
*0
70
6.
27
42
*

Revised Version  DESY 07-085
 NSF-KITP-07-140

ar
X

iv
:0

70
6.

27
42

v2
  [

he
p-

th
] 

 1
5 

Ju
l 2

00
7

DESY 07-085NSF-KITP-07-140
Closed String Ta
hyons on AdS Orbifoldsand Dual Yang-Mills Instantons

Yasuaki Hikidaa� and Norihiro IizukabyaDESY Theory Group, Notkestrasse 85, D-22603 Hamburg, GermanybKavli Institute for Theoreti
al Physi
s,University of California, Santa Barbara, CA 93106-4030, USA
Abstra
tWe study the 
ondensation of lo
alized 
losed string ta
hyons on AdS orbifoldsboth from the bulk and boundary theory viewpoints. We �rst extend the knownresults forAdS5=Zk to AdS3=Zk 
ase, and we proposed that the AdS3=Zk de
ays intoAdS3=Zk0 with k0 < k. From the bulk viewpoint, we obtain a time-dependent gravitysolution des
ribing the de
ay of AdS orbifold numeri
ally. From the dual gaugetheory viewpoint, we 
al
ulated the Casimir energies of gauge theory va
ua and itis found that their values are exa
tly the same as the masses of dual geometries,even though they are in di�erent parameter regimes of 't Hooft 
oupling. We also
onsider AdS5 orbifold. The de
ay of AdS5=Zk is dual to the transition between thedual gauge theory va
ua on Rt�S3=Zk, parametrized by di�erent holonomies alongthe orbifolded spatial 
y
le. We 
onstru
ted the instanton solutions des
ribing thetransitions by making use of instanton solutions on Rt � S2.
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1 Introdu
tionClosed string ta
hyons are very important spe
tra in string theory sin
e they signalthe de
ay of ba
kground spa
e-time geometry into others, thus it is likely that theseta
hyon 
ondensations play 
ru
ial roles in quantum gravity. However, 
ompared withthe developments of open string ta
hyon 
ondensation [1℄, the dynami
s of 
losed stringta
hyon 
ondensation is not so well-understood, despite with the pioneer work done forthe lo
alized 
losed string ta
hyon in ALE spa
es [2℄.1 On the other hand, signi�
antprogresses have been made on AdS/CFT 
orresponden
e [4℄, whi
h gives a useful tool tounderstand the nature of quantum gravity from the well-de�ned gauge theory point ofview. Therefore, we 
ould expe
t to obtain a lot of insights by investigating the fate oflo
alized 
losed string ta
hyons if we embed them into asymptoti
ally AdS spa
es.First let us re
all the known results on the 
ondensation of lo
alized 
losed stringta
hyon. For instan
e, superstrings on C =Zk were analyzed in [2℄, where the orbifold is
onstru
ted as the two dimensional plane divided by the symmetry of 2�=k rotation. Thetarget spa
e is a 
one and 
losed strings 
an be lo
alized at the tip of the 
one. Supposewe 
hoose odd k and anti-periodi
 boundary 
onditions for fermions, then the spe
trumof 
losed strings in
ludes no bulk ta
hyons but lo
alized ta
hyons. An amazing 
onje
turewas given in [2℄ that a lo
alized ta
hyon 
ondensation leads C =Zk into C =Zk0 with oddk0 < k and �nally the system ends up with the stable supersymmetri
 
at va
uum. The
onje
ture was 
on�rmed by various ways, su
h as, D-brane probes, worldsheet RG-
ow,and so on. In parti
ular, exa
t gravity solutions des
ribing the de
ay of C =Zk wereobtained in [5, 6℄.In this paper we investigate the 
ondensation of lo
alized 
losed string ta
hyons insuperstring theory on AdSd+1=Zk with d = 2; 4, whi
h is 
onstru
ted by the d+1 dimen-sional AdS spa
e with the identi�
ation of 2�=k rotation. The orbifold pro
edure givesrise to a �xed point at the 
enter, and we 
an 
onstru
t systems with no bulk ta
hyons butwith ta
hyons lo
alized at the �xed point by 
hoosing proper spin stru
tures as for C =Zk
ase. Considering lo
alized ta
hyon 
ondensations in asymptoti
 AdS spa
es, we 
an makeintriguing observations whi
h 
annot be seen for the 
ases of 
at spa
e orbifolds. Due tothe warped fa
tor, the e�e
t of 
losed string ta
hyons is lo
alized around the �x point ofAdS orbifold, and hen
e the ba
k-rea
tion by ta
hyons indu
es only normalizable modesbut not non-normalizable modes. This implies that the lo
alized ta
hyon 
ondensation
hanges only bulk physi
s but not the boundary 
onditions. This should be 
ompared tothe C =Zk 
ase, where the boundary 
onditions are altered through the ta
hyon 
onden-sation. In fa
t, it was argued in [7℄ that the lo
alized ta
hyon 
ondensation of AdS5=Zkdeforms the geometry into so-
alled Egu
hi-Hanson soliton [8, 9℄ with the same bound-ary 
onditions as for the AdS orbifold. This fa
t is a
tually very important sin
e in an1 For a review, see, e.g., [3℄. 1



asymptoti
ally AdS spa
e we 
an deal with all the geometries with the same boundary
ondition at the same time. For instan
e, we 
an dis
uss the thermal phase stru
ture ofgravity theory in AdS5=Zk [7℄.Utilizing the AdS/CFT 
orresponden
e, we 
an dis
uss the 
ondensation in terms ofdual gauge theory. In the global 
oordinates, the boundary of AdSd+1 is given by Rt�Sd�1,where Rt and Sd�1 denote the time dire
tion and the d�1 dimensional sphere, respe
tively.Sin
e the orbifold a
tion a
ts also on the boundary of AdSd+1, the dual gauge theory isde�ned by the orbifold of gauge theory on Rt � Sd�1. One of the important fa
ts for theorbifold gauge theory is that the theory has many va
ua labeled by the holonomy matrixalong its non-trivial 
y
le. It is natural to propose that the 
ondensation of lo
alizedta
hyon is dual to the assignment of non-trivial holonomy, be
ause it is known that thedeformation by normalizable modes 
orresponds to giving expe
tation values to dualoperators. Noti
e that this is related to the fa
t that the lo
alized ta
hyon 
ondensationdoes not 
hange the boundary 
ondition as mentioned before. In this way, we 
an analyzethe ta
hyon 
ondensation in terms of dual gauge theory as a transition between di�erentva
ua. In parti
ular, the Casimir energies for the va
ua of dual gauge theory on Rt � S3were 
omputed in [7℄, and it was found that they reprodu
e quite well the masses of dualgeometries.One of the purpose of this paper is to extend the analysis on the lo
alized ta
hyon
ondensation of AdS5=Zk [7℄ into the 
ase of AdS3=Zk. Up to now only the 
omparisonbetween the stati
 geometries deformed by lo
alized ta
hyon 
ondensation and the va
uaof dual gauge theory has been done. So we would like to investigate the dynami
s oflo
alized ta
hyon 
ondensation both from the bulk and boundary points of view. Inse
tion 2 we study the lo
alized ta
hyon 
ondensation on AdS3=Zk with odd k. First weobserve that the geometry after the ta
hyon 
ondensation is AdS3=Zk0 with odd k0 < kand the �nal geometry is given by AdS3 without orbifolding. Next we study the de
ay ofAdS3=Zk following a dilaton pulse, whi
h is indu
ed by a lo
alized ta
hyon 
ondensation.We solve numeri
ally the Einstein-dilaton equations in order to obtain a time-dependentgravity solution des
ribing the de
ay. The gauge theory dual to AdS3=Zk is de�ned onRt � S1=Zk, and the holonomy matrix along the spatial 
y
le leads to di�erent va
ua.The Casimir energies for the va
ua of the gauge theory are 
omputed and exa
t mat
hesare found between the Casimir energies and the masses of dual geometries. In se
tion 3we �rst review the result of [7℄, where it was dis
ussed that AdS5=Zk de
ays into Egu
hi-Hanson solution [8, 9℄. The dual gauge theory is de�ned on Rt�S3=Zk, and the va
ua withdi�erent holonomy 
orrespond to the di�erent geometries deformed by lo
alized ta
hyon
ondensation. In subse
tion 3.2 we 
onstru
t instanton solutions of the orbifold gaugetheory on Rt � S3=Zk with the help of instanton solutions on Rt � S2 [15, 16℄. Theinstanton solutions interpolate di�erent va
ua, whi
h are dual to the transitions betweendi�erent geometries. 2



2 De
ay of AdS3=ZkWe start from extending the results of [7℄ into AdS3=Zk 
ase. We �nd that the de
aypro
ess of AdS3=Zk is quite similar to the one of C =Zk , namely, AdS3=Zk de
ays intoAdS3=Zk0 with k0 < k and ends up with pure AdS3. Making use of this similarity, weanalyze in subse
tion 2.2 the dynami
s of lo
alized ta
hyon 
ondensation. A lo
alizedta
hyon 
ondensation leads to a dilaton pulse, whi
h travels from the �xed point into theAdS boundary. The ba
k-rea
tion of this dilaton pulse indu
es the de
ay of AdS3=Zkinto AdS3=Zk0 with k0 < k. We try to �nd a time-dependent gravity solution des
ribingthe de
ay in a numeri
al way. The boundary of AdS3=Zk is given by Rt � S1=Zk, andthe dual gauge theory is de�ned on the boundary. In subse
tion 2.3 we de�ne the dualgauge theory and �nd the spe
trum for various va
ua with non-trivial holonomy. TheCasimir energies of the va
ua are 
omputed, and they are shown to mat
h pre
isely withthe masses of dual geometries.2.1 The deformed geometries after the ta
hyon 
ondensationLet us 
onsider type IIB superstring theory on AdS3 � S3 � T 4. In the global 
oordi-nates, the metri
 of AdS3 is given byds2 = dr2g(r) � g(r)dt2 + r2d�2 ; g(r) = 1 + r2l2 : (2.1)The orbifold of AdS3 
an be 
onstru
ted from the identi�
ation of � � � + 2�=k, whi
hgives rise to a �xed point at r = 0. Following the arguments of [2℄ on C =Zk , we 
an
onstru
t the 
on�guration with no bulk ta
hyons and only ta
hyons lo
alized at r = 0by assuming an odd integer k and anti-periodi
 boundary 
onditions for fermions. Herewe have used the fa
t that lo
al properties do not depend on the 
urvature of AdS spa
e.From the experien
e of the 
at orbifold 
ase, it is natural to guess that the 
ondensationof lo
alized ta
hyon deforms the orbifold AdS3=Zk into AdS3=Zk0 with odd k0 < k and�nally into the stable supersymmetri
 va
uum with AdS3.It is very diÆ
ult to prove this 
onje
ture sin
e we do not fully understand the lo-
alized 
losed string ta
hyon. However, it is possible to obtain several supports for this
onje
ture if we utilize the properties of asymptoti
 AdS spa
e. Suppose that the po-tential of lo
alized ta
hyoni
 modes has various minima at �nite 
on�gurations. Thenthe ta
hyon 
ondensation leads to the deformation of normalizable modes, whi
h ends upwith a deformed geometry with the same boundary 
ondition. In fa
t, we 
an show thatAdS3=Zk 
an be deformed into AdS3=Zk0 with odd k0 < k without 
hanging the boundarybehavior. Moreover, we observe that the ba
kground mass de
reases as k0 be
omes smalland the smallest mass is given by AdS3 within the 
on�gurations with �xed boundary
ondition. 3



In order to des
ribe the AdS3=Zk0 geometry with a �xed boundary 
ondition, it isnot appropriate to use the metri
 (2.1) with the identi�
ation � � � + 2�=k0 sin
e theboundary 
ondition manifestly depends on the 
hoi
e of k0. Instead we use the followingmetri
 asds2 = dr2g(r)f(r) � g(r)dt2 + r2f(r)d�2 ; g(r) = 1 + r2l2 ; f(r) = 1� a2r2 : (2.2)The period of � is set as � � � + 2�=k and the parameter a is related to k0(< k) asa2 = l2 �K2 � 1� ; K = kk0 : (2.3)Utilizing the 
oordinate transformation~r = 1Kpr2 � a2 ; ~t = Kt ; ~� = K� ; (2.4)we 
an indeed rewrite the above metri
 into the form of (2.1) with the periodi
ity ~� �~�+2�=k0. The boundary behavior of the metri
 in the form (2.2) does not depend on theparameter a(k0), therefore we 
an express all the orbifolds AdS3=Zk0 (k0 < k) with thesame boundary 
ondition as for AdS3=Zk. Noti
e that k0 should be odd sin
e only the
ase with odd k0 is 
onsistent with the anti-periodi
 
onditions for fermions at the AdSboundary.An advantage to embed into an AdS spa
e is that the mass of geometry is well-de�ned in an asymptoti
ally AdS spa
e. Utilizing this fa
t we 
an analyze the stability ofgeometries by 
omparing the masses of geometry. Here we follow the methods developedin [10℄. For an asymptoti
ally AdS spa
e we 
an expand the metri
 for large r asds2 = l2r2dr2 + r2l2 (�dt2 + l2d�2) + Æg��dx�dx� ; (2.5)where Æg�� 
ontains the lower powers of r. Then the mass of geometry 
an be 
omputedby using the formula [10℄M = 18�G3 Z 2�=k0 d� r42l4 Ægrr + 1l2 Æg�� � r2l2�rÆg��! (2.6)with the three dimensional Newton 
onstant G3. We �nd from the metri
 (2.2)Ægrr = � l4r4  1� a2l2 ! ; Ægtt = �1 ; Æg�� = �a2 ; (2.7)thus the mass of the geometry (2.2) is given byM = � 18kG3  1 + a2l2 ! = � k8k02G3 : (2.8)From this mass formula, we 
an show that the mass of geometry is largest for the originalgeometry with k0 = k and be
omes smaller as we de
rease k0. The �nal geometry shouldbe given by AdS3 with k0 = 1, whi
h is stable sin
e it has the smallest mass and nolo
alized ta
hyon. Furthermore, the supersymmetry is re
overed in the �nal geometry.4



2.2 Gravity solution des
ribing the de
ay of AdS3=ZkIn the previous subse
tion, we have 
onje
tured that the lo
alized ta
hyon 
ondensa-tion leads to the de
ay of the orbifold AdS3=Zk into AdS3=Zk0 (k0 < k) with a smallerde�
it angle. The dynami
al pro
ess may be given as follows. Ta
hyons lo
alized atthe �xed point 
ould roll down the potential and rea
h to minima. The energy due tothe ta
hyon 
ondensation would be 
arried out by a dilaton pulse from the 
enter to theboundary of the AdS orbifold. The dilaton pulse 
an serve as a moving domain wall, andthe geometry de
ays into AdS3=Zk0 (k0 < k) after the pulse passed away. For Rt � C =Zkthis s
enario was 
onje
tured in [2℄ and the exa
t gravity solution was found in [5, 6℄.It is well known that it is diÆ
ult to analyze the 
ondensation of 
losed string ta
hyonin general, sin
e the 
ondensation 
hanges the ba
kground itself and we do not know howto deal with this 
ase. An advantage to lo
alize the ta
hyon is that the e�e
ts of ta
hyon
ondensation are 
on�ned in a stringy regime, and hen
e we 
an safely use the 
lassi
algravity des
ription to des
ribe the de
ay of the AdS orbifold for later time. As mentionedabove we assume that the e�e
t of lo
alized ta
hyon indu
es a dilaton pulse travelingfrom the 
enter to the AdS boundary. Thus now the problem is to �nd out the solution ofgraviton-dilaton system 
orresponding to the de
ay of AdS orbifold with a dilaton pulse.The a
tion we 
onsider for graviton and dilaton isS = 116�G3 Z d3xp�g(R� 4������� 2�) ; (2.9)where R is the Ri

i s
alar with respe
t to the metri
 g��, and � is the dilaton �eld. Thedeterminant is denoted as g = det g��, and the Ri

i tensor will be represented as R�� .The negative 
osmologi
al 
onstant is related as � = �1=l2 in eq. (2.1) and we �x it as� = �1, i.e., l = 1 for a while.From the a
tion for graviton and dilaton, we 
an read o� the equations of motion forgraviton as R�� � 12Rg�� = 4�������� 12g��(��)2�+ g�� (2.10)and for dilaton as 1p�g��p�gg����� = 0 : (2.11)In order to solve the Einstein-dilaton equations, we set up an initial 
on�guration atan initial time t = 0, and follow the evolutions of metri
 and dilaton by solving theseequations. Sin
e the (t�) 
omponents of Einstein equations (2.10) 
ontain only terms atmost involving �rst derivative with respe
tive to time �t and 
ontain no se
ond or highertime derivatives, we treat these equations as 
onstraint equations for initial data. Thisis be
ause these equations do not tell anything about time evolution. We treat the rest,5



spatial 
omponents of Einstein equations, whi
h involve se
ond order time derivatives, asdynami
al evolution equations.Sin
e some 
omponents of Einstein equations are treated as 
onstraint equations, nowthe number of di�erential equations is smaller than that of degrees of freedom. Therefore,we have to remove several 
omponents of metri
 by utilizing the di�eomorphism gaugesymmetry. We 
an always 
hoose the metri
 in the form ofds2 = e2F (t;r)(�dt2 + dr2) + C(t; r)2d�2 ; � � � + 2�=k : (2.12)Here we have removed �-dependen
e of the metri
 by making use of the symmetry of thesystem. The dilaton �eld is also set to be independent of �. The 
onformal transformationof (t; r) is a residual di�eomorphism whi
h does not 
hange the form of (2.12), and theresidual gauge 
an be �xed by assigning appropriate boundary 
onditions at r = 0 andinitial 
on�guration at the initial time t = 0.In terms of the metri
 form (2.12), the geometries before and after the ta
hyon 
on-densation are given as follows. The metri
 of the initial geometry AdS3=Zk isds2 = 1
os2 r (�dt2 + dr2) + tan2 rd�2 ; (2.13)whi
h is obtained by repla
ing r of (2.1) with ~r by 
oordinate transformation r = tan ~rand rewriting ~r ! r. In this 
oordinate system, the AdS boundary is lo
ated at r = �=2.After the ta
hyon 
ondensation the geometry is proposed to be AdS3=Zk0, whose metri

an be written as ds2 = 1
os2 r (�dt2 + dr2) +K2 tan2 rd�2 (2.14)with K = k=k0 as before. A
tually it is 
onvenient for the later purpose to rewrite asds2 = 1K2 
os2(r=K)(�dt2 + dr2) +K2 tan2(r=K)d�2 (2.15)by res
aling 
oordinates as t ! t=K; r ! r=K. If we take r ! 0 limit, then the metri
redu
es to the one used in [2℄ for C =Zk . As a result, 
omparison to C =Zk is more manifestin this metri
, even though the radial boundary is shifted along the ta
hyon 
ondensationfrom r = �=2 to r = K�=2.Let us write down the expli
it form of equations of motion by using the metri
 (2.12).The 
onstraint equations arise from (tt); (tr) 
omponents of Einstein equations (2.10) as�rF�rH � (�rH)2 � �2rH + �tF�tH � 2(�t�)2 � 2(�r�)2 + e2F = 0 ;�rH(�tF � �tH) + �rF�tH � �t�rH � 4�t��r� = 0 ; (2.16)whi
h do not in
lude se
ond derivatives at it should be the 
ase. Here we have usedH(t; r) = logC(t; r) su
h that the equations be
ome simpler. Note that the (t�) 
om-ponent is empty due to the �-independen
e. We will use below these equations to set6



up initial 
on�gurations and to 
he
k the reliability of our 
omputation. The non-trivialparts of evolution equations 
ome from (rr) and (��) 
omponents as�tF�tH + �rF�rH � (�tH)2 � �2tH � 2(�t�)2 � 2(�r�)2 � e2F = 0 ;(�2t � �2r )F � e2F � 2(�t�)2 + 2(�r�)2 = 0 : (2.17)It is possible to solve these equations dire
tly, but it might be useful take a linear 
om-bination of Einstein equations to make the equations simpler. Noti
e that the Einsteinequations 
an be redu
ed to a simpler form in this 
ase asR�� + 2g�� = 4������ : (2.18)We pi
k up (tt) + (rr) and (��) 
omponents as evolution equations2�F +�H +rH � rH � 4e2F + 4r� � r� = 0 ;�H +rH � rH � 2e2F = 0 ; (2.19)where we have used � = ��2t + �2r and rf � rf = ��tf�tf + �rf�rf . In parti
ular,there is no dependen
e of dilaton in the (��) 
omponent. In this notation, the equationof motion for dilaton is written as�� +rH � r� = 0 : (2.20)In the following we will try to solve the three evolution equations (2.19) and (2.20) forthree unknowns F (t; r); C(t; r);�(t; r). In fa
t, this is equivalent to solve (2.17) and (2.20)sin
e we have just pi
ked up a spe
i�
 linear 
ombination.In order to solve the evolution equations we have to set up boundary 
onditions2 atthe 
enter r = 0 and an initial 
on�guration at t = 0. At r = 0 we set C = 0 sin
e the
y
le of � should shrink at r = 0. Then the regularity of (2.20) requires the Neumannboundary 
ondition as �r� = 0 at r = 0. We also assign �rF = 0 at r = 0, whi
h followsthe regularity of (2.17). This 
ondition should be related to the regularity of (2.19) sin
ewe have just pi
ked up a linear 
ombination. Now that we are trying to solve se
ondorder di�erential equations for three unknowns, we should assign 6 initial 
onditions forF;C;� and �tF; �tC; �t� at t = 0. At the initial time we have argued that the ta
hyon
ondensation makes a dilaton pulse, whi
h should be determined from the string theory
omputation in prin
iple. Sin
e it is a rather hard task, we simply assume that thelo
alized ta
hyon indu
es a stati
 dilaton pulse with the Gaussian form as�(t = 0; r) = �0 exp(�r2=�) ; �t�(t = 0; r) = 0 : (2.21)2Boundary 
onditions at the AdS boundary are tri
ky sin
e the radial boundary shifts as ta
hyon
ondenses. In spite of this fa
t, we set the Diri
hlet boundary 
onditions for F;C;� at r = �=2. This
hoi
e is reliable only when we follow the evolution before the dilaton pulse rea
hes to the boundary asbelow. 7



The normalisation �0 and the width p� of the pulse should be related to the lo
alizedta
hyon 
ondensation and therefore to the de
ay pro
ess. We also assume that the de
aystarts from a stati
 
on�guration and hen
e we set �tF = �tC = 0 at t = 0. The otherintimal 
onditions are for F and C at t = 0. Due to the assumption of stati
 initial
on�guration, the se
ond equation of (2.16) vanishes. Therefore, on
e we �x one of theinitial 
onditions, then the other is determined from the �rst 
onstraint equation. We �xit from the 
at spa
e limit. Near r = 0 we 
an negle
t the 
osmologi
al 
onstant, thusthe 
hange of metri
 
an be 
lose to the one in [5, 6℄. They �x C = r, independent ofdilaton pulse, with the help of the residual di�eomorphism, thus we may set C = tan r att = 0. Then F at t = 0 is determined by solving the �rst 
onstraint equation. Be
ause ofthis 
hoi
e of initial 
on�guration, we expe
t that the de
ay of AdS3=Zk is 
losed to theone of C =Zk at least near r = 0. In parti
ular, the metri
 of the �nal geometry should begiven as in (2.15).Right now we have suÆ
ient boundary 
onditions to solve the three evolution equations(2.19) and (2.20). Unfortunately we 
annot �nd analyti
 solutions to these equations,therefore we try to solve them in a numeri
al way. The result is summarized in �g. 1,and the 
onstraint equations (2.16) are 
he
ked numeri
ally. We interpret the result asfollows. The fun
tion C 
hanges very little during the de
ay pro
ess, whi
h is 
onsistentwith the assumption of initial 
ondition. Sin
e the equation of motion for dilaton dependsonly on C but not on F , the dilaton pulse is almost the same as in the stati
 AdS orbifold.The most important information should be read o� from the behavior of F . We 
an seethat the value of F de
reases after the dilaton pulse passed away. This is 
onsistent withthe expe
tation of (2.15) that F 
hanges as F ! F � logK for small r by the ta
hyon
ondensation. In this way, at least until dilaton pulse rea
hes the boundary, we have
he
ked numeri
ally that the evolution of ta
hyon 
ondensation is 
onsistent with theproposal that AdS3=Zk de
ays into AdS3=Zk0 with k0 < k.2.3 Dual gauge theory des
riptionThe AdS/CFT 
orresponden
e relevant for this 
ase may be dedu
ed from the nearhorizon limit of D1/D5 system [4℄. We wrap N5 D5-branes over a small T 4, whi
h givesstring-like obje
ts in (1+5) dimensional spa
e-time. We put N1 D1-branes on the topof the string-like obje
ts, then the near horizon limit of the D1/D5 system gives rise to
losed superstrings on AdS3 � S3 (�T 4). The dual gauge theory 
ould be des
ribed bythe low energy e�e
tive a
tion on the worldvolume of the D1/D5 system. For the dual ofthe orbifold AdS3=Zk, we should 
onsider the orbifold of the worldvolume theory de�nedon its boundary Rt � S1=Zk.In this subse
tion we restri
t ourselves to large N1; N5 and zero 't Hooft 
ouplinglimit. The radius of S1 is related to the AdS radius as R = l, whi
h may be read from the8
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tFigure 1: The 3D plots of the solutions F;C;� to the evolution equations (2.19) and(2.20). The right hand sides are the 
ontour plots. In the numeri
al 
omputation we haveset �0 = 0:4 and � = 0:1 in (2.21). The fun
tion C 
hanges very little during the pro
ess,and the dilaton � travels as in the stati
 AdS orbifold. The fun
tion F de
reases afterthe dilaton pulse passed away, whi
h is 
onsistent with the 
onje
ture of lo
alized ta
hyon
ondensation.
9



asymptoti
 behavior of the metri
 (2.5). In order to make the 't Hooft 
oupling small,we have to 
onsider the 
ase with a small radius R. If we take the IR limit or the largeradius limit, then the gauge theory des
ription is not valid anymore due to the large 'tHooft 
oupling, and 
onformal �eld theory des
ription should be adopted.Two ends of open strings 
an be atta
hed to either of D1-brane or D5-brane. From theopen strings between the same D-brane, we obtain U(N1) and U(N5) gauge �elds in the lowenergy limit. In (1+1) dimension, almost all the degrees of freedom 
an be gauged awayand only the zero modes are left. The zero modes of gauge �elds indu
e the holonomies V1for U(N1) and V5 for U(N5) along S1=Zk spatial 
y
le, and the 
hoi
e of holonomies labelsthe va
ua of the theory. For the open strings between D1 and D5-branes, we 
an �ndfrom some 
omputations that the low energy spe
trum in
ludes 4 bi-fundamental s
alersand 4 bi-fundamental fermions with respe
t to the U(N1)� U(N5) gauge symmetry (see,e.g., [11℄). We use odd k and assign anti-periodi
 boundary 
onditions for fermions alongthe spatial 
y
le.In order to 
lassify the possible va
ua of the orbifold gauge theory, we have to �ndout whi
h holonomies 
ould be taken. If we 
onsider the gauge theory on the 
overingspa
e, then only the trivial holonomies along the spatial 
y
le are allowed. This 
an beunderstood as follows. Consider a two dimensional U(N) gauge theory on a 2-torus T 2and a holonomy matrix along its thermal 
y
le. Then for large N limit the eigenvaluesof holonomy matrix are uniformly distributed at low temperature and 
ollapsed at hightemperature. In parti
ular, in the in�nite temperature limit, the density of eigenvaluebe
omes delta-fun
tional. For example, see [12℄. Thus holonomies along thermal 
y
le aretrivial in the in�nite temperature limit. But from the modular invarian
e, this means thatholonomies along the spatial 
y
le are trivial in the zero temperature limit. Therefore, wehave the 
onditions V k1 = 1 and V k5 = 1 for the orbifold gauge theory as in the 
ase ofRt � S3=Zk [13℄. Utilizing the gauge symmetry we 
an set V1 and V5 in the form ofdiag(1; � � �1; !; � � � ; !; � � �!k�1; � � � ; !k�1) ; ! = exp 2�ik : (2.22)In other words, the va
ua are labeled by the 2k integer numbers (n10; � � � ; n1k�1) and(n50; � � � ; n5k�1), where the numbers of !I are denoted as n1I and n5I with PI n1I = N1 andPI n5I = N5.Let us examine the spe
trum of this orbifold gauge theory. Due to the existen
e ofnon-trivial holonomies, the gauge symmetry is broken to QI U(n1I) � QJ U(n5J) and thestates are in the bi-fundamental representation of this broken gauge symmetry. Firstwe 
onsider a s
alar in the (n1I ; �n5J) bi-fundamental representation. The s
alar 
an beexpanded by a plane wave as �(I;J)p � eip�, and the orbifold a
tion g yieldsg � �(I;J)p = e 2�ipk !I�J�(I;J)p = e 2�ik (p+I�J)�(I;J)p : (2.23)Noti
e that the phase fa
tor is shifted by the e�e
t of holonomies. The orbifold invariantstates 
an be obtained by summing over all the images of the orbifold a
tion. Thus the10



proje
tion operator is given by � = PkI=1 gI, and the a
tion of this operator restri
tsthe modes to p = kn + J � I with n 2 Z. The spe
trum of fermion in the (n1I ; �n5J) bi-fundamental representation 
an be obtained in the same way. Here we should rememberthat k is an odd integer and the anti-periodi
 boundary 
ondition is assigned. Thus theorbifold a
tion be
omes g �	(I;J)p = e 2�ik (p+I�J+k=2)	(I;J)p ; (2.24)where the shift of k=2 arises from the anti-periodi
 boundary 
ondition. The proje
tioninto the orbifold invariant subspa
e leads to the restri
tion p = k(n + 1=2) + J � I withn 2 Z.Now that we know the spe
trum of the orbifold theory for arbitrary holonomymatri
es,we 
an 
ompute the Casimir energy, whi
h is known to be dual to the mass of dualgeometry. The Casimir energy is given byV0 = 12XE (�1)FEnE ; E = jpjR ; (2.25)where F denotes the fermion number and nE represents the number of states with energyE. For a s
alar or a fermion in the (n1I ; �n5J) bi-fundamental representation the number ofmodes is n1In5J and the energy is E = jkn+ I � J j=R for a s
alar and E = jk(n+ 1=2) +I�J j=R for a fermion. Sin
e the orbifold gauge theory in
ludes 4 s
alars and 4 fermions,we obtainV0 =XI;J n1In5J2R  4 1Xn=�1 jkn+ I � J j � 4 1Xn=�1 jk(n+ 1=2) + I � J j! : (2.26)Using this formula, we 
an 
ompute the Casimir energy for ea
h va
uum with generi
holonomies.We would like to �nd out the va
uum dual to AdS3=Zk0 with k0 � k. The orbifoldAdS3=Zk0 has Zk0 symmetry, thus the holonomy matri
es should respe
t this dis
retesymmetry. If we restri
t ourselves to the 
ase with integer K = k=k0, then we 
an 
hoosen1mK = N1=k0 and n5mK = N5=k0 with m = 0; 1; � � �k0 � 1 and zero for others.3 Theremight be other 
hoi
es of holonomies respe
ting the symmetry, but we 
an show that this
hoi
e gives the smallest Casimir energy among them. In fa
t, the Casimir energy in this
ase is 
omputed asV0 = N1N5Rk02 k0 k0XI=1 4 1Xn=1 jkn+KIj � 4 1Xn=1 jk(n+ 1=2) +KIj! = � 
k12k02R (2.27)with 
 = 6N1N5. In order to obtain this, it is useful to use the formula1Xn=1(n� �) = 124 � 18(2� � 1)2 : (2.28)3 Here we have assumed that N1 and N5 
an be divided by k0, though the pre
ise value is not relevantfor large N1; N5. 11



Using the relation 
 = 3l=(2G3) (see, e.g., [10℄), the Casimir energy exa
tly mat
hes themass of AdS3=Zk0 (2.8). Noti
e that we obtain the exa
t mat
h 
ontrary to the AdS5=Zk
ase [7℄. This 
ould be another example showing that AdS3 
ases are more stable underquantum 
orre
tions than AdS5 
ases, whi
h is known to o

ur in many 
ontexts.One may ask what would happen for generi
 k0 with non-integerK = k=k0. The answerdepends on whether we deal with in�nite or �nite N1; N5. For in�nitely large N1; N5, wemay be able to 
onstru
t a va
uum arbitrary 
lose to the dual of ea
h geometry. For�nite N1; N5, we have a �nite number of va
ua, thus not all of the 
lassi
al geometrieshave their dual va
ua. If we in
lude quantum 
onditions to the gravity side, then onlythe geometries with dual gauge theory va
ua may be allowed.4We 
on
lude this subse
tion as follows. We may start from the va
uum dual to theAdS3=Zk, whi
h is labeled by the holonomies n1I = N1=k and n5I = N5=k for all I. Thisva
uum is only meta-stable be
ause other va
ua have smaller Casimir energies. Theva
uum de
ays non-perturbatively into another va
uum dual to AdS3=Zk0 with a smallerk0, and �nally ends up with the trivial va
uum with n10 = N1 and n50 = N5, whi
h is dualto pure AdS3. The va
uum transition will be dis
ussed in the next se
tion for AdS5 
ase.3 De
ay of AdS5=ZkAs we saw in the previous se
tion, the lo
alized ta
hyon 
ondensation on AdS3=Zkleads to the de
ay of geometry in a quite analogous way to the de
ay of C =Zk . However,the lo
alized ta
hyon 
ondensation on AdS5=Zk is quite di�erent as dis
ussed in [7℄. Infa
t, AdS5=Zk does not de
ay into AdS5 or the other orbifold of AdS5, be
ause theboundary of AdS5=Zk, i.e., Rt � S3=Zk, 
annot be the boundary of AdS5 or the AdSorbifold AdS5=Zk0 with k0 6= k. The �nal geometry after the ta
hyon 
ondensation wasproposed in [8, 9℄ and 
alled as Egu
hi-Hanson soliton.The dual gauge theory des
ription 
an be given by the Zk orbifold of N = 4 superYang-Mills on Rt�S3. In parti
ular, the Casimir energies of various va
ua were 
omputedin [7℄, and it was found that the Casimir energies reprodu
e the masses of dual geometriesquite well. Similar results were obtained in [14℄ in slightly di�erent 
on�gurations. Inthe next subse
tion, we review the work of [7℄, whi
h dis
uss the fate of lo
alized ta
hyon
ondensation on AdS5=Zk and its gauge theory des
ription. This subse
tion is for thepreparation of subse
tion 3.2, where the transition between di�erent va
ua is dis
ussed.The transition is des
ribed by an instanton of the orbifold gauge theory on Rt � S3=Zk.We 
onstru
t instanton solutions by making use of the known instantons for the gaugetheory on Rt � S2 [15, 16℄.4See, for example, [13℄. In their 
ase the quantization of 
ux restri
ts the number of allowed geometryand leads to one-to-one 
orresponden
e between geometries and gauge theory va
ua.12



3.1 Review of �nal geometry and dual gauge theory des
riptionWe 
onsider type IIB superstring theory on AdS5 � S5 and 
onstru
t the orbifoldtheory with ta
hyoni
 modes at the �xed point. In the global 
oordinates the metri
 ofAdS5 is given byds2 = g(r)dt2 + dr2g(r) + r2d
3 ; g(r) = r2 + 1 ; (3.1)where the AdS radius is set to be one and the metri
 of boundary geometry isd
3 = 14 h(d�+ 
os �d�)2 + d�2 + sin2 �d�2i : (3.2)The variables run 0 � � � �, 0 � � � 2�, and 0 � � � 4�. The identi�
ation in theorbifold theory is performed by the shift along the �-
y
le as � � � + 4�=k. Then theorbifold a
tion yields a �xed point at r = 0, and the system has ta
hyoni
 modes lo
alizedat the �xed point, if we use even5 k and assign the anti-periodi
 boundary 
ondition forfermions along the �-
y
le.The geometry after the lo
alized ta
hyon 
ondensation is proposed in [8, 9℄, wherethey 
alled the geometry as Egu
hi-Hanson soliton. The metri
 is given byds2 = g(r)dt2 + dr2g(r)f(r) + r24 hf(r)(d�+ 
os �d�)2 + d�2 + sin2 �d�2i (3.3)with g(r) = r2 + 1 ; f(r) = 1� a4r4 ; a2 =  k24 � 1! ; (3.4)where k > 2 su
h that a2 > 0. The relation between a and k is �xed by assuming theregularity of the geometry at r = a, and due to the la
k of �xed point the Egu
hi-Hansonsoliton does not have lo
alized ta
hyons.6 The region of r < a is removed in the Egu
hi-Hanson soliton, and this region might be interpreted as the ta
hyon state, where theta
hyoni
 modes have non-trivial expe
tation values [17, 18℄. We 
an 
he
k by takinglarge r limit that this geometry has the same boundary geometry as that of AdS5=Zk,whose metri
 is given by (3.2).5One may ask why k should be even 
ontrary to the AdS3 
ase with odd k. This is related to thetopology of boundary geometry. The boundary of AdS3 is given by S1, and the 
y
le 
an be pin
hed o�at the 
enter of AdS3 if we assign the anti-periodi
 boundary 
ondition for fermions. This leads to the
ondition of odd k for the orbifold theory. On the other hand, the boundary of AdS5 is S3, and there isno 
y
le whi
h we 
an go around. For this reason we 
an assign anti-periodi
 boundary 
onditions onlyfor even k su
h that fermions do not re
eive a phase fa
tor when going around k times the 
y
le of S3=Zk.6It might be interesting to use a generi
 a to 
onstru
t other geometry with an orbifold singularity atr = a. It may serve as an intermediate geometry. 13



We 
an dis
uss the stability of ba
kground by 
omparing the masses of geometryaddition to examining the existen
e of ta
hyoni
 modes. The mass of the AdS orbifoldAdS5=Zk is just 1=k times that of AdS5, thus it is given byM = 3�32kG5 : (3.5)The mass of Egu
hi-Hanson soliton was 
omputed in [8, 9℄ by adopting the same methodin subse
tion 2.1 as M = ��(k4 � 8k2 + 4)128kG5 : (3.6)We 
an see that the mass of Egu
hi-Hanson soliton is smaller than that of AdS5=Zk, andhen
e the Egu
hi-Hanson soliton 
an be thought as a �nal geometry.The gauge theory dual to superstring theory on AdS5=Zk � S5 is given by N = 4U(N) super Yang-Mills theory on Rt � S3=Zk [13℄. The radius of S3 is set to be one andN is taken very large. We use the metri
 of Rt � S3=Zk asds2 = �dt2 + 14 h(d�+ 
os �d�)2 + d�2 + sin2 �d�2i ; (3.7)where the theory is divided by the shift of 2�=k along the �-
y
le. Originally there isno non-trivial 
y
le in the 
overing spa
e S3, but the orbifold pro
edure leads to a non-trivial 
y
le with �1(S3=Zk) = Zk. Along the 
y
le, we 
an assign a holonomy matrixV = P exp(�igYM H A�) subje
t to V k = 1 as in the AdS3 
ase. The holonomy matrix
an be set asV = diag(1; � � � ; 1; !; � � � ; !; � � � ; !k�1; � � �!k�1) ; ! = exp 2�ik (3.8)with the help of U(N) gauge symmetry. Therefore, the va
ua are labeled by k integers(n0; � � � ; nk�1) withPI nI = N , where nI represents the number of !I . Two spe
i�
 va
uaamong them are important for us. One is the va
uum with the Zk symmetri
 holonomynI = N=k for all I, whi
h is dual to AdS5=Zk. The other is the va
uum with the trivialholonomy n0 = N , whi
h is dual to the Egu
hi-Hanson soliton (3.3).In [7℄ the spe
trum of the orbifold gauge theory with the holonomymatrix was obtainedand the Casimir energy for the va
uum was 
omputed at the one loop level. For the Zksymmetri
 holonomy nI = N=k, the Casimir energy is given byV0 = N2 316k : (3.9)With the relation N2 = �=(2G5) we 
an see that the Casimir energy exa
tly reprodu
esthe mass of AdS5=Zk (3.5). For the trivial holonomy n0 = N , the Casimir energy isV0 = �N2  k348 � k12 � 316k! ; (3.10)14



whi
h is roughly 4=3 times the mass of the Egu
hi-Hanson soliton (3.6). This is a remark-able result sin
e we have observed a quantitative 
orresponden
e between the results insmall and large 't Hooft 
oupling limits. We 
an show that the Casimir energy for n0 = Nis smallest among the ones for every holonomies [7℄, and in this way we may say that theEgu
hi-Hanson soliton is really the �nal geometry after the de
ay of AdS5=Zk.3.2 Gauge theory instantonWe have observed that the lo
alized ta
hyon 
ondensation deforms the ba
kground ge-ometry from AdS orbifold into another more stable geometry. In parti
ular, the dynami
sof the geometry transition for AdS3 
ase have been analyzed by 
onstru
ting a numeri
algravity solution des
ribing the de
ay of AdS3=Zk in subse
tion 2.2. In this subse
tion,we would like to dis
uss the dynami
s of the transition from the viewpoint of the dualgauge theory. Ea
h geometry 
orresponds to a va
uum of dual gauge theory, thus thetransition of geometry should be des
ribed by the transition between di�erent va
ua, i.e.,the instanton interpolating va
ua. We fo
us on the orbifold gauge theory on Rt � S3=Zksin
e we have a lot of knowledge about instantons in four dimension.We would like to 
onstru
t instantons whi
h interpolate va
ua at � = �1 and otherva
ua at � = 1 with the Eu
lidean time � = it. We only analyze in the semi-
lassi
allimit, where all the va
ua are degenerated, and in this limit it is enough to ex
ite onlythe gauge �eld. For this reason we 
onsider SU(N) pure Yang-Mills theory, whose a
tionis given by S = 14 Z d4xpg4F��F�� ; (3.11)where the �eld strength is de�ned asF�� = ��A� � ��A� + igYM[A�;A�℄ : (3.12)We denote the Yang-Mills 
oupling 
onstant as gYM , whi
h is assumed to be very small.The gauge theory is de�ned on Rt � S3=Zk, whose metri
 is given byds2 = d� 2 + 14 h(d�+ 
os �d�)2 + d�2 + sin2 �d�2i (3.13)with 0 � � � �, 0 � � � 2�, and 0 � � � 4�=k as before. In parti
ular, the measure isgiven by d4xpg4 = 18 sin �d�d�d�d�.In order to obtain instanton solutions, it is useful to rewrite the above a
tion asS = 18 Z d4xpg4 [(F�� � �F��)(F�� � �F��)� 2F�� � F��℄ (3.14)as usual. The Hodge dual is given by�F�� = pg42! �����F�� ; �F�� = 12!pg4 �����F�� (3.15)15



in a 
urved spa
e. The se
ond term of (3.14) 
orresponds to a topologi
al 
ontribution.Within the same topologi
al se
tor, the minimum of the a
tion is given by the solutionsto the (anti-)self-dual equation of �eld strengthF�� = � � F�� : (3.16)The solutions to the equation are the (anti-)instantons of the orbifold gauge theory.We try to �nd out solutions to the (anti-)self-dual equations. One easy guess is toutilize the 't Hooft instanton, but this type of instantons do not interpolate the va
ua ofour type.7 Therefore we should look for other type of solution. The main idea is as follows.Just like monopole solutions do not depend on time 
oordinate, we assume the 
oordinateindependen
e along the � dire
tion. Then we 
an perform the dimensional redu
tion alongthe � dire
tion, and the theory is redu
ed to the one on R� � S2.8 Instanton solutions ofthe gauge theory on R� � S2 were obtained in [15, 16℄ (see also [20℄), thus we 
an obtaininstantons on R� � S3=Zk by making use of the results on R� � S2.The dimensional redu
tion in this 
ase is a little bit subtle sin
e S3 
onsists of a non-trivial S1 �bration over S2. Using the standard te
hnique of Kaluza-Klein dimensionalredu
tion, the gauge �eld on R� � S2 
an be de�ned as [13℄A�dx� = Amdxm + �(d�+ 
os �d�) (3.17)with m = �; �; �. After the integration over the � dire
tion, we obtain the new a
tion forthe rede�ned gauge �eld asS = 4�k Z d3xpg3 �F 2�� + 4sin2 � (F�� � � sin �)2 + 1sin2 �F 2�� +Dm�Dm�� ; (3.18)where the �eld strength and the 
ovariant derivative areFmn = �mAn � �nAm + igYM[Am; An℄ ; Dm� = �m� + igYM [Am;�℄ : (3.19)The index is raised in (3.18) by the metri
 of R� � S2ds2 = d� 2 + 14 hd�2 + sin2 �d�2i ; (3.20)and the measure in this 
ase is given by d3xpg3 = 14 sin �d�d�d�.The se
ond term of (3.18) a
ts important roles on the gauge theory on R� � S2. Thisterm arises through the non-trivial relation F�� = F�� � � sin � + (D��) 
os �, where the
ontribution from (D��) 
os � does not appear in the �nal form. Be
ause of the form of7This type of instantons 
an be 
onstru
ted by the orbifold images of the 't Hooft instantons mappedon R� � S3. These instantons have the topologi
al 
harge Z=k and are dual to fra
tional instantonslo
alized at the �xed point of AdS orbifold. In parti
ular, the sum of all types of fra
tional instantonsshould reprodu
e the bulk instanton.8The relation between gauge theories on Rt � S3=Zk and on Rt � S2 was also dis
ussed in [19℄.16




omplete square, we 
an see that the va
uum of this gauge theory is labeled by � = f withthe notation F��d�d� = f sin �d�d�. Through the relation (3.17) the holonomy matrixV = P exp(�igYM H A�) of (3.8) is mapped to the 
on�guration� = f = 1gYM (0; � � � ; 0; 1; � � � ; 1; � � � ; k � 1; � � � ; k � 1) ; (3.21)where the number of I = 0; � � � ; k � 1 is given by nI de�ned above.Let us fo
us on the instanton 
ase. Then the problem is now to �nd out solutions tothe self-dual equation (3.16) in terms of gauge �eld of the three dimensional theory (3.17).For SU(2), the general solutions were 
onstru
ted in [15℄. For SU(N) with general N itwas pointed out in [16℄ that the general solutions 
an be dedu
ed from the ones in theplane wave matrix model [21℄ obtained in [22℄. Given a solution to the self-dual equation(3.16), the a
tion 
an be written asS = 14 Z d4xpg4F�� � F�� = 4�k Z d�d�d� [D��(F�� � � sin �) + F��D��� F��D��℄= 2�k Z d�d�d� sin �D��2 = 2�k Z d�d� sin � h�2j�=1 � �2j�=�1i (3.22)with the help of Bian
hi identity D�F�� + D�F�� + D�F�� = 0 [15℄. At the initial time� = �1 and the �nial time � = 1, the system must be at one of the va
ua labeled bythe integers (3.21). Thus the a
tion is evaluated as9S = 8�2kg2YM "k�1XI=0 nII2j�=1 � k�1XI=0 nII2j�=�1# : (3.23)The possible interpolations of va
ua were dis
ussed in [16℄ by using the results of [23℄.In the dual gravity des
ription, the amplitude P � exp(�S) may be interpreted as thetransition probability between geometries in the small AdS radius limit l ! 0.4 Con
lusion and dis
ussionsIn this paper we have investigated the 
ondensation of lo
alized 
losed string ta
hyonsin AdS orbifolds and its dual gauge theory des
ription from the viewpoint of AdS/CFT
orresponden
e. The orbifolds of AdS spa
e have �xed points at the 
enter and we
an 
onstru
t 
on�gurations with ta
hyoni
 modes lo
alized at the �xed points. The
ondensation of lo
alized ta
hyon leads to the de
ay of AdS orbifolds into more stable9More generi
 instanton solutions may be obtained from the va
ua with � = f = 1=gYM (l1; � � � ; lN),where li 2 Z is not restri
ted to the range 0 � li < k. Even for these generi
 va
ua, we 
an 
onstru
tinstantons on R� � S2 and therefore on R� � S3=Zk as well by utilizing the map of va
ua. If we wantto use the range 0 � li < k � 1 for A� = 1=gYM (l1; � � � ; lN), then we just have to perform large gaugetransformations. 17



geometries. The dual theories are given by orbifold gauge theories, and va
uum transitionsof gauge theory 
orrespond to geometry transitions of dual gravity theory.As expli
it examples, we have 
onsidered the orbifolds of AdS3 and AdS5 in type IIBsuperstring theory. First we have studied the lo
alized ta
hyon 
ondensation of AdS3=Zkwith odd k. The ta
hyon 
ondensation leads to AdS3=Zk0 with a smaller odd k0 and�nally to pure AdS3. Assuming that the e�e
t of lo
alized ta
hyon 
ondensation indu
esa dilaton pulse, we have 
onstru
ted numeri
ally a graviton-dilaton solution des
ribingthe de
ay. The dual gauge theory des
ription has been analyzed, and remarkably theCasimir energies are found to be the same as the masses of dual geometries. Then wemove to the 
ase of AdS5=Zk, where the AdS orbifold de
ays into Egu
hi-Hanson soliton[8, 9℄ after the lo
alized ta
hyon 
ondensation. The gauge theory va
ua dual to thesegeometries may have holonomies along the non-trivial 
y
le, and we have 
onstru
tedinstanton solutions interpolating di�erent va
ua as non-perturbative transitions.There are many interesting points to be investigated furthermore. As for the dynami
sof the ta
hyon 
ondensation in the gravity des
ription, we 
ould follow the time evolutionbefore the dilaton pulse rea
hes the boundary. It is interesting to see how the solutionbehaves at the quite late time when the e�e
ts of boundary are signi�
ant. It is alsotrue that the geometry 
hanges 
an be indu
ed both by the 
ondensation of ta
hyoni
mode as perturbative e�e
ts of string theory and also by gravitational instantons as non-perturbative e�e
ts. The lo
alized ta
hyon 
ondensation has been dis
ussed in subse
tion2.2, but the non-perturbative transition has not been analyzed yet. This should be de-s
ribed by a gravitational instanton whi
h interpolate AdS3=Zk at � = �1 to AdS3=Zk0at � =1. It is also important to analyze the AdS5 
ase sin
e the story is quite di�erentfrom the AdS3 
ase.In the gauge theory des
ription, the dynami
s of va
uum transition for (1+1) orbifoldgauge theory is left to be analyzed. However, we expe
t to obtain more insights bystudying deeply about the orbifold gauge theory on Rt�S3=Zk. We have examined non-perturbative e�e
ts in the gauge theory des
ription, but one may ask how to see the e�e
tof lo
alized ta
hyon 
ondensation in this side. It is a
tually a very diÆ
ult question asmentioned in [2℄ be
ause we are 
onsidering in the di�erent regime of 't Hooft 
oupling.The lo
alized ta
hyon 
ondensation has been investigated from the viewpoint of dualgauge theory in [24, 25, 26℄, but it is fair to say that no 
lear pi
ture has been obtainedyet. The investigation in our 
on�guration might give a 
lue sin
e we know the end pointof ta
hyon 
ondensation.One of the main results of this paper is to extend the analysis of AdS5 
ase in [7℄ intothe AdS3 
ase. In fa
t, the AdS3 
ase 
ould be more interesting sin
e we 
an solve stringtheory on AdS3 with NSNS-
ux and go beyond the 
lassi
al limit. For example, we 
an
onstru
t lo
alized ta
hyons expli
itly as in [27, 28℄, and it is also possible to analyzethem from the viewpoint of dual CFT. Moreover, it is worthwhile trying to follow the18



RG 
ow of worldsheet theory in AdS3=Zk, sin
e the worldsheet RG 
ow leads importantdevelopments on the lo
alized ta
hyon 
ondensation [2, 29℄. Ta
hyon 
ondensations instring theory on AdS3 have been also dis
ussed re
ently in [30, 31, 32℄ in di�erent 
ontexts.A
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