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1. IntrodutionTheH+3 Wess-Zumino-Novikov-Witten (WZNW) model has reeived onsiderable attentionas an interesting non-rational onformal �eld theory [1, 2℄ and as the Eulidean version ofAdS3 [3℄. The 3-dimensional target spae of the theory may be parametrized by oordinates and � of its 2-dimensional boundary along with some radial oordinate �. As for anyAnti-de Sitter (AdS) geometry, the latter is partiularly interesting. Physially, it shouldbe regarded as a very lose relative of the Liouville diretion in 2-dimensional string theory.It was long observed [1℄ that the 3-point funtions of the H+3 WZNW model oinidewith those of Liouville �eld theory [4, 5, 6℄ up to some simple kinematial fators thatare determined by the SL(2,C ) symmetry of the H+3 bakground. In partiular, all thehighly nontrivial (non-perturbative) urvature dependene of the H+3 3-point ouplings isinherited from the stringy orretions of Liouville theory. A very remarkable generalizationof this fat was disovered in [7℄: Ribault and Teshner determined genus zero orrelators{ 1 {



for any number N of WZNW primaries in terms of ertain 2N � 2 point funtions in Li-ouville theory. Their proof relies on a relation [8℄ between di�erential equations of boththeories, namely the Knizhnik-Zamolodhikov (KZ) equations for WZNW models and theBelavin-Polyakov-Zamolodhikov (BPZ) equations for Liouville orrelators, along with de-sent relations provided by the expliit knowledge of the 3-point funtions. The relationbetween Liouville theory and the H+3 model was further explored in [9, 10, 11℄.The aim of this paper is twofold. To begin with, we shall re-derive the Ribault-Teshner orrespondene for genus zero orrelation funtions using a rather elegant pathintegral omputation instead of heavy algebrai manipulations. Our derivation providesa ompletely new view on the map between WZNW and Liouville primaries and on theneessity to introdue N � 2 further degenerate �elds in the Liouville orrelation funtion.The simpliity of our derivation opens the way to various generalizations. Among themis the extension of the orrespondene to orrelators on higher genus surfaes. In fat,using essentially the same ideas as for the tree-level omputation, we shall derive a preiseexpression for N -point orrelators of WZNW primaries on any losed Riemann surfae interms of Liouville �eld theory. On the Liouville side, the onstrution involves orrelationfuntions with N + 2g � 2 additional insertions of degenerate �elds. Further extensions,e.g. to the ase with world-sheets with boundaries or target spae groups of rank r > 1 willbe briey disussed at the end of this work.Let us now desribe the ontents of eah setion and our main results in a bit moredetail. As we have mentioned, we shall start our analysis by giving a new derivation of theRibault-Teshner orrespondene on the sphere. For the onveniene of the reader, we alsoinlude a few omments on the relation between di�erential equations. Setion 3 ontainsthe generalization to the torus. For genus g = 1, all the speial funtions involved in theformulation of the orrespondene an be easily expressed in terms of Jaobi's � funtion.This makes our formulas partiularly easy to deal with. In partiular, we shall be able todemonstrate expliitly how our orrespondene intertwines between the relevant di�erentialequations. Correlation funtions of Liouville theory on the torus satisfy an extension ofthe BPZ di�erential equation [12℄ that involves a derivative with respet to the modularparameter � of the torus in addition to derivatives with respet to the insertion points of�elds. On the WZNW side, the story is a bit more ompliated. In fat, the usual WZNWorrelators do not obey KZ-type equations. The problem arises from the zero modes ofurrents whih annot be written as di�erential operators ating on orrelation funtions.This issue was resolved by Bernard in [13℄, who had the idea to introdue an additionaldependene on the hoie of some group element. The latter parametrizes possible twistedboundary onditions for urrents along the �-yle of the torus. Not all these dim Gparameters are atually needed for the formulation of KZ-type equations on the torus.The minimal number of required extra parameters is given by the rank of G rather thanits dimension. In our ase this means that one extra twist parameter � is suÆient. Onesuh an extension of WZNW orrelators is taken into aount, they satisfy the Knizhnik-Zamolodhikov-Bernard (KZB) di�erential equations. By our orrespondene, these areorretly related to the genus g = 1 BPZ equations.{ 2 {



Setion 4 ontains the main new formula of this work, namely a onstrution of N -point WZNW orrelators on a losed Riemann surfae of genus g from orrelation funtionsin Liouville �eld theory, see eq. (4.14). As we stated before, the latter involves N + 2g � 2insertions of Liouville degenerate �elds in addition to the N primary �elds. It is instrutiveto ompare the parameter spaes on both sides of this orrespondene. Obviously, the or-relation funtions of the WZNW model must be extended by introduing extra parametersgeneralizing the role of the modulus � we disussed at length in the previous paragraph.It turns out that on a surfae of genus g � 1 we need 2g � 1 new omplex oordinates.For �xed surfae moduli � and insertion points z� ; � = 1; : : : ; N , an N -point funtion ofWZNW primaries therefore depends on real 3N target spae momenta (j� ; �� ; ���)�=1;:::;Nand 2g � 1 omplex moduli. These add up to 3N + 4g � 2 real moduli. On the Liouvilleside, we ount N real target spae momenta �� in addition to the (omplex) position ofN + 2g � 2 Liouville degenerate �elds and an overall omplex pre-fator u. The totalnumber of real parameters is therefore 3N + 4g � 2, just as in the WZNW theory.2. Derivation of the orrespondene - genus 0Our �rst task is to explain how the orrespondene emerges from a path integral `de�nition'of the WZNWmodel. Indeed, we will be able to reover the formula of Ribault and Teshnerthrough some formal path integral manipulations. In the seond subsetion we brieyreview how the di�erential equations on both sides of the orrespondene are mapped ontoeah other. At genus 0 this is not new, but it will help to understand the orrespondinganalysis at higher genus later on. Finally, we shall omment on the hidden problems of theformal path integral approah and the preise interpretation of our results.2.1 Path integral derivation of the orrespondeneLet us begin with a little bit of bakground on the H+3 WZNW model. In the most ommonpresentation, the ation involves the three �elds ; � and � orresponding to the oordinatesthat parametrize the 2D boundary of H+3 and the radial diretion, respetively. We will notwork with this version but pass to a �rst order formulation whih inludes two additional�elds � and �� of onformal weight (h� ; 0) = (1; 0) and (0; h��) = (0; 1). Throughout thiswork we shall work in onformal gauge, where the world-sheet metri and urvature aredetermined by some funtion � throughds2 = j�(z)j2 dzd�z ; pgR = �4� �� ln j�j2 :In this partiular gauge, the ation of the H+3 WZNW model takes the following form (seee.g. [14, 15℄)S[�; ; �℄ = 12� Z d2w ������� � �� � ���� + Q�4 pgR�� b2� ��e2b�� : (2.1)Here, the parameter b is related to the level of the WZNW model through b�2 = k� 2 andthe bakground harge Q� is given by Q� = b. Let us note that the usual ation of the{ 3 {



H+3 model emerges after integration over � and ��. The total entral harge of the modelis omputed from the level k using(H+3 ) = 3kk � 2 = 3 + 6b2 = 2 + (1 + 6b2) :In the last step we split the entral harge into the ontribution (�) = 2 from the �system and the remainder (�) = 1 + 6b2 whih originates from the bosoni �eld � withbakground harge Q� = b.The seond ingredients we shall need before we an study orrelators of the H+3 modelare the vertex operators of the theory. In the so-alled �-basis these readVj(�jz) � j�(z)j2�Hj j�j2j+2 e�(z)����(�z)e2b(j+1)�(z;�z) : (2.2)In onformal gauge, the fator involving �(z) must be inluded in order for V to transformas a primary of weight zero under onformal transformations. The quantity �Hj in theexponent is given by �Hj = �b2j(j + 1) :One may onsider � and �� as Eulidean light one momenta. Similarly, the parameter jis related to the momentum in radial � diretion. In the � basis, the operator produts ofurrents with primary �elds are given byJa(w) Vj(�jz) = (w � z)�1DaVj(�jz) for a = �; 0 (2.3)where the generators Da of global target spae symmetries take the formD� = � ; D0 = ���� ; D+ = ��2� � j(j + 1)� (2.4)and similarly for the remaining three generators �Da. The � basis is the most onvenientone for what we are about to disuss.Our aim is to ompute the N -point funtion of primary �elds in the H+3 model, i.e.* NY�=1 Vj� (�� jz�) +H = Z D�DD� e�S[�;;�℄ NY�=1 Vj� (�� jz�) :Our �rst step is to integrate out the �elds  and �. This is rather easy beause theyappear only linearly in both the ation and the exponents of the vertex operators. Hene,the integration leads to a simple Æ funtion onstraint on the oeÆients of  and �, i.e.���(w) = 2� NX�=1��Æ2(w � z�) ; � ��( �w) = �2� NX�=1 ���Æ2( �w � z�) : (2.5)The distribution Æ2 on the right hand side is normalized suh that R d2zÆ2(z)f(z; �z) = f(0).Let us stress that a meromorphi di�erential � with the property (2.5) exists if and onlyif the sum P�� vanishes. One this ondition is met, the integration of ��� and � �� with{ 4 {



respet to the world-sheet oordinate w is immediately performed using the simple auxiliaryformulas ��(1=z) = �(1=�z) = 2�Æ2(z) :The result is �(w) = NX�=1 ��w � z� : (2.6)A similar equation holds for ���. The ruial idea now is to re-parametrize � using simplefats about meromorphi one-di�erentials on the sphere. To begin with, we reall that forany one-di�erential, the number of poles exeeds the number of zeroes by two. Hene �must have N�2 zeroes whose loations on the sphere we denote by w = yi. Furthermore, adi�erential is uniquely haraterized by the position of its zeroes and poles up to an overallfator u. Consequently, we an rewrite � in the form�(w) = uQN�2i=1 (w � yi)QN�=1(w � z�) =: uB0(yi; z� ;w) : (2.7)Thereby, we have now replaed the N parameters �� subjet to onstraint P� �� = 0through N � 2 oordinates yi and a global fator u. We an reover the residues �� of �from the new variables yi and u through�� = uQN�2j=1 (z� � yj)QN�6=�(z� � z�) : (2.8)The new variables may be used to rewrite the Æ funtion resulting from the integrationover  and �,Æ2(���(w) � 2� NX�=1��Æ2(w � z�)) = Æ2( NX�=1��) Æ2 (� � uB0(yi; z�; w)) : (2.9)The Jaobian for the transformation from ���; � �� to �; �� is trivial on the sphere. One eq.(2.9) has been inserted into our path integral, we perform the integral over the �elds � and�� to obtain* NY�=1 Vj� (�� jz�) +H = juj2 Æ2( NX�=1��)Z D�e� 12� R d2w ������+Q�4 pgR�+b2jB0j2 e2b�� �� NY�=1 j�(z�)j2�H� juj�2(j�+1)j�� j2(j�+1)e2b(j�+1)�(z�) :In writing this formula we have also shifted the zero mode of the bosoni �eld � by � 7!� � (1=b) ln juj. This removes the u dependene from the interation term but introduesan additional fator juj2 through the oupling of � to the world-sheet urvature.In order to prepare for the seond step of our alulation we observe that the expo-nential �eld exp(2b�) always omes multiplied with jB0j2. For the orresponding term in{ 5 {



the ation, this has been spelled out expliitly. In the ase of the vertex operators, theprefator is hidden in j�� j2 one we insert eq. (2.8). This suggests to introdue a newbosoni �eld ' through'(w; �w) := �(w; �w) + 12b  Xi ln jw � yij2 �X� ln jw � z� j2 � ln j�(w)j2! (2.10)where the term in brakets is ln jB0j2. Ating with � �� gives� ��'(w; �w) = � ���(w; �w) + �b  Xi Æ2(w � yi)�X� Æ2(w � z�)!� 12b� �� ln j�(w)j2 :Before we insert our formulas for ' we have to omment on one small subtlety. In fat, atvarious plaes we will have to evaluate the quantity ln jw � z� j at the point w = z� . Thisleads to well-known singularities whih need to be regularized. Following Polyakov [16℄, weshall use the presription � limw!z ln jw � zj2��n := � ln j�(z)j2 : (2.11)The right hand side is �nite and has the same behavior under onformal transformationsas the divergent left hand side. Using our hange of variables from � to ' along with therule (2.11) it is easy to see thatj�� j2(j�+1)e2b(j�+1)�(z�) = juj2(j�+1) j�(z�)j�2(j�+1) e2b(j�+1)'(z�) : (2.12)After these omments we are prepared to perform our substitution from � to '. We donot want to spell out all the details, but let us observe that� 12� Z d2w ����� = � 12� Z d2w ���'�' + 14bpgR'�� 1b  N�2Xi=1 '(yi)� NX�=1'(z�)!+ : : :where the : : : stand for terms that do not ontain the �eld '. There are a few things wean read o� from this result. To begin with, the bakground harge Q� of the bosoni�eld � gets shifted by an amount �Q = 1=b to the new bakground harge Q' = b+ 1=b.Furthermore, the exponents of the vertex operator insertions at z� are all shifted by '(z�)=b.The preise relation ise2b(j�+1)'(z�) e 1b'(z�) = j�(z�)j2(j�+1) e2b(j�+1+ 12b2 )'(z�) :Note that the additional power of � is required to math the behavior of both sides un-der onformal transformations. More strikingly, new vertex operators exp(�'(w)=b) areinserted at the N � 2 points yi. With a little bit of additional are we an also work outthe additional '-independent fators. The result is* NY�=1 Vj� (�� jz�) +H = j�N (u; yi; z�)j2 Æ2( NX�=1 ��)Z D'e� 12� R d2w ���'�'+Q'4 pgR'+b2j�j2e2b'�� NY�=1 j�(z�)j2�L� e2(b(j�+1)+ 12b )'(z�) N�2Yi=1 j�(yi)j2�L�1=2b e� 1b'(yi)
{ 6 {



where, following [7℄, we olleted various fators in the funtion �N de�ned by�N (u; yi; z�) = u NY�<�(z� � z�) 12b2 N�2Yi<j (yi � yj) 12b2 NY�=1N�2Yi=1 (z� � yi)� 12b2 ; (2.13)and we introdued the quantities�L� = �(Q' � �) for � = � 12b or � = �� = b(j� + 1) + 12b : (2.14)Exept for the �rst two fators, the result may now be re-expressed in terms of orrelationfuntions of Liouville theory,* NY�=1 Vj� (�� jz�)+H = Æ2( NX�=1��)j�N (u; yi; z�)j2 * NY�=1V�� (z�) N�2Yi=1 V�1=2b(yi)+L : (2.15)The Liouville orrelator on the right hand side is evaluated with a bulk osmologial on-stant �B = 4b2 and the primaries are de�ned byV�(z) = j�(z)j2�L� e2�' : (2.16)Up to an overall onstant, our result oinides with the formula found by Ribault andTeshner in [7℄.2.2 From KZ to BPZ di�erential equationsThe orrelation funtions on both sides of the orrespondene are known to satisfy ertaindi�erential equations. Throughout this subsetion we shall set � = 1. Liouville orrelatorsare known to obey the Belavin-Polyakov-Zamolodhikov (BPZ) seond order di�erentialequations that ome with the N � 2 insertions of the degenerate �eld V�1=2b. In fat, this�eld is well known to possess a singular vetor on the seond level, or, equivalently, tosatisfy the di�erential equation�2yV�1=2b(y) + b�2 : T (y)V�1=2b(y) : = 0 :Suh an equation holds for eah of the N � 2 degenerate �elds at the points yi. Using theWard identities for the Virasoro �eld T (yi), we an onvert these singular vetor equationsinto N � 2 seond order di�erential equations for the Liouville orrelators 
L ,DLi 
L(z� ; yi) = 0 where 
L(z� ; yi) = * NY�=1 V�� (z�) N�2Yi=1 V�1=2b(yi)+L (2.17)and the di�erential operators DLi were �rst found by Belavin, Polyakov and Zamolodhikovto be of the formDLi = b2 �2�y2i + NX�=1� �L�(yi � z�)2 + 1yi � z� ���+ NXj 6=i  �L�1=2b(yi � yj)2 + 1yi � yj �j! : (2.18)
{ 7 {



Here, �i = �=�yi and �� = �=�z� and the onformal dimensions are given by �L� =��(Q� ��), as before.Let us now turn to the WZNW model. Its orrelators are well known to satisfy theKnizhnik-Zamolodhikov (KZ) di�erential equations. These emerge from insertions of theSugawara singular vetorT (w) + b2� : J0(w)J0(w) : �12( : J�(w)J+(w) : + : J+(w)J�(w) : ) � = 0into WZNW orrelation funtions. Sine we an insert this at any point on the sphere,we ertainly get an in�nite number of equations. But these are not all independent. Infat, evaluation of the residues of the �rst order poles at w = z� gives N independent�rst order equations. Hene, there are two more equations on the WZNW side than onthe Liouville side. Closer inspetion shows that the N � 2 BPZ di�erential equationsorrespond inserting the Sugawara tensor at the N � 2 points w = yi on the world-sheet ofthe WZNW model. At these speial points, the di�erential equations from the Sugawarasingular vetor simplify onsiderably. To see this we need the operator produt expansionsbetween the urrents J� and J0 and the vertex operators in the � basis (2.3). From theurrent Ward identities and the very de�nition of the points yi we onlude thatJ�(yi) = NX�=1 ��yi � z� = 0 :By similar reasoning, the urrent J0(yi) is easily seen to simplify as followsJ0(yi) = � NX�=1 ��yi � z� ���� = � ��yiwhere the seond equality follows from the expliit hane of variables relating �� with yiand u. One we insert all these results into the Sugawara singular vetor, we obtain thefollowing N � 2 di�erential equationsDHi 
H(z� ; ��) = 0 where 
H(z� ; ��) = * NY�=1 Vj� (�� jz�) +H : (2.19)Using the relation (2.8), the di�erential operators DHi for H+3 an be shown to aquire thefollowing form DHi = b2 ��y2i + NX�=1� 1yi � z� �� + �H�(yi � z�)2� ; (2.20)where �H� = �b2j�(j� + 1) are the onformal dimensions of our WZNW primary �elds,as before. Note that DHi does not depend on any of the yj with j 6= i. In this sense,the transformation (2.8) leads to a separation of variables [17℄. Let us stress that thederivatives �� in eq. (2.19) are to be taken with �xed �� whereas the variables yi are kept{ 8 {



�xed when evaluating �� in the BPZ di�erential equations above. Whenever it is relevant,we shall expliitly distinguish between the two derivatives �� ,�H� = � ��z��� ; �L� = � ��z��y :It is ertainly possible to express e.g. all the derivatives �H� in terms of �L� ; �i and �=�u.We shall only need the speial ombinationÆi := X� 1yi � z� �H� = X� 1yi � z� ��L� + �i��Xj 6=i 1yi � yj (�i � �j) : (2.21)With this auxiliary formula it is then straightforward to hek that���1N DHi �N �DLi � 
L(z� ; yi) = 0 : (2.22)The orrespondene between di�erential equation was an important ingredient in [7℄ forproving the relation (2.15). We have derived the latter within the path integral approahand therefore the di�erential equations are guaranteed to be mapped onto eah other.2.3 Comments on the path integral derivationIt is well known that the path integral de�nition of both the WZNW model and of Liouvilletheory has some issues that are related to the non-ompatness of the bakground (see e.g.[18℄ for a review). If one splits all �elds into their zero modes and utuations, one anintegrate out the zero modes. The proedure results in expression for the orrelators whihare either divergent or hard to give an exat de�nition. In the ase of Liouville theory, forinstane, one obtainsh NY�=1 e2��'(z� ;�z�)iL = Z D ~'e�SLD[ ~'℄ NY�=1 e2�� ~'(z� ;�z�)�(�s)2b ��B Z d2we2b ~'�swhere sb = Q' �PN�=1 �� . In this formula, the integration over the utuation �eld ~'is weighted with the measure of the free linear dilaton theory, but the integrand ontainsadditional insertions of sreening harges. The latter are raised to some possibly non-integer power s and they are multiplied with oeÆients that diverge for positive integerpowers. These features have a simple explanation. In our non-ompat target spae, theorrelation funtions are expeted to possess poles in momentum spae whih ome fromthe integration over the in�nite region of the target spae where the interation is negligible.The path integral omputation we have just skethed detets (some of) these divergeniesand an be turned into a rigorous omputation of the assoiated residues.If we are not willing to give the path integral any more redit, then our results aboveonly imply that* NY�=1 Vj� (�� jz�) Ss� +�LD� = Æ2( NX�=1 ��)j�N (u; yi; z�)j2� (2.23)� * NY�=1 V�� (z�) N�2Yi=1 V�1=2b(yi) Ss' +LD' :
{ 9 {



Here, Ss� and Ss' denote the sreening harges of the WZNW model and Liouville �eldtheory, respetively. They are given by the following expressionsSs� = �Z d2w �(w) ��( �w) e2b�(w; �w) ; Ss' = Z d2w e2b'(w; �w) : (2.24)The orrelation funtions on both sides of the equality are to be omputed in the free lineardilaton theory. On the left hand side, we use the � system with entral harge  = 2 anda linear dilaton with bakground harge Q� = b. On the right hand side, the orrelator isto be omputed for a linear dilaton bakground with Q' = b+ 1=b.Correlation funtions in the WZNW model and in Liouville �eld theory are well knownto possess a seond series of poles that are not explained by insertions of the sreeningharges (2.24). The residues of these poles an still be omputed from free �eld theorywith the help of so-alled dual sreening harges. For our two models these readSd� = �Z d2w �(w) 1b2 ��( �w) 1b2 e 2b�(w; �w) ; Sd' = Z d2w e 2b'(w; �w) : (2.25)Note that the exponents 1=b2 = k�2 an be integer for integer level k � 2. We have indeedheked by expliit omputation that equation (2.23) remains valid if the sreening hargesSs� and Ss' are replaed by the dual ones. Similar alulations for the H+3 model involvingboth sreening harges Ss� and Sd� an be found, e.g., in [19℄ (see also referenes therein forearlier works on this subjet). We shall perform free �eld omputations for orrelators onsurfaes of genus g at the end of setion 4.3. Generalizing the orrespondene to the torusMotivated by our rather simple path integral derivation, we would now like to extend theH+3 -Liouville relation beyond tree level to higher genus orrelators. We shall study thegeneral ase in the next setion and restrit ourselves to the torus for now sine many ofthe formulas an be made very expliit at g = 1.3.1 The H+3 model on the torusWe start from the H+3 WZNW model with level k and ompute N -point funtions on atorus with moduli parameter � using the �rst order formulation in terms of �, �, . Asexplained in the introdution, we would like to introdue a bit more freedom by admittingsome non-trivial boundary onditions for � and the � system. To be preise, we assumethe �elds �,  and � to satisfy�(w +m+ n�) = e2�in��(w) ; (w +m+ n�) = e�2�in�(w) ; (3.1)�(w +m+ n�; �w +m+ n��) = �(w) + 2�nIm�b (3.2)with n;m 2 Z and � some omplex parameter. One suh twisted boundary onditionshave been introdued for the �eld �, the onditions on  and � follow if we require the{ 10 {



ation to be single valued. Of ourse, we assume similar twisted boundary onditions withtwist parameter �� to hold for the anti-holomorphi omponents of the � system.There is one term in the ation, namely the oupling of the �eld � to the world-sheeturvature, that requires a bit of additional are. Sine our �eld � is multivalued, the termpgR� annot possibly give the right presription. Instead, we must deompose � intoa twisted zero mode part �sol (the index `sol' stands for solitoni) and a doubly periodiutuation �q , i.e.� = �q + �sol where �sol(w; �w) = 2��2b Im�Imw ; (3.3)where, by onstrution, �q now satis�es �q(w+m+n�; �w+m+n��) = �q(w). The lineardilaton term in the ation ouples the world-sheet urvature to the single valued utuation�eld �q rather than to � itself,SLD[�℄ = Q�8� Z d2wpgR�q : (3.4)All other terms in the ation (2.1) remain the same as before. Similarly, the expression forvertex operators (2.2) does not require any modi�ation.To a large extend the path integral omputation of the N -point orrelation funtionfollows the same steps as before. The quantities we would like to ompute are given by* NY�=1 Vj� (�� jz�) +H(�;�) = Z D��D�D�� e�S[�;;�℄ NY�=1 Vj� (�� jz�) ;where the integration is to be performed over all �eld on�gurations on a torus withmodulus � satisfying the boundary onditions (3.1) and (3.2) stated above. Note thatour orrelation funtion is not yet normalized by dividing the partition funtion ZH . Weshall further omment on this below. After integration over  and � we obtain the sameondition (2.5) for the derivatives of � and �� on the sphere. But this time it has di�erentonsequenes for � and ��. In fat, we need a bit of preparation before we are able to spellout the analogue of the important equation (2.7).On the torus, the integration of equation (2.5) will lead to a new funtion that an beonstruted out of Jaobi's theta funtion�(z) = �Xn2Zei�(n+ 12 )2�+2�i(n+ 12 )(z+ 12 ) ; �(z +m+ n�) = �e�i�n(2z+n�)�(z) : (3.5)Out of � we an build a new funtion �� with a simple pole and the same periodiityproperties that we required for �,��(z; w) = �(�� (z � w))�0(0)�(z �w)�(�) : (3.6)Indeed, from the shift properties of Jaobi's theta funtion � it is easy to derive the followingproperty of ��, ��(z +m+ n�;w) = e2�in���(z; w) : (3.7){ 11 {



Now let us return to the integration of the two equations (2.5). The right hand side tells usthat the twisted meromorphi di�erential �(w) possesses N poles in the positions w = z�with residues �� . The solution to these onditions is unique, as long as the twist parameter� does not vanish. It an be written down in terms of the �� as�(w) = NX�=1 ����(w; z�) = uQNi=1 �(w � yi)QN�=1 �(w � z�) =: uB1(yi; z� ;w) : (3.8)The seond equality is a torus version of Sklyanin's separation of variables and it requiresa few omments. On a torus, meromorphi one-di�erentials possess the same number N ofpoles and zeroes. Moreover, the positions w = z� and w = yi; i = 1; : : : ; N; of both zeroesand poles determine the di�erential up to an overall fator u. For our orrespondenebetween the WZNW model and Liouville theory, it is again ruial to parametrize ��through u and yi rather than � and �� . The relation between the two sets of parametersan be worked out easily (see also [20, 21℄)�� = u QNi=1 �(z� � yi)�0(0)QN�6=�;�=1 �(z� � z�) ; � = NXi=1 yi � NX�=1 z� : (3.9)What we have shown so far is that the integration over the �elds  and � in the WZNWmodel leads to the following Æ funtionÆ2(���(w) � 2� NX�=1 ��Æ2(w � z�)) = jdet�j�2� Æ2(�(w) � uB1(yi; z� ;w)) : (3.10)This replaes the related formula (2.9) in the genus zero analysis. The fator jdet �j�2� isthe Jaobian that arises when we hange from Æ2(�� � � � ) to Æ2(�(w) � � � ). We have plaeda subsript � in the Jaobian to remind us that � is onsidered as an operator on twistedone-di�erentials. Let us now perform the integration over � and �� to obtain* NY�=1 Vj� (�� jz�) +H(�;�) = 1jdet �j2� Z D��e� 12� R d2w ������+Q�4 pgR�q+b2jB1j2 e2b�� �� NY�=1 j�(z�)j2�J� juj�2(j�+1)j�� j2(j�+1)e2b(j�+1)�(z�) :As in our genus zero analysis we have shifted the zero mode of the �eld � to remove thejuj2 from the interation term. Beause the Euler harateristis of the torus vanishes, thepath integral is multiplied with a fator juj0 = 1.We have now reahed the point at whih we hange variables for the remaining in-tegration over � suh that the highly non-trivial fator jB1j2 also gets removed from theinteration. In omplete analogy to the genus zero ase we introdue'(w; �w) := �(w; �w)+ 12b  Xi ln j�(w � yi)j2 �X� ln j�(w � z�)j2 � ln j�(w)j2! : (3.11)
{ 12 {



By onstrution, the new �eld ' is periodi under shift by n+m� , even though the original�eld � and the � funtions are not. It will be advantageous to replae j�j2 funtions bysome funtion F , F (z; w) := e� 2��2 (Im(z�w))2 �����(z � w)�0(0) ����2 ; (3.12)whih is easily seen to be invariant under shifts by integers and integer multiples of themodulus � , F (z +m+ n�;w) = F (z; w) :The new funtion F allows us to rewrite the relation between ' and � in terms of the singlevalued utuation �eld �q = �� �sol that we introdued in eq. (3.3),'(w; �w) := �q(w; �w) + 12b  Xi lnF (w; yi)�X� lnF (w; z�)� ln j�(w)j2 + S1! (3.13)with S1 = 2��2 (Pi y2i �P� z2�). Let us also observe that the deomposition of the �eld �into �sol and �q is suh that their ontributions to the kineti term deouple,� 12� Z d2w����� = � 12� Z d2w��sol ���sol � 12� Z d2w��q ���q (3.14)with 12� Z d2w��sol ���sol = �(Im�)2b2�2 : (3.15)Now we an proeed exatly as before, with the funtion F replaing jz�wj2. In partiular,the properties of F an be used to evaluate � ��' as� ��'(w; �w) := � ���q(w; �w)+ �b  Xi Æ2(w � yi)�X� Æ2(w � z�)!� 12b� �� ln j�(w)j2; (3.16)a result that agrees exatly with the orresponding formula at genus zero. The outome ofa short and straightforward omputation is* NY�=1 Vj� (�� jz�)+H(�;�) = e��(Im�)2b2�2 j�g=1N (yi; z� ; �)j2jdet �j2� Z D'e� 12� R d2w ���'�'+Q'4 pgR'+b2j�j2e2b'�� NY�=1 j�(z�)j2�L� e2(b(j�+1)+ 12b )'(z�) NYi=1 j�(yi)j2�L�1=2be� 1b'(yi)where the pre-fator �N is given byj�g=1N (yi; z� ; �)j2 = NY�<� F (z�; z�) 12b2 NYi<j F (yi; yj) 12b2 NY�;i=1F (z�; yi)� 12b2 : (3.17)So far, the orrelators on both sides of the equations are not normalized. But using thefollowing formulas (see [22℄ and our disussion before eq. (4.13) later on) for the genus onepartition funtions ZH and ZL of the WZNW model and Liouville theory, respetively,ZH = e��(Im�)2b2�2p�2j�(�)j2 ; ZL = 1p�2j�(�)j2 ; (3.18)
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along with the formula det �� = �(�)=�(q) for the determinant of � on �-twisted dif-ferentials, we an reast the relation between orrelation funtions in both theories in apartiularly simple form1ZH * NY�=1 Vj� (�� jz�) +H(�;�) = j�g=1N (yi; z� ; �)j2 1ZL * NY�=1 V�� (z�) NYi=1 V�1=2b(yi)+L :(3.19)Our genus one relation is similar to the tree level result. One more we managed toompute all orrelators of WZNW primaries in terms of Liouville theory with the samerelation between the level k = b�2 + 2 and the bakground harge Q' = b + 1=b andthe same bulk osmologial onstant �B = 4b2. For eah primary �eld Vj in the WZNWmodel there appears one Liouville vertex operator V� where � = b(j +1)+ 1=2b, as on thesphere. Additionally we have to insert degenerate Liouville �elds, but now we need twomore than on the sphere, i.e. there are N degenerate �elds inserted. Their positions aredetermined through the light one momenta �� of the WZNW vertex operators and thetwist parameter �.The attentive reader might be a bit surprised not to see any fator implementing theonservation of � momentum, as on the sphere. Its absene is diretly related to the fatthat the orrespondene has been worked out for non-zero twist parameter �. One wouldertainly expet to reover � momentum onservation in the limit � ! 0. In order to seehow this works, let us go bak to relation (3.8) and insert the expansion��(z; w) = 1� + �0(w � z)�(w � z) + : : : : (3.20)This leads to the formula�(w) = X� ��� +X� �� �w ln �(w � z�) + : : : :For � to stay �nite in the limit � ! 0, we need to assume that the total �-momentumP� �� tends to zero when we send �! 0. In fat, ifP� �� vanishes fast enough, we obtainwell de�ned expressions at � = 0.3.2 Relation between di�erential equations on torusHaving established a simple relation between orrelation funtions of the WZNWmodel andLiouville �eld theory on the torus it seems worthwhile to look one more at the di�erentialequations that determine orrelators in both models and to hek that our relation (3.19)orretly intertwines between them.Let us start on the side of Liouville �eld theory. The vertex operator V�1=2b belongs toa degenerate representation with a null vetor (b2(L�1)2+L�2)j�1=2bi on the seond level.Sine we have N suh degenerate �elds in our Liouville orrelation funtion, we obtain Nseond order di�erential equations,DLi (
L)(z� ; yj ; �) = 0 ; 
L(z� ; yi; �) = * NY�=1V�� (z�) NYj=1V�1=2b(yj)+L : (3.21)
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The di�erential operators DLi for surfaes of higher genus were worked out by Eguhi andOoguri [12℄,DLi = b2 �2�y2i +�L� 12b 2�1 +Xj 6=i ��(yi; yj) ��yj ��L� 12b �i�(yi; yj)�++X� ��(yi; z�) ��z� ��L���i�(yi; z�)�+ 2�i ��� ; (3.22)where the speial funtion � and the onstant �1 are onstruted from Jaobi's � funtionthrough �(z; w) = �0(z � w)�(z � w) ; �1 = �16 �000(0)�0(0) : (3.23)Let us now address the di�erential equations obeyed by the orrelation funtions of theWZNW model on the torus, whih were �rst worked out by Bernard and are known asKnizhnik-Zamolodhikov-Bernard (KZB) equations. These equations are obtained by in-serting the Sugawara singular vetor T (w) � b2 : JaJa : (w) = 0 into the WZNW N -pointorrelation funtion 
H (see eq. (3.29) below for the de�nition of 
H). Ward identities forurrents and the Virasoro �eld then give [13, 23℄"b2S(w) + NX�=1��(ya; z�) ��z� ��Hj��i�(yi; z�)�+ 2�i ��� #�
H = 0 : (3.24)Here, we introdued � = j�(�)j2 andS(w) = � ��� � ~J0(w)�2 � 12 � ~J�(w) ~J+(w) + ~J+(w) ~J�(w)� ; (3.25)~J�(w) = NX�=1 ���(w; z�)D�� ; ~J0(w) = NX�=1 �(w; z�)D0� ; (3.26)and the di�erential operators D�� and D0� are the same as in eq. (2.4). Let us briey reallthe reason why the KZB equations ontain a derivative with respet to the twist parameter�. These terms arise from the Ward identities of urrents. In fat, it has already beenobserved by Eguhi and Ooguri in [12℄ that the insertion of the zero modes of urrents intoorrelators annot be onverted into di�erential operators ating on the usual untwistedorrelation funtions. It was Bernard's idea to �x this problem by introduing a dependeneof onformal bloks on additional parameters. On the torus, he suggested to insert a groupelement g into the trae. This has the e�et of twisting the boundary onditions for urrentsunder shifts by multiples of � . Our boundary onditions orrespond to the speial hoieg = exp(�2�i�J00 ). Atually, it had been observed by Bernard already that a single twistparameter � suÆes on the torus.As in subsetion 2.2, our strategy now is to evaluate the KZB equations at the Nspeial points yi and then to ompare the result with the N di�erential equations for the{ 15 {



Liouville orrelator. From the relation (3.9) between �i; � and yi; u one may derive��yi = ��� + NX�=1 �(yi; z�)�� ���� ; u ��u = NX�=1 �� ���� : (3.27)These relations between derivatives an be inserted into our formulas for the di�erentialoperators ~J�(w) and ~J0(w), evaluated at the points w = yi, to obtain~J�(yi) = NX�=1 �+�(yi � z�)�� = 0 ; ~J0(yi) = � NX�=1 �(yi; z�)�� ���� = � ��yi + ��� :When we plug these expressions into S(yi) we �ndS(yi) = �2�y2i ; (3.28)just as on the sphere. In onlusion we have shown that the KZB equations lead to thefollowing N di�erential equations for the WZNW N -point funtions 
HDHi �
H = 0 ; 
H(z� ; �� ; �) = * NYi=1 Vji(�ijzi)+H(�;�) ; (3.29)DHi = b2 �2�y2i + NX�=1��(yi; z�) ��z� ��Hj��i�(yi; z�)�+ 2�i ��� : (3.30)Let us reall that the derivatives �=�z� = �� in DHi are still taken while keeping � and �i�xed, in spite of the expliit appearane of derivatives with respet yi.In order to verify onsisteny of the two sets of equations with the proposed relationbetween Liouville and WZNW orrelation funtions, we rewrite the latter in the form�
H = j�(�)j2j�0N j2
L ; (3.31)�0N = �0(0) N2b2 NY�<� �(z� � z�) 12b2 NYi<j �(yi � yj) 12b2 NY�;i=1 �(z� � yi)� 12b2 : (3.32)In omparison to the earlier version, we have absorbed a fator into a re-de�nition of j�N j2and then expressed the new j�0N j2 in terms of j�j2 rather than F . Our result on the relationbetween orrelation funtions therefore implies(��0N )�1DHi (��0N ) = DLi : (3.33)This an be heked indeed by a lengthy but straightforward omputation. In the proessit is important to replae all the derivatives �� = �H� in the di�erential operators DHithrough derivatives �� = �L� where the latter are taken while keeping yi and u �xed. Morepreisely, we replae Æi =P� �(yi; z�)�H� in DHi byÆi � NX�=1 �(yi; z�) ��L� + �i��Xj 6=i �(yi; yj) (�i � �j) ; (3.34)
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where �i denote di�erentiation with respet to yi, as before. It is easy to verify that Æisatisfy Æi��(yi; z� ; u) = 0 and Æi�(yi; z� ; u) = 0. One this issue is taken are of, we anshow that the di�erential operators indeed satisfy (3.33). The details of the omputationare presented in appendix A.4. Generalization to arbitrary genusEquipped with the experiene from genus g = 0 and g = 1, we now address the WZNWmodel on an arbitrary losed surfae of genus g. Most of the analysis follows the ideas ofprevious setions, but the details require onsiderably more bakground onerning di�er-entials on higher genus surfaes. We provide the most relevant details in Appendix B. Sinethis setion ontains our main new result, we shall derive it �rst through our path integralarguments and then verify with the help of free �eld omputations where both sides of theproposed relation possess the same residues. Comments on the relation between the KZBand BPZ di�erential equations are deferred to the onluding setion.4.1 Path integral derivationSuppose we are given some ompat Riemann surfae � with moduli parametrized by theperiod matrix � = (�ij). Sine our �elds are going to be multivalued as in the torus ase,it is appropriate to pass to the universal over ~� of the surfae right away. Using thefamous Abel map, we embed ~� into C g . From now on, we shall think of our �elds asbeing de�ned on the image of the Abel map and hene onsider them as funtions of gomplex oordinates wk; k = 1; : : : ; g. In lose analogy to the genus g = 1 ase, we allowfor nontrivial twists along the �-yles, i.e.�(wk + �klnl +mkj�) = e2�inl�l�(wkj�) ;(wk + �klnl +mkj�) = e�2�inl�l(wkj�) ; (4.1)�(wk + �klnl +mkj�) = �(wkj�) + 2�nlIm�lb :The omplex parameter �k represents the twist along the �-yle �k. Thereby, we haveintrodued g omplex parameters.As in our disussion of the theory on the torus, spelling out the oupling of � to theworld-sheet urvature requires to split � into a twisted zero mode �sol and a single valuedutuation �q. The twisted zero mode �sol is now given by�sol = 2�b Im�k (Im�)�1kl Imwl = 2�b Im�k (Im�)�1kl ImZ ww0 !l (4.2)where !l; l = 1: : : : ; g; is a basis of holomorphi one-forms and indies l; k are raised andlowered with the trivial metri. The linear dilaton term ouples the world-sheet urvatureR to the doubly periodi utuation �eld �q = �� �sol in the same way as on the torus,see eq. (3.4). { 17 {



So far, setting up the path integral for WZNW orrelators on a surfae of genus g wasa straightforward extension of the torus ase. But there is one important modi�ation. Asis well known, the �-twisted di�erentials �� and ��� possess g � 1 zero modes. These giverise to g � 1 additional moduli if we deide to �x the value of the �� and ��� zero modesand to extend our path integral only over the remaining utuations. Our aim therefore isto ompute the following N -point orrelation funtions* NY�=1 Vj� (�� jz�) +H(�;$;�) = Z D��D� ~D�� e�S[�;;�℄ NY�=1 Vj� (�� jz�)over a Riemann surfae with genus g. The symbol ~D�� reminds us not to integrate over �zero modes. We parametrize the latter by g�1 oordinates $ = ($� ; � = 1; : : : ; g�1) andplae an expliit subsript $ on the orrelator. The physial orrelation funtions may bereovered in priniple through a �nite dimensional integral over $�.Integration over  leads to exatly the same expression (2.5) for the derivative of �as on the sphere and torus. But the orresponding � takes a di�erent form. From theknowledge of its derivative and the boundary onditions (4.1) we may onlude that �must have the form �(w) = NX�=1 ����(w; z�) + g�1X�=1$�!��(w) (4.3)where !�� denote a basis of � twisted holomorphi di�erentials and the funtion ��(w; z) isthe following di�erential, ��(w; z) = (hÆ(w))2�Æ(R wz !) �Æ(�� R wz !)�Æ(�) : (4.4)On the right hand side, we an use any odd spin struture Æ. The � funtion �Æ and the 1/2-di�erential hÆ are de�ned in appendix B. Using properties of these objets it is possible toshow that ��(z; w) has a simple pole at z = w with residue Resz=w��(z; w) = 1. Moreoverthe di�erential �� satis�es the same periodi boundary ondition as �(w). Before we goon, let us point out that we had to �x the � zero mode in order to be able to reonstrut� from its derivative. Expliit formulas for the g � 1 twisted holomorphi di�erentials anbe found e.g. in [23℄.The rest of our analysis proeeds essentially as before. A meromorphi one-di�erentialwith N poles is known to possess N+2(g�1) zeroes. Hene, the analogue of the separationof variables formula (2.7) for a surfae of genus g � 1 is given by�(w) = uQN+2(g�1)i=1 E(w; yi)�(w)2QN�=1E(w; z�) =: uBg(yi; z� ;w) (4.5)with yi parametrizing the zeroes of �. It seems that this formula has not appeared in theliterature before. In order to reprodue the orret boundary onditions (4.1), yi have tosatisfy the ondition�l = N+2(g�1)Xk=1 Z ykw !l � NX�=1 Z z�w !l � 2Z �(g�1)w !l ; (4.6)
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whih orresponds to the ondition (3.9) for the genus one ase. Notie that this onditiondoes not depend on w. The funtion �(w) in eq. (4.5) is a g=2-di�erential without zerosnor poles. Its de�nition is reviewed is eq. (B.13) of appendix B along with the onstrutionof the prime form E (see eq. (B.7)) and the Riemann lass �. The funtion �(w) is neededin order for the right hand side of (4.5) to beome a one-di�erential with the orret zerosand poles.There is another point we would like to stress. Note that the equations (4.6) impose gonstraints on the position of the zeroes yi. Thereby, they de�ne a N + g � 2-dimensionalhyper-surfae in the on�guration spae of yi. These hyper-surfaes sweep out the entireon�guration spae as we vary the g twist parameters. Changing the zero mode parameters$� while keeping � �xed also moves the position of zeroes yi, but this motion takes plaewithin the the hyper-surfae de�ned by � sine eq. (4.6) is independent of $. Hene, thein�nitesimal hanges of the twist parameters � and the zero mode parameters$ span a 2g�1 dimensional subspae of vetors tangent to the on�guration spae of yi. Together withthe shifts of the N light-one momenta ��, we thereby generate independent moves of allthe zeroes yi and of u. Let us also note that the light-one momenta may be reonstrutedfrom yi aording to �� = uQN+2(g�1)j=1 E(z� ; yj)�(z�)2QN�6=� E(z� ; z�) : (4.7)After these omments we an ontinue with our omputation of WZNW orrelators. Onethe trivial integration over non-zero modes of � and �� has been performed, we re-de�nethe bosoni �eld,'(w; �w) :=�(w; �w) + 12b 0�N+2(g�1)Xi=1 ln jE(w; yi)j2 � NX�=1 ln jE(w; z�)j2 + 2 ln j�(w)j2 � ln j�(w)j21A :As on the torus, we may replae the multi-valued prime form E and � by doubly periodifuntions and thereby rewrite ' in terms of the single valued utuation �eld �q = ���sol,'(w; �w) =�q(w; �w) + 12b 0�N+2(g�1)Xi=1 lnF (w; yi)� NX�=1 lnF (w; z�) + 2 lnH(w)� ln j�(w)j2 + Sg1A :The funtions F (z);H(z) are de�ned in appendix B and the onstant Sg is a shorthand forthe following expressionSg = 2�Xi ImZ yiw0 !l (Im�)�1lk ImZ yiw0 !k � 2�X� ImZ z�w0 !l (Im�)�1lk ImZ y�w0 !k��4�ImZ �(g�1)w0 !l (Im�)�1lk ImZ �(g�1)w0 !k ;{ 19 {



whih is independent of w0. If we at with � �� on ' we obtain the same expression (3.16)as on the torus. This uses that the ontributions from the non-holomorphi part aneleah other. Furthermore, � �� ln�(z) = 0 beause � has neither zeros nor poles.After inserting the shift of variables from � to ', we an simplify the resulting ex-pressions pretty muh in the same way as for the torus ase. One more, the kineti termfor the �eld � splits into the sum (3.14) of a onstant term and a kineti term for theutuation �eld �q. The former is given bySsol = 12� Z d2w ���sol��sol = �b2 Im�l (Im�)�1lk Im�k : (4.8)A seond auxiliary result onerns the ontribution from the linear dilaton term. Afterthe hange of variables it provides us with a linear dilaton term for ' and the followingadditional terms,Q�8� Z d2wpgR2b 0�N+2(g�1)Xi=1 lnF (w; yi)� NX�=1 lnF (w; z�) + 2 lnH(w)� ln j�(w)j2 + Sg1A == N+2(g�1)Xi=1 ln(j�(yi)j�1H(yi))� NX�=1 ln(j�(z�)j�1H(z�)) + (1� g)Sg + 32Ug ;where (see [24℄)Ug = 1192�2 Z d2wd2ypg(w)R(w)pg(y)R(y) lnF (w; y) : (4.9)All these expressions an be veri�ed using formulas from Appendix B. Colleting all theabove fats, our orrelation funtion is given by* NY�=1 Vj� (�� jz�) +H(�;$;�) = C j�gN (u; yi; z� ; �)j2 * NY�=1 V�� (z�) N+2(g�1)Yi=1 V�1=2b(yi)+L�where the pre-fator �N takes the formj�gN (u; yi; z� ; �)j2 = (juj2eSg)(1�g) NYi=1H(zi)�1� 1b2 N+2(g�1)Yk=1 H(yk)1+ 1b2 � (4.10)� NYr<sF (zr; zs) 12b2 N+2(g�1)Yk<l F (yk; yl) 12b2 NYr=1N+2(g�1)Yk=1 F (zr; yk)� 12b2 ;and we olleted all the remaining terms in the quantity C,C = e�Ssol+( 32+ 34b2 )Ug jdet �j�2� :Before we onlude, let us observe that the onstant C may be written as the ratio betweenpartition funtion ZL0 = ZLDQ' of a linear dilation with bakground harge Q' and the
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produt ZH0 = jZ� j2ZLDQ� where Z� is the partition funtion of a hiral � system. Inorder to see this, we reall that the partition funtion in both H+3 model and Liouville �eldtheory aquires it's leading (divergent) ontribution from the asymptoti region where theinteration is negligible. Hene, we haveZH0 = Z D�qD�D�� e�Ssol� 12� R d2w ����q��q�� �������+Q�4 pgR�q� == jdet �j�2� e�Ssol Z D�qe� 12� R d2w ����q��q+Q�4 pgR�q� : (4.11)To further re-write the partition funtion ZH0 , we must now hange the bakground hargefrom Q� to Q'. We an ahieve this using a result of [24℄ on orrelation funtions in alinear dilaton theory. When applied to the path integral in the formula for ZH0 , it formallyreads Z D�qe� 12� R d2w ���q���q+Q�4 pgR�q� = e� 34Q2�Ugjdet �j2 == e� 34 (Q2��Q2')Ug Z D'e� 12� R d2w ���'�'+Q'4 pgR'� = e� 32+ 34b2 �Ug ZL0 (4.12)where in the proess of the alulation we inserted the expliit expression for the bakgroundharges Q� and Q'. Combining the previous two equations, we have shown,ZH0 = jdet �j�2� e�Ssol+� 32+ 34b2 �Ug ZL0 : (4.13)In onlusion, our �nal result for the relation between normalized orrelation funtions inthe H+3 model and in Liouville �eld theory reads1ZH0 * NY�=1 Vj� (�� jz�) +H(�;$;�) = j�gN (u; yi; z� ; �)j2 1ZL0 * NY�=1 V�� (z�)N+2(g�1)Yi=1 V�1=2b(yi)+L�(4.14)where the funtion �gN is given by eq. (4.10). Let us also reall that the orrelation funtionsof primaries (2.2) in the WZNW model at level k = b�2+2 depend on the g twists �k andon g�1 zero modes $l in addition to the surfae moduli. On the Liouville side, we omputethe orrelation funtions of primaries (2.16) with a bakground harge QL = Q' = b+1=band with bulk osmologial onstant �B = 4b2. The momenta �� are related to j� througheq. (2.14). The remaining momenta �� in the WZNW model along with the 2g� 1 moduli�k and $l determine the insertion points yi of N +2(g� 1) degenerate Liouville �elds anda fator u that we absorbed in the de�nition of �gN . Finally, we stress that ZH0 and ZL0 arepartition funtions of free �eld theories. They agree with those of the H+3 and Liouvilletheory, respetively, if and only if we onsider the theory on a surfae of genus g = 1. Forhigher genus, our relation (4.14) shows that the partition funtion ZH of the H+3 model isrelated to a 2g � 2 point funtion in Liouville �eld theory.{ 21 {



4.2 Free �eld theory omputationsIn this subsetion, we explain how to ompute the residues of the �rst order poles in WZNWorrelation funtion from free �eld theory (see also our disussion at the end of setion 2).We then determine the orresponding quantities for orrelators in Liouville �eld theory andshow that the results agree with our relation (4.14) for the full orrelators.As we have skethed in setion 2.3 it is possible to ompute the residues of poles in theH+3 orrelation funtions by inserting powers of the sreening harges into orrelators of alinear dilaton � and a � system. For the rest of this setion we shall �x the world-sheetmetri suh that � = 1. The vertex operators and the usual sreening harge take the sameform as aboveVj(�jz) � j�j2j+2e�����e2b(j+1)� ; S = Z d2wS(w) = �Z d2w� ��e2b�(w; �w) : (4.15)The N -point orrelation funtion has a pole at P�(j� + 1) = 1 � g � s (s 2 Z�0), whoseresidue is obtained by integrating the following orrelators over the positions wk* NY�=1Vj� (�� jz�) sYk=1S(wk)+ = NY�=1 j�� j2j�+2* NY�=1 e2b(j�+1)�(z� ;�z�) sYk=1 e2b�(wk ; �wk)+ �� * NY�=1 e��(z�) sYk=1�(wk)+* NY�=1 e�����(�z�) sYk=1[���( �wk)℄+ :(4.16)Throughout this entire subsetion, orrelation funtions are properly normalized suh thatthe expetation value of the identity is trivial rather than the partition funtion. Sine thefree boson � is subjet to a bakground harge Q = Q� = b, the ontribution from thelinear dilaton theory an be omputed as* NY�=1 e2b(j�+1)�(z� ;�z�) sYk=1 e2b�(wk ; �wk)+ = �sol * NY�=1 e2b(j�+1)�q(z� ;�z�) sYk=1 e2b�q(wk; �wk)+ ;(4.17)where the twisted zero mode of � ontributes the fator�sol = NY�=1 e2b(j�+1)�sol(z� ;�z�) sYk=1 e2b�sol(wk; �wk) : (4.18)The orrelation funtion of the single valued utuation �eld �q = ���sol may be expressedthrough the funtions F and H, see appendix B,* NY�=1 e2b(j�+1)�q(z� ;�z�) sYk=1 e2b�q(wk; �wk)+ = NY�=1H(z�)2b2(j�+1) sYk=1H(wk)2b2 � (4.19)� NY�<�F (z� :z�)�2b2(j�+1)(j�+1) NY�=1 sYk=1F (z� ; wk)�2b2(j�+1) sYk<lF (wk; wl)�2b2 :
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The fators in the seond line of eq. (4.16) may be evaluated using the same formulas weemployed in our path integral derivation. In partiular, with the help of formula (4.5) wean onlude that* NY�=1 e��(z�) sYk=1�(wk)+ = sYk=1" NX�=1 ����(z� ; wk) + g�1X�=1$�!��# == sYk=1"uQN+2(g�1)i=1 E(yi; wk)�(wk)2QN�=1E(z� ; wk) # :Utilizing the relation between the prime form E and the speial funtion F (see appendixB) we onlude* NY�=1 e��(z�) sYk=1�(wk)+* NY�=1 e�����(�z�) sYk=1[���( �wk)℄+ == juj2s sYk=1"QN+2(g�1)i=1 jE(yi; wk)j2j�(wk)j4QN�=1 jE(z� ; wk)j2 # = (4.20)= juj2s sYk=1 eSg�2b�sol(wk; �wk) "QN+2(g�1)i=1 F (yi; wk)H(wk)2QN�=1 F (z� ; wk) # :Equations (4.18), (4.19) and (4.20) provide all the information we need in order to deter-mine the residue (4.16) of the WZNW orrelator at P�(j� + 1) = 1� g � s.We would like to rewrite the orrelation funtions in H+3 model in terms of Liouvilletheory. The bakground harge of Liouville theory is assumed to be Q = b+ 1=b. We usethe following vertex operators and Liouville sreening harge,V�(z; �z) = e2�'(z;�z) ; S = Z d2wS(w) = Z d2we2b'(w; �w) (4.21)with � = b(j +1) + 1=(2b). Aording to the general result (4.14), it should be possible toreprodue the residues omputed in the previous subsetion from the expressionj�gN j2 * NY�=1 e2��'(z� ;�z�) N+2(g�1)Yi=1 e� 1b'(yi;�yi) sYk=1 e2b'(wk ; �wk)+ (4.22)where �gN is given in eq. (4.10) and the orrelation funtion is evaluated in a linear dilatonbakground with bakground harge Q = Q' = b+1=b. Using the same formulas as in the{ 23 {



previous subsetion, we �nd* NY�=1 e2��'(z� ;�z�) N+2(g�1)Yi=1 e� 1b'(yi;�yi) sYk=1 e2b'(wk ; �wk)+ == NY�<�F (z� ; z�)�2(b(j�+1)+ 12b )(b(j�+1)+ 12b ) NY�=1N+2(g�1)Yi=1 F (z� ; yi)j�+1+ 12b2 N+2(g�1)Yi<j F (yi; yj)� 12b2�� NY�=1 sYk=1F (z� ; wk)�2b2(j�+1)�1 N+2(g�1)Yi=1 sYk=1F (yi; wk) sYk<lF (wk; wl)�2b2�� NY�=1H(z�)2(b2+1)(j�+1)+1+ 1b2 N+2(g�1)Yi=1 H(yi)�1� 1b2 sYk=1H(wk)2b2+2 :Our aim now is to replae the fators F (z� ; yi)j�+1 whih do neither appear in �gN nor inthe residues of the WZNW model. Using the relation (4.7) with � = 1, we �ndNY�=1N+2(g�1)Yk=1 E(z� ; yk)j�+1�(z�)2j�+2 = us+g�1 NY�=1�j�+1 NY�<�E(z�; z�)j�+j�+2 ; (4.23)or, equivalently,NY�=1N+2(g�1)Yk=1 F (z� ; yk)j�+1H(z�)2j�+2 == (juj2eSg )s+g�1 NY�=1 j�j2j�+2e2b(j�+2)�sol(z� ;�z�) NY�<�F (z�; z�)j�+j�+2 : (4.24)In deriving this equation we have made use of the equalityP�(j�+1) = 1�g�s. Inserting(4.24) into the linear dilaton orrelator we rewrite the residues of orrelation funtions inLiouville theory in an appropriate form. One these are multiplied with our funtion�gN these reprodue the results of the previous subsetion and thereby on�rm niely theoutome of our general path integral derivation.5. Conlusions and OutlookIn this work we proposed a new and elegant path integral derivation for the orrespondenebetween loal orrelation funtions in H+3 WZNW model and Liouville �eld theory. Ourresults reprodue the �ndings of [7℄ for orrelators on the sphere and generalize themto surfaes of arbitrary genus g. Correlation funtions of the H+3 WZNW model aredetermined from Liouville �eld theory through eq. (4.14). Physial orrelators are obtainedin the limit �k ! 0 of vanishing twist parameters and after integration over $�. Aorrespondene between residues of orrelation funtions is enoded in eq. (4.14) and itwas veri�ed expliitly through free �eld alulations. For the torus, we have also explained{ 24 {



how to map the BPZ equations for Liouville theory to the KZB equations in WZNWmodels. The extension of this analysis to higher genus was not addressed. We believe thatan expliit omparison along the lines of setion 3.2 is possible, though rather umbersome.It seems appropriate to add a few omments on our 2g � 1 moduli �k;$� and toexplain their relation with the twist parameters introdued by Bernard [23℄. We reallthat Bernard's onstrutions involve a 3g-dimensional spae of twists. It parametrizes aset of g group elements whih determine boundary onditions of urrents along the �-yles. Our oordinates �k orrespond to very speial twists with group elements of theform gk � exp(�2�i�kJ0) where J0 is the Cartan generator. Consequently, insertions ofthe urrent J0(w) into orrelators of the WZNW model may be onverted into the ationof some di�erential operator. The latter has exatly the same form as in Bernard's work(see eqs. (4.16) and (4.17) of [23℄). For insertions of the omponent J�(w), the story is abit di�erent. In this ase, we may use the relation J�(w) = �(w) along with our equation(4.3) to derive* J�(w) NY�=1 Vj� (�� jz�)+H(�;$;�) =  NX�=1 ����(w; z�) + g�1X�=1$�!��(w)! 
H(�;$;�) (5.1)where 
H(�;$;�) = * NY�=1 Vj� (�� jz�)+H(�;$;�) : (5.2)On the right hand side, the omplex numbers $� that multiply the holomorphi one-formsappear in plae of di�erentiation with respet to twist parameters in Bernard's work. Inthis sense, our $� are dual twist parameters. We are not onvined that insertions ofthe third urrent J+(w) an similarly be replaed by the ation of some operator. Let uspoint out, however, that this is not ruial for a suessful math between the BPZ andKZB-type di�erential equations. In fat, only ertain ombinations of the KZB equationsappear in this ontext. The relevant ones emerge from inserting the Sugawara tensor atthe points yi at whih J� vanishes. Hene, the term J+J� drops out.As explained e.g. in [25℄ (see also referenes therein), one of the rami�ations of thegeometri Langlands program involves onformal bloks of WZNW models at the so-alledritial level and their relation with ertain lassial W algebras. In the ase of the H+3model, the ritial level is k = 2. Hene, we reah this point in the limit b !1 in whihthe assoiated Liouville theory beomes lassial. For genus g = 0 orrelation funtions inthe H+3 -Liouville orrespondene, the limit of in�nite parameter b was analyzed in detail in[7℄. It might be rewarding to arry out a similar investigation for surfaes of higher genusg 6= 0. In this ase, the Gaudin Hamiltonians that emerge from the ritial WZNW modelon the sphere get replaed by Hamiltonians of Hithin's integrable system.The relation (4.14) between orrelation funtions in the H+3 model and Liouville �eldtheory may be regarded as an `o�-ritial' (and non-hiral) version of the geometri Lang-lands program. Let us reall that onformal bloks of the WZNW model diagonalize the{ 25 {



ation of the urrent algebra on the fusion produt of its representation spaes in the samesense in whih Clebsh-Gordan maps (blok-) diagonalize the ation of a Lie algebra ontensor produts. When we are dealing with Lie algebras, the geometri Langlands programahieves more: it provides a distinguished basis in the tensor produt onsisting of eigen-vetors of a lassial W-algebra. One we go o�-ritial, the lassial W-algebra beomesquantum. In the ase onsidered here, the W-algebra is the Virasoro algebra. As usual,the ation of the W-algebra is blok diagonalized by its onformal bloks. Putting all thistogether, an o�-ritial version of the geometri Langlands program should single out adistinguished basis for WZNW onformal bloks whih may be expressed diretly throughonformal bloks of the W-algebra. Our main result eq. (4.14) laims that for the H+3model suh a basis is given by the WZNW orrelators on the left hand side. Let us stressthat the proper basis is found for (twisted) orrelators on any losed Riemann surfae. Itseems likely that a similar o�-ritial version of the geometri Langlands orrespondeneexists for other Lie algebras (see also omments below).There are several extensions of our results that seem worthwhile being analyzed. Tobegin with, it would be interesting to study orrelation funtions on surfaes with bound-aries. For the WZNW model, maximally symmetri boundary onditions were found in[26℄. Using new boundary theories for � systems (see [27℄) along with ideas from a forth-oming paper on branes in the GL(1j1) model [28℄, a �rst order formulation for orrelatorswith insertions of both bulk and boundary operators an be developed. An evaluation alongthe lines we presented above should then relate these to orrelation funtions in boundaryLiouville theory [29, 30, 31℄. For some dis amplitudes, suh relations between orrelatorson a surfae with boundary have been proposed in [32℄.More importantly, it is very tempting to address generalizations to WZNW modelsof rank r > 1. First order formulations for models with higher rank are ertainly known(see e.g. [33℄ and referenes therein) and it is likely that these may be employed to redueorrelators of WZNW primaries to orrelation funtions in onformal Toda theories. Theevaluation of the orresponding WZNW path integral, however, requires signi�ant newideas, mainly beause the nilpotent part of higher rank algebras is no longer abelian. Thisis diretly linked to a non-linear dependene of the Ka-Wakimoto like ation funtionalson some of the �elds . We plan to return to these issues in the near future.AknowledgmentsWe are grateful to J�org Teshner and Sylvain Ribault for many useful disussions and om-ments. This work of YH was supported by an JSPS Postdotoral Fellowship for ResearhAbroad under ontrat number H18-143.A. Di�erential equations for genus one aseIn this appendix we would like to demonstrate that the di�erential operators (3.22) and(3.30) are related through equation (3.33). As we desribed in the main text, it is importantto �rst replae the derivatives �H� = �=�z� whih are evaluated for �xed �� in terms of{ 26 {



�L� . This is ahieved with the help of formula (3.34). In order to verify the latter, we mustshow that Æi�� = 0 ; Æi� = 0 : (A.1)The seond equation an be shown trivially with eq. (3.9). The �rst property of Æi may beestablished as follows. With eq. (3.9) we �nd��1� Æi�� = �(yi; z�)(Xj �(z� ; yj)�X�6=� �(z� ; z�)) +X�6=� �(yi; z�)�(z� ; z�)� (A.2)�X� �(yi; z�)�(z� ; yi) +Xj 6=i �(yi; yj) (�(z� ; yi)� �(z� ; yj)) :The right hand side is a double periodi funtion of yi, whih ould beome singular atyi � yj ; z� . We an analyze the singular behavior of ��1� Æi�� with the help of the followingexpansions, �(z; z0) = 1z � z0 � 2(z � z0)�1 +O((z � z0)2) ;�z�(z; z0) = � 1(z � z0)2 � 2�1 +O(z � z0) ; (A.3)�(z; z0)2 = 1(z � z0)2 � 4�1 +O(z � z0)at z � z0. In fat, using the above expansions for � one an show that ��1� Æi�� hasno singularities when two of the insertion points yi and z� approah eah other. Sinethe whole expression is double periodi and free of singularities, the funtion should beonstant, independent of yi; z� . Therefore, it suÆes to alulate it at one single point. Letus set yi = z� , then we �nd��1� Æi�� = X�6=� �00(z� � z�)�(z� � z�) �Xj 6=i �00(z� � yj)�(z� � yj) : (A.4)Here, we have used the following expansion around t � z� ,�0(t� z�)�(t� z�) = �0(z� � z�)�(z� � z�) + "�00(z� � z�)�(z� � z�) ���0(z� � z�)�(z� � z�) �2# (t� z�) +O((t� z�)2) :Furthermore, we an set eah of yj (j 6= i) to be one of z� (� 6= �) beause the abovequantity does not depend on yj either. From the above equation we an see that theequation ��1� Æi�� = 0 is indeed satis�ed.There appears another derivative in the di�erential operator DHi for torus orrelationfuntions, namely the derivative �� with respet to the modulus. We would like to hekthat it aquires no orretions when we swith from the variables �� to yi; u, or, in otherwords, ��� �� = 0 : (A.5)
{ 27 {



In order to see this, we ompute4�i��1� ��� �� = Xi �00(z� � yi)�(z� � yi) + 6�1 �X�6=� �00(z� � z�)�(z� � z�) : (A.6)Here we should notie that4�i�� �(z)�(z) = �00(z)�(z) = �z�(z; 0) + �(z; 0)2 ; 4�i�� �(z)�(z) = �6�1 +O(z) : (A.7)These formulas show that ��1� ���� has no singularities. As before we may evaluate thederivative at e.g. yi = zi and then �nd indeed ���1���� = 0.In order to show (3.33), we have to understand the properties of the funtion �0N thatwe de�ned in eq. (3.32),�0N = �0(0) N2b2 NY�<� �(z� � z�) 12b2 NYi<j �(yi � yj) 12b2 NY�;i=1 �(z� � yi)� 12b2 : (A.8)Conjugation of the various derivatives by the fator �0N gives�0N�1 ��z��0N = ��z� + 12b2 X�6=� �(z� ; z�)� 12b2 Xi �(z� ; yi) ;�0N�1 ��yi�0N = ��yi + 12b2 Xj 6=i �(yi; yj)� 12b2 X� �(yi; z�) ;�0N�1 ����0N = ��� + T ;T = N2b2 ���0(0)�0(0) + 12b2 X�<� ���(z� � z�)�(z� � z�) + 12b2 Xi<j ���(yi � yj)�(yi � yj) � 12b2 X�;i ���(z� � yi)�(z� � yi) :Moreover, we note that�0N�1b2 �2�y2i �0N = b2 �2�y2i +0�Xj 6=i �(yi; yj)�X� �(yi; z�)1A ��yi++ 12 0�Xj 6=i �i�(yi; yj)�X� �i�(yi; z�)1A+ 14b2 0�Xj 6=i �(yi; yj)�X� �(yi; z�)1A2 ; (A.9)
{ 28 {



and �0N�1Æi�0N = = X� �(yi; z�)0� ��z� + 12b2 X�6=� �(z� ; z�)� 12b2 Xj �(z� ; yj)1A++X� �(yi; z�)0� ��yi + 12b2 Xj 6=i �(yi; yj)� 12b2 X� �(yi; z�)1A��Xj 6=i �(yi; yj)0� ��yi + 12b2 Xk 6=i �(yi; yk)� 12b2 X� �(yi; z�)1A++Xj 6=i �(yi; yj)0� ��yj + 12b2 Xk 6=j �(yj ; yk)� 12b2 X� �(yj; z�)1A :This long list of equations puts us into the position to �nally prove eq. (3.33),(�0N�)�1DHi (�0N�)�DLi =� 14b2 (Xj 6=i �(yi; yj)�X� �(yi; z�))2+ (A.10)+ 12b2 X� �(yi; z�)(X�6=� �(z� ; z�)�Xj �(z� ; yj))++ 12b2 Xj 6=i �(yi; yj)(Xk 6=j �(yj; yk)�X� �(yj; z�))++ 32b2 �1 � 34b2 Xj 6=i �i�(yi; yj) + 14b2 X� �i�(yi; z�) + T :There ould be double or single poles at yi = z� ; yj , but we an hek that suh termsare absent. Moreover, even if we regard the expression (A.10) as a funtion of yj (j 6= i),there are no singular terms. Therefore, the problem is whether the onstant independentof yi; yj vanishes or not. We set yj = zj for j 6= i so that (A.10) beomes(�0N�)�1DHi (�0N�)�DLi == 14b2 ��(yi; zi)2 + �i�(yi; zi)�+ 32b2 �1 � 12b2  6�1 + �00(yi � zi)�(yi � zi) ! ; (A.11)where the last term of the right hand side omes from T and in the derivation we have alsoused 2�i�(�)�1 ��� �(�) = ��1 :Taking the limit of yi ! zi, we indeed obtain the desired equation (3.33).{ 29 {



B. Theta funtions on a general Riemann surfaeIn this appendix we summarize some basi results onerning a free boson on a Riemannsurfae of genus g. Basially, our exposition follows the disussions in [24℄. See also[34, 35, 36℄.B.1 The prime formWe onsider orrelation funtions on a ompat Riemann surfae � of genus g with aomplex struture. Let us hoose a anonial basis of homology yles �k; �k (k = 1; � � � ; g)satisfying I�k !l = Ækl ; I�k !l = �kl ; (B.1)where !l(l = 1; � � � ; g) denote the holomorphi one-forms on �. The omplex symmetrimatrix �kl (Im�kl > 0) is known as the period matrix. We now �x an arbitrary point p0 in� and onstrut a map from the universal over ~� of the surfae � to C g ,zk(p) = Z pp0 !k (B.2)with p; p0 on ~�. This embedding of ~� into C g is known as the Abel map. Funtions on theimage of the Abel map desend to the surfae � if they are periodi under all shifts of theform z0k = zk+mk+ �klnl with integer oeÆients mk; nl. In order to onstrut a few basiobjets on the surfae � and its over ~�, we reall the following de�nition of Riemann'stheta funtion,�Æ(zj�) = Xn2Zg exp i�[(n+ Æ1)k�kl(n+ Æ1)l + 2(n+ Æ1)k(z + Æ2)k℄ ; (B.3)where Æk = (Æ1k; Æ2k) with Æ1k; Æ2k = 0; 1=2 denotes the so-alled spin struture along the�k and �k yles. Under shifts along the 2g fundamental yles, �Æ behaves as�Æ(z + �n+mj�) = exp[�i�(nk�klnl + 2nkzk)℄ exp[2�i(Æk1mk � Æk2nk)℄�Æ(zj�) : (B.4)The Riemann vanishing theorem asserts that �(z; �) vanishes in a point z on � if and onlyif there exists g � 1 points pi on � suh that z an be written in the formz = �� g�1Xk=1 pk ; (B.5)where � is a �xed divisor on the surfae � that is known as Riemann lass. The righthand side of this equation ould be onsidered as an element of C g through appliation ofthe Abel map. Let us now introdue the following holomorphi 1/2-di�erential hÆ(hÆ(z))2 = Xk �k�Æ(0j�)!k(z) : (B.6)
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hÆ is the essential building blok for the important prime form EE(z; w) = �Æ(R zw !j�)hÆ(z)hÆ(w) (B.7)whih is de�ned for any odd spin struture Æ. The prime form E has weight (�1=2; 0) �(�1=2; 0) and near its unique zero at z = w one �nds E(z; w) � z � w. Moreover, E isperiodi under shifts zl along the �k-yle as z0l = zl + nl with nl = Æl;k. On the otherhand, a non-trivial phase appears if we shift zl along the �k-yle as z0l = zl + �lk,E(z + �k; w) = � exp��i��kk � 2� Z wz !k�E(z; w) : (B.8)On the left hand side of this equation, the objets �k denotes the kth olumn ��;k of theperiod matrix �lk.B.2 Free linear dilaton theoryLet us employ the prime form and some lose relatives thereof to spell out the N -pointfuntions of a free bosoni �eld with bakground harge Q. For the utuation around thezero mode, the orrelation funtions an be given as [24℄* NYi=1 e2�i'(zi)+ = Yi<j F (zi; zj)�2�i�j Yi H(zi)2Q�i ; (B.9)where we assume that Xi �i = Q(1� g) : (B.10)We have de�ned F and H asF (z; w) = exp��2�ImZ zw !k (Im�)�1kl ImZ zw !l� jE(z; w)j2 ; (B.11)and H(z) = j�(z)j exp� 116� Z d2wpgR(w) ln(F (z; w))� : (B.12)Integration over the g holomorphi forms !k furnishes an element of C g that an be mul-tiplied with (Im�)�1. As in [24℄ we an rewrite the funtion H in a formH(z) = exp 2�g � 1ImZ �(g�1)z !k (Im�)�1kl Im Z �(g�1)z !l! j�(z)j2 (B.13)whih involves the Riemann lass � that was introdued in the previous subsetion. Letnow pk denote g arbitrary points on �. Then the funtion �(z) satis�es�(z)�(w) = �0(z �P pk +�)�0(w �P pk +�)Yk E(w; pk)E(z; pk) : (B.14)
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