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AbstratWe study the ondensation of loalized losed string tahyons on AdS orbifoldsboth from the bulk and boundary theory viewpoints. We �rst extend the knownresults forAdS5=Zk to AdS3=Zk ase, and we proposed that the AdS3=Zk deays intoAdS3=Zk0 with k0 < k. From the bulk viewpoint, we obtain a time-dependent gravitysolution desribing the deay of AdS orbifold numerially. From the dual gaugetheory viewpoint, we alulated the Casimir energies of gauge theory vaua and itis found that their values are exatly the same as the masses of dual geometries,even though they are in di�erent parameter regimes of 't Hooft oupling. We alsoonsider AdS5 orbifold. The deay of AdS5=Zk is dual to the transition between thedual gauge theory vaua on Rt�S3=Zk, parametrized by di�erent holonomies alongthe orbifolded spatial yle. We onstruted the instanton solutions desribing thetransitions by making use of instanton solutions on Rt � S2.
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1 IntrodutionClosed string tahyons are very important spetra in string theory sine they signalthe deay of bakground spae-time geometry into others, thus it is likely that thesetahyon ondensations play ruial roles in quantum gravity. However, ompared withthe developments of open string tahyon ondensation [1℄, the dynamis of losed stringtahyon ondensation is not so well-understood, despite with the pioneer work done forthe loalized losed string tahyon in ALE spaes [2℄.1 On the other hand, signi�antprogresses have been made on AdS/CFT orrespondene [4℄, whih gives a useful tool tounderstand the nature of quantum gravity from the well-de�ned gauge theory point ofview. Therefore, we ould expet to obtain a lot of insights by investigating the fate ofloalized losed string tahyons if we embed them into asymptotially AdS spaes.First let us reall the known results on the ondensation of loalized losed stringtahyon. For instane, superstrings on C =Zk were analyzed in [2℄, where the orbifold isonstruted as the two dimensional plane divided by the symmetry of 2�=k rotation. Thetarget spae is a one and losed strings an be loalized at the tip of the one. Supposewe hoose odd k and anti-periodi boundary onditions for fermions, then the spetrumof losed strings inludes no bulk tahyons but loalized tahyons. An amazing onjeturewas given in [2℄ that a loalized tahyon ondensation leads C =Zk into C =Zk0 with oddk0 < k and �nally the system ends up with the stable supersymmetri at vauum. Theonjeture was on�rmed by various ways, suh as, D-brane probes, worldsheet RG-ow,and so on. In partiular, exat gravity solutions desribing the deay of C =Zk wereobtained in [5, 6℄.In this paper we investigate the ondensation of loalized losed string tahyons insuperstring theory on AdSd+1=Zk with d = 2; 4, whih is onstruted by the d+1 dimen-sional AdS spae with the identi�ation of 2�=k rotation. The orbifold proedure givesrise to a �xed point at the enter, and we an onstrut systems with no bulk tahyons butwith tahyons loalized at the �xed point by hoosing proper spin strutures as for C =Zkase. Considering loalized tahyon ondensations in asymptoti AdS spaes, we an makeintriguing observations whih annot be seen for the ases of at spae orbifolds. Due tothe warped fator, the e�et of losed string tahyons is loalized around the �x point ofAdS orbifold, and hene the bak-reation by tahyons indues only normalizable modesbut not non-normalizable modes. This implies that the loalized tahyon ondensationhanges only bulk physis but not the boundary onditions. This should be ompared tothe C =Zk ase, where the boundary onditions are altered through the tahyon onden-sation. In fat, it was argued in [7℄ that the loalized tahyon ondensation of AdS5=Zkdeforms the geometry into so-alled Eguhi-Hanson soliton [8, 9℄ with the same bound-ary onditions as for the AdS orbifold. This fat is atually very important sine in an1 For a review, see, e.g., [3℄. 1



asymptotially AdS spae we an deal with all the geometries with the same boundaryondition at the same time. For instane, we an disuss the thermal phase struture ofgravity theory in AdS5=Zk [7℄.Utilizing the AdS/CFT orrespondene, we an disuss the ondensation in terms ofdual gauge theory. In the global oordinates, the boundary of AdSd+1 is given by Rt�Sd�1,where Rt and Sd�1 denote the time diretion and the d�1 dimensional sphere, respetively.Sine the orbifold ation ats also on the boundary of AdSd+1, the dual gauge theory isde�ned by the orbifold of gauge theory on Rt � Sd�1. One of the important fats for theorbifold gauge theory is that the theory has many vaua labeled by the holonomy matrixalong its non-trivial yle. It is natural to propose that the ondensation of loalizedtahyon is dual to the assignment of non-trivial holonomy, beause it is known that thedeformation by normalizable modes orresponds to giving expetation values to dualoperators. Notie that this is related to the fat that the loalized tahyon ondensationdoes not hange the boundary ondition as mentioned before. In this way, we an analyzethe tahyon ondensation in terms of dual gauge theory as a transition between di�erentvaua. In partiular, the Casimir energies for the vaua of dual gauge theory on Rt � S3were omputed in [7℄, and it was found that they reprodue quite well the masses of dualgeometries.One of the purpose of this paper is to extend the analysis on the loalized tahyonondensation of AdS5=Zk [7℄ into the ase of AdS3=Zk. Up to now only the omparisonbetween the stati geometries deformed by loalized tahyon ondensation and the vauaof dual gauge theory has been done. So we would like to investigate the dynamis ofloalized tahyon ondensation both from the bulk and boundary points of view. Insetion 2 we study the loalized tahyon ondensation on AdS3=Zk with odd k. First weobserve that the geometry after the tahyon ondensation is AdS3=Zk0 with odd k0 < kand the �nal geometry is given by AdS3 without orbifolding. Next we study the deay ofAdS3=Zk following a dilaton pulse, whih is indued by a loalized tahyon ondensation.We solve numerially the Einstein-dilaton equations in order to obtain a time-dependentgravity solution desribing the deay. The gauge theory dual to AdS3=Zk is de�ned onRt � S1=Zk, and the holonomy matrix along the spatial yle leads to di�erent vaua.The Casimir energies for the vaua of the gauge theory are omputed and exat mathesare found between the Casimir energies and the masses of dual geometries. In setion 3we �rst review the result of [7℄, where it was disussed that AdS5=Zk deays into Eguhi-Hanson solution [8, 9℄. The dual gauge theory is de�ned on Rt�S3=Zk, and the vaua withdi�erent holonomy orrespond to the di�erent geometries deformed by loalized tahyonondensation. In subsetion 3.2 we onstrut instanton solutions of the orbifold gaugetheory on Rt � S3=Zk with the help of instanton solutions on Rt � S2 [15, 16℄. Theinstanton solutions interpolate di�erent vaua, whih are dual to the transitions betweendi�erent geometries. 2



2 Deay of AdS3=ZkWe start from extending the results of [7℄ into AdS3=Zk ase. We �nd that the deayproess of AdS3=Zk is quite similar to the one of C =Zk , namely, AdS3=Zk deays intoAdS3=Zk0 with k0 < k and ends up with pure AdS3. Making use of this similarity, weanalyze in subsetion 2.2 the dynamis of loalized tahyon ondensation. A loalizedtahyon ondensation leads to a dilaton pulse, whih travels from the �xed point into theAdS boundary. The bak-reation of this dilaton pulse indues the deay of AdS3=Zkinto AdS3=Zk0 with k0 < k. We try to �nd a time-dependent gravity solution desribingthe deay in a numerial way. The boundary of AdS3=Zk is given by Rt � S1=Zk, andthe dual gauge theory is de�ned on the boundary. In subsetion 2.3 we de�ne the dualgauge theory and �nd the spetrum for various vaua with non-trivial holonomy. TheCasimir energies of the vaua are omputed, and they are shown to math preisely withthe masses of dual geometries.2.1 The deformed geometries after the tahyon ondensationLet us onsider type IIB superstring theory on AdS3 � S3 � T 4. In the global oordi-nates, the metri of AdS3 is given byds2 = dr2g(r) � g(r)dt2 + r2d�2 ; g(r) = 1 + r2l2 : (2.1)The orbifold of AdS3 an be onstruted from the identi�ation of � � � + 2�=k, whihgives rise to a �xed point at r = 0. Following the arguments of [2℄ on C =Zk , we anonstrut the on�guration with no bulk tahyons and only tahyons loalized at r = 0by assuming an odd integer k and anti-periodi boundary onditions for fermions. Herewe have used the fat that loal properties do not depend on the urvature of AdS spae.From the experiene of the at orbifold ase, it is natural to guess that the ondensationof loalized tahyon deforms the orbifold AdS3=Zk into AdS3=Zk0 with odd k0 < k and�nally into the stable supersymmetri vauum with AdS3.It is very diÆult to prove this onjeture sine we do not fully understand the lo-alized losed string tahyon. However, it is possible to obtain several supports for thisonjeture if we utilize the properties of asymptoti AdS spae. Suppose that the po-tential of loalized tahyoni modes has various minima at �nite on�gurations. Thenthe tahyon ondensation leads to the deformation of normalizable modes, whih ends upwith a deformed geometry with the same boundary ondition. In fat, we an show thatAdS3=Zk an be deformed into AdS3=Zk0 with odd k0 < k without hanging the boundarybehavior. Moreover, we observe that the bakground mass dereases as k0 beomes smalland the smallest mass is given by AdS3 within the on�gurations with �xed boundaryondition. 3



In order to desribe the AdS3=Zk0 geometry with a �xed boundary ondition, it isnot appropriate to use the metri (2.1) with the identi�ation � � � + 2�=k0 sine theboundary ondition manifestly depends on the hoie of k0. Instead we use the followingmetri asds2 = dr2g(r)f(r) � g(r)dt2 + r2f(r)d�2 ; g(r) = 1 + r2l2 ; f(r) = 1� a2r2 : (2.2)The period of � is set as � � � + 2�=k and the parameter a is related to k0(< k) asa2 = l2 �K2 � 1� ; K = kk0 : (2.3)Utilizing the oordinate transformation~r = 1Kpr2 � a2 ; ~t = Kt ; ~� = K� ; (2.4)we an indeed rewrite the above metri into the form of (2.1) with the periodiity ~� �~�+2�=k0. The boundary behavior of the metri in the form (2.2) does not depend on theparameter a(k0), therefore we an express all the orbifolds AdS3=Zk0 (k0 < k) with thesame boundary ondition as for AdS3=Zk. Notie that k0 should be odd sine only thease with odd k0 is onsistent with the anti-periodi onditions for fermions at the AdSboundary.An advantage to embed into an AdS spae is that the mass of geometry is well-de�ned in an asymptotially AdS spae. Utilizing this fat we an analyze the stability ofgeometries by omparing the masses of geometry. Here we follow the methods developedin [10℄. For an asymptotially AdS spae we an expand the metri for large r asds2 = l2r2dr2 + r2l2 (�dt2 + l2d�2) + Æg��dx�dx� ; (2.5)where Æg�� ontains the lower powers of r. Then the mass of geometry an be omputedby using the formula [10℄M = 18�G3 Z 2�=k0 d� r42l4 Ægrr + 1l2 Æg�� � r2l2�rÆg��! (2.6)with the three dimensional Newton onstant G3. We �nd from the metri (2.2)Ægrr = � l4r4  1� a2l2 ! ; Ægtt = �1 ; Æg�� = �a2 ; (2.7)thus the mass of the geometry (2.2) is given byM = � 18kG3  1 + a2l2 ! = � k8k02G3 : (2.8)From this mass formula, we an show that the mass of geometry is largest for the originalgeometry with k0 = k and beomes smaller as we derease k0. The �nal geometry shouldbe given by AdS3 with k0 = 1, whih is stable sine it has the smallest mass and noloalized tahyon. Furthermore, the supersymmetry is reovered in the �nal geometry.4



2.2 Gravity solution desribing the deay of AdS3=ZkIn the previous subsetion, we have onjetured that the loalized tahyon ondensa-tion leads to the deay of the orbifold AdS3=Zk into AdS3=Zk0 (k0 < k) with a smallerde�it angle. The dynamial proess may be given as follows. Tahyons loalized atthe �xed point ould roll down the potential and reah to minima. The energy due tothe tahyon ondensation would be arried out by a dilaton pulse from the enter to theboundary of the AdS orbifold. The dilaton pulse an serve as a moving domain wall, andthe geometry deays into AdS3=Zk0 (k0 < k) after the pulse passed away. For Rt � C =Zkthis senario was onjetured in [2℄ and the exat gravity solution was found in [5, 6℄.It is well known that it is diÆult to analyze the ondensation of losed string tahyonin general, sine the ondensation hanges the bakground itself and we do not know howto deal with this ase. An advantage to loalize the tahyon is that the e�ets of tahyonondensation are on�ned in a stringy regime, and hene we an safely use the lassialgravity desription to desribe the deay of the AdS orbifold for later time. As mentionedabove we assume that the e�et of loalized tahyon indues a dilaton pulse travelingfrom the enter to the AdS boundary. Thus now the problem is to �nd out the solution ofgraviton-dilaton system orresponding to the deay of AdS orbifold with a dilaton pulse.The ation we onsider for graviton and dilaton isS = 116�G3 Z d3xp�g(R� 4������� 2�) ; (2.9)where R is the Rii salar with respet to the metri g��, and � is the dilaton �eld. Thedeterminant is denoted as g = det g��, and the Rii tensor will be represented as R�� .The negative osmologial onstant is related as � = �1=l2 in eq. (2.1) and we �x it as� = �1, i.e., l = 1 for a while.From the ation for graviton and dilaton, we an read o� the equations of motion forgraviton as R�� � 12Rg�� = 4�������� 12g��(��)2�+ g�� (2.10)and for dilaton as 1p�g��p�gg����� = 0 : (2.11)In order to solve the Einstein-dilaton equations, we set up an initial on�guration atan initial time t = 0, and follow the evolutions of metri and dilaton by solving theseequations. Sine the (t�) omponents of Einstein equations (2.10) ontain only terms atmost involving �rst derivative with respetive to time �t and ontain no seond or highertime derivatives, we treat these equations as onstraint equations for initial data. Thisis beause these equations do not tell anything about time evolution. We treat the rest,5



spatial omponents of Einstein equations, whih involve seond order time derivatives, asdynamial evolution equations.Sine some omponents of Einstein equations are treated as onstraint equations, nowthe number of di�erential equations is smaller than that of degrees of freedom. Therefore,we have to remove several omponents of metri by utilizing the di�eomorphism gaugesymmetry. We an always hoose the metri in the form ofds2 = e2F (t;r)(�dt2 + dr2) + C(t; r)2d�2 ; � � � + 2�=k : (2.12)Here we have removed �-dependene of the metri by making use of the symmetry of thesystem. The dilaton �eld is also set to be independent of �. The onformal transformationof (t; r) is a residual di�eomorphism whih does not hange the form of (2.12), and theresidual gauge an be �xed by assigning appropriate boundary onditions at r = 0 andinitial on�guration at the initial time t = 0.In terms of the metri form (2.12), the geometries before and after the tahyon on-densation are given as follows. The metri of the initial geometry AdS3=Zk isds2 = 1os2 r (�dt2 + dr2) + tan2 rd�2 ; (2.13)whih is obtained by replaing r of (2.1) with ~r by oordinate transformation r = tan ~rand rewriting ~r ! r. In this oordinate system, the AdS boundary is loated at r = �=2.After the tahyon ondensation the geometry is proposed to be AdS3=Zk0, whose metrian be written as ds2 = 1os2 r (�dt2 + dr2) +K2 tan2 rd�2 (2.14)with K = k=k0 as before. Atually it is onvenient for the later purpose to rewrite asds2 = 1K2 os2(r=K)(�dt2 + dr2) +K2 tan2(r=K)d�2 (2.15)by resaling oordinates as t ! t=K; r ! r=K. If we take r ! 0 limit, then the metriredues to the one used in [2℄ for C =Zk . As a result, omparison to C =Zk is more manifestin this metri, even though the radial boundary is shifted along the tahyon ondensationfrom r = �=2 to r = K�=2.Let us write down the expliit form of equations of motion by using the metri (2.12).The onstraint equations arise from (tt); (tr) omponents of Einstein equations (2.10) as�rF�rH � (�rH)2 � �2rH + �tF�tH � 2(�t�)2 � 2(�r�)2 + e2F = 0 ;�rH(�tF � �tH) + �rF�tH � �t�rH � 4�t��r� = 0 ; (2.16)whih do not inlude seond derivatives at it should be the ase. Here we have usedH(t; r) = logC(t; r) suh that the equations beome simpler. Note that the (t�) om-ponent is empty due to the �-independene. We will use below these equations to set6



up initial on�gurations and to hek the reliability of our omputation. The non-trivialparts of evolution equations ome from (rr) and (��) omponents as�tF�tH + �rF�rH � (�tH)2 � �2tH � 2(�t�)2 � 2(�r�)2 � e2F = 0 ;(�2t � �2r )F � e2F � 2(�t�)2 + 2(�r�)2 = 0 : (2.17)It is possible to solve these equations diretly, but it might be useful take a linear om-bination of Einstein equations to make the equations simpler. Notie that the Einsteinequations an be redued to a simpler form in this ase asR�� + 2g�� = 4������ : (2.18)We pik up (tt) + (rr) and (��) omponents as evolution equations2�F +�H +rH � rH � 4e2F + 4r� � r� = 0 ;�H +rH � rH � 2e2F = 0 ; (2.19)where we have used � = ��2t + �2r and rf � rf = ��tf�tf + �rf�rf . In partiular,there is no dependene of dilaton in the (��) omponent. In this notation, the equationof motion for dilaton is written as�� +rH � r� = 0 : (2.20)In the following we will try to solve the three evolution equations (2.19) and (2.20) forthree unknowns F (t; r); C(t; r);�(t; r). In fat, this is equivalent to solve (2.17) and (2.20)sine we have just piked up a spei� linear ombination.In order to solve the evolution equations we have to set up boundary onditions2 atthe enter r = 0 and an initial on�guration at t = 0. At r = 0 we set C = 0 sine theyle of � should shrink at r = 0. Then the regularity of (2.20) requires the Neumannboundary ondition as �r� = 0 at r = 0. We also assign �rF = 0 at r = 0, whih followsthe regularity of (2.17). This ondition should be related to the regularity of (2.19) sinewe have just piked up a linear ombination. Now that we are trying to solve seondorder di�erential equations for three unknowns, we should assign 6 initial onditions forF;C;� and �tF; �tC; �t� at t = 0. At the initial time we have argued that the tahyonondensation makes a dilaton pulse, whih should be determined from the string theoryomputation in priniple. Sine it is a rather hard task, we simply assume that theloalized tahyon indues a stati dilaton pulse with the Gaussian form as�(t = 0; r) = �0 exp(�r2=�) ; �t�(t = 0; r) = 0 : (2.21)2Boundary onditions at the AdS boundary are triky sine the radial boundary shifts as tahyonondenses. In spite of this fat, we set the Dirihlet boundary onditions for F;C;� at r = �=2. Thishoie is reliable only when we follow the evolution before the dilaton pulse reahes to the boundary asbelow. 7



The normalisation �0 and the width p� of the pulse should be related to the loalizedtahyon ondensation and therefore to the deay proess. We also assume that the deaystarts from a stati on�guration and hene we set �tF = �tC = 0 at t = 0. The otherintimal onditions are for F and C at t = 0. Due to the assumption of stati initialon�guration, the seond equation of (2.16) vanishes. Therefore, one we �x one of theinitial onditions, then the other is determined from the �rst onstraint equation. We �xit from the at spae limit. Near r = 0 we an neglet the osmologial onstant, thusthe hange of metri an be lose to the one in [5, 6℄. They �x C = r, independent ofdilaton pulse, with the help of the residual di�eomorphism, thus we may set C = tan r att = 0. Then F at t = 0 is determined by solving the �rst onstraint equation. Beause ofthis hoie of initial on�guration, we expet that the deay of AdS3=Zk is losed to theone of C =Zk at least near r = 0. In partiular, the metri of the �nal geometry should begiven as in (2.15).Right now we have suÆient boundary onditions to solve the three evolution equations(2.19) and (2.20). Unfortunately we annot �nd analyti solutions to these equations,therefore we try to solve them in a numerial way. The result is summarized in �g. 1,and the onstraint equations (2.16) are heked numerially. We interpret the result asfollows. The funtion C hanges very little during the deay proess, whih is onsistentwith the assumption of initial ondition. Sine the equation of motion for dilaton dependsonly on C but not on F , the dilaton pulse is almost the same as in the stati AdS orbifold.The most important information should be read o� from the behavior of F . We an seethat the value of F dereases after the dilaton pulse passed away. This is onsistent withthe expetation of (2.15) that F hanges as F ! F � logK for small r by the tahyonondensation. In this way, at least until dilaton pulse reahes the boundary, we haveheked numerially that the evolution of tahyon ondensation is onsistent with theproposal that AdS3=Zk deays into AdS3=Zk0 with k0 < k.2.3 Dual gauge theory desriptionThe AdS/CFT orrespondene relevant for this ase may be dedued from the nearhorizon limit of D1/D5 system [4℄. We wrap N5 D5-branes over a small T 4, whih givesstring-like objets in (1+5) dimensional spae-time. We put N1 D1-branes on the topof the string-like objets, then the near horizon limit of the D1/D5 system gives rise tolosed superstrings on AdS3 � S3 (�T 4). The dual gauge theory ould be desribed bythe low energy e�etive ation on the worldvolume of the D1/D5 system. For the dual ofthe orbifold AdS3=Zk, we should onsider the orbifold of the worldvolume theory de�nedon its boundary Rt � S1=Zk.In this subsetion we restrit ourselves to large N1; N5 and zero 't Hooft ouplinglimit. The radius of S1 is related to the AdS radius as R = l, whih may be read from the8
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asymptoti behavior of the metri (2.5). In order to make the 't Hooft oupling small,we have to onsider the ase with a small radius R. If we take the IR limit or the largeradius limit, then the gauge theory desription is not valid anymore due to the large 'tHooft oupling, and onformal �eld theory desription should be adopted.Two ends of open strings an be attahed to either of D1-brane or D5-brane. From theopen strings between the same D-brane, we obtain U(N1) and U(N5) gauge �elds in the lowenergy limit. In (1+1) dimension, almost all the degrees of freedom an be gauged awayand only the zero modes are left. The zero modes of gauge �elds indue the holonomies V1for U(N1) and V5 for U(N5) along S1=Zk spatial yle, and the hoie of holonomies labelsthe vaua of the theory. For the open strings between D1 and D5-branes, we an �ndfrom some omputations that the low energy spetrum inludes 4 bi-fundamental salersand 4 bi-fundamental fermions with respet to the U(N1)� U(N5) gauge symmetry (see,e.g., [11℄). We use odd k and assign anti-periodi boundary onditions for fermions alongthe spatial yle.In order to lassify the possible vaua of the orbifold gauge theory, we have to �ndout whih holonomies ould be taken. If we onsider the gauge theory on the overingspae, then only the trivial holonomies along the spatial yle are allowed. This an beunderstood as follows. Consider a two dimensional U(N) gauge theory on a 2-torus T 2and a holonomy matrix along its thermal yle. Then for large N limit the eigenvaluesof holonomy matrix are uniformly distributed at low temperature and ollapsed at hightemperature. In partiular, in the in�nite temperature limit, the density of eigenvaluebeomes delta-funtional. For example, see [12℄. Thus holonomies along thermal yle aretrivial in the in�nite temperature limit. But from the modular invariane, this means thatholonomies along the spatial yle are trivial in the zero temperature limit. Therefore, wehave the onditions V k1 = 1 and V k5 = 1 for the orbifold gauge theory as in the ase ofRt � S3=Zk [13℄. Utilizing the gauge symmetry we an set V1 and V5 in the form ofdiag(1; � � �1; !; � � � ; !; � � �!k�1; � � � ; !k�1) ; ! = exp 2�ik : (2.22)In other words, the vaua are labeled by the 2k integer numbers (n10; � � � ; n1k�1) and(n50; � � � ; n5k�1), where the numbers of !I are denoted as n1I and n5I with PI n1I = N1 andPI n5I = N5.Let us examine the spetrum of this orbifold gauge theory. Due to the existene ofnon-trivial holonomies, the gauge symmetry is broken to QI U(n1I) � QJ U(n5J) and thestates are in the bi-fundamental representation of this broken gauge symmetry. Firstwe onsider a salar in the (n1I ; �n5J) bi-fundamental representation. The salar an beexpanded by a plane wave as �(I;J)p � eip�, and the orbifold ation g yieldsg � �(I;J)p = e 2�ipk !I�J�(I;J)p = e 2�ik (p+I�J)�(I;J)p : (2.23)Notie that the phase fator is shifted by the e�et of holonomies. The orbifold invariantstates an be obtained by summing over all the images of the orbifold ation. Thus the10



projetion operator is given by � = PkI=1 gI, and the ation of this operator restritsthe modes to p = kn + J � I with n 2 Z. The spetrum of fermion in the (n1I ; �n5J) bi-fundamental representation an be obtained in the same way. Here we should rememberthat k is an odd integer and the anti-periodi boundary ondition is assigned. Thus theorbifold ation beomes g �	(I;J)p = e 2�ik (p+I�J+k=2)	(I;J)p ; (2.24)where the shift of k=2 arises from the anti-periodi boundary ondition. The projetioninto the orbifold invariant subspae leads to the restrition p = k(n + 1=2) + J � I withn 2 Z.Now that we know the spetrum of the orbifold theory for arbitrary holonomymatries,we an ompute the Casimir energy, whih is known to be dual to the mass of dualgeometry. The Casimir energy is given byV0 = 12XE (�1)FEnE ; E = jpjR ; (2.25)where F denotes the fermion number and nE represents the number of states with energyE. For a salar or a fermion in the (n1I ; �n5J) bi-fundamental representation the number ofmodes is n1In5J and the energy is E = jkn+ I � J j=R for a salar and E = jk(n+ 1=2) +I�J j=R for a fermion. Sine the orbifold gauge theory inludes 4 salars and 4 fermions,we obtainV0 =XI;J n1In5J2R  4 1Xn=�1 jkn+ I � J j � 4 1Xn=�1 jk(n+ 1=2) + I � J j! : (2.26)Using this formula, we an ompute the Casimir energy for eah vauum with generiholonomies.We would like to �nd out the vauum dual to AdS3=Zk0 with k0 � k. The orbifoldAdS3=Zk0 has Zk0 symmetry, thus the holonomy matries should respet this disretesymmetry. If we restrit ourselves to the ase with integer K = k=k0, then we an hoosen1mK = N1=k0 and n5mK = N5=k0 with m = 0; 1; � � �k0 � 1 and zero for others.3 Theremight be other hoies of holonomies respeting the symmetry, but we an show that thishoie gives the smallest Casimir energy among them. In fat, the Casimir energy in thisase is omputed asV0 = N1N5Rk02 k0 k0XI=1 4 1Xn=1 jkn+KIj � 4 1Xn=1 jk(n+ 1=2) +KIj! = � k12k02R (2.27)with  = 6N1N5. In order to obtain this, it is useful to use the formula1Xn=1(n� �) = 124 � 18(2� � 1)2 : (2.28)3 Here we have assumed that N1 and N5 an be divided by k0, though the preise value is not relevantfor large N1; N5. 11



Using the relation  = 3l=(2G3) (see, e.g., [10℄), the Casimir energy exatly mathes themass of AdS3=Zk0 (2.8). Notie that we obtain the exat math ontrary to the AdS5=Zkase [7℄. This ould be another example showing that AdS3 ases are more stable underquantum orretions than AdS5 ases, whih is known to our in many ontexts.One may ask what would happen for generi k0 with non-integerK = k=k0. The answerdepends on whether we deal with in�nite or �nite N1; N5. For in�nitely large N1; N5, wemay be able to onstrut a vauum arbitrary lose to the dual of eah geometry. For�nite N1; N5, we have a �nite number of vaua, thus not all of the lassial geometrieshave their dual vaua. If we inlude quantum onditions to the gravity side, then onlythe geometries with dual gauge theory vaua may be allowed.4We onlude this subsetion as follows. We may start from the vauum dual to theAdS3=Zk, whih is labeled by the holonomies n1I = N1=k and n5I = N5=k for all I. Thisvauum is only meta-stable beause other vaua have smaller Casimir energies. Thevauum deays non-perturbatively into another vauum dual to AdS3=Zk0 with a smallerk0, and �nally ends up with the trivial vauum with n10 = N1 and n50 = N5, whih is dualto pure AdS3. The vauum transition will be disussed in the next setion for AdS5 ase.3 Deay of AdS5=ZkAs we saw in the previous setion, the loalized tahyon ondensation on AdS3=Zkleads to the deay of geometry in a quite analogous way to the deay of C =Zk . However,the loalized tahyon ondensation on AdS5=Zk is quite di�erent as disussed in [7℄. Infat, AdS5=Zk does not deay into AdS5 or the other orbifold of AdS5, beause theboundary of AdS5=Zk, i.e., Rt � S3=Zk, annot be the boundary of AdS5 or the AdSorbifold AdS5=Zk0 with k0 6= k. The �nal geometry after the tahyon ondensation wasproposed in [8, 9℄ and alled as Eguhi-Hanson soliton.The dual gauge theory desription an be given by the Zk orbifold of N = 4 superYang-Mills on Rt�S3. In partiular, the Casimir energies of various vaua were omputedin [7℄, and it was found that the Casimir energies reprodue the masses of dual geometriesquite well. Similar results were obtained in [14℄ in slightly di�erent on�gurations. Inthe next subsetion, we review the work of [7℄, whih disuss the fate of loalized tahyonondensation on AdS5=Zk and its gauge theory desription. This subsetion is for thepreparation of subsetion 3.2, where the transition between di�erent vaua is disussed.The transition is desribed by an instanton of the orbifold gauge theory on Rt � S3=Zk.We onstrut instanton solutions by making use of the known instantons for the gaugetheory on Rt � S2 [15, 16℄.4See, for example, [13℄. In their ase the quantization of ux restrits the number of allowed geometryand leads to one-to-one orrespondene between geometries and gauge theory vaua.12



3.1 Review of �nal geometry and dual gauge theory desriptionWe onsider type IIB superstring theory on AdS5 � S5 and onstrut the orbifoldtheory with tahyoni modes at the �xed point. In the global oordinates the metri ofAdS5 is given byds2 = g(r)dt2 + dr2g(r) + r2d
3 ; g(r) = r2 + 1 ; (3.1)where the AdS radius is set to be one and the metri of boundary geometry isd
3 = 14 h(d�+ os �d�)2 + d�2 + sin2 �d�2i : (3.2)The variables run 0 � � � �, 0 � � � 2�, and 0 � � � 4�. The identi�ation in theorbifold theory is performed by the shift along the �-yle as � � � + 4�=k. Then theorbifold ation yields a �xed point at r = 0, and the system has tahyoni modes loalizedat the �xed point, if we use even5 k and assign the anti-periodi boundary ondition forfermions along the �-yle.The geometry after the loalized tahyon ondensation is proposed in [8, 9℄, wherethey alled the geometry as Eguhi-Hanson soliton. The metri is given byds2 = g(r)dt2 + dr2g(r)f(r) + r24 hf(r)(d�+ os �d�)2 + d�2 + sin2 �d�2i (3.3)with g(r) = r2 + 1 ; f(r) = 1� a4r4 ; a2 =  k24 � 1! ; (3.4)where k > 2 suh that a2 > 0. The relation between a and k is �xed by assuming theregularity of the geometry at r = a, and due to the lak of �xed point the Eguhi-Hansonsoliton does not have loalized tahyons.6 The region of r < a is removed in the Eguhi-Hanson soliton, and this region might be interpreted as the tahyon state, where thetahyoni modes have non-trivial expetation values [17, 18℄. We an hek by takinglarge r limit that this geometry has the same boundary geometry as that of AdS5=Zk,whose metri is given by (3.2).5One may ask why k should be even ontrary to the AdS3 ase with odd k. This is related to thetopology of boundary geometry. The boundary of AdS3 is given by S1, and the yle an be pinhed o�at the enter of AdS3 if we assign the anti-periodi boundary ondition for fermions. This leads to theondition of odd k for the orbifold theory. On the other hand, the boundary of AdS5 is S3, and there isno yle whih we an go around. For this reason we an assign anti-periodi boundary onditions onlyfor even k suh that fermions do not reeive a phase fator when going around k times the yle of S3=Zk.6It might be interesting to use a generi a to onstrut other geometry with an orbifold singularity atr = a. It may serve as an intermediate geometry. 13



We an disuss the stability of bakground by omparing the masses of geometryaddition to examining the existene of tahyoni modes. The mass of the AdS orbifoldAdS5=Zk is just 1=k times that of AdS5, thus it is given byM = 3�32kG5 : (3.5)The mass of Eguhi-Hanson soliton was omputed in [8, 9℄ by adopting the same methodin subsetion 2.1 as M = ��(k4 � 8k2 + 4)128kG5 : (3.6)We an see that the mass of Eguhi-Hanson soliton is smaller than that of AdS5=Zk, andhene the Eguhi-Hanson soliton an be thought as a �nal geometry.The gauge theory dual to superstring theory on AdS5=Zk � S5 is given by N = 4U(N) super Yang-Mills theory on Rt � S3=Zk [13℄. The radius of S3 is set to be one andN is taken very large. We use the metri of Rt � S3=Zk asds2 = �dt2 + 14 h(d�+ os �d�)2 + d�2 + sin2 �d�2i ; (3.7)where the theory is divided by the shift of 2�=k along the �-yle. Originally there isno non-trivial yle in the overing spae S3, but the orbifold proedure leads to a non-trivial yle with �1(S3=Zk) = Zk. Along the yle, we an assign a holonomy matrixV = P exp(�igYM H A�) subjet to V k = 1 as in the AdS3 ase. The holonomy matrixan be set asV = diag(1; � � � ; 1; !; � � � ; !; � � � ; !k�1; � � �!k�1) ; ! = exp 2�ik (3.8)with the help of U(N) gauge symmetry. Therefore, the vaua are labeled by k integers(n0; � � � ; nk�1) withPI nI = N , where nI represents the number of !I . Two spei� vauaamong them are important for us. One is the vauum with the Zk symmetri holonomynI = N=k for all I, whih is dual to AdS5=Zk. The other is the vauum with the trivialholonomy n0 = N , whih is dual to the Eguhi-Hanson soliton (3.3).In [7℄ the spetrum of the orbifold gauge theory with the holonomymatrix was obtainedand the Casimir energy for the vauum was omputed at the one loop level. For the Zksymmetri holonomy nI = N=k, the Casimir energy is given byV0 = N2 316k : (3.9)With the relation N2 = �=(2G5) we an see that the Casimir energy exatly reproduesthe mass of AdS5=Zk (3.5). For the trivial holonomy n0 = N , the Casimir energy isV0 = �N2  k348 � k12 � 316k! ; (3.10)14



whih is roughly 4=3 times the mass of the Eguhi-Hanson soliton (3.6). This is a remark-able result sine we have observed a quantitative orrespondene between the results insmall and large 't Hooft oupling limits. We an show that the Casimir energy for n0 = Nis smallest among the ones for every holonomies [7℄, and in this way we may say that theEguhi-Hanson soliton is really the �nal geometry after the deay of AdS5=Zk.3.2 Gauge theory instantonWe have observed that the loalized tahyon ondensation deforms the bakground ge-ometry from AdS orbifold into another more stable geometry. In partiular, the dynamisof the geometry transition for AdS3 ase have been analyzed by onstruting a numerialgravity solution desribing the deay of AdS3=Zk in subsetion 2.2. In this subsetion,we would like to disuss the dynamis of the transition from the viewpoint of the dualgauge theory. Eah geometry orresponds to a vauum of dual gauge theory, thus thetransition of geometry should be desribed by the transition between di�erent vaua, i.e.,the instanton interpolating vaua. We fous on the orbifold gauge theory on Rt � S3=Zksine we have a lot of knowledge about instantons in four dimension.We would like to onstrut instantons whih interpolate vaua at � = �1 and othervaua at � = 1 with the Eulidean time � = it. We only analyze in the semi-lassiallimit, where all the vaua are degenerated, and in this limit it is enough to exite onlythe gauge �eld. For this reason we onsider SU(N) pure Yang-Mills theory, whose ationis given by S = 14 Z d4xpg4F��F�� ; (3.11)where the �eld strength is de�ned asF�� = ��A� � ��A� + igYM[A�;A�℄ : (3.12)We denote the Yang-Mills oupling onstant as gYM , whih is assumed to be very small.The gauge theory is de�ned on Rt � S3=Zk, whose metri is given byds2 = d� 2 + 14 h(d�+ os �d�)2 + d�2 + sin2 �d�2i (3.13)with 0 � � � �, 0 � � � 2�, and 0 � � � 4�=k as before. In partiular, the measure isgiven by d4xpg4 = 18 sin �d�d�d�d�.In order to obtain instanton solutions, it is useful to rewrite the above ation asS = 18 Z d4xpg4 [(F�� � �F��)(F�� � �F��)� 2F�� � F��℄ (3.14)as usual. The Hodge dual is given by�F�� = pg42! �����F�� ; �F�� = 12!pg4 �����F�� (3.15)15



in a urved spae. The seond term of (3.14) orresponds to a topologial ontribution.Within the same topologial setor, the minimum of the ation is given by the solutionsto the (anti-)self-dual equation of �eld strengthF�� = � � F�� : (3.16)The solutions to the equation are the (anti-)instantons of the orbifold gauge theory.We try to �nd out solutions to the (anti-)self-dual equations. One easy guess is toutilize the 't Hooft instanton, but this type of instantons do not interpolate the vaua ofour type.7 Therefore we should look for other type of solution. The main idea is as follows.Just like monopole solutions do not depend on time oordinate, we assume the oordinateindependene along the � diretion. Then we an perform the dimensional redution alongthe � diretion, and the theory is redued to the one on R� � S2.8 Instanton solutions ofthe gauge theory on R� � S2 were obtained in [15, 16℄ (see also [20℄), thus we an obtaininstantons on R� � S3=Zk by making use of the results on R� � S2.The dimensional redution in this ase is a little bit subtle sine S3 onsists of a non-trivial S1 �bration over S2. Using the standard tehnique of Kaluza-Klein dimensionalredution, the gauge �eld on R� � S2 an be de�ned as [13℄A�dx� = Amdxm + �(d�+ os �d�) (3.17)with m = �; �; �. After the integration over the � diretion, we obtain the new ation forthe rede�ned gauge �eld asS = 4�k Z d3xpg3 �F 2�� + 4sin2 � (F�� � � sin �)2 + 1sin2 �F 2�� +Dm�Dm�� ; (3.18)where the �eld strength and the ovariant derivative areFmn = �mAn � �nAm + igYM[Am; An℄ ; Dm� = �m� + igYM [Am;�℄ : (3.19)The index is raised in (3.18) by the metri of R� � S2ds2 = d� 2 + 14 hd�2 + sin2 �d�2i ; (3.20)and the measure in this ase is given by d3xpg3 = 14 sin �d�d�d�.The seond term of (3.18) ats important roles on the gauge theory on R� � S2. Thisterm arises through the non-trivial relation F�� = F�� � � sin � + (D��) os �, where theontribution from (D��) os � does not appear in the �nal form. Beause of the form of7This type of instantons an be onstruted by the orbifold images of the 't Hooft instantons mappedon R� � S3. These instantons have the topologial harge Z=k and are dual to frational instantonsloalized at the �xed point of AdS orbifold. In partiular, the sum of all types of frational instantonsshould reprodue the bulk instanton.8The relation between gauge theories on Rt � S3=Zk and on Rt � S2 was also disussed in [19℄.16



omplete square, we an see that the vauum of this gauge theory is labeled by � = f withthe notation F��d�d� = f sin �d�d�. Through the relation (3.17) the holonomy matrixV = P exp(�igYM H A�) of (3.8) is mapped to the on�guration� = f = 1gYM (0; � � � ; 0; 1; � � � ; 1; � � � ; k � 1; � � � ; k � 1) ; (3.21)where the number of I = 0; � � � ; k � 1 is given by nI de�ned above.Let us fous on the instanton ase. Then the problem is now to �nd out solutions tothe self-dual equation (3.16) in terms of gauge �eld of the three dimensional theory (3.17).For SU(2), the general solutions were onstruted in [15℄. For SU(N) with general N itwas pointed out in [16℄ that the general solutions an be dedued from the ones in theplane wave matrix model [21℄ obtained in [22℄. Given a solution to the self-dual equation(3.16), the ation an be written asS = 14 Z d4xpg4F�� � F�� = 4�k Z d�d�d� [D��(F�� � � sin �) + F��D��� F��D��℄= 2�k Z d�d�d� sin �D��2 = 2�k Z d�d� sin � h�2j�=1 � �2j�=�1i (3.22)with the help of Bianhi identity D�F�� + D�F�� + D�F�� = 0 [15℄. At the initial time� = �1 and the �nial time � = 1, the system must be at one of the vaua labeled bythe integers (3.21). Thus the ation is evaluated as9S = 8�2kg2YM "k�1XI=0 nII2j�=1 � k�1XI=0 nII2j�=�1# : (3.23)The possible interpolations of vaua were disussed in [16℄ by using the results of [23℄.In the dual gravity desription, the amplitude P � exp(�S) may be interpreted as thetransition probability between geometries in the small AdS radius limit l ! 0.4 Conlusion and disussionsIn this paper we have investigated the ondensation of loalized losed string tahyonsin AdS orbifolds and its dual gauge theory desription from the viewpoint of AdS/CFTorrespondene. The orbifolds of AdS spae have �xed points at the enter and wean onstrut on�gurations with tahyoni modes loalized at the �xed points. Theondensation of loalized tahyon leads to the deay of AdS orbifolds into more stable9More generi instanton solutions may be obtained from the vaua with � = f = 1=gYM (l1; � � � ; lN),where li 2 Z is not restrited to the range 0 � li < k. Even for these generi vaua, we an onstrutinstantons on R� � S2 and therefore on R� � S3=Zk as well by utilizing the map of vaua. If we wantto use the range 0 � li < k � 1 for A� = 1=gYM (l1; � � � ; lN), then we just have to perform large gaugetransformations. 17



geometries. The dual theories are given by orbifold gauge theories, and vauum transitionsof gauge theory orrespond to geometry transitions of dual gravity theory.As expliit examples, we have onsidered the orbifolds of AdS3 and AdS5 in type IIBsuperstring theory. First we have studied the loalized tahyon ondensation of AdS3=Zkwith odd k. The tahyon ondensation leads to AdS3=Zk0 with a smaller odd k0 and�nally to pure AdS3. Assuming that the e�et of loalized tahyon ondensation induesa dilaton pulse, we have onstruted numerially a graviton-dilaton solution desribingthe deay. The dual gauge theory desription has been analyzed, and remarkably theCasimir energies are found to be the same as the masses of dual geometries. Then wemove to the ase of AdS5=Zk, where the AdS orbifold deays into Eguhi-Hanson soliton[8, 9℄ after the loalized tahyon ondensation. The gauge theory vaua dual to thesegeometries may have holonomies along the non-trivial yle, and we have onstrutedinstanton solutions interpolating di�erent vaua as non-perturbative transitions.There are many interesting points to be investigated furthermore. As for the dynamisof the tahyon ondensation in the gravity desription, we ould follow the time evolutionbefore the dilaton pulse reahes the boundary. It is interesting to see how the solutionbehaves at the quite late time when the e�ets of boundary are signi�ant. It is alsotrue that the geometry hanges an be indued both by the ondensation of tahyonimode as perturbative e�ets of string theory and also by gravitational instantons as non-perturbative e�ets. The loalized tahyon ondensation has been disussed in subsetion2.2, but the non-perturbative transition has not been analyzed yet. This should be de-sribed by a gravitational instanton whih interpolate AdS3=Zk at � = �1 to AdS3=Zk0at � =1. It is also important to analyze the AdS5 ase sine the story is quite di�erentfrom the AdS3 ase.In the gauge theory desription, the dynamis of vauum transition for (1+1) orbifoldgauge theory is left to be analyzed. However, we expet to obtain more insights bystudying deeply about the orbifold gauge theory on Rt�S3=Zk. We have examined non-perturbative e�ets in the gauge theory desription, but one may ask how to see the e�etof loalized tahyon ondensation in this side. It is atually a very diÆult question asmentioned in [2℄ beause we are onsidering in the di�erent regime of 't Hooft oupling.The loalized tahyon ondensation has been investigated from the viewpoint of dualgauge theory in [24, 25, 26℄, but it is fair to say that no lear piture has been obtainedyet. The investigation in our on�guration might give a lue sine we know the end pointof tahyon ondensation.One of the main results of this paper is to extend the analysis of AdS5 ase in [7℄ intothe AdS3 ase. In fat, the AdS3 ase ould be more interesting sine we an solve stringtheory on AdS3 with NSNS-ux and go beyond the lassial limit. For example, we anonstrut loalized tahyons expliitly as in [27, 28℄, and it is also possible to analyzethem from the viewpoint of dual CFT. Moreover, it is worthwhile trying to follow the18
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