
*0
70
6.
07
44
*

 DESY 07-074
 KCL-MTH-07-06

 NSF-KITP-07-128

ar
X

iv
:0

70
6.

07
44

v1
  [

he
p-

th
] 

 6
 J

un
 2

00
7

Free fermion resolution of supergroup WZNW modelsThomas Quella 1 and Volker Shomerus 21 Korteweg-de Vries Institute for Mathematis, University of Amsterdam,Plantage Muidergraht 24, 1018 TV Amsterdam, The Netherlands2 DESY Theory Group, DESY Hamburg,Notkestrasse 85, D-22603 Hamburg, GermanyAbstratExtending our earlier work on PSL(2j2), we explain how to redue the solution of WZNWmodels on general type I supergroups to those de�ned on the bosoni subgroup. The newanalysis overs in partiular the supergroups GL(M jN) along with several lose relatives suh asPSL(N jN), ertain Poinar�e supergroups and the series OSP (2j2N). This remarkable progressrelies on the use of a speial Feigin-Fuhs type representation. In preparation for the �eld theoryanalysis, we shall exploit a minisuperspae analogue of a free fermion onstrution to dedue thespetrum of the Laplaian on type I supergroups. The latter is shown to be non-diagonalizable.After lifting these results to the full WZNW model, we address various issues of the �eld theory,inluding its modular invariane and the omputation of orrelation funtions. In agreementwith previous �ndings, supergroup WZNW models allow to study hiral and non-hiral aspetsof logarithmi onformal �eld theory within a geometri framework. We shall briey indiatehow insights from WZNW models arry over to non-geometri examples, suh as e.g. the W(p)triplet models.Keywords: Conformal Field Theory, Logarithmi Conformal Field Theory, FreeField Construtions, Supergroups, Lie Superalgebras, Representation Theory
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In addition to suh onrete appliations there exist a number of strutural reasons to beinterested in onformal �-models with target spae (internal) supersymmetry. On the one hand,being non-unitary, the relevant onformal �eld theory models exhibit rather unusual features suhas the ourrene of reduible but indeomposable1 representations and the existene of logarithmisingularities on the world-sheet. In this ontext, many oneptual issues remain to be solved, bothon the physial and on the mathematial side. These inlude, in partiular, the onstrutionof onsistent loal orrelation funtions [11℄, the modular transformation properties of haraters[12, 13℄, their relation to fusion rules [14, 15, 16℄, the treatment of onformal boundary onditions[17, 18℄ et. On the other hand, the speial properties of Lie supergroups allow for onstrutionswhih are not possible for ordinary groups. For instane, there exist several families of osetonformal �eld theories that are obtained by gauging a one-sided ation of some subgroup ratherthan the usual adjoint [19, 20, 21, 22℄. The same lass of supergroup �-models is also known toadmit a new kind of marginal deformations that are not of urrent-urrent type [23, 24℄. Finally,there seems to be a striking orrespondene between the integrability of these models and theironformal invariane [25, 26, 21, 22℄.In this note we will fous on the simplest lass of two-dimensional onformal �-models, namelyWZNW theories, in order to address some of the features mentioned above. The two essential prop-erties whih failitate an exat solution are (i) the presene of an extended hiral symmetry based onan in�nite dimensional urrent superalgebra2 and (ii) the inherent geometri interpretation. While(ii) is ommon to all �-models, the symmetries of WZNW models are neessary to lift geometriinsights to the full �eld theory. Both aspets single out supergroup WZNW theories among mostof the logarithmi onformal �eld theories that have been onsidered in the past [27, 11, 28℄ (seealso [29, 30℄ for reviews and further referenes). While investigations of algebrai and mostly hiralaspets of supergroup WZNW models reah bak more than ten years [31, 32, 33, 34, 35℄ it wasnot until reently that the use of geometri methods has substantially furthered our understandingof non-hiral issues [36, 24, 37℄. In the last three referenes the full non-hiral spetrum for theGL(1j1), the PSU(1; 1j2) and the SU(2j1) WZNW models has been derived based on methodsof harmoni analysis. The most important disovery in these artiles was the relevane of so-alled projetive overs and the resulting non-diagonalizability of the Laplaian whih ultimatelymanifests itself in the logarithmi behaviour of orrelation funtions.This paper will put these results on a more general and �rm oneptual basis by onsideringrather arbitrary supergroup WZNW models based on basi Lie superalgebras of type I. The de�n-ing properties of these Lie superalgebras are (i) the existene of a non-degenerate invariant form(not neessarily the Killing form) and (ii) the possibility to split the fermioni generators into twomultiplets whih transform in dual representations of the even subalgebra. The �rst feature isneessary to even spell out a Lagrangian for our models. Our seond requirement an be exploitedto introdue a distinguished set of oordinates in whih the Lagrangian takes a partiularly simpleform. These arise from some Gauss-like deomposition in whih a bosoni group element is sand-wihed between the two sets of fermions. The onstrution resembles the free �eld onstrution ofbosoni models [38, 39, 40, 41, 42℄, but its fermioni version turns out to be easier to deal with1In ontrast to some appearanes in the physis literature we will use the word \indeomposable" stritly in themathematial sense. Aording to that de�nition also irreduible representations are always indeomposable sinethey annot be written as a diret sum of two other (non-zero) representations.2Instead of referring to the names \Ka-Moody superalgebra" or even \aÆne Lie superalgebra" whih are fre-quently used in the physis ommunity, we will stik to the notion urrent superalgebra by whih we mean a entralextension of the loop algebra over a �nite dimensional Lie superalgebra.3



sine the orresponding Gauss deomposition is globally de�ned. We shall make no spei� hoieonerning the oordinates on the bosoni subgroup so that the underlying bosoni symmetry ismanifest throughout our onstrution.3 The generators of the underlying urrent superalgebraof our WZNW model are thus onstruted from urrents of the bosoni subalgebra along with anumber of free hiral fermioni ghost systems whih equals the number of fermioni generators.As was observed in [24℄ already, at least for the example of PSU(1; 1j2), the free fermionresolution desribed above provides a natural framework for the disussion of representations,spetrum, haraters and orrelation funtions, both in the full onformal �eld theory and in itssemi-lassial subsetor. In partiular, it is possible to introdue the notion of \Ka modules" forurrent superalgebras. These are obtained as a tensor produt of an irreduible highest weightrepresentation of the (renormalized) bosoni subalgebra and a Fok spae for the free fermions.Exatly as their �nite dimensional ousins, suh Ka modules turn out to be irreduible for generi(typial) hoies of the highest weight. Hene, their haraters an be written down immediatelyand their behaviour under modular transformations is straightforward to derive. Though ourpresentation does not allow to elaborate on the details without speifying a onrete model, webelieve that tehniques similar to the ones used in [32, 24℄ also permit to derive haraters foratypial irreduible representations. The latter arise as quotients from reduible Ka modules andtheir haraters possess representations through in�nite sums over haraters of Ka modules. Suhformulas were shown in [32, 37℄ to provide easy aess to modular properties of atypial irreduibles.If we restrit our attention to simple Lie superalgebras for a moment our analysis overs threetypes of in�nite series, namely A(m;n) = sl(mjn) (for m 6= n), A(n; n) = psl(njn) and C(n +1) = osp(2j2n) [45℄. But, widening Ka's original usage of the quali�ers \basi" and \type I",most of our results also apply to non-(semi)simple Lie superalgebras suh as various extendedPoinar�e superalgebras, the general linear Lie superalgebras gl(mjn) or supersymmetri extensionsof Heisenberg algebras.4 We wish to stress that our general results below ontain a solution of thePSL(njn) WZNW models. What makes these partiularly interesting is the fat that their volumeis an exat modulus, in ontrast to bosoni non-abelian WZNW models [23, 22℄. It is also worthemphasizing that the isometries of at superspae, AdS-spaes and many projetive superspaesfall into the lasses mentioned above. We thus expet our work to be relevant for these models aswell. A few omments in that diretion an be found in the onlusions.The plan of this paper is as follows. In the next setion we shall provide a detailed aount ofLie superalgebras of type I and the assoiated representation theory. Partiular emphasis is puton the struture of projetive modules, i.e. typial Ka modules and projetive overs of atypialirreduible representations. Afterwards we present the supergroup WZNW Lagrangian in setion 3and use a Gauss-like deomposition in order to rewrite it in terms of a bosoni WZNW model,two sets of free fermions and an interation term whih ouples bosons and fermions. This freefermion resolution is shown to have an algebrai analogue on the level of the urrent superalgebrawhih onstitutes the symmetry of the supergroup WZNW model. The analysis of the zero-modespetrum in the large volume setor is performed in setion 4 using methods of harmoni analysis.Most importantly, we shall determine the representation ontent for the ombined left right regularation on the algebra of funtions over the supergroup. To ahieve our goal, we use a reiproitybetween atypial irreduible representations and their projetive overs. On the way we also prove3See [43, 44℄ for a related approah.4WZNW models based on Heisenberg algebras may be used to desribe strings on maximally symmetri planewaves [46, 47℄. 4



the ourrene of a setor on whih the Laplaian is not diagonalizable. After these preparations weextend the free fermion resolution to the full WZNW model in setion 5. We introdue an analogueof Ka modules suitable for in�nite dimensional Lie superalgebras and sketh the alulation oforrelation funtions. The latter are neessarily logarithmi due to the non-diagonalizability of thedilatation operators L0 and �L0. At the end of setion 5, we propose a universal partition funtionresembling a harge onjugate invariant and gather some thoughts about the possibility of havingnon-trivial modular invariant partition funtions. In the onluding setion 6 we argue that thesolution of the logarithmi triplet model [11℄ formally �ts into the framework outlined before. Thisobservation is used to speulate about the struture of general logarithmi onformal �eld theories.Most of the statements whih appear in the main text an be turned into mathematiallyrigorous propositions. This applies in partiular to all algebrai manipulations. In our disussionof spetra, however, we fous on models based on �nite dimensional representations. The mostinteresting supergroups, on the other hand, are based on non-ompat and oasionally on non-reduive groups. While we believe that our disussion may be extended to suh ases, a fullyomprehensive presentation would have required to arefully distinguish between di�erent realforms. In the present note, we rather preferred to put the emphasis on the algebrai struturesthat { in our opinion { are equally relevant for all type I supergroup WZNW models.2 Some bakground on Lie superalgebras of type IThe main atress of this paper, the Lie supergroup G, is best introdued in terms of its underlyingLie superalgebra g. We will assume the latter to be �nite dimensional, basi and of type I. Theattribute \basi" guarantees the existene of a non-degenerate invariant metri and is needed inorder to exlude ertain pathologial ases whih would even rule out the existene of a WZNWLagrangian. The prediate \type I", on the other hand, implies the existene of two multipletsof fermioni generators and will simplify the interpretation of the hiral splitting in the onformal�eld theory we are onsidering.In the remainder of this setion we shall �rst present the ommutation relations of a general(possibly non-simple) basi Lie superalgebra of type I. Afterwards we summarize their represen-tation theory following the beautiful exposition of Zou [48℄ (see also [49℄). The reader who is notinterested in the mathematial details might wish to skip over parts of this setion in the �rstreading.2.1 Commutation relationsA Lie superalgebra g = g0 � g1 is a graded generalization of an ordinary Lie algebra [45℄. Thereare even (or bosoni) generators Ki whih form an ordinary Lie algebra g0, i.e. they obey theommutation relations [Ki;Kj ℄ = if ijlK l ; (2.1)with struture onstants that are antisymmetri in the upper indies and that satisfy the Jaobiidentity. In addition, type I Lie superalgebras possess two sets of odd (or fermioni) generatorsSa1 and S2a, a = 1; : : : ; r (generating g1) whih transform in an r-dimensional representation R ofg0 and its dual R�, respetively [50℄. Rephrased in terms of ommutation relations, this statementmay be expressed as[Ki; Sa1 ℄ = �(Ri)ab Sb1 [Ki; S2a℄ = S2b (Ri)ba : (2.2)5



The symbol Ri is an abbreviation for the representation matrix R(Ki). In a type I superalgebra,the anti-ommutators [Sa1 ; Sb1℄ and [S2a; S2b℄ vanish identially [50℄. On the other hand, generatorsSa1 do not anti-ommute with S2b. Before we are able to spell out their ommutation relations, weneed to introdue the supersymmetri bilinear formhKi;Kji = �ij hSa1 ; S2bi = Æab : (2.3)We assume �ij (not neessarily the Killing form) to be invariant with respet to g0 and, moreover,to be non-degenerate suh that its inverse �ij exists. The latter is a ruial ingredient in thede�nition [Sa1 ; S2b℄ = �(Ri)ab �ijKj : (2.4)The struture onstants whih appear in this relation are uniquely determined by the requirementthat the metri (2.3) is invariant, i.e. h[X;Y ℄; Zi = hX; [Y;Z℄i. The supersymmetry and non-degeneray of the metri on the full Lie superalgebra g follow immediately from the de�nition.The ommutation relations above preserve the fermion number #(Sa1 ) �#(S2a). Hene g andalso its universal enveloping superalgebra U(g) have a natural Z-grading (loalized in three degrees)whih is onsistent with the intrinsi Z2-grading [50℄. It is this property whih distinguishes type ILie superalgebras among all Lie superalgebras. Let us also emphasize that the Cartan subalgebraof g will always be identi�ed with that of g0 in what follows. This will be important below whenwe introdue highest weight representations.Before we end this subsetion on the de�nition of type I superalgebras, let us reet a bit onhow restritive their struture is. In fat, in building a Lie superalgebra one annot just ome upwith any bosoni subalgebra g0 and hope to extend it by adding fermions transforming in somerepresentation R of g0. There is an additional onstraint, namely the graded Jaobi identity. Whilethe latter is by assumption identially satis�ed for g0 and the mixed bosoni/fermioni ommutatorsdo not impose any new onditions, there is a non-trivial restrition arising from the ommutator[Sa1 ; [Sb1; S2℄℄ and its yli permutations. This leads to the requirement(Ri)b �ij (Rj)ad + (Ri)a �ij (Rj)bd = 0 : (2.5)An equivalent formulation is to demand that the quadrati Casimir vanishes on the symmetri partof the tensor produt R
R. Alternatively, the onstraint on the hoie of R may be rephrased byrequiring that the tensor Aabd = (Ri)a �ij (Rj)bd (2.6)is antisymmetri in the upper two as well as the lower two indies. Although the property (2.5)(or (2.6)) looks rather innoent it will be a ruial ingredient in many of the equalities we shallenounter.2.2 Representation theoryIn the analysis of supergroupWZNWmodels there are a variety of representations of the underlyingLie superalgebra whih play a role. The aim of this setion is to provide a brief summary of therelevant modules of �nite dimensional type I Lie superalgebras following Zou's exposition [48℄.For de�niteness, all the de�nitions and statements that follow below will be formulated for �nitedimensional representations. It is understood, though, that our de�nitions an be extended toin�nite dimensional representations (disrete and ontinuous) as well. Whether this is also true fortheir properties, however, remains to be investigated.6



2.2.1 Ka modules and their dualsLet us denote by Rep(g0) the set of isomorphism lasses of irreduible representations of the bosonisubalgebra g0. The basi building bloks in the representation theory of Lie superalgebras of type Iare Ka modules K�, � 2 Rep(g0) [45, 50℄. They are indued from irreduible representations V� ofthe bosoni subalgebra g0. More preisely, the representation is extended by letting one multipletof fermioni generators S2a at trivially on the vetors v 2 V�. The remaining states in the Kamodule are then reated by ating with generators from the seond multiplet of fermions, Sa1 . Fromour verbal desription we immediately infer the deomposition of Ka modules with respet to thebosoni subalgebra,5 K���g0 = V� 
F = M� �K� : V��0 V� : (2.7)Here and in what follows we assume all g0-modules to be fully reduible and denote the resultingmultipliities in terms of the square braket [M0 : N0℄0 where M0 is an arbitrary (fully reduible)g0-module and N0 an irreduible g0-module. The g0-module F = V(Sa1 ) appearing in the previousequation is the exterior (or Grassman) algebra generated by the fermions Sa1 . Its struture as a g0-module is determined by projeting tensor powers of the module R� onto their fully anti-symmetrisubmodules,F = V �0 �R� � �R� 
R��antisym � �R� 
R� 
R��antisym � � � � � �(R�)
r�antisym : (2.8)The n-fold tensor produt here orresponds to a state involving n fermioni generators Sai1 , i =1; : : : ; n. The ase of no fermioni generators leads to the one-dimensional trivial representationV0 = V �0 . It is obvious that the series will trunate after the r-th tensor produt sine the fermionigenerators Sa1 anti-ommute among themselves. Consequently, the dimension of Ka modules isalways given by dim(K�) = 2r dim(V�).In lose analogy to the previous de�nition we may also introdue dual Ka modules K�� bystarting with the dual bosoni representation V �� = V�+ . Deviating from the above onstrution wenow let the �rst set of fermioni generators Sa1 at trivially on the orresponding vetors and use S2ato reate new states. Sine the two sets of fermioni generators transform in dual representationsthe bosoni ontent is then obviously given byK����g0 = V �� 
F� = �V� 
F�� = M� �K�� : V��0 V� : (2.9)The dimensions of the modules K� and K�� oinide and it may easily be seen that the representa-tions are indeed dual to eah other.Let us onlude the disussion of Ka modules with a short omment about the last term inthe fermioni representation F , eq. (2.8). Innoent as it seems, it is important to stress that thehighest omponent [R
r℄antisym need not be the trivial g0-module V0 again, even though it ertainlyis one-dimensional. The ation of the bosoni subalgebra on this spae an be alulated expliitly,Ki � �S11 � � �Sr1� = �tr(Ri)S11 � � �Sr1 : (2.10)In ase g0 is semisimple, it admits a unique one-dimensional representation, namely the trivialg0-module V0. Hene, we onlude that tr(Ri) = 0 for Lie superalgebras with a semisimple bosonisubalgebra.5In the following we shall refer to the right hand side of this equation and other restritions of g-modules tothe bosoni subalgebra g0 as the \bosoni ontent". Hene, this phrase is not related to the Z2-grading of therepresentation spae. 7



2.2.2 Simple modules and their bloksKa modules provide an important intermediate step to onstruting irreduible representations.Finding their exat relation with irreduibles, however, requires good ontrol over the struture ofKa modules. For generi labels �, the (dual) Ka modules turn out to be irreduible. Thereby, theygive rise to what is known as typial irreduible representations L� = K�. But there exist speialvalues of � for whih the assoiated Ka module ontains a proper invariant subspae. The so-alled atypial irreduible representations L� are obtained from suh K� by fatoring out the uniquemaximal invariant submodule [50℄. In ontrast to the typial ase, it is not straightforward to givea general formula for the dimension or the bosoni ontent of atypial irreduible representations,see however [48, 51℄. As will be explained below the representations L0 as well as LR and L�R = LR�are always atypial.We shall assume that all irreduible representations of our type I superalgebra g emerge as(possibly trivial) quotients of Ka modules (f. [50℄). In other words, the set Rep(g) of iso-morphism lasses (or labels) of irreduible g-modules agrees with the one of its bosoni subal-gebra, i.e. Rep(g) = Rep(g0). Aording to our previous remarks, it splits into two disjoint sets,Rep(g) = Typ(g) [Atyp(g), ontaining typial and atypial labels, respetively.Simple modules of a Lie superalgebra an be grouped into so-alled bloks. By de�nition, bloksare the parts of the �nest partition of Rep(g) suh that two simple modules belong to the same partas soon as they have a non-split extension (see, e.g., [52℄). An intuitive way of understanding thisde�nition is to view the simple modules as verties in a graph. There exists an edge between twoverties if and only if the orresponding simple modules admit a non-split extension. In this piture,the bloks orrespond to onneted omponents of the full graph. The property \being onneted"de�nes an equivalene relation � on Rep(g). We will use the notation �(g) = Rep(g)= � for the setof all bloks and [�℄ 2 �(g) for individual bloks. Notie that eah typial module forms a blok byitself.6 Atypial irreduible representations, on the other hand, form onstituents of larger bloks.This implies the deomposition �(g) = �typ(g) [ �atyp(g) where �typ(g) = Typ(g).It is easy to argue that eah Lie superalgebra of type I possesses a (probably in�nite) blok[0℄ ontaining the trivial representation. Atypiality of the one-dimensional trivial representationalready follows on dimensional grounds sine the dimension of Ka modules is always a multipleof 2r. Let us ontinue to show that the representations LR and L�R �= LR� whih are based on theg0-modules R and R� lie in the same blok [0℄. It is straightforward to see that L0 is obtained asa quotient from the Ka module K0 where the subsript 0 refers to the trivial g0-module. In orderto prove the atypiality of LR we onsider the states in K0 whih are obtained from the groundstate by applying preisely one fermioni generator. These states transform in the representationR of g0. Sine the Ka module K0 is atypial and its irreduible quotient is of dimension one, thisrepresentation has to deouple, i.e. the fermioni generators S2a have to annihilate these states.We observe that the representation R an be part of at least two di�erent supermultiplets: it maybe used to de�ne a Ka module KR and it generates a submodule QR of K0. In both ases, thehighest weight onditions are exatly idential. But obviously the dimensions of QR and KR donot oinide sine dimQR < dimK0 < dimKR. Hene, QR has to be a non-zero quotient of KR,proving the atypiality of the latter. The same reasoning ould be repeated with at least one of theg0-modules whih appear in the (dual) Ka modules KR and KR� and so on. Thereby we onstruta presumably in�nite hain of atypial representations L� in the blok [0℄. The labels that are6This statement only holds in this form if we restrit ourselves to �nite dimensional representations.8



inluded in this blok all appear in the deomposition of the tensor produts R
m 
 (R�)
n forarbitrary powers m and n (the onverse is not true, of ourse).2.2.3 Projetive modulesLie superalgebras possess a whole zoo of representations whih annot be deomposed into a diretsum of irreduibles. We shall see some important examples momentarily. Let us reall before thatany g-module M possesses a omposition series. The latter is determined by a speial kind of�ltration, in the present ase an asending set of submodules Mi, i = 0; : : : ; n where M0 = 0 andMn = M , suh that the quotients Mi=Mi�1 are simple modules. We will denote by [M : L�℄ thenumber of irreduible g-modules L� in this omposition series of M .The most interesting lass of indeomposables onsists of the so-alled projetive overs P� ofirreduibles L�. The module P� is de�ned to be the unique indeomposable projetive module thatontains the irreduible representation L� as its head.7 By de�nition, the head of a representationis the quotient by its maximal proper submodule. For typial labels one has the equivalenesL� �= K� �= P�. For atypial labels, however, irreduible modules, Ka modules and projetiveovers are all inequivalent. In partiular, they possess di�erent dimensions.All projetive modules P of a type I superalgebra are known to possess a Ka ompositionseries [48℄, i.e. a �ltration in terms of submodules whose quotients are Ka modules.8 We denoteby (P : K�) the number of Ka modules K� in the Ka omposition series of P. In order to desribethe preise struture of indeomposable projetive modules we will rely on the following reiproitytheorem [48, Theorem 2.7℄ (see also [49℄)�P� : K�� = �K� : L�� : (2.11)This important equation relates the multipliities of Ka modules in the Ka omposition seriesof a projetive over to the multipliity of irreduible representations arising in the ompositionseries of Ka modules. Hene, the struture of projetive overs is ompletely determined by thatof Ka modules. The statement is trivial for typial labels but it ontains valuable informationin the atypial ase. Note that a small tehnial assumption underlying Zou's proof of eq. (2.11)seems to be overome if one uses the approah of [49℄.There is one simple onstrution that is guaranteed to furnish projetive modules and it isexatly this onstrution through whih the latter will enter in our harmoni analysis later on. Theidea is to indue representations from irreduible representations V� of g0 by letting both sets offermioni generators Sa1 and S2a at non-trivially, i.e.B� = Indgg0(V�) : (2.12)These modules are projetive and reduible [48℄. Indeed, under reasonable assumptions on g0 all�nite dimensional g0-modules are projetive, and this property is preserved by indution. Forlater use, let us write down the deomposition of the representations B� into their indeomposablebuilding bloks. We start with the observation that their bosoni ontent is given byB���g0 = V� 
F 
F� : (2.13)7The attribute \projetive" is used here in the sense of ategory theory and should not be onfused with thenotion of projetive representations that is used when algebrai relations are only respeted up to some multipliers(oyles).8It should be stressed that this property is not true for type II Lie superalgebras. A ounter-example is providedby D(2; 1;�) whose representation ategory is disussed in [53℄.9



Using a suitable rearrangement of these fators it is obvious that the multipliities of Ka modules inthe Ka omposition series of B� are given by (B� : K�) = [K��+ : V� ℄0. For the atual deompositioninto indeomposables we use our knowledge that B� is projetive. This implies that it may bewritten as a diret sum of (typial) irreduible Ka modules and (atypial) projetive overs. Whilenothing remains to be done for typial representations, the orret desription of the atypial setorrequires ombining the orresponding (non-projetive) Ka modules into projetive overs. In orderto ahieve this goal we note the equality [K��+ : V� ℄0 = [K�� : V�+ ℄0 whih holds beause both sidesorrespond to the number of g0-invariants in the tensor produt V� 
 V �� 
 F�. Now we an usethe following simple onsequene of the duality relation (2.11),[K��+ : V� ℄0 = �K�� : V�+�0 = X� �K�� : L��� �L�� : V�+�0 = X� �P� : K�� �L�� : V�+�0 ; (2.14)to arrive at the �nal resultB� = M�2Typ(g)�K��+ : V��0K� � M�2Atyp(g)�L�� : V�+�0 P� : (2.15)This formula will be one of the main ingredients in the harmoni analysis to be performed belowin setion 4.2. It is interesting to note that every indeomposable projetive module arises asa subspaes of some B� [48℄. This means that the ategory of representations onsidered here\ontains enough projetives".Let us elaborate a bit more on the distinguished role that projetive modules { diret sums oftypial irreduibles and projetive overs of atypial irreduibles { play for the representation theoryof Lie superalgebras. In fat, in many ways they take over the role of irreduible representations inthe theory of ordinary Lie algebras. Most importantly, it an be shown that the tensor produt ofany module with a projetive one is projetive again. In other words, projetive modules form anideal in the representation ring. Moreover, the Clebsh-Gordon deomposition for tensor produts ofprojetive modules an be determined through a variant of the Raah-Speiser algorithm. Considerfor instane two projetive g-modules A1 and A2. Being projetive, they have a Ka ompositionseries and hene their bosoni ontent is given byAi��g0 = X�mi�V� 
F : (2.16)For the bosoni ontent of the tensor produt A1 
A2 this implies�A1 
A2���g0 = X�m1�m2�hV� 
 V� 
Fi
F : (2.17)The last F should be interpreted as the fermioni fator that is guaranteed to be present in everyprojetive module, due to the fat that they possess a Ka omposition series. All we need to do isto deompose the fator V� 
 V� 
F into irreduibles of g0. This provides us with a list of all Kamodules in A1
A2 along with their multipliities. Typial Ka modules orrespond to irreduiblerepresentations appearing in the tensor produt while atypial Ka modules must be re-ombinedinto projetive overs. This �nal step is performed based on formula (2.11) and it leads to anunambiguous result. Our disussion shows how the Clebsh-Gordon deomposition of the tensorprodut A1
A2 may be played bak to the bosoni subalgebra. The deomposition of V�
V�
Fan be takled with the usual algorithmi tools from the representation theory of Lie algebras.10



2.2.4 The quadrati Casimir elementOne of the most important objets in representation theory are the Casimir elements, i.e. elementsof the enter of the universal enveloping algebra U(g). For our onrete hoie of generators andinvariant form we have a natural quadrati CasimirC = Ki�ijKj � Sa1S2a + S2aSa1 : (2.18)It may easily be heked that this operator ats as a salar on Ka modules K�. For a vetor v 2 V�in the de�ning irreduible bosoni multiplet one �ndsCv = �CB � tr(Ri)�ijKj�v ; (2.19)where CB = Ki�ijKj is the quadrati Casimir of g0 assoiated to its non-degenerate metri. Sinethe seond term inside the braket ommutes with g0 as well, the irreduibility of V� implies thatC ats as a salar on the whole multiplet V�. Using the ommutativity of C with g, this ation maybe extended to the omplete Ka module K�. We will denote the orresponding eigenvalue of theCasimir by C� = C(K�). Beause irreduible g-modules are de�ned as a quotient of Ka modulesthis immediately implies C(L�) = C(K�).The observation that several representations may have the same Casimir eigenvalues an beseen to generalize. In fat, it just takes a moment of thought to onvine oneself that one hasC� = C� (and the same for other Casimirs) whenever the simple modules belong to the same blok,� � �. It seems plausible that also the onverse holds, i.e. that the set of Casimir operators may beused to separate di�erent bloks. If this assertion was true, then hoosing � and � from di�erentbloks, one would be able to �nd a Casimir (not neessarily quadrati) whose eigenvalues on L�and L� disagree.The previous omment that Casimir eigenvalues are onstant on bloks has interesting impli-ations for indeomposables. By de�nition, the omposition series of an indeomposable ontainsirreduibles belonging to one and the same blok. Therefore, within any indeomposable, no matterhow ompliated it is, all generalized eigenvalues of the Casimir elements are the same. The ad-ditional quali�er \generalized" is neessary beause a Casimir element need not be diagonalizablewhen evaluated in an indeomposable representation. This phenomenon is partiularly ommonfor the projetive overs of atypials. We shall see later that { at least for a type I Lie superalgebra{ the quadrati Casimir (2.18) annot be diagonalized in any of the projetive overs P�.9 Further-more, there exists at least one series of projetive overs, the ones assoiated to the blok [0℄ 2 �(g)of the trivial representation, for whih the generalized eigenvalues, i.e. the diagonal entries in theJordan blok, vanish identially.103 The supergroup WZNW model and its symmetriesIn this setion we will introdue the WZNW model using its Lagrangian formulation. We willemploy a Gauss-like deomposition in order to rewrite the Lagrangian in terms of a bosoni WZNW9Diagonalizability might be true for other Casimir operators though. For gl(1j1), for example, the Casimir elementE2 is diagonalizable in all weight modules. Note however that E2 is not related to a non-degenerate invariant formas in eq. (2.18).10Certain type II superalgebras suh as e.g. D(2; 1;�) are known to also possess projetive overs with non-vanishinggeneralized eigenvalues [53℄. 11



model, a free fermion theory and an interation term. We then desribe the in�nite dimensionalurrent superalgebra of the model and explain how the latter may be reonstruted from the freefermion resolution introdued before. Let us stress that, ontrary to the well known free �eldapproahes to bosoni WZNW models [38, 39, 40, 41, 42℄, our approah keeps the full bosonisymmetry manifest at all times. It redues the problem of solving the supergroup WZNW modelto a solution of the underlying bosoni model.3.1 The Lagrangian desriptionGiven the Lie superalgebra g as de�ned in (2.1)-(2.4), we an ombine its generators with elementsof a Grassmann algebra in order to obtain a Lie algebra whih an be exponentiated. In physiist'smanner we shall de�ne the supergroup G to be given by elementsg = e� gB e�� (3.1)with � = �aS2a and �� = ��bSb1 (this parametrization has been termed \hiral superspae" in [54℄).The oeÆients �a and ��b are independent Grassmann variables while gB denotes an element ofthe bosoni subgroup GB � G obtained by exponentiating the Lie algebra generators Ki. Theattentive reader may have notied that the produt of two suh supergroup elements (3.1) will notagain give a supergroup element of the same form. We shall lose an eye on suh issues. For us,passing through the supergroup is merely an auxiliary step that serves the purpose of onstrutinga WZNW-like onformal �eld theory with Lie superalgebra symmetry. Sine Lie superalgebras donot su�er from problems with Grassmann variables, the resulting onformal �eld theory will bewell-de�ned.The WZNW Lagrangian for maps g : �2 ! G from a two-dimensional Riemann surfae �2 tothe supergroup G is fully spei�ed in terms of the invariant metri on g and it readsSWZNW[g℄ = � i4� Z�2hg�1�g; g�1 ��gi dz ^ d�z � i24� ZB3hg�1dg; [g�1dg; g�1dg℄i : (3.2)The seond term is integrated over an auxiliary three-manifold B3 whih satis�es �B3 = �2. Notethat the measure idz ^ d�z is real. The topologial ambiguity of the seond term possibly imposesa quantization ondition on the metri h�; �i or, more preisely, on its bosoni restrition, in orderto render the path integral well-de�ned.11 Given the parametrization (3.1), the Lagrangian an besimpli�ed onsiderably by making iterative use of the Polyakov-Wiegmann identitySWZNW[gh℄ = SWZNW[g℄ + SWZNW[h℄� i2� Z hg�1 ��g; �hh�1i dz ^ d�z : (3.3)The WZNW ation evaluated on the individual fermioni bits vanishes beause the invariant form(2.3) is only supported on grade 0 of the Z-grading. The �nal result is thenSWZNW[g℄ = SWZNW[gB ; �℄ = SWZNW[gB ℄� i2� Z h���; gB ��� g�1B i dz ^ d�z : (3.4)11Note that for WZNWmodels based on bosoni groups one usually expliitly introdues an integer valued onstant,the level, whih appears as a prefator of the Killing form. For supergroups the Killing form might vanish. Hene thereis no anonial normalization of the metri. Moreover, we would like to inlude models whose metri renormalizesnon-multipliatively (see below). Under these irumstanes it is not partiularly onvenient to display the levelexpliitly and we assume instead that all possible parameters are ontained in the metri h�; �i.12



For the orret determination of the mixed bosoni and fermioni term it was again neessary torefer to the grading of g. The latter implies for instane that the salar produt vanishes if bosonigenerators are paired with fermioni ones.It is now ruial to realize (see also [36, 24℄) that we may pass to an equivalent desription ofthe WZNW model above by introduing an additional set of auxiliary �elds pa and �pa,S[gB ; p; �℄ = SWZNWren [gB ℄ + Sfree[�; ��; p; �p℄ + Sint[gB ; p; �p℄= SWZNWren [gB ℄ + i2� Z nhp; ���i � h�p; ���i � hp; gB �p g�1B io dz ^ d�z : (3.5)Here, �; �� and our new fermioni �elds p = paSa1 and �p = �paS2a all take values in the Lie superalgebrag. Our onventions may look slightly asymmetri but as we will see later this just resembles theasymmetry in the parametrization (3.1). Up to ertain subtleties that are enoded in the subsript\ren" of the �rst term, it is straightforward to see that we reover the original Lagrangian (3.4)upon integrating out the auxiliary �elds p and �p.Let us omment a bit more on eah term in the ation (3.5). Most importantly, we need tospeify the renormalization of the bosoni WZNW model whih results from the hange in the pathintegral measure (f. [55℄). The omputation of the relevant Jaobian has two important e�ets.First of all, it turns out that the onstrution of the purely bosoni WZNW model entering theation (3.5) employs the following renormalized metri12hKi;Kjiren = �ij � ij with ij = tr(RiRj) : (3.6)Note that this renormalization is not neessarily multipliative. For simple Lie superalgebras therenormalized metri is always idential to the original one up to a fator. For non-simple Liesuperalgebras, however, this is generially not the ase as an be inferred from the example ofgl(1j1).As a seond onsequene of the renormalization, the ation (3.5) may ontain a Fradkin-Tseytlinterm, oupling a non-trivial dilaton to the world-sheet urvature R(2),SWZNWFT [gb℄ = Z�2 d2�phR(2)�(gB) where �(gB) = �12 lndetR(gB) : (3.7)The same kind of expression has already been enountered in the investigation of the GL(1j1)WZNW model, f. [31, 32, 36℄. From the disussion at the end of setion 2.2.1 it is obvious that �vanishes whenever g0 is a semisimple Lie algebra. Therefore, a non-trivial dilaton is a feature of theseries osp(2j2n), sl(mjn) and gl(mjn) or, in other words, of most basi Lie superalgebras of type I.The preise reason for the laimed form of renormalization, i.e. the modi�ation of the metri andthe appearane of the dilaton, will beome lear in the following setions when we disuss the fullquantum symmetry of the supergroup WZNW model. At the moment let us just restrit ourselvesto the omment that the dilaton is required in order to ensure the supergroup invariane of thepath integral measure for the free fermion resolution, i.e. the desription of the WZNW model interms of the Lagrangian (3.5).12We assume this metri to be non-degenerate. Otherwise we would deal with what is known as the ritial levelor, in string terminology, the tensionless limit. 13



Before we onlude this subsetion, let us quikly return to the fermioni terms of the Lagrangian(3.5) whih may be rewritten in an even more expliit form usinggB �p g�1B = gB S2b �pb g�1B = S2aRab(gB) �pb : (3.8)The result for the interation term isSint[gB ; p; �p℄ = � i2� Z paRab(gB) �pb dz ^ d�z : (3.9)In an operator formulation, the objet Rab(gB) should be interpreted as a vertex operator of thebosoni WZNW model, transforming in the representation R
R�. We may onsider the interationterm paRab(gB) �pb as a sreening urrent. Note that the latter is non-hiral by de�nition, a featurethat is not really spei� to supergroups but applies equally to bosoni models. Nevertheless, theexisting literature on free �eld onstrutions did not pay muh attention to this point. Atually,the distintion is not really relevant for purely bosoni WZNW models beause of their simplefatorization into left and right movers. In the present ontext, however, a omplete non-hiraltreatment must be enfored in order to apture and understand the speial properties of supergroupWZNW models.3.2 Covariant formulation of the symmetryIt is well known that the full WZNW model exhibits a loop group symmetry. More preisely, theLagrangian (3.2) (and hene also the funtional (3.5)) is invariant under multipliation of the �eldg(z; �z) with holomorphi elements from the left and with antiholomorphi elements from the right.In�nitesimally, eah of these transformations generates an in�nite dimensional urrent superalgebra,a entral extension ĝ of the loop superalgebra belonging to g. For the holomorphi setor the latteris equivalent to the following operator produt expansions (OPEs). In the bosoni subsetor we�nd Ki(z)Kj(w) = �ij(z � w)2 + if ij lK l(w)z � w : (3.10)The transformation properties of the fermioni urrents areKi(z)Sa1 (w) = �(Ri)ab Sb1(w)z � w and Ki(z)S2a(w) = S2b(w) (Ri)baz � w : (3.11)Finally we need to speify the OPE of the fermioni urrents,Sa1 (z)S2b(w) = Æab(z � w)2 � (Ri)ab �ijKj(w)z � w : (3.12)The previous operator produt expansions are straightforward extensions of the ommutation re-lations (2.1), (2.2) and (2.4). The entral extension is determined by the invariant metri (2.3).The urrent superalgebra above de�nes a hiral vertex algebra via the Sugawara onstrution[56℄. As usual, the orresponding energy momentum tensor is obtained by ontrating the urrentswith the inverse of a distinguished invariant and non-degenerate metri. The appropriate fullyrenormalized (hene the subsript \full-ren") metri is de�ned byhKi;Kjifull-ren = (
�1)ij = �ij � ij � 12 f imn f jnmhSa1 ; S2bifull-ren = (
�1)ab = Æab + (Ri�ijRj)ab (3.13)14



and it is the result of adding half the Killing form of the Lie superalgebra g to the original lassialmetri (2.3).13 Note that some of the terms in the fully renormalized metri (3.13) an be iden-ti�ed with the (partially) renormalized metri (3.6) whih we introdued while deriving the freefermion Lagrangian. The energy momentum tensor of our theory involves the inverse of the fullyrenormalized metri, T = 12 hKi
ijKj � Sb1
abS2a + S2a
abSb1� : (3.14)Both, urrents and energy momentum tensor, may similarly be de�ned for the antiholomorphisetor. The appearane of a renormalized metri in the Sugawara onstrution is a rather ommonfeature. Supergroup WZNW models are ertainly not exeptional in this respet.In order to omplete the disussion of the operator ontent, we have to introdue vertex oper-ators �(M)(z; �z). The latter arry a representation M of g� g, the underlying horizontal part ofthe urrent superalgebra of our model. If we assume for a moment that M = (��) where � and �refer to Ka modules of the individual fators in g� g then primary �elds are haraterized by theoperator produtsKi(z)�(��)(w; �w) = �D(�)(Ki)�(��)(w; �w)z � w S2a(z)�(��)(w; �w) = 0 (3.15)�Ki(�z)�(��)(w; �w) = �(��)(w; �w)D(�)(Ki)�z � �w �Sa1 (�z)�(��)(w; �w) = 0 : (3.16)In addition, there are �elds (Sa11 � � �Sas1 �S2b1 � � � �S2bt�(��))(z; �z) whih belong to the same represen-tation of the horizontal subsuperalgebra. The matries D(�) are representation matries of g0.As usual we may infer the onformal dimension of the primary �elds from their operator produtexpansion with the energy momentum tensor,T (z)�(��)(w; �w) = h(��) �(��)(w; �w)(z � w)2 + ��(��)(w; �w)z � w�T (�z)�(��)(w; �w) = �h(��) �(��)(w; �w)(z � w)2 + ���(��)(w; �w)�z � �w : (3.17)Using the standard tehniques one easily �nds that the onformal dimensions are given by (renor-malized) Casimir eigenvalues,h(��) = 12 C full-ren� �h(��) = 12 C full-ren� : (3.18)The orresponding Casimir is given by C full-ren = Ki
ijKj + tr(
Ri)�ijKj and should be thoughtof as a renormalization of eq. (2.19). It is important to stress one more that in our onventionsthe level is ontained impliitly in the metri �ij . Thus the onformal dimensions depend on thelevel. They vanish if the metri of the supergroup is saled to in�nity. In that limit the groundstate setor deouples, and it an be analyzed using methods of harmoni analysis. This will bearried out in setion 4.13Again, this renormalization does not need to be multipliative, see for instane GL(1j1).15



3.3 Free fermion resolutionOur next aim is to desribe the urrent superalgebra de�ned above and the assoiated primary�elds in terms of the deoupled system of bosons and fermions that appear in the Lagrangian (3.5).As one of our ingredients we shall employ the bosoni urrent algebraKiB(z)KjB(w) = (�� )ij(z � w)2 + if ijlK lB(w)z � w ; (3.19)whih is de�ned using the (partially) renormalized metri whih has been introdued in (3.6). Inaddition, we need r free fermioni ghost systems with �elds pa(z) and �a(z) of spins h = 1 andh = 0, respetively. They possess the usual operator produtspa(z) �b(w) = Æbaz � w : (3.20)Fermioni �elds are assumed to have trivial operator produt expansions with the bosoni genera-tors. By onstrution, the urrents KiB and the �elds pa, �b generate the hiral symmetry of the�eld theory whose ation isS0[gB ; p; �℄ = SWZNWren [gB ℄ + Sfree[�; ��; p; �p℄ : (3.21)Our full WZNW theory may be onsidered as a deformation of this theory, one we take intoaount the interation term between bosons and fermions, see eq. (3.9). The further developmentof this approah and its onsequenes will be the subjet of setion 5.But returning �rst to the deoupled ation (3.21), it is easy to see that it de�nes a onformal�eld theory with energy momentum tensorT = 12 hKiB 
ijKjB + tr(
Ri)�ij �KjBi� pa��a : (3.22)Note the existene of the dilaton ontributions, i.e. terms linear in derivatives of the urrents. Inaddition to the onformal symmetries, the ation (3.21) is also invariant under a ĝ� ĝ urrent su-peralgebra. The orresponding holomorphi urrents are de�ned by the relations (normal orderingis implied) Ki(z) = KiB(z) + pa (Ri)ab �b(z)Sa1 (z) = ��a(z) + (Ri)ab �ij �bKjB(z)� 12(Ri)a �ij (Rj)bd pb��d(z)S2a(z) = �pa(z) : (3.23)It is a straightforward exerise, even though slightly umbersome and lengthy, to hek that this setof generators reprodues the operator produt expansions (3.10), (3.11) and (3.12). The only inputwe need is the Jaobi identity (2.5). The same identity shows that the quantity in (3.23) whih isused to ontrat pb��d is in fat antisymmetri in the lower two indies. Obviously, a similar setof urrents may be obtained for the antiholomorphi setor. Given the representation (3.23) forthe urrent superalgebra one may also hek the equivalene of the expressions (3.14) and (3.22)for the energy momentum tensors. Algebraially, the alulation rests on the Jaobi identity (2.5)as well as on the equations(
�1)ij �ij (Rl)ab = (Ri)a (
�1)b = (
�1)a (Ri)b : (3.24)16



The latter arise as invariane onstraints for the metri h�; �ifull-ren as de�ned in eq. (3.13).The urrent superalgebra de�ned in (3.23) has a natural ation on the vertex operators of theonformal �eld theory de�ned by the deoupled Lagrangian S0. One we inlude the interationterm, the theory beomes equivalent to the full WZNW model. Hene, we must be able to mapthe vertex operators of the deoupled theory to the vertex operators of the WZNW theory. Thepreise relation turns out to be rather involved. Therefore, we postpone a more detailed expositionof this relation to setion 5. Instead, we will ontinue with a semi-lassial analysis of the spaeof vertex operators. This proedure allows us to learly exhibit the subtleties of the full quantum�eld theory in a simple and geometri setup.4 Semi-lassial analysisThe WZNWmodel we introdued in the last setion admits a semi-lassial limit when the invariantmetri de�ned in (2.3) is saled to in�nity. This orresponds to hoosing the levels of the underlyingbosoni WZNW model large. In this weak urvature regime we expet the onformal dimensions ofall primary �elds to tend to zero and the higher modes to deouple. We will start with a disussionof the global symmetry of the WZNW model and how it is realized in terms of di�erential operatorson the spae of quantum mehanial wave funtions. Then we disuss the Laplaian, i.e. the waveoperator, on G and determine its (generalized) eigenfuntions and eigenvalues whih approximatethe vertex operators and their onformal dimensions in the full onformal �eld theory. It is shownthat the spetrum ontains non-hiral indeomposable modules on whih the Laplaian is notdiagonalizable.4.1 SymmetryOne of the inherent properties of supergroup manifolds G is that they admit two ations of G onitself. These so-alled left and right regular ations are de�ned by the mapsLh : g 7! hg and Rh : g 7! gh�1 : (4.1)Sine the de�nition of the WZNW Lagrangian (3.2) only involves the invariant metri, both ationsare automatially symmetries of our model. In fat, in the present situation they are even promotedto urrent superalgebra symmetries as we have already seen in the previous setion. In this setionwe will just disuss the point-partile limit (or minisuperspae approximation) where only the zero-modes are taken into aount and every dependene on the world-sheet oordinates is ignored. Thisorresponds to quantum mehanis on the supergroup [57℄. Our aim is to �nd all the eigenfuntionsof the Laplae (or wave) operator.Given the symmetry above we know that the state spae of the physial system may be de-omposed into representations of g � g. The orresponding symmetry an be realized in terms ofdi�erential operators ating on the wave funtions whih are elements of some algebra of funtionsF(G) on the supergroup.14 These funtions will naturally depend on a bosoni group elementgB and on the fermioni oordinates �a and ��a. By using a Taylor expansion with respet to the14The naive de�nition of the algebra of funtion as elements of the Grassmann algebra in the fermions �a and ��awith square integrable oeÆient funtions on GB leads to inonsistenies. A more detailed disussion of these subtlepoints and the expliit introdution of the orret algebra of funtion shall be postponed until setion 4.3.17



fermioni variables the basis elements of F(G) may be represented as a omplex valued funtiondepending solely on gB multiplied by a produt of Grassmann variables.The left and right regular ation of the supergroup on itself, as given in (4.1), then indues theation (hL � hR) � f : g 7! f(h�1L ghR) (4.2)on arbitrary elements f 2 F(G). This in turn translates into the following di�erential operators,Ki = KiB � (Ri)ab �b �a S2a = ��aSa1 = Rab(gB) ��b + (Ri)ab �b �ijKjB � 12 (Ri)a �ij (Rj)bd ��d�b ; (4.3)for the in�nitesimal left regular ation. In addition to the various struture onstants of the Liesuperalgebra, these expressions ontain derivatives �a = �=��a and ��a = �=���a with respet tothe Grassman variables �a and ��a. We have also introdued the di�erential operators KiB whihimplement the regular ation of the bosoni subgroup GB . They involve derivatives with respetto bosoni oordinates only, but the preise form depends on the partiular hoie of oordinateson GB . Similar expressions an be found for the in�nitesimal generators of the right ation,�Ki = �KiB + ��a (Ri)ab ��b �Sa1 = ��a�S2a = �Rba(gB) �b � ��b (Ri)ba �ij �KjB � 12 (Ri)a �ij (Rj)db ����d ��b : (4.4)One an hek expliitly that these two sets of di�erential operators form two (anti)ommutingopies of the Lie superalgebra g. Again, these alulations rely heavily on the Jaobi identity (2.5).The expressions for the di�erential operators exhibit some peuliar properties that we wouldlike to expand on. Note that, apart from purely bosoni piees, the generators (4.3) of the leftregular ation would only involve the Grassmann oordinates �a and the orresponding derivatives{ but no bared fermions { if it were not for the very �rst term in the de�nition of Sa1 . Indeed,this term does ontain derivatives with respet to the fermioni oordinates ��a. Obviously, thesituation is reversed for the right regular ation. It is also worth stressing that the oeÆients inthe �rst terms of both Sa1 and �S2a are non-trivial funtions on the bosoni group. Again this is insharp ontrast to all the other terms whose oeÆients are independent of the bosoni oordinates(though funtions of the Grassmann variables, of ourse). It has been emphasized in [24℄ thatthe ourrene of the matrix R(gB) an spoil the normalizability properties of the funtions thesymmetry transformations are ating on. This always happens if the target spae is non-ompatsine R is a �nite dimensional representation and hene non-unitary in that ase. Consequently,the produt of an L2-funtion from F(GB) with R(gB) will not be an L2-funtion anymore.In view of these issues with Sa1 and �S2a it is tempting to simply drop the troublesome terms.Even though that might seem a rather arbitrary modi�ation at �rst, it turns out that the orre-sponding trunated di�erential operators K i = Ki, S2a = S2a,Sa1 = (Ri)ab �b �ijKjB � 12 (Ri)a �ij (Rj)bd ��d�b (4.5)and their bared analogues also satisfy the ommutation relations of g � g! For the speial aseof PSU(1; 1j2), it was explained in [24℄ that this is muh more than a mere uriosity. Indeed, we18



onlude that the trunated operators K i , Sa1 and S2amodel the ation of zero-modes of our urrents(3.23) on ground states in the deoupled free fermion theory, i.e. before the oupling of bosoni andfermioni �elds is taken into aount. Note that the zero-mode of p(z) is a �eld theoreti inarnationof the derivative � sine p(z) is the anonially onjugate momentum belonging to �(z). We shallnow proeed to argue that the original di�erential operators (4.3) and (4.4) enode a muh moreintriate struture, namely the ation of the zero-modes on primaries in the full interating WZNWmodel.4.2 Harmoni analysisThe algebra of funtions F(G) furnishes a representation of g�g via the di�erential operators (4.3)and (4.4). Our aim is to write F(G) as a diret sum of indeomposable building bloks of the typedisussed in setion 2.2. The �nal result an be found in eq. (4.7) below. But sine the outomeis rather ompliated and somewhat hard to digest we would like to start the harmoni analysisby disussing the left and the right ation of g separately. We laim that the spae of funtionsdeomposes under these ations aording to15F(G)��g(left) = F(G)��g(right) = M�2Typ(G) dim(K�) K� � M�2Atyp(G) dim(L�) P� : (4.6)The symbols Typ(G) and Atyp(G) denote the sets of typial and atypial irreduible representationsof the supergroup. The distintion between modules of G and modules of g is neessary sine theremight exist representations of the Lie superalgebra whih annot be lifted to G. Under rathergeneral onditions (to be realled below eq. (4.13)) the set Rep(G) of supergroup representationsoinides with Rep(GB) � Rep(g0), the set of all unitary irreduible representations of the bosonisubgroup GB .As we see, the deomposition (4.6) learly distinguishes between the typial and the atypialsetor of our spae. In the typial setor we sum over irreduible Ka modules K� = L� with amultipliity spae M(K�) of dimension dimK�, a presription whih is familiar from the Peter-Weyl theory for bosoni groups. In ontrast, the atypial setor onsists of a sum over all theprojetive overs P� belonging to atypial irreduibles L� and oming with a multipliity spaeM(P�) of the smaller dimension dimL� < dimK�. Note that the algebra of funtions forms aprojetive module and hene possesses a Ka omposition series, i.e. a �ltration in terms of Kamodules. This immediately permits us to spell out the harater of the g� g-module F(G) and itwill lead to a onrete proposal for the modular invariant partition funtion of the WZNW modelin setion 5.Naturally, our formula (4.6) is the same for the left and the right ation. This symmetry betweenleft and right regular transformations must ertainly be maintained when we extend our analysisto the ombined left and right ation of g � g on F(G). In the typial setor the multipliityspaes of the Ka modules have preisely the dimension that is needed to promote them to Kamodules themselves, a presription that is perfetly onsistent with the symmetry between left andright ation. On the other hand, the same symmetry requirement exludes that the individualmultipliity spaes in the atypial setor are simply promoted to irreduible representations of g.Consequently, the left ation must indue maps between various multipliity spaes for the rightation and vie versa. In this way, the atypial setor then onsists of non-hiral indeomposables15A similar expression already appeared in [58℄ in a more general ontext.19



I[�℄ whih entangle a (possibly in�nite) number of left and right projetive overs whose labelsbelong to the same blok [�℄. The �nal expression for the representation ontent of the algebra offuntions on G is thus of the formF(G)��g�g = M�2Typ(G) L� 
L�� � M[�℄2�atyp(G) I[�℄ : (4.7)The systemati study of the non-hiral representations I[�℄ will be left for future work. Notethat similar and, in the spei� ases of GL(1j1) and SU(2j1), more expliit expressions havebeen obtained in [36, 24, 37℄. We also wish to emphasize that the sole of (4.7), i.e. its maximalsemisimple subspae, orresponds to a diret sum over all pairs of irreduible representations andtheir duals. It would be interesting to ompare our �ndings with the more abstrat results in [59℄where the spae of funtions on G = GL(mjn) is treated in the framework of Hopf superalgebras.Having stated the main results of this subsetion we would like to sketh their derivation. Forthe proof of eq. (4.6), it is advantageous to enlarge the symmetry from g to an ation g � g0, i.e.to retain the bosoni generators of the right regular transformations if we analyze the left ation.With respet to the ombined ation one �ndsF(G)��g�g0 = M�2Rep(GB) B� 
 V �� F(G)��g0�g = M�2Rep(GB) V� 
 B�� : (4.8)In fat, from the Peter-Weyl theorem for ompat semisimple Lie groups (or suitable generalizationsthereof) we dedue that the funtionsdetR(g�1B ) �D(�)(gB)��� �1 � � � �r ��1 � � � ��r (4.9)involving matrix elements of the representation D(�) are part of the spetrum for all unitary ir-reduible representations � of GB . The matrix elements of D(�) transform in the representationV�
 V �� with respet to g0� g0. Sine the produt of the remaining fators multiplying D(�) is in-variant under purely bosoni transformations, we onlude that the set of funtions (4.9) transformsin V� 
 V �� as well.All that remains to be done is to augment the ation on the left from the bosoni subalgebra g0 tothe entire Lie superalgebra g. The supersymmetri multiplets we generate from the funtions (4.9)by repeated ation with all the fermioni generators Sa1 and S2a are isomorphi to the representationB� of g. Similar remarks apply if we onsider the ation of g0 � g. Thereby we have establishedthe deompositions (4.8). In order to proeed from eqs. (4.8) to the deomposition formulas (4.6)the representations B� must be deomposed into their indeomposable building bloks. This isahieved with the help of eq. (2.15) and results in eq. (4.6) after a simple re-summation. Ourderivation has atually furnished a slightly stronger result sine it determines how the multipliityspaes deompose with respet to the ation of the bosoni subalgebra g0.4.3 Spetrum and generalized eigenfuntionsGiven the deomposition of the algebra of funtions into representations of g�g we an now addressour original problem of �nding the semi-lassial expressions of both the onformal dimensionsand the primary �elds. In the semi-lassial limit, onformal dimensions are given by (half) theeigenvalues of the Casimir operator ating on F(G). Sine we are dealing with a spae of funtions20



we will refer to the latter as \Laplaian" on the supergroup. The eigenvalues an be read o� diretlyfrom the deomposition (4.7). In the typial setor the Laplaian is diagonalizable and leads to theeigenvalues C(K�). On the other hand, the Laplaian eases to be diagonalizable on the non-hiralrepresentations I[�℄. Here, the Casimir may just be brought into Jordan normal form.The previous paragraph provides a omplete solution of the eigenvalue problem but it doesnot yield expliit formulas for the (generalized) eigenfuntions. Sine the latter are semi-lassialversions of the primary �elds in the full CFT (see setion 5 below), it seems worthwhile reallingthe elegant onstrution of eigenfuntions that was presented reently in [24℄. The Laplae operatoron our supergroup G is given by� = 12 C = �B � 12tr(Ri)�ijKjB � �aRab(gB) ��b : (4.10)Observe that only the last term ontains fermioni derivatives, with oeÆents whih depend onbosoni oordinates. Let us also emphasize that the purely bosoni piee of � di�ers from theLaplaian on the bosoni subgroup by the seond term. This deviation is related to the preseneof the non-trivial dilaton ontribution (3.7). Sine the omplete Laplaian is non-diagonalizable itwas proposed in [24℄ to perform the harmoni analysis in two steps. First an auxiliary problem issolved whih is based on the purely bosoni Laplaian�0 = �B � 12 tr(Ri)�ij KjB : (4.11)This auxiliary Laplaian agrees with the Casimir operator obtained from the redued di�erentialoperators K and S and, as we shall see, it is ompletely diagonalizable on the following auxiliaryspae16 F(G) = F(GB)
^(�a; ��b) : (4.12)Here, the fator F(GB) denotes the algebra of square (or Æ-funtion) normalizable funtions on thebosoni subgroup and V(�a; ��b) is the Grassmann (or exterior) algebra generated by the fermionioordinates. In the seond step, the eigenfuntions of �0 are mapped to generalized eigenfuntionsof � using a linear map � : F(G) ! F(G). The latter adds \subleading" fermioni ontributionsin a formal but well-de�ned way and thereby turns an eigenfuntion of �0 into a generalizedeigenfuntion of �. Our presription involves expliit multipliations with the matrix elements ofR(gB) whih, e.g. for non-ompat groups GB , are not neessarily part of the unitary spetrum.Hene, the eigenfuntions of � need not be normalizable in the original sense, i.e. when regardedas Grassmann valued funtions on the bosoni subgroup. This is the main reason why we need todistinguish between the spaes F(G) and F(G) = Im(�). Ultimately, the problem may be traedbak to the presene of the terms involving R(gB) in Sa1 and �S2a. In fat, as we pointed out before,beause of those terms the unredued di�erential operators may ease to at within F(G).In order to gain some intuition into the struture of the funtion spae (4.12) as a representationof the symmetry algebra g� g, it is helpful to restrit the ation to the bosoni subalgebra g0� g0�rst. Sine the di�erential operators K i and �K i fatorize in an ation on the funtion algebra F(GB)and on the Grassmann algebra V(�a; ��b), we an deompose both fators separately. If the bosoni16The auxiliary spae F(G) should be thought of as the semi-lassial trunation of the state spae for the deoupledtheory S0, see eq. (3.21). On the other hand F(G) orresponds to the semi-lassial trunation of the full state spaeof the WZNW model. 21



subgroup is ompat, semisimple and simply-onneted we may employ the Peter-Weyl theorem inorder to obtain F(GB)��g0�g0 = M�2Rep(GB) V� 
 V �� ; (4.13)where Rep(GB) � Rep(g0) is the set of all unitary irreduible representations of GB . In moregeneral situations this formula will need a slight re�nement onerning the ontent of Rep(GB),although the struture will still be very similar. With regard to the fermions, the left ation justa�ets the set �a, while the right ation operates on the set ��a. Given the known transformationbehavior of a single fermion we thus �nd^(�a; ��b)��g0�g0 = F 
 F� : (4.14)Combining these simple fats and de�ning Rep(G) = Rep(GB) we onludeF(G)��g0�g0 = M�2Rep(G)hV� 
Fi
 hV� 
Fi� : (4.15)Before we proeed to the supersymmetri extension, we would like to disuss the general form ofelements in the individual subspaes of (4.15). The spae of funtions is spanned byf (�)a1 ���as;�b1���bt;� (g) = �D(�)(gB)��� �a1 � � � �as ��b1 � � � ��bt ; (4.16)where D(�) denotes the representation of the bosoni subgroup GB on the module V� .Our most important task is to determine how the bosoni representations that our in thedeomposition (4.15) ombine into multiplets of the full symmetry g� g. As a �rst hint on whatthe answer will be, we observe that the representation ontent in eq. (4.15) agrees with the bosoniontent of Ka modules. And indeed, under the ation of fermioni generators, the various bosonimodules are easily seen to ombine into our modules K�. To see this we note that the purelybosoni funtions �D(�)(gB)��� are annihilated by S2a and �Sa1 simultaneously and therefore theyspan the subspae V� 
 V �� from whih we indue the Ka module K� 
 K��. Consequently, weobtain the deomposition F(G)��g�g = M�2Rep(G)K� 
K�� : (4.17)Note that the sum runs over both typial and atypial representations, i.e. the spae of funtions isnot fully reduible. The Laplaian �0 is ompletely diagonalizable on this spae and its eigenvaluesare given by eq. (2.19).Let us now return to the analysis of the spae F(G). We reall that a funtion �� 2 F(G) is ageneralized eigenfuntion to the eigenvalue � if there exists a number n 2 N suh that(�� �)n�� = 0 : (4.18)Following [24℄, let us introdue operators An(�) whih are de�ned through the relationA(n)� = (�� �)n � (�0 � �)n : (4.19)In the sequel it will beome ruial that eah single term of A(n)� ontains at least one fermioniderivative. After these preparations we onsider a funtion f� 2 F(G) whih is an eigenfuntion22



of �0, i.e. whih satis�es �0f� = �f�. We then assoiate a family of new funtions �(n)� f� to f�through �(n)� f� = 1Xs=0h�(�0 � �)�nA(n)� isf� � rXs=0 �Q(n)� �s f� : (4.20)Obviously, the sum trunates after a �nite number of terms due to the fermioni derivatives whihour in all the operators A(n)� . A formal alulation shows furthermore that the funtion �(n)� f�is a solution of eq. (4.18). Using the de�nition (4.20) on eah of the eigenspaes Ker(�0 � �) weobtain a family of maps �(n) whih formally exist on the omplete funtion spae F(G).The only problem with the maps �(n) is that they might be singular on a ertain subspae ofF(G). In fat, a lose inspetion of our expression (4.20) shows that it requires to invert (�0 � �)whih may not be possible. If this happens, it signals the existene of funtions in F(G) whihare not annihilated by (� � �)n for any �, and therefore implies that some Jordan bloks of theLaplaian must have a rank higher than n. It may be shown by expliit alulation that the familyof maps �(n) stabilizes for n > r and that the resulting limit map � is well-de�ned on the ompletespae F(G) [24℄. We then de�ne the spae F(G) = Im(�) as the image of the auxiliary spaeF(G) under �. This proedure provides an expliit onstrution of the eigenspaes and Jordanbloks appearing in the deomposition (4.7). It should also be realled that the map � ats as anintertwiner between the typial subspae of F(G) with the redued ation of g� g and the typialsubspae of F(G) with the full ation of g� g [24℄. As before, redued and full ation refer to theuse of the di�erential operators (K i ;Sa1;S2a; �K i ; �Sa1; �S2a) and (Ki; Sa1 ; S2a; �Ki; �Sa1 ; �S2a), respetively.Within the present ontext we an atually onvine ourselves that the quadrati Casimir is notdiagonalizable on any of the projetive overs P�. From the above it is lear that every projetiveover appears in the deomposition of the right regular ation on the funtion spae F(G) andthat the orresponding subspae M(P�)
P� ontains funtions of the form (4.9). We laim thatsome of the latter must neessarily be proper generalized eigenfuntions. In fat, all of them areeigenfuntions of �0 with eigenvalue � = C�=2. But in order for them to be eigenfuntions of �,the ation of �(1) must be well de�ned. This would require in partiular that we an invert �0� �on �aRab(gB) ��b detR(g�1B ) �D(�)(gB)��� �1 � � � �r ��1 � � � ��r : (4.21)But this is learly not the ase if the Ka module K� ontains singular vetors that are reahed fromthe ground states through appliation of a single fermioni generator. Hene, we have establishedour laim for all suh labels �. In ase the singular vetors of K� appear only at higher levels, onehas to re�ne the analysis and onsider also higher order (in the summation index s) terms in thede�nition of �(1).4.4 Correlation funtionsBy now we have omplete ontrol over representation ontent and eigenfuntions of the Laplaianin the weak urvature limit of the WZNW model. In addition, we an also ompute orrelationfuntions in this limit. They are given as integrals over a produt of funtions on the supergroup.Integration is performed with an appropriate invariant measure, namely the so-alled Haar measured�(g) of the supergroup. The easiest way to obtain d� is to extrat it from the invariant metri,ds2 = ds2B � 2 d��aRab(g�1B ) d�b : (4.22)23



Here, ds2B denotes the standard invariant metri on the bosoni subgroup. The total metri hasa \warped" form sine the fermioni bit has an expliit funtional dependene on the bosonioordinates gB . We an now obtain the desired measure as the superdeterminant of the metri,d�(g) = d�B(gB) det�R(gB)� d�1 � � � d�r d��1 � � � d��r (4.23)where d�B denotes an invariant measure on the bosoni subgroup. One this expression has beenwritten down, we an forget our heuristi derivation and hek the invariane expliitly. Note thatthe existene of the dilaton (3.7) in the WZNW Lagrangian (3.5) is diretly related to the preseneof the fator det�R(gB)� in the measure.Suppose now we are given N generalized eigenfuntions of the Laplaian � on the supergroup.Aording to the previous disussion, the spae of eigenfuntions possesses a basis of the form�a�;b = � fa�;b = rXs=0Qs�fa�;bwhere fa�;b = fa1;:::;as�;b1;:::;bt = f�(gB) �a1 � � � �as ��b1 � � � �bt : (4.24)Here, f�(gB) are eigenfuntions of the bosoni Laplaian �0 with eigenvalue � and � = �(r); Q� =Q(r)� have been de�ned in eq. (4.20). The N -point funtions of suh semi-lassial vertex operatorsare given by the integrals
�a1�1;b1 � � ��aN�N ;bN� = Z d�(g) �a1�1;b1 � � ��aN�N ;bN= rXs1=0 � � � rXsN=0 Z d�(g) Qs1�1fa1�1;b1 � � � QsN�N faN�N ;bN : (4.25)Most of the (r + 1)N terms in this expression vanish due to the properties of Grassmann variablesand their integration. In fat the largest number of non-zero terms that an possibly appearis N � r + 1. This is realized if all eigenfuntions ontain terms with the maximal number offermioni oordinates (along with the lower order terms that are determined by the ation of Qs�).A partiularly simple ase appears when e.g. the �rst eigenfuntion �1 = �1;2;:::;r�1;1;2;:::;r ontains leadingterms with r fermions � and �� while all others are purely bosoni. In that ase, the orrelator issimply given by
�1;2;:::;r�1;1;2;:::;r ��2 � � ���N � = Z d�B(gB) det�R(gB)�f�1(gB)f�2(gB) � � � f�N (gB) : (4.26)We shall see that very similar results an be established for orrelators in the full WZNW on type Isupergroups. This is one of the subjets we shall address in the next setion.5 The quantum WZNW modelAfter the thorough disussion of its symmetries and its semi-lassial limit it is now only a smallstep to ome up with a omplete solution of the full quantum WZNW model. We �rst show thatthe free fermion resolution gives rise to a natural lass of hiral representations. Subsequently,24



we omment on the representation ontent of the full non-hiral theory, sketh the alulationof orrelation funtions and argue that the natural modular invariant partition funtion an beexpressed as a diagonal sum over haraters of Ka modules. We onlude with some speulationsabout non-trivial modular invariants.5.1 Chiral representations of the urrent superalgebraIn setion 3.2 and 3.3 we deribed in some detail the hiral symmetry of WZNW models on su-pergroups along with their onstrution in terms of free fermions. Our next aim is to introduerepresentations H� of ĝ. It is lear that free fermion resolutions provide a natural onstrution forrepresentations of urrent superalgebras. What is remarkable, however, is that these representationsturn out to be irreduible for generi (typial) hoies of �.Aording to the results of setion 3.3 every representation of the deoupled system of thebosoni urrents KiB and the fermions p� de�nes a module of the urrent superalgebra via eqs.(3.23). In the bosoni part we shall work with irreduible representations V� of ĝren0 . If thegroup GB is ompat there will be a �nite number of physial representations (the \integrable"ones), otherwise one may enounter in�nitely many of them, inluding ontinuous series. Weidentify the physially relevant representations with a subset Rep(ĝren0 ) � Rep(g0) within therepresentation labels for the horizontal subalgebra g0. This is possible sine the ground states ofV� form the g0-module V� upon restrition of the ĝren0 -ation to its horizontal subalgebra g0. Notethat the urvature of the bakground geometry leads to trunations whih imply that Rep(ĝren0 ) isgenerally a true subset of Rep(g0).17 The fermions, on the other hand, admit a unique irreduiblerepresentation VF . The latter is generated from the SL(2; C )-invariant vauum j0i by imposingthe highest weight onditions (pa)nj0i = 0 for n � 0 and �anj0i = 0 for n > 0.18 The irreduiblerepresentations of the produt theory therefore take the formH� = V� 
 VF : (5.1)Given the free fermion realization (3.23), these spaes admit an ation of the in�nite dimensionalurrent superalgebra ĝ as de�ned in (3.10)-(3.12).The generalized Fok modules H� provide the proper realization of hiral vertex operators asde�ned around eq. (3.15). It is indeed evident from our onstrution that the ground states of H�transform in the g-module K� (reall that the ground states of V� form the g0-module V�) andthat they are annihilated by all positive modes of the urrents and by the zero modes of S2a(z).But there is another and muh deeper reason for the relevane of the modules H�. Observe thatthe urrent superalgebra ĝ is a true subalgebra of the algebra that is generated from ĝren0 and thefermions. Therefore, one might suspet that the spaes H� are no longer irreduible with respetto the ation of ĝ. But for generi hoies of � this is not the ase: The ation of ĝ on H� istypially irreduible! This property is in sharp ontrast to what happens for standard bosonifree �eld onstrutions [38, 39, 40, 41, 42℄ and it haraterizes the modules H� as the naturalin�nite dimensional lift of Ka modules for the �nite dimensional Lie superalgebra g. We take thisobservation as a motivation to refer to the generalized Fok modules H� as Ka modules from now17For su(2)k, for instane, the integrable representations are � = 0; 1; : : : ; k while there is no upper bound forunitary su(2)-modules.18One ould inlude twisted setors where the moding of the fermions is not integer. But then the global super-symmetry would not be realized in the WZNW model sine there were no zero-modes.25



on. Let us emphasize, however, that they are onstruted in a di�erent manner than those of the�nite dimensional Lie superalgebra g in setion 2.2.1.Sine it is a rather ruial issue for the following, we would like to spend some time to establishirreduibility of the representations H� for generi labels �. We shall assume for simpliity that theunderlying bosoni representation V� is a highest weight module. The highest weight � determinestwo seemingly di�erent (but in fat equivalent) Verma-like modules of ĝ. The �rst of them will bedenoted by Y 0�. It is obtained as a produtY 0� = Y(0;ren)� 
 VFof the Verma module Y(0;ren)� of ĝren0 with the free fermion state spae VF . We shall onsiderY 0� as a ĝ-module. The ĝ-module H� may be reovered from Y 0� by dividing out all the bosonisingular vetors from the ĝren0 -module Y(0;ren)� . But there is a seond natural Verma-like moduleY� for ĝ whih is onstruted diretly by requiring that all the positive modes as well as the zero-modes (S2a)0 annihilate the highest weight, i.e. Y� is de�ned without any referene to the freefermion onstrution of ĝ. Sine the generators Kin; Sa1;n; S2b;n and KiB;n; �an; pa;n are in one-to-oneorrespondene with eah other, the Verma modules Y� and Y 0� are naturally isomorphi as vetorspaes. The natural isomorphism preserves the grading by onformal dimensions. Hene, theharaters of Y� and Y 0� agree. It is tempting to onjeture that Y� and Y 0� are in fat equivalentas ĝ-modules.In order to understand the equality of onformal dimensions we ould simply refer to theequivalene of energy momentum tensors whih has been proven in setion 3.3. But there is also amore pedestrian way of seeing it. In the ase of ĝren0 , the urrent algebra involves the renormalizedmetri �� while the bosoni subalgebra ĝ0 of ĝ is de�ned in terms of the metri �. But aordingto the Sugawara onstrutions for ĝren0 and ĝ, the respetive energy momentum tensor requiresan additional quantum renormalization of the metri in both ases. This extra renormalization isdi�erent as well and the �nal result (the \fully renormalized metri") oinides again. The previousstatement orresponds to the two di�erent ways of introduing brakets in the following equation,��ij � ij�� 12 f imn f jnm = �ij � �ij + 12 f imn f jnm� : (5.2)The �rst term on both sides refers to the \lassial" metri and the seond term desribes thequantum renormalization. In addition, the e�et of the fermions in ĝ has to be traded for thepresene of the dilaton in the ĝren0 desription.Let us now fous on the Verma-like modules Y�. In general, these modules ontain singularvetors, ertainly of bosoni type but possibly also fermioni ones. Our goal here is two-fold: First,we would like to argue for a one-to-one orrespondene of the bosoni singular vetors with thosein Y(0;ren)� . Moreover, we would like to show that the existene of fermioni singular vetors is anatypial event, ourring only for a small subset of weights �.In priniple, the struture of singular vetors in the module Y� an be disussed using a suitablevariant of the Ka-Kazhdan determinant [50℄. For simpliity we shall follow a more down-to-earthapproah here. The existene of a proper submodule Y� in the representation Y� requires that theweight � an be reahed from � by (multiple) appliation of the root generators of ĝ. We mayqualify this further with the help of two gradings, one with respet to the generator L019 and the19The metri or the level(s), respetively, are assumed to be �xed one and for all.26



other oming from the Cartan subalgebra of g (whih is idential to that of g0). The latter impliesthat the weights � and � have to be related by � = � �m� where � is a positive root of g andm 2 Z�0. If the energy diretion is onsidered separately, one obtains a neessary ondition of theform h��m� = h� + nm ; (5.3)where h denotes the onformal dimension and the root generator belonging to � is assumed toinrease the energy by n units.We will investigate ondition (5.3) for bosoni root generators of ĝ �rst. The latter are in one-to-one orrespondene with those of ĝren0 . Sine, in addition, the onformal dimensions of highestweight modules Y� and Y(0;ren)� oinide, we onlude that the assoiated deoupling equations (5.3)possess the same set of bosoni solutions. We onsider this a strong hint that singular vetors inthe ĝ0-modules Y(0;ren)� 
 VF agree with those singular vetors of the ĝ-modules Y� whih an bereahed by appliation of bosoni root generators. If we assume this to be true, all bosoni singularvetors are removed when be pass from Y� to H�. Therefore, the singular vetors that remain inH� are neessarily fermioni.Let us now look for the existene of potential fermioni singular vetors. We do not intend toformulate any preise rules for when they appear, but would like to argue that they must be rareompared to their bosoni ounterparts. To this end, we reall that the onformal dimension h is aquadrati expression of the form h� = h�; �+ 2�i (the braket denoting the non-degenerate salarprodut that omes with the metri (3.13)). Hene, we an always solve eq. (5.3) for m, no matterwhih bosoni root vetor � we insert. This eases to be true for fermioni root generators. Sinethey are nilpotent, eq. (5.3) needs to be solved withm = 0; 1, something that rarely ever works out.Therefore, modules with fermioni singular vetors are alled atypial. A more systemati studyof atypial representations is beyond the sope of this artile. But the experiene with severalexamples suggests that the omposition series of the representations H� is �nite and that theypossess the same struture as the modules of the horizontal subsuperalgebra. In fat, we believethat the only possible fermioni singular vetors are those that appear on the level of ground statesand images thereof under the ation of ertain spetral ow automorphisms (see setion 5.2).Given the struture of the Ka modules (5.1) it is straightforward to derive harater formulasand their modular properties. Indeed, the haraters simply fatorize into�H�(q) = �V�(q)�VF (q) : (5.4)The superharater of H� has the same produt form but with the fermioni fator �VF beingreplaed by its orresponding superharater. Relation (5.4) may also be extended to a statementabout non-speialized haraters sine the fermions pa and �a are harged under the bosoni gener-ators Ki. If g0 is a simple Lie algebra the haraters of the unitary ĝren0 -modules V� an be lookedup in [60, 61℄. They form a �nite dimensional unitary representation of the modular group. Theharater of the fermioni representation VF , on the other hand, is given by�VF (q) = "2q 112 1Yn=1(1 + qn)2#r = "#2(q)�(q) #r : (5.5)Under the modular transformation � 7! �1=� the quotient #2=� is simply replaed by #4=�. Hene,all the non-trivial information about modular transformations resides in the behaviour of the har-aters for the bosoni algebra ĝren0 . Consequently, the modular properties of Ka modules H�27



are under omplete ontrol. Even though Ka modules do not suÆe to build the state spae ofWZNW models on supergroups, the bulk partition funtion for type I supergroups may be ex-pressed in terms of haraters of Ka modules (see below). Therefore, modular invariane of thebulk partition funtion is guaranteed as long as it involves a summation over the same set of labelsas in the orresponding bosoni model. The preise onstrution will be explained in more detailin setion 5.3.It remains to work out the haraters of atypial irreduible representations. The latter arequotients of reduible Ka modules. Aording to our experiene with onrete models, the om-position series of the in�nite dimensional Ka modules H� of ĝ is very losely related to that of Kamodules for the horizontal subsuperalgebra g. In spei� examples it is usually straightforward toinvert the linear relations between haraters resulting from suh a omposition series, i.e. to ex-press the haraters of atypial irreduible representations through those of Ka modules. A moregeneral approah to this problem using Kazhdan-Lusztig polynomials has been presented in [48,Proposition 5.4℄ (see also [51, 62℄). Reently it has been shown that the solution for the inversionproblem ould be used to (re)derive the haraters of irreduible representations for the aÆne Liesuperalgebras bsl(2j1) and psl(2j2) [24, 37℄. We expet that this observation extends to more generalurrent superalgebras and that it will be helpful in the study of modular transformations. Repre-sentations of aÆne Lie superalgebras and their behaviour under modular transformations have alsobeen studied in [63, 64, 13℄.5.2 Spetral ow automorphismsIn the previous subsetion we have skipped over one rather important element in the representationtheory of urrent (super)algebras: The spetral ow automorphisms. As we shall reall momentar-ily, spetral ow automorphisms desribe symmetry transformations in the representation theoryof urrent algebras. Furthermore, they seem to be realized as exat symmetries of the WZNWmodels on supergroups, a property that makes them highly relevant for our disussion of partitionfuntions below.Throughout the following disussion, we shall denote (spetral ow) automorphisms of theurrent superalgebra ĝ by !. We shall mostly assume that the ation of ! is onsistent with theboundary onditions for urrents, i.e. that it preserves the integer moding of the urrents. In theontext of representation theory, any suh spetral ow automorphism ! de�nes a map on the setof (isomorphism lasses of) representations � : ĝ! End(V ) via onatenation, !(�) = � Æ ! : ĝ!End(V ).In line with our general strategy, we would like to establish that spetral ow automorphisms! of the urrent superalgebra are uniquely determined by their ation on the bosoni generators.A spetral ow automorphism ! : ĝ0 ! ĝ0 of the bosoni subalgebra ĝ0 is, by de�nition, a linearmap20 !�Ki(z)� = (W0)ij(z)Kj(z) + wi0 z�1 (5.6)satisfying ertain onsisteny onditions to be realled below. The map W0(z) = z�0 is de�nedin terms of an endomorphism �0 : g0 ! g0 of the horizontal subalgebra. While the eigenvaluesof �0 determine how the spetral ow shifts the modes of the urrents, the vetor wi0 a�ets onlythe zero-modes. In order to preserve the trivial monodromy under rotations around the origin we20We refrain from introduing a di�erent symbol here suh as !0.28



will assume that W0(z) is a meromorphi funtion, i.e. that all the eigenvalues of �0 are integer.Inserting the transformation (5.6) into the operator produt expansions (3.10) leaves one with theonstraints (�0)ij = f ikl �kj wl0 (5.7)and (W0)ik(z) (W0)j l(z)�kl = �ij ; f ijk (W0)kl(z) = (W0)im(z) (W0)jn(z) fmnl : (5.8)The �rst equation (5.7) in fat implies that the only free parameter is the shift vetor wi0. In thease of a semisimple Lie algebra g0 (whih leads to a non-degenerate Killing form) this argumentan also be reversed and hene it allows to express wi0 in terms of �0.We would now like to argue that equation (5.7) already implies the onsisteny of the spetralow (up to the question whether �0 has integer eigenvalues), i.e. the validity of the equations (5.8).Given the onrete form of W0(z), it an indeed be shown that the two relations (5.8) follow fromthe equations(�0)ik�kj + (�0)j l�il = 0 f ijk(�0)kl = (�0)ikfkjl + (�0)jkf ikl : (5.9)These relations are in turn just a onsequene of (5.7) using the invariane of �ij and the Jaobiidentity for the struture onstants. Sine the same idea will be used again below let us sketh theproof of our assertion that the eqs. (5.9) imply the eqs. (5.8). First of all, it is easy to see that onean generalize the relations (5.9) to powers of �0 using indution. In the �rst ase, this just yieldsan alternating relative sign, while in the seond ase it establishes some kind of binomial formula.Writing W0(z) = exp(�0 ln z) and expanding in powers of ln z one an then expliitly verify theequations for W0(z). Any vetor wi0 whih leads to a matrix �0 with integer eigenvalues under theidenti�ation (5.7) will aordingly be referred to as a spetral ow automorphism of ĝ from nowon. Given the insights of the previous paragraphs it is now fairly straightforward to extend thespetral ow automorphism ! : ĝ0 ! ĝ0 to the full urrent superalgebra. To this end, we introduethe element �1 = �Ri �ij wj0 : (5.10)It is ruial to observe that this matrix satis�es the relation(�0)ij (Rj)a + (�1)ab (Ri)b = (Ri)ab (�1)b ; (5.11)an analogue of eq. (5.9). Following the disussion in the bosoni setor, we now introdue a funtionW1(z) = z�1 . Using the same reasoning as in the previous paragraph, the equation (5.11) implies(Ri)ab (W1)b(z) = (W0)ij(z) (W1)ab(z) (Rj)b : (5.12)Now we an de�ne the ation of the spetral ow automorphism ! on the fermioni urrents by!�Sa1 (z)� = (W1)ab(z) Sb1(z) ; !�S2a(z)� = S1b(z) (W 1)ba(z) ; (5.13)whereW 1 denotes the inverse ofW1. One more, onsisteny with the operator produt expansionsof the superurrents is straightforward to verify. The only input is the de�nition (5.10) and theproperty (5.12). 29



We would also like to argue that the spetral ow symmetry is onsistent with the free fermionrepresentation (3.23). To be more spei�, we shall onstrut an automorphism on the hiral algebraof the deoupled system generated by the urrents KiB(z) and the free fermions pa(z) and �a(z)that redues to the expressions above if we plug the transformed �elds into the de�ning equations(3.23). In this ontext the most important issue is to understand how the renormalization of themetri � ! � �  a�ets the ation of the spetral ow. As a onsequene of eq. (5.11) we notethat (�0)ik kj + (�0)jk ik = tr�[RiRj ; �1℄� = 0 ; (5.14)where ij = tr(RiRj), as before. Consequently, the data �0 whih gave rise to a spetral owautomorphism of ĝ0 above, an also be used to de�ne a spetral ow automorphism of the renor-malized urrent algebra, i.e. of the algebra that is generated by KjB with operator produts givenin subsetion (3.3). Only the shift vetor wi0 of the zero modes needs a small adjustment suh thatthe new spetral ow ation reads!�KiB(z)� = (W0)ij(z)KjB(z) + wiB z�1 where wiB = wi0 + tr��1Ri� : (5.15)In order to validate that this indeed de�nes an automorphism we need to hek the analogue of theondition (5.7) for the new metri �� . But this onstraint is trivially met, usingwiB = (�� )ij�jkwk0 : (5.16)along with the invariane of both metris � and � � . Note that �0 is not hanged and hene ithas the same (integer) eigenvalues as before.In order to obtain an automorphism whih is ompatible with the free �eld onstrution we alsoneed to introdue the transformations!�pa(z)� = pb(z) (W 1)ba(z) ; !��a(z)� = (W1)ab(z) �b(z) : (5.17)It is then straightforward but lengthy to hek that the previous transformations de�ne an auto-morphism of the algebra generated by pa, �a and KjB that desends to the original spetral owautomorphism ! of our urrent superalgebra ĝ. During the alulation one has to be aware ofnormal ordering issues.In onlusion we have shown that any spetral ow automorphism of the bosoni subalgebraof a urrent superalgebra (related to a Lie superalgebra of type I) an be extended to the fullurrent superalgebra. Furthermore, this extension was seen to be onsistent with our free fermionresolution. Let us remark that even if we start with a spetral ow automorphism ! preservingperiodi boundary onditions for bosoni urrents, the lifted spetral ow ! does not neessarilyhave the same property on fermioni generators. Only those spetral ow automorphisms ! : ĝ! ĝfor whihW1 is meromorphi as well seem to arise as symmetries of WZNWmodels on supergroups.Nevertheless, also non-meromorphi spetral ows turn out to be of physial relevane. They anbe used to desribe the twisted setors of orbifold theories, see setion 5.4 for details.5.3 Spetrum and orrelation funtionsObviously, it is of entral importane to determine the partition funtion and higher orrelators ofWZNW models on supergroups. Here we shall explain how the alulation of these quantities maybe redued to omputations in the orresponding bosoni WZNW models. For the torus partition30



funtion we will provide a full expression in terms of haraters of the (renormalized) bosoniurrent algebra.All omputations in the WZNW model on type I supergroups depart from the deoupled the-ory (3.21). The interation between bosons and fermions is treated perturbatively. What makesthis approah partiularly powerful is the fat that the perturbative expansion turns out to trunateafter a �nite number of terms. The order at whih the trunation ours, however, depends on thesupergroup and the orrelator to be omputed. As a general rule, the number of terms to onsiderin the perturbative expansion inreases with the number of vertex operators that are inserted.To begin with, let us desribe the unperturbed theory (3.21) with a few onrete formulas.As we proeed it is useful to keep in mind that solving the unperturbed theory is a �eld theoretianalogue of solving the trunated Laplae operator �0. Fields in the deoupled theory form a spaeH whih is a �eld theoreti version of the semi-lassial spae F(G). The state spae H naturallyfatorizes into bosoni and fermioni ontributions,H = M�2Rep(ĝren0 )�V� 
 VF�
 ��V�� 
 �VF� : (5.18)For simpliity we assumed that the bosoni part has a harge onjugate modular invariant partitionfuntion.21 The fermioni representation is unique if we restrit ourselves to the Ramond-Ramondsetor. In ase appliations require to inlude fermioni �elds with anti-periodi boundary on-ditions as well, they an be inorporated easily. Aording to eq. (5.18), vertex operators of thedeoupled theory possess a basis of the formV a�;b(z; �z) � V a1;:::;as�;b1;:::;bt(z; �z) = V�(z; �z) �a1(z) � � � �as(z) ��b1(�z) � � � ��bt(�z) (5.19)where V� are vertex operators in the bosoni WZNW model. We have noted before that the freefermion theory admits a urrent superalgebra symmetry ĝ� ĝ. The latter is given expliitly by theformulas in setion 3.3. When analyzed with respet to this urrent superalgebra, the state spaeH assumes the form H = M�2Rep(ĝ)H� 
 �H�� (5.20)where H� an H�� are the Ka modules and their duals, as de�ned in equation (5.1).22 It shouldbe kept in mind though that H ontains an atypial setor (inluding, e.g., H0 
 �H�0) whih is notfully reduible. Nevertheless, the zero-modes L0 and �L0 of the Virasoro-Sugawara �elds are fullydiagonalizable.The true state spae H of the interating theory, on the other hand, is a �eld theoreti versionof the spae F(G) in our minisuperspae theory. In partiular, H agrees with H as a gradedvetor spae (with the grading provided by the generalized eigenvalues of L0 and �L0) and even asĝ0 � ĝ0-module. But when onsidered as a module of the left and/or right urrent superalgebra,H and H are fundamentally di�erent. While, under the ation of e.g. the right moving urrents, Hdeomposes into a sum of typial and atypial Ka modules, H may be expanded into projetives.The orresponding multipliity spaes, however, do not arry a representation of the left moving21In ase the onsisteny of the bosoni theory requires to onsider spetral ow automorphisms, e.g. for non-ompat groups, they should also be inluded in the de�nition of the labels �.22It is the dual whih is relevant here sine we assume the antiholomorphi urrent superalgebra to mimi thedi�erential operators (4.4), not those in (4.3). Notie that the roles of Sa1 and S2a are exhanged in these expressions.31



urrents, in ontrast to what we have seen in eq. (5.20). Instead, atypial representations of theleft and right moving urrents form large non-hiral modules Î[�℄ whih entangle projetive oversin an intriate way.23 Now reall that the Virasoro element L0 ontains the (renormalized) Casimiroperator of g as a summand and it agrees with the latter on ground states. But sine our harmonianalysis revealed that the Casimir operator may not be diagonalized in the atypial subspae ofF(G), the same must be true for the ation of L0 (and �L0) on H. This shows that supergroupWZNW theories are always logarithmi onformal �eld theories.24After these remarks, let us address the partition funtion of the theory and its modular invari-ane. We have stressed above that H andH are isomorphi as ĝ0� ĝ0-modules. Hene, the partitionfuntion of the interating theory agrees with the partition funtion of the deoupled model andboth may be written as a sum over bilinears of haraters of Ka modules.25 Thereby, the partitionfuntion of WZNW models on type I supergroups takes the formZG(q; �q) = ZGBren (q; �q) � ZF (q; �q) ; (5.21)i.e. it is obtained as a produt of the orresponding partition funtions of the (renormalized) bosonimodel with that of the free fermioni system. Eah of the two fators orresponds to a well-de�nedand onsistent onformal �eld theory. This shows that our proposal for the state spae of thesupergroup WZNW model yields a suitable partition funtion.In theories with fermions one has to distinguish between the purely ombinatorial partitionfuntion whih merely ounts states and the torus vauum amplitude whih is the relevant physialquantity. Sine the fermions anti-ommute, the latter requires an insertion of the fermion numberoperator (�1)F+ �F into the trae, thus turning haraters into superharaters. In our state spaes,bosoni and fermioni states always ome in pairs, ausing ZF (q; �q) to vanish. Atually, this is theusual way in whih modular invariane manifests itself in fermioni theories. To avoid dealing withtrivial quantities, one may swith to unspeialized haraters. The latter lead to a non-vanishingphysial partition funtion.We laim that the expression (5.21) is the universal partition funtion for supergroup WZNWmodels similar to the harge onjugate one in ordinary bosoni models. We will indeed argue in thefollowing setion that this modular invariant an be used as the basi building blok to derive new,non-trivial partition funtions using methods that are well-established in purely bosoni onformal�eld theories.We wish to onlude this subsetion with a few omments on the alulation of orrelationfuntions. We have argued above that �elds in the deoupled and the interating theory are inone-to-one orrespondene with eah other. In fat, the transition from the auxiliary spae H to theproper state spae H of the supergroup WZNW model is implemented by a linear map �̂ : H !H.The latter generalizes and extends the map � that we used in the semi-lassial analysis to identifystates in F(G) and F(G). Let us denote the image of the �eld (5.19) under �̂ by �a�;b. Aording23Note that the struture and number of ĝ-bloks and hene of the indeomposables Î[�℄ in the �eld theory maydi�er from that in the minisuperspae theory, see eq. (4.7). The relation between the two may be established withthe help of spetral ow automorphisms.24There might exist onsistent trunations to diagonalizable subsetors for low levels, see the disussion in [37℄.Suh phenomena appear to be very rare, though.25Sine the Cartan subalgebra of g was assumed to be idential to the Cartan subalgebra of g0 this statement evenholds for unspeialized haraters and partition funtions.32



to our general strategy, orrelation funtions in the interating theory may be omputed through
�a1�1;b1(z1; �z1) � � ��aN�N ;bN (zN ; �zN )� = smaxXs=0 1s! 
V a1�1;b1(z1; �z1) � � � V aN�N ;bN (zN ; �zN ) Ssint �0 ; (5.22)where the orrelators on the right hand side are to be evaluated in the deoupled theory. We shallshow below that orrelators with s � smax = Nr insertions vanish so that the summation over s is�nite. Let us also reall that the interation term is given bySint = � i2� Z paRab(gB) �pb dw ^ d �w : (5.23)Here, the expression Rab(gB) should be interpreted as a vertex operator of the bosoni WZNWmodel, transforming in the representation R
R�.There are now two omputations to be performed in the deoupled theory. First of all, wehave to determine orrelation funtions for the bosoni �elds V�i with additional insertions of svertex operators Rab(gB). We shall assume the bosoni WZNW model to be solved and henethat all these bosoni orrelators are known. Let us omment, however, that the dependene ofsuh orrelation funtions on the insertion points of Rab(gB) is ontrolled by null vetor deouplingequations. As usual, these an be exploited to derive integral formulas for the required orrelationfuntions. We shall not go into any more detail here.Instead, let us now omment on the seond part of the omputation that deals with the fermionisetor. Sine we are dealing with r hiral b systems at entral harge  = �2, the evaluation israther standard. Aording to the usual rules, non-vanishing orrelators on the sphere must satisfy#�a�#pa = 1, i.e. the number of insertions of a �xed �eld �a must exeed the number of insertionsof pa by one. In an N -point orrelator, any given omponent �a an appear at most N times. The�elds pa, on the other hand, only emerge from the s insertions of the interation term. Hene, weonlude that all ontributions to our orrelation funtion with s � N � r insertions of Sint vanish.The non-vanishing terms an be evaluated using thatD nY�=1 pa(z�) n+1Y�=1 �a(x�)E0 = Q�<�0(z� � z�0) Q�<�0(x� � x�0)Q�Q�(z� � x�) (5.24)and a similar formula applies to ��a and �pa. These expressions an be inserted into the expansion(5.22). Thereby we obtain a formula for the N -point funtions of the WZNW model whih presentsit as a sum of at most N � r terms labeled by an integer s. Eah individual summand involvesan integration over s insertion points wi. The orresponding integrand fatorizes into free �eldorrelators of the form (5.24) multiplied with a non-trivial (N + s)-point funtion in the bosoniWZNW model for the group GB .Let us point out that for a given hoie of N �elds, the perturbative evaluation of the orrelatormay trunate way before we reah smax. An extreme example appears when all the �elds ��i =�̂V�i ; i = 2; : : : ; N; are images of purely bosoni �elds V�i while the �rst �eld ontains the maximalnumber of fermioni fators, both for left and right movers. In that ase, only the term withs = 0 ontributes and hene these �elds of the WZNW model on the supergroup possess the sameorrelation funtions as in the bosoni WZNW model, i.e.
�1;2;:::;r�1;1;2;:::;r(z1; �z1)��2(z2; �z2) � � ���N (zN ; �zN )� = 
V�1(z1; �z1)V�2(z2; �z2) � � � V�N (zN ; �zN )�0 (5.25)33



where the orrelation funtion on the right hand side is to be evaluated in the bosoni WZNWmodel. The result is a diret analogue of the orresponding formula (4.26) in the minisuperspaetheory.5.4 Some omments on non-trivial modular invariantsDuring the ourse of the previous setions we frequently assumed that the bosoni subgroupGB � Gwas ompat and simply-onneted. On a tehnial level, this ondition is required in order torender the matrix R(gB) well-de�ned whih entered the expression for the di�erential operatorsimplementing the isometries of G on the funtion spae F(G). On the other hand this hoieautomatially limited our onsiderations to WZNW models with (the analogue of a) harge onju-gate modular invariant. In this subsetion we would like to sketh how suh a restrition may beoverome.Let us reall the situation for bosoni WZNW models �rst. It is well-known that a non-simply-onneted group manifold G0 an be desribed geometrially as an orbifold ~G0=� where ~G0 is theuniversal overing group and � �= �1(G0) � Z( ~G0) is a subgroup of its enter. The simplest exampleis SO(3) = SU(2)=Z2. In onformal �eld theory, orbifolds of the previous type are implementedby means of a simple urrent extension of the theory with harge onjugate modular invariant [65℄(see also [66℄). This onstrution of the G0 WZNW model rests on the fat that the ~G0 modelontains suÆiently many simple urrents, one for eah element in the enter Z( ~G0). Inidently,these are in one-to-one orrespondene with (spetral ow) automorphisms of the urrent algebraĝ0. Suh simple urrent extensions exhaust all modular invariants related to the urrent algebraĝ0, apart from some exeptional ases at low levels.Now it has been shown in [67℄ that the global topology of a Lie supergroup is ompletelyinherited from that of its bosoni subgroup. Consequently, given a supergroup G with bosonisubgroup G0 = ~G0=�, there exists a overing supergroup ~G with bosoni subgroup ~G0, and one hasG = ~G=�. Note that entral elements in ~G0 are also entral in ~G. Having onstruted the WZNWmodel on the overing supergroup ~G, we would like to divide by �. But, as we have just stated,elements of � an all be identi�ed with elements in the enter of the bosoni subgroup ~G0. Therefore,they label ertain simple urrents of the ~G0 WZNW model. As indiated in the previous paragraph,we may think of these simple urrents as (equivalene lasses of) spetral ow automorphisms of ĝ0.Aording to the results of subsetion 5.2, all suh spetral ow automorphisms may be extendedfrom ĝ0 to the urrent Lie superalgebra ĝ, in a way that is even onsistent with the free fermiononstrution. Consequently, the elements of our designated orbifold group � label a ertain set ofspetral ow automorphisms of ĝ. It is the ation of these spetral ow automorphisms that onehas to use in order to onstrut the orbifold CFT belonging to the supergroup G = ~G=�.Our disussion so far has been fairly abstrat and we would like to esh it out a bit more.Atually, the details of the orbifold onstrution are not muh di�erent from what is done inbosoni models. For simpliity, let us assume that � is yli and of �nite order. We shall denotethe generating element by . In order to illustrate the relation between orbifolds and spetral owautomorphisms, we depart from the onventional orbifold approah. Namely, we inlude (hiral)twisted setors on whih the superurrents X satisfy boundary onditions of the formX(e2�iz) = �(X)�(z) : (5.26)There exists a basisX�, on whih  ats diagonally as a multipliation with some phase exp(2�i�).If � is an integer, then X� has integer moding in the twisted setor, otherwise its modes are34



rational. All these twisted setors emerge by ating with ertain (meromorphi or not) spetralow automorphisms on the untwisted representations (see subsetion 5.2). The disussion of theprevious paragraph supplied us with the relevant set of spetral ow automorphisms and hene witha list of hiral setors to be inorporated in the onstrution of the G = ~G=� orbifold theory. Setorsof the full non-hiral theory are obtained by independent ation of spetral ow automorphisms onleft and right-movers in the parent theory on ~G. Therefore, even meromorphi spetral ows leadto new non-hiral setors, though these are put together from untwisted representations of the leftand right movers. All this has been worked out for many interesting bosoni models, suh as e.g.the SO(3) = SU(2)=Z2 WZNW model. WZNW models on non-simply-onneted supergroups areno harder to deal with.26Let us �nally omment on the onnetion of the algebrai orbifolds with the Lagrangian piture.Looking at our free �eld resolution (3.5) one might have had the naive idea to replae the bosonimodel by its orbifold and then to add fermions and interation terms in the same way as before. Butthis is not at all what we suggest to do. In partiular, the orbifold group � need not be a symmetryof the interation term if there is no ation on the fermions. Even worse, the vertex operatorRab(gB) ouring in the interation may not be part of the spetrum of the purely bosoni WZNWmodel. As a onsequene, the perturbed orrelation funtions with insertions of this operatorare not well-de�ned. This happens, for example, if we try to supersymmetrize the bosoni groupSO(3) � U(1). The fermions of the extended model with su(2j1) symmetry transform in the spin1=2 representation of SU(2) whih does not desend to a representation of SO(3) = SU(2)=Z2.Hene, it is absolutely ruial to depart from the full SU(2j1) WZNW model and to divide the fullorbifold ation on both bosoni and fermioni variables.6 Lessons for other logarithmi CFTsVarious logarithmi onformal �eld theories have been onsidered in the literature. The beststudied examples are the triplet models in whih the onformal symmetry is extended by a tripletof urrents, eah having spin h = 2p � 1 [68℄. For most of these algebras only hiral aspets havebeen investigated so far, but in ase of p = 2, Gaberdiel and Kaush have been able to ome up witha onsistent loal theory [11℄. The extended hiral symmetry of the triplet models is denoted byW1;p. The latter are believed to be part of a family of more generalW-algebrasWq;p where p and qare o-prime. All of these possess interesting indeomposable representations. Their representationtheory is partiularly well understood for q = 1, see [14℄ and referenes therein.This �nal setion has two aims. First of all we would like to illustrate that the existing resultson the representation theory of W1;p-algebras and the loal triplet model (for p = 2) �t very nielyinto one ommon piture with the logarithmi WZNW models on type I supergroups. But giventhe remarkable progress with the latter, and in partiular with the onstrution of in�nitely manyfamilies of new loal non-hiral models, our results lead to a number of interesting preditions onWq;p-algebras and the assoiated loal logarithmi onformal �eld theories.26 The SO(3) theory also shows that the orbifold onstrution might su�er from obstrutions, depending on thehoie of the level. A more detailed treatment of suh issues for supergroup orbifolds is left for future work.
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6.1 Chiral representation theoryLet us begin this subsetion by reviewing some results on the representation theory ofW1;p =W(p)(see [14℄ and referenes therein). This hiral algebra is known to admit 2p irreduible highestweight representations V�s where s = 1; : : : ; p. While V�p do not admit non-split extensions, allother 2(p� 1) representations appear in the head of the following indeomposables,27R�s : V�s ! 2V�p�s ! V�s (6.1)where s runs from s = 1 to s = p � 1. Hene the representations V�p an be onsidered typialwhereas all others are atypial.28 Moreover, the indeomposables R�s are the projetive overs ofthe atypials V�s and play the role of the representations P in setion 2.2.3. The typial modulesV�p are projetive as well, in agreement with results on the fusion for W(2) representations, see[69℄. The fusion rules of Wp;q-models have reently been addressed in [16℄.The representation theory of W(p)-algebras also ontains analogues of our Ka modules foratypial representations. These have the formK�s : V�s ! V�p�s (6.2)where s = 1; : : : ; p � 1. In view of the role they are going to play we will simply refer to therepresentations K�s as \Ka modules" as well.29 They are obtained as quotients of the projetiveovers R�s . For the typial representations V�p , the assoiated irreduibles, \Ka modules" andprojetive overs all oinide. In this sense, we shall also write K�p = V�p = R�p , just as fortypial representations of Lie superalgebras. Furthermore, among the quotients of the projetiveovers one an also �nd 4(p � 1) \zig-zag" modules, ontaining three irreduible representationseah. It seems likely, that these are just the �rst few examples among an in�nite series of zig-zagrepresentations ofW(p), in lose analogy to representations of the Lie superalgebra gl(1j1) (see e.g.[71℄). The main di�erene between gl(1j1) and W(p) zig-zag modules is that the onstituents ofthe former are pairwise inequivalent. Zig-zag modules of W(p), on the other hand, are built froma pair of irreduibles, eah appearing with some multipliity. This opens the possibility to losezig-zag modules of W(p) into rings. Representations of all these di�erent shapes were found andinvestigated for the quantum groups [72, 73℄ whih are dual to W(p), in the sense of Kazhdan-Lusztig duality.Let us also ompare some further properties of W(p)-modules with those we disussed for Liesuperalgebras of type I. For example, we have pointed out that all projetive modules of type Isuperalgebras possess a \Ka omposition series". The same is true for the projetive overs R�s ,R�s : K�s ! K�p�s (for s < p) ; R�p = K�p : (6.3)Moreover, we also observe that the multipliities in the \Ka omposition series" of indeompos-able projetive overs (reduible and irreduible) and those of irreduible representations in theomposition series of \Ka modules" are related by(R� : K�) = [K� : V�℄ : (6.4)27These diagrams have to be read as follows: To the right we write the maximal fully reduible submodule.Everything left of the rightmost arrow desribes the quotient module of the original module with respet to thesubmodule mentioned before. One an then proeed iteratively to de�ne the whole diagram.28We use the quali�ers \atypial" and \typial" only to larify the analogy to the supergroup WZNW models. Inontrast to the latter, the atypial representations are obviously the generi ones for the algebra W(p).29Using the analogy to the Kazhdan-Lusztig dual quantum group, they have been alled Verma modules in [70℄.36



This establishes an analogue of the reiproity theorem (2.11) that has been an important ingredientin our desription of supergroup WZNW models and, in partiular, in exhibiting its modularinvariane.The agreement between algebrai strutures in the representation theory of Lie superalgebrasand of symmetries in minimal logarithmi onformal �eld theories is remarkable. But let us thinkahead and see what Lie superalgebras may teah us for future studies of indeomposable W-algebra representations. While irreduible representations and their projetive overs are ertainlyentral objets for all Lie superalgebras, some of their properties may di�er onsiderably fromwhat we have seen in the ase of type I. We have pointed out already that the existene of a \Kaomposition series" (or a similar ag) for projetives and the reiproity property (2.11) do nothold for more general Lie superalgebras. Hene, these features of W(p)-modules should not beexpeted to arry over to more general W-algebras either. In fat, numerial results of [74℄ mayindiate that violations even our for Wq;p with p; q 6= 1. Furthermore, the tensor produts forirreduible representations of Lie superalgebras an develop a remarkable omplexity. In this sense,the Lie superalgebra gl(1j1) is rather well-behaved. Representations of psl(2j2), for example, aremuh less tame. In partiular, tensor powers of its adjoint representation lead to an in�nite seriesof indeomposables (see [71℄ for details). The similarities between representations of gl(1j1) andW1;p suggest that the latter may also be rather unusual reatures in the zoo ofW-algebras. In fat,when it omes to the features of fusion, the algebras Wq;p may have muh more generi properties,resembling very losely those of psl(2j2).306.2 Loal logarithmi onformal �eld theoriesRegarding the onstrution of loal �eld theories, the progress with WZNW models on supergroupshas been signi�antly faster than for minimal logarithmi CFTs. In fat, only the minimal tripletmodel assoiated with W(2) has been onstruted in all detail [11℄. Imposing loality onstraintson orrelation funtions, the state spae H of this model was shown to have the formH = I1 � �V+2 
 �V+2 �� �V�2 
 �V�2 � : (6.5)Here, V�2 are the typial modules of W(2), in view of their onformal dimensions previously alsodenoted by V�1=8 and V3=8, and I1 is a ompliated non-hiral indeomposable (denoted by R in[11℄) whih was obtained originally as a ertain quotient of the spae �R+1 
 �R+1 � � �R�1 
 �R�1 �.The module I1 is known to possess the following omposition seriesI1 : �V+1 
 �V+1 �� �V�1 
 �V�1 �! 2�V+1 
 �V�1 �� 2�V�1 
 �V+1 �! �V+1 
 �V+1 �� �V�1 
V�1 � ; (6.6)where we used the orrespondene V+1 = V0 and V�1 = V1 for the atypial irreduibles of W(2).When ating with elements of either the left or right hiral algebra only, H deomposes into a sumof projetives, eah appearing with in�nite multipliity. The individual multipliity spaes annotbe promoted to representation spaes of the ommuting hiral algebra, but they ome equippedwith a grading that is given by the (generalized) eigenvalues of L0 or �L0. When onsidered asgraded vetor spaes, they oinide with the graded arrier spaes of irreduible representations.All this is very reminisent of what we found in eq. (4.6) while studying the harmoni analysis onsupergroups.30A ertain similarity between the representation theory of Wq;p (or rather its dual quantum group) and psl(2j2)is suggested by the struture of their respetive projetive overs, f. e.g. Figure 7 of [75℄ with eq. (2.12) of [76℄.37



Carrying on with the omparison between the triplet model and WZNWmodels on supergroups,we also observe that the omposition series of the state spae (6.5) agrees with that of the module�K+1 
 �K+1 �� �K�1 
 �K�1 �. Hene, the partition funtion of the triplet model an be expressed asZ(q; �q) = Xi=1;2X�=��K�i (q) ��K�i (�q) : (6.7)This result is reminisent of what we found for supergroup WZNW models in setion 5.3. Note thatthe modular transformation behaviour for haraters of Ka modules is rather simple whih makesit easy to hek that Z(q; �q) is modular invariant. In omparison, the transformation behaviour ofharaters belonging to atypial irreduible representations of W(2) is rather involved [69℄, just asfor urrent superalgebras.The striking similarities between the loal triplet theory and the harmoni analysis on super-groups suggest some far reahing generalizations, in partiular onerning the state spae of a widelass of loal logarithmi onformal �eld theories. Let us denote the irreduible representationsof some hiral algebra W by Va and their projetive overs by Pa. For typial representationsthe latter agree (by de�nition) with the irreduibles. We also introdue the symbol Va when Vais onsidered merely as an L0-graded vetor spae. Given this notation, we propose that a loallogarithmi onformal �eld theory with symmetry W an be onstruted on the state spaeH = Ma Va 
 �Pa : (6.8)Our proposal desribes the state spae of the onjetured loal theory as a graded representationspae for W. The extension to the full W
 �W is severely onstrained by requiring symmetry withrespet to an exhange of left and right hiral algebras. Conerning the impliations for W(p)-models it is interesting to observe that the same strutures were found in the regular representationof the dual quantum group, see [70℄, page 24, and ompare with eq. (2.9) in [37℄. Let us point outthat loal theories may probably also be built on other state spaes. Examples are given by theorbifold models we desribed in setion 5.4 or by some exeptional trunations of WZNW modelson simply onneted Lie supergroups (see [37℄ for a few examples).Before we onlude we would like to go one step beyond the previous analogy and to proposea more detailed onjeture for the natural state spae of the W(p) triplet models for arbitrary p.In a straightforward extension of the result (6.5) for p = 2 we believe that a loal theory may bebuilt on the spae H = Ms 6=p Is �M�=�V�p 
 �V�p : (6.9)The non-hiral indeomposable representations ourring here have the omposition seriesIs : �V+s 
 �V+s �� �V�p�s
 �V�p�s�! 2�V+s 
 �V�p�s�� 2�V�p�s
 �V+s �! �V�p�s
 �V�p�s�� �V+s 
V+s �whih oinides with the omposition series of �K+s 
 K+s � � �K�p�s 
 K�p�s�. Consequently, ourproposal is manifestly modular invariant sine the partition funtion an be written as a sum overall \Ka modules", just as in eq. (6.7). Figure 1 provides an alternative 2-dimensional piture ofthe indeomposables Is. In this form the similarities with analogous pitures for gl(1j1) and sl(2j1)[36, 37℄ and for the quantum group dual of W(p)-models [70℄ are learly displayed.38
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 V+sFigure 1: The struture of the non-hiral representation Is.The partiular relevane of projetive modules for loal bulk theories is one of the main outomesfrom the study of WZNW models on supergroups, see also [36, 24, 37℄. Their role for logarithmiextensions of minimal models was also emphasized in [75, 77℄, mostly based on studies of the dualquantum group. It seems worth pointing out, though, that for quotients of supergroups, projetivemodules might not play suh a prominent role, even though some of them are likely to be logarithmias well. Similarly, boundary spetra in logarithmi onformal �eld theories are known to involveatypial irreduibles as well as projetives. For the triplet model, boundary onditions with anatypial irreduible spetrum of boundary operators were exhibited in the reent work of Gaberdieland Runkel [18℄. Studies of branes on supergroups on�rm the existene of suh boundary spetraand they provide a beautiful geometri explanation [78℄.7 Outlook and open questionsIn our paper we presented the main ingredients for a omplete solution of arbitrary supergroupWZNW models based on basi Lie superalgebras of type I. All our results relied on a free fermionresolution of the underlying urrent superalgebra whih allowed to keep the bosoni subsymmetrymanifest in all expressions we enountered, i.e. in ation funtionals, representations, orrelationfuntions and other quantities. On the level of the Lagrangian we showed that the original WZNWLagrangian ould be written as a sum of a WZNW model for the bosoni subgroup with renor-malized metri and possibly a dilaton, the ation for a set of free fermions and an interation termwhih ouples the fermions to a vertex operator of the bosoni model. The usefulness of this on-strution has also been demonstrated in the full quantum theory, e.g. when we reonstruted theurrent superalgebra in terms of the orresponding bosoni urrent algebra and free fermions.In order to solve the WZNWmodel we �rst foused on its semi-lassial, or small urvature limitwhih allowed to redue the onstrution of the spae of ground states to a problem in harmonianalysis on a supergroup. We ould on�rm previous observations [58, 36, 24, 37℄ that the spae offuntions splits into two qualitative very di�erent setors. First of all, there exists a typial setorwhih deomposes into a tensor produt of irreduible typial representations under the ation ofthe supergroup isometry g � g. On this subspae, the Laplaian is fully diagonalizable and itseigenvalues are determined by a spei� quadrati Casimir of g. In addition, the spae of funtionson a supergroup always exhibits an atypial setor onsisting of projetive overs entangled in aompliated way suh that the resulting non-hiral modules annot be written as (a diret sum of)tensor produt representations. In this setor the Laplaian is not diagonalizable and the neessityfor a non-trivial entanglement may eventually be traed bak to the fat that the left and right39



regular ation lead to the same expression for the Laplaian. We wish to emphasize that ourderivation of the spetrum has been very general and just relied on the validity of a reiproitytheorem proven by Zou and Brundan [48, 49℄.Starting from this semi-lassial trunation it has been argued that all its interesting featurespersist in the full quantum theory. In partiular, the full state spae of the WZNW model isstill omposed of a typial and an atypial setor. Again, the representations in the latter donot fatorize and the dilatation operators L0 and �L0 may not be diagonalized. Sine the vauumrepresentation is always atypial this automatially implies the existene of a logarithmi partner ofthe identity �eld and makes supergroup WZNW models genuine examples of logarithmi onformal�eld theories.It should be noted that, in omparison to ordinary free �eld onstrutions [38, 39, 40, 41, 42℄whih are based on a hoie of an abelian subalgebra, our free fermion resolution is muh easierto deal with. In partiular, the representations of the urrent superalgebra obtained from thegeneralized Fok spaes (5.1) are typially irreduible. This observation lets us suggest that theserepresentations are the proper generalization of Ka modules in the in�nite dimensional setting.Furthermore, there was no need of introduing various sreening harges and BRST operators, asimplifying feature that reets itself in the alulation of orrelation funtions. The latter ouldbe redued to a perturbative but �nite expansion in terms of orrelation funtions in the produtof a purely bosoni WZNW model with renormalized metri and a theory of free fermions.Finally, we ommented on possible partition funtions and we explained how they are on-struted as a produt of partition funtions for the onstituents in our free fermion resolution.This rather simple behavior is rooted in the fat that traes are insensitive to the ompositionstruture of representations. Hene, the full WZNW theory possesses the same partition funtionas the deoupled free fermion theory in whih produts of (reduible) Ka modules appear insteadof projetive overs. Taking this assertion for granted, the torus modular invariane of our theoryis satis�ed automatially. It might be helpful to add that torus partition funtions of many non-rational bosoni onformal �eld theories, e.g. of Liouville theory or of the H3+ model, are equallyinsensitive to the interation. This does ertainly not imply that the theories are trivial, neither inase of non-rational onformal �eld theories, nor for WZNW models on supergroups.In the last setion of this work we plaed our new results on hiral and non-hiral aspets ofsupergroup WZNW models in the ontext of previous and ongoing work on other logarithmi on-formal �eld theories, in partiular on logarithmi extensions of minimal models. The similarities areremarkable and provide some novel insight that helps to separate generi properties of logarithmionformal �eld theories from rather singular oinidenes. As an appliation of the analogies weonjetured a preise formula for the state spae of a fully onsistent loal theory based on an arbi-trary hiral algebra. It adopts a partiularly nie shape for the minimal logarithmiW(p)-theories.Working with supergroup WZNW models has two important advantages over the onsiderationof non-geometri logarithmi onformal �eld theories. Conerning the study of hiral aspets, thelose link between the urrent superalgebra ĝ and its horizontal subsuperalgebra g provides a ratherstrong handle on the representation theory of W = ĝ. In fat, sine the representation theory of gis under good ontrol, the same is true for its aÆne extension ĝ. Even though we have not reallypushed this to the level of mathematial theorems, there is no doubt that rigorous results an beestablished along the lines of our disussion. For some partiular examples, this has been arriedout already [36, 24, 37℄. The seond advantage of supergroup WZNW models is the existeneof an ation priniple. The latter is partiularly powerful when it omes to the onstrution of40



loal logarithmi �eld theories, a subjet that has been notoriously hard to address for logarithmiextensions of minimal models. In fat, we have seen in setion 5.3 that the ation leads to arigorous tool for onstruting bulk orrelation funtions. As suh, it has already been exploited inthe onstrution of orrelation funtions for the GL(1j1) WZNW model [36℄.The present work admits natural extensions in several diretions. Among these, the problemof �nding onrete expressions for the full orrelation funtions or, at least, onformal bloks isprobably the most urgent. Another issue of onsiderable signi�ane is the extension of our ideasto world-sheets with boundaries or, in string theory language, the disussion of D-branes. Inthis ontext it seems neessary to obtain a better handle on modular transformation properties ofharaters, inluding those of irreduible atypial representations [13℄. We hope that our work willbe helpful in deriving new harater formulas along the lines of [24, 37℄. It would also be interestingto work out in greater detail the solution of WZNW models with non-trivial modular invariants.In order to aquire more experiene with supersymmetri �-models and for various appliationsit would be desirable to extend our study to superoset models. In ontrast to bosoni models,there is onsiderably more freedom in hoosing how to gauge. Besides gauging the standard adjointation, as is done in [79, 80, 81, 82℄ there are many ases in whih purely one-sided osets areknown or believed to be onformally invariant [19, 20, 21, 22℄. Those latter ases are relevant forthe desription of AdS-spaes, projetive superspaes and even at Minkowski spae. It is worthnoting that the harmoni analysis on oset models G=H with H a bosoni subgroup ating fromthe right, g � gh, an easily be obtained from our results, see setion 4.2 and espeially eq. (4.8)(mp. also [83℄). All the additional input required is the branhing of g0-modules into h-modules.Even before arrying out any suh deomposition expliitly, we may onlude from eq. (4.8) thatthe resulting g-modules are all projetive. This partiularly applies to all generalized symmetrispaes whih are relevant for the desription of AdS-spaes. Let us stress, however, that osetsG=H by some non-trivial supergroup H may behave di�erently. In fat, some simple examplesshow how even atypial irreduibles may emerge in their spetrum.Apart from these strutural and oneptual issues we also expet our work to have onreteimpliations, e.g. in string theory. Let us reall that it is not diÆult to write down lassial �-models whih an be used to desribe string theory on AdS-spaes with various types of bakgrounduxes for instane [19, 84℄. But for a long time it has not been lear how to quantize these �eldtheories while keeping the target spae supersymmetry manifest. It was only reently that the purespinor approah losed this gap to some extent [85, 86℄. Although substantial progress has beenmade on ertain aspets of the pure spinor formulation, there exist a variety of open oneptualissues, in partiular when urved bakgrounds are involved. It was proposed to overome some ofthem through a reformulation in terms of supergroup WZNW models [87℄. The ideas presentedabove may help to gain more ontrol over the relevant models.For a omplete piture we also need to solve WZNW models beyond Lie supergroups of type I.These inlude, in partiular, supergroups of type II where the fermions our in a single multipletof the bosoni subgroup. Struturally, type II implies that there is no natural Z-grading anymorewhih is onsistent with the intrinsi Z2-grading of the underlying Lie superalgebra. This issueonerns the two series B(m;n) = osp(2m+1j2n) and D(m;n) = osp(2mj2n) of Ka' lassi�ation[45℄ whih e.g. onstitute the isometries of superspheres S2n+m�1j2n [5, 88℄. Moreover, these seriesinlude the speial ases D(2; 1;�) and D(n+1; n) whih have been shown [22℄ to have similarly ex-iting properties as A(n; n) = psl(n+1jn+1) [23℄. Let us note that the WZNWmodels based on thefamily of exeptional Lie superalgebras D(2; 1;�) are also relevant for a manifestly supersymmetri41
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