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1 Introdu
tionThe mathemati
al des
ription of the Standard Model { the theory of elementary par-ti
le intera
tions { is based on relativisti
 Quantum Field Theory (QFT). Relativisti
QFT is the quantum me
hani
s of �elds de�ned on the four-dimensional spa
e-time
ontinuum. As su
h it has an in�nite number of degrees of freedom { the values of�eld variables in every spa
e-time point. In order to de�ne it, one has to start with thequantum theory of a �nite number of degrees of freedom: the values of �eld variablesin a �nite set of dis
rete points within a �nite volume. In most 
ases the points arelatti
e sites of a regular, hyper
ubi
al latti
e over a four-dimensional torus. In orderto de�ne the theory one has to perform the 
ontinuum limit and in�nite volume limitwhen the spa
ing of the latti
e points goes to zero and the extensions of the torus growto in�nity.An important simpli�
ation from the mathemati
al point of view is to 
onsider,instead of the real time variable, the time to be pure imaginary. In this Eu
lideanspa
e-time the symmetry with respe
t to Lorentz-transformations be
omes equivalentto the 
ompa
t symmetry of four-dimensional rotations and, perhaps even more impor-tantly, the quantum me
hani
al S
hr�odinger equation is transformed into an equationequivalent to the equation des
ribing heat 
ondu
tion (or e.g. the Brownian motion).The 
onsequen
e is that QFT with imaginary time is equivalent to the (
lassi
al) sta-tisti
al physi
s of the �elds. In the Feynman path integral formulation of quantumme
hani
s the exponent in the Boltzmann-fa
tor is the Eu
lidean latti
e a
tion. (Notethat the \path" in 
ase of the �elds is better named as the \history" of the �elds inthe spa
e-time points.)The de�nition of QFT on a Eu
lidean spa
e-time latti
e provides a non-perturbativeregularization without the in�nities whi
h have to be dealt with in perturbation the-ory by the renormalization pro
edure. One 
an also de�ne perturbation theory onthe latti
e and in this way the latti
e gives an alternative regularization for perturba-tion theory: the momentum 
uto� is implemented by the absen
e of arbitrarily highmomentum modes on the latti
e.The number of dis
rete points to be 
onsidered tends to in�nity both in the 
ontin-uum limit and in�nite volume limit. In order to di�erentiate between these two in�nitelimits one has to 
onsider the ratio of the e�e
tive size of physi
al ex
itations to thelatti
e spa
ing. Obviously, this ratio has to diverge in the 
ontinuum limit. In thein�nite volume limit, on the other hand, the ratio of the size of physi
al ex
itationsto the volume extensions is relevant. In any 
ase, one has to know about the size ofthe physi
al ex
itations whi
h is determined by the (bare) parameters in the latti
ea
tion. In the language of statisti
al physi
s, in the 
ontinuum limit one has to tunethe parameters of the latti
e a
tion to some �xed point with in�nite 
orrelation lengths.2



If su
h a �xed point exists, our knowledge in statisti
al physi
s suggests universality,whi
h means that one 
an rea
h the same �xed point (i.e. the same 
ontinuum limit)with many di�erent latti
e a
tions.The most prominent example of relativisti
 QFT is Quantum Chromodynami
s(QCD) whi
h is the theory of strong intera
tions among the six known \
avors" ofquarks: u-, d-, s-, 
- b- and t-quark. QCD is a mathemati
ally 
losed theory whi
hhas an unpre
edented predi
tivity: it has only six independent parameters, the quarkmasses. More pre
isely the parameters of QCD are: mu=�QCD, md=�QCD, ms=�QCD,m
=�QCD, mb=�QCD and mt=�QCD where the �-parameter of QCD �QCD is an ar-bitrary s
ale parameter of dimension mass. In many appli
ations of QCD only thethree \light" quarks, the u-, d- and s-quarks are relevant, therefore there are onlythree (small) parameters: mu;d;s=�QCD. All the properties of strong intera
tions asmasses, de
ay widths, s
attering 
ross-se
tions et
. are, in prin
iple, determined bythese parameters.The somewhat unfortunate 
ir
umstan
e is that, even if in prin
iple determinedby a very small number of free parameters, it is diÆ
ult to tell what are pre
iselythe predi
tions of QCD. The reason is that strong intera
tions are obviously (at leastsometimes) strong and therefore 
al
ulational methods based on symmetries and onperturbation theory only have a limited range of appli
ability. The only known methodto evaluate the non-perturbative predi
tions of QCD theory is latti
e QCD. One 
anformulate this in a di�erent way by saying that the validation of QCD as a true theoryof strong intera
tions is the task of latti
e QCD theorists.In this series of (�ve) le
tures on Monte Carlo methods �rst the di�erent latti
eformulations of QCD are reviewed (Se
tion 2). The basi
 Monte Carlo integrationmethods are introdu
ed in Se
tion 3 and dis
ussed in some detail, in
luding the im-portant methods appli
able for quark dynami
s (\un-quen
hing"). Se
tion 4 
ontainsa sele
tion of some re
ent developments in order to illustrate re
ent trends in latti
eQCD. Finally, the last Se
tion 5 gives a short outlook.2 Latti
e a
tionsThe QFT's on the latti
e are de�ned by their Eu
lidean latti
e a
tion. The latti
e isin most 
ases a regular, hyper
ubi
al one with periodi
 boundary 
onditions (torus).Latti
e elements are the sites (points) and the links 
onne
ting neighboring sites. Asimple 
ase is illustrated by the two-dimensional 4� 4 latti
e in Figure 1. The latti
espa
ing is usually denoted by a. For the de�nition of latti
e gauge theories like QCDthe plaquettes 
onsisting of a 
losed path of four links are important (see Figure 2).The elementary ex
itations in QCD are the gluons and quarks. The gluons aredes
ribed by a gauge �eld with elements in the SU(3) 
olor group Ux� 2 SU(3)
olor3



4x4 periodic lattice

a

Figure 1: A two-dimensional periodi
 4� 4 latti
e.asso
iated with the links (x! x+ �̂) where �̂ denotes the unit ve
tor in the dire
tion� (= 1; 2; 3; 4). These are parallel transporters of the 
olor quantum number. The
orresponding SU(3) Lie algebra element Ax� 
an be de�ned by the relation Ux� =exp(�aAx�) with the latti
e spa
ing a, in order to display the mass dimension of Ax�.The 
omponents of Ax� are introdu
ed by Ax� = �igAb�(x)12�b, with the Gell-Mannmatri
es �b; (b = 1; : : : ; 8) and g denoting the bare gauge 
oupling. The quark �elds	 and 	 are asso
iated with the latti
e sites, as shown in Figure 2. (For notation
onventions see, in general, the book [1℄.)
plaquette in LQCD

UxµΨx ΨxFigure 2: The plaquette.
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2.1 Latti
e a
tions for gluons and quarks2.1.1 The plaquette latti
e a
tion of the gauge �eldAs stated in the introdu
tion, the latti
e a
tion for a given theory is not unique.There are large varieties of latti
e a
tions in the same universality 
lass realizing in the
ontinuum limit the same QFT. For the latti
e a
tion of the SU(3) 
olor gauge �eldin QCD the simplest 
hoi
e is the Wilson plaquette a
tion introdu
ed by Ken Wilsonin his seminal paper on 
on�nement and latti
e QCD [2℄. It is based on the de�nitionof the �eld strength F��(x) asso
iated with the plaquette variableUx;�� � U yx;�U yx+�̂;�Ux+�̂;�Ux;� = exp[�a2G��(x)℄ ; (1)where G��(x) = F��(x) +O(a) (2)and F��(x) = �f�A�(x)��f�A�(x) + [A�(x); A�(x)℄ (3)with the latti
e forward derivative de�ned as �f'(x) � '(x+ �̂)� '(x).As one 
an easily show, in general, for an SU(N
) 
olor gauge �eld we haveReTrUx;�� = N
 + a42 TrF��(x)2 +O(a5) (4)and therefore the Wilson (plaquette) gauge �eld a
tion for the SU(N
) gauge �eld 
anbe de�ned as Sgauge � Sg = Xx X1��<��4 ��1� 1N
 ReTr (Ux;��)�= � �4N
 Xx�� a4 TrF��(x)F��(x) +O(a5) : (5)Here we introdu
ed the usual latti
e variable for the bare gauge 
oupling as� � 2N
g2 : (6)An important property of the Wilson a
tion in (5) is gauge invarian
e. This is dueto the fa
t that the tra
e of the produ
t of link variables along any 
losed path is gaugeinvariant be
ause the gauge transformation of the gauge link variables isU 0x� = ��1(x+ �̂) Ux� �(x) [�(x) 2 SU(N
)℄ : (7)The expe
tation value of some fun
tion of link variables O[U ℄ is given in terms ofthe invariant group (Haar-) measure dUx� ashOi = 1Z Z Yx� dUx� expf�Sgauge[U ℄g O[U ℄ � Z [dU ℄ e�Sgauge[U ℄ O[U ℄ ; (8)5



where the partition fun
tion for the gauge �eld is de�ned asZ = Z Yx� dUx� expf�Sgauge[U ℄g � Z [dU ℄ e�Sgauge[U ℄ : (9)This shows that, indeed, in the Eu
lidean path integral formulation latti
e gauge theoryis equivalent to the statisti
al physi
s of gauge �elds.2.1.2 The Wilson latti
e a
tion of fermion �eldsThe Dira
 equation for fermions 
an also be similarly dis
retized as the equations ofmotion for the gauge �eld. A simple 
hoi
e is the Wilson a
tion for fermions:SWilsonq =Xx (�0 x x � 12X�  x+�̂
�Ux� x � r2X� [ x+�̂Ux� �  x℄ x) : (10)Here  x;  x are anti
ommuting Grassmann variables whi
h have, in general, a Dira
-spinor, a 
olor and a 
avor index. For a single spe
ies (\
avor") of fermions, of 
ourse,there is just a spinor and a 
olor index. The latti
e spa
ing is set now to unity: a � 1,whi
h is often done in the literature. �0 is the bare quark mass in latti
e units andthe Wilson parameter is r 6= 0. The summation in (10) runs over both positive andnegative dire
tions: P� � P�4�=�1 and, by de�nition, we have 
�� = �
�. The roleof the Wilson term proportional to r will be dis
ussed below. In (10) the intera
tionof the fermion with a gauge �eld is introdu
ed by the gauge link variables Ux�. Freefermions with no intera
tion 
orrespond to Ux� = 1.Often used notations are based on rede�ning the �eld normalizations a

ording to(�0 + 4r)1=2  x )  x ; (�0 + 4r)1=2  x )  x (11)and introdu
ing the hopping parameter by� � (2�0 + 8r)�1 ; �0 = 12(��1 � 8r) : (12)In this way the Wilson a
tion (10) 
an be rewritten asSWilsonq =Xx (( x x)� �X� ( x+�̂Ux�[r + 
�℄ x)) �Xxy ( yQyx x) : (13)In the se
ond form the Wilson fermion matrix is (without expli
it 
olor- and Dira
-indi
es): Qyx = Æyx � �X� Æy;x+�̂ Ux� (r + 
�) : (14)The parti
le ex
itations of Wilson latti
e fermions 
an be identi�ed by 
onsideringthe Wilson fermion propagator, whi
h is de�ned by the inverse of the (free) fermionmatrix in (14):Xy �zyQyx = Æzx ; �yx = �y�x = 1
Xk eik�(y�x) ~�k : (15)6



Here 
 = N1N2N3N4 is the number of latti
e points and the allowed values of themomenta for periodi
 and antiperiodi
 boundary 
onditions, respe
tively, areap� � k� = 2�N� �� ; k� = 2�N� ��� + 12� (�� 2 f0; 1; 2; : : : ; N� � 1g) : (16)Using the notations k̂� � 2 sin k�2 ; �k� � sink� ; (17)the solution of Eq. (15) is given by~�k = 1� r�(8� k̂2)� 2i�
 � �k[1� r�(8� k̂2)℄2 + 4�2�k2 = (2�)�1 �0 + (r=2)k̂2 � i
 � �k[�0 + (r=2)k̂2℄2 + �k2 : (18)Parti
le ex
itations belong to the poles of the propagator. Considering the Wilsonfermion propagator in (18), it be
omes 
lear why the non-zero value of the Wilsonparameter r is required, namely, for avoiding additional parti
le poles at k� = �besides the physi
al ones at k� = 0. For r = 0, whi
h 
orresponds to the naivedis
retization of the Dira
 equation, these additional parti
les emerge and { instead ofa single fermion 
avor { sixteen 
avors are des
ribed. The 15 extra unphysi
al parti
lesare the 
onsequen
e of the �rst order 
hara
ter of the Dira
 equation. Introdu
ing anon-zero r removes the unphysi
al fermions from the spe
trum in the 
ontinuum limit(a ! 0) be
ause their masses tend to in�nity as a�1. The pri
e to pay for repairingthe parti
le 
ontent is, however, rather high be
ause for r 6= 0 the 
hiral symmetry isbroken also for zero fermion mass!2.1.3 The Kogut-Susskind staggered latti
e a
tion of fermion �eldsAs dis
ussed in the previous subse
tion, the \naive" fermion a
tion without the Wilsonterm (i.e. r = 0) des
ribes 16 fermion \
avors". The naive fermion a
tion is:Snaiveq =Xx 8<:�0	x	x + 12 4X�=1 �	x
�	x+�̂ �	x+�̂
�	x�9=; : (19)One 
an perform on this a spin diagonalization by a transformation	x = Ax x ; 	x = 	xAyx (20)in su
h a way thatAyx
�Ax = �x� 14 = (�1)x1+���+x��1 14 ; (� = 1; 2; 3; 4) : (21)One out of four identi
al 
omponents gives the \staggered" fermion a
tion:Sstaggeredq =Xx 8<:�0 x x + 12 4X�=1�x� � x x+�̂ �  x+�̂ x�9=; : (22)7



The staggered fermion a
tion des
ribes four degenerate 
avors with 
omponentss
attered on the points of 24 hyper
ubes. (Note that there are no Dira
 spinor indi
esfor staggered latti
e fermions { only 
olor indi
es!) Rather remarkably, at zero fermionmass �0 = 0 there is a remainder of exa
t 
hiral symmetry, namely, Ueven(1)
Uodd(1).2.2 Improved fermion a
tionsThe freedom of 
hoosing the latti
e a
tion in the universality 
lass of the same limitingtheory in the 
ontinuum 
an be used for:� a

elerating the 
onvergen
e to the 
ontinuum limit,� a
hieving enhan
ed symmetries already at non-zero latti
e spa
ings.In QCD parti
ularly interesting is the improvement of 
hiral symmetry at non-zerolatti
e spa
ings whi
h implies, for instan
e, simpler renormalization patterns for 
om-posite (e.g. 
urrent-) operators.The basi
 tools for 
onstru
ting improved a
tions are latti
e perturbation theory,renormalization group transformations [3℄ and the lo
al e�e
tive theories at non-zero
ut-o� [4, 5℄.Great e�ort has been invested re
ently in 
onstru
ting improved a
tions for stag-gered quarks (see, for instan
e, the papers of the MILC Collaboration [6℄). In the so
alled Asqtad a
tion the gauge a
tion in
ludes a 
ombination of the plaquette, the 1�2re
tangle and a bent parallelogram 6-link term. The quark a
tion in
ludes paths up toseven links of the form  yUy x x where Uy x is the produ
t of links along the pathx! y. The relative weight of the 
ontributions is su
h that the 
avor symmetry break-ing is suppressed and the small momentum behavior is improved. Sin
e one staggeredquark �eld des
ribes four \
avors" of fermions (
alled here \tastes"), for des
ribing asingle quark 
avor in the path integral the fourth root of the fermion matrix is taken(\rooting"):Z [dU d d ℄ e�Sg�Sq = Z [dU ℄ e�Sg detQ ) Z [dU ℄ e�Sg (detQ)1=4 : (23)It is assumed (but debated) that this gives the 
orre
t 
ontinuum limit.2.2.1 Twisted-mass latti
e QCDA parti
ularly simple way of improving the Wilson-fermion a
tion is the 
hiral rota-tion of the Wilson term in SWilsonq Eq. (10) [7, 8℄. For two equal mass quark 
avors(Nf = 2) the unbroken SU(2) subgroup of the SU(2)
SU(2) 
hiral symmetry 
an bepartly rotated to axialve
tor dire
tions. In addition, \automati
" O(a) improvementis possible [9℄. 8



The twisted mass latti
e fermion a
tion is:Stmq = Xx (a�q x x � 12X�  x+�̂
�Ux� x+ a�
r xe�i!
5�3 x � r2X� [ x+�̂Ux� �  x℄e�i!
5�3 x) : (24)Here ! is the twist angle, a�q the bare quark mass in latti
e units and a�
r = (12��1
r �4r) < 0 the 
riti
al bare quark mass where �physi
alq = 0.The \twist" 
an be moved to the mass term by a 
hiral transformation�x = exp(� i2!
5�3) x ; �x =  x exp(� i2!
5�3) ; (25)hen
e the name \twisted mass". Introdu
ing the quark mass variables�� � a�
r + a�q 
os! � 12� = am0 + 4r ; a� � a�q sin! ; (26)the a
tion in (25) be
omesStmq = Xx 8<:(�x[�� + i
5�3 a�℄�x)� 12 �4X�=�1 ��x+�̂Ux�[r + 
�℄�x�9=;� Xx;y �xQ(�)xy �y : (27)In numeri
al simulations one starts with this form be
ause it does not 
ontain the
riti
al quark mass a�
r whi
h is �a priori unknown and has to be �rst numeri
allydetermined. Near maximal twist 
orresponding to ! = �=2 it is also 
onvenient tointrodu
e till another fermion �eld by the transformations:	x � 1p2 (1 + i
5�3)�x ; 	x � �x 1p2 (1 + i
5�3) : (28)The quark matrix on the �-basis Q(�) de�ned in (27) isQ(�)xy = Æxy (�� + i
5�3 a�)� 12 �4X�=�1 Æx;y+�̂Uy�[r + 
�℄ (29)or in a short notation, without the site indi
es,Q(�) = �� + i
5�3 a�+N +R ; (30)with Nxy � �12 �4X�=�1 Æx;y+�̂Uy�
� ; Rxy � �r2 �4X�=�1 Æx;y+�̂Uy� : (31)9



On the 	-basis de�ned in (28) we have the quark matrixQ(	) = 12 (1� i
5�3)Q(�) (1� i
5�3) = a�+N � i
5�3 (�� +R) : (32)The quark determinant in the path integral over the gauge �eld is, for instan
e,using the quark mass variables in (24):det h(D
r + a�q 
os!)y(D
r + a�q 
os!) + (a�q)2 sin2 !i (33)where the single-
avor 
riti
al fermion matrix isD
ryx = a�
rÆyx � 12X� [Æy;x+�̂
�Ux� + r(Æy;x+�̂Ux� � Æyx)℄ (34)An important feature of the twisted mass formulation is that the fermion matrixD
r + a�q(
os! + i
5�3 sin!) (35)
annot have zero eigenvalues for non-zero quark mass if ! 6= 0; �. There are no spuriouszero modes and hen
e no ex
eptional gauge 
on�gurations with anomalously smalleigenvalues of the fermion matrix. This makes the Monte Carlo simulations at smallquark- (and pion-) mass easier.The 
onsequen
e of the 
hiral rotation 
orresponding to the twist is that the dire
-tions of ve
tor- and axialve
tor-symmetries in the SU(2)
SU(2) 
hiral group are alsorotated. One 
an a
hieve 
onserved axialve
tor 
urrents but then some of the ve
tor-(
avor-) symmetries will be broken. (The twist also indu
es a breaking of parity.)The status and 
onsequen
es of the 
hiral symmetry 
an be dedu
ed from the 
hiralSU(2) 
 SU(2) Ward-Takahashi-identities.Exa
tly 
onserved axialve
tor 
urrents 
an be a
hieved at ! = 12�. In this spe
ial
ase the 
onserved 
urrents are: two axialve
tor 
urrents (j = 1; 2 )A
onjx� = 12 n� x+�̂
�
5 �j2 Ux� x�+ � x
�
5 �j2 U yx� x+�̂�+ r� x+�̂ � j2 Ux� x�� r� x � j2 U yx� x+�̂�� (36)with �1 � �2 and �2 � ��1, and one ve
tor 
urrent:V 
on3x� = 12 n� x+�̂
� �32 Ux� x�+ � x
� �32 U yx� x+�̂�� ir2 � x+�̂
5Ux� x�+ ir2 � x
5U yx� x+�̂�� : (37)The invarian
e of the path integral with respe
t to the 
hange of variables 0x = (1 + i2�V rx�r + i2�Arx
5�r) x ; 0x =  x(1� i2�V rx�r + i2�Arx
5�r) (38)10



implies for an arbitrary fun
tion O of �eld variables the following WT-identities:DO �b�A
onjx�E+*O  �� x 
5 �j2  x +  x
5 �j2 !� O� x+ = �q 
O  x
5�j x�DO �b�V 
on3x�E+*O  �� x �32  x �  x �32 !� O� x+ = 0 ; (39)with the ba
kward latti
e derivative de�ned as �b�'(x) � '(x)� '(x� �̂).Besides the 
onserved axialve
tor 
urrents the important feature of twisted-massWilson fermions is automati
 O(a) improvement. (O(a) improvement means that inthe 
ontinuum limit a ! 0 the leading deviation from the limiting value behavesasymptoti
ally as O(a2).) As it has been shown by Frezzotti and Rossi [9℄, for the(untwisted) Wilson fermion a
tion we havehOiWA(mq) � 12 �hOi(r;mq) + hOi(�r;mq)� / hOi
ont(mq) +O(a2) : (40)This is averaging over opposite sign Wilson parameters: \Wilson average".In twisted mass latti
e QCD (tmLQCD) 
hanging the sign of r is equivalent toshifting the twist angle by �. In the spe
ial 
ase of ! = 12� this is equivalent to ! ! �!,therefore expe
tation values even in ! are \automati
ally" O(a) improved, without anyaveraging. Automati
ally O(a) improved physi
al quantities are, for instan
e:� the energy eigenvalues, hen
e the masses;� on-shell matrix elements at zero spatial momenta;� matrix elements of operators with parity equal to the produ
t of the parities ofthe external states.2.2.2 Domain wall latti
e fermionsThe 
hiral symmetry of massless fermions 
an be realized at non-zero latti
e spa
ingby introdu
ing a �fth \extra dimension" [10, 11, 12℄. In the �fth dire
tion there is a\defe
t": either the mass term 
hanges sign [10℄ or there are \walls" at the two ends[12℄. In this 
ase there are 
hiral fermion solutions whi
h are exponentially lo
alizedin the �fth dimension near these defe
ts. The gauge �eld remains four-dimensional(independent on the �fth dimension). In the limit of in�nitely large �fth dimension thepositive and negative 
hirality solutions (at opposite walls or at opposite sign 
hangeson a torus) have zero overlap with ea
h other and the 
hiral symmetry be
omes exa
t.The domain wall fermion a
tion 
an be written (with 1 � s � Ns) asSF =Xs;s0 	xs(DF )xs;x0s0	x0s0 (41)11



where in an s-blo
k form
DF =

0BBBBBBBBBBBBBBB�
� +D ��PL 0 0 : : : 0 0 mfPR��PR � +D ��PL 0 : : : 0 0 00 ��PR � +D ��PL : : : 0 0 0... ... ... ... . . . ... ... ...0 0 0 0 : : : ��PR � +D ��PLmfPL 0 0 0 : : : 0 ��PR � +D

1CCCCCCCCCCCCCCCA : (42)
The 
hiral proje
tors are denoted, as usual, by PR;L � 12 (1 � 
5), the quark mass inlatti
e units is mf , the ratio of latti
e spa
ings is � = a=as and the four-dimensionalWilson-Dira
 matrix with negative mass (0 > �m0 > �2) is, for r = 1,Dxx0 = (4�m0)Æxx0 � 12 4X�=1 hÆx0;x+�̂(1 + 
�)Ux� + Æx0+�̂;x(1� 
�)U yx0�i : (43)The hermitian fermion matrix 
orresponding to DF in (42) is useful, for instan
e,in Monte Carlo simulations. It 
an be 
onstru
ted as follows: sin
e with an s-re
e
tion(R5)ss0 � ÆNs+1�s;s0 we have DF = R5
5DyFR5
5 ; (44)the hermitian fermion matrix 
an be de�ned as~DF � R5
5DF = ~DyF : (45)The 
hiral symmetry is broken by a non-zero overlap of the opposite 
hirality wavefun
tions, whi
h tends to zero in the limit of an in�nite extension of the �fth dimension:Ns !1. Enhan
ed symmetry breaking o

urs if the four-dimensional Wilson fermionmatrix D has small eigenvalues.2.2.3 Neuberger overlap fermionsAnother possibility to a
hieve 
hiral symmetry of the latti
e fermion a
tion, whi
h infa
t 
an be related to domain wall latti
e fermions, is the Neuberger (overlap-) fermiona
tion.Let us rewrite the (free) Wilson fermion a
tion for r = 1 and �0 � am0 asSWilsonq = Xx a4  x[m0 +DW ℄ x ;DW � 4X�=1 �12
�(r� +r��)� a2 r��r�� ; (46)12



where the latti
e derivatives are now denoted byr� � a�1�f� ; r�� � a�1�b� : (47)The Neuberger latti
e fermion operator with zero mass is de�ned asDN � 1a �1�A 1pAyA� ; A � 1� aDW : (48)The inverse square-root here 
an be realized by polynomial or rational approximations.Note that A is proportional to the Wilson fermion matrix with bare mass �a�1.An important property of the Neuberger operator DN is that V � 1 � aDN isunitary: V yV = 1. As a 
onsequen
e, the spe
trum of DN = a�1(1� V ) is on a 
ir
legoing through the origin. In addition, the Neuberger operator satis�es the Ginsparg-Wilson relation 
5DN +DN
5 = aDN
5DN : (49)This is equivalent to the 
ondition as introdu
ed by Ginsparg and Wilson (GW) [13℄
5D�1 +D�1
5 = 2aR
5 : (50)The GW-relation is the optimal approximation to 
hiral symmetry whi
h 
an be real-ized by a latti
e fermion operator for a! 0. R in (50) is, in general, a lo
al operator.For the Neuberger operator D = DN we have R = 12 .The latti
e 
hiral symmetry satis�ed by a GW-latti
e fermion 
an be expli
itelydisplayed by appropriately de�ned 
hiral transformations [14℄. It 
an be shown thatÆ = 
5 �1� a2D� ; Æ =  �1� a2D� 
5 (51)is an exa
t 
hiral symmetry for any latti
e spa
ing a if the GW-relation is satis�ed.Latti
e a
tions satisfying the GW-relation are:� the �xed point a
tion, whi
h is the �xed point of some renormalization grouptransformation [15℄;� the Neuberger a
tion DN in (48);� the e�e
tive (four-dimensional) a
tion of the light fermion �eld of the domainwall fermion [16℄.Note: the inverse of the e�e
tive Dira
 operator of the light fermion �eld of thedomain wall fermion is equivalent to the inverse of the trun
ated overlap Dira
 operator(ex
ept for a lo
al 
onta
t term). Using GW-fermions one 
an prove the index theoremabout topologi
al 
harge [17℄ and introdu
e the �-parameter in QCD, et
.Having latti
e a
tions with exa
t 
hiral symmetry at non-zero latti
e spa
ing is agreat a
hievement. Although it is expe
ted that (spontaneously broken) 
hiral sym-metry is restored in the 
ontinuum limit also for simple latti
e formulations with, for13



instan
e, Wilson fermions, the expli
it breaking of 
hiral symmetry for non-zero latti
espa
ings makes the renormalization of 
omposite operators more involved and in pra
-ti
e also mu
h more 
umbersome be
ause of the extended mixing pattern. The 
hiralsymmetry restri
ts the mixing to be simpler and more tra
table.The diÆ
ulty of de�ning 
hiral symmetri
 latti
e a
tions is emphasized by theNielsen-Ninomiya theorem [18℄. This theorem states that there is no (free) latti
efermion a
tion whi
h 
an be written in the formSf = a4Xxy  yD(y � x) x (52)and whi
h would simultaneously satisfy the following 
onditions:� D(x) is lo
al (bounded for large x by e�
jxj),� its Fourier-transform is ~D(p) = i
�p� +O(ap2) for p� �=a,� ~D(p) is invertible for p 6= 0 (i.e. there are no massless fermion doubler poles),� 
5D +D
5 = 0 (
hiral symmetry).GW-fermions 
ir
umvent the Nielsen-Ninomiya theorem by relaxing the last 
ondi-tion: instead of exa
t anti
ommutativity only a weaker 
ondition, namely the Ginsparg-Wilson relation in (49), is satis�ed. Correspondingly, the 
hiral transformation is mod-i�ed: the simple 
ontinuum transformation is generalized to (51).The important question is whether the lo
ality of the a
tion is ensured for GW-fermions. In 
ase of the Neuberger (overlap) a
tion lo
ality 
an be proven if the gauge�eld is smooth enough, namely if every plaquette value is 
lose to unity [19℄. Be
auseof the importan
e of lo
ality su
h gauge �elds are sometimes 
alled \admissible". Of
ourse, usual latti
e a
tions typi
ally admit any plaquette value and therefore in thepath integral \inadmissible" 
on�gurations also o

ur. In fa
t, in a
tual simulationsthere are always plaquettes with small values. It is an open question whether this turnsout to be a problem in the 
ontinuum limit. In any 
ase, the latti
e spa
ing has to besmall enough in order to avoid the \Aoki phase" with lots of small eigenvalues of DW .The small eigenvalues make DN non-lo
al and the \residual mass" breaking the 
hiralsymmetry of domain wall fermions large [20℄.3 Monte Carlo integration methodsThe goal of numeri
al simulations in Quantum Field Theories (QFT's) is to estimatethe expe
tation value of some fun
tions A['℄ of the �eld variables generi
ally denotedby ['℄ � f'x�g. In terms of path integrals this is given ashAi = Z�1 Z [d'℄e�S['℄A['℄ ; Z = Z [d'℄e�S['℄ : (53)14



S['℄ is the latti
e a
tion, whi
h is assumed to be a real fun
tion of the �eld variables.(To begin with, we only 
onsider bosoni
 path integrals.)A typi
al latti
e a
tion 
ontains a summation over the latti
e sites. Sin
e thenumber of latti
e points 
 is large, there are many integration variables. However, sin
e(53) 
orresponds to a statisti
al system with a large number of degrees of freedom, inthe path integral only a small vi
inity of the minimum of the \free energy" density willsubstantially 
ontribute. A suitable mathemati
al method to treat with su
h situationsis Monte Carlo integration. (For a re
ent review of Monte Carlo integration in QFT'ssee Ref. [21℄.)3.1 Monte Carlo integration3.1.1 Simple Monte Carlo integrationLet us 
onsider a 
ontinuous real fun
tion f(X) of a 
ontinuous random variable Xhaving probability distribution pX(s) and hen
e the expe
tation valuehf(X)i = Z ds f(s) pX(s) : (54)Using pX(s) to obtain N out
omes of X (X1;X2; : : : ;XN ), the random variables Yj =f(Xj) give limN!1 1N NXj=1 Yj = hY i = hf(X)i = Z ds f(s) pX(s) : (55)In a short notation:f � 1N NXj=1 f(Xj); limN!1 f = hfi = Z ds f(s) pX(s) : (56)For large N , the 
entral limit theorem tells us that the error in approximatinghf(X)i is given by the varian
e V [f(X)℄ as pV [f(X)℄=N . The Monte Carlo estimateof the varian
e is: V [Y ℄ = 
(Y � hY i)2� � (f � f)2 = f2 � f2 : (57)Generalizing this to several (D) integration variables one obtains the following formulasfor simple Monte Carlo integration:ZV dDx p(~x) f(~x) � f � f2 � f2N ! 12 : (58)Here, a

ording to the notation introdu
ed in (56),f � 1N NXi=1 f(~xi); f2 � 1N NXi=1 f(~xi)2 : (59)The points ~x1; ~x2; : : : ; ~xN have to be 
hosen independently and randomly with proba-bility distribution p(~x) in the D-dimensional volume V.15



3.1.2 Importan
e samplingSimple Monte Carlo integration works best for 
at fun
tions but is problemati
 if theintegrand is sharply peaked or rapidly os
illating. Therefore, a good pro
edure is toapply importan
e sampling: �nd a positive fun
tion g(x) with integral norm unity(R dx g(x) = 1) su
h that h(x) � f(x)=g(x) is as 
lose as possible to a 
onstant andthen 
al
ulate Z ba dx f(x) = Z ba dx g(x)h(x) � (b� a)N NXj=1 h(xj) ; (60)where the points xj are 
hosen with probability density g(x) and we used simple MonteCarlo integration with a 
onstant probability in an interval:Z ba dx f(x) � (b� a)N NXj=1 f(xj) : (61)The prerequisite is, of 
ourse, that one 
an �nd an appropriate g(x) su
h that on 
angenerate points with it.How 
an one generate the desired (in general, multi-dimensional) probability dis-tributions? One possibility for lower-dimensional integrals is the reje
tion method.This is based on the observation that sampling with pX(x), for instan
e, in an intervalx 2 [b; a℄ is equivalent to 
hoose a random point uniformly in two dimensions and reje
tit unless it is in the area under the 
urve pX(x). For high-dimensional distributionsthis be
omes 
umbersome. Multi-dimensional integrals 
an be handled by exploitingMarkov pro
esses.3.1.3 Markov 
hainsA Markov pro
ess (or \Markov 
hain") is a sequen
e of states whi
h are generated withtransition probabilities from a given state to the next one. The transition probabilityis assumed to depend only on the 
urrent state of the system and not on any previousstate. For simpli
ity, for dis
rete states s1; s2; : : : ; sR the transition probability 
anbe denoted by pij. The matrix P with elements pij is 
alled transition matrix (orMarkov-matrix).The mathemati
al properties of Markov 
hains are extensively 
overed in the liter-ature. For a 
omprehensive 
olle
tion of features relevant in Monte Carlo integrationof QFT's see Ref. [21℄. Let us mention here just a few of them:� The produ
t of two Markov matri
es P1P2 is again a Markov matrix.� Every eigenvalue of a Markov matrix satis�es j�j � 1.� Every Markov matrix has at least one eigenvalue � = 1.16



A very important statement is given by the fundamental limit theorem for (irre-du
ible, aperiodi
) Markov 
hains: they have a unique stationary distribution satisfy-ing wT = wTP whi
h is identi
al to the limiting distribution wj = limn!1 p(n)ij .An important 
on
ept is the auto
orrelation in Markov 
hains. Sin
e the state ofthe system depends on the previous state, the 
onse
utive states are not un
orrelated.To rea
h a more or less un
orrelated distribution from some initial one, in general,several steps have to be performed. The degree of 
orrelation among the subsequentstates 
an be 
hara
terized by the auto
orrelation fun
tion whi
h is de�ned for someobservable Oi as �(t) � �hOiOi+ti � hOii2� Æ�hO2i i � hOii2 � : (62)Obviously, de
reasing auto
orrelations de
rease the Monte Carlo error for a givenlength of the Markov 
hain.3.2 UpdatingThe aim in Monte Carlo simulations of QFT's is to 
al
ulate the expe
tation values ofsome fun
tions of �eld variables as given in (53). The Monte Carlo integration is basedon importan
e sampling. The required distribution of �eld 
on�gurations a

ording tothe Boltzmann fa
tor e�S['℄ (\
anoni
al distribution\) is generated by a Markov 
hainby exploiting the fundamental limit theorem dis
ussed in Se
tion 3.1.3.Let us denote the 
on�guration sequen
e generated in the Markov 
hain by f['n℄; 1 �n � Ng. In this �eld 
on�guration sample the expe
tation values are approximated bythe sample average: A � 1N NXn=1A['n℄ N!1=) hAi : (63)The Markov pro
ess of generating one �eld 
on�guration after the other is generally
alled updating. Let us denote the transition probability from a 
on�gration to the nextone ['℄! ['0℄ by P (['0℄ ['℄). In order to generate the 
anoni
al distribution e�S['℄a suÆ
ient 
ondition isP �['0℄ ['℄� e�S['℄ = P �['℄ ['0℄� e�S['0℄ : (64)This 
ondition is 
alled detailed balan
e.3.2.1 Metropolis algorithmThe \an
estor" of updating pro
esses for bosoni
 systems is the Metropolis algorithm[22℄. For a system with N possible 
on�gurations the transition probability for ['0℄ 6=['℄ is de�ned by P (['0℄ ['℄) = N�1 min(1; e�S['0℄e�S['℄ ) : (65)17



This transition matrix 
an be realized by the following numeri
al pro
edure:i.) 
hoose �rst a trial 
on�guration randomly from N 
on�gurations andii.) a

ept it as the next 
on�guration in any 
ase if the Boltzmann fa
toris in
reased (the a
tion is de
reased). If the Boltzmann fa
tor is de
reased(the a
tion is in
reased), then a

ept the 
hange with probability equal tothe ratio of the Boltzmann fa
tors.The a

ept-reje
t step 
an be implemented by 
omparing the ratio of the Boltzmannfa
tors to a pseudo-random number between 0 and 1. One 
an see by inspe
tion thatthe above transition probability distribution satis�es the detailed balan
e 
ondition(64), hen
e it 
reates the desired 
anoni
al distribution of 
on�gurations.3.2.2 Fermions in Monte Carlo simulationsThe latti
e a
tion for QFT's with fermions, for instan
e like QCD, has the generi
 formS[U; ;  ℄ = Sg[U ℄ + Sq[U; ;  ℄ ; (66)where Sg is the bosoni
 part, in QCD the 
olor gauge �eld part, and Sq is des
ribingthe fermion �elds and their intera
tion with the bosoni
 �elds. Sq is assumed to bequadrati
 in the Grassmann-variables of the fermion �elds:Sq =Xxy ( yQyx x) : (67)The expe
tation values have the general formhF i = R [dU d d ℄e�Sg�SqF [U; ;  ℄R [dU d d ℄e�Sg�Sq � Z�1 Z [dU d d ℄e�Sg�SqF [U; ;  ℄ : (68)After performing the Grassmann integration one obtains
 y1 x1 y2 x2 � � � yn xnF [U ℄� = Z�1 Z [dU ℄e�Sg [U ℄ detQ[U ℄ F [U ℄� Xz1���zn �z1z2���zny1y2���yn Q[U ℄�1z1x1Q[U ℄�1z2x2 � � �Q[U ℄�1znxn : (69)Here Q[U ℄�1 is an (external) quark propagator and detQ[U ℄ generates the virtualquark loops.Sin
e taking into a

ount the fermion determinant detQ[U ℄ in the path integralover the bosoni
 (gauge-) �elds is a very demanding 
omputational task, in a 
rud ap-proximation one sometimes simply omits it. This is 
alled \quen
hed approximation":detQ[U ℄) 1. Experien
e in QCD shows that the results in the quen
hed approxima-tion are often qualitatively reasonable, nevertheless the error 
aused by omitting the
losed virtual fermion loops is un
ontrollable and implies the presen
e of unphysi
al\ghost" 
ontributions. 18



3.2.3 Dynami
al fermions: \unquen
hing"In the early days of latti
e QCD simulations quite often the quen
hed approximationwas taken. This is, however, on the long run not a

eptable, the obtained results donot represent a numeri
al solution of QCD. More re
ently { due to some impressivedevelopments in the available 
omputer power and in our algorithmi
 skills { the truedynami
al simulation of quarks be
ame feasible.The basi
 diÆ
ulty in \unquen
hing" is that the fermion determinant is a non-lo
alfun
tion of the bosoni
 �elds and therefore it is a great 
hallenge for 
omputations.For solving this problem a useful tool is the pseudofermion representation [23℄:det (QyQ) / Z [d� d�+℄ exp(�Xxy (�+y [QyQ℄�1yx �x)) : (70)In 
ase of, for instan
e, Wilson quarks the quark determinant satis�esQy = 
5Q
5 =) detQy = detQ ; (71)therefore Eq. (71) des
ribes the quark determinant of two degenerate quark 
avors.In the popular Hybrid Monte Carlo (HMC) algorithm [24℄ the representation (70) isimplemented in the updating by using mole
ular dynami
s equations (see Se
tion 3.3).For single quark 
avors HMC is not appli
able. One 
an, however, use PolynomialHybrid Monte Carlo (PHMC) [25, 26℄ (see Se
tion 3.4) or Rational Hybrid MonteCarlo (RHMC) [27℄.3.3 Hybrid Monte Carlo3.3.1 HMC for gauge �eldsThe basi
 idea of HMC is to employ mole
ular dynami
s (MD) equations in order to
olle
tively move the �eld 
on�guration in the whole latti
e volume. Sin
e dis
retizedmole
ular dynami
s equations are used, the latti
e a
tion (analogous to the energy inmole
ular dynami
s) is not 
onserved along MD-traje
tories, therefore at the end of atraje
tory a Metropolis a

ept-reje
t step has to be implemented. In this subse
tionHMC will be introdu
ed in the important 
ase of latti
e gauge �elds, spe
i�
ally SU(3)(
olor) gauge �eld.The equations of motion are derived from a Hamiltonian whi
h is de�ned for the
olour gauge �eld Ux;� 2 SU(3) asH[P;U ℄ = 12Xx�j P 2x�j + Sg[U ℄ ; (72)
19



where Sg[U ℄ is the gauge �eld a
tion and the real variables Px�j ; j = 1; : : : ; 8 are 
alled
onjugate momenta. They are the expansion 
oeÆ
ients of the Lie algebra elementPx;� �Xj i�jPx�j : (73)It is assumed that the 
onjugate momenta have a Gaussian distribution:Px�j / exp8<:�12Xx�j P 2x�j9=; � PM [P ℄ : (74)The expe
tation value of some fun
tion F [U ℄ is de�ned ashF i = R [dP ℄[dU ℄ exp(�H[P;U ℄)F [U ℄R [dP ℄[dU ℄ exp(�H[P;U ℄) : (75)By a proper 
hoi
e of the dis
retized traje
tories one 
an a
hieve that the tran-sition probability from a 
on�guration to the next satis�es detailed balan
e (see nextsubse
tion). Therefore, the 
orre
t 
anoni
al distribution is reprodu
ed.The Hamiltonian equations of motion are:dPx�jd � = �Dx�jSg[U ℄ ; d Ux�d � = iPx;�Ux;� ; (76)where the derivative with respe
t to the gauge �eld is de�ned, in general, asDx�jf [U ℄ � dd� �����=0 f �ei��j Ux;�� : (77)3.3.2 Detailed balan
eIn order to prove that HMC reprodu
es the 
orre
t 
anoni
al distribution of (gauge)�elds it is suÆ
ient to prove the detailed balan
e 
ondition (64) for the transitionprobabilities realized by the MD-traje
tories.The dis
retized traje
tories TH provide the following transition probability distri-bution at the end of the traje
tory:PH �[P 0; U 0℄ [P;U ℄� = Æ �[P 0; U 0℄� TH [P;U ℄� : (78)Let us assume that the traje
tories satisfy reversibility:PH �[P 0; U 0℄ [P;U ℄� = PH �[�P;U ℄ [�P 0; U 0℄� : (79)The Metropolis a

eptan
e step is des
ribed by the well known probability distributionPA �[P 0; U 0℄ [P;U ℄� = minn1; e�H[P 0;U 0℄+H[P;U ℄o : (80)20



The total transition probability is thenP �[U 0℄ [U ℄� = Z [dP dP 0℄PA �[P 0; U 0℄ [P;U ℄�PH �[P 0; U 0℄ [P;U ℄�PM [P ℄ :(81)Using the relatione�H[P;U ℄minn1; e�H[P 0;U 0℄+H[P;U ℄o = e�H[P 0;U 0℄minn1; e�H[P;U ℄+H[P 0;U 0℄o ; (82)one showse�H[P;U ℄PA �[P 0; U 0℄ [P;U ℄� = e�H[P 0;U 0℄PA �[P;U ℄ [P 0; U 0℄�= e�H[�P 0;U 0℄PA �[�P;U ℄ [�P 0; U 0℄� : (83)Therefore, due to reversibility, we have for the 
anoni
al distributionW
[U ℄ / exp f�Sg[U ℄g (84)the relationW
[U ℄Z [dP dP 0℄PA �[P 0; U 0℄ [P;U ℄�PH �[P 0; U 0℄ [P;U ℄�PM [P ℄ (85)=W
[U 0℄Z [dP dP 0℄PA �[�P;U ℄ [�P 0; U 0℄�PH �[�P;U ℄ [�P 0; U 0℄�PM [�P 0℄ :Taking into a

ount that [dP dP 0℄ = [d(�P ) d(�P 0)℄ ; (86)this is just the detailed balan
e 
ondition we wanted to prove.3.3.3 Leapfrog traje
toriesThe proof of detailed balan
e for HMC in the previous subse
tion has been based on theassumption that the dis
retized MD-traje
tories are reversible. The 
lassi
al exampleis a leapfrog traje
tory whi
h is de�ned as follows.First we update the 
onjugate momente with a step size �� = 12Æ� . This is followedby (n � 1) update steps with �� = 12Æ� both for the gauge variables and for themomentum variables, alternating with ea
h other. Finally, the gauge variables areupdated with �� = Æ� and the momentum variables with �� = 12Æ� .The expli
it formulae for these steps are:P 0x�j = Px�j �Dx�jSg[U ℄��U 0x;� = exp8<:Xj i�j Px�j ��9=;Ux;� : (87)21



One 
an easily prove that the reversibility 
ondition (79) is satis�ed.The single steps in the leapfrog traje
tory 
ause a dis
retization error of the orderÆ�3. Therefore, the a
tion for the �nal 
on�guration is expe
ted to di�er from theinitial 
on�guration by an error of order Æ�2.In the se
ond equation of (87) we need, in ea
h step on a traje
tory for ea
h link,the evaluation of the exponential of an element of the gauge group algebra A. It isdesirable to minimize the 
ost of this, but at the same time the 
al
ulation has to bepre
ise enough for not loosing reversibility. Sin
e one 
an show thatA3 = �12TrA2� A+�13TrA3� I ; (88)any analyti
 fun
tion f(A) 
an be written asf(A) = a2A2 + a1A+ a0 I : (89)For the exponential fun
tion f(A) = exp(A) the 
oeÆ
ients a0;1;2 
an be pra
ti
ally
al
ulated by re
ursion relations based on the Taylor expansion of exp(A).3.3.4 HMC for QCDBesides the 
olor gauge �eld dealt with in the previous subse
tions, in QCD one hasto introdu
e the quarks, too. Let us 
onsider here two equal mass quarks, in order tobe able to repla
e the fermioni
 quark �elds by bosoni
 pseudofermion �elds a

ordingto (70). (Single quark 
avors will be 
onsidered in the next Se
tion 3.4.)Let us note that the pseudofermion �eld in (70) is an auxiliary 
omplex s
alar �eld�qx�
 having the same number of 
omponents as the fermion �eld  qx�
. (The indi
esin QCD are: q for the quark 
avors, x for latti
e sites, � for the Dira
 spinor indexand 
 for 
olor.) A

ording to (70) the fermion determinant indu
es an e�e
tive a
tionfor the gauge �eld whi
h 
an be written asSeff [U ℄ �Xxy (�+y fQ[U ℄+Q[U ℄g�1yx �x) : (90)In the MD-traje
tories of the previous subse
tions Seff [U ℄ has to be added to the puregauge a
tion: Sg[U ℄ =) Sg[U ℄ + Seff [U ℄ : (91)3.4 Polynomial Hybrid Monte CarloHere we dis
uss the PHMC algorithm [25℄ with multi-step sto
hasti
 
orre
tions [26℄.This update algorithm is appli
able for any number of quark 
avors, provided that thefermion determinant is positive, whi
h is the 
ase for positive quark mass. For negativequark masses there is a sign problem, whi
h will not be dis
ussed here.22



For Nf = 1; 2; : : : degenerate quarks one usesjdet(Q)jNf = ndet(QyQ)oNf=2 = ndet( ~Q2)oNf=2 ' 1detPn( ~Q2) ; (92)where the Hermitian fermion matrix is ~Q � 
5Q and the polynomial Pn satis�eslimn!1Pn(x) = x�Nf=2 (93)in an interval [�; �℄ 
overing the spe
trum of QyQ = ~Q2.The e�e
tive gauge a
tion representing the fermions in the path integral is nowSeff [U ℄ =Xxy (�+y Pn( ~Q2)yx�x) : (94)Sometimes it is more e�e
tive to simulate several fra
tional quark 
avors:�det ~Q2�Nf=2 = ��det ~Q2�Nf=(2nB)�nB ; (95)whi
h 
an be 
alled determinant break-up. In this 
ase we need a polynomial approxi-mation Pn(x) ' x�� (96)with � � Nf2nB (97)and positive integer nB . The e�e
tive gauge a
tion with determinant break-up hasthen multiple pseudofermion �elds:Seff [U ℄ = nBXk=1Xxy (�+kyPn( ~Q2)yx�kx) : (98)Sin
e polynomial approximations with a �nite n 
annot be exa
t, one has to 
orre
tfor the 
ommitted error. One 
an show that for small fermion masses in latti
e unitsam� 1 the (typi
al) smallest eigenvalue of ~Q2 behaves as (am)2 and for a �xed qualityof approximation within the interval [�; �℄ the degree of the polynomial is growing asn / p� / (am)�1: (99)This would require in realisti
 simulations very high degree polynomials with n � 103-104. The way out is to perform sto
hasti
 
orre
tions during the updating pro
ess[26℄.This goes as follows: for improving the approximation a se
ond polynomial is in-trodu
ed a

ording to P1(x)P2(x) ' x�� ; x 2 [�; �℄ : (100)23



The �rst polynomial P1(x) gives a 
rude approximationP1(x) ' x�� : (101)The se
ond polynomial P2(x) gives a good approximation a

ording toP2(x) ' [x�P1(x)℄�1 : (102)(This 
an also be extended to a multi-step approximation [26℄.)During the updating pro
ess P1 is realized by PHMC updates [25℄, whereas P2 istaken into a

ount sto
hasti
ally by a noisy 
orre
tion step. This goes as follows: onegenerates a Gaussian random ve
tor with distributione��yP2( ~Q[U ℄2)�R [d�℄e��yP2( ~Q[U ℄2)� (103)and a

epts the 
hange [U ℄! [U 0℄ with probabilitymin�1; A(�; [U 0℄ [U ℄)	 ; (104)where A(�; [U 0℄ [U ℄) = expn��yP2( ~Q[U 0℄2)� + �yP2( ~Q[U ℄2)�o : (105)It 
an be shown that this update pro
edure satis�es the detailed balan
e 
ondition.The Gaussian noise ve
tor � 
an be obtained from �0 distributed a

ording to thesimple Gaussian distribution e��0y�0R [d�0℄e��0y�0 (106)by setting it equal to � = P2( ~Q[U ℄2)� 12 �0 : (107)In order to obtain the inverse square root on the right hand side one 
an pro
eed witha polynomial approximation�P2(x) ' P2(x)� 12 ; x 2 [��; �℄ : (108)The interval [��; �℄ 
an be 
hosen di�erently from the approximation interval [�; �℄ forP2, usually with �� < �.The polynomial approximation with P2 
an only be
ome exa
t in the limit whenthe degree n2 of P2 is in�nite. Instead of investigating the dependen
e of expe
tationvalues on n2 by performing several simulations and extrapolating to n2 !1, one �xesn2 to some high value and performs another 
orre
tion in the expe
tation values by still�ner polynomials. This is done by reweighting the 
on�gurations. This measurement24




orre
tion is based on a further polynomial approximation P 0 with degree n0 whi
hsatis�es limn0!1P1(x)P2(x)P 0(x) = x�� ; x 2 [�0; �℄ : (109)The interval [�0; �℄ 
an be 
hosen su
h that �0 = 0; � = �max, where �max is an absoluteupper bound of the eigenvalues of ~Q2.In pra
ti
e it is more e�e
tive to take �0 > 0 and determine the eigenvalues below�0 and the 
orresponding 
orre
tion fa
tors exa
tly. For the evaluation of P 0 one 
anuse re
ursive relations, whi
h 
an be stopped by observing the required pre
ision ofthe result.After reweighting the expe
tation value of a quantity A is given byhAi = hA exp f�y[1� P 0( ~Q2)℄�giU;�hexp f�y[1� P 0( ~Q2)℄�giU;� ; (110)where � is a simple Gaussian noise. Here h: : :iU;� denotes an expe
tation value on thegauge �eld sequen
e, whi
h is obtained in the two-step pro
ess des
ribed before, andon a sequen
e of independent �'s of arbitrary length.In most pra
ti
al appli
ations of PHMC with sto
hasti
 
orre
tion the se
ond step(or the last step if multiple 
orre
tion is applied) of the polynomial approximation 
anbe 
hosen pre
ise enough su
h that the deviation from the exa
t results is negligible
ompared to the statisti
al errors. In su
h 
ases the reweighting is not ne
essary. How-ever, for very small fermion masses reweighting may be
ome a more e�e
tive possibilitythan to 
hoose very high order polynomials for a good enough approximation.A positive aspe
t of reweighting is related to the 
hange of the topologi
al 
hargeof the gauge 
on�gurations. Su
h 
hanges o

ur through 
on�gurations with zeroeigenvalues of the fermion determinant where the mole
ular dynami
al for
e be
omesin�nite. This implies an in�nite barrier for 
hanging the topologi
al 
harge whi
hmay 
ompletely suppress transitions between the topologi
al se
tors. This problem issubstantially weakened by PHMC algorithms be
ause the polynomial approximationsdo not reprodu
e the singularity of the inverse fermion determinant (i.e. the zeroof the determinant) [28℄. In this way the gauge 
on�guration 
an tunnel betweentopologi
al se
tors. The more frequent o

urren
e of the 
on�gurations near the zerosof the fermion determinant is 
orre
ted by the reweighting.3.4.1 PHMC and twisted massUntil now we ta
itly assumed that we use ordinary (\untwisted") fermions. In 
ase oftwisted mass latti
e QCD the numeri
al simulation of light quarks is, in fa
t, easier,be
ause the quark determinant of a degenerate quark doublet be
omes, a

ording toEq. (33), det ( ~Q2 + �2s) (111)25



where �s � �q sin! with �q the quark mass in latti
e units and ! the twist angle.The polynomials P1;n1(x) and P2;n2(x) now satisfylimn2!1P1;n1(x)P2;n2(x) = (x+ �2s)�Nf=2 ; x 2 [�; �℄ : (112)In 
ase of ! ' �2 the polynomial approximations have lower orders and the updating isfaster be
ause of the absen
e of ex
eptional 
on�gurations with very small eigenvalues,due to the presen
e of the lower limit �2s. (Note that the very small eigenvalues areoften originating from topologi
al defe
ts at the 
uto� s
ale, whi
h are unphysi
al latti
eartifa
ts going away in the 
ontinuum limit.)4 Some re
ent developmentsIn spite of substantial algorithmi
 developments, latti
e QCD simulations near thesmall (physi
al) quark masses still need rather high 
omputer power: we need T
ops!An example for a demanding Monte Carlo simulation (in the near future) is: 
 =503 � 100 = 1:25 � 107 and amq = 0:005. This is equivalent, for instan
e, at a = 0:1 fmto mq = 10MeV; L = 5 fm; m� ' 200MeV.The smallness of the u-, d- and s-quark masses implies that the numeri
al simulation(with dynami
al quarks) is a great 
hallenge for 
omputations. There are a number oflarge international 
ollaborations working on this problem over the world:� USA: MILC, RBC, ... Collaboration;� Japan: CP-PACS, JLQCD, ... Collaboration;� Europe: UKQCD, Alpha, QCDSF, ETM ... Collaboration.It would be rather diÆ
ult to give a review of all the interesting results a
hievedover the last years. Here I shall only give a very limited and personal 
olle
tion of someof the problems and results.4.1 The light pseudos
alar boson se
tor4.1.1 Gasser-Leutwyler 
oeÆ
ientsThe physi
al 
onsequen
e of the smallness of three quark masses is the existen
e ofeight light pseudo-Goldstone bosons: �;K; �. In the low-energy pseudo-Goldstoneboson se
tor there is an SU(3) 
 SU(3) 
hiral 
avour symmetry and the dynami
s
an be des
ribed by Chiral Perturbation Theory (ChPT) [29, 30℄. In an expansion inpowers of momenta and light quark masses several low energy 
onstants { the Gasser-Leutwyler 
onstants { appear whi
h parameterize the strength of intera
tions in thelow energy 
hiral Lagrangian. 26



An eminent task for Monte Carlo simulations in Latti
e-QCD is to des
ribe thepseudo-Goldstone boson se
tor. The Gasser-Leutwyler 
onstants are free parameterswhi
h 
an be 
onstrained by analyzing experimental data. In the framework of latti
eregularization they 
an be determined from �rst prin
iples by numeri
al simulations.In numeri
al simulations, besides the possibility of 
hanging momenta, one 
an also
hange the masses of the quarks.ChPT 
an be extended by 
hanging the valen
e quark masses in quark propagatorsindependently from the sea quark masses in virtual quark loops. In this way one arrivesat Partially Quen
hed Chiral Perturbation Theory (PQChPT) [31℄ (see Se
tion 4.1.3).4.1.2 E(uropean) T(wisted) M(ass) CollaborationThis 
ollaboration 
onsists of about 30 physi
ists from 7 
ountries:1. Cyprus: University of Cyprus,2. Fran
e: Universit�e de Paris Orsay,3. Germany: DESY, Universit�at M�unster, TU M�un
hen,4. Italy: Universit�a di Roma I,II,III, INFN, ECT�,5. Spain: Universidad Val�en
ia,6. Switzerland: ETH Z�uri
h,7. United Kingdom: University of Liverpool.In a re
ent paper (�rst of a series) numeri
al Monte Carlo simulations on \Dynami
alTwisted Mass Fermions with Light Quarks" are reported [32℄.As examples of the results, Chiral Perturbation Theory (ChPT) �ts of the pseudo-s
alar- (pion-) mass (in Figure 3) and pseudos
alar- (pion-) de
ay 
onstant (in Figure 4)are shown. It is remarkable that the pre
ision on �l3;4 is mu
h higher than obtainedby any previous experimental determination. However: this is with only Nf = 2degenerate dynami
al quarks (u- and d-quark) and no 
ontinuum limit extrapolationis yet performed (it is 
omming soon).4.1.3 Ratio tests of PQChPTTaking ratios at �xed gauge 
oupling (�) is advantageous be
ause the Z-fa
tors ofmutipli
ative renormalization 
an
el (for instan
e, in mq and f�). Also: some types oflatti
e artifa
ts may 
an
el.In 
ase of simulations with Wilson-type latti
e a
tions, by taking into a

ountlatti
e artifa
ts in the Chiral Lagrangian, one 
an rea
h the 
ontinuum limit faster.This approa
h is based on the e�e
tive 
ontinuum theory introdu
ed by Symanzik [4℄:27
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Figure 3: Left: (am�)2 as a fun
tion of the twisted mass a�; right:(am�)2=(a�) versus a� (by the ETM Collaboration). The �nite volumeChPT-�t is shown, together with the in�nite volume limit (dashed line):�l3 = 3:65(12).
uto� e�e
ts (in the latti
e regularized theory) 
an be des
ribed by O(a; a2; : : :) termsin a lo
al e�e
tive Lagrangian.This idea 
an be applied to low energy LQCD [33, 34℄. In 
ase of the Wilson quarka
tion the leading O(a) e�e
ts have a simple 
hiral transformation property, identi
alto those of the quark masses. At leading order of ChPT, besides the quark massvariable �, an additional O(a) parameter � appears:� � 2B0mqf20 ; � � 2W0af20 �� � ��� : (113)At next to leading order (NLO): the Gasser-Leutwyler 
onstants L1; : : : ; L8 are doubledby the (bare parameter dependent) 
oeÆ
ients W1; : : : ;W8 des
ribing O(a) e�e
ts.(Extension to O(a2) is possible.)Variables to be used in ratio tests of PQChPT (the index V always stands for\valen
e" quarks whi
h are \quen
hed", S for dynami
al \sea" quarks):� � mqVmqS = �V�S ; �S � �S�S ; �i � m(i)qSm(R)qS = �S�R : (114)For the pion de
ay 
onstants the appropriate ratios are:RfV V � fV VfSS ; RfV S � fV SfSS ; RRf � f2V SfV V fSS ; (115)28
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eRfSS � fSSfRR ; RnSS � m2SS�m2RR (117)are appropriate.Examples of the NLO formulas are [34, 35℄: for Ns degenerate sea quarksRfV V = 1 + 4(� � 1)�SLS5 + Ns�S32�2 (1 + �S) log(1 + �S)�Ns�S64�2 (1 + � + 2�S) log 1 + � + 2�S2 ; (118)RRf = 1 + �S32Ns�2 (� � 1)� �S32Ns�2 (1 + �S) log � + �S1 + �S ; (119)RfSS = 1 + 4(� � 1)�R(NsLR4 + LR5) + 4(�S� � �R)�R(NsWR4 +WR5)�Ns�R32�2 �(1 + �S) log[�(1 + �S)℄ + Ns�R32�2 (1 + �R) log(1 + �R) ; (120)and similarly for Rn : : :.In the above formulas LSk denote Gasser-Leutwyler 
onstants renormalized at thes
ale f0p�S . They are related to �Lk de�ned at the s
ale f0 and L0k de�ned at thegeneri
 s
ale � a

ording toLSk = �Lk � 
k log(�S) = L0k � 
k log(f20�2�S) ; (121)29
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Figure 5: Numeri
al results of the qq+q Collaboration on 163 � 32 latti
eat (� = 5:1; � = 0:177): one parameter �t of (RRn � 1) = �S(1 � � +log �)=(32�2) (\pure 
hiral log\).with some (known) 
onstants 
k. The 
orresponding relations for the 
oeÆ
ients WSkare: WSk = �Wk � dk log(�S) =W 0k � dk log(f20�2�S) : (122)Note that these formulas 
an be extended to the NNLO order, too.A �rst 
omparison of these formulas with numeri
al Monte Carlo results has beenperformed by the qq+q Collaboration (DESY-M�unster) [35℄. The latti
e sizes were 164and 163 � 32, and Ns = 2 light quark 
avours were simulated. The latti
e spa
ingwas: a = 0:189(5) fm ' (1:04GeV)�1 giving latti
e extensions L ' 3 fm. The pionmasses were: am� = 0:6747(14); 0:6211(22); 0:4354(68); 0:3676(23) whi
h 
orrespondin physi
al units to m� ' 702; 646; 452; 415MeV. The sea quark masses wereapproximately 60MeV to 25MeV; and the valen
e quark masses: 12msea � mvalen
e �2msea. Being the �rst exploratory study, the parameters did not 
orrespond to thelatest best ones, in parti
ular, the latti
e spa
ing was rather 
oarse and the quarkmasses not small enough.The result of this �rst study was that the formulas like (118)-(120) des
ribe well thedependen
e on both sea and valen
e quark masses, in parti
ular if some generi
 NNLOterms are in
luded. As an example of the �ts see Figure 5. First 
rude estimates of30



L-G 
onstants, renormalized at s
ale f0p�R, gave with �R = 33:5(2:4)LR5 = 3:00(19) � 10�3 ; (2LR8 � LR5) = �6:25(52) � 10�4 : (123)From the sea quark mass dependen
e it was obtained(2LR4 + LR5) = 4:34(28) � 10�3 ;(4LR6 + 2LR8 � 2LR4 � LR5) = �9:1(6:4) � 10�5 ;�3f0 = 6:51(57) ;�4f0 = 22:9(1:5) (124)These numnbers 
an only be taken as 
rude estimates, be
ause they 
ome from a pointwith 
oarse latti
e spa
ing and no 
ontinuum extrapolation has been performed.5 OutlookThe present goal of numeri
al Monte Carlo investigations is to perform dynami
al quarksimulations with light quarks in large volumes. After about twenty-thirty years of hardwork { whi
h 
an be 
onsidered as the preparation { the presently available 
omputerresour
es and algorithmi
 developments make this goal a
hievable. The big question is,
an we validate QCD as the true theory of strong intera
tions by 
omparing the resultswith experimental knowledge? After this will be done, latti
e gauge theorists will beable to extend their resear
h area to study at the non-perturbative level a broader 
lassof Quantum Field Theories not just QCD.5.1 Beyond QCDThe further development of latti
e regularized Quantum Field Theories will re
e
t howthe two basi
 theoreti
al problems of the Ele
troweak Standard Model will be resolvedin a \beyond the Standard Model" framework. These two problems are:� The triviality of the Higgs-Yukawa se
tor: as a 
onsequen
e of appearan
e ofLandau-Pomeran
huk poles there are 
ut-o� dependent upper bounds on theHiggs- and Yukawa-
ouplings, whi
h tend to zero for in�nite 
ut-o� (i.e. zerolatti
e spa
ing).� It is very diÆ
ult to de�ne 
hiral gauge theories in latti
e regularization { althoughthey are required for the ele
troweak se
tor. Mirror fermion states with opposite
hirality appear and it is diÆ
ult to separate the mass s
ale of the mirror fermionse
tor from the known 
hiral se
tor [36℄. By in
luding the mirror fermion se
torthe theory be
omes ve
tor-like (non-
hiral).31



These problems be
ome a
ute at the TeV s
ale and need some solution in a nearfuture { in parti
ular based on the experimental input expe
ted from LHC. There areseveral ways how these problems 
ould perhaps be solved:1. Supersymmetri
 extensions of the Standard Model: the improvement of the diver-gen
e stru
ture due to supersymmetry (the solution of the \hierar
hy problem"be
ause of the absen
e of quadrati
 divergen
es) may solve both of the aboveproblems. The mirror states 
ould perhaps be shifted to the grand uni�
ations
ale.2. Te
hni
olor-type models based on some appropriate generalization of QCD mayprodu
e the low-energy 
hiral spe
trum as bound states. The mirror fermions
ould be at the te
hni
olor s
ale.3. Beyond QFTmodels where more dimensions beyond four appear and/or quantumgravity e�e
ts play an important role already near the TeV s
ale.Whi
h one (if any) of these ways is realized in Nature is a very ex
iting questionand will hopefully be
ome 
lear in the not very far future. If possibility 1. is realizedthen latti
e �eld theorists will have to work more on (at least partly) supersymmetri
non-perturbative regularization s
hemes. The 
ase of possibility 2. seems to be amore or less straightforward generalization of QCD. In 
ase of 3. one probably has toabandon the traditional QFT framework and look for radi
ally new approa
hes.A
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