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1. Introdu
tionTheH+3 Wess-Zumino-Novikov-Witten (WZNW) model has re
eived 
onsiderable attentionas an interesting non-rational 
onformal �eld theory [1, 2℄ and as the Eu
lidean version ofAdS3 [3℄. The 3-dimensional target spa
e of the theory may be parametrized by 
oordinates
 and �
 of its 2-dimensional boundary along with some radial 
oordinate �. As for anyAnti-de Sitter (AdS) geometry, the latter is parti
ularly interesting. Physi
ally, it shouldbe regarded as a very 
lose relative of the Liouville dire
tion in 2-dimensional string theory.It was long observed [1℄ that the 3-point fun
tions of the H+3 WZNW model 
oin
idewith those of Liouville �eld theory [4, 5, 6℄ up to some simple kinemati
al fa
tors thatare determined by the SL(2,C ) symmetry of the H+3 ba
kground. In parti
ular, all thehighly nontrivial (non-perturbative) 
urvature dependen
e of the H+3 3-point 
ouplings isinherited from the stringy 
orre
tions of Liouville theory. A very remarkable generalizationof this fa
t was dis
overed in [7℄: Ribault and Tes
hner determined genus zero 
orrelators{ 1 {



for any number N of WZNW primaries in terms of 
ertain 2N � 2 point fun
tions in Li-ouville theory. Their proof relies on a relation [8℄ between di�erential equations of boththeories, namely the Knizhnik-Zamolod
hikov (KZ) equations for WZNW models and theBelavin-Polyakov-Zamolod
hikov (BPZ) equations for Liouville 
orrelators, along with de-s
ent relations provided by the expli
it knowledge of the 3-point fun
tions. The relationbetween Liouville theory and the H+3 model was further explored in [9, 10, 11℄.The aim of this paper is twofold. To begin with, we shall re-derive the Ribault-Tes
hner 
orresponden
e for genus zero 
orrelation fun
tions using a rather elegant pathintegral 
omputation instead of heavy algebrai
 manipulations. Our derivation providesa 
ompletely new view on the map between WZNW and Liouville primaries and on thene
essity to introdu
e N � 2 further degenerate �elds in the Liouville 
orrelation fun
tion.The simpli
ity of our derivation opens the way to various generalizations. Among themis the extension of the 
orresponden
e to 
orrelators on higher genus surfa
es. In fa
t,using essentially the same ideas as for the tree-level 
omputation, we shall derive a pre
iseexpression for N -point 
orrelators of WZNW primaries on any 
losed Riemann surfa
e interms of Liouville �eld theory. On the Liouville side, the 
onstru
tion involves 
orrelationfun
tions with N + 2g � 2 additional insertions of degenerate �elds. Further extensions,e.g. to the 
ase with world-sheets with boundaries or target spa
e groups of rank r > 1 willbe brie
y dis
ussed at the end of this work.Let us now des
ribe the 
ontents of ea
h se
tion and our main results in a bit moredetail. As we have mentioned, we shall start our analysis by giving a new derivation of theRibault-Tes
hner 
orresponden
e on the sphere. For the 
onvenien
e of the reader, we alsoin
lude a few 
omments on the relation between di�erential equations. Se
tion 3 
ontainsthe generalization to the torus. For genus g = 1, all the spe
ial fun
tions involved in theformulation of the 
orresponden
e 
an be easily expressed in terms of Ja
obi's � fun
tion.This makes our formulas parti
ularly easy to deal with. In parti
ular, we shall be able todemonstrate expli
itly how our 
orresponden
e intertwines between the relevant di�erentialequations. Correlation fun
tions of Liouville theory on the torus satisfy an extension ofthe BPZ di�erential equation [12℄ that involves a derivative with respe
t to the modularparameter � of the torus in addition to derivatives with respe
t to the insertion points of�elds. On the WZNW side, the story is a bit more 
ompli
ated. In fa
t, the usual WZNW
orrelators do not obey KZ-type equations. The problem arises from the zero modes of
urrents whi
h 
annot be written as di�erential operators a
ting on 
orrelation fun
tions.This issue was resolved by Bernard in [13℄, who had the idea to introdu
e an additionaldependen
e on the 
hoi
e of some group element. The latter parametrizes possible twistedboundary 
onditions for 
urrents along the �-
y
le of the torus. Not all these dim Gparameters are a
tually needed for the formulation of KZ-type equations on the torus.The minimal number of required extra parameters is given by the rank of G rather thanits dimension. In our 
ase this means that one extra twist parameter � is suÆ
ient. On
esu
h an extension of WZNW 
orrelators is taken into a

ount, they satisfy the Knizhnik-Zamolod
hikov-Bernard (KZB) di�erential equations. By our 
orresponden
e, these are
orre
tly related to the genus g = 1 BPZ equations.{ 2 {



Se
tion 4 
ontains the main new formula of this work, namely a 
onstru
tion of N -point WZNW 
orrelators on a 
losed Riemann surfa
e of genus g from 
orrelation fun
tionsin Liouville �eld theory, see eq. (4.14). As we stated before, the latter involves N + 2g � 2insertions of Liouville degenerate �elds in addition to the N primary �elds. It is instru
tiveto 
ompare the parameter spa
es on both sides of this 
orresponden
e. Obviously, the 
or-relation fun
tions of the WZNW model must be extended by introdu
ing extra parametersgeneralizing the role of the modulus � we dis
ussed at length in the previous paragraph.It turns out that on a surfa
e of genus g � 1 we need 2g � 1 new 
omplex 
oordinates.For �xed surfa
e moduli � and insertion points z� ; � = 1; : : : ; N , an N -point fun
tion ofWZNW primaries therefore depends on real 3N target spa
e momenta (j� ; �� ; ���)�=1;:::;Nand 2g � 1 
omplex moduli. These add up to 3N + 4g � 2 real moduli. On the Liouvilleside, we 
ount N real target spa
e momenta �� in addition to the (
omplex) position ofN + 2g � 2 Liouville degenerate �elds and an overall 
omplex pre-fa
tor u. The totalnumber of real parameters is therefore 3N + 4g � 2, just as in the WZNW theory.2. Derivation of the 
orresponden
e - genus 0Our �rst task is to explain how the 
orresponden
e emerges from a path integral `de�nition'of the WZNWmodel. Indeed, we will be able to re
over the formula of Ribault and Tes
hnerthrough some formal path integral manipulations. In the se
ond subse
tion we brie
yreview how the di�erential equations on both sides of the 
orresponden
e are mapped ontoea
h other. At genus 0 this is not new, but it will help to understand the 
orrespondinganalysis at higher genus later on. Finally, we shall 
omment on the hidden problems of theformal path integral approa
h and the pre
ise interpretation of our results.2.1 Path integral derivation of the 
orresponden
eLet us begin with a little bit of ba
kground on the H+3 WZNW model. In the most 
ommonpresentation, the a
tion involves the three �elds 
; �
 and � 
orresponding to the 
oordinatesthat parametrize the 2D boundary of H+3 and the radial dire
tion, respe
tively. We will notwork with this version but pass to a �rst order formulation whi
h in
ludes two additional�elds � and �� of 
onformal weight (h� ; 0) = (1; 0) and (0; h��) = (0; 1). Throughout thiswork we shall work in 
onformal gauge, where the world-sheet metri
 and 
urvature aredetermined by some fun
tion � throughds2 = j�(z)j2 dzd�z ; pgR = �4� �� ln j�j2 :In this parti
ular gauge, the a
tion of the H+3 WZNW model takes the following form (seee.g. [14, 15℄)S[�; 
; �℄ = 12� Z d2w ������� � ��
 � ����
 + Q�4 pgR�� b2� ��e2b�� : (2.1)Here, the parameter b is related to the level of the WZNW model through b�2 = k� 2 andthe ba
kground 
harge Q� is given by Q� = b. Let us note that the usual a
tion of the{ 3 {



H+3 model emerges after integration over � and ��. The total 
entral 
harge of the modelis 
omputed from the level k using
(H+3 ) = 3kk � 2 = 3 + 6b2 = 2 + (1 + 6b2) :In the last step we split the 
entral 
harge into the 
ontribution 
(�
) = 2 from the �
system and the remainder 
(�) = 1 + 6b2 whi
h originates from the bosoni
 �eld � withba
kground 
harge Q� = b.The se
ond ingredients we shall need before we 
an study 
orrelators of the H+3 modelare the vertex operators of the theory. In the so-
alled �-basis these readVj(�jz) � j�(z)j2�Hj j�j2j+2 e�
(z)����
(�z)e2b(j+1)�(z;�z) : (2.2)In 
onformal gauge, the fa
tor involving �(z) must be in
luded in order for V to transformas a primary of weight zero under 
onformal transformations. The quantity �Hj in theexponent is given by �Hj = �b2j(j + 1) :One may 
onsider � and �� as Eu
lidean light 
one momenta. Similarly, the parameter jis related to the momentum in radial � dire
tion. In the � basis, the operator produ
ts of
urrents with primary �elds are given byJa(w) Vj(�jz) = (w � z)�1DaVj(�jz) for a = �; 0 (2.3)where the generators Da of global target spa
e symmetries take the formD� = � ; D0 = ���� ; D+ = ��2� � j(j + 1)� (2.4)and similarly for the remaining three generators �Da. The � basis is the most 
onvenientone for what we are about to dis
uss.Our aim is to 
ompute the N -point fun
tion of primary �elds in the H+3 model, i.e.* NY�=1 Vj� (�� jz�) +H = Z D�D
D� e�S[�;
;�℄ NY�=1 Vj� (�� jz�) :Our �rst step is to integrate out the �elds 
 and �
. This is rather easy be
ause theyappear only linearly in both the a
tion and the exponents of the vertex operators. Hen
e,the integration leads to a simple Æ fun
tion 
onstraint on the 
oeÆ
ients of 
 and �
, i.e.���(w) = 2� NX�=1��Æ2(w � z�) ; � ��( �w) = �2� NX�=1 ���Æ2( �w � z�) : (2.5)The distribution Æ2 on the right hand side is normalized su
h that R d2zÆ2(z)f(z; �z) = f(0).Let us stress that a meromorphi
 di�erential � with the property (2.5) exists if and onlyif the sum P�� vanishes. On
e this 
ondition is met, the integration of ��� and � �� with{ 4 {



respe
t to the world-sheet 
oordinate w is immediately performed using the simple auxiliaryformulas ��(1=z) = �(1=�z) = 2�Æ2(z) :The result is �(w) = NX�=1 ��w � z� : (2.6)A similar equation holds for ���. The 
ru
ial idea now is to re-parametrize � using simplefa
ts about meromorphi
 one-di�erentials on the sphere. To begin with, we re
all that forany one-di�erential, the number of poles ex
eeds the number of zeroes by two. Hen
e �must have N�2 zeroes whose lo
ations on the sphere we denote by w = yi. Furthermore, adi�erential is uniquely 
hara
terized by the position of its zeroes and poles up to an overallfa
tor u. Consequently, we 
an rewrite � in the form�(w) = uQN�2i=1 (w � yi)QN�=1(w � z�) =: uB0(yi; z� ;w) : (2.7)Thereby, we have now repla
ed the N parameters �� subje
t to 
onstraint P� �� = 0through N � 2 
oordinates yi and a global fa
tor u. We 
an re
over the residues �� of �from the new variables yi and u through�� = uQN�2j=1 (z� � yj)QN�6=�(z� � z�) : (2.8)The new variables may be used to rewrite the Æ fun
tion resulting from the integrationover 
 and �
,Æ2(���(w) � 2� NX�=1��Æ2(w � z�)) = Æ2( NX�=1��) Æ2 (� � uB0(yi; z�; w)) : (2.9)The Ja
obian for the transformation from ���; � �� to �; �� is trivial on the sphere. On
e eq.(2.9) has been inserted into our path integral, we perform the integral over the �elds � and�� to obtain* NY�=1 Vj� (�� jz�) +H = juj2 Æ2( NX�=1��)Z D�e� 12� R d2w ������+Q�4 pgR�+b2jB0j2 e2b�� �� NY�=1 j�(z�)j2�H� juj�2(j�+1)j�� j2(j�+1)e2b(j�+1)�(z�) :In writing this formula we have also shifted the zero mode of the bosoni
 �eld � by � 7!� � (1=b) ln juj. This removes the u dependen
e from the intera
tion term but introdu
esan additional fa
tor juj2 through the 
oupling of � to the world-sheet 
urvature.In order to prepare for the se
ond step of our 
al
ulation we observe that the expo-nential �eld exp(2b�) always 
omes multiplied with jB0j2. For the 
orresponding term in{ 5 {



the a
tion, this has been spelled out expli
itly. In the 
ase of the vertex operators, theprefa
tor is hidden in j�� j2 on
e we insert eq. (2.8). This suggests to introdu
e a newbosoni
 �eld ' through'(w; �w) := �(w; �w) + 12b  Xi ln jw � yij2 �X� ln jw � z� j2 � ln j�(w)j2! (2.10)where the term in bra
kets is ln jB0j2. A
ting with � �� gives� ��'(w; �w) = � ���(w; �w) + �b  Xi Æ2(w � yi)�X� Æ2(w � z�)!� 12b� �� ln j�(w)j2 :Before we insert our formulas for ' we have to 
omment on one small subtlety. In fa
t, atvarious pla
es we will have to evaluate the quantity ln jw � z� j at the point w = z� . Thisleads to well-known singularities whi
h need to be regularized. Following Polyakov [16℄, weshall use the pres
ription � limw!z ln jw � zj2��n := � ln j�(z)j2 : (2.11)The right hand side is �nite and has the same behavior under 
onformal transformationsas the divergent left hand side. Using our 
hange of variables from � to ' along with therule (2.11) it is easy to see thatj�� j2(j�+1)e2b(j�+1)�(z�) = juj2(j�+1) j�(z�)j�2(j�+1) e2b(j�+1)'(z�) : (2.12)After these 
omments we are prepared to perform our substitution from � to '. We donot want to spell out all the details, but let us observe that� 12� Z d2w ����� = � 12� Z d2w ���'�' + 14bpgR'�� 1b  N�2Xi=1 '(yi)� NX�=1'(z�)!+ : : :where the : : : stand for terms that do not 
ontain the �eld '. There are a few things we
an read o� from this result. To begin with, the ba
kground 
harge Q� of the bosoni
�eld � gets shifted by an amount �Q = 1=b to the new ba
kground 
harge Q' = b+ 1=b.Furthermore, the exponents of the vertex operator insertions at z� are all shifted by '(z�)=b.The pre
ise relation ise2b(j�+1)'(z�) e 1b'(z�) = j�(z�)j2(j�+1) e2b(j�+1+ 12b2 )'(z�) :Note that the additional power of � is required to mat
h the behavior of both sides un-der 
onformal transformations. More strikingly, new vertex operators exp(�'(w)=b) areinserted at the N � 2 points yi. With a little bit of additional 
are we 
an also work outthe additional '-independent fa
tors. The result is* NY�=1 Vj� (�� jz�) +H = j�N (u; yi; z�)j2 Æ2( NX�=1 ��)Z D'e� 12� R d2w ���'�'+Q'4 pgR'+b2j�j2e2b'�� NY�=1 j�(z�)j2�L� e2(b(j�+1)+ 12b )'(z�) N�2Yi=1 j�(yi)j2�L�1=2b e� 1b'(yi)
{ 6 {



where, following [7℄, we 
olle
ted various fa
tors in the fun
tion �N de�ned by�N (u; yi; z�) = u NY�<�(z� � z�) 12b2 N�2Yi<j (yi � yj) 12b2 NY�=1N�2Yi=1 (z� � yi)� 12b2 ; (2.13)and we introdu
ed the quantities�L� = �(Q' � �) for � = � 12b or � = �� = b(j� + 1) + 12b : (2.14)Ex
ept for the �rst two fa
tors, the result may now be re-expressed in terms of 
orrelationfun
tions of Liouville theory,* NY�=1 Vj� (�� jz�)+H = Æ2( NX�=1��)j�N (u; yi; z�)j2 * NY�=1V�� (z�) N�2Yi=1 V�1=2b(yi)+L : (2.15)The Liouville 
orrelator on the right hand side is evaluated with a bulk 
osmologi
al 
on-stant �B = 4b2 and the primaries are de�ned byV�(z) = j�(z)j2�L� e2�' : (2.16)Up to an overall 
onstant, our result 
oin
ides with the formula found by Ribault andTes
hner in [7℄.2.2 From KZ to BPZ di�erential equationsThe 
orrelation fun
tions on both sides of the 
orresponden
e are known to satisfy 
ertaindi�erential equations. Throughout this subse
tion we shall set � = 1. Liouville 
orrelatorsare known to obey the Belavin-Polyakov-Zamolod
hikov (BPZ) se
ond order di�erentialequations that 
ome with the N � 2 insertions of the degenerate �eld V�1=2b. In fa
t, this�eld is well known to possess a singular ve
tor on the se
ond level, or, equivalently, tosatisfy the di�erential equation�2yV�1=2b(y) + b�2 : T (y)V�1=2b(y) : = 0 :Su
h an equation holds for ea
h of the N � 2 degenerate �elds at the points yi. Using theWard identities for the Virasoro �eld T (yi), we 
an 
onvert these singular ve
tor equationsinto N � 2 se
ond order di�erential equations for the Liouville 
orrelators 
L ,DLi 
L(z� ; yi) = 0 where 
L(z� ; yi) = * NY�=1 V�� (z�) N�2Yi=1 V�1=2b(yi)+L (2.17)and the di�erential operators DLi were �rst found by Belavin, Polyakov and Zamolod
hikovto be of the formDLi = b2 �2�y2i + NX�=1� �L�(yi � z�)2 + 1yi � z� ���+ NXj 6=i  �L�1=2b(yi � yj)2 + 1yi � yj �j! : (2.18)
{ 7 {



Here, �i = �=�yi and �� = �=�z� and the 
onformal dimensions are given by �L� =��(Q� ��), as before.Let us now turn to the WZNW model. Its 
orrelators are well known to satisfy theKnizhnik-Zamolod
hikov (KZ) di�erential equations. These emerge from insertions of theSugawara singular ve
torT (w) + b2� : J0(w)J0(w) : �12( : J�(w)J+(w) : + : J+(w)J�(w) : ) � = 0into WZNW 
orrelation fun
tions. Sin
e we 
an insert this at any point on the sphere,we 
ertainly get an in�nite number of equations. But these are not all independent. Infa
t, evaluation of the residues of the �rst order poles at w = z� gives N independent�rst order equations. Hen
e, there are two more equations on the WZNW side than onthe Liouville side. Closer inspe
tion shows that the N � 2 BPZ di�erential equations
orrespond inserting the Sugawara tensor at the N � 2 points w = yi on the world-sheet ofthe WZNW model. At these spe
ial points, the di�erential equations from the Sugawarasingular ve
tor simplify 
onsiderably. To see this we need the operator produ
t expansionsbetween the 
urrents J� and J0 and the vertex operators in the � basis (2.3). From the
urrent Ward identities and the very de�nition of the points yi we 
on
lude thatJ�(yi) = NX�=1 ��yi � z� = 0 :By similar reasoning, the 
urrent J0(yi) is easily seen to simplify as followsJ0(yi) = � NX�=1 ��yi � z� ���� = � ��yiwhere the se
ond equality follows from the expli
it 
han
e of variables relating �� with yiand u. On
e we insert all these results into the Sugawara singular ve
tor, we obtain thefollowing N � 2 di�erential equationsDHi 
H(z� ; ��) = 0 where 
H(z� ; ��) = * NY�=1 Vj� (�� jz�) +H : (2.19)Using the relation (2.8), the di�erential operators DHi for H+3 
an be shown to a
quire thefollowing form DHi = b2 ��y2i + NX�=1� 1yi � z� �� + �H�(yi � z�)2� ; (2.20)where �H� = �b2j�(j� + 1) are the 
onformal dimensions of our WZNW primary �elds,as before. Note that DHi does not depend on any of the yj with j 6= i. In this sense,the transformation (2.8) leads to a separation of variables [17℄. Let us stress that thederivatives �� in eq. (2.19) are to be taken with �xed �� whereas the variables yi are kept{ 8 {



�xed when evaluating �� in the BPZ di�erential equations above. Whenever it is relevant,we shall expli
itly distinguish between the two derivatives �� ,�H� = � ��z��� ; �L� = � ��z��y :It is 
ertainly possible to express e.g. all the derivatives �H� in terms of �L� ; �i and �=�u.We shall only need the spe
ial 
ombinationÆi := X� 1yi � z� �H� = X� 1yi � z� ��L� + �i��Xj 6=i 1yi � yj (�i � �j) : (2.21)With this auxiliary formula it is then straightforward to 
he
k that���1N DHi �N �DLi � 
L(z� ; yi) = 0 : (2.22)The 
orresponden
e between di�erential equation was an important ingredient in [7℄ forproving the relation (2.15). We have derived the latter within the path integral approa
hand therefore the di�erential equations are guaranteed to be mapped onto ea
h other.2.3 Comments on the path integral derivationIt is well known that the path integral de�nition of both the WZNW model and of Liouvilletheory has some issues that are related to the non-
ompa
tness of the ba
kground (see e.g.[18℄ for a review). If one splits all �elds into their zero modes and 
u
tuations, one 
anintegrate out the zero modes. The pro
edure results in expression for the 
orrelators whi
hare either divergent or hard to give an exa
t de�nition. In the 
ase of Liouville theory, forinstan
e, one obtainsh NY�=1 e2��'(z� ;�z�)iL = Z D ~'e�SLD[ ~'℄ NY�=1 e2�� ~'(z� ;�z�)�(�s)2b ��B Z d2we2b ~'�swhere sb = Q' �PN�=1 �� . In this formula, the integration over the 
u
tuation �eld ~'is weighted with the measure of the free linear dilaton theory, but the integrand 
ontainsadditional insertions of s
reening 
harges. The latter are raised to some possibly non-integer power s and they are multiplied with 
oeÆ
ients that diverge for positive integerpowers. These features have a simple explanation. In our non-
ompa
t target spa
e, the
orrelation fun
tions are expe
ted to possess poles in momentum spa
e whi
h 
ome fromthe integration over the in�nite region of the target spa
e where the intera
tion is negligible.The path integral 
omputation we have just sket
hed dete
ts (some of) these divergen
iesand 
an be turned into a rigorous 
omputation of the asso
iated residues.If we are not willing to give the path integral any more 
redit, then our results aboveonly imply that* NY�=1 Vj� (�� jz�) Ss� +�
LD� = Æ2( NX�=1 ��)j�N (u; yi; z�)j2� (2.23)� * NY�=1 V�� (z�) N�2Yi=1 V�1=2b(yi) Ss' +LD' :
{ 9 {



Here, Ss� and Ss' denote the s
reening 
harges of the WZNW model and Liouville �eldtheory, respe
tively. They are given by the following expressionsSs� = �Z d2w �(w) ��( �w) e2b�(w; �w) ; Ss' = Z d2w e2b'(w; �w) : (2.24)The 
orrelation fun
tions on both sides of the equality are to be 
omputed in the free lineardilaton theory. On the left hand side, we use the �
 system with 
entral 
harge 
 = 2 anda linear dilaton with ba
kground 
harge Q� = b. On the right hand side, the 
orrelator isto be 
omputed for a linear dilaton ba
kground with Q' = b+ 1=b.Correlation fun
tions in the WZNW model and in Liouville �eld theory are well knownto possess a se
ond series of poles that are not explained by insertions of the s
reening
harges (2.24). The residues of these poles 
an still be 
omputed from free �eld theorywith the help of so-
alled dual s
reening 
harges. For our two models these readSd� = �Z d2w �(w) 1b2 ��( �w) 1b2 e 2b�(w; �w) ; Sd' = Z d2w e 2b'(w; �w) : (2.25)Note that the exponents 1=b2 = k�2 
an be integer for integer level k � 2. We have indeed
he
ked by expli
it 
omputation that equation (2.23) remains valid if the s
reening 
hargesSs� and Ss' are repla
ed by the dual ones. Similar 
al
ulations for the H+3 model involvingboth s
reening 
harges Ss� and Sd� 
an be found, e.g., in [19℄ (see also referen
es therein forearlier works on this subje
t). We shall perform free �eld 
omputations for 
orrelators onsurfa
es of genus g at the end of se
tion 4.3. Generalizing the 
orresponden
e to the torusMotivated by our rather simple path integral derivation, we would now like to extend theH+3 -Liouville relation beyond tree level to higher genus 
orrelators. We shall study thegeneral 
ase in the next se
tion and restri
t ourselves to the torus for now sin
e many ofthe formulas 
an be made very expli
it at g = 1.3.1 The H+3 model on the torusWe start from the H+3 WZNW model with level k and 
ompute N -point fun
tions on atorus with moduli parameter � using the �rst order formulation in terms of �, �, 
. Asexplained in the introdu
tion, we would like to introdu
e a bit more freedom by admittingsome non-trivial boundary 
onditions for � and the �
 system. To be pre
ise, we assumethe �elds �, 
 and � to satisfy�(w +m+ n�) = e2�in��(w) ; 
(w +m+ n�) = e�2�in�
(w) ; (3.1)�(w +m+ n�; �w +m+ n��) = �(w) + 2�nIm�b (3.2)with n;m 2 Z and � some 
omplex parameter. On
e su
h twisted boundary 
onditionshave been introdu
ed for the �eld �, the 
onditions on 
 and � follow if we require the{ 10 {



a
tion to be single valued. Of 
ourse, we assume similar twisted boundary 
onditions withtwist parameter �� to hold for the anti-holomorphi
 
omponents of the �
 system.There is one term in the a
tion, namely the 
oupling of the �eld � to the world-sheet
urvature, that requires a bit of additional 
are. Sin
e our �eld � is multivalued, the termpgR� 
annot possibly give the right pres
ription. Instead, we must de
ompose � intoa twisted zero mode part �sol (the index `sol' stands for solitoni
) and a doubly periodi

u
tuation �q , i.e.� = �q + �sol where �sol(w; �w) = 2��2b Im�Imw ; (3.3)where, by 
onstru
tion, �q now satis�es �q(w+m+n�; �w+m+n��) = �q(w). The lineardilaton term in the a
tion 
ouples the world-sheet 
urvature to the single valued 
u
tuation�eld �q rather than to � itself,SLD[�℄ = Q�8� Z d2wpgR�q : (3.4)All other terms in the a
tion (2.1) remain the same as before. Similarly, the expression forvertex operators (2.2) does not require any modi�
ation.To a large extend the path integral 
omputation of the N -point 
orrelation fun
tionfollows the same steps as before. The quantities we would like to 
ompute are given by* NY�=1 Vj� (�� jz�) +H(�;�) = Z D��D�
D�� e�S[�;
;�℄ NY�=1 Vj� (�� jz�) ;where the integration is to be performed over all �eld 
on�gurations on a torus withmodulus � satisfying the boundary 
onditions (3.1) and (3.2) stated above. Note thatour 
orrelation fun
tion is not yet normalized by dividing the partition fun
tion ZH . Weshall further 
omment on this below. After integration over 
 and �
 we obtain the same
ondition (2.5) for the derivatives of � and �� on the sphere. But this time it has di�erent
onsequen
es for � and ��. In fa
t, we need a bit of preparation before we are able to spellout the analogue of the important equation (2.7).On the torus, the integration of equation (2.5) will lead to a new fun
tion that 
an be
onstru
ted out of Ja
obi's theta fun
tion�(z) = �Xn2Zei�(n+ 12 )2�+2�i(n+ 12 )(z+ 12 ) ; �(z +m+ n�) = �e�i�n(2z+n�)�(z) : (3.5)Out of � we 
an build a new fun
tion �� with a simple pole and the same periodi
ityproperties that we required for �,��(z; w) = �(�� (z � w))�0(0)�(z �w)�(�) : (3.6)Indeed, from the shift properties of Ja
obi's theta fun
tion � it is easy to derive the followingproperty of ��, ��(z +m+ n�;w) = e2�in���(z; w) : (3.7){ 11 {



Now let us return to the integration of the two equations (2.5). The right hand side tells usthat the twisted meromorphi
 di�erential �(w) possesses N poles in the positions w = z�with residues �� . The solution to these 
onditions is unique, as long as the twist parameter� does not vanish. It 
an be written down in terms of the �� as�(w) = NX�=1 ����(w; z�) = uQNi=1 �(w � yi)QN�=1 �(w � z�) =: uB1(yi; z� ;w) : (3.8)The se
ond equality is a torus version of Sklyanin's separation of variables and it requiresa few 
omments. On a torus, meromorphi
 one-di�erentials possess the same number N ofpoles and zeroes. Moreover, the positions w = z� and w = yi; i = 1; : : : ; N; of both zeroesand poles determine the di�erential up to an overall fa
tor u. For our 
orresponden
ebetween the WZNW model and Liouville theory, it is again 
ru
ial to parametrize ��through u and yi rather than � and �� . The relation between the two sets of parameters
an be worked out easily (see also [20, 21℄)�� = u QNi=1 �(z� � yi)�0(0)QN�6=�;�=1 �(z� � z�) ; � = NXi=1 yi � NX�=1 z� : (3.9)What we have shown so far is that the integration over the �elds 
 and �
 in the WZNWmodel leads to the following Æ fun
tionÆ2(���(w) � 2� NX�=1 ��Æ2(w � z�)) = jdet�j�2� Æ2(�(w) � uB1(yi; z� ;w)) : (3.10)This repla
es the related formula (2.9) in the genus zero analysis. The fa
tor jdet �j�2� isthe Ja
obian that arises when we 
hange from Æ2(�� � � � ) to Æ2(�(w) � � � ). We have pla
eda subs
ript � in the Ja
obian to remind us that � is 
onsidered as an operator on twistedone-di�erentials. Let us now perform the integration over � and �� to obtain* NY�=1 Vj� (�� jz�) +H(�;�) = 1jdet �j2� Z D��e� 12� R d2w ������+Q�4 pgR�q+b2jB1j2 e2b�� �� NY�=1 j�(z�)j2�J� juj�2(j�+1)j�� j2(j�+1)e2b(j�+1)�(z�) :As in our genus zero analysis we have shifted the zero mode of the �eld � to remove thejuj2 from the intera
tion term. Be
ause the Euler 
hara
teristi
s of the torus vanishes, thepath integral is multiplied with a fa
tor juj0 = 1.We have now rea
hed the point at whi
h we 
hange variables for the remaining in-tegration over � su
h that the highly non-trivial fa
tor jB1j2 also gets removed from theintera
tion. In 
omplete analogy to the genus zero 
ase we introdu
e'(w; �w) := �(w; �w)+ 12b  Xi ln j�(w � yi)j2 �X� ln j�(w � z�)j2 � ln j�(w)j2! : (3.11)
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By 
onstru
tion, the new �eld ' is periodi
 under shift by n+m� , even though the original�eld � and the � fun
tions are not. It will be advantageous to repla
e j�j2 fun
tions bysome fun
tion F , F (z; w) := e� 2��2 (Im(z�w))2 �����(z � w)�0(0) ����2 ; (3.12)whi
h is easily seen to be invariant under shifts by integers and integer multiples of themodulus � , F (z +m+ n�;w) = F (z; w) :The new fun
tion F allows us to rewrite the relation between ' and � in terms of the singlevalued 
u
tuation �eld �q = �� �sol that we introdu
ed in eq. (3.3),'(w; �w) := �q(w; �w) + 12b  Xi lnF (w; yi)�X� lnF (w; z�)� ln j�(w)j2 + S1! (3.13)with S1 = 2��2 (Pi y2i �P� z2�). Let us also observe that the de
omposition of the �eld �into �sol and �q is su
h that their 
ontributions to the kineti
 term de
ouple,� 12� Z d2w����� = � 12� Z d2w��sol ���sol � 12� Z d2w��q ���q (3.14)with 12� Z d2w��sol ���sol = �(Im�)2b2�2 : (3.15)Now we 
an pro
eed exa
tly as before, with the fun
tion F repla
ing jz�wj2. In parti
ular,the properties of F 
an be used to evaluate � ��' as� ��'(w; �w) := � ���q(w; �w)+ �b  Xi Æ2(w � yi)�X� Æ2(w � z�)!� 12b� �� ln j�(w)j2; (3.16)a result that agrees exa
tly with the 
orresponding formula at genus zero. The out
ome ofa short and straightforward 
omputation is* NY�=1 Vj� (�� jz�)+H(�;�) = e��(Im�)2b2�2 j�g=1N (yi; z� ; �)j2jdet �j2� Z D'e� 12� R d2w ���'�'+Q'4 pgR'+b2j�j2e2b'�� NY�=1 j�(z�)j2�L� e2(b(j�+1)+ 12b )'(z�) NYi=1 j�(yi)j2�L�1=2be� 1b'(yi)where the pre-fa
tor �N is given byj�g=1N (yi; z� ; �)j2 = NY�<� F (z�; z�) 12b2 NYi<j F (yi; yj) 12b2 NY�;i=1F (z�; yi)� 12b2 : (3.17)So far, the 
orrelators on both sides of the equations are not normalized. But using thefollowing formulas (see [22℄ and our dis
ussion before eq. (4.13) later on) for the genus onepartition fun
tions ZH and ZL of the WZNW model and Liouville theory, respe
tively,ZH = e��(Im�)2b2�2p�2j�(�)j2 ; ZL = 1p�2j�(�)j2 ; (3.18)
{ 13 {



along with the formula det �� = �(�)=�(q) for the determinant of � on �-twisted dif-ferentials, we 
an re
ast the relation between 
orrelation fun
tions in both theories in aparti
ularly simple form1ZH * NY�=1 Vj� (�� jz�) +H(�;�) = j�g=1N (yi; z� ; �)j2 1ZL * NY�=1 V�� (z�) NYi=1 V�1=2b(yi)+L :(3.19)Our genus one relation is similar to the tree level result. On
e more we managed to
ompute all 
orrelators of WZNW primaries in terms of Liouville theory with the samerelation between the level k = b�2 + 2 and the ba
kground 
harge Q' = b + 1=b andthe same bulk 
osmologi
al 
onstant �B = 4b2. For ea
h primary �eld Vj in the WZNWmodel there appears one Liouville vertex operator V� where � = b(j +1)+ 1=2b, as on thesphere. Additionally we have to insert degenerate Liouville �elds, but now we need twomore than on the sphere, i.e. there are N degenerate �elds inserted. Their positions aredetermined through the light 
one momenta �� of the WZNW vertex operators and thetwist parameter �.The attentive reader might be a bit surprised not to see any fa
tor implementing the
onservation of � momentum, as on the sphere. Its absen
e is dire
tly related to the fa
tthat the 
orresponden
e has been worked out for non-zero twist parameter �. One would
ertainly expe
t to re
over � momentum 
onservation in the limit � ! 0. In order to seehow this works, let us go ba
k to relation (3.8) and insert the expansion��(z; w) = 1� + �0(w � z)�(w � z) + : : : : (3.20)This leads to the formula�(w) = X� ��� +X� �� �w ln �(w � z�) + : : : :For � to stay �nite in the limit � ! 0, we need to assume that the total �-momentumP� �� tends to zero when we send �! 0. In fa
t, ifP� �� vanishes fast enough, we obtainwell de�ned expressions at � = 0.3.2 Relation between di�erential equations on torusHaving established a simple relation between 
orrelation fun
tions of the WZNWmodel andLiouville �eld theory on the torus it seems worthwhile to look on
e more at the di�erentialequations that determine 
orrelators in both models and to 
he
k that our relation (3.19)
orre
tly intertwines between them.Let us start on the side of Liouville �eld theory. The vertex operator V�1=2b belongs toa degenerate representation with a null ve
tor (b2(L�1)2+L�2)j�1=2bi on the se
ond level.Sin
e we have N su
h degenerate �elds in our Liouville 
orrelation fun
tion, we obtain Nse
ond order di�erential equations,DLi (
L)(z� ; yj ; �) = 0 ; 
L(z� ; yi; �) = * NY�=1V�� (z�) NYj=1V�1=2b(yj)+L : (3.21)
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The di�erential operators DLi for surfa
es of higher genus were worked out by Egu
hi andOoguri [12℄,DLi = b2 �2�y2i +�L� 12b 2�1 +Xj 6=i ��(yi; yj) ��yj ��L� 12b �i�(yi; yj)�++X� ��(yi; z�) ��z� ��L���i�(yi; z�)�+ 2�i ��� ; (3.22)where the spe
ial fun
tion � and the 
onstant �1 are 
onstru
ted from Ja
obi's � fun
tionthrough �(z; w) = �0(z � w)�(z � w) ; �1 = �16 �000(0)�0(0) : (3.23)Let us now address the di�erential equations obeyed by the 
orrelation fun
tions of theWZNW model on the torus, whi
h were �rst worked out by Bernard and are known asKnizhnik-Zamolod
hikov-Bernard (KZB) equations. These equations are obtained by in-serting the Sugawara singular ve
tor T (w) � b2 : JaJa : (w) = 0 into the WZNW N -point
orrelation fun
tion 
H (see eq. (3.29) below for the de�nition of 
H). Ward identities for
urrents and the Virasoro �eld then give [13, 23℄"b2S(w) + NX�=1��(ya; z�) ��z� ��Hj��i�(yi; z�)�+ 2�i ��� #�
H = 0 : (3.24)Here, we introdu
ed � = j�(�)j2 andS(w) = � ��� � ~J0(w)�2 � 12 � ~J�(w) ~J+(w) + ~J+(w) ~J�(w)� ; (3.25)~J�(w) = NX�=1 ���(w; z�)D�� ; ~J0(w) = NX�=1 �(w; z�)D0� ; (3.26)and the di�erential operators D�� and D0� are the same as in eq. (2.4). Let us brie
y re
allthe reason why the KZB equations 
ontain a derivative with respe
t to the twist parameter�. These terms arise from the Ward identities of 
urrents. In fa
t, it has already beenobserved by Egu
hi and Ooguri in [12℄ that the insertion of the zero modes of 
urrents into
orrelators 
annot be 
onverted into di�erential operators a
ting on the usual untwisted
orrelation fun
tions. It was Bernard's idea to �x this problem by introdu
ing a dependen
eof 
onformal blo
ks on additional parameters. On the torus, he suggested to insert a groupelement g into the tra
e. This has the e�e
t of twisting the boundary 
onditions for 
urrentsunder shifts by multiples of � . Our boundary 
onditions 
orrespond to the spe
ial 
hoi
eg = exp(�2�i�J00 ). A
tually, it had been observed by Bernard already that a single twistparameter � suÆ
es on the torus.As in subse
tion 2.2, our strategy now is to evaluate the KZB equations at the Nspe
ial points yi and then to 
ompare the result with the N di�erential equations for the{ 15 {



Liouville 
orrelator. From the relation (3.9) between �i; � and yi; u one may derive��yi = ��� + NX�=1 �(yi; z�)�� ���� ; u ��u = NX�=1 �� ���� : (3.27)These relations between derivatives 
an be inserted into our formulas for the di�erentialoperators ~J�(w) and ~J0(w), evaluated at the points w = yi, to obtain~J�(yi) = NX�=1 �+�(yi � z�)�� = 0 ; ~J0(yi) = � NX�=1 �(yi; z�)�� ���� = � ��yi + ��� :When we plug these expressions into S(yi) we �ndS(yi) = �2�y2i ; (3.28)just as on the sphere. In 
on
lusion we have shown that the KZB equations lead to thefollowing N di�erential equations for the WZNW N -point fun
tions 
HDHi �
H = 0 ; 
H(z� ; �� ; �) = * NYi=1 Vji(�ijzi)+H(�;�) ; (3.29)DHi = b2 �2�y2i + NX�=1��(yi; z�) ��z� ��Hj��i�(yi; z�)�+ 2�i ��� : (3.30)Let us re
all that the derivatives �=�z� = �� in DHi are still taken while keeping � and �i�xed, in spite of the expli
it appearan
e of derivatives with respe
t yi.In order to verify 
onsisten
y of the two sets of equations with the proposed relationbetween Liouville and WZNW 
orrelation fun
tions, we rewrite the latter in the form�
H = j�(�)j2j�0N j2
L ; (3.31)�0N = �0(0) N2b2 NY�<� �(z� � z�) 12b2 NYi<j �(yi � yj) 12b2 NY�;i=1 �(z� � yi)� 12b2 : (3.32)In 
omparison to the earlier version, we have absorbed a fa
tor into a re-de�nition of j�N j2and then expressed the new j�0N j2 in terms of j�j2 rather than F . Our result on the relationbetween 
orrelation fun
tions therefore implies(��0N )�1DHi (��0N ) = DLi : (3.33)This 
an be 
he
ked indeed by a lengthy but straightforward 
omputation. In the pro
essit is important to repla
e all the derivatives �� = �H� in the di�erential operators DHithrough derivatives �� = �L� where the latter are taken while keeping yi and u �xed. Morepre
isely, we repla
e Æi =P� �(yi; z�)�H� in DHi byÆi � NX�=1 �(yi; z�) ��L� + �i��Xj 6=i �(yi; yj) (�i � �j) ; (3.34)
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where �i denote di�erentiation with respe
t to yi, as before. It is easy to verify that Æisatisfy Æi��(yi; z� ; u) = 0 and Æi�(yi; z� ; u) = 0. On
e this issue is taken 
are of, we 
anshow that the di�erential operators indeed satisfy (3.33). The details of the 
omputationare presented in appendix A.4. Generalization to arbitrary genusEquipped with the experien
e from genus g = 0 and g = 1, we now address the WZNWmodel on an arbitrary 
losed surfa
e of genus g. Most of the analysis follows the ideas ofprevious se
tions, but the details require 
onsiderably more ba
kground 
on
erning di�er-entials on higher genus surfa
es. We provide the most relevant details in Appendix B. Sin
ethis se
tion 
ontains our main new result, we shall derive it �rst through our path integralarguments and then verify with the help of free �eld 
omputations where both sides of theproposed relation possess the same residues. Comments on the relation between the KZBand BPZ di�erential equations are deferred to the 
on
luding se
tion.4.1 Path integral derivationSuppose we are given some 
ompa
t Riemann surfa
e � with moduli parametrized by theperiod matrix � = (�ij). Sin
e our �elds are going to be multivalued as in the torus 
ase,it is appropriate to pass to the universal 
over ~� of the surfa
e right away. Using thefamous Abel map, we embed ~� into C g . From now on, we shall think of our �elds asbeing de�ned on the image of the Abel map and hen
e 
onsider them as fun
tions of g
omplex 
oordinates wk; k = 1; : : : ; g. In 
lose analogy to the genus g = 1 
ase, we allowfor nontrivial twists along the �-
y
les, i.e.�(wk + �klnl +mkj�) = e2�inl�l�(wkj�) ;
(wk + �klnl +mkj�) = e�2�inl�l
(wkj�) ; (4.1)�(wk + �klnl +mkj�) = �(wkj�) + 2�nlIm�lb :The 
omplex parameter �k represents the twist along the �-
y
le �k. Thereby, we haveintrodu
ed g 
omplex parameters.As in our dis
ussion of the theory on the torus, spelling out the 
oupling of � to theworld-sheet 
urvature requires to split � into a twisted zero mode �sol and a single valued
u
tuation �q. The twisted zero mode �sol is now given by�sol = 2�b Im�k (Im�)�1kl Imwl = 2�b Im�k (Im�)�1kl ImZ ww0 !l (4.2)where !l; l = 1: : : : ; g; is a basis of holomorphi
 one-forms and indi
es l; k are raised andlowered with the trivial metri
. The linear dilaton term 
ouples the world-sheet 
urvatureR to the doubly periodi
 
u
tuation �eld �q = �� �sol in the same way as on the torus,see eq. (3.4). { 17 {



So far, setting up the path integral for WZNW 
orrelators on a surfa
e of genus g wasa straightforward extension of the torus 
ase. But there is one important modi�
ation. Asis well known, the �-twisted di�erentials �� and ��� possess g � 1 zero modes. These giverise to g � 1 additional moduli if we de
ide to �x the value of the �� and ��� zero modesand to extend our path integral only over the remaining 
u
tuations. Our aim therefore isto 
ompute the following N -point 
orrelation fun
tions* NY�=1 Vj� (�� jz�) +H(�;$;�) = Z D��D�
 ~D�� e�S[�;
;�℄ NY�=1 Vj� (�� jz�)over a Riemann surfa
e with genus g. The symbol ~D�� reminds us not to integrate over �zero modes. We parametrize the latter by g�1 
oordinates $ = ($� ; � = 1; : : : ; g�1) andpla
e an expli
it subs
ript $ on the 
orrelator. The physi
al 
orrelation fun
tions may bere
overed in prin
iple through a �nite dimensional integral over $�.Integration over 
 leads to exa
tly the same expression (2.5) for the derivative of �as on the sphere and torus. But the 
orresponding � takes a di�erent form. From theknowledge of its derivative and the boundary 
onditions (4.1) we may 
on
lude that �must have the form �(w) = NX�=1 ����(w; z�) + g�1X�=1$�!��(w) (4.3)where !�� denote a basis of � twisted holomorphi
 di�erentials and the fun
tion ��(w; z) isthe following di�erential, ��(w; z) = (hÆ(w))2�Æ(R wz !) �Æ(�� R wz !)�Æ(�) : (4.4)On the right hand side, we 
an use any odd spin stru
ture Æ. The � fun
tion �Æ and the 1/2-di�erential hÆ are de�ned in appendix B. Using properties of these obje
ts it is possible toshow that ��(z; w) has a simple pole at z = w with residue Resz=w��(z; w) = 1. Moreoverthe di�erential �� satis�es the same periodi
 boundary 
ondition as �(w). Before we goon, let us point out that we had to �x the � zero mode in order to be able to re
onstru
t� from its derivative. Expli
it formulas for the g � 1 twisted holomorphi
 di�erentials 
anbe found e.g. in [23℄.The rest of our analysis pro
eeds essentially as before. A meromorphi
 one-di�erentialwith N poles is known to possess N+2(g�1) zeroes. Hen
e, the analogue of the separationof variables formula (2.7) for a surfa
e of genus g � 1 is given by�(w) = uQN+2(g�1)i=1 E(w; yi)�(w)2QN�=1E(w; z�) =: uBg(yi; z� ;w) (4.5)with yi parametrizing the zeroes of �. It seems that this formula has not appeared in theliterature before. In order to reprodu
e the 
orre
t boundary 
onditions (4.1), yi have tosatisfy the 
ondition�l = N+2(g�1)Xk=1 Z ykw !l � NX�=1 Z z�w !l � 2Z �(g�1)w !l ; (4.6)
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whi
h 
orresponds to the 
ondition (3.9) for the genus one 
ase. Noti
e that this 
onditiondoes not depend on w. The fun
tion �(w) in eq. (4.5) is a g=2-di�erential without zerosnor poles. Its de�nition is reviewed is eq. (B.13) of appendix B along with the 
onstru
tionof the prime form E (see eq. (B.7)) and the Riemann 
lass �. The fun
tion �(w) is neededin order for the right hand side of (4.5) to be
ome a one-di�erential with the 
orre
t zerosand poles.There is another point we would like to stress. Note that the equations (4.6) impose g
onstraints on the position of the zeroes yi. Thereby, they de�ne a N + g � 2-dimensionalhyper-surfa
e in the 
on�guration spa
e of yi. These hyper-surfa
es sweep out the entire
on�guration spa
e as we vary the g twist parameters. Changing the zero mode parameters$� while keeping � �xed also moves the position of zeroes yi, but this motion takes pla
ewithin the the hyper-surfa
e de�ned by � sin
e eq. (4.6) is independent of $. Hen
e, thein�nitesimal 
hanges of the twist parameters � and the zero mode parameters$ span a 2g�1 dimensional subspa
e of ve
tors tangent to the 
on�guration spa
e of yi. Together withthe shifts of the N light-
one momenta ��, we thereby generate independent moves of allthe zeroes yi and of u. Let us also note that the light-
one momenta may be re
onstru
tedfrom yi a

ording to �� = uQN+2(g�1)j=1 E(z� ; yj)�(z�)2QN�6=� E(z� ; z�) : (4.7)After these 
omments we 
an 
ontinue with our 
omputation of WZNW 
orrelators. On
ethe trivial integration over non-zero modes of � and �� has been performed, we re-de�nethe bosoni
 �eld,'(w; �w) :=�(w; �w) + 12b 0�N+2(g�1)Xi=1 ln jE(w; yi)j2 � NX�=1 ln jE(w; z�)j2 + 2 ln j�(w)j2 � ln j�(w)j21A :As on the torus, we may repla
e the multi-valued prime form E and � by doubly periodi
fun
tions and thereby rewrite ' in terms of the single valued 
u
tuation �eld �q = ���sol,'(w; �w) =�q(w; �w) + 12b 0�N+2(g�1)Xi=1 lnF (w; yi)� NX�=1 lnF (w; z�) + 2 lnH(w)� ln j�(w)j2 + Sg1A :The fun
tions F (z);H(z) are de�ned in appendix B and the 
onstant Sg is a shorthand forthe following expressionSg = 2�Xi ImZ yiw0 !l (Im�)�1lk ImZ yiw0 !k � 2�X� ImZ z�w0 !l (Im�)�1lk ImZ y�w0 !k��4�ImZ �(g�1)w0 !l (Im�)�1lk ImZ �(g�1)w0 !k ;{ 19 {



whi
h is independent of w0. If we a
t with � �� on ' we obtain the same expression (3.16)as on the torus. This uses that the 
ontributions from the non-holomorphi
 part 
an
elea
h other. Furthermore, � �� ln�(z) = 0 be
ause � has neither zeros nor poles.After inserting the shift of variables from � to ', we 
an simplify the resulting ex-pressions pretty mu
h in the same way as for the torus 
ase. On
e more, the kineti
 termfor the �eld � splits into the sum (3.14) of a 
onstant term and a kineti
 term for the
u
tuation �eld �q. The former is given bySsol = 12� Z d2w ���sol��sol = �b2 Im�l (Im�)�1lk Im�k : (4.8)A se
ond auxiliary result 
on
erns the 
ontribution from the linear dilaton term. Afterthe 
hange of variables it provides us with a linear dilaton term for ' and the followingadditional terms,Q�8� Z d2wpgR2b 0�N+2(g�1)Xi=1 lnF (w; yi)� NX�=1 lnF (w; z�) + 2 lnH(w)� ln j�(w)j2 + Sg1A == N+2(g�1)Xi=1 ln(j�(yi)j�1H(yi))� NX�=1 ln(j�(z�)j�1H(z�)) + (1� g)Sg + 32Ug ;where (see [24℄)Ug = 1192�2 Z d2wd2ypg(w)R(w)pg(y)R(y) lnF (w; y) : (4.9)All these expressions 
an be veri�ed using formulas from Appendix B. Colle
ting all theabove fa
ts, our 
orrelation fun
tion is given by* NY�=1 Vj� (�� jz�) +H(�;$;�) = C j�gN (u; yi; z� ; �)j2 * NY�=1 V�� (z�) N+2(g�1)Yi=1 V�1=2b(yi)+L�where the pre-fa
tor �N takes the formj�gN (u; yi; z� ; �)j2 = (juj2eSg)(1�g) NYi=1H(zi)�1� 1b2 N+2(g�1)Yk=1 H(yk)1+ 1b2 � (4.10)� NYr<sF (zr; zs) 12b2 N+2(g�1)Yk<l F (yk; yl) 12b2 NYr=1N+2(g�1)Yk=1 F (zr; yk)� 12b2 ;and we 
olle
ted all the remaining terms in the quantity C,C = e�Ssol+( 32+ 34b2 )Ug jdet �j�2� :Before we 
on
lude, let us observe that the 
onstant C may be written as the ratio betweenpartition fun
tion ZL0 = ZLDQ' of a linear dilation with ba
kground 
harge Q' and the
{ 20 {



produ
t ZH0 = jZ�
 j2ZLDQ� where Z�
 is the partition fun
tion of a 
hiral �
 system. Inorder to see this, we re
all that the partition fun
tion in both H+3 model and Liouville �eldtheory a
quires it's leading (divergent) 
ontribution from the asymptoti
 region where theintera
tion is negligible. Hen
e, we haveZH0 = Z D�qD�
D�� e�Ssol� 12� R d2w ����q��q�� ��
�����
+Q�4 pgR�q� == jdet �j�2� e�Ssol Z D�qe� 12� R d2w ����q��q+Q�4 pgR�q� : (4.11)To further re-write the partition fun
tion ZH0 , we must now 
hange the ba
kground 
hargefrom Q� to Q'. We 
an a
hieve this using a result of [24℄ on 
orrelation fun
tions in alinear dilaton theory. When applied to the path integral in the formula for ZH0 , it formallyreads Z D�qe� 12� R d2w ���q���q+Q�4 pgR�q� = e� 34Q2�Ugjdet �j2 == e� 34 (Q2��Q2')Ug Z D'e� 12� R d2w ���'�'+Q'4 pgR'� = e� 32+ 34b2 �Ug ZL0 (4.12)where in the pro
ess of the 
al
ulation we inserted the expli
it expression for the ba
kground
harges Q� and Q'. Combining the previous two equations, we have shown,ZH0 = jdet �j�2� e�Ssol+� 32+ 34b2 �Ug ZL0 : (4.13)In 
on
lusion, our �nal result for the relation between normalized 
orrelation fun
tions inthe H+3 model and in Liouville �eld theory reads1ZH0 * NY�=1 Vj� (�� jz�) +H(�;$;�) = j�gN (u; yi; z� ; �)j2 1ZL0 * NY�=1 V�� (z�)N+2(g�1)Yi=1 V�1=2b(yi)+L�(4.14)where the fun
tion �gN is given by eq. (4.10). Let us also re
all that the 
orrelation fun
tionsof primaries (2.2) in the WZNW model at level k = b�2+2 depend on the g twists �k andon g�1 zero modes $l in addition to the surfa
e moduli. On the Liouville side, we 
omputethe 
orrelation fun
tions of primaries (2.16) with a ba
kground 
harge QL = Q' = b+1=band with bulk 
osmologi
al 
onstant �B = 4b2. The momenta �� are related to j� througheq. (2.14). The remaining momenta �� in the WZNW model along with the 2g� 1 moduli�k and $l determine the insertion points yi of N +2(g� 1) degenerate Liouville �elds anda fa
tor u that we absorbed in the de�nition of �gN . Finally, we stress that ZH0 and ZL0 arepartition fun
tions of free �eld theories. They agree with those of the H+3 and Liouvilletheory, respe
tively, if and only if we 
onsider the theory on a surfa
e of genus g = 1. Forhigher genus, our relation (4.14) shows that the partition fun
tion ZH of the H+3 model isrelated to a 2g � 2 point fun
tion in Liouville �eld theory.{ 21 {



4.2 Free �eld theory 
omputationsIn this subse
tion, we explain how to 
ompute the residues of the �rst order poles in WZNW
orrelation fun
tion from free �eld theory (see also our dis
ussion at the end of se
tion 2).We then determine the 
orresponding quantities for 
orrelators in Liouville �eld theory andshow that the results agree with our relation (4.14) for the full 
orrelators.As we have sket
hed in se
tion 2.3 it is possible to 
ompute the residues of poles in theH+3 
orrelation fun
tions by inserting powers of the s
reening 
harges into 
orrelators of alinear dilaton � and a �
 system. For the rest of this se
tion we shall �x the world-sheetmetri
 su
h that � = 1. The vertex operators and the usual s
reening 
harge take the sameform as aboveVj(�jz) � j�j2j+2e�
����
e2b(j+1)� ; S = Z d2wS(w) = �Z d2w� ��e2b�(w; �w) : (4.15)The N -point 
orrelation fun
tion has a pole at P�(j� + 1) = 1 � g � s (s 2 Z�0), whoseresidue is obtained by integrating the following 
orrelators over the positions wk* NY�=1Vj� (�� jz�) sYk=1S(wk)+ = NY�=1 j�� j2j�+2* NY�=1 e2b(j�+1)�(z� ;�z�) sYk=1 e2b�(wk ; �wk)+ �� * NY�=1 e��
(z�) sYk=1�(wk)+* NY�=1 e�����
(�z�) sYk=1[���( �wk)℄+ :(4.16)Throughout this entire subse
tion, 
orrelation fun
tions are properly normalized su
h thatthe expe
tation value of the identity is trivial rather than the partition fun
tion. Sin
e thefree boson � is subje
t to a ba
kground 
harge Q = Q� = b, the 
ontribution from thelinear dilaton theory 
an be 
omputed as* NY�=1 e2b(j�+1)�(z� ;�z�) sYk=1 e2b�(wk ; �wk)+ = �sol * NY�=1 e2b(j�+1)�q(z� ;�z�) sYk=1 e2b�q(wk; �wk)+ ;(4.17)where the twisted zero mode of � 
ontributes the fa
tor�sol = NY�=1 e2b(j�+1)�sol(z� ;�z�) sYk=1 e2b�sol(wk; �wk) : (4.18)The 
orrelation fun
tion of the single valued 
u
tuation �eld �q = ���sol may be expressedthrough the fun
tions F and H, see appendix B,* NY�=1 e2b(j�+1)�q(z� ;�z�) sYk=1 e2b�q(wk; �wk)+ = NY�=1H(z�)2b2(j�+1) sYk=1H(wk)2b2 � (4.19)� NY�<�F (z� :z�)�2b2(j�+1)(j�+1) NY�=1 sYk=1F (z� ; wk)�2b2(j�+1) sYk<lF (wk; wl)�2b2 :
{ 22 {



The fa
tors in the se
ond line of eq. (4.16) may be evaluated using the same formulas weemployed in our path integral derivation. In parti
ular, with the help of formula (4.5) we
an 
on
lude that* NY�=1 e��
(z�) sYk=1�(wk)+ = sYk=1" NX�=1 ����(z� ; wk) + g�1X�=1$�!��# == sYk=1"uQN+2(g�1)i=1 E(yi; wk)�(wk)2QN�=1E(z� ; wk) # :Utilizing the relation between the prime form E and the spe
ial fun
tion F (see appendixB) we 
on
lude* NY�=1 e��
(z�) sYk=1�(wk)+* NY�=1 e�����
(�z�) sYk=1[���( �wk)℄+ == juj2s sYk=1"QN+2(g�1)i=1 jE(yi; wk)j2j�(wk)j4QN�=1 jE(z� ; wk)j2 # = (4.20)= juj2s sYk=1 eSg�2b�sol(wk; �wk) "QN+2(g�1)i=1 F (yi; wk)H(wk)2QN�=1 F (z� ; wk) # :Equations (4.18), (4.19) and (4.20) provide all the information we need in order to deter-mine the residue (4.16) of the WZNW 
orrelator at P�(j� + 1) = 1� g � s.We would like to rewrite the 
orrelation fun
tions in H+3 model in terms of Liouvilletheory. The ba
kground 
harge of Liouville theory is assumed to be Q = b+ 1=b. We usethe following vertex operators and Liouville s
reening 
harge,V�(z; �z) = e2�'(z;�z) ; S = Z d2wS(w) = Z d2we2b'(w; �w) (4.21)with � = b(j +1) + 1=(2b). A

ording to the general result (4.14), it should be possible toreprodu
e the residues 
omputed in the previous subse
tion from the expressionj�gN j2 * NY�=1 e2��'(z� ;�z�) N+2(g�1)Yi=1 e� 1b'(yi;�yi) sYk=1 e2b'(wk ; �wk)+ (4.22)where �gN is given in eq. (4.10) and the 
orrelation fun
tion is evaluated in a linear dilatonba
kground with ba
kground 
harge Q = Q' = b+1=b. Using the same formulas as in the{ 23 {



previous subse
tion, we �nd* NY�=1 e2��'(z� ;�z�) N+2(g�1)Yi=1 e� 1b'(yi;�yi) sYk=1 e2b'(wk ; �wk)+ == NY�<�F (z� ; z�)�2(b(j�+1)+ 12b )(b(j�+1)+ 12b ) NY�=1N+2(g�1)Yi=1 F (z� ; yi)j�+1+ 12b2 N+2(g�1)Yi<j F (yi; yj)� 12b2�� NY�=1 sYk=1F (z� ; wk)�2b2(j�+1)�1 N+2(g�1)Yi=1 sYk=1F (yi; wk) sYk<lF (wk; wl)�2b2�� NY�=1H(z�)2(b2+1)(j�+1)+1+ 1b2 N+2(g�1)Yi=1 H(yi)�1� 1b2 sYk=1H(wk)2b2+2 :Our aim now is to repla
e the fa
tors F (z� ; yi)j�+1 whi
h do neither appear in �gN nor inthe residues of the WZNW model. Using the relation (4.7) with � = 1, we �ndNY�=1N+2(g�1)Yk=1 E(z� ; yk)j�+1�(z�)2j�+2 = us+g�1 NY�=1�j�+1 NY�<�E(z�; z�)j�+j�+2 ; (4.23)or, equivalently,NY�=1N+2(g�1)Yk=1 F (z� ; yk)j�+1H(z�)2j�+2 == (juj2eSg )s+g�1 NY�=1 j�j2j�+2e2b(j�+2)�sol(z� ;�z�) NY�<�F (z�; z�)j�+j�+2 : (4.24)In deriving this equation we have made use of the equalityP�(j�+1) = 1�g�s. Inserting(4.24) into the linear dilaton 
orrelator we rewrite the residues of 
orrelation fun
tions inLiouville theory in an appropriate form. On
e these are multiplied with our fun
tion�gN these reprodu
e the results of the previous subse
tion and thereby 
on�rm ni
ely theout
ome of our general path integral derivation.5. Con
lusions and OutlookIn this work we proposed a new and elegant path integral derivation for the 
orresponden
ebetween lo
al 
orrelation fun
tions in H+3 WZNW model and Liouville �eld theory. Ourresults reprodu
e the �ndings of [7℄ for 
orrelators on the sphere and generalize themto surfa
es of arbitrary genus g. Correlation fun
tions of the H+3 WZNW model aredetermined from Liouville �eld theory through eq. (4.14). Physi
al 
orrelators are obtainedin the limit �k ! 0 of vanishing twist parameters and after integration over $�. A
orresponden
e between residues of 
orrelation fun
tions is en
oded in eq. (4.14) and itwas veri�ed expli
itly through free �eld 
al
ulations. For the torus, we have also explained{ 24 {



how to map the BPZ equations for Liouville theory to the KZB equations in WZNWmodels. The extension of this analysis to higher genus was not addressed. We believe thatan expli
it 
omparison along the lines of se
tion 3.2 is possible, though rather 
umbersome.It seems appropriate to add a few 
omments on our 2g � 1 moduli �k;$� and toexplain their relation with the twist parameters introdu
ed by Bernard [23℄. We re
allthat Bernard's 
onstru
tions involve a 3g-dimensional spa
e of twists. It parametrizes aset of g group elements whi
h determine boundary 
onditions of 
urrents along the �-
y
les. Our 
oordinates �k 
orrespond to very spe
ial twists with group elements of theform gk � exp(�2�i�kJ0) where J0 is the Cartan generator. Consequently, insertions ofthe 
urrent J0(w) into 
orrelators of the WZNW model may be 
onverted into the a
tionof some di�erential operator. The latter has exa
tly the same form as in Bernard's work(see eqs. (4.16) and (4.17) of [23℄). For insertions of the 
omponent J�(w), the story is abit di�erent. In this 
ase, we may use the relation J�(w) = �(w) along with our equation(4.3) to derive* J�(w) NY�=1 Vj� (�� jz�)+H(�;$;�) =  NX�=1 ����(w; z�) + g�1X�=1$�!��(w)! 
H(�;$;�) (5.1)where 
H(�;$;�) = * NY�=1 Vj� (�� jz�)+H(�;$;�) : (5.2)On the right hand side, the 
omplex numbers $� that multiply the holomorphi
 one-formsappear in pla
e of di�erentiation with respe
t to twist parameters in Bernard's work. Inthis sense, our $� are dual twist parameters. We are not 
onvin
ed that insertions ofthe third 
urrent J+(w) 
an similarly be repla
ed by the a
tion of some operator. Let uspoint out, however, that this is not 
ru
ial for a su

essful mat
h between the BPZ andKZB-type di�erential equations. In fa
t, only 
ertain 
ombinations of the KZB equationsappear in this 
ontext. The relevant ones emerge from inserting the Sugawara tensor atthe points yi at whi
h J� vanishes. Hen
e, the term J+J� drops out.As explained e.g. in [25℄ (see also referen
es therein), one of the rami�
ations of thegeometri
 Langlands program involves 
onformal blo
ks of WZNW models at the so-
alled
riti
al level and their relation with 
ertain 
lassi
al W algebras. In the 
ase of the H+3model, the 
riti
al level is k = 2. Hen
e, we rea
h this point in the limit b !1 in whi
hthe asso
iated Liouville theory be
omes 
lassi
al. For genus g = 0 
orrelation fun
tions inthe H+3 -Liouville 
orresponden
e, the limit of in�nite parameter b was analyzed in detail in[7℄. It might be rewarding to 
arry out a similar investigation for surfa
es of higher genusg 6= 0. In this 
ase, the Gaudin Hamiltonians that emerge from the 
riti
al WZNW modelon the sphere get repla
ed by Hamiltonians of Hit
hin's integrable system.The relation (4.14) between 
orrelation fun
tions in the H+3 model and Liouville �eldtheory may be regarded as an `o�-
riti
al' (and non-
hiral) version of the geometri
 Lang-lands program. Let us re
all that 
onformal blo
ks of the WZNW model diagonalize the{ 25 {



a
tion of the 
urrent algebra on the fusion produ
t of its representation spa
es in the samesense in whi
h Clebs
h-Gordan maps (blo
k-) diagonalize the a
tion of a Lie algebra ontensor produ
ts. When we are dealing with Lie algebras, the geometri
 Langlands programa
hieves more: it provides a distinguished basis in the tensor produ
t 
onsisting of eigen-ve
tors of a 
lassi
al W-algebra. On
e we go o�-
riti
al, the 
lassi
al W-algebra be
omesquantum. In the 
ase 
onsidered here, the W-algebra is the Virasoro algebra. As usual,the a
tion of the W-algebra is blo
k diagonalized by its 
onformal blo
ks. Putting all thistogether, an o�-
riti
al version of the geometri
 Langlands program should single out adistinguished basis for WZNW 
onformal blo
ks whi
h may be expressed dire
tly through
onformal blo
ks of the W-algebra. Our main result eq. (4.14) 
laims that for the H+3model su
h a basis is given by the WZNW 
orrelators on the left hand side. Let us stressthat the proper basis is found for (twisted) 
orrelators on any 
losed Riemann surfa
e. Itseems likely that a similar o�-
riti
al version of the geometri
 Langlands 
orresponden
eexists for other Lie algebras (see also 
omments below).There are several extensions of our results that seem worthwhile being analyzed. Tobegin with, it would be interesting to study 
orrelation fun
tions on surfa
es with bound-aries. For the WZNW model, maximally symmetri
 boundary 
onditions were found in[26℄. Using new boundary theories for �
 systems (see [27℄) along with ideas from a forth-
oming paper on branes in the GL(1j1) model [28℄, a �rst order formulation for 
orrelatorswith insertions of both bulk and boundary operators 
an be developed. An evaluation alongthe lines we presented above should then relate these to 
orrelation fun
tions in boundaryLiouville theory [29, 30, 31℄. For some dis
 amplitudes, su
h relations between 
orrelatorson a surfa
e with boundary have been proposed in [32℄.More importantly, it is very tempting to address generalizations to WZNW modelsof rank r > 1. First order formulations for models with higher rank are 
ertainly known(see e.g. [33℄ and referen
es therein) and it is likely that these may be employed to redu
e
orrelators of WZNW primaries to 
orrelation fun
tions in 
onformal Toda theories. Theevaluation of the 
orresponding WZNW path integral, however, requires signi�
ant newideas, mainly be
ause the nilpotent part of higher rank algebras is no longer abelian. Thisis dire
tly linked to a non-linear dependen
e of the Ka
-Wakimoto like a
tion fun
tionalson some of the �elds 
. We plan to return to these issues in the near future.A
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t number H18-143.A. Di�erential equations for genus one 
aseIn this appendix we would like to demonstrate that the di�erential operators (3.22) and(3.30) are related through equation (3.33). As we des
ribed in the main text, it is importantto �rst repla
e the derivatives �H� = �=�z� whi
h are evaluated for �xed �� in terms of{ 26 {



�L� . This is a
hieved with the help of formula (3.34). In order to verify the latter, we mustshow that Æi�� = 0 ; Æi� = 0 : (A.1)The se
ond equation 
an be shown trivially with eq. (3.9). The �rst property of Æi may beestablished as follows. With eq. (3.9) we �nd��1� Æi�� = �(yi; z�)(Xj �(z� ; yj)�X�6=� �(z� ; z�)) +X�6=� �(yi; z�)�(z� ; z�)� (A.2)�X� �(yi; z�)�(z� ; yi) +Xj 6=i �(yi; yj) (�(z� ; yi)� �(z� ; yj)) :The right hand side is a double periodi
 fun
tion of yi, whi
h 
ould be
ome singular atyi � yj ; z� . We 
an analyze the singular behavior of ��1� Æi�� with the help of the followingexpansions, �(z; z0) = 1z � z0 � 2(z � z0)�1 +O((z � z0)2) ;�z�(z; z0) = � 1(z � z0)2 � 2�1 +O(z � z0) ; (A.3)�(z; z0)2 = 1(z � z0)2 � 4�1 +O(z � z0)at z � z0. In fa
t, using the above expansions for � one 
an show that ��1� Æi�� hasno singularities when two of the insertion points yi and z� approa
h ea
h other. Sin
ethe whole expression is double periodi
 and free of singularities, the fun
tion should be
onstant, independent of yi; z� . Therefore, it suÆ
es to 
al
ulate it at one single point. Letus set yi = z� , then we �nd��1� Æi�� = X�6=� �00(z� � z�)�(z� � z�) �Xj 6=i �00(z� � yj)�(z� � yj) : (A.4)Here, we have used the following expansion around t � z� ,�0(t� z�)�(t� z�) = �0(z� � z�)�(z� � z�) + "�00(z� � z�)�(z� � z�) ���0(z� � z�)�(z� � z�) �2# (t� z�) +O((t� z�)2) :Furthermore, we 
an set ea
h of yj (j 6= i) to be one of z� (� 6= �) be
ause the abovequantity does not depend on yj either. From the above equation we 
an see that theequation ��1� Æi�� = 0 is indeed satis�ed.There appears another derivative in the di�erential operator DHi for torus 
orrelationfun
tions, namely the derivative �� with respe
t to the modulus. We would like to 
he
kthat it a
quires no 
orre
tions when we swit
h from the variables �� to yi; u, or, in otherwords, ��� �� = 0 : (A.5)
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In order to see this, we 
ompute4�i��1� ��� �� = Xi �00(z� � yi)�(z� � yi) + 6�1 �X�6=� �00(z� � z�)�(z� � z�) : (A.6)Here we should noti
e that4�i�� �(z)�(z) = �00(z)�(z) = �z�(z; 0) + �(z; 0)2 ; 4�i�� �(z)�(z) = �6�1 +O(z) : (A.7)These formulas show that ��1� ���� has no singularities. As before we may evaluate thederivative at e.g. yi = zi and then �nd indeed ���1���� = 0.In order to show (3.33), we have to understand the properties of the fun
tion �0N thatwe de�ned in eq. (3.32),�0N = �0(0) N2b2 NY�<� �(z� � z�) 12b2 NYi<j �(yi � yj) 12b2 NY�;i=1 �(z� � yi)� 12b2 : (A.8)Conjugation of the various derivatives by the fa
tor �0N gives�0N�1 ��z��0N = ��z� + 12b2 X�6=� �(z� ; z�)� 12b2 Xi �(z� ; yi) ;�0N�1 ��yi�0N = ��yi + 12b2 Xj 6=i �(yi; yj)� 12b2 X� �(yi; z�) ;�0N�1 ����0N = ��� + T ;T = N2b2 ���0(0)�0(0) + 12b2 X�<� ���(z� � z�)�(z� � z�) + 12b2 Xi<j ���(yi � yj)�(yi � yj) � 12b2 X�;i ���(z� � yi)�(z� � yi) :Moreover, we note that�0N�1b2 �2�y2i �0N = b2 �2�y2i +0�Xj 6=i �(yi; yj)�X� �(yi; z�)1A ��yi++ 12 0�Xj 6=i �i�(yi; yj)�X� �i�(yi; z�)1A+ 14b2 0�Xj 6=i �(yi; yj)�X� �(yi; z�)1A2 ; (A.9)
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and �0N�1Æi�0N = = X� �(yi; z�)0� ��z� + 12b2 X�6=� �(z� ; z�)� 12b2 Xj �(z� ; yj)1A++X� �(yi; z�)0� ��yi + 12b2 Xj 6=i �(yi; yj)� 12b2 X� �(yi; z�)1A��Xj 6=i �(yi; yj)0� ��yi + 12b2 Xk 6=i �(yi; yk)� 12b2 X� �(yi; z�)1A++Xj 6=i �(yi; yj)0� ��yj + 12b2 Xk 6=j �(yj ; yk)� 12b2 X� �(yj; z�)1A :This long list of equations puts us into the position to �nally prove eq. (3.33),(�0N�)�1DHi (�0N�)�DLi =� 14b2 (Xj 6=i �(yi; yj)�X� �(yi; z�))2+ (A.10)+ 12b2 X� �(yi; z�)(X�6=� �(z� ; z�)�Xj �(z� ; yj))++ 12b2 Xj 6=i �(yi; yj)(Xk 6=j �(yj; yk)�X� �(yj; z�))++ 32b2 �1 � 34b2 Xj 6=i �i�(yi; yj) + 14b2 X� �i�(yi; z�) + T :There 
ould be double or single poles at yi = z� ; yj , but we 
an 
he
k that su
h termsare absent. Moreover, even if we regard the expression (A.10) as a fun
tion of yj (j 6= i),there are no singular terms. Therefore, the problem is whether the 
onstant independentof yi; yj vanishes or not. We set yj = zj for j 6= i so that (A.10) be
omes(�0N�)�1DHi (�0N�)�DLi == 14b2 ��(yi; zi)2 + �i�(yi; zi)�+ 32b2 �1 � 12b2  6�1 + �00(yi � zi)�(yi � zi) ! ; (A.11)where the last term of the right hand side 
omes from T and in the derivation we have alsoused 2�i�(�)�1 ��� �(�) = ��1 :Taking the limit of yi ! zi, we indeed obtain the desired equation (3.33).{ 29 {



B. Theta fun
tions on a general Riemann surfa
eIn this appendix we summarize some basi
 results 
on
erning a free boson on a Riemannsurfa
e of genus g. Basi
ally, our exposition follows the dis
ussions in [24℄. See also[34, 35, 36℄.B.1 The prime formWe 
onsider 
orrelation fun
tions on a 
ompa
t Riemann surfa
e � of genus g with a
omplex stru
ture. Let us 
hoose a 
anoni
al basis of homology 
y
les �k; �k (k = 1; � � � ; g)satisfying I�k !l = Ækl ; I�k !l = �kl ; (B.1)where !l(l = 1; � � � ; g) denote the holomorphi
 one-forms on �. The 
omplex symmetri
matrix �kl (Im�kl > 0) is known as the period matrix. We now �x an arbitrary point p0 in� and 
onstru
t a map from the universal 
over ~� of the surfa
e � to C g ,zk(p) = Z pp0 !k (B.2)with p; p0 on ~�. This embedding of ~� into C g is known as the Abel map. Fun
tions on theimage of the Abel map des
end to the surfa
e � if they are periodi
 under all shifts of theform z0k = zk+mk+ �klnl with integer 
oeÆ
ients mk; nl. In order to 
onstru
t a few basi
obje
ts on the surfa
e � and its 
over ~�, we re
all the following de�nition of Riemann'stheta fun
tion,�Æ(zj�) = Xn2Zg exp i�[(n+ Æ1)k�kl(n+ Æ1)l + 2(n+ Æ1)k(z + Æ2)k℄ ; (B.3)where Æk = (Æ1k; Æ2k) with Æ1k; Æ2k = 0; 1=2 denotes the so-
alled spin stru
ture along the�k and �k 
y
les. Under shifts along the 2g fundamental 
y
les, �Æ behaves as�Æ(z + �n+mj�) = exp[�i�(nk�klnl + 2nkzk)℄ exp[2�i(Æk1mk � Æk2nk)℄�Æ(zj�) : (B.4)The Riemann vanishing theorem asserts that �(z; �) vanishes in a point z on � if and onlyif there exists g � 1 points pi on � su
h that z 
an be written in the formz = �� g�1Xk=1 pk ; (B.5)where � is a �xed divisor on the surfa
e � that is known as Riemann 
lass. The righthand side of this equation 
ould be 
onsidered as an element of C g through appli
ation ofthe Abel map. Let us now introdu
e the following holomorphi
 1/2-di�erential hÆ(hÆ(z))2 = Xk �k�Æ(0j�)!k(z) : (B.6)
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hÆ is the essential building blo
k for the important prime form EE(z; w) = �Æ(R zw !j�)hÆ(z)hÆ(w) (B.7)whi
h is de�ned for any odd spin stru
ture Æ. The prime form E has weight (�1=2; 0) �(�1=2; 0) and near its unique zero at z = w one �nds E(z; w) � z � w. Moreover, E isperiodi
 under shifts zl along the �k-
y
le as z0l = zl + nl with nl = Æl;k. On the otherhand, a non-trivial phase appears if we shift zl along the �k-
y
le as z0l = zl + �lk,E(z + �k; w) = � exp��i��kk � 2� Z wz !k�E(z; w) : (B.8)On the left hand side of this equation, the obje
ts �k denotes the kth 
olumn ��;k of theperiod matrix �lk.B.2 Free linear dilaton theoryLet us employ the prime form and some 
lose relatives thereof to spell out the N -pointfun
tions of a free bosoni
 �eld with ba
kground 
harge Q. For the 
u
tuation around thezero mode, the 
orrelation fun
tions 
an be given as [24℄* NYi=1 e2�i'(zi)+ = Yi<j F (zi; zj)�2�i�j Yi H(zi)2Q�i ; (B.9)where we assume that Xi �i = Q(1� g) : (B.10)We have de�ned F and H asF (z; w) = exp��2�ImZ zw !k (Im�)�1kl ImZ zw !l� jE(z; w)j2 ; (B.11)and H(z) = j�(z)j exp� 116� Z d2wpgR(w) ln(F (z; w))� : (B.12)Integration over the g holomorphi
 forms !k furnishes an element of C g that 
an be mul-tiplied with (Im�)�1. As in [24℄ we 
an rewrite the fun
tion H in a formH(z) = exp 2�g � 1ImZ �(g�1)z !k (Im�)�1kl Im Z �(g�1)z !l! j�(z)j2 (B.13)whi
h involves the Riemann 
lass � that was introdu
ed in the previous subse
tion. Letnow pk denote g arbitrary points on �. Then the fun
tion �(z) satis�es�(z)�(w) = �0(z �P pk +�)�0(w �P pk +�)Yk E(w; pk)E(z; pk) : (B.14)
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It is important to mention that �(z) is a g=2-di�erential and that it has no zeros and poles.When translated with the kth 
olumn ve
tor of the period matrix, � satis�es�(z + �k; w) = exp �i(g � 1)�kk � 2�iZ �(g�1)z !k!�(z; w) : (B.15)As before, we 
ombined the matrix elements �lk for l = 1; : : : ; g into an element �k 2 C g .Referen
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