, let us omment on situations where the virtuality of a proess is high omparedwith the paraphoton mass sale, as, for instane, in the enter of the sun. In this ase,we annot take the limit q2 ! 0 in Eq. (2.9). Instead, we have to insert the virtualityof the proess, implying that the miniharge is not undone by the mass term. At highvirtuality, the small mass has basially no e�et and the (�rst) paraphoton behaves moreor less as if it were massless. For our ase with two paraphotons, this means that the �rstparaphoton now ontributes a harge �eh� to the e�etive eletromagneti oupling of hresulting in a total of QMRh � 0; for q2 � �2: (2.17)In other words, the mass matrix (2.15) an be negleted, and we e�etively have the aseof two massless paraphotons and an interation as in Eq. (2.14).5



 0 0 
Figure 2: Shemati piture of a \Light-shining-through-walls" experiment in absene of amagneti �eld. The rosses denote the non-diagonal mass terms that onvert photons intoparaphotons. The photon  osillates into the paraphoton 0 and, after the wall, bak into thephoton  whih an then be deteted.3 Light shining through walls I: B=0In the previous setion, we have seen how a non-diagonal mass matrix ontributes tothe e�etive harge of the hidden-setor fermion via a diagram that hanges the photoninto a paraphoton (the seond diagram of Fig. 1). This non-trivial propagation of thephoton an have interesting e�ets in itself. Sine the paraphotons ~B do not interat withordinary matter they an easily pass through a wall [9℄, giving rise to a proess skethedin Fig. 2. There, we see how a photon is onverted into a paraphoton by the non-diagonalmass term. Subsequently, the paraphoton passes through the wall and is then reonvertedinto an ordinary photon that an be deteted.The photon onversion into (massive) paraphotons and bak into photons very muhresembles neutrino osillations. Similarly to neutrinos, the interation eigenstates are notequal to the propagation eigenstates.In order to alulate the probability for an initial photon interation eigenstate topropagate through a wall via this proess, we start with the equations of motion in ourtilde basis,[!21+ �2z1� ~M℄� A~B � = �(!2 + �2z )� 1 00 1 �� �2� �2 ���� 1 ��� A~B � = 0: (3.1)Here, we have suppressed the Lorentz struture. Both transverse polarization diretionshave to ful�ll the same equation. In the seond part, we have speialized to the ase ofonly one massive paraphoton. Note that this ase is ompletely equivalent to the asewith two paraphotons in the model of Ref. [34℄, beause the mass matrix (2.15) is non-vanishing only in the �rst two omponents and therefore the seond paraphoton does notmix with the photon (we will see in next setion that this situation hanges when photonspropagate in an external magneti �eld).
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Experiment Laser Cavity MagnetsALPS 532 nm; 200 Watt � B1 = B2 = 5 T`1 = `2 = 4:21 mBFRT � 500 nm; 3 Watt Npass = 200 B1 = B2 = 3:7 T`1 = `2 = 4:4 mBMV 8� 1021  per pulse � B1 = B2 = 11 T`1 = `2 = 0:25 mGammeV 532 nm; 3:2 Watt � B1 = B2 = 5 T`1 = `2 = 3 mLIPSS 900 nm; 3000 Watt � B1 = B2 = 1:7 T`1 = `2 = 1 mOSQAR 1064 nm; 1000 Watt Npass � 10000 B1 = B2 = 9:5 T`1 = `2 = 7 mPVLAS 1064 nm; 0:02 Watt Npass = 44000 B1 = 5 T, `1 = 1 mB2 = 2:2 T, `2 = 0:5 mTable 1: The benhmark values of \light-shining-through-walls" (LSW) experiments (for someof these experiments, the setup is still preliminary).From Eq. (3.1), we �nd two propagating eigenstates,V1(z; t) = � 1� � exp(�i(!t� k1z)); with k21 = !2; (3.2)V2(z; t) = � ��1 � exp(�i(!t� k2z)); with k22 = !2 � �2 +O(�2):Let us now start with an initial state at z = 0 that is purely photoni5,A(0; 0) = A0� 10 � = A0� 11 + �2V1(0; 0)� �1 + �2V2(0; 0)� : (3.3)The survival probability for an initial photon isP!(z) = jA1(z; t)j2jA0j2 = 1� 4�2 sin2��k z2 � +O(�4); (3.4)where �k = k1 � k2 � �22!; for �� !: (3.5)The onversion probability into paraphotons is then obtained as [9℄P!0(z) = jA2(z; t)j2jA0j2 = 1� jA1(z; t)j2jA0j2 = 4�2 sin2��24!z� : (3.6)5In Appendix B, we argue that this is a reasonable hoie for the initial state.7



Figure 3: Projeted sensitivity (one expeted event per indiated time; no bakground; � = 1)of future LSW experiments to photon-paraphoton osillations in the absene of a magneti �eld.The shaded region shows the 95% exlusion region of BFRT.In a light-shining-through-walls experiment as depited in Fig. 2, with lengths `1 and `2before and after the wall, the photon probability for a transit \through the wall" is thensimply given byPtrans = P!0(`1)P0!(`2) = 16�4 �sin�`1�24! � sin�`2�24! ��2 : (3.7)Typially, the onversion probability P!0(`1) is enhaned by using a pair of faing mir-rors before the wall. If the photon beam is reeted Npass times, it will make(Npass + 1)=2 \attempts" to ross the wall, enhaning the transmission probability bythis same fator. The expeted rate of observed photons in addition involves the totalinitial photon rate N0 and the detetion eÆieny � < 1,N = �N0 �Npass + 12 �Ptrans : (3.8)Figure 3 shows the limit from the BFRT experiment [1℄ and the projeted sensitivity ofthe on-going experiments listed in Table 1, orresponding to one regenerated photon after8



one day of observation. For � & 10�4 eV, this limit on the mixing parameter is betterthan the one from Cavendish-type laboratory searhes for a �fth fore [51, 52, 53℄.4 Light shining through walls II: B6= 0In a lassi light-shining-through-walls experiment [11, 12, 13℄, the light is shone througha transverse magneti �eld. This is beause these experiments typially look for axions[54, 55℄, whose prodution by virtue of their oupling to two photons requires a transversemagneti �eld [10℄. Therefore, let us study what happens in our photon-paraphotonsystem with a miniharged partile if we swith on suh a magneti �eld.In a pure miniharged partile model without paraphotons, the onversion of photonsinto miniharged partiles in a magneti �eld does not produe a photon signal in thedetetor behind the wall. The partile-antipartile pairs that are reated from the photons[6℄ move away from eah other under the inuene of the magneti �eld beause they haveopposite harges. Moreover, they typially have opposite momenta along the diretion ofthe magneti �eld lines separating them even further. In general, the partiles will notannihilate again behind the wall and annot be reonverted into photons6.What is di�erent if we inlude paraphotons? The big di�erene is that now photonsan onvert into paraphotons whih then will pass through the wall. In the presene ofa magneti �eld, this oherent onversion is possible even for massless paraphotons. Therelevant diagram for this transition is depited in Fig. 4(b).For a quantitative analysis, we again start from the equations of motion. We begin withthe simple ase of only one massless paraphoton. Without paraphotons, Fig. 4(a) wouldindue a non-vanishing refrative index. The photon would then satisfy the followingequation of motion,�(1 + 2�2e2�Ni)!2 � k2�Ai = 0 (without paraphotons): (4.1)The index i represents the two polarizations k and ? with respet to the magneti �eldand �2e2�Ni = ni � 1 is the ontribution to the refrative index of the photon aused bythe diagram 4(a). The expliit expression for �Ni(�eB; mf) for a partile h with massm� is given in Appendix A. Various representations of �Ni and plots of the parameterdependenies an, for instane, be found in [57, 58, 59℄.It is now straightforward to derive the ontribution from Fig. 4(b) to our photon-6In the present work, we assume that the wall thikness is bigger than the Compton wavelength ofthe miniharged partiles. In this limit, we expet that the potential proess of a photon propagatingthrough the wall as a virtual miniharged partile pair is exponentially suppressed. The opposite limitrequires a areful �eld-theoretial study of the photon polarization tensor near the wall, whih is beyondthe sope of the present work. 9



 �e �e(a)
 0�e eh(b)= + +B B B + :::�e �e �e

()Figure 4: The ontribution of miniharged partiles to the polarization tensor 4(a). Thereal part leads to birefringene, whereas the imaginary part reets the absorption of photonsaused by the prodution of partile-antipartile pairs. The analogous diagram 4(b) shows howminiharged partiles mediate transitions between photons and paraphotons. Note that thelatter diagram is enhaned with respet to the �rst one by a fator � eh=(�e)= 1=�. The doubleline represents the omplete propagator of the miniharged partile in an external magneti �eldB as displayed in 4() [56℄.paraphoton system. The full equation of motion beomes�(1 + 2�2e2�Ni)!2 � k2�Ai + 2(�e)eh�Ni !2 ~Bi = 0: (4.2)Equation (4.2) is not a losed equation for the photon, beause it ontains the parapho-ton �eld. The equation of motion for the paraphoton an be obtained in omplete analogy.We simply have to replae the two external photon legs in Fig. 4(a) with paraphotonsand exhange the photon and the paraphoton �eld in Fig. 4(b),�(1 + 2e2h�Ni)!2 � k2� ~Bi + 2(�e)eh�Ni !2Ai = 0: (4.3)Using (2.4) to eliminate �, we an write the omplete set of equations as�(!2 + �2z )� 1 00 1 �+ 2!2e2h�Ni� +�2 ���� +1 ��� Ai~Bi � = 0; (4.4)for one massless paraphoton.This equation is ompletely equivalent to (3.1) if we replae�2 ! �2!2e2h�Ni: (4.5)10



The propagation eigenstates are already given in Eq. (3.2). There is only one slightompliation that has to be dealt with when alulating the transition probability: �Niis generally omplex, �Ni = �ni + 12! i�i: (4.6)Up to oupling fators orresponding to the external (para-)photon lines, �ni is thedeviation of the real refrative index from 1, and �i denotes the absorption oeÆient.Aounting for this, the transition probability isP!0(z) = �2[1 + exp(�e2h�iz)� 2 exp(�e2h�iz=2)os(e2h�ni!z)℄: (4.7)The total probability for a light-shining-through-walls experiment then isPtrans = �Npass + 12 ��4[1 + exp(�e2h�iz)� 2 exp(�e2h�iz=2)os(e2h�ni!z)℄2: (4.8)Note the following features:� The size of the photon-paraphoton mixing is ontrolled by �2, but� the typial osillation length for the photon-paraphoton system is given by1=(!e2h�n). The latter is by a fator �2 shorter than the typial length whihmight naively be expeted from Fig. 4(a).� The osillations die out for non-vanishing �i and we get a non-osillatory signal forexperiments with a suÆiently long onversion region. This is rather useful, beausethe osillations typially lead to \holes" in the sensitivity of the experiment for agiven �xed experimental signal.� The �Ni are non-vanishing for both polarization diretions k and ? and we expeta signal for both polarizations. This might resemble a ase in whih light-shining-through-walls proeeds through an axion-like partile (ALP) with mixed parity in-terations to photons7, as onsidered in Ref. [60℄. However, for the most likelysenarios where the ALP has a de�nite parity, either pseudosalar or salar, a signalwould be expeted only for the k or ? mode.� For pratial purposes, it is useful that the osillation length of the photon-parapho-ton system is ontrollable by the external magneti �eld (�n and � depend on B).Varying the magneti �eld, one an try to maximize the term in square braketsin Eqs. (4.7) or (4.8). For instane, the transition probability (4.7) asymptotiallyapproahes �2; but for a suitable set of parameters suh that �iz ! 0 and �ni!z !7Even in this ase it an be easy to distinguish between a general ALP and paraphoton senarios. Inthe seond ase, the ratio of the regeneration rates of the two polarization modes does depend on thephoton energy and on the strength of the magneti �eld, whereas this ratio is a onstant for the formerase. 11



�, the transition probability an inrease up to 16�2. This is in ontrast to the aseof an ALP, where the osillation length is ompletely determined by the mass ofthe ALP, whih annot be hanged, and the frequeny of the laser, whih is at leastmore diÆult to hange.At �rst glane, the insertion of a mass term seems straightforward on the basis of theequations of motion. However, as disussed in Set. 2, we have to take into aount thatthe e�etive h-photon oupling reeives an additional ontribution from the non-diagonalpropagator, suh that Qh = 0. Therefore, �Ni vanishes in this ase, and we get the sameresult as for B = 0. Note that this simple argument impliitly assumes that the magneti�eld is homogeneous and thus has in�nite spatial extent, also transversally to the photonbeam diretion. The e�ets of a magneti �eld with �nite size will be disussed in Set. 6.Finally, let us turn to the full model [34℄ with two paraphotons, one massless andone massive. As disussed in Set. 2, the e�etive oupling of the partile h with harges(0; 1;�1) to photons is Qhe = �eh, f. Eq. (2.16). This determines �N as given in Setion6 and Appendix A. Taking the negative harge of h with respet to the seond paraphotoninto aount, the equation of motion reads"(!2 + �2z )0� 1 0 00 1 00 0 1 1A� �20� �2 �� 0�� 1 00 0 0 1A (4.9)+2!2e2h�Ni0� 0 0 00 1 �10 �1 1 1A#0� Ai~B1;i~B2;i 1A = 0:The expliit regeneration probabilities are given in Appendix C. A quantitative disussionfollows below in Set. 7.5 Dihroism and birefringene in models with para-photonsIn the preeding setions, we have onentrated on light-shining-through-walls experi-ments. But imprints of paraphotons an also be found in experiments that measurethe hange in the optial properties after propagation through the apparatus, as is, forinstane, done in the BFRT, PVLAS and Q&A experiments.Both rotation and elliptiity an be inferred from the photon-photon amplitude,Ai! = Ai1(z; t)A0 exp(i(kz � !t)) ; (5.1)for di�erent polarization diretions i. 12



As we have already seen in Set. 3, Eq. (3.4),P i! = jAi!j2 (5.2)is the survival probability for an inoming photon. In other words, 1 � jAi!j is thederease in amplitude for the di�erent polarization diretions. From this, we an easily�nd the rotation of an initially linear polarized beam entering at an angle �,�� = 12(jA?!j � jAk!j) sin(2�) � 12Re(A?! � Ak!) sin(2�); (5.3)where the approximation is valid for amplitudes that are lose to 1.Phase shifts ompared to an unmodi�ed photon beam appear as the argument of theamplitude, Arg(A?;k!). One �nds for the elliptiity, = 12[Arg(Ak!)� Arg(A?!)℄ sin(2�) � 12Im(Ak! � A?!) sin(2�): (5.4)As expeted, neither rotation nor elliptiity appears in the absene of a magneti �eld,beause the amplitudes Ak;?! are equal. This is, of ourse, due to the fat that a simpleLorentz invariant mass term distinguishes no preferred diretion.In the presene of a magneti �eld, however, the amplitudes di�er, beause the osil-lation and absorption lengths are di�erent for photons parallel k and perpendiular ? tothe magneti �eld.Using the propagation eigenstates derived in Sets. 3 and 4, namely Eqs. (3.2), (3.5)and (4.5), we �nd the amplitudeAk;?! = 1� �2(1� exp(�i�kk;?z �Kk;?z)); for �� 1; (5.5)where �kk;? = �!e2h�nk;?; Kk;? = 12e2h�k;?: (5.6)Inserting this into Eq. (5.3), we �nd:�� = 12�2 �os(�k?z) exp(�K?z)� os(�kkz) exp(�Kkz)� sin(2�) (5.7)� �14�2e2(�k � �?)z + 14�2!2[(e2h�nk)2 � (e2h�n?)2℄z2� sin(2�); for �kz;Kz � 1:The �rst term in the last line is the standard result for the rotation in a model withoutparaphotons (f. e.g. Ref. [29℄). However, note that with paraphotons where �2e2 = �2e2hthis result holds only if the length z is muh smaller than the osillation length 1=(!e2h�n);the latter is by a fator �2 smaller than the naive expetation from the ase withoutparaphotons 1=(!�2e2�n). 13



Similarly the elliptiity an be inferred from Eq. (5.4), = �12�2 �sin(�kkz) exp(�Kkz)� sin(�k?z) exp(�K?z)� sin(2�) (5.8)� 12!�2he2(�nk ��n?)z sin(2�); for �kz;Kz � 1:Eqs. (5.3) and (5.4) are valid also for models with two paraphotons. The determinationof the rotation and elliptiity boils down to solving the equation of motion (4.9) andinserting into (5.1), (5.3) and (5.4). (The neessary expressions for the amplitudes an befound in Appendix C.) A quantitative disussion follows in Set. 7.6 E�ets of a magneti �eld with �nite extent trans-verse to the photon beamIn Set. 2, we have seen that, for massive paraphotons, the � eletri harge resulting fromthe shift in the paraphoton �eld is e�etively aneled by the mass term as depited inFig. 1. However, this is true only if the photon oupling to the hidden-setor partile hasq2 = 0, i.e., if it is on shell.In realisti situations, the magneti bakground �eld has a �nite extent and the pho-tons whih build it up have a non-vanishing virtuality. In order to take this into aount,we have to resum the diagrams in Fig. 1 also at non-vanishing virtuality. Resummingtree-level diagrams is equivalent to solving the equations of motion (this automatiallyinludes also the higher-order diagrams with multiple mass insertions that were negletedin Fig. 1). Therefore, we have to solve the ombined equations of motion for photon andparaphoton { inluding the mass term { not only for the photons of the laser but also forthe bakground magneti �eld. To lowest order, we an neglet the index of refration�N and we have (Lorentz struture suppressed),[r21� ~M℄� A~B � = �r2� 1 00 1 �� �2� �2 ���� 1 ��� A~B � = 0; (6.1)for a stati bakground �eld.To get an impression of the general behavior, we an solve (6.1) for a spheriallysymmetri situation with a point soure. Similar to the two eigenmodes in Set. 3, we�nd two solutions orresponding to a pure massless Coulomb-type potential and a massive
14



Yukawa-type potential8, �1(r) = � 1� � 1r ; (6.2)�2(r) = � ��1 � exp (��r)r :For a soure made up of ordinary matter, the potentials have to behave like � (1; 0)T1=rfor r ! 0 and the potential for matter �elds takes the form,�matter � 11 + �2 1r � 1 + �2 exp(��r)�(1� exp(��r)) � : (6.3)A hidden-setor partile with harge vetor (�e; eh)T therefore sees an e�etive potential,(�e; eh)�matter � 1r [�e+ �eh(1� exp(��r))℄ +O(�2) = 1r �e exp(��r); (6.4)where we have used Eq. (2.4), �e = �eh�, for the last equality. Note that this an bewritten as (�e; eh)�matter � (�e; eh)�matterj�=0 exp(��r); (6.5)and therefore, these e�ets an be aounted for by using an e�etive magneti �eld Be�(r)in the alulation of �N , given byBe�(r) = B(1 + �r) exp(��r) (6.6)where B is the standard magneti �eld, alulated as if there were no paraphotons.If the soure is not pointlike we therefore expet a behavior,Be�(r) � � B exp(��r) for �r � 1B for �r � 1 ; (6.7)where r is now a typial distane from the soure.For large distanes, r � 1=�, we reover the result that the e�etive harge vanishes.But for smaller distanes, residual e�ets of the epsilon harge remain. In typial exper-iments, the transverse size9 of the magneti �eld is of the order of 10 m. Rememberingthat 1 m � 1=(2� 10�5 eV) this an indeed beome an important e�et for paraphotonmasses of the order of �eV.A similar alulation an be done for the ase of two paraphotons. In this ase, thehidden-setor �eld is not diretly oupled to the eletromagneti �eld (f. Eq. (2.14)).8In our simpli�ed notation without any Lorentz struture, the potentials an be either the eletripotential or the vetor potential leading to magneti �elds, depending on whether the soure is a hargeor a urrent.9The important length sale is the distane from the soures, i.e., the urrents.15



The e�etive epsilon harge arises, beause one paraphoton is massive and the other ismassless, and the anellation analogous to Fig. 1 is not omplete. Therefore, we are nottoo surprised by the result,BMRe� (r) = B(1� (1 + �r) exp(��r)): (6.8)For extended soures, we then expetBMRe� (r) � � B for �r � 1B(0 +O(�r)) for �r � 1 ; (6.9)where r is again a typial distane from the soure.At large r � 1=�, this indeed looks like a partile with an e�etive harge �e. At smalldistanes the harge is redued. This e�et is exatly the same as the one that is used to\swith o�" the eletri harge of the hidden-setor partile in astrophysial plasmas inorder to avoid the astrophysial bounds on miniharged partiles [34℄.7 Quantitative analysisThe ontribution of miniharged partiles to the rotation and elliptiity in a pure MCPmodel has been studied in Refs. [6, 29℄. If the miniharge originates from kineti mixing,the presene of the paraphoton may lead to signi�ant hanges to these signals and willalso ontribute to LSW experiments. In this setion, we give some expliit examples forthe inuene of the paraphoton.Qualitatively, the most obvious di�erene is the possibility to have a non-vanishingLSW signal, whih is hardly possible without paraphotons, sine the MCPs are unlikelyto reombine behind the wall and produe a photon. The upper panels of Fig. 5 show thetransition probability of photons in a LSW experiment as a funtion of the experimentalparameters B and `, the strength and length of the magneti �eld, respetively. Note,that we have non-vanishing transition probabilities for photons polarized parallelly andperpendiularly to the magneti �eld. This in ontrast to models with a single ALP, wherethe amplitude for the parallel (perpendiular) polarization vanishes for a pseudo-salar(salar) ALP.The gray shaded band in the plots indiate a parameter region for the experimentalsetup where the signals have an osillatory behavior, orresponding to ��Kk;?�� < `�1 and���kk;?�� > `�1 de�ned in Eq. (5.6). For ��Kk;?�� � `�1, the signal beomes onstant withPtrans = �4, whereas it an inrease by up to a fator of 16 in the osillatory region,f. Eq. (4.7).The solid lines in the enter and lower panels of Fig. 5 show the rotation and elliptiityof the laser polarization, respetively in omparison with a pure MCP model (red dashed16



Figure 5: Dependene of the regeneration probability Ptrans (upper panels), rotation �� (enterpanels), and elliptiity  (lower panels) on the magneti �led B (left panels) and the length `of the magneti region inside the avity (right panels). As a benhmark point we assume onemassless paraphoton with kineti mixing parameter � = 2�10�6 and para-oupling eh = e witha hidden Dira spinor with mass m� = 0:1 eV. The remaining experimental parameters are keptat B = 5 T, ! = 1 eV, Npass = 1, and ` = 5 m in eah plot. The photon regeneration probabilityis shown for the ase of parallel � = 0 (solid line) and orthogonal � = �=2 (dot-dashed line)laser polarization. The dotted line indiates the asymptoti behavior Ptrans = �4. The rotationand elliptiity signals assume a polarization of � = �=4. For omparison, the dashed line showsthe result for rotation and elliptiity without massless paraphotons (see Ref. [6, 29℄). The grayshaded band in eah plot indiates the osillation regime, orresponding to ��Kk;?�� < `�1 and���kk;?�� > `�1 (ompare Eqs. (5.6){(5.8)). 17



lines). In general, the presene of the paraphoton alters the signals signi�antly omparedto a pure MCP model. In partiular, the seemingly favorable experimental parameters,long and strong magneti �elds, lead to a small signal. Only inside the osillatory regionthe signals may beome omparable to or even larger than the pure MCP signal, as anbe seen from the rotation plots.Note that these qualitative features are generi to the paraphoton model, whereas thespei� position of the signal peaks depends on the partiular benhmark point that is usedin the plots. This beomes apparent in Figs. 6 and 7, where now the model parametersare varied while keeping the experimental ones �xed. Again, one �nds a similar behaviorof the signals on the kineti mixing parameter �, the relative para-oupling eh=e, the massof the miniharged partile m� and the mass of the paraphoton �. For masses of the orderof a few � 10�eV, the most important e�et is the redution of the e�etive magneti�eld as disussed in Set. 6, sine masses in the �eV range are not big enough to lead to asizeable transition probability from osillations due to the mass alone. For bigger masses& meV, the photon-paraphoton osillations are driven by the mass term. In this region,the signal does not hange if the magneti �eld is swithed o�.The reason for the fat that elliptiity and rotation beome insensitive to the model pa-rameters for large magneti �eld length or strength an easily be understood heuristially:owing to the nonzero depletion oeÆient � for the photon interation state, the ombinedphoton-paraphoton state evolves nonunitarily over long distanes into that mixed statewhih does not interat with the hidden fermions h. For this state, the e�etive refra-tive index and depletion oeÆient approah the trivial vauum values; onsequently, anyfurther elliptiity or rotation e�ets are absent in this regime.It is interesting to observe that the elliptiities in the paraphoton model deviate fromthe pure MCP model towards smaller values in the osillatory region, whereas the rotationsalso exhibit peaks that exeed the pure MCP value, see, e.g., Figs. 5 and 6. The reasonfor these pronouned rotation peaks in the paraphoton model lies in a nontrivial interplaybetween the paraphoton and the miniharged utuations, as is visible from the seondterm in Eq. (5.7). In pure MCP models, rotation is indued by photon loss due to MCPprodution (�rst term in Eq. (5.7)) for whih mass-threshold and phase-spae onditionshave to be satis�ed. With a light paraphoton, these onditions are muh more relaxed;for instane, a photon-paraphoton transition via a virtual intermediate MCP state an bepossible even if the photon energy is too small to exite a real MCP pair. This rotation-induing e�et is a genuine feature of models with both MCPs and paraphotons. Themodel-parameter range where these rotation peaks appear is also a promising andidate forparameterizing the anomalous PVLAS rotation signal [2℄; a preise �t to the orrespondingallowed parameter range, however, is beyond the sope of the present work.The BFRT ollaboration [1, 8℄ performed a pioneering experiment searhing for therotation, elliptiity, and photon regeneration signals. From the non-observation of asignal one an infer exlusion regions for the MCP senario as well as extensions withparaphotons. The left plot of Fig. 8 shows the exluded region of mass m� and harge �18



Figure 6: Dependene of the regeneration probability Ptrans (upper panels), rotation �� (enterpanels), and elliptiity  (lower panels) on the kineti mixing parameter � (left panels), and therelative para-oupling eh=e (right panels). We use the same benhmark values and notation asin Fig. 5.
19



Figure 7: Dependene of the regeneration probability Ptrans (upper panels), rotation �� (enterpanels), and elliptiity  (lower panels) on the mass of the miniharged partile m� (left panel)and the mass of the paraphoton � (right panels). We use the same benhmark values andnotation as in Fig. 5. In order to alulate the � dependene, we have assumed a typialdistane of the laser beam from the soure of the magneti �eld of r = 4 m.
20



Figure 8: Exlusion limits from the BFRT experiment. The dark (light) ontours show the2� (5�) exlusion limits of harge � and mass m� of a Dira spinor orresponding to the mea-surements of the BFRT ollaboration. (For simpliity, we assume a onstant magneti �eldamplitude of B = 2 T for the alulation of the rotation and elliptiity signal.) The left panelshows the exluded region in the pure MCP model. The right panel shows the results inludinga massless paraphoton with para-oupling eh = e. The loss of sensitivity for small masses ispartially ompensated by the results of the photon regeneration experiment.in the pure MCP model. In this ase, the model is not onstrained by the regenerationmeasurement.This is di�erent for paraphoton models, as an be seen in the right plot of the same�gure. For small masses, rotation and elliptiity do not represent sensitive probes of themodel parameter spae. However, the regeneration limit puts a onstant upper bound onthe harge � at small masses m� and not too small eh, orresponding to the asymptotibehavior of the transition probability Ptrans ! �4. This partially ompensates for the lossof sensitivity of the optial measurements. This demonstrates that LSW experiments areomplementary to polarization measurements.Of ourse, the results are also somewhat dependent on the gauge oupling of theparaphoton, eh. But, as an be seen from Fig. 9, even a variation of the gauge ouplingby one order of magnitude around the natural value e leads to relatively small hangesin the limit on � obtainable from the BFRT regeneration data. This is a signi�antadvantage of LSW experiments.The qualitative dependene of the limits from LSW measurements on the remainingmodel parameter, the paraphoton mass �, an already be inferred from the right upper-most panel in Fig. 7. If we assume a typial distane of the laser beam from the soure21



Figure 9: The limit from BFRT measurements on the kineti mixing parameter for variousvalues of the para-oupling eh. The 2� (5�) exlusion limits are plotted as dark (light) ontours.of the magneti �eld of the order of 5 m, photon regeneration is sensitive in the range� . 10 �eV to osillations indued by the magneti �eld. For bigger masses, this e�et isextremely suppressed beause the magneti �eld is e�etively zero, as an be seen fromEq. (6.7). The signal is then driven by osillations via the mass term, and the BFRTbounds are as in Fig. 3.Finally, let us omment on the two-paraphoton model of Ref. [34℄. In this model,regeneration again leads to the best bounds, as an be seen from Fig. 10.8 ConlusionsConstraining the multitudinous possibilities to extend the standard model of partilephysis requires powerful laboratory tools that do not only searh for new partiles athigher and higher masses, but also for weakly oupled hidden setors with potentiallylight partiles. In this work, we have shown that light-shining-through-walls (LSW) ex-periments represent one of these desired tools to spei�ally look for a hidden setor withadditional U(1) paraphoton gauge groups { in addition to their disovery potential ofaxion-like partiles (ALP), as onventionally disussed in the literature. This beomesevident from Figs. 3, 8, and 10, in whih we present limits obtained from the BFRT LSWexperiment.Owing to their spei� dependene on both model as well as experimental parameters(see Figs. 5, 6, and 7), LSW experiments are also ideally suited to distinguish betweendi�erent models suh as those involving ALPs or paraphotons. One important example ofa feature that allows to distinguish between ALPs and paraphotons is the dependene on22



Figure 10: The limit from BFRT measurements on the kineti mixing parameter in the two-paraphoton model presented in Ref. [34℄ (eh = e). The 2� (5�) exlusion limits are plotted asdark (light) ontours. (The hosen values � � meV are small enough to avoid the astrophysialonstraints and big enough suh that e�ets of the �nite size of the magneti �eld play no role.)the polarization of the laser beam. For ALPs, we expet a signal only for one polarization,parallel or perpendiular to the magneti �eld. In paraphoton models, we expet anLSW signal for both polarizations. Also, the dependene of the regeneration rates onexperimental parameters suh as the laser frequeny and the magneti �eld are di�erentfor the di�erent models and thus provide for further deisive distinguishing riteria.Polarization experiments provide omplementary information (f. Fig. 8). They areespeially sensitive to pure miniharged partile models for whih no signal is expetedin LSW experiments. However, in paraphoton models, their sensitivity is limited.In onlusion, regenerating (para-)light from the hidden setor allows to test a largelass of natural extensions of the standard model.The disovery potential of optial experiments for features of the hidden setor isertainly not exhausted by our present study. For instane, the use of the rapidly evolvingpulsed high-intensity laser systems for this type of fundamental physis hallenges needsto be explored muh further, see, e.g., [7, 61℄. Also, nonlinear olletive e�ets in photon-plasma interations [62℄ may serve as an ampli�er of signatures of the hidden setor.Finally, experiments with large eletri �elds, where light miniharged partiles ould beprodued by the Shwinger mehanism, an provide additional insights [63℄.
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The symbol ~e0 denotes the generalized Airy funtion,~e0(t) = Z 10 dx sin�tx� x33 � ; (A.6)and ~e00(t) = d~e0(t)=dt.Similarly, �Dspk;? (�eB; m�)` = 12� e4� Bm̀� TDspk;? (�); (A.7)Tk;?(�) has the form of a parametri integral [65℄,TDspk;? = 4p3�� 1Z0 dv K2=3 �4� 11� v2�� h�1� 13v2�k ; �12 + 16v2�?i(1� v2) (A.8)= 8<:q32 e�4=� �(12)k; (14)?� ; for �� 1 ,2��( 16)�( 136 )��1=3 �(1)k; (23)?� ; for �� 1 ,andT sk;? = 2p3�� 1Z0 dv K2=3 �4� 11� v2�� h�13v2�k ; �12 � 16v2�?i(1� v2) (A.9)= 8<:12q32 e�4=� �(0)k; (14)?� ; for �� 1 ,��( 16)�( 136 )��1=3 �(16)k; (12)?� ; for �� 1 .These expressions have been derived to leading order in an expansion for high fre-queny [66, 67, 57, 68, 69, 58℄, !2m� � 1; (A.10)and for a high number of allowed Landau levels of the miniharged partiles [70℄,�Np = �NLandau2 = 112 � !2� eB�2��!! + �B2B �� 1, �� 4:9� 10�3 � !eV�2�TB���!! + �B2B � 12 : (A.11)In realisti experiments, the variation �!=! is typially small ompared to �B=B & 10�4.25



B Preparation of the initial state and avity e�etsLet us devote a few thoughts to the preparation of the initial state. In Sets. 3 and 4,we always started with a pure photon interation state, (A;B) = (1; 0) or (A;B1; B2) =(1; 0; 0). Is this the orret state for a realisti experiment? Naively, the answer is yes,beause the light is produed by ordinary matter whih interats only with the photoninteration eigenstate. Still, one might wonder whether the laser apparatus might be sopreise that it an prepare eigenstates of the energy and the momentum simultaneously.Figure 11 shows why this is not really relevant for the ase of a typial setup wherethe laser beam is oupled into the osillation region via a mirror (we believe that in mostexperiments suh a rediretion of the beam is employed at some stage of the experiment;in BFRT as well as PVLAS this is indeed the ase). It is simply the mirror that againselets the interation state and direts only the photon interation state into the rightdiretion towards the osillation region. The paraphoton interation state simply passesthrough the mirror and is lost.The bottom line is that the last mirror that ouples the beam into the osillationregion selets a pure photon interation state, and this determines the initial ondition.Next, we address the question as to whether some optial elements as, e.g., a Fabry-Perot avity with a high �nesse ould again selet a momentum eigenstate. If so, suh astate would have a well-de�ned wavelength and would therefore orrespond to a propa-gation eigenstate { destroying possible osillations.In ordinary optis, the transmission oeÆient for a Fabry-Perot avity isTFP = T 21 +R2 � 2R os(Æ) ; (B.1)with Æ = 2k` os(�): (B.2)Here, R and T are the transmission and reetion oeÆients of the mirrors. We assumeno absorption, i.e. T = 1 � R. The transmission is strongly peaked around Æ = 0 ande�etively �lters out a very narrow wavelength interval of widthÆ�� = �2F` os(�) ; (B.3)where ` is the length of the avity, andF = �2 arsin� 1�R2pR� � 2�1� R (B.4)denotes its �nesse; the approximation in the last step holds for 1�R� 1. � is the angleof the inident light (f. Fig. 12) whih we will take to be � = 0 for simpliity.26



Figure 11: Sketh of the initial-state preparation in a photon-paraphoton osillation experi-ment. The laser (inluding its optial elements) produes some unknown mixture of photon andparaphoton (blak line). Now, this beam is redireted via a mirror (blak diagonal) into the os-illation region. However, the mirror interats only with the interation eigenstate of the photon(red). The paraphoton interation state simply passes through the mirror (green). Therefore,we have a pure photon interation state at the beginning of the osillation region. If the photoninteration state does not oinide with the propagation eigenstates, i.e., if we have mixing, wehave a mixed interation state (blak) at the end of the osillation region.We an now study what happens in a model with a paraphoton. We start witha pure photon interation state (A;B) = (1; 0) at the entrane to the avity. Using thepropagation eigenstates found in Set. 3, we �nd the amplitude after the �rst pass throughthe avity, T1 = � A1B1 � = T exp(ik`) 1+�2 exp(��k`)1+�2�(1�exp(��k`))1+�2 ! : (B.5)Taking into aount that only the photons and not the paraphotons are reeted by themirrors, we an easily �nd also the amplitude for the seond transmitted beam,T2 = � A2B2 � = T exp(3ik`)R�1 + �2 exp(��k`)1 + �2 �2 1+�2 exp(��k`)1+�2�(1�exp(��k`))1+�2 ! : (B.6)Resumming Atrans = A1 + A2 + : : :, we �nd the total transition oeÆient for theFabry-Perot avity,T̂FP = jAtransj2 = jTM j21 + jM2Rj2 � 2jM2Rj os(Æ + �) ; (B.7)where M = 1 + �2 exp(��k`)1 + �2 =: jM j exp(i�) (B.8)is the photon-to-photon amplitude for one pass through the avity. For small �, we �ndjM j = 1� 4�2 sin2��k`2 � ; � = 2�2 sin(�k`): (B.9)27
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Figure 12: Light path inside a Fabry-Perot avity.If �2 � 1=F , i.e. if more photons esape from the avity via transmission than viaonversion into paraphotons, � and jM j � 1 provide only small orretions to the resultwithout paraphotons (B.1), and the avity selets essentially the same wavelengths aroundÆ � 2�n as without paraphotons. For example, in the PVLAS experiment with F � 105this ondition is easily ful�lled for � . 10�5.Let us now turn to the paraphotons exiting the avity. The transmission oeÆientfor paraphotons, or, in other words, the photon-paraphoton onversion probability, is (forsmall �),Tpara = jBtransj2 = 4jT j�2 sin2��k`2 � 11 + jM2Rj2 � 2jM2Rj os(Æ + �) (B.10)� 2F� �2 sin2��k`2 �� Npass + 12 �2 sin2 ��k`2 � :The last two lines hold for �2 � 1=F and Æ � 2�n, i.e., for inident photons in resonanewith the avity.To summarize, as long as paraphotons are a \small" e�et we redisover the naivelyexpeted result.
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C Regeneration probability for the two paraphotonmodelIn this appendix, we give the expliit formulas for the regeneration probability, rotationand elliptiity in the model of Ref. [34℄ with two paraphotons.With the abbreviation p(e2h�N)2 + (�2=4!2)2 = � + i� and �N = �n + i�=2!, wede�ne the inverse osillation and absorption lengths �� and ��, respetively, as�� = ! e2h�n� �24! � !; � �� = e2h�� 2! �:The transition probability (`1 = `2 = ` and Npass = 1) is given by the squared sum of theamplitudes for the transition of the wall through the two di�erent paraphotonsPtrans = ��A!01! +A!02!��2 ; (C.1)that an be expressed asPtrans = �4X20 + Y 20 �(2X0 +X+C+ +X�C� + Y+S+ + Y�S�)2 + � Xi ! YiYi ! �Xi�� : (C.2)Here, the index i denotes i = (+;�; 0), and we have used the funtionsS�(`) = exp (���`) sin(2��`)� 2 exp (���`=2) sin(��`) ;C�(`) = exp (���`) os(2��`)� 2 exp (���`=2) os(��`) ;with oeÆients X� = 16�2e2h�ne2h�2! � �e2h�n� �e2h�2! � ; (C.3)Y� = �4!4 + 16e2h�n(e2h�n� �)� 16e2h�2! �e2h�2! � �� ;X0 = 32 e2h�ne2h�2! ;Y0 = �4!4 + 16 (e2h�n)2 � �e2h�2! �2! :The ase B = 0 orresponds to �n = � = 0, giving � = �24!2 and � = 0, as well as�� = �� = 0 and �+ = ��22! . It is straightforward to hek that in this ase Eq. (C.2)redues to our previous result Eq. (3.7) with Npass = 1 and `1 = `2.For the photon to photon amplitude we �nd,Re(A!) = 1� 2�2 + �2�2 + �2 (C.4)��Z+ os(�+`) exp(��+`=2) + (+! �) + Z0 sin(�+`) exp(��+`=2)� (+! �)�29
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