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Hadron masses in QCD with one quark avourF. Farhionia, I. Montvayb, G. M�unstera,E.E. Sholz, T. Sudmanna, J. Wuilloudaa Universit�at M�unster, Institut f�ur Theoretishe Physik,Wilhelm-Klemm-Strasse 9, D-48149 M�unster, Germanyb Deutshes Elektronen-Synhrotron DESY, Notkestr. 85, D-22603 Hamburg, Germany Physis Department, Brookhaven National Laboratory, Upton, NY 11973 USAAbstratOne-avour QCD { a gauge theory with SU(3) olour gauge group and a fermionin the fundamental representation { is studied by Monte Carlo simulations. The massspetrum of hadroni bound states is investigated in a volume with extensions of L '4:4 r0 (' 2:2 fm) at two di�erent lattie spaings: a ' 0:37 r0 (' 0:19 fm) and a '0:27 r0 (' 0:13 fm). The lattie ation is Symanzik tree-level-improved Wilson ationfor the gauge �eld and (unimproved) Wilson ation for the fermion.
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1 IntrodutionQCD with one avour of quarks is an interesting theoretial laboratory to understandsome aspets of the strong interation dynamis, namely those not onneted to sponta-neous hiral symmetry breaking and to the existene of light pseudo-Goldstone bosons.As a onsequene of a quantum anomaly, the U(1) axial symmetry of the lassial La-grangian is broken and in the limit of vanishing quark mass no massless Goldstoneboson exists.An intriguing possibility at negative quark masses is the spontaneous breakdown ofparity and harge onjugation symmetry { a phenomenon �rst onjetured by Dashen[1℄ in the three-avour theory. This has to do with the possible negative sign of thefermion determinant at negative quark masses beause under the assumption of thepositiveness of the fermion determinant Vafa and Witten [2℄ proved the impossibilityof this kind of spontaneous symmetry breaking.A dramati onsequene of the absene of (broken) hiral symmetry is the diÆultyto �nd a unique de�nition of the point with zero quark mass in parameter spae [3℄.(For an exellent summary and disussion of this problem see [4℄.)Another line of reent theoretial developments is the relation between one-avour(Nf = 1) QCD and supersymmetri Yang-Mills (SYM) theory with one supersymmetryharge (N = 1) [5℄. This onnetion is the onsequene of orientifold planar equiva-lene in the limit of large number of olours (N !1). This might imply approximaterelations among hadron masses even at N = 3, for instane, the approximate degen-eray of salar and pseudosalar bound states of quarks [6℄ reeting the properties ofthe Veneziano-Yankieloviz low energy e�etive ation of N = 1 SYM [7℄ in the massspetrum of Nf = 1 QCD. For instane, the mass ratio of the lowest pseudosalarmeson to salar meson is predited, inluding 1=N orretions, to be (N � 2)=N [8℄.Another predition of orientifold equivalene is the size of the quark ondensate inone-avour QCD whih has reently been ompared with numerial simulation resultsin Ref. [9℄.In the present paper we start to explore the mass spetrum of hadroni states inone-avour QCD by numerial Monte Carlo simulations. This requires reasonably largephysial volumes at small quark masses and high statistis { espeially for determin-ing glueball masses and ontributions of disonneted quark diagrams. We apply theWilson lattie fermion ation whih has reently been shown by several ollaborations[10, 11, 12, 13℄ to be well suited for suh an investigation. We start our exploratorystudies here on 123 � 24 and 163 � 32 latties with lattie spaing a ' 0:19 fm anda ' 0:13 fm, respetively. This means that our present setup roughly orresponds tothe earlier simulations of the qq+q Collaboration [10℄, but we hope to ontinue theseinvestigations in the near future loser to the ontinuum limit as in Refs. [11, 12, 13℄.2



For setting the sale we use the Sommer parameter [14℄ r0 whih we set by de�nitionto be r0 � 0:5 fm. In other words, whenever we speak about \1 fm" we always mean\2 r0" { having in mind that one-avour QCD is a theory di�erent from QCD realisedin nature.Sine the sign of the quark determinant is a sensitive issue, we arefully determineit and take it into aount in determining the expetation values. In the present paperwe hoose the quark mass to be suÆiently far away from zero on the positive side,where the e�et of the determinant sign is not very strong. In spite of this, as weshall see, we an investigate quite small quark masses down to mq ' 12MeV (that ismqr0 ' 0:03), orresponding to a pion mass m� ' 270MeV.Let us mention that keeping the quarks suÆiently heavy (hoosing the hoppingparameter � in the Wilson fermion ation (2) below 18) the problem of negative quarkdeterminants an be avoided. (The thermodynamis of Nf = 1 QCD for heavy quarkshave been investigated under this assumption in Ref. [15℄.) Our aim is, however, toreah small quark masses and therefore we have to deal with the possibly negative signof the quark determinant.For interpreting our results on the mass spetrum we �nd it useful to embed theNf = 1 QCD theory in a partially quenhed theory with more quark avours. Thisembedding is partiularly useful if the additional quenhed valene quark avours havethe same mass as the dynamial sea quark beause of the exat SU(NF ) avour sym-metry in the ombined sea- and valene-setors (NF denotes here the total numberof quenhed and unquenhed avours). In most ases we onsider the natural hoieNF = 3 whih is losest to the situation realised in nature. We also work out some ofthe preditions of partially quenhed hiral perturbation theory (PQChPT) and omparethem to the numerial data.The plan of this paper is as follows: in the next setion we de�ne the lattieation and briey disuss the updating algorithm. In Setion 3 the partially quenhedviewpoint is introdued and PQChPT is onsidered for it. Setion 4 is devoted to thepresentation of our numerial simulation data. The last setion ontains a disussionand summary.2 Lattie ation and simulation algorithm2.1 Lattie ationFor the SU(3) Yang-Mills gauge �eld we apply, following Ref. [13℄, the tree-level im-proved Symanzik (tlSym) ation whih is a generalisation of the Wilson plaquette gaugeation. It belongs to a one-parameter family of ations obtained by renormalisationgroup onsiderations and in the Symanzik improvement sheme [16℄. Those ations3



also inlude, besides the usual (1� 1) Wilson loop plaquette term, planar retangular(1� 2) Wilson loops:Sg = �Xx 0�0 4X�<�;�;�=1�1� 13 ReU1�1x�� �+ 1 4X�6=�;�;�=1�1� 13 ReU1�2x�� �1A ; (1)with the normalisation ondition 0 = 1�81. For the tlSym ation we have 1 = �1=12[17℄.The fermioni part of the lattie ation is the simple (unimproved) Wilson ation:Sf =Xx f ax ax � � 4X�=1 h ax+�̂Uab;x�(1 + �) bx +  axU yab;x�(1� �) bx+�̂ig : (2)Here � is the hopping parameter related to the bare quark mass in lattie units am0by 12� = am0 + 4 : (3)The Wilson parameter removing the fermion doublers in the ontinuum limit is �xedin (2){(3) to r = 1.2.2 Simulation algorithmFor preparing the sequenes of gauge on�gurations a Polynomial Hybrid Monte Carlo(PHMC) updating algorithm was used, whih is well-suited for theories with an oddnumber of fermion speies. This algorithm is based on multi-step (atually two-step)polynomial approximations of the inverse fermion matrix with stohasti orretion inthe update hain as desribed in Ref. [18℄. The starting point is the PHMC algorithm asintrodued in Ref. [19, 20℄. The polynomial approximation sheme and the stohastiorretion in the update hain are taken over from the two-step multi-boson algorithmof Ref. [21℄. For details of the updating algorithm and for notations related to it seeRef. [18℄.In order to speed up the updating even-odd preonditioning was used whih pushesthe small eigenvalues of the (squared Hermitean) fermion matrix Q[U ℄2 to larger values.The eigenvalues of Q[U ℄2 are assumed to be overed on typial gauge on�gurations bythe approximation interval [�; �℄. In exeptional ases some of the eigenvalues (typiallyjust the smallest one) are outside this interval. In order to orret for this a orretionfator C[U ℄ is assoiated with suh on�gurations. The exat value of this orretionfator an be written asC[U ℄ =fYi h�1=(2nB)i P1(�i)P2(�i)ignB : (4)Here the produt runs over the eigenvalues of Q[U ℄2, the polynomial P1(x) is an ap-proximation for x�1=(2nB), P2(x) for [x1=(2nB)P1(x)℄�1. The positive integer nB de�nes4



the determinant break-up whih means that in the path integral the fermions are rep-resented by h�detQ[U ℄2�1=(2nB)inB : (5)The part of the produt in (4) where �i is inside the interval [�; �℄ an be e�etivelyreplaed by a stohasti estimator and thenC[U ℄ =fYj 0 h�1=(2nB)j P1(�j)P2(�j)i � 1N 0 N 0Xn=1 exp f�yn[1� P 0(Q[U ℄2)℄�nggnB : (6)Here the Q0j runs over the eigenvalues outside the interval [�; �℄, P 0(x) is a suÆientlygood approximation of [x1=(2nB)P1(x)P2(x)℄�1, N 0 is the arbitrary number of stohas-ti estimators and the �n's are Gaussian vetors in the subspae orthogonal to theeigenvetors orresponding to the eigenvalues �j . In pratie, one an hoose the poly-nomial P2(x) to be suh a good approximation that the stohasti part in (6) has nonotieable e�et on the expetation values and therefore an ompletely be negleted.In this ase the orretion fator is simply given byC[U ℄ =fYj 0 h�1=(2nB)j P1(�j)P2(�j)ignB : (7)Besides the orretion fator C[U ℄, the sign �[U ℄ of the fermion determinant detQ[U ℄has also to be inluded in the reweighting of the on�gurations and then the expetationvalue of a quantity A is given byhAi = R d[U ℄�[U ℄C[U ℄A[U ℄R d[U ℄�[U ℄C[U ℄ : (8)This formula shows the dangerous sign problem whih an arise due to the utuationof the determinant sign beause in ase of strong utuations of �[U ℄ both nominatorand denominator on the right hand side may beome small, spoiling the statistialauray. (Similarly, one an also loose statistis if the orretion fators C[U ℄ aremuh smaller than 1 on many on�gurations.)Typial values of the approximation interval and of the polynomial orders at thelightest quark mass simulated on 123 �24 and 163 �32 latties, respetively, are olletedin Table 1. As in Ref. [18℄, the orders of the polynomials Pj; (j = 1; 2) are denotedby nj and those of �Pj ; (j = 1; 2) by �nj, respetively. The simulations have been donewith determinant break-up nB = 2. (The polynomials �Pj are approximating (Pj)� 12 .For more details see [18℄ and referenes therein.)The last four olumns of Table 1 show the values of the deviation norm Æ whih isminimised for a given polynomial order n in the least-square approximation sheme weare using. Generially Æ is de�ned asÆ �f R �� dxw(x) [f(x)� Pn(x)℄2R �� dxw(x)f(x)2 g 12 : (9)5



Table 1: Algorithmi parameters in the runs with lightest quark mass on123 � 24 (�rst line) and 163 � 32 (seond line) lattie, respetively. Fornotations see the text and also Ref. [18℄.� � n1 �n1 n2 �n2 Æ1 �Æ1 Æ2 �Æ23:25 � 10�6 2.6 350 550 1400 1600 4:9 � 10�4 6:7 � 10�7 9:9 � 10�7 8:8 � 10�71:2 � 10�5 2.4 250 370 1000 1150 5:4 � 10�4 8:2 � 10�7 4:8 � 10�7 3:1 � 10�7Here f(x) is the funtion to be approximated and w(x) is a positive weight funtionatually hosen in our ase to be w1(x) = w2(x) = x1=(2nB) and �w1(x) = �w2(x) = 1,respetively. The values of Æ1 in Table 1 are suh that the average aeptane rate ofthe stohasti orretion at the end of trajetory sequenes is between 80� 90%. Theother Æ values are small enough to ensure pratially in�nite preision of the expetationvalues. For more details on the algorithmi setup in our runs see also Setion 4.3 Partially quenhed viewpointBeause the lassial U(1)A axial symmetry is anomalous, the single-avour QCD the-ory does not have a ontinuous hiral symmetry apart from the U(1) quark numbersymmetry. Consequently it does not have spontaneous hiral symmetry breaking andhene no (pseudo-) Goldstone bosons and no easy de�nition of the quark mass [3℄. Inthe lattie regularisation it is, however, possible to enhane the symmetry arti�iallyby adding extra valene quarks whih are quenhed, that is, are not taken into aountin the Boltzmann-weight of the gauge on�gurations by their fermion determinants. Inpriniple, one might onsider any number of quenhed valene quarks with any massvalues but, to remain lose to QCD realised in nature, the most natural hoie is totake two equal-mass valene quarks and to all them u and d quarks. The originaldynamial quark an then be alled s quark where \s" may stand for sea or strange.The theory with dynamial s quark and quenhed u and d quarks is partially quenhed.(Observe that this partially quenhing is somewhat unonventional, sine some of thevalene quarks are quenhed but taken degenerate with the sea quark.)Using this terminology, for instane, the pseudosalar bound state of s and �s an bealled �s. The orresponding salar state is then �s. The lowest baryon state onsistingof s quarks, whih has to have spin 32 beause of the Pauli priniple, an be named 
�or e.g. �s et.A theoretial desription of partially quenhed QCD an be obtained through theintrodution of ghost quarks [24℄. For eah (quenhed) valene quark a orresponding6



bosoni ghost quark is added to the model. The funtional integral over the ghostquark �elds then anels the fermion determinant of the valene quarks and only thesea quark determinant remains in the measure. In our ase there are 2 avours ofvalene quarks and ghost quarks, eah, with equal masses mV , and a single avour ofsea quarks with mass mS .A partiularly interesting point of the partially quenhed theory is the one whereall the three quark masses are equal. In this point there is an exat SU(3) vetor-likeavour symmetry in the valene + sea quark setor, and the hadroni bound statesappear in exatly degenerate SU(3)-symmetri multiplets. For instane, there is adegenerate otet of pseudosalar mesons { the \pions" (�a; a = 1; : : : ; 8) satisfying anSU(3)-symmetri PCAC relation. With the help of the divergene of the axialvetorurrent Aax� and pseudosalar density P ax one an de�ne, as usual, the bare PCACquark mass amPCAC in lattie units:amPCAC � h���A+x� P�y i2hP+x P�y i : (10)Here the indies + and � refer to the \harged" omponents orresponding to �a� i�b(with �a;b some o�-diagonal Gell-Mann matries) and ��� denotes the bakward lattiederivative. Due to the exat SU(3)-symmetry, the renormalised quark mass orrespond-ing to mPCAC an be de�ned by an SU(3)-symmetri multipliative renormalisation:mRPCAC = ZAZPmPCAC : (11)By tuning the bare quark mass on the lattie suitably, the masses of the \pions" anbe made to vanish, as the numerial results indiate, and the renormalised quark massvanishes, too. At this point the partially quenhed theory has a graded SU(NF jNV )L 
SU(NF jNV )R symmetry, whih is broken spontaneously to a \avour" SU(NF jNV ).(Here NV is the number of additional valene quark avours and NF � NV + Nf =NV + 1.) In our ase, with NV = 2 avours of valene quarks, the symmetry is thusSU(3j2). The \pions" are the Goldstone bosons of the broken SU(3) subgroup.Adding generi quark masses mV and mS, the symmetry group is expliitly brokendown to SU(2j2). In the speial ase mV = mS, onsidered here, the symmetry is stillSU(3j2), and its subgroup SU(3) is the avour symmetry mentioned above.The \pions" are, of ourse, not physial partiles in the spetrum of Nf = 1 QCD.Nevertheless, their properties suh as masses and deay onstants are well de�nedquantities whih an be omputed on the lattie. The same is true of the PCAC quarkmass mRPCAC, whih is therefore a potential andidate for a de�nition of a quark massof this theory.The relation between the pion masses and the quark masses an be onsidered inpartially quenhed hiral perturbation theory [25, 26℄, inluding e�ets of the lattie7



spaing a [27, 28, 29, 30, 31℄. The pseudo-Goldstone �elds are parameterized by agraded matrix U(x) = exp� iF0�(x)� (12)in the supergroup SU(3j2). (Here the normalization of F0 is suh that its phenomeno-logial value is ' 86MeV.) The ommuting elements of the graded matrix � representthe pseudo-Goldstone bosons made from a quark and an anti-quark with equal statis-tis, and the antiommuting elements of � represent pseudo-Goldstone fermions whihare built from one fermioni quark and one bosoni quark. The supertrae of � has tovanish, whih an be implemented by a suitable hoie of generators [32℄.We have alulated the masses of pseudo-Goldstone bosons in next-to-leading orderof partially quenhed hiral perturbation theory along the lines of Ref. [32℄, inludingO(a) lattie e�ets [29℄. The quark masses enter the expressions in the ombinations�V = 2B0mV ; �S = 2B0mS ; (13)with the usual low-energy onstant B0, and the lattie spaing ours as� = 2W0 a; (14)where W0 is another, lattie-spei�, low-energy onstant. For the pion masses weobtainm2V V � m2� = �V + �+ �V + �16�2F 20 �(2�V � �S + �) ln� �V + �16�2F 20 �+ �V � �S�+ 8F 20 �(2L8 � L5)�2V + (2L6 � L4)�V �S+ (2W8 +W6 �W5 �W4 � L5)��V + (W6 � L4)��S ℄ ; (15)where the usual low-energy parameters Li appear, together with addtional ones (Wi)desribing lattie artifats.The mixed mesons, whose masses mV S we have also alulated, beome degeneratewith the pions in the speial ase mV = mS. In this ase the expression redues tom2� = �+ �+ (�+ �)216�2F 20 ln� �+ �16�2F 20 �+ 8F 20 �(2L8 � L5 + 2L6 � L4)�2+(2W8 + 2W6 �W5 �W4 � L5 � L4)��℄ : (16)To leading order the PCAC quark mass obeys 2B0mRPCAC = � + �, and we reognizethe Gell-Mann-Oakes-Renner relationm2� = 2B0mRPCAC +NLO: (17)8



Inluding terms in next-to-leading (NLO) order, we an express m2� in terms of mRPCACas m2� = �PCAC + �2PCAC16�2F 20 ln �PCAC�2+ 8F 20 �(2L8 � L5 + 2L6 � L4)�2PCAC+(W8 +W6 �W5 �W4 � 2L8 + L5 � 2L6 + L4)�PCAC�℄ ; (18)where we de�ne �PCAC = 2B0mRPCAC : (19)As a remark, in the ase mV = mS the masses an alternatively be obtained fromthe partially quenhed theory with symmetry SU(2j1) by onsidering mixed pions madefrom a valene quark and a degenerate sea quark. Indeed, alulating the masses inthis model reprodues (16).The �s an be inluded in the analysis by relaxing the onstraint of a vanishingsupertrae [25, 32℄, and assoiating it with the �eld�0(x) = sTr�(x): (20)The e�etive Lagrangian then ontains additional terms depending on �0:�L = ����0���0 +m2��20 +O(�30) ; (21)where � and m� are free parameters in this ontext. We ontent ourselves with dis-playing only the leading order expression for the mass of the �s, whih readsm2�s = m2� + �PCAC1 + � : (22)Our numerial results for m�s allow to determine � and m�.4 Numerial simulationsAfter some preparatory searh in the parameter spae we onentrated our runs onthe 123 � 24 lattie to � = 3:8 and those on 163 � 32 to � = 4:0. The parametervalues, the number of analysed on�gurations, the average plaquette, its integratedautoorrelation and the value of the Sommer sale parameter in lattie units r0=a aresummarised in Table 2. As one an see, taking the values of r0=a at highest �'s (smallestquark masses), the extensions of the 123 and 163 latties are L = 4:46 r0 = 2:23 fmand L = 4:29 r0 = 2:14 fm, respetively. Sine we �x r0 = 0:5 fm by de�nition, theseorrespond to lattie spaings a = 0:186 fm and a = 0:134 fm, respetively.In the update-hain by the PHMC algorithm with stohasti orretion [18℄ a se-quene of PHMC trajetories is followed by a Metropolis aept-rejet step with a9



higher preision polynomial. The total length of the trajetory sequene in the runsin Table 2 was between 1.5 and 1.8. The sequenes onsisted out of 3-6 individual tra-jetories. The preision of the �rst step of polynomial approximations was tuned suhthat the aeptane of the PHMC trajetories was about 0.80-0.85. The total lengthof the trajetory sequene was hosen suh that the aeptane of the Metropolis testwas again 0.80-0.85. This ensured a relatively high total aeptane of 0.64-0.72. Dur-ing the runs we tried to optimise the parameters of PHMC. The di�erent values ofthe integrated autoorrelation times for the average plaquette in Table 2 are, in fat,mainly due to inreasingly better optimisations and not so muh to the dependene onrun parameters.The seond step approximations were more than good enough to ensure that theexpetation values were ompletely una�eted by the remaining small impreision.(See, for instane, the small relative deviations in Table 1.) This has also been expliitlyheked by performing a �nal stohasti orretion on a large sample of on�gurationswith polynomials P 0 of order 2500 in the stohasti part of the right hand side of (6).For the alulation of the expetation values the reweighting proedure aordingto (8) has to be arried out. For this, besides the orretion fator C[U ℄ from (7), alsothe sign of the fermion determinant �[U ℄ is needed. This we alulated by the spetralow method [22℄. For the �-dependent omputation of the low-lying eigenvalues of thehermitean fermion matrix Q[U ℄ we followed Ref. [23℄.It turned out that the e�et of the orretion fators �[U ℄C[U ℄ is in most asesnegligible. For instane, in run b of Table 2 the average value of �[U ℄C[U ℄ in thedenominator is 0.9982. In run  it is 0.9842. In run b there are 34 on�gurations outof 3403 where some eigenvalue is outside the approximation interval [�; �℄ and out ofthem there is a single one with negative fermion determinant. In run  there are 167from 2884 outside [�; �℄ and out of them there are 26 with negative orretion fatordue to � = �1.Sine the sign of the fermion determinant was not determined on every on�gura-tion, the question arises whether perhaps some negative signs were missed. This is veryimprobable beause we determined the sign also on the neighbouring on�gurations inaddition to those with small eigenvalues and out of the remaining on�gurations wehave hosen 100 randomly for sign determination. None of these additional on�gura-tions turned out to have a negative determinant.In the average plaquette and r0=a the e�et of the orretion fators is ompletelynegligible. For instane, in runs b and  the orretion has an e�et in the average valueof r0=a only in the �fth digit { whereas the statistial error is in the third digit. In allother runs besides b and  every eigenvalue is inside the approximation interval [�; �℄ andtherefore, aording to (7), the orretion fator is equal to 1 on every on�guration.10



Table 2: Summary of the runs: 123 �24 and 163 �32 latties have loweraseand upperase labels, respetively. The number of gauge on�gurations,whih were saved after every trajetory sequene, is Nonf. The averageplaquette value, its autoorrelation in number of trajetory sequenes �plaqand the value of r0=a are also given.label � � Nonf plaquette �plaq r0=aa 3.80 0.1700 5424 0.546041(66) 12.5 2.66(4)b 3.80 0.1705 3403 0.546881(46) 4.6 2.67(5) 3.80 0.1710 2884 0.547840(67) 7.6 2.69(5)A 4.00 0.1600 1201 0.581427(36) 4.3 3.56(5)B 4.00 0.1610 1035 0.582273(36) 4.1 3.61(5)C 4.00 0.1615 1005 0.582781(32) 3.3 3.73(5)4.1 Results for hadron massesStarting with the mesoni states, we onsider the simplest interpolating operators inthe pseudosalar and salar setors:0+ : P (x) = � (x)5 (x) ; (23)0� : S(x) = � (x) (x) : (24)We denote with �s and �s the orresponding hadron states at the lowest end of theenergy spetrum (the usual notation JP is used for the respetive quantum numbers).Corresponding states in the QCD spetrum with the same quantum numbers are the�0(958) and f0(600) (or �). (Note, however, that the states in QCD are linear ombi-nations of �uu, �dd and �ss omponents { in ontrast to the states in Nf = 1 QCD whihare built out of a single quark avour.)In the ase of the pseudosalar mesons, invariane under the avour group playsa speial role when omparing with QCD states beause of the U(1) axial anomaly.(This is not the ase for baryons, see the following.)Analogously to avour singlet mesons in QCD, the orrelators of the above inter-polating operators ontain disonneted diagrams. These were omputed by applyingstohasti estimator tehniques (SET), and in partiular the variant of [33℄ with Z2noise and spin dilution. The method was already applied to the ase of SYM [34℄ (asmentioned in the introdution, SYM shares many similarities with Nf = 1 QCD). In11



Table 3: Results for light hadron masses in Nf = 1 QCD.run am�s am�s am0++ am�sa 0.462(13) 0.660(39) 0.777(11) 1.215(20)b 0.403(11) 0.629(29) 0.685(10) 1.116(38) 0.398(28) 0.584(55) 0.842(16) 1.204(57)A 0.455(17) 0.607(57) 1.083(79) 1.006(15)B 0.380(18) 0.554(52) 1.032(66) 0.960(15)C 0.316(22) 0.613(67) 0.980(97) 0.876(26)order to optimize the omputational load, taking also autoorrelations into aount,every �fth on�guration was typially analysed, with 20 stohasti estimates eah.Spin 0 states an be also build by purely gluoni operators. These are a well knownobjet of investigation in lattie QCD were they should desribe the glueballs. Dueto the expeted signal-noise ratio of their purely gluoni orrelation they belong tothe most notorious partiles to measure. In partiular the 0++ glueball has the samequantum numbers as the �s meson. As a onsequene, these two states an also mixwith eah other but in this �rst investigation we neglet the mixing and onsider onlydiagonal orrelators for both states.We used the single spatial plaquette to obtain the mass of the 0++ ground state.To inrease the overlap of the operator with this state we used APE smearing andalso performed variational methods to obtain optimal glueball operators from linearombinations of the basi operators.We now ome to the baryon setor. The simplest baryoni interpolating �eld whihan be built out of one quark avour is�i(x) = �ab[ a(x)TCi b(x)℄ (x) : (25)The above operator also ontains a spin 1/2 omponent implying that the spin 3/2omponent, on whih we fous, must be projeted out from the spinorial orrelatorGji(t) =X~x 
�j(~x; t) ��i(0)� : (26)We follow [35℄ and onsider the spin-projeted orrelatorG3=2(t) = 16Tr [Gji(t)ji +Gii(t)℄ : (27)12



The low lying hadron state ontributing to the above orrelator is expeted to havepositive parity (32+). This orresponds to the �(1232)++ of QCD if our dynamialfermion is interpreted as an u quark. If the dynamial fermion is taken to be the s quarkthen this would be the 
� baryon. (However, spin and parity of the orrespondingpartile have not been yet measured, so the identi�ation of this state with the 
�baryon is still unertain [36℄). In orrespondene to �s and �s, in what follows we allthis state �s. (Here one an interpret the index s as referring to the \sea" quark.)It should be noted at this point that the above QCD states are not avour singletsin Nf = 3 QCD (and in the one avor partially quenhed theory). We reall here thatinterpolating �elds orresponding to avour singlet baryon states annot be build inQCD if only quark �elds are onsidered as ingredients.The results of the hadron masses are reported in Table 3 and, as a funtion of thebare PCAC quark massmPCAC, in Fig. 1. In the �gure the masses are multiplied by theSommer sale parameter r0, therefore one an put the results for both lattie spaings ina single plot and hek their saling. (The expeted small hange of the multipliativerenormalisation fator of mPCAC between � = 3:8 and � = 4:0 is negleted here.)Only in the ase of run  the measurement orretion has a sizeable e�et on themass estimates. In this ase on�gurations with negative determinant where singledout: the sign of the determinant has the e�et of pushing the masses up by 7� 10 %.The errors on the glueball mass are rather large { espeially on the 163 � 32 lattieat � = 4:0 { therefore they are not shown in the �gure. Obviously, our statistis is notsuÆient for this purpose. In general a larger number of on�gurations would improvethe determinations in the glueball setor. Sine the omputational load is in this asenegligible, for future runs we plan a more frequent storage of the gauge on�guration.4.1.1 Valene analysisThe onneted ontribution to the meson orrelators an be interpreted as a non sin-glet meson made up of valene quarks in the partially quenhed piture, see Se. 3.The pseudosalar hannel orresponds in partiular to the \valene" pion. Sine theomputation of the onneted diagrams is less demanding, we ould a�ord the analysisof the omplete set of on�gurations.In the baryon setor, one an de�ne a \valene" nuleon, with the usual projetoroperator N(x) = �ab[ a(x)TC 0b(x)℄ (x) ; (28)where  0 an be interpreted as the �eld of the valene quark.The results onerning valene hadron masses are reported in Table 4 and Fig. 2.In addition, the bare PCAC quark mass aording to the de�nition in (10) and thebare pion deay onstant in lattie units af� are also inluded. f� and its renormalised13
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Figure 1: The mass of the lightest physial partiles in one-avour QCDas a funtion of the PCAC quark mass. The masses are multiplied by thesale parameter r0 in order to obtain dimensionless quantities. Open andfull symbols refer to � = 3:8 and � = 4:0, respetively.ounterpart fR� are de�ned asaf� = (am�)�1h0jA+x=0;�=0j��(~p = 0)i ; fR� = ZAf� (29)where A+x� is the axialvetor urrent as in (10) and ��(~p = 0) is a pion state with zeromomentum. (The normalisation of f� is suh that in nature we have fR� ' 130MeV.)The value of af� on the lattie is obtained by the method desribed in [37℄. In Fig. 2the masses are multiplied by the sale parameter r0 in order to obtain dimensionlessvariables.4.1.2 Chiral Perturbation Theory �tsThe properties of the valene pion (pion mass m� and deay onstant fR� ) an beanalysed in partially quenhed ChPT.We �t a2m2� and af� simultaneously as a funtionof amPCAC inluding the data at both values of �. There are not enough data in order to14



Table 4: The PCAC quark mass mPCAC, the pion mass m� and deayonstant f�, and the nuleon mass mN in lattie units.run amPCAC am� af� amNa 0.02771(45) 0.3908(24) 0.1838(11) 1.0439(54)b 0.01951(39) 0.3292(25) 0.1730(15) 0.956(27) 0.0108(12) 0.253(10) 0.156(10) 1.011(51)A 0.04290(36) 0.4132(21) 0.1449(9) 0.9018(44)B 0.02561(31) 0.3199(22) 0.1289(10) 0.7978(53)C 0.01700(30) 0.2635(24) 0.1188(12) 0.734(10)aount for the lattie artifats. Therefore the �t is done with the ontinuum formulaem2� = �PCAC + �2PCAC16�2F 20 ln �PCAC�23 ; fR�F0p2 = 1� �PCAC32�2F 20 ln �PCAC�24 ; (30)with the low-energy onstants�3 = 4�F0 expf64�2(L4 + L5 � 2L6 � 2L8)g ;�4 = 4�F0 expf64�2(L4 + L5)g : (31)The hanges of the renormalisation onstants ZA, ZP between the two � values arenegleted. The results are displayed in Figs. 3 and 4.Owing to the fat that the number of degrees of freedom in the �t is small, theunertainty of the �t parameters is relatively large. The determination of the universallow-energy sales �3=F0 and �4=F0 an be improved by onsidering the ratios [40, 10℄m2�m2�;ref ; f�f�;ref ; (32)in whih some of the oeÆients anel. We onsider the data on the larger lattie at� = 4:0 and take the quantities at � = 0:1615 as referene. The �t yields�3F0 = 10:0� 2:6 ; (33)�4F0 = 31:5� 14:3 ; (34)whih is ompatible with the phenomenologial values from ordinary QCD [38℄.In order to estimate the parameters � and m�, related to the mass of the �s (seeSe. 3), we made a �t of m2� and m2�s at � = 4:0 in leading-order ChPT. The result is� = �0:03(19) ; am� = 0:18(8) ; (35)15
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Figure 2: The mass of the valene pion and nuleon as a funtion of thebare PCAC quark mass. Open and full symbols refer to � = 3:8 and� = 4:0, respetively.indiating the vanishing of �. Fixing � = 0 in the �t yieldsam� = 0:19(2) or r0m� = 0:72(10) ; (36)where the value of r0=a extrapolated to vanishing PCAC quark mass is used.This onstant, whose value in physial units is m� = 284(40)MeV, an be relatedto the quenhed topologial suseptibility �t through the Witten-Veneziano formula[39℄ m2� = 4Nf(fR� )2�t ; (37)whih is valid in leading order of the 1=N expansion. With �t = (193 � 9MeV)4 [41℄and our value for fR� we would obtain m� = 426MeV.
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 Figure 3: Pion masses squared in lattie units and the results of thePQChPT �t.5 DisussionThis �rst Monte Carlo investigation of the hadron masses in QCD with Nf = 1 dynam-ial quark avour reveals the qualitative features of the low lying partile spetrumin this theory. The spatial extensions of our 123 � 24 and 163 � 32 latties are aboutL ' 2:2 fm (see Table 2).1 This implies lattie spaings a ' 0:19 fm and a ' 0:13 fm,respetively. The (bare) quark masses are reasonably small { in a range 10-30MeVand 25-60MeV on the 123 � 24 and 163 � 32 lattie, respetively. The updating algo-rithm we use (PHMC with stohasti orretion [18℄) works �ne in this range makingthe extension of the Monte Carlo investigations towards larger volumes, smaller quarkmasses and smaller lattie spaings straightforward. In the present runs the utua-tion of the eigenvalues of the fermion matrix towards exeptionally small (or negative)values an be easily handled by reweighting the on�gurations during the evaluationof expetation values. In fat, exept for the run with the smallest quark mass on the123 � 24 lattie where the reweighting has a small e�et, the reweighting is ompletelynegligible or even unneessary.1In order to have some relation to the sales in real QCD, we set the Sommer sale parameter by de�nitionto be r0 � 0:5 fm 17
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 Figure 4: Pion deay onstants in lattie units and the results of thePQChPT �t.The lightest hadron is the pseudosalar meson bound state of a quark and anantiquark { the �s-meson (see Table 3 and Figure 1). The orresponding salar boundstate { the �s-meson { is in our points by about a fator 1.5 heavier. Compared tothe estimate in [8℄ m�s=m�s ' N=(N � 2) = 3 this result is too low but the situationould be better in the zero quark mass limit where the predition of [8℄ applies to.The lightest baryon { the �s-baryon { is by a fator of about 3 heavier than the �s-meson. The lightest glueball lies between the �s-meson and the �s-baryon, but itsmass ould not be properly measured on the 163 � 32 lattie with our statistis. Ingeneral, the mass measurements have relatively large errors { between 3-10% { andno in�nite volume and ontinuum limit extrapolations ould be performed with ourpresent data. We hope to return to these questions and to give more preise results infuture publiations.An interesting aspet of Nf = 1 QCD is the possibility of a partially quenhedextension with valene quarks. In partiular, adding two valene quarks, the modelhas similarities to QCD in nature with its three light (u, d and s) quark avours. Atheoretially interesting speial ase is if all three quarks, the dynamial one and thetwo valene ones, have exatly equal masses. In this ase there is an exat SU(3) avoursymmetry. This an be exploited for the introdution of a quark mass by de�ning it18



as the PCAC quark mass in the partially quenhed theory. In this extended modelthere exist the usual light hadron states well known from real QCD: the pseudosalarpseudo-Goldstone bosons (pions et.), the nuleon et. The results for the masses ofthe lightest states and the deay onstant of the pseudosalar bosons are olleted inTable 4 and also shown in Figure 2.Sine the physial volumes of the 123 and 163 latties are to a good approximationequal, the omparison of the results at the two di�erent lattie spaings gives a hint forthe magnitude of the deviations from the ontinuum limit. As one an see in Figs. 1and 2, the saling between � = 3:8 and � = 4:0 is reasonably good { espeially for thelightest states �s and �. However, for reliable ontinuum limit estimates more data atseveral lattie spaings are required.In the pseudosalar setor of the partially quenhed model one an apply partiallyquenhed Chiral Perturbation Theory for �tting the mass and the deay onstant.As Figs. 3 and 4 show, the NLO formulae give good �ts but the number of degreesof freedom in the �ts is small and therefore the unertainty of the �t parameters isrelatively large.AknowledgmentsWe are grateful to Luigi Sorzato for valuable disussions and for helping us in the set-up of the programs for investigating the eigenvalue spetrum of the fermion matrix. Wethank the omputer enters at DESY Hamburg and NIC at Forshungszentrum J�ulihfor providing us the neessary tehnial help and omputer resoures. This work issupported in part by the Deutshe Forshungsgemeinshaft under grant Mu757/13-1.E.S. is supported by the U.S. Dept. of Energy under ontrat DE-AC02-98CH10886.
Referenes[1℄ R.F. Dashen, Phys. Rev. D 3 (1971) 1879.[2℄ C. Vafa and E. Witten, Nul. Phys. B 234 (1984) 173.[3℄ M. Creutz, Rev. Mod. Phys. 73 (2001) 119; hep-lat/0007032.M. Creutz, hep-lat/0511052.M. Creutz, Phys. Rev. Lett. 92 (2004) 201601; hep-lat/0312018.[4℄ M. Creutz, hep-th/0609187.[5℄ A. Armoni, M. Shifman and G. Veneziano, Nul. Phys. B 667 (2003) 170;hep-th/0302163.A. Armoni, M. Shifman and G. Veneziano, Phys. Rev. Lett. 91 (2003) 191601;19

http://arxiv.org/abs/hep-lat/0007032
http://arxiv.org/abs/hep-lat/0511052
http://arxiv.org/abs/hep-lat/0312018
http://arxiv.org/abs/hep-th/0609187
http://arxiv.org/abs/hep-th/0302163


hep-th/0307097.A. Armoni, M. Shifman and G. Veneziano, Phys. Lett. B 579 (2004) 384;hep-th/0309013.A. Armoni, M. Shifman and G. Veneziano, hep-th/0403071.[6℄ P. Keith-Hynes and H.B. Thaker, hep-th/0701136.[7℄ G. Veneziano and S. Yankielowiz, Phys. Lett. B 113 (1982) 231.[8℄ F. Sannino and M. Shifman, Phys. Rev. D 69 (2004) 125004; hep-th/0309252.A. Armoni and E. Imeroni, Phys. Lett. B 631 (2005) 192; hep-th/0508107.[9℄ T. DeGrand, R. Ho�mann, S. Shaefer and Z. Liu, Phys. Rev. D 74 (2006) 054501;hep-th/0605147.[10℄ F. Farhioni, I. Montvay, E. Sholz and L. Sorzato [qq+q Collaboration℄, Eur.Phys. J. C 31 (2003) 227; hep-lat/0307002.F. Farhioni, I. Montvay and E. Sholz [qq+q Collaboration℄, Eur. Phys. J. C 37(2004) 197; hep-lat/0403014.[11℄ L. Del Debbio, L. Giusti, M. L�usher, R. Petronzio and N. Tantalo, JHEP 0602(2006) 011; hep-lat/0512021.[12℄ M. G�okeler et al., PoS LAT2006 (2006) 179; hep-lat/0610066.[13℄ Ph. Bouaud et al. [ETM Collaboration℄, hep-lat/0701012.[14℄ R. Sommer, Nul. Phys. B 411 (1994) 839; hep-lat/9310022.[15℄ C. Alexandrou, A. Borii, A. Feo, P. de Forrand, A. Galli, F. Jegerlehner andT. Takaishi, Phys. Rev. D 60 (1999) 034504; hep-lat/9811028.[16℄ K. Symanzik, Nul. Phys. B 226 (1983) 187.[17℄ P. Weisz, Nul. Phys. B 212 (1983) 1.P. Weisz and R. Wohlert, Nul. Phys. B 236 (1984) 397 [Erratum-ibid. B 247(1984) 544℄.[18℄ I. Montvay and E. Sholz, Phys. Lett. B 623 (2005) 73; hep-lat/0506006.E. E. Sholz and I. Montvay, PoS LAT2006 (2006) 037; hep-lat/0609042.[19℄ R. Frezzotti and K. Jansen, Phys. Lett. B 402 (1997) 328; hep-lat/9702016.R. Frezzotti and K. Jansen, Nul. Phys. B 555 (1999) 395; hep-lat/9808011.R. Frezzotti and K. Jansen, Nul. Phys. B 555 (1999) 432; hep-lat/9808038.[20℄ P. de Forrand and T. Takaishi, Nul. Phys. Pro. Suppl. 53 (1997) 968;hep-lat/9608093.[21℄ I. Montvay, Nul. Phys. B 466 (1996) 259; hep-lat/9510042.[22℄ R. G. Edwards, U. M. Heller and R. Narayanan, Nul. Phys. B 535 (1998) 403;hep-lat/9802016. 20

http://arxiv.org/abs/hep-th/0307097
http://arxiv.org/abs/hep-th/0309013
http://arxiv.org/abs/hep-th/0403071
http://arxiv.org/abs/hep-th/0701136
http://arxiv.org/abs/hep-th/0309252
http://arxiv.org/abs/hep-th/0508107
http://arxiv.org/abs/hep-th/0605147
http://arxiv.org/abs/hep-lat/0307002
http://arxiv.org/abs/hep-lat/0403014
http://arxiv.org/abs/hep-lat/0512021
http://arxiv.org/abs/hep-lat/0610066
http://arxiv.org/abs/hep-lat/0701012
http://arxiv.org/abs/hep-lat/9310022
http://arxiv.org/abs/hep-lat/9811028
http://arxiv.org/abs/hep-lat/0506006
http://arxiv.org/abs/hep-lat/0609042
http://arxiv.org/abs/hep-lat/9702016
http://arxiv.org/abs/hep-lat/9808011
http://arxiv.org/abs/hep-lat/9808038
http://arxiv.org/abs/hep-lat/9608093
http://arxiv.org/abs/hep-lat/9510042
http://arxiv.org/abs/hep-lat/9802016


[23℄ T. Kalkreuter and H. Simma, Comput. Phys. Commun. 93 (1996) 33;hep-lat/9507023.[24℄ A. Morel, J. Phys. (Frane) 48 (1987) 1111.[25℄ C. W. Bernard and M. F. L. Golterman, Phys. Rev. D 49 (1994) 486;hep-lat/9306005.[26℄ S. R. Sharpe, Phys. Rev. D 56 (1997) 7052; [Erratum-ibid. D 62 (2000) 099901℄hep-lat/9707018.[27℄ S. R. Sharpe and R. L. Singleton, Phys. Rev. D 58 (1998) 074501; hep-lat/9804028.[28℄ W. J. Lee and S. R. Sharpe, Nul. Phys. Pro. Suppl. 73 (1999) 240;hep-lat/9809026.[29℄ G. Rupak and N. Shoresh, Phys. Rev. D 66 (2002) 054503; hep-lat/0201019.[30℄ S. Aoki, Phys. Rev. D 68 (2003) 054508; hep-lat/0306027.[31℄ O. B�ar, G. Rupak and N. Shoresh, Phys. Rev. D 70 (2004) 034508;hep-lat/0306021.[32℄ S. R. Sharpe and N. Shoresh, Phys. Rev. D 64 (2001) 114510; hep-lat/0108003.[33℄ J. Vieho� et al. [TXL Collaboration℄, Nul. Phys. Pro. Suppl. 63 (1998) 269;hep-lat/9710050.[34℄ F. Farhioni and R. Peetz, Eur. Phys. J. C 39 (2005) 87; hep-lat/0407036.[35℄ A. M. Abdel-Rehim, R. Lewis and R. M. Woloshyn, Phys. Rev. D 71 (2005)094505; hep-lat/0503007.[36℄ W. M. Yao et al. [Partile Data Group℄, J. Phys. G 33 (2006) 1.[37℄ F. Farhioni, C. Gebert, I. Montvay and L. Sorzato, Eur. Phys. J. C 26 (2002)237; hep-lat/0206008.[38℄ J. Gasser and H. Leutwyler, Annals Phys. 158 (1984) 142.S. D�urr, Eur. Phys. J. C 29 (2003) 383; hep-lat/0208051.[39℄ E. Witten, Nul. Phys. B 156 (1979) 269.G. Veneziano, Nul. Phys. B 159 (1979) 213.[40℄ J. Heitger, R. Sommer and H. Wittig [ALPHA Collaboration℄, Nul. Phys. B 588(2000) 377; hep-lat/0006026.[41℄ S. D�urr, Z. Fodor, C. Hoelbling and T. Kurth, JHEP 0704 (2007) 055;hep-lat/0612021.
21

http://arxiv.org/abs/hep-lat/9507023
http://arxiv.org/abs/hep-lat/9306005
http://arxiv.org/abs/hep-lat/9707018
http://arxiv.org/abs/hep-lat/9804028
http://arxiv.org/abs/hep-lat/9809026
http://arxiv.org/abs/hep-lat/0201019
http://arxiv.org/abs/hep-lat/0306027
http://arxiv.org/abs/hep-lat/0306021
http://arxiv.org/abs/hep-lat/0108003
http://arxiv.org/abs/hep-lat/9710050
http://arxiv.org/abs/hep-lat/0407036
http://arxiv.org/abs/hep-lat/0503007
http://arxiv.org/abs/hep-lat/0206008
http://arxiv.org/abs/hep-lat/0208051
http://arxiv.org/abs/hep-lat/0006026
http://arxiv.org/abs/hep-lat/0612021

	Introduction
	Lattice action and simulation algorithm
	Lattice action
	Simulation algorithm

	Partially quenched viewpoint
	Numerical simulations
	Results for hadron masses
	Valence analysis
	Chiral Perturbation Theory fits


	Discussion

