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Free fermion resolution of supergroup WZNW modelsThomas Quella 1 and Volker S
homerus 21 Korteweg-de Vries Institute for Mathemati
s, University of Amsterdam,Plantage Muidergra
ht 24, 1018 TV Amsterdam, The Netherlands2 DESY Theory Group, DESY Hamburg,Notkestrasse 85, D-22603 Hamburg, GermanyAbstra
tExtending our earlier work on PSL(2j2), we explain how to redu
e the solution of WZNWmodels on general type I supergroups to those de�ned on the bosoni
 subgroup. The newanalysis 
overs in parti
ular the supergroups GL(M jN) along with several 
lose relatives su
h asPSL(N jN), 
ertain Poin
ar�e supergroups and the series OSP (2j2N). This remarkable progressrelies on the use of a spe
ial Feigin-Fu
hs type representation. In preparation for the �eld theoryanalysis, we shall exploit a minisuperspa
e analogue of a free fermion 
onstru
tion to dedu
e thespe
trum of the Lapla
ian on type I supergroups. The latter is shown to be non-diagonalizable.After lifting these results to the full WZNW model, we address various issues of the �eld theory,in
luding its modular invarian
e and the 
omputation of 
orrelation fun
tions. In agreementwith previous �ndings, supergroup WZNW models allow to study 
hiral and non-
hiral aspe
tsof logarithmi
 
onformal �eld theory within a geometri
 framework. We shall brie
y indi
atehow insights from WZNW models 
arry over to non-geometri
 examples, su
h as e.g. the W(p)triplet models.Keywords: Conformal Field Theory, Logarithmi
 Conformal Field Theory, FreeField Constru
tions, Supergroups, Lie Superalgebras, Representation Theory
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tionTwo-dimensional non-linear �-models on supermanifolds have been a topi
 of 
onsiderable interestfor the past few de
ades. Their realm of appli
ations is vast, ranging from string theory to statisti
alphysi
s and 
ondensed matter theory. In the Green-S
hwarz or pure spinor type formulation ofsuperstring theory, for example, supersymmetries a
t geometri
ally as isometries of an underlyingspa
e-time (target spa
e) supermanifold. Important examples arise in the 
ontext of AdS/CFTdualities between supersymmetri
 gauge theories and 
losed strings. Apart from string theory,supersymmetry has also played a major role in the 
ontext of quantum disordered systems [1, 2, 3, 4℄and in models with non-lo
al degrees of freedom su
h as polymers [5℄. In parti
ular, it seems to bea 
ru
ial ingredient in the des
ription of the plateaux transitions in the spin [6, 7℄ and the integerquantum Hall e�e
t [8, 9, 10℄. 2



In addition to su
h 
on
rete appli
ations there exist a number of stru
tural reasons to beinterested in 
onformal �-models with target spa
e (internal) supersymmetry. On the one hand,being non-unitary, the relevant 
onformal �eld theory models exhibit rather unusual features su
has the o

urren
e of redu
ible but inde
omposable1 representations and the existen
e of logarithmi
singularities on the world-sheet. In this 
ontext, many 
on
eptual issues remain to be solved, bothon the physi
al and on the mathemati
al side. These in
lude, in parti
ular, the 
onstru
tionof 
onsistent lo
al 
orrelation fun
tions [11℄, the modular transformation properties of 
hara
ters[12, 13℄, their relation to fusion rules [14, 15, 16℄, the treatment of 
onformal boundary 
onditions[17, 18℄ et
. On the other hand, the spe
ial properties of Lie supergroups allow for 
onstru
tionswhi
h are not possible for ordinary groups. For instan
e, there exist several families of 
oset
onformal �eld theories that are obtained by gauging a one-sided a
tion of some subgroup ratherthan the usual adjoint [19, 20, 21, 22℄. The same 
lass of supergroup �-models is also known toadmit a new kind of marginal deformations that are not of 
urrent-
urrent type [23, 24℄. Finally,there seems to be a striking 
orresponden
e between the integrability of these models and their
onformal invarian
e [25, 26, 21, 22℄.In this note we will fo
us on the simplest 
lass of two-dimensional 
onformal �-models, namelyWZNW theories, in order to address some of the features mentioned above. The two essential prop-erties whi
h fa
ilitate an exa
t solution are (i) the presen
e of an extended 
hiral symmetry based onan in�nite dimensional 
urrent superalgebra2 and (ii) the inherent geometri
 interpretation. While(ii) is 
ommon to all �-models, the symmetries of WZNW models are ne
essary to lift geometri
insights to the full �eld theory. Both aspe
ts single out supergroup WZNW theories among mostof the logarithmi
 
onformal �eld theories that have been 
onsidered in the past [27, 11, 28℄ (seealso [29, 30℄ for reviews and further referen
es). While investigations of algebrai
 and mostly 
hiralaspe
ts of supergroup WZNW models rea
h ba
k more than ten years [31, 32, 33, 34, 35℄ it wasnot until re
ently that the use of geometri
 methods has substantially furthered our understandingof non-
hiral issues [36, 24, 37℄. In the last three referen
es the full non-
hiral spe
trum for theGL(1j1), the PSU(1; 1j2) and the SU(2j1) WZNW models has been derived based on methodsof harmoni
 analysis. The most important dis
overy in these arti
les was the relevan
e of so-
alled proje
tive 
overs and the resulting non-diagonalizability of the Lapla
ian whi
h ultimatelymanifests itself in the logarithmi
 behaviour of 
orrelation fun
tions.This paper will put these results on a more general and �rm 
on
eptual basis by 
onsideringrather arbitrary supergroup WZNW models based on basi
 Lie superalgebras of type I. The de�n-ing properties of these Lie superalgebras are (i) the existen
e of a non-degenerate invariant form(not ne
essarily the Killing form) and (ii) the possibility to split the fermioni
 generators into twomultiplets whi
h transform in dual representations of the even subalgebra. The �rst feature isne
essary to even spell out a Lagrangian for our models. Our se
ond requirement 
an be exploitedto introdu
e a distinguished set of 
oordinates in whi
h the Lagrangian takes a parti
ularly simpleform. These arise from some Gauss-like de
omposition in whi
h a bosoni
 group element is sand-wi
hed between the two sets of fermions. The 
onstru
tion resembles the free �eld 
onstru
tion ofbosoni
 models [38, 39, 40, 41, 42℄, but its fermioni
 version turns out to be easier to deal with1In 
ontrast to some appearan
es in the physi
s literature we will use the word \inde
omposable" stri
tly in themathemati
al sense. A

ording to that de�nition also irredu
ible representations are always inde
omposable sin
ethey 
annot be written as a dire
t sum of two other (non-zero) representations.2Instead of referring to the names \Ka
-Moody superalgebra" or even \aÆne Lie superalgebra" whi
h are fre-quently used in the physi
s 
ommunity, we will sti
k to the notion 
urrent superalgebra by whi
h we mean a 
entralextension of the loop algebra over a �nite dimensional Lie superalgebra.3



sin
e the 
orresponding Gauss de
omposition is globally de�ned. We shall make no spe
i�
 
hoi
e
on
erning the 
oordinates on the bosoni
 subgroup so that the underlying bosoni
 symmetry ismanifest throughout our 
onstru
tion.3 The generators of the underlying 
urrent superalgebraof our WZNW model are thus 
onstru
ted from 
urrents of the bosoni
 subalgebra along with anumber of free 
hiral fermioni
 ghost systems whi
h equals the number of fermioni
 generators.As was observed in [24℄ already, at least for the example of PSU(1; 1j2), the free fermionresolution des
ribed above provides a natural framework for the dis
ussion of representations,spe
trum, 
hara
ters and 
orrelation fun
tions, both in the full 
onformal �eld theory and in itssemi-
lassi
al subse
tor. In parti
ular, it is possible to introdu
e the notion of \Ka
 modules" for
urrent superalgebras. These are obtained as a tensor produ
t of an irredu
ible highest weightrepresentation of the (renormalized) bosoni
 subalgebra and a Fo
k spa
e for the free fermions.Exa
tly as their �nite dimensional 
ousins, su
h Ka
 modules turn out to be irredu
ible for generi
(typi
al) 
hoi
es of the highest weight. Hen
e, their 
hara
ters 
an be written down immediatelyand their behaviour under modular transformations is straightforward to derive. Though ourpresentation does not allow to elaborate on the details without spe
ifying a 
on
rete model, webelieve that te
hniques similar to the ones used in [32, 24℄ also permit to derive 
hara
ters foratypi
al irredu
ible representations. The latter arise as quotients from redu
ible Ka
 modules andtheir 
hara
ters possess representations through in�nite sums over 
hara
ters of Ka
 modules. Su
hformulas were shown in [32, 37℄ to provide easy a

ess to modular properties of atypi
al irredu
ibles.If we restri
t our attention to simple Lie superalgebras for a moment our analysis 
overs threetypes of in�nite series, namely A(m;n) = sl(mjn) (for m 6= n), A(n; n) = psl(njn) and C(n +1) = osp(2j2n) [45℄. But, widening Ka
's original usage of the quali�ers \basi
" and \type I",most of our results also apply to non-(semi)simple Lie superalgebras su
h as various extendedPoin
ar�e superalgebras, the general linear Lie superalgebras gl(mjn) or supersymmetri
 extensionsof Heisenberg algebras.4 We wish to stress that our general results below 
ontain a solution of thePSL(njn) WZNW models. What makes these parti
ularly interesting is the fa
t that their volumeis an exa
t modulus, in 
ontrast to bosoni
 non-abelian WZNW models [23, 22℄. It is also worthemphasizing that the isometries of 
at superspa
e, AdS-spa
es and many proje
tive superspa
esfall into the 
lasses mentioned above. We thus expe
t our work to be relevant for these models aswell. A few 
omments in that dire
tion 
an be found in the 
on
lusions.The plan of this paper is as follows. In the next se
tion we shall provide a detailed a

ount ofLie superalgebras of type I and the asso
iated representation theory. Parti
ular emphasis is puton the stru
ture of proje
tive modules, i.e. typi
al Ka
 modules and proje
tive 
overs of atypi
alirredu
ible representations. Afterwards we present the supergroup WZNW Lagrangian in se
tion 3and use a Gauss-like de
omposition in order to rewrite it in terms of a bosoni
 WZNW model,two sets of free fermions and an intera
tion term whi
h 
ouples bosons and fermions. This freefermion resolution is shown to have an algebrai
 analogue on the level of the 
urrent superalgebrawhi
h 
onstitutes the symmetry of the supergroup WZNW model. The analysis of the zero-modespe
trum in the large volume se
tor is performed in se
tion 4 using methods of harmoni
 analysis.Most importantly, we shall determine the representation 
ontent for the 
ombined left right regulara
tion on the algebra of fun
tions over the supergroup. To a
hieve our goal, we use a re
ipro
itybetween atypi
al irredu
ible representations and their proje
tive 
overs. On the way we also prove3See [43, 44℄ for a related approa
h.4WZNW models based on Heisenberg algebras may be used to des
ribe strings on maximally symmetri
 planewaves [46, 47℄. 4



the o

urren
e of a se
tor on whi
h the Lapla
ian is not diagonalizable. After these preparations weextend the free fermion resolution to the full WZNW model in se
tion 5. We introdu
e an analogueof Ka
 modules suitable for in�nite dimensional Lie superalgebras and sket
h the 
al
ulation of
orrelation fun
tions. The latter are ne
essarily logarithmi
 due to the non-diagonalizability of thedilatation operators L0 and �L0. At the end of se
tion 5, we propose a universal partition fun
tionresembling a 
harge 
onjugate invariant and gather some thoughts about the possibility of havingnon-trivial modular invariant partition fun
tions. In the 
on
luding se
tion 6 we argue that thesolution of the logarithmi
 triplet model [11℄ formally �ts into the framework outlined before. Thisobservation is used to spe
ulate about the stru
ture of general logarithmi
 
onformal �eld theories.Most of the statements whi
h appear in the main text 
an be turned into mathemati
allyrigorous propositions. This applies in parti
ular to all algebrai
 manipulations. In our dis
ussionof spe
tra, however, we fo
us on models based on �nite dimensional representations. The mostinteresting supergroups, on the other hand, are based on non-
ompa
t and o

asionally on non-redu
ive groups. While we believe that our dis
ussion may be extended to su
h 
ases, a fully
omprehensive presentation would have required to 
arefully distinguish between di�erent realforms. In the present note, we rather preferred to put the emphasis on the algebrai
 stru
turesthat { in our opinion { are equally relevant for all type I supergroup WZNW models.2 Some ba
kground on Lie superalgebras of type IThe main a
tress of this paper, the Lie supergroup G, is best introdu
ed in terms of its underlyingLie superalgebra g. We will assume the latter to be �nite dimensional, basi
 and of type I. Theattribute \basi
" guarantees the existen
e of a non-degenerate invariant metri
 and is needed inorder to ex
lude 
ertain pathologi
al 
ases whi
h would even rule out the existen
e of a WZNWLagrangian. The predi
ate \type I", on the other hand, implies the existen
e of two multipletsof fermioni
 generators and will simplify the interpretation of the 
hiral splitting in the 
onformal�eld theory we are 
onsidering.In the remainder of this se
tion we shall �rst present the 
ommutation relations of a general(possibly non-simple) basi
 Lie superalgebra of type I. Afterwards we summarize their represen-tation theory following the beautiful exposition of Zou [48℄ (see also [49℄). The reader who is notinterested in the mathemati
al details might wish to skip over parts of this se
tion in the �rstreading.2.1 Commutation relationsA Lie superalgebra g = g0 � g1 is a graded generalization of an ordinary Lie algebra [45℄. Thereare even (or bosoni
) generators Ki whi
h form an ordinary Lie algebra g0, i.e. they obey the
ommutation relations [Ki;Kj ℄ = if ijlK l ; (2.1)with stru
ture 
onstants that are antisymmetri
 in the upper indi
es and that satisfy the Ja
obiidentity. In addition, type I Lie superalgebras possess two sets of odd (or fermioni
) generatorsSa1 and S2a, a = 1; : : : ; r (generating g1) whi
h transform in an r-dimensional representation R ofg0 and its dual R�, respe
tively [50℄. Rephrased in terms of 
ommutation relations, this statementmay be expressed as[Ki; Sa1 ℄ = �(Ri)ab Sb1 [Ki; S2a℄ = S2b (Ri)ba : (2.2)5



The symbol Ri is an abbreviation for the representation matrix R(Ki). In a type I superalgebra,the anti-
ommutators [Sa1 ; Sb1℄ and [S2a; S2b℄ vanish identi
ally [50℄. On the other hand, generatorsSa1 do not anti-
ommute with S2b. Before we are able to spell out their 
ommutation relations, weneed to introdu
e the supersymmetri
 bilinear formhKi;Kji = �ij hSa1 ; S2bi = Æab : (2.3)We assume �ij (not ne
essarily the Killing form) to be invariant with respe
t to g0 and, moreover,to be non-degenerate su
h that its inverse �ij exists. The latter is a 
ru
ial ingredient in thede�nition [Sa1 ; S2b℄ = �(Ri)ab �ijKj : (2.4)The stru
ture 
onstants whi
h appear in this relation are uniquely determined by the requirementthat the metri
 (2.3) is invariant, i.e. h[X;Y ℄; Zi = hX; [Y;Z℄i. The supersymmetry and non-degenera
y of the metri
 on the full Lie superalgebra g follow immediately from the de�nition.The 
ommutation relations above preserve the fermion number #(Sa1 ) �#(S2a). Hen
e g andalso its universal enveloping superalgebra U(g) have a natural Z-grading (lo
alized in three degrees)whi
h is 
onsistent with the intrinsi
 Z2-grading [50℄. It is this property whi
h distinguishes type ILie superalgebras among all Lie superalgebras. Let us also emphasize that the Cartan subalgebraof g will always be identi�ed with that of g0 in what follows. This will be important below whenwe introdu
e highest weight representations.Before we end this subse
tion on the de�nition of type I superalgebras, let us re
e
t a bit onhow restri
tive their stru
ture is. In fa
t, in building a Lie superalgebra one 
annot just 
ome upwith any bosoni
 subalgebra g0 and hope to extend it by adding fermions transforming in somerepresentation R of g0. There is an additional 
onstraint, namely the graded Ja
obi identity. Whilethe latter is by assumption identi
ally satis�ed for g0 and the mixed bosoni
/fermioni
 
ommutatorsdo not impose any new 
onditions, there is a non-trivial restri
tion arising from the 
ommutator[Sa1 ; [Sb1; S2
℄℄ and its 
y
li
 permutations. This leads to the requirement(Ri)b
 �ij (Rj)ad + (Ri)a
 �ij (Rj)bd = 0 : (2.5)An equivalent formulation is to demand that the quadrati
 Casimir vanishes on the symmetri
 partof the tensor produ
t R
R. Alternatively, the 
onstraint on the 
hoi
e of R may be rephrased byrequiring that the tensor Aab
d = (Ri)a
 �ij (Rj)bd (2.6)is antisymmetri
 in the upper two as well as the lower two indi
es. Although the property (2.5)(or (2.6)) looks rather inno
ent it will be a 
ru
ial ingredient in many of the equalities we shallen
ounter.2.2 Representation theoryIn the analysis of supergroupWZNWmodels there are a variety of representations of the underlyingLie superalgebra whi
h play a role. The aim of this se
tion is to provide a brief summary of therelevant modules of �nite dimensional type I Lie superalgebras following Zou's exposition [48℄.For de�niteness, all the de�nitions and statements that follow below will be formulated for �nitedimensional representations. It is understood, though, that our de�nitions 
an be extended toin�nite dimensional representations (dis
rete and 
ontinuous) as well. Whether this is also true fortheir properties, however, remains to be investigated.6



2.2.1 Ka
 modules and their dualsLet us denote by Rep(g0) the set of isomorphism 
lasses of irredu
ible representations of the bosoni
subalgebra g0. The basi
 building blo
ks in the representation theory of Lie superalgebras of type Iare Ka
 modules K�, � 2 Rep(g0) [45, 50℄. They are indu
ed from irredu
ible representations V� ofthe bosoni
 subalgebra g0. More pre
isely, the representation is extended by letting one multipletof fermioni
 generators S2a a
t trivially on the ve
tors v 2 V�. The remaining states in the Ka
module are then 
reated by a
ting with generators from the se
ond multiplet of fermions, Sa1 . Fromour verbal des
ription we immediately infer the de
omposition of Ka
 modules with respe
t to thebosoni
 subalgebra,5 K���g0 = V� 
F = M� �K� : V��0 V� : (2.7)Here and in what follows we assume all g0-modules to be fully redu
ible and denote the resultingmultipli
ities in terms of the square bra
ket [M0 : N0℄0 where M0 is an arbitrary (fully redu
ible)g0-module and N0 an irredu
ible g0-module. The g0-module F = V(Sa1 ) appearing in the previousequation is the exterior (or Grassman) algebra generated by the fermions Sa1 . Its stru
ture as a g0-module is determined by proje
ting tensor powers of the module R� onto their fully anti-symmetri
submodules,F = V �0 �R� � �R� 
R��antisym � �R� 
R� 
R��antisym � � � � � �(R�)
r�antisym : (2.8)The n-fold tensor produ
t here 
orresponds to a state involving n fermioni
 generators Sai1 , i =1; : : : ; n. The 
ase of no fermioni
 generators leads to the one-dimensional trivial representationV0 = V �0 . It is obvious that the series will trun
ate after the r-th tensor produ
t sin
e the fermioni
generators Sa1 anti-
ommute among themselves. Consequently, the dimension of Ka
 modules isalways given by dim(K�) = 2r dim(V�).In 
lose analogy to the previous de�nition we may also introdu
e dual Ka
 modules K�� bystarting with the dual bosoni
 representation V �� = V�+ . Deviating from the above 
onstru
tion wenow let the �rst set of fermioni
 generators Sa1 a
t trivially on the 
orresponding ve
tors and use S2ato 
reate new states. Sin
e the two sets of fermioni
 generators transform in dual representationsthe bosoni
 
ontent is then obviously given byK����g0 = V �� 
F� = �V� 
F�� = M� �K�� : V��0 V� : (2.9)The dimensions of the modules K� and K�� 
oin
ide and it may easily be seen that the representa-tions are indeed dual to ea
h other.Let us 
on
lude the dis
ussion of Ka
 modules with a short 
omment about the last term inthe fermioni
 representation F , eq. (2.8). Inno
ent as it seems, it is important to stress that thehighest 
omponent [R
r℄antisym need not be the trivial g0-module V0 again, even though it 
ertainlyis one-dimensional. The a
tion of the bosoni
 subalgebra on this spa
e 
an be 
al
ulated expli
itly,Ki � �S11 � � �Sr1� = �tr(Ri)S11 � � �Sr1 : (2.10)In 
ase g0 is semisimple, it admits a unique one-dimensional representation, namely the trivialg0-module V0. Hen
e, we 
on
lude that tr(Ri) = 0 for Lie superalgebras with a semisimple bosoni
subalgebra.5In the following we shall refer to the right hand side of this equation and other restri
tions of g-modules tothe bosoni
 subalgebra g0 as the \bosoni
 
ontent". Hen
e, this phrase is not related to the Z2-grading of therepresentation spa
e. 7



2.2.2 Simple modules and their blo
ksKa
 modules provide an important intermediate step to 
onstru
ting irredu
ible representations.Finding their exa
t relation with irredu
ibles, however, requires good 
ontrol over the stru
ture ofKa
 modules. For generi
 labels �, the (dual) Ka
 modules turn out to be irredu
ible. Thereby, theygive rise to what is known as typi
al irredu
ible representations L� = K�. But there exist spe
ialvalues of � for whi
h the asso
iated Ka
 module 
ontains a proper invariant subspa
e. The so-
alled atypi
al irredu
ible representations L� are obtained from su
h K� by fa
toring out the uniquemaximal invariant submodule [50℄. In 
ontrast to the typi
al 
ase, it is not straightforward to givea general formula for the dimension or the bosoni
 
ontent of atypi
al irredu
ible representations,see however [48, 51℄. As will be explained below the representations L0 as well as LR and L�R = LR�are always atypi
al.We shall assume that all irredu
ible representations of our type I superalgebra g emerge as(possibly trivial) quotients of Ka
 modules (
f. [50℄). In other words, the set Rep(g) of iso-morphism 
lasses (or labels) of irredu
ible g-modules agrees with the one of its bosoni
 subal-gebra, i.e. Rep(g) = Rep(g0). A

ording to our previous remarks, it splits into two disjoint sets,Rep(g) = Typ(g) [Atyp(g), 
ontaining typi
al and atypi
al labels, respe
tively.Simple modules of a Lie superalgebra 
an be grouped into so-
alled blo
ks. By de�nition, blo
ksare the parts of the �nest partition of Rep(g) su
h that two simple modules belong to the same partas soon as they have a non-split extension (see, e.g., [52℄). An intuitive way of understanding thisde�nition is to view the simple modules as verti
es in a graph. There exists an edge between twoverti
es if and only if the 
orresponding simple modules admit a non-split extension. In this pi
ture,the blo
ks 
orrespond to 
onne
ted 
omponents of the full graph. The property \being 
onne
ted"de�nes an equivalen
e relation � on Rep(g). We will use the notation �(g) = Rep(g)= � for the setof all blo
ks and [�℄ 2 �(g) for individual blo
ks. Noti
e that ea
h typi
al module forms a blo
k byitself.6 Atypi
al irredu
ible representations, on the other hand, form 
onstituents of larger blo
ks.This implies the de
omposition �(g) = �typ(g) [ �atyp(g) where �typ(g) = Typ(g).It is easy to argue that ea
h Lie superalgebra of type I possesses a (probably in�nite) blo
k[0℄ 
ontaining the trivial representation. Atypi
ality of the one-dimensional trivial representationalready follows on dimensional grounds sin
e the dimension of Ka
 modules is always a multipleof 2r. Let us 
ontinue to show that the representations LR and L�R �= LR� whi
h are based on theg0-modules R and R� lie in the same blo
k [0℄. It is straightforward to see that L0 is obtained asa quotient from the Ka
 module K0 where the subs
ript 0 refers to the trivial g0-module. In orderto prove the atypi
ality of LR we 
onsider the states in K0 whi
h are obtained from the groundstate by applying pre
isely one fermioni
 generator. These states transform in the representationR of g0. Sin
e the Ka
 module K0 is atypi
al and its irredu
ible quotient is of dimension one, thisrepresentation has to de
ouple, i.e. the fermioni
 generators S2a have to annihilate these states.We observe that the representation R 
an be part of at least two di�erent supermultiplets: it maybe used to de�ne a Ka
 module KR and it generates a submodule QR of K0. In both 
ases, thehighest weight 
onditions are exa
tly identi
al. But obviously the dimensions of QR and KR donot 
oin
ide sin
e dimQR < dimK0 < dimKR. Hen
e, QR has to be a non-zero quotient of KR,proving the atypi
ality of the latter. The same reasoning 
ould be repeated with at least one of theg0-modules whi
h appear in the (dual) Ka
 modules KR and KR� and so on. Thereby we 
onstru
ta presumably in�nite 
hain of atypi
al representations L� in the blo
k [0℄. The labels that are6This statement only holds in this form if we restri
t ourselves to �nite dimensional representations.8



in
luded in this blo
k all appear in the de
omposition of the tensor produ
ts R
m 
 (R�)
n forarbitrary powers m and n (the 
onverse is not true, of 
ourse).2.2.3 Proje
tive modulesLie superalgebras possess a whole zoo of representations whi
h 
annot be de
omposed into a dire
tsum of irredu
ibles. We shall see some important examples momentarily. Let us re
all before thatany g-module M possesses a 
omposition series. The latter is determined by a spe
ial kind of�ltration, in the present 
ase an as
ending set of submodules Mi, i = 0; : : : ; n where M0 = 0 andMn = M , su
h that the quotients Mi=Mi�1 are simple modules. We will denote by [M : L�℄ thenumber of irredu
ible g-modules L� in this 
omposition series of M .The most interesting 
lass of inde
omposables 
onsists of the so-
alled proje
tive 
overs P� ofirredu
ibles L�. The module P� is de�ned to be the unique inde
omposable proje
tive module that
ontains the irredu
ible representation L� as its head.7 By de�nition, the head of a representationis the quotient by its maximal proper submodule. For typi
al labels one has the equivalen
esL� �= K� �= P�. For atypi
al labels, however, irredu
ible modules, Ka
 modules and proje
tive
overs are all inequivalent. In parti
ular, they possess di�erent dimensions.All proje
tive modules P of a type I superalgebra are known to possess a Ka
 
ompositionseries [48℄, i.e. a �ltration in terms of submodules whose quotients are Ka
 modules.8 We denoteby (P : K�) the number of Ka
 modules K� in the Ka
 
omposition series of P. In order to des
ribethe pre
ise stru
ture of inde
omposable proje
tive modules we will rely on the following re
ipro
itytheorem [48, Theorem 2.7℄ (see also [49℄)�P� : K�� = �K� : L�� : (2.11)This important equation relates the multipli
ities of Ka
 modules in the Ka
 
omposition seriesof a proje
tive 
over to the multipli
ity of irredu
ible representations arising in the 
ompositionseries of Ka
 modules. Hen
e, the stru
ture of proje
tive 
overs is 
ompletely determined by thatof Ka
 modules. The statement is trivial for typi
al labels but it 
ontains valuable informationin the atypi
al 
ase. Note that a small te
hni
al assumption underlying Zou's proof of eq. (2.11)seems to be over
ome if one uses the approa
h of [49℄.There is one simple 
onstru
tion that is guaranteed to furnish proje
tive modules and it isexa
tly this 
onstru
tion through whi
h the latter will enter in our harmoni
 analysis later on. Theidea is to indu
e representations from irredu
ible representations V� of g0 by letting both sets offermioni
 generators Sa1 and S2a a
t non-trivially, i.e.B� = Indgg0(V�) : (2.12)These modules are proje
tive and redu
ible [48℄. Indeed, under reasonable assumptions on g0 all�nite dimensional g0-modules are proje
tive, and this property is preserved by indu
tion. Forlater use, let us write down the de
omposition of the representations B� into their inde
omposablebuilding blo
ks. We start with the observation that their bosoni
 
ontent is given byB���g0 = V� 
F 
F� : (2.13)7The attribute \proje
tive" is used here in the sense of 
ategory theory and should not be 
onfused with thenotion of proje
tive representations that is used when algebrai
 relations are only respe
ted up to some multipliers(
o
y
les).8It should be stressed that this property is not true for type II Lie superalgebras. A 
ounter-example is providedby D(2; 1;�) whose representation 
ategory is dis
ussed in [53℄.9



Using a suitable rearrangement of these fa
tors it is obvious that the multipli
ities of Ka
 modules inthe Ka
 
omposition series of B� are given by (B� : K�) = [K��+ : V� ℄0. For the a
tual de
ompositioninto inde
omposables we use our knowledge that B� is proje
tive. This implies that it may bewritten as a dire
t sum of (typi
al) irredu
ible Ka
 modules and (atypi
al) proje
tive 
overs. Whilenothing remains to be done for typi
al representations, the 
orre
t des
ription of the atypi
al se
torrequires 
ombining the 
orresponding (non-proje
tive) Ka
 modules into proje
tive 
overs. In orderto a
hieve this goal we note the equality [K��+ : V� ℄0 = [K�� : V�+ ℄0 whi
h holds be
ause both sides
orrespond to the number of g0-invariants in the tensor produ
t V� 
 V �� 
 F�. Now we 
an usethe following simple 
onsequen
e of the duality relation (2.11),[K��+ : V� ℄0 = �K�� : V�+�0 = X� �K�� : L��� �L�� : V�+�0 = X� �P� : K�� �L�� : V�+�0 ; (2.14)to arrive at the �nal resultB� = M�2Typ(g)�K��+ : V��0K� � M�2Atyp(g)�L�� : V�+�0 P� : (2.15)This formula will be one of the main ingredients in the harmoni
 analysis to be performed belowin se
tion 4.2. It is interesting to note that every inde
omposable proje
tive module arises asa subspa
es of some B� [48℄. This means that the 
ategory of representations 
onsidered here\
ontains enough proje
tives".Let us elaborate a bit more on the distinguished role that proje
tive modules { dire
t sums oftypi
al irredu
ibles and proje
tive 
overs of atypi
al irredu
ibles { play for the representation theoryof Lie superalgebras. In fa
t, in many ways they take over the role of irredu
ible representations inthe theory of ordinary Lie algebras. Most importantly, it 
an be shown that the tensor produ
t ofany module with a proje
tive one is proje
tive again. In other words, proje
tive modules form anideal in the representation ring. Moreover, the Clebs
h-Gordon de
omposition for tensor produ
ts ofproje
tive modules 
an be determined through a variant of the Ra
ah-Speiser algorithm. Considerfor instan
e two proje
tive g-modules A1 and A2. Being proje
tive, they have a Ka
 
ompositionseries and hen
e their bosoni
 
ontent is given byAi��g0 = X�mi�V� 
F : (2.16)For the bosoni
 
ontent of the tensor produ
t A1 
A2 this implies�A1 
A2���g0 = X�m1�m2�hV� 
 V� 
Fi
F : (2.17)The last F should be interpreted as the fermioni
 fa
tor that is guaranteed to be present in everyproje
tive module, due to the fa
t that they possess a Ka
 
omposition series. All we need to do isto de
ompose the fa
tor V� 
 V� 
F into irredu
ibles of g0. This provides us with a list of all Ka
modules in A1
A2 along with their multipli
ities. Typi
al Ka
 modules 
orrespond to irredu
iblerepresentations appearing in the tensor produ
t while atypi
al Ka
 modules must be re-
ombinedinto proje
tive 
overs. This �nal step is performed based on formula (2.11) and it leads to anunambiguous result. Our dis
ussion shows how the Clebs
h-Gordon de
omposition of the tensorprodu
t A1
A2 may be played ba
k to the bosoni
 subalgebra. The de
omposition of V�
V�
F
an be ta
kled with the usual algorithmi
 tools from the representation theory of Lie algebras.10



2.2.4 The quadrati
 Casimir elementOne of the most important obje
ts in representation theory are the Casimir elements, i.e. elementsof the 
enter of the universal enveloping algebra U(g). For our 
on
rete 
hoi
e of generators andinvariant form we have a natural quadrati
 CasimirC = Ki�ijKj � Sa1S2a + S2aSa1 : (2.18)It may easily be 
he
ked that this operator a
ts as a s
alar on Ka
 modules K�. For a ve
tor v 2 V�in the de�ning irredu
ible bosoni
 multiplet one �ndsCv = �CB � tr(Ri)�ijKj�v ; (2.19)where CB = Ki�ijKj is the quadrati
 Casimir of g0 asso
iated to its non-degenerate metri
. Sin
ethe se
ond term inside the bra
ket 
ommutes with g0 as well, the irredu
ibility of V� implies thatC a
ts as a s
alar on the whole multiplet V�. Using the 
ommutativity of C with g, this a
tion maybe extended to the 
omplete Ka
 module K�. We will denote the 
orresponding eigenvalue of theCasimir by C� = C(K�). Be
ause irredu
ible g-modules are de�ned as a quotient of Ka
 modulesthis immediately implies C(L�) = C(K�).The observation that several representations may have the same Casimir eigenvalues 
an beseen to generalize. In fa
t, it just takes a moment of thought to 
onvin
e oneself that one hasC� = C� (and the same for other Casimirs) whenever the simple modules belong to the same blo
k,� � �. It seems plausible that also the 
onverse holds, i.e. that the set of Casimir operators may beused to separate di�erent blo
ks. If this assertion was true, then 
hoosing � and � from di�erentblo
ks, one would be able to �nd a Casimir (not ne
essarily quadrati
) whose eigenvalues on L�and L� disagree.The previous 
omment that Casimir eigenvalues are 
onstant on blo
ks has interesting impli-
ations for inde
omposables. By de�nition, the 
omposition series of an inde
omposable 
ontainsirredu
ibles belonging to one and the same blo
k. Therefore, within any inde
omposable, no matterhow 
ompli
ated it is, all generalized eigenvalues of the Casimir elements are the same. The ad-ditional quali�er \generalized" is ne
essary be
ause a Casimir element need not be diagonalizablewhen evaluated in an inde
omposable representation. This phenomenon is parti
ularly 
ommonfor the proje
tive 
overs of atypi
als. We shall see later that { at least for a type I Lie superalgebra{ the quadrati
 Casimir (2.18) 
annot be diagonalized in any of the proje
tive 
overs P�.9 Further-more, there exists at least one series of proje
tive 
overs, the ones asso
iated to the blo
k [0℄ 2 �(g)of the trivial representation, for whi
h the generalized eigenvalues, i.e. the diagonal entries in theJordan blo
k, vanish identi
ally.103 The supergroup WZNW model and its symmetriesIn this se
tion we will introdu
e the WZNW model using its Lagrangian formulation. We willemploy a Gauss-like de
omposition in order to rewrite the Lagrangian in terms of a bosoni
 WZNW9Diagonalizability might be true for other Casimir operators though. For gl(1j1), for example, the Casimir elementE2 is diagonalizable in all weight modules. Note however that E2 is not related to a non-degenerate invariant formas in eq. (2.18).10Certain type II superalgebras su
h as e.g. D(2; 1;�) are known to also possess proje
tive 
overs with non-vanishinggeneralized eigenvalues [53℄. 11



model, a free fermion theory and an intera
tion term. We then des
ribe the in�nite dimensional
urrent superalgebra of the model and explain how the latter may be re
onstru
ted from the freefermion resolution introdu
ed before. Let us stress that, 
ontrary to the well known free �eldapproa
hes to bosoni
 WZNW models [38, 39, 40, 41, 42℄, our approa
h keeps the full bosoni
symmetry manifest at all times. It redu
es the problem of solving the supergroup WZNW modelto a solution of the underlying bosoni
 model.3.1 The Lagrangian des
riptionGiven the Lie superalgebra g as de�ned in (2.1)-(2.4), we 
an 
ombine its generators with elementsof a Grassmann algebra in order to obtain a Lie algebra whi
h 
an be exponentiated. In physi
ist'smanner we shall de�ne the supergroup G to be given by elementsg = e� gB e�� (3.1)with � = �aS2a and �� = ��bSb1 (this parametrization has been termed \
hiral superspa
e" in [54℄).The 
oeÆ
ients �a and ��b are independent Grassmann variables while gB denotes an element ofthe bosoni
 subgroup GB � G obtained by exponentiating the Lie algebra generators Ki. Theattentive reader may have noti
ed that the produ
t of two su
h supergroup elements (3.1) will notagain give a supergroup element of the same form. We shall 
lose an eye on su
h issues. For us,passing through the supergroup is merely an auxiliary step that serves the purpose of 
onstru
tinga WZNW-like 
onformal �eld theory with Lie superalgebra symmetry. Sin
e Lie superalgebras donot su�er from problems with Grassmann variables, the resulting 
onformal �eld theory will bewell-de�ned.The WZNW Lagrangian for maps g : �2 ! G from a two-dimensional Riemann surfa
e �2 tothe supergroup G is fully spe
i�ed in terms of the invariant metri
 on g and it readsSWZNW[g℄ = � i4� Z�2hg�1�g; g�1 ��gi dz ^ d�z � i24� ZB3hg�1dg; [g�1dg; g�1dg℄i : (3.2)The se
ond term is integrated over an auxiliary three-manifold B3 whi
h satis�es �B3 = �2. Notethat the measure idz ^ d�z is real. The topologi
al ambiguity of the se
ond term possibly imposesa quantization 
ondition on the metri
 h�; �i or, more pre
isely, on its bosoni
 restri
tion, in orderto render the path integral well-de�ned.11 Given the parametrization (3.1), the Lagrangian 
an besimpli�ed 
onsiderably by making iterative use of the Polyakov-Wiegmann identitySWZNW[gh℄ = SWZNW[g℄ + SWZNW[h℄� i2� Z hg�1 ��g; �hh�1i dz ^ d�z : (3.3)The WZNW a
tion evaluated on the individual fermioni
 bits vanishes be
ause the invariant form(2.3) is only supported on grade 0 of the Z-grading. The �nal result is thenSWZNW[g℄ = SWZNW[gB ; �℄ = SWZNW[gB ℄� i2� Z h���; gB ��� g�1B i dz ^ d�z : (3.4)11Note that for WZNWmodels based on bosoni
 groups one usually expli
itly introdu
es an integer valued 
onstant,the level, whi
h appears as a prefa
tor of the Killing form. For supergroups the Killing form might vanish. Hen
e thereis no 
anoni
al normalization of the metri
. Moreover, we would like to in
lude models whose metri
 renormalizesnon-multipli
atively (see below). Under these 
ir
umstan
es it is not parti
ularly 
onvenient to display the levelexpli
itly and we assume instead that all possible parameters are 
ontained in the metri
 h�; �i.12



For the 
orre
t determination of the mixed bosoni
 and fermioni
 term it was again ne
essary torefer to the grading of g. The latter implies for instan
e that the s
alar produ
t vanishes if bosoni
generators are paired with fermioni
 ones.It is now 
ru
ial to realize (see also [36, 24℄) that we may pass to an equivalent des
ription ofthe WZNW model above by introdu
ing an additional set of auxiliary �elds pa and �pa,S[gB ; p; �℄ = SWZNWren [gB ℄ + Sfree[�; ��; p; �p℄ + Sint[gB ; p; �p℄= SWZNWren [gB ℄ + i2� Z nhp; ���i � h�p; ���i � hp; gB �p g�1B io dz ^ d�z : (3.5)Here, �; �� and our new fermioni
 �elds p = paSa1 and �p = �paS2a all take values in the Lie superalgebrag. Our 
onventions may look slightly asymmetri
 but as we will see later this just resembles theasymmetry in the parametrization (3.1). Up to 
ertain subtleties that are en
oded in the subs
ript\ren" of the �rst term, it is straightforward to see that we re
over the original Lagrangian (3.4)upon integrating out the auxiliary �elds p and �p.Let us 
omment a bit more on ea
h term in the a
tion (3.5). Most importantly, we need tospe
ify the renormalization of the bosoni
 WZNW model whi
h results from the 
hange in the pathintegral measure (
f. [55℄). The 
omputation of the relevant Ja
obian has two important e�e
ts.First of all, it turns out that the 
onstru
tion of the purely bosoni
 WZNW model entering thea
tion (3.5) employs the following renormalized metri
12hKi;Kjiren = �ij � 
ij with 
ij = tr(RiRj) : (3.6)Note that this renormalization is not ne
essarily multipli
ative. For simple Lie superalgebras therenormalized metri
 is always identi
al to the original one up to a fa
tor. For non-simple Liesuperalgebras, however, this is generi
ally not the 
ase as 
an be inferred from the example ofgl(1j1).As a se
ond 
onsequen
e of the renormalization, the a
tion (3.5) may 
ontain a Fradkin-Tseytlinterm, 
oupling a non-trivial dilaton to the world-sheet 
urvature R(2),SWZNWFT [gb℄ = Z�2 d2�phR(2)�(gB) where �(gB) = �12 lndetR(gB) : (3.7)The same kind of expression has already been en
ountered in the investigation of the GL(1j1)WZNW model, 
f. [31, 32, 36℄. From the dis
ussion at the end of se
tion 2.2.1 it is obvious that �vanishes whenever g0 is a semisimple Lie algebra. Therefore, a non-trivial dilaton is a feature of theseries osp(2j2n), sl(mjn) and gl(mjn) or, in other words, of most basi
 Lie superalgebras of type I.The pre
ise reason for the 
laimed form of renormalization, i.e. the modi�
ation of the metri
 andthe appearan
e of the dilaton, will be
ome 
lear in the following se
tions when we dis
uss the fullquantum symmetry of the supergroup WZNW model. At the moment let us just restri
t ourselvesto the 
omment that the dilaton is required in order to ensure the supergroup invarian
e of thepath integral measure for the free fermion resolution, i.e. the des
ription of the WZNW model interms of the Lagrangian (3.5).12We assume this metri
 to be non-degenerate. Otherwise we would deal with what is known as the 
riti
al levelor, in string terminology, the tensionless limit. 13



Before we 
on
lude this subse
tion, let us qui
kly return to the fermioni
 terms of the Lagrangian(3.5) whi
h may be rewritten in an even more expli
it form usinggB �p g�1B = gB S2b �pb g�1B = S2aRab(gB) �pb : (3.8)The result for the intera
tion term isSint[gB ; p; �p℄ = � i2� Z paRab(gB) �pb dz ^ d�z : (3.9)In an operator formulation, the obje
t Rab(gB) should be interpreted as a vertex operator of thebosoni
 WZNW model, transforming in the representation R
R�. We may 
onsider the intera
tionterm paRab(gB) �pb as a s
reening 
urrent. Note that the latter is non-
hiral by de�nition, a featurethat is not really spe
i�
 to supergroups but applies equally to bosoni
 models. Nevertheless, theexisting literature on free �eld 
onstru
tions did not pay mu
h attention to this point. A
tually,the distin
tion is not really relevant for purely bosoni
 WZNW models be
ause of their simplefa
torization into left and right movers. In the present 
ontext, however, a 
omplete non-
hiraltreatment must be enfor
ed in order to 
apture and understand the spe
ial properties of supergroupWZNW models.3.2 Covariant formulation of the symmetryIt is well known that the full WZNW model exhibits a loop group symmetry. More pre
isely, theLagrangian (3.2) (and hen
e also the fun
tional (3.5)) is invariant under multipli
ation of the �eldg(z; �z) with holomorphi
 elements from the left and with antiholomorphi
 elements from the right.In�nitesimally, ea
h of these transformations generates an in�nite dimensional 
urrent superalgebra,a 
entral extension ĝ of the loop superalgebra belonging to g. For the holomorphi
 se
tor the latteris equivalent to the following operator produ
t expansions (OPEs). In the bosoni
 subse
tor we�nd Ki(z)Kj(w) = �ij(z � w)2 + if ij lK l(w)z � w : (3.10)The transformation properties of the fermioni
 
urrents areKi(z)Sa1 (w) = �(Ri)ab Sb1(w)z � w and Ki(z)S2a(w) = S2b(w) (Ri)baz � w : (3.11)Finally we need to spe
ify the OPE of the fermioni
 
urrents,Sa1 (z)S2b(w) = Æab(z � w)2 � (Ri)ab �ijKj(w)z � w : (3.12)The previous operator produ
t expansions are straightforward extensions of the 
ommutation re-lations (2.1), (2.2) and (2.4). The 
entral extension is determined by the invariant metri
 (2.3).The 
urrent superalgebra above de�nes a 
hiral vertex algebra via the Sugawara 
onstru
tion[56℄. As usual, the 
orresponding energy momentum tensor is obtained by 
ontra
ting the 
urrentswith the inverse of a distinguished invariant and non-degenerate metri
. The appropriate fullyrenormalized (hen
e the subs
ript \full-ren") metri
 is de�ned byhKi;Kjifull-ren = (
�1)ij = �ij � 
ij � 12 f imn f jnmhSa1 ; S2bifull-ren = (
�1)ab = Æab + (Ri�ijRj)ab (3.13)14



and it is the result of adding half the Killing form of the Lie superalgebra g to the original 
lassi
almetri
 (2.3).13 Note that some of the terms in the fully renormalized metri
 (3.13) 
an be iden-ti�ed with the (partially) renormalized metri
 (3.6) whi
h we introdu
ed while deriving the freefermion Lagrangian. The energy momentum tensor of our theory involves the inverse of the fullyrenormalized metri
, T = 12 hKi
ijKj � Sb1
abS2a + S2a
abSb1� : (3.14)Both, 
urrents and energy momentum tensor, may similarly be de�ned for the antiholomorphi
se
tor. The appearan
e of a renormalized metri
 in the Sugawara 
onstru
tion is a rather 
ommonfeature. Supergroup WZNW models are 
ertainly not ex
eptional in this respe
t.In order to 
omplete the dis
ussion of the operator 
ontent, we have to introdu
e vertex oper-ators �(M)(z; �z). The latter 
arry a representation M of g� g, the underlying horizontal part ofthe 
urrent superalgebra of our model. If we assume for a moment that M = (��) where � and �refer to Ka
 modules of the individual fa
tors in g� g then primary �elds are 
hara
terized by theoperator produ
tsKi(z)�(��)(w; �w) = �D(�)(Ki)�(��)(w; �w)z � w S2a(z)�(��)(w; �w) = 0 (3.15)�Ki(�z)�(��)(w; �w) = �(��)(w; �w)D(�)(Ki)�z � �w �Sa1 (�z)�(��)(w; �w) = 0 : (3.16)In addition, there are �elds (Sa11 � � �Sas1 �S2b1 � � � �S2bt�(��))(z; �z) whi
h belong to the same represen-tation of the horizontal subsuperalgebra. The matri
es D(�) are representation matri
es of g0.As usual we may infer the 
onformal dimension of the primary �elds from their operator produ
texpansion with the energy momentum tensor,T (z)�(��)(w; �w) = h(��) �(��)(w; �w)(z � w)2 + ��(��)(w; �w)z � w�T (�z)�(��)(w; �w) = �h(��) �(��)(w; �w)(z � w)2 + ���(��)(w; �w)�z � �w : (3.17)Using the standard te
hniques one easily �nds that the 
onformal dimensions are given by (renor-malized) Casimir eigenvalues,h(��) = 12 C full-ren� �h(��) = 12 C full-ren� : (3.18)The 
orresponding Casimir is given by C full-ren = Ki
ijKj + tr(
Ri)�ijKj and should be thoughtof as a renormalization of eq. (2.19). It is important to stress on
e more that in our 
onventionsthe level is 
ontained impli
itly in the metri
 �ij . Thus the 
onformal dimensions depend on thelevel. They vanish if the metri
 of the supergroup is s
aled to in�nity. In that limit the groundstate se
tor de
ouples, and it 
an be analyzed using methods of harmoni
 analysis. This will be
arried out in se
tion 4.13Again, this renormalization does not need to be multipli
ative, see for instan
e GL(1j1).15



3.3 Free fermion resolutionOur next aim is to des
ribe the 
urrent superalgebra de�ned above and the asso
iated primary�elds in terms of the de
oupled system of bosons and fermions that appear in the Lagrangian (3.5).As one of our ingredients we shall employ the bosoni
 
urrent algebraKiB(z)KjB(w) = (�� 
)ij(z � w)2 + if ijlK lB(w)z � w ; (3.19)whi
h is de�ned using the (partially) renormalized metri
 whi
h has been introdu
ed in (3.6). Inaddition, we need r free fermioni
 ghost systems with �elds pa(z) and �a(z) of spins h = 1 andh = 0, respe
tively. They possess the usual operator produ
tspa(z) �b(w) = Æbaz � w : (3.20)Fermioni
 �elds are assumed to have trivial operator produ
t expansions with the bosoni
 genera-tors. By 
onstru
tion, the 
urrents KiB and the �elds pa, �b generate the 
hiral symmetry of the�eld theory whose a
tion isS0[gB ; p; �℄ = SWZNWren [gB ℄ + Sfree[�; ��; p; �p℄ : (3.21)Our full WZNW theory may be 
onsidered as a deformation of this theory, on
e we take intoa

ount the intera
tion term between bosons and fermions, see eq. (3.9). The further developmentof this approa
h and its 
onsequen
es will be the subje
t of se
tion 5.But returning �rst to the de
oupled a
tion (3.21), it is easy to see that it de�nes a 
onformal�eld theory with energy momentum tensorT = 12 hKiB 
ijKjB + tr(
Ri)�ij �KjBi� pa��a : (3.22)Note the existen
e of the dilaton 
ontributions, i.e. terms linear in derivatives of the 
urrents. Inaddition to the 
onformal symmetries, the a
tion (3.21) is also invariant under a ĝ� ĝ 
urrent su-peralgebra. The 
orresponding holomorphi
 
urrents are de�ned by the relations (normal orderingis implied) Ki(z) = KiB(z) + pa (Ri)ab �b(z)Sa1 (z) = ��a(z) + (Ri)ab �ij �bKjB(z)� 12(Ri)a
 �ij (Rj)bd pb�
�d(z)S2a(z) = �pa(z) : (3.23)It is a straightforward exer
ise, even though slightly 
umbersome and lengthy, to 
he
k that this setof generators reprodu
es the operator produ
t expansions (3.10), (3.11) and (3.12). The only inputwe need is the Ja
obi identity (2.5). The same identity shows that the quantity in (3.23) whi
h isused to 
ontra
t pb�
�d is in fa
t antisymmetri
 in the lower two indi
es. Obviously, a similar setof 
urrents may be obtained for the antiholomorphi
 se
tor. Given the representation (3.23) forthe 
urrent superalgebra one may also 
he
k the equivalen
e of the expressions (3.14) and (3.22)for the energy momentum tensors. Algebrai
ally, the 
al
ulation rests on the Ja
obi identity (2.5)as well as on the equations(
�1)ij �ij (Rl)ab = (Ri)a
 (
�1)
b = (
�1)a
 (Ri)
b : (3.24)16



The latter arise as invarian
e 
onstraints for the metri
 h�; �ifull-ren as de�ned in eq. (3.13).The 
urrent superalgebra de�ned in (3.23) has a natural a
tion on the vertex operators of the
onformal �eld theory de�ned by the de
oupled Lagrangian S0. On
e we in
lude the intera
tionterm, the theory be
omes equivalent to the full WZNW model. Hen
e, we must be able to mapthe vertex operators of the de
oupled theory to the vertex operators of the WZNW theory. Thepre
ise relation turns out to be rather involved. Therefore, we postpone a more detailed expositionof this relation to se
tion 5. Instead, we will 
ontinue with a semi-
lassi
al analysis of the spa
eof vertex operators. This pro
edure allows us to 
learly exhibit the subtleties of the full quantum�eld theory in a simple and geometri
 setup.4 Semi-
lassi
al analysisThe WZNWmodel we introdu
ed in the last se
tion admits a semi-
lassi
al limit when the invariantmetri
 de�ned in (2.3) is s
aled to in�nity. This 
orresponds to 
hoosing the levels of the underlyingbosoni
 WZNW model large. In this weak 
urvature regime we expe
t the 
onformal dimensions ofall primary �elds to tend to zero and the higher modes to de
ouple. We will start with a dis
ussionof the global symmetry of the WZNW model and how it is realized in terms of di�erential operatorson the spa
e of quantum me
hani
al wave fun
tions. Then we dis
uss the Lapla
ian, i.e. the waveoperator, on G and determine its (generalized) eigenfun
tions and eigenvalues whi
h approximatethe vertex operators and their 
onformal dimensions in the full 
onformal �eld theory. It is shownthat the spe
trum 
ontains non-
hiral inde
omposable modules on whi
h the Lapla
ian is notdiagonalizable.4.1 SymmetryOne of the inherent properties of supergroup manifolds G is that they admit two a
tions of G onitself. These so-
alled left and right regular a
tions are de�ned by the mapsLh : g 7! hg and Rh : g 7! gh�1 : (4.1)Sin
e the de�nition of the WZNW Lagrangian (3.2) only involves the invariant metri
, both a
tionsare automati
ally symmetries of our model. In fa
t, in the present situation they are even promotedto 
urrent superalgebra symmetries as we have already seen in the previous se
tion. In this se
tionwe will just dis
uss the point-parti
le limit (or minisuperspa
e approximation) where only the zero-modes are taken into a

ount and every dependen
e on the world-sheet 
oordinates is ignored. This
orresponds to quantum me
hani
s on the supergroup [57℄. Our aim is to �nd all the eigenfun
tionsof the Lapla
e (or wave) operator.Given the symmetry above we know that the state spa
e of the physi
al system may be de-
omposed into representations of g � g. The 
orresponding symmetry 
an be realized in terms ofdi�erential operators a
ting on the wave fun
tions whi
h are elements of some algebra of fun
tionsF(G) on the supergroup.14 These fun
tions will naturally depend on a bosoni
 group elementgB and on the fermioni
 
oordinates �a and ��a. By using a Taylor expansion with respe
t to the14The naive de�nition of the algebra of fun
tion as elements of the Grassmann algebra in the fermions �a and ��awith square integrable 
oeÆ
ient fun
tions on GB leads to in
onsisten
ies. A more detailed dis
ussion of these subtlepoints and the expli
it introdu
tion of the 
orre
t algebra of fun
tion shall be postponed until se
tion 4.3.17



fermioni
 variables the basis elements of F(G) may be represented as a 
omplex valued fun
tiondepending solely on gB multiplied by a produ
t of Grassmann variables.The left and right regular a
tion of the supergroup on itself, as given in (4.1), then indu
es thea
tion (hL � hR) � f : g 7! f(h�1L ghR) (4.2)on arbitrary elements f 2 F(G). This in turn translates into the following di�erential operators,Ki = KiB � (Ri)ab �b �a S2a = ��aSa1 = Rab(gB) ��b + (Ri)ab �b �ijKjB � 12 (Ri)a
 �ij (Rj)bd �
�d�b ; (4.3)for the in�nitesimal left regular a
tion. In addition to the various stru
ture 
onstants of the Liesuperalgebra, these expressions 
ontain derivatives �a = �=��a and ��a = �=���a with respe
t tothe Grassman variables �a and ��a. We have also introdu
ed the di�erential operators KiB whi
himplement the regular a
tion of the bosoni
 subgroup GB . They involve derivatives with respe
tto bosoni
 
oordinates only, but the pre
ise form depends on the parti
ular 
hoi
e of 
oordinateson GB . Similar expressions 
an be found for the in�nitesimal generators of the right a
tion,�Ki = �KiB + ��a (Ri)ab ��b �Sa1 = ��a�S2a = �Rba(gB) �b � ��b (Ri)ba �ij �KjB � 12 (Ri)
a �ij (Rj)db ��
��d ��b : (4.4)One 
an 
he
k expli
itly that these two sets of di�erential operators form two (anti)
ommuting
opies of the Lie superalgebra g. Again, these 
al
ulations rely heavily on the Ja
obi identity (2.5).The expressions for the di�erential operators exhibit some pe
uliar properties that we wouldlike to expand on. Note that, apart from purely bosoni
 pie
es, the generators (4.3) of the leftregular a
tion would only involve the Grassmann 
oordinates �a and the 
orresponding derivatives{ but no bared fermions { if it were not for the very �rst term in the de�nition of Sa1 . Indeed,this term does 
ontain derivatives with respe
t to the fermioni
 
oordinates ��a. Obviously, thesituation is reversed for the right regular a
tion. It is also worth stressing that the 
oeÆ
ients inthe �rst terms of both Sa1 and �S2a are non-trivial fun
tions on the bosoni
 group. Again this is insharp 
ontrast to all the other terms whose 
oeÆ
ients are independent of the bosoni
 
oordinates(though fun
tions of the Grassmann variables, of 
ourse). It has been emphasized in [24℄ thatthe o

urren
e of the matrix R(gB) 
an spoil the normalizability properties of the fun
tions thesymmetry transformations are a
ting on. This always happens if the target spa
e is non-
ompa
tsin
e R is a �nite dimensional representation and hen
e non-unitary in that 
ase. Consequently,the produ
t of an L2-fun
tion from F(GB) with R(gB) will not be an L2-fun
tion anymore.In view of these issues with Sa1 and �S2a it is tempting to simply drop the troublesome terms.Even though that might seem a rather arbitrary modi�
ation at �rst, it turns out that the 
orre-sponding trun
ated di�erential operators K i = Ki, S2a = S2a,Sa1 = (Ri)ab �b �ijKjB � 12 (Ri)a
 �ij (Rj)bd �
�d�b (4.5)and their bared analogues also satisfy the 
ommutation relations of g � g! For the spe
ial 
aseof PSU(1; 1j2), it was explained in [24℄ that this is mu
h more than a mere 
uriosity. Indeed, we18




on
lude that the trun
ated operators K i , Sa1 and S2amodel the a
tion of zero-modes of our 
urrents(3.23) on ground states in the de
oupled free fermion theory, i.e. before the 
oupling of bosoni
 andfermioni
 �elds is taken into a

ount. Note that the zero-mode of p(z) is a �eld theoreti
 in
arnationof the derivative � sin
e p(z) is the 
anoni
ally 
onjugate momentum belonging to �(z). We shallnow pro
eed to argue that the original di�erential operators (4.3) and (4.4) en
ode a mu
h moreintri
ate stru
ture, namely the a
tion of the zero-modes on primaries in the full intera
ting WZNWmodel.4.2 Harmoni
 analysisThe algebra of fun
tions F(G) furnishes a representation of g�g via the di�erential operators (4.3)and (4.4). Our aim is to write F(G) as a dire
t sum of inde
omposable building blo
ks of the typedis
ussed in se
tion 2.2. The �nal result 
an be found in eq. (4.7) below. But sin
e the out
omeis rather 
ompli
ated and somewhat hard to digest we would like to start the harmoni
 analysisby dis
ussing the left and the right a
tion of g separately. We 
laim that the spa
e of fun
tionsde
omposes under these a
tions a

ording to15F(G)��g(left) = F(G)��g(right) = M�2Typ(G) dim(K�) K� � M�2Atyp(G) dim(L�) P� : (4.6)The symbols Typ(G) and Atyp(G) denote the sets of typi
al and atypi
al irredu
ible representationsof the supergroup. The distin
tion between modules of G and modules of g is ne
essary sin
e theremight exist representations of the Lie superalgebra whi
h 
annot be lifted to G. Under rathergeneral 
onditions (to be re
alled below eq. (4.13)) the set Rep(G) of supergroup representations
oin
ides with Rep(GB) � Rep(g0), the set of all unitary irredu
ible representations of the bosoni
subgroup GB .As we see, the de
omposition (4.6) 
learly distinguishes between the typi
al and the atypi
alse
tor of our spa
e. In the typi
al se
tor we sum over irredu
ible Ka
 modules K� = L� with amultipli
ity spa
e M(K�) of dimension dimK�, a pres
ription whi
h is familiar from the Peter-Weyl theory for bosoni
 groups. In 
ontrast, the atypi
al se
tor 
onsists of a sum over all theproje
tive 
overs P� belonging to atypi
al irredu
ibles L� and 
oming with a multipli
ity spa
eM(P�) of the smaller dimension dimL� < dimK�. Note that the algebra of fun
tions forms aproje
tive module and hen
e possesses a Ka
 
omposition series, i.e. a �ltration in terms of Ka
modules. This immediately permits us to spell out the 
hara
ter of the g� g-module F(G) and itwill lead to a 
on
rete proposal for the modular invariant partition fun
tion of the WZNW modelin se
tion 5.Naturally, our formula (4.6) is the same for the left and the right a
tion. This symmetry betweenleft and right regular transformations must 
ertainly be maintained when we extend our analysisto the 
ombined left and right a
tion of g � g on F(G). In the typi
al se
tor the multipli
ityspa
es of the Ka
 modules have pre
isely the dimension that is needed to promote them to Ka
modules themselves, a pres
ription that is perfe
tly 
onsistent with the symmetry between left andright a
tion. On the other hand, the same symmetry requirement ex
ludes that the individualmultipli
ity spa
es in the atypi
al se
tor are simply promoted to irredu
ible representations of g.Consequently, the left a
tion must indu
e maps between various multipli
ity spa
es for the righta
tion and vi
e versa. In this way, the atypi
al se
tor then 
onsists of non-
hiral inde
omposables15A similar expression already appeared in [58℄ in a more general 
ontext.19



I[�℄ whi
h entangle a (possibly in�nite) number of left and right proje
tive 
overs whose labelsbelong to the same blo
k [�℄. The �nal expression for the representation 
ontent of the algebra offun
tions on G is thus of the formF(G)��g�g = M�2Typ(G) L� 
L�� � M[�℄2�atyp(G) I[�℄ : (4.7)The systemati
 study of the non-
hiral representations I[�℄ will be left for future work. Notethat similar and, in the spe
i�
 
ases of GL(1j1) and SU(2j1), more expli
it expressions havebeen obtained in [36, 24, 37℄. We also wish to emphasize that the so
le of (4.7), i.e. its maximalsemisimple subspa
e, 
orresponds to a dire
t sum over all pairs of irredu
ible representations andtheir duals. It would be interesting to 
ompare our �ndings with the more abstra
t results in [59℄where the spa
e of fun
tions on G = GL(mjn) is treated in the framework of Hopf superalgebras.Having stated the main results of this subse
tion we would like to sket
h their derivation. Forthe proof of eq. (4.6), it is advantageous to enlarge the symmetry from g to an a
tion g � g0, i.e.to retain the bosoni
 generators of the right regular transformations if we analyze the left a
tion.With respe
t to the 
ombined a
tion one �ndsF(G)��g�g0 = M�2Rep(GB) B� 
 V �� F(G)��g0�g = M�2Rep(GB) V� 
 B�� : (4.8)In fa
t, from the Peter-Weyl theorem for 
ompa
t semisimple Lie groups (or suitable generalizationsthereof) we dedu
e that the fun
tionsdetR(g�1B ) �D(�)(gB)��� �1 � � � �r ��1 � � � ��r (4.9)involving matrix elements of the representation D(�) are part of the spe
trum for all unitary ir-redu
ible representations � of GB . The matrix elements of D(�) transform in the representationV�
 V �� with respe
t to g0� g0. Sin
e the produ
t of the remaining fa
tors multiplying D(�) is in-variant under purely bosoni
 transformations, we 
on
lude that the set of fun
tions (4.9) transformsin V� 
 V �� as well.All that remains to be done is to augment the a
tion on the left from the bosoni
 subalgebra g0 tothe entire Lie superalgebra g. The supersymmetri
 multiplets we generate from the fun
tions (4.9)by repeated a
tion with all the fermioni
 generators Sa1 and S2a are isomorphi
 to the representationB� of g. Similar remarks apply if we 
onsider the a
tion of g0 � g. Thereby we have establishedthe de
ompositions (4.8). In order to pro
eed from eqs. (4.8) to the de
omposition formulas (4.6)the representations B� must be de
omposed into their inde
omposable building blo
ks. This isa
hieved with the help of eq. (2.15) and results in eq. (4.6) after a simple re-summation. Ourderivation has a
tually furnished a slightly stronger result sin
e it determines how the multipli
ityspa
es de
ompose with respe
t to the a
tion of the bosoni
 subalgebra g0.4.3 Spe
trum and generalized eigenfun
tionsGiven the de
omposition of the algebra of fun
tions into representations of g�g we 
an now addressour original problem of �nding the semi-
lassi
al expressions of both the 
onformal dimensionsand the primary �elds. In the semi-
lassi
al limit, 
onformal dimensions are given by (half) theeigenvalues of the Casimir operator a
ting on F(G). Sin
e we are dealing with a spa
e of fun
tions20



we will refer to the latter as \Lapla
ian" on the supergroup. The eigenvalues 
an be read o� dire
tlyfrom the de
omposition (4.7). In the typi
al se
tor the Lapla
ian is diagonalizable and leads to theeigenvalues C(K�). On the other hand, the Lapla
ian 
eases to be diagonalizable on the non-
hiralrepresentations I[�℄. Here, the Casimir may just be brought into Jordan normal form.The previous paragraph provides a 
omplete solution of the eigenvalue problem but it doesnot yield expli
it formulas for the (generalized) eigenfun
tions. Sin
e the latter are semi-
lassi
alversions of the primary �elds in the full CFT (see se
tion 5 below), it seems worthwhile re
allingthe elegant 
onstru
tion of eigenfun
tions that was presented re
ently in [24℄. The Lapla
e operatoron our supergroup G is given by� = 12 C = �B � 12tr(Ri)�ijKjB � �aRab(gB) ��b : (4.10)Observe that only the last term 
ontains fermioni
 derivatives, with 
oeÆ
ents whi
h depend onbosoni
 
oordinates. Let us also emphasize that the purely bosoni
 pie
e of � di�ers from theLapla
ian on the bosoni
 subgroup by the se
ond term. This deviation is related to the presen
eof the non-trivial dilaton 
ontribution (3.7). Sin
e the 
omplete Lapla
ian is non-diagonalizable itwas proposed in [24℄ to perform the harmoni
 analysis in two steps. First an auxiliary problem issolved whi
h is based on the purely bosoni
 Lapla
ian�0 = �B � 12 tr(Ri)�ij KjB : (4.11)This auxiliary Lapla
ian agrees with the Casimir operator obtained from the redu
ed di�erentialoperators K and S and, as we shall see, it is 
ompletely diagonalizable on the following auxiliaryspa
e16 F(G) = F(GB)
^(�a; ��b) : (4.12)Here, the fa
tor F(GB) denotes the algebra of square (or Æ-fun
tion) normalizable fun
tions on thebosoni
 subgroup and V(�a; ��b) is the Grassmann (or exterior) algebra generated by the fermioni

oordinates. In the se
ond step, the eigenfun
tions of �0 are mapped to generalized eigenfun
tionsof � using a linear map � : F(G) ! F(G). The latter adds \subleading" fermioni
 
ontributionsin a formal but well-de�ned way and thereby turns an eigenfun
tion of �0 into a generalizedeigenfun
tion of �. Our pres
ription involves expli
it multipli
ations with the matrix elements ofR(gB) whi
h, e.g. for non-
ompa
t groups GB , are not ne
essarily part of the unitary spe
trum.Hen
e, the eigenfun
tions of � need not be normalizable in the original sense, i.e. when regardedas Grassmann valued fun
tions on the bosoni
 subgroup. This is the main reason why we need todistinguish between the spa
es F(G) and F(G) = Im(�). Ultimately, the problem may be tra
edba
k to the presen
e of the terms involving R(gB) in Sa1 and �S2a. In fa
t, as we pointed out before,be
ause of those terms the unredu
ed di�erential operators may 
ease to a
t within F(G).In order to gain some intuition into the stru
ture of the fun
tion spa
e (4.12) as a representationof the symmetry algebra g� g, it is helpful to restri
t the a
tion to the bosoni
 subalgebra g0� g0�rst. Sin
e the di�erential operators K i and �K i fa
torize in an a
tion on the fun
tion algebra F(GB)and on the Grassmann algebra V(�a; ��b), we 
an de
ompose both fa
tors separately. If the bosoni
16The auxiliary spa
e F(G) should be thought of as the semi-
lassi
al trun
ation of the state spa
e for the de
oupledtheory S0, see eq. (3.21). On the other hand F(G) 
orresponds to the semi-
lassi
al trun
ation of the full state spa
eof the WZNW model. 21



subgroup is 
ompa
t, semisimple and simply-
onne
ted we may employ the Peter-Weyl theorem inorder to obtain F(GB)��g0�g0 = M�2Rep(GB) V� 
 V �� ; (4.13)where Rep(GB) � Rep(g0) is the set of all unitary irredu
ible representations of GB . In moregeneral situations this formula will need a slight re�nement 
on
erning the 
ontent of Rep(GB),although the stru
ture will still be very similar. With regard to the fermions, the left a
tion justa�e
ts the set �a, while the right a
tion operates on the set ��a. Given the known transformationbehavior of a single fermion we thus �nd^(�a; ��b)��g0�g0 = F 
 F� : (4.14)Combining these simple fa
ts and de�ning Rep(G) = Rep(GB) we 
on
ludeF(G)��g0�g0 = M�2Rep(G)hV� 
Fi
 hV� 
Fi� : (4.15)Before we pro
eed to the supersymmetri
 extension, we would like to dis
uss the general form ofelements in the individual subspa
es of (4.15). The spa
e of fun
tions is spanned byf (�)a1 ���as;�b1���bt;� (g) = �D(�)(gB)��� �a1 � � � �as ��b1 � � � ��bt ; (4.16)where D(�) denotes the representation of the bosoni
 subgroup GB on the module V� .Our most important task is to determine how the bosoni
 representations that o

ur in thede
omposition (4.15) 
ombine into multiplets of the full symmetry g� g. As a �rst hint on whatthe answer will be, we observe that the representation 
ontent in eq. (4.15) agrees with the bosoni

ontent of Ka
 modules. And indeed, under the a
tion of fermioni
 generators, the various bosoni
modules are easily seen to 
ombine into our modules K�. To see this we note that the purelybosoni
 fun
tions �D(�)(gB)��� are annihilated by S2a and �Sa1 simultaneously and therefore theyspan the subspa
e V� 
 V �� from whi
h we indu
e the Ka
 module K� 
 K��. Consequently, weobtain the de
omposition F(G)��g�g = M�2Rep(G)K� 
K�� : (4.17)Note that the sum runs over both typi
al and atypi
al representations, i.e. the spa
e of fun
tions isnot fully redu
ible. The Lapla
ian �0 is 
ompletely diagonalizable on this spa
e and its eigenvaluesare given by eq. (2.19).Let us now return to the analysis of the spa
e F(G). We re
all that a fun
tion �� 2 F(G) is ageneralized eigenfun
tion to the eigenvalue � if there exists a number n 2 N su
h that(�� �)n�� = 0 : (4.18)Following [24℄, let us introdu
e operators An(�) whi
h are de�ned through the relationA(n)� = (�� �)n � (�0 � �)n : (4.19)In the sequel it will be
ome 
ru
ial that ea
h single term of A(n)� 
ontains at least one fermioni
derivative. After these preparations we 
onsider a fun
tion f� 2 F(G) whi
h is an eigenfun
tion22



of �0, i.e. whi
h satis�es �0f� = �f�. We then asso
iate a family of new fun
tions �(n)� f� to f�through �(n)� f� = 1Xs=0h�(�0 � �)�nA(n)� isf� � rXs=0 �Q(n)� �s f� : (4.20)Obviously, the sum trun
ates after a �nite number of terms due to the fermioni
 derivatives whi
ho

ur in all the operators A(n)� . A formal 
al
ulation shows furthermore that the fun
tion �(n)� f�is a solution of eq. (4.18). Using the de�nition (4.20) on ea
h of the eigenspa
es Ker(�0 � �) weobtain a family of maps �(n) whi
h formally exist on the 
omplete fun
tion spa
e F(G).The only problem with the maps �(n) is that they might be singular on a 
ertain subspa
e ofF(G). In fa
t, a 
lose inspe
tion of our expression (4.20) shows that it requires to invert (�0 � �)whi
h may not be possible. If this happens, it signals the existen
e of fun
tions in F(G) whi
hare not annihilated by (� � �)n for any �, and therefore implies that some Jordan blo
ks of theLapla
ian must have a rank higher than n. It may be shown by expli
it 
al
ulation that the familyof maps �(n) stabilizes for n > r and that the resulting limit map � is well-de�ned on the 
ompletespa
e F(G) [24℄. We then de�ne the spa
e F(G) = Im(�) as the image of the auxiliary spa
eF(G) under �. This pro
edure provides an expli
it 
onstru
tion of the eigenspa
es and Jordanblo
ks appearing in the de
omposition (4.7). It should also be re
alled that the map � a
ts as anintertwiner between the typi
al subspa
e of F(G) with the redu
ed a
tion of g� g and the typi
alsubspa
e of F(G) with the full a
tion of g� g [24℄. As before, redu
ed and full a
tion refer to theuse of the di�erential operators (K i ;Sa1;S2a; �K i ; �Sa1; �S2a) and (Ki; Sa1 ; S2a; �Ki; �Sa1 ; �S2a), respe
tively.Within the present 
ontext we 
an a
tually 
onvin
e ourselves that the quadrati
 Casimir is notdiagonalizable on any of the proje
tive 
overs P�. From the above it is 
lear that every proje
tive
over appears in the de
omposition of the right regular a
tion on the fun
tion spa
e F(G) andthat the 
orresponding subspa
e M(P�)
P� 
ontains fun
tions of the form (4.9). We 
laim thatsome of the latter must ne
essarily be proper generalized eigenfun
tions. In fa
t, all of them areeigenfun
tions of �0 with eigenvalue � = C�=2. But in order for them to be eigenfun
tions of �,the a
tion of �(1) must be well de�ned. This would require in parti
ular that we 
an invert �0� �on �aRab(gB) ��b detR(g�1B ) �D(�)(gB)��� �1 � � � �r ��1 � � � ��r : (4.21)But this is 
learly not the 
ase if the Ka
 module K� 
ontains singular ve
tors that are rea
hed fromthe ground states through appli
ation of a single fermioni
 generator. Hen
e, we have establishedour 
laim for all su
h labels �. In 
ase the singular ve
tors of K� appear only at higher levels, onehas to re�ne the analysis and 
onsider also higher order (in the summation index s) terms in thede�nition of �(1).4.4 Correlation fun
tionsBy now we have 
omplete 
ontrol over representation 
ontent and eigenfun
tions of the Lapla
ianin the weak 
urvature limit of the WZNW model. In addition, we 
an also 
ompute 
orrelationfun
tions in this limit. They are given as integrals over a produ
t of fun
tions on the supergroup.Integration is performed with an appropriate invariant measure, namely the so-
alled Haar measured�(g) of the supergroup. The easiest way to obtain d� is to extra
t it from the invariant metri
,ds2 = ds2B � 2 d��aRab(g�1B ) d�b : (4.22)23



Here, ds2B denotes the standard invariant metri
 on the bosoni
 subgroup. The total metri
 hasa \warped" form sin
e the fermioni
 bit has an expli
it fun
tional dependen
e on the bosoni

oordinates gB . We 
an now obtain the desired measure as the superdeterminant of the metri
,d�(g) = d�B(gB) det�R(gB)� d�1 � � � d�r d��1 � � � d��r (4.23)where d�B denotes an invariant measure on the bosoni
 subgroup. On
e this expression has beenwritten down, we 
an forget our heuristi
 derivation and 
he
k the invarian
e expli
itly. Note thatthe existen
e of the dilaton (3.7) in the WZNW Lagrangian (3.5) is dire
tly related to the presen
eof the fa
tor det�R(gB)� in the measure.Suppose now we are given N generalized eigenfun
tions of the Lapla
ian � on the supergroup.A

ording to the previous dis
ussion, the spa
e of eigenfun
tions possesses a basis of the form�a�;b = � fa�;b = rXs=0Qs�fa�;bwhere fa�;b = fa1;:::;as�;b1;:::;bt = f�(gB) �a1 � � � �as ��b1 � � � �bt : (4.24)Here, f�(gB) are eigenfun
tions of the bosoni
 Lapla
ian �0 with eigenvalue � and � = �(r); Q� =Q(r)� have been de�ned in eq. (4.20). The N -point fun
tions of su
h semi-
lassi
al vertex operatorsare given by the integrals
�a1�1;b1 � � ��aN�N ;bN� = Z d�(g) �a1�1;b1 � � ��aN�N ;bN= rXs1=0 � � � rXsN=0 Z d�(g) Qs1�1fa1�1;b1 � � � QsN�N faN�N ;bN : (4.25)Most of the (r + 1)N terms in this expression vanish due to the properties of Grassmann variablesand their integration. In fa
t the largest number of non-zero terms that 
an possibly appearis N � r + 1. This is realized if all eigenfun
tions 
ontain terms with the maximal number offermioni
 
oordinates (along with the lower order terms that are determined by the a
tion of Qs�).A parti
ularly simple 
ase appears when e.g. the �rst eigenfun
tion �1 = �1;2;:::;r�1;1;2;:::;r 
ontains leadingterms with r fermions � and �� while all others are purely bosoni
. In that 
ase, the 
orrelator issimply given by
�1;2;:::;r�1;1;2;:::;r ��2 � � ���N � = Z d�B(gB) det�R(gB)�f�1(gB)f�2(gB) � � � f�N (gB) : (4.26)We shall see that very similar results 
an be established for 
orrelators in the full WZNW on type Isupergroups. This is one of the subje
ts we shall address in the next se
tion.5 The quantum WZNW modelAfter the thorough dis
ussion of its symmetries and its semi-
lassi
al limit it is now only a smallstep to 
ome up with a 
omplete solution of the full quantum WZNW model. We �rst show thatthe free fermion resolution gives rise to a natural 
lass of 
hiral representations. Subsequently,24



we 
omment on the representation 
ontent of the full non-
hiral theory, sket
h the 
al
ulationof 
orrelation fun
tions and argue that the natural modular invariant partition fun
tion 
an beexpressed as a diagonal sum over 
hara
ters of Ka
 modules. We 
on
lude with some spe
ulationsabout non-trivial modular invariants.5.1 Chiral representations of the 
urrent superalgebraIn se
tion 3.2 and 3.3 we de
ribed in some detail the 
hiral symmetry of WZNW models on su-pergroups along with their 
onstru
tion in terms of free fermions. Our next aim is to introdu
erepresentations H� of ĝ. It is 
lear that free fermion resolutions provide a natural 
onstru
tion forrepresentations of 
urrent superalgebras. What is remarkable, however, is that these representationsturn out to be irredu
ible for generi
 (typi
al) 
hoi
es of �.A

ording to the results of se
tion 3.3 every representation of the de
oupled system of thebosoni
 
urrents KiB and the fermions p� de�nes a module of the 
urrent superalgebra via eqs.(3.23). In the bosoni
 part we shall work with irredu
ible representations V� of ĝren0 . If thegroup GB is 
ompa
t there will be a �nite number of physi
al representations (the \integrable"ones), otherwise one may en
ounter in�nitely many of them, in
luding 
ontinuous series. Weidentify the physi
ally relevant representations with a subset Rep(ĝren0 ) � Rep(g0) within therepresentation labels for the horizontal subalgebra g0. This is possible sin
e the ground states ofV� form the g0-module V� upon restri
tion of the ĝren0 -a
tion to its horizontal subalgebra g0. Notethat the 
urvature of the ba
kground geometry leads to trun
ations whi
h imply that Rep(ĝren0 ) isgenerally a true subset of Rep(g0).17 The fermions, on the other hand, admit a unique irredu
iblerepresentation VF . The latter is generated from the SL(2; C )-invariant va
uum j0i by imposingthe highest weight 
onditions (pa)nj0i = 0 for n � 0 and �anj0i = 0 for n > 0.18 The irredu
iblerepresentations of the produ
t theory therefore take the formH� = V� 
 VF : (5.1)Given the free fermion realization (3.23), these spa
es admit an a
tion of the in�nite dimensional
urrent superalgebra ĝ as de�ned in (3.10)-(3.12).The generalized Fo
k modules H� provide the proper realization of 
hiral vertex operators asde�ned around eq. (3.15). It is indeed evident from our 
onstru
tion that the ground states of H�transform in the g-module K� (re
all that the ground states of V� form the g0-module V�) andthat they are annihilated by all positive modes of the 
urrents and by the zero modes of S2a(z).But there is another and mu
h deeper reason for the relevan
e of the modules H�. Observe thatthe 
urrent superalgebra ĝ is a true subalgebra of the algebra that is generated from ĝren0 and thefermions. Therefore, one might suspe
t that the spa
es H� are no longer irredu
ible with respe
tto the a
tion of ĝ. But for generi
 
hoi
es of � this is not the 
ase: The a
tion of ĝ on H� istypi
ally irredu
ible! This property is in sharp 
ontrast to what happens for standard bosoni
free �eld 
onstru
tions [38, 39, 40, 41, 42℄ and it 
hara
terizes the modules H� as the naturalin�nite dimensional lift of Ka
 modules for the �nite dimensional Lie superalgebra g. We take thisobservation as a motivation to refer to the generalized Fo
k modules H� as Ka
 modules from now17For 
su(2)k, for instan
e, the integrable representations are � = 0; 1; : : : ; k while there is no upper bound forunitary su(2)-modules.18One 
ould in
lude twisted se
tors where the moding of the fermions is not integer. But then the global super-symmetry would not be realized in the WZNW model sin
e there were no zero-modes.25



on. Let us emphasize, however, that they are 
onstru
ted in a di�erent manner than those of the�nite dimensional Lie superalgebra g in se
tion 2.2.1.Sin
e it is a rather 
ru
ial issue for the following, we would like to spend some time to establishirredu
ibility of the representations H� for generi
 labels �. We shall assume for simpli
ity that theunderlying bosoni
 representation V� is a highest weight module. The highest weight � determinestwo seemingly di�erent (but in fa
t equivalent) Verma-like modules of ĝ. The �rst of them will bedenoted by Y 0�. It is obtained as a produ
tY 0� = Y(0;ren)� 
 VFof the Verma module Y(0;ren)� of ĝren0 with the free fermion state spa
e VF . We shall 
onsiderY 0� as a ĝ-module. The ĝ-module H� may be re
overed from Y 0� by dividing out all the bosoni
singular ve
tors from the ĝren0 -module Y(0;ren)� . But there is a se
ond natural Verma-like moduleY� for ĝ whi
h is 
onstru
ted dire
tly by requiring that all the positive modes as well as the zero-modes (S2a)0 annihilate the highest weight, i.e. Y� is de�ned without any referen
e to the freefermion 
onstru
tion of ĝ. Sin
e the generators Kin; Sa1;n; S2b;n and KiB;n; �an; pa;n are in one-to-one
orresponden
e with ea
h other, the Verma modules Y� and Y 0� are naturally isomorphi
 as ve
torspa
es. The natural isomorphism preserves the grading by 
onformal dimensions. Hen
e, the
hara
ters of Y� and Y 0� agree. It is tempting to 
onje
ture that Y� and Y 0� are in fa
t equivalentas ĝ-modules.In order to understand the equality of 
onformal dimensions we 
ould simply refer to theequivalen
e of energy momentum tensors whi
h has been proven in se
tion 3.3. But there is also amore pedestrian way of seeing it. In the 
ase of ĝren0 , the 
urrent algebra involves the renormalizedmetri
 ��
 while the bosoni
 subalgebra ĝ0 of ĝ is de�ned in terms of the metri
 �. But a

ordingto the Sugawara 
onstru
tions for ĝren0 and ĝ, the respe
tive energy momentum tensor requiresan additional quantum renormalization of the metri
 in both 
ases. This extra renormalization isdi�erent as well and the �nal result (the \fully renormalized metri
") 
oin
ides again. The previousstatement 
orresponds to the two di�erent ways of introdu
ing bra
kets in the following equation,��ij � 
ij�� 12 f imn f jnm = �ij � �
ij + 12 f imn f jnm� : (5.2)The �rst term on both sides refers to the \
lassi
al" metri
 and the se
ond term des
ribes thequantum renormalization. In addition, the e�e
t of the fermions in ĝ has to be traded for thepresen
e of the dilaton in the ĝren0 des
ription.Let us now fo
us on the Verma-like modules Y�. In general, these modules 
ontain singularve
tors, 
ertainly of bosoni
 type but possibly also fermioni
 ones. Our goal here is two-fold: First,we would like to argue for a one-to-one 
orresponden
e of the bosoni
 singular ve
tors with thosein Y(0;ren)� . Moreover, we would like to show that the existen
e of fermioni
 singular ve
tors is anatypi
al event, o

urring only for a small subset of weights �.In prin
iple, the stru
ture of singular ve
tors in the module Y� 
an be dis
ussed using a suitablevariant of the Ka
-Kazhdan determinant [50℄. For simpli
ity we shall follow a more down-to-earthapproa
h here. The existen
e of a proper submodule Y� in the representation Y� requires that theweight � 
an be rea
hed from � by (multiple) appli
ation of the root generators of ĝ. We mayqualify this further with the help of two gradings, one with respe
t to the generator L019 and the19The metri
 or the level(s), respe
tively, are assumed to be �xed on
e and for all.26



other 
oming from the Cartan subalgebra of g (whi
h is identi
al to that of g0). The latter impliesthat the weights � and � have to be related by � = � �m� where � is a positive root of g andm 2 Z�0. If the energy dire
tion is 
onsidered separately, one obtains a ne
essary 
ondition of theform h��m� = h� + nm ; (5.3)where h denotes the 
onformal dimension and the root generator belonging to � is assumed toin
rease the energy by n units.We will investigate 
ondition (5.3) for bosoni
 root generators of ĝ �rst. The latter are in one-to-one 
orresponden
e with those of ĝren0 . Sin
e, in addition, the 
onformal dimensions of highestweight modules Y� and Y(0;ren)� 
oin
ide, we 
on
lude that the asso
iated de
oupling equations (5.3)possess the same set of bosoni
 solutions. We 
onsider this a strong hint that singular ve
tors inthe ĝ0-modules Y(0;ren)� 
 VF agree with those singular ve
tors of the ĝ-modules Y� whi
h 
an berea
hed by appli
ation of bosoni
 root generators. If we assume this to be true, all bosoni
 singularve
tors are removed when be pass from Y� to H�. Therefore, the singular ve
tors that remain inH� are ne
essarily fermioni
.Let us now look for the existen
e of potential fermioni
 singular ve
tors. We do not intend toformulate any pre
ise rules for when they appear, but would like to argue that they must be rare
ompared to their bosoni
 
ounterparts. To this end, we re
all that the 
onformal dimension h is aquadrati
 expression of the form h� = h�; �+ 2�i (the bra
ket denoting the non-degenerate s
alarprodu
t that 
omes with the metri
 (3.13)). Hen
e, we 
an always solve eq. (5.3) for m, no matterwhi
h bosoni
 root ve
tor � we insert. This 
eases to be true for fermioni
 root generators. Sin
ethey are nilpotent, eq. (5.3) needs to be solved withm = 0; 1, something that rarely ever works out.Therefore, modules with fermioni
 singular ve
tors are 
alled atypi
al. A more systemati
 studyof atypi
al representations is beyond the s
ope of this arti
le. But the experien
e with severalexamples suggests that the 
omposition series of the representations H� is �nite and that theypossess the same stru
ture as the modules of the horizontal subsuperalgebra. In fa
t, we believethat the only possible fermioni
 singular ve
tors are those that appear on the level of ground statesand images thereof under the a
tion of 
ertain spe
tral 
ow automorphisms (see se
tion 5.2).Given the stru
ture of the Ka
 modules (5.1) it is straightforward to derive 
hara
ter formulasand their modular properties. Indeed, the 
hara
ters simply fa
torize into�H�(q) = �V�(q)�VF (q) : (5.4)The super
hara
ter of H� has the same produ
t form but with the fermioni
 fa
tor �VF beingrepla
ed by its 
orresponding super
hara
ter. Relation (5.4) may also be extended to a statementabout non-spe
ialized 
hara
ters sin
e the fermions pa and �a are 
harged under the bosoni
 gener-ators Ki. If g0 is a simple Lie algebra the 
hara
ters of the unitary ĝren0 -modules V� 
an be lookedup in [60, 61℄. They form a �nite dimensional unitary representation of the modular group. The
hara
ter of the fermioni
 representation VF , on the other hand, is given by�VF (q) = "2q 112 1Yn=1(1 + qn)2#r = "#2(q)�(q) #r : (5.5)Under the modular transformation � 7! �1=� the quotient #2=� is simply repla
ed by #4=�. Hen
e,all the non-trivial information about modular transformations resides in the behaviour of the 
har-a
ters for the bosoni
 algebra ĝren0 . Consequently, the modular properties of Ka
 modules H�27



are under 
omplete 
ontrol. Even though Ka
 modules do not suÆ
e to build the state spa
e ofWZNW models on supergroups, the bulk partition fun
tion for type I supergroups may be ex-pressed in terms of 
hara
ters of Ka
 modules (see below). Therefore, modular invarian
e of thebulk partition fun
tion is guaranteed as long as it involves a summation over the same set of labelsas in the 
orresponding bosoni
 model. The pre
ise 
onstru
tion will be explained in more detailin se
tion 5.3.It remains to work out the 
hara
ters of atypi
al irredu
ible representations. The latter arequotients of redu
ible Ka
 modules. A

ording to our experien
e with 
on
rete models, the 
om-position series of the in�nite dimensional Ka
 modules H� of ĝ is very 
losely related to that of Ka
modules for the horizontal subsuperalgebra g. In spe
i�
 examples it is usually straightforward toinvert the linear relations between 
hara
ters resulting from su
h a 
omposition series, i.e. to ex-press the 
hara
ters of atypi
al irredu
ible representations through those of Ka
 modules. A moregeneral approa
h to this problem using Kazhdan-Lusztig polynomials has been presented in [48,Proposition 5.4℄ (see also [51, 62℄). Re
ently it has been shown that the solution for the inversionproblem 
ould be used to (re)derive the 
hara
ters of irredu
ible representations for the aÆne Liesuperalgebras bsl(2j1) and 
psl(2j2) [24, 37℄. We expe
t that this observation extends to more general
urrent superalgebras and that it will be helpful in the study of modular transformations. Repre-sentations of aÆne Lie superalgebras and their behaviour under modular transformations have alsobeen studied in [63, 64, 13℄.5.2 Spe
tral 
ow automorphismsIn the previous subse
tion we have skipped over one rather important element in the representationtheory of 
urrent (super)algebras: The spe
tral 
ow automorphisms. As we shall re
all momentar-ily, spe
tral 
ow automorphisms des
ribe symmetry transformations in the representation theoryof 
urrent algebras. Furthermore, they seem to be realized as exa
t symmetries of the WZNWmodels on supergroups, a property that makes them highly relevant for our dis
ussion of partitionfun
tions below.Throughout the following dis
ussion, we shall denote (spe
tral 
ow) automorphisms of the
urrent superalgebra ĝ by !. We shall mostly assume that the a
tion of ! is 
onsistent with theboundary 
onditions for 
urrents, i.e. that it preserves the integer moding of the 
urrents. In the
ontext of representation theory, any su
h spe
tral 
ow automorphism ! de�nes a map on the setof (isomorphism 
lasses of) representations � : ĝ! End(V ) via 
on
atenation, !(�) = � Æ ! : ĝ!End(V ).In line with our general strategy, we would like to establish that spe
tral 
ow automorphisms! of the 
urrent superalgebra are uniquely determined by their a
tion on the bosoni
 generators.A spe
tral 
ow automorphism ! : ĝ0 ! ĝ0 of the bosoni
 subalgebra ĝ0 is, by de�nition, a linearmap20 !�Ki(z)� = (W0)ij(z)Kj(z) + wi0 z�1 (5.6)satisfying 
ertain 
onsisten
y 
onditions to be re
alled below. The map W0(z) = z�0 is de�nedin terms of an endomorphism �0 : g0 ! g0 of the horizontal subalgebra. While the eigenvaluesof �0 determine how the spe
tral 
ow shifts the modes of the 
urrents, the ve
tor wi0 a�e
ts onlythe zero-modes. In order to preserve the trivial monodromy under rotations around the origin we20We refrain from introdu
ing a di�erent symbol here su
h as !0.28



will assume that W0(z) is a meromorphi
 fun
tion, i.e. that all the eigenvalues of �0 are integer.Inserting the transformation (5.6) into the operator produ
t expansions (3.10) leaves one with the
onstraints (�0)ij = f ikl �kj wl0 (5.7)and (W0)ik(z) (W0)j l(z)�kl = �ij ; f ijk (W0)kl(z) = (W0)im(z) (W0)jn(z) fmnl : (5.8)The �rst equation (5.7) in fa
t implies that the only free parameter is the shift ve
tor wi0. In the
ase of a semisimple Lie algebra g0 (whi
h leads to a non-degenerate Killing form) this argument
an also be reversed and hen
e it allows to express wi0 in terms of �0.We would now like to argue that equation (5.7) already implies the 
onsisten
y of the spe
tral
ow (up to the question whether �0 has integer eigenvalues), i.e. the validity of the equations (5.8).Given the 
on
rete form of W0(z), it 
an indeed be shown that the two relations (5.8) follow fromthe equations(�0)ik�kj + (�0)j l�il = 0 f ijk(�0)kl = (�0)ikfkjl + (�0)jkf ikl : (5.9)These relations are in turn just a 
onsequen
e of (5.7) using the invarian
e of �ij and the Ja
obiidentity for the stru
ture 
onstants. Sin
e the same idea will be used again below let us sket
h theproof of our assertion that the eqs. (5.9) imply the eqs. (5.8). First of all, it is easy to see that one
an generalize the relations (5.9) to powers of �0 using indu
tion. In the �rst 
ase, this just yieldsan alternating relative sign, while in the se
ond 
ase it establishes some kind of binomial formula.Writing W0(z) = exp(�0 ln z) and expanding in powers of ln z one 
an then expli
itly verify theequations for W0(z). Any ve
tor wi0 whi
h leads to a matrix �0 with integer eigenvalues under theidenti�
ation (5.7) will a

ordingly be referred to as a spe
tral 
ow automorphism of ĝ from nowon. Given the insights of the previous paragraphs it is now fairly straightforward to extend thespe
tral 
ow automorphism ! : ĝ0 ! ĝ0 to the full 
urrent superalgebra. To this end, we introdu
ethe element �1 = �Ri �ij wj0 : (5.10)It is 
ru
ial to observe that this matrix satis�es the relation(�0)ij (Rj)a
 + (�1)ab (Ri)b
 = (Ri)ab (�1)b
 ; (5.11)an analogue of eq. (5.9). Following the dis
ussion in the bosoni
 se
tor, we now introdu
e a fun
tionW1(z) = z�1 . Using the same reasoning as in the previous paragraph, the equation (5.11) implies(Ri)ab (W1)b
(z) = (W0)ij(z) (W1)ab(z) (Rj)b
 : (5.12)Now we 
an de�ne the a
tion of the spe
tral 
ow automorphism ! on the fermioni
 
urrents by!�Sa1 (z)� = (W1)ab(z) Sb1(z) ; !�S2a(z)� = S1b(z) (W 1)ba(z) ; (5.13)whereW 1 denotes the inverse ofW1. On
e more, 
onsisten
y with the operator produ
t expansionsof the super
urrents is straightforward to verify. The only input is the de�nition (5.10) and theproperty (5.12). 29



We would also like to argue that the spe
tral 
ow symmetry is 
onsistent with the free fermionrepresentation (3.23). To be more spe
i�
, we shall 
onstru
t an automorphism on the 
hiral algebraof the de
oupled system generated by the 
urrents KiB(z) and the free fermions pa(z) and �a(z)that redu
es to the expressions above if we plug the transformed �elds into the de�ning equations(3.23). In this 
ontext the most important issue is to understand how the renormalization of themetri
 � ! � � 
 a�e
ts the a
tion of the spe
tral 
ow. As a 
onsequen
e of eq. (5.11) we notethat (�0)ik 
kj + (�0)jk 
ik = tr�[RiRj ; �1℄� = 0 ; (5.14)where 
ij = tr(RiRj), as before. Consequently, the data �0 whi
h gave rise to a spe
tral 
owautomorphism of ĝ0 above, 
an also be used to de�ne a spe
tral 
ow automorphism of the renor-malized 
urrent algebra, i.e. of the algebra that is generated by KjB with operator produ
ts givenin subse
tion (3.3). Only the shift ve
tor wi0 of the zero modes needs a small adjustment su
h thatthe new spe
tral 
ow a
tion reads!�KiB(z)� = (W0)ij(z)KjB(z) + wiB z�1 where wiB = wi0 + tr��1Ri� : (5.15)In order to validate that this indeed de�nes an automorphism we need to 
he
k the analogue of the
ondition (5.7) for the new metri
 �� 
. But this 
onstraint is trivially met, usingwiB = (�� 
)ij�jkwk0 : (5.16)along with the invarian
e of both metri
s � and � � 
. Note that �0 is not 
hanged and hen
e ithas the same (integer) eigenvalues as before.In order to obtain an automorphism whi
h is 
ompatible with the free �eld 
onstru
tion we alsoneed to introdu
e the transformations!�pa(z)� = pb(z) (W 1)ba(z) ; !��a(z)� = (W1)ab(z) �b(z) : (5.17)It is then straightforward but lengthy to 
he
k that the previous transformations de�ne an auto-morphism of the algebra generated by pa, �a and KjB that des
ends to the original spe
tral 
owautomorphism ! of our 
urrent superalgebra ĝ. During the 
al
ulation one has to be aware ofnormal ordering issues.In 
on
lusion we have shown that any spe
tral 
ow automorphism of the bosoni
 subalgebraof a 
urrent superalgebra (related to a Lie superalgebra of type I) 
an be extended to the full
urrent superalgebra. Furthermore, this extension was seen to be 
onsistent with our free fermionresolution. Let us remark that even if we start with a spe
tral 
ow automorphism ! preservingperiodi
 boundary 
onditions for bosoni
 
urrents, the lifted spe
tral 
ow ! does not ne
essarilyhave the same property on fermioni
 generators. Only those spe
tral 
ow automorphisms ! : ĝ! ĝfor whi
hW1 is meromorphi
 as well seem to arise as symmetries of WZNWmodels on supergroups.Nevertheless, also non-meromorphi
 spe
tral 
ows turn out to be of physi
al relevan
e. They 
anbe used to des
ribe the twisted se
tors of orbifold theories, see se
tion 5.4 for details.5.3 Spe
trum and 
orrelation fun
tionsObviously, it is of 
entral importan
e to determine the partition fun
tion and higher 
orrelators ofWZNW models on supergroups. Here we shall explain how the 
al
ulation of these quantities maybe redu
ed to 
omputations in the 
orresponding bosoni
 WZNW models. For the torus partition30



fun
tion we will provide a full expression in terms of 
hara
ters of the (renormalized) bosoni

urrent algebra.All 
omputations in the WZNW model on type I supergroups depart from the de
oupled the-ory (3.21). The intera
tion between bosons and fermions is treated perturbatively. What makesthis approa
h parti
ularly powerful is the fa
t that the perturbative expansion turns out to trun
ateafter a �nite number of terms. The order at whi
h the trun
ation o

urs, however, depends on thesupergroup and the 
orrelator to be 
omputed. As a general rule, the number of terms to 
onsiderin the perturbative expansion in
reases with the number of vertex operators that are inserted.To begin with, let us des
ribe the unperturbed theory (3.21) with a few 
on
rete formulas.As we pro
eed it is useful to keep in mind that solving the unperturbed theory is a �eld theoreti
analogue of solving the trun
ated Lapla
e operator �0. Fields in the de
oupled theory form a spa
eH whi
h is a �eld theoreti
 version of the semi-
lassi
al spa
e F(G). The state spa
e H naturallyfa
torizes into bosoni
 and fermioni
 
ontributions,H = M�2Rep(ĝren0 )�V� 
 VF�
 ��V�� 
 �VF� : (5.18)For simpli
ity we assumed that the bosoni
 part has a 
harge 
onjugate modular invariant partitionfun
tion.21 The fermioni
 representation is unique if we restri
t ourselves to the Ramond-Ramondse
tor. In 
ase appli
ations require to in
lude fermioni
 �elds with anti-periodi
 boundary 
on-ditions as well, they 
an be in
orporated easily. A

ording to eq. (5.18), vertex operators of thede
oupled theory possess a basis of the formV a�;b(z; �z) � V a1;:::;as�;b1;:::;bt(z; �z) = V�(z; �z) �a1(z) � � � �as(z) ��b1(�z) � � � ��bt(�z) (5.19)where V� are vertex operators in the bosoni
 WZNW model. We have noted before that the freefermion theory admits a 
urrent superalgebra symmetry ĝ� ĝ. The latter is given expli
itly by theformulas in se
tion 3.3. When analyzed with respe
t to this 
urrent superalgebra, the state spa
eH assumes the form H = M�2Rep(ĝ)H� 
 �H�� (5.20)where H� an H�� are the Ka
 modules and their duals, as de�ned in equation (5.1).22 It shouldbe kept in mind though that H 
ontains an atypi
al se
tor (in
luding, e.g., H0 
 �H�0) whi
h is notfully redu
ible. Nevertheless, the zero-modes L0 and �L0 of the Virasoro-Sugawara �elds are fullydiagonalizable.The true state spa
e H of the intera
ting theory, on the other hand, is a �eld theoreti
 versionof the spa
e F(G) in our minisuperspa
e theory. In parti
ular, H agrees with H as a gradedve
tor spa
e (with the grading provided by the generalized eigenvalues of L0 and �L0) and even asĝ0 � ĝ0-module. But when 
onsidered as a module of the left and/or right 
urrent superalgebra,H and H are fundamentally di�erent. While, under the a
tion of e.g. the right moving 
urrents, Hde
omposes into a sum of typi
al and atypi
al Ka
 modules, H may be expanded into proje
tives.The 
orresponding multipli
ity spa
es, however, do not 
arry a representation of the left moving21In 
ase the 
onsisten
y of the bosoni
 theory requires to 
onsider spe
tral 
ow automorphisms, e.g. for non-
ompa
t groups, they should also be in
luded in the de�nition of the labels �.22It is the dual whi
h is relevant here sin
e we assume the antiholomorphi
 
urrent superalgebra to mimi
 thedi�erential operators (4.4), not those in (4.3). Noti
e that the roles of Sa1 and S2a are ex
hanged in these expressions.31




urrents, in 
ontrast to what we have seen in eq. (5.20). Instead, atypi
al representations of theleft and right moving 
urrents form large non-
hiral modules Î[�℄ whi
h entangle proje
tive 
oversin an intri
ate way.23 Now re
all that the Virasoro element L0 
ontains the (renormalized) Casimiroperator of g as a summand and it agrees with the latter on ground states. But sin
e our harmoni
analysis revealed that the Casimir operator may not be diagonalized in the atypi
al subspa
e ofF(G), the same must be true for the a
tion of L0 (and �L0) on H. This shows that supergroupWZNW theories are always logarithmi
 
onformal �eld theories.24After these remarks, let us address the partition fun
tion of the theory and its modular invari-an
e. We have stressed above that H andH are isomorphi
 as ĝ0� ĝ0-modules. Hen
e, the partitionfun
tion of the intera
ting theory agrees with the partition fun
tion of the de
oupled model andboth may be written as a sum over bilinears of 
hara
ters of Ka
 modules.25 Thereby, the partitionfun
tion of WZNW models on type I supergroups takes the formZG(q; �q) = ZGBren (q; �q) � ZF (q; �q) ; (5.21)i.e. it is obtained as a produ
t of the 
orresponding partition fun
tions of the (renormalized) bosoni
model with that of the free fermioni
 system. Ea
h of the two fa
tors 
orresponds to a well-de�nedand 
onsistent 
onformal �eld theory. This shows that our proposal for the state spa
e of thesupergroup WZNW model yields a suitable partition fun
tion.In theories with fermions one has to distinguish between the purely 
ombinatorial partitionfun
tion whi
h merely 
ounts states and the torus va
uum amplitude whi
h is the relevant physi
alquantity. Sin
e the fermions anti-
ommute, the latter requires an insertion of the fermion numberoperator (�1)F+ �F into the tra
e, thus turning 
hara
ters into super
hara
ters. In our state spa
es,bosoni
 and fermioni
 states always 
ome in pairs, 
ausing ZF (q; �q) to vanish. A
tually, this is theusual way in whi
h modular invarian
e manifests itself in fermioni
 theories. To avoid dealing withtrivial quantities, one may swit
h to unspe
ialized 
hara
ters. The latter lead to a non-vanishingphysi
al partition fun
tion.We 
laim that the expression (5.21) is the universal partition fun
tion for supergroup WZNWmodels similar to the 
harge 
onjugate one in ordinary bosoni
 models. We will indeed argue in thefollowing se
tion that this modular invariant 
an be used as the basi
 building blo
k to derive new,non-trivial partition fun
tions using methods that are well-established in purely bosoni
 
onformal�eld theories.We wish to 
on
lude this subse
tion with a few 
omments on the 
al
ulation of 
orrelationfun
tions. We have argued above that �elds in the de
oupled and the intera
ting theory are inone-to-one 
orresponden
e with ea
h other. In fa
t, the transition from the auxiliary spa
e H to theproper state spa
e H of the supergroup WZNW model is implemented by a linear map �̂ : H !H.The latter generalizes and extends the map � that we used in the semi-
lassi
al analysis to identifystates in F(G) and F(G). Let us denote the image of the �eld (5.19) under �̂ by �a�;b. A

ording23Note that the stru
ture and number of ĝ-blo
ks and hen
e of the inde
omposables Î[�℄ in the �eld theory maydi�er from that in the minisuperspa
e theory, see eq. (4.7). The relation between the two may be established withthe help of spe
tral 
ow automorphisms.24There might exist 
onsistent trun
ations to diagonalizable subse
tors for low levels, see the dis
ussion in [37℄.Su
h phenomena appear to be very rare, though.25Sin
e the Cartan subalgebra of g was assumed to be identi
al to the Cartan subalgebra of g0 this statement evenholds for unspe
ialized 
hara
ters and partition fun
tions.32



to our general strategy, 
orrelation fun
tions in the intera
ting theory may be 
omputed through
�a1�1;b1(z1; �z1) � � ��aN�N ;bN (zN ; �zN )� = smaxXs=0 1s! 
V a1�1;b1(z1; �z1) � � � V aN�N ;bN (zN ; �zN ) Ssint �0 ; (5.22)where the 
orrelators on the right hand side are to be evaluated in the de
oupled theory. We shallshow below that 
orrelators with s � smax = Nr insertions vanish so that the summation over s is�nite. Let us also re
all that the intera
tion term is given bySint = � i2� Z paRab(gB) �pb dw ^ d �w : (5.23)Here, the expression Rab(gB) should be interpreted as a vertex operator of the bosoni
 WZNWmodel, transforming in the representation R
R�.There are now two 
omputations to be performed in the de
oupled theory. First of all, wehave to determine 
orrelation fun
tions for the bosoni
 �elds V�i with additional insertions of svertex operators Rab(gB). We shall assume the bosoni
 WZNW model to be solved and hen
ethat all these bosoni
 
orrelators are known. Let us 
omment, however, that the dependen
e ofsu
h 
orrelation fun
tions on the insertion points of Rab(gB) is 
ontrolled by null ve
tor de
ouplingequations. As usual, these 
an be exploited to derive integral formulas for the required 
orrelationfun
tions. We shall not go into any more detail here.Instead, let us now 
omment on the se
ond part of the 
omputation that deals with the fermioni
se
tor. Sin
e we are dealing with r 
hiral b
 systems at 
entral 
harge 
 = �2, the evaluation israther standard. A

ording to the usual rules, non-vanishing 
orrelators on the sphere must satisfy#�a�#pa = 1, i.e. the number of insertions of a �xed �eld �a must ex
eed the number of insertionsof pa by one. In an N -point 
orrelator, any given 
omponent �a 
an appear at most N times. The�elds pa, on the other hand, only emerge from the s insertions of the intera
tion term. Hen
e, we
on
lude that all 
ontributions to our 
orrelation fun
tion with s � N � r insertions of Sint vanish.The non-vanishing terms 
an be evaluated using thatD nY�=1 pa(z�) n+1Y�=1 �a(x�)E0 = Q�<�0(z� � z�0) Q�<�0(x� � x�0)Q�Q�(z� � x�) (5.24)and a similar formula applies to ��a and �pa. These expressions 
an be inserted into the expansion(5.22). Thereby we obtain a formula for the N -point fun
tions of the WZNW model whi
h presentsit as a sum of at most N � r terms labeled by an integer s. Ea
h individual summand involvesan integration over s insertion points wi. The 
orresponding integrand fa
torizes into free �eld
orrelators of the form (5.24) multiplied with a non-trivial (N + s)-point fun
tion in the bosoni
WZNW model for the group GB .Let us point out that for a given 
hoi
e of N �elds, the perturbative evaluation of the 
orrelatormay trun
ate way before we rea
h smax. An extreme example appears when all the �elds ��i =�̂V�i ; i = 2; : : : ; N; are images of purely bosoni
 �elds V�i while the �rst �eld 
ontains the maximalnumber of fermioni
 fa
tors, both for left and right movers. In that 
ase, only the term withs = 0 
ontributes and hen
e these �elds of the WZNW model on the supergroup possess the same
orrelation fun
tions as in the bosoni
 WZNW model, i.e.
�1;2;:::;r�1;1;2;:::;r(z1; �z1)��2(z2; �z2) � � ���N (zN ; �zN )� = 
V�1(z1; �z1)V�2(z2; �z2) � � � V�N (zN ; �zN )�0 (5.25)33



where the 
orrelation fun
tion on the right hand side is to be evaluated in the bosoni
 WZNWmodel. The result is a dire
t analogue of the 
orresponding formula (4.26) in the minisuperspa
etheory.5.4 Some 
omments on non-trivial modular invariantsDuring the 
ourse of the previous se
tions we frequently assumed that the bosoni
 subgroupGB � Gwas 
ompa
t and simply-
onne
ted. On a te
hni
al level, this 
ondition is required in order torender the matrix R(gB) well-de�ned whi
h entered the expression for the di�erential operatorsimplementing the isometries of G on the fun
tion spa
e F(G). On the other hand this 
hoi
eautomati
ally limited our 
onsiderations to WZNW models with (the analogue of a) 
harge 
onju-gate modular invariant. In this subse
tion we would like to sket
h how su
h a restri
tion may beover
ome.Let us re
all the situation for bosoni
 WZNW models �rst. It is well-known that a non-simply-
onne
ted group manifold G0 
an be des
ribed geometri
ally as an orbifold ~G0=� where ~G0 is theuniversal 
overing group and � �= �1(G0) � Z( ~G0) is a subgroup of its 
enter. The simplest exampleis SO(3) = SU(2)=Z2. In 
onformal �eld theory, orbifolds of the previous type are implementedby means of a simple 
urrent extension of the theory with 
harge 
onjugate modular invariant [65℄(see also [66℄). This 
onstru
tion of the G0 WZNW model rests on the fa
t that the ~G0 model
ontains suÆ
iently many simple 
urrents, one for ea
h element in the 
enter Z( ~G0). In
idently,these are in one-to-one 
orresponden
e with (spe
tral 
ow) automorphisms of the 
urrent algebraĝ0. Su
h simple 
urrent extensions exhaust all modular invariants related to the 
urrent algebraĝ0, apart from some ex
eptional 
ases at low levels.Now it has been shown in [67℄ that the global topology of a Lie supergroup is 
ompletelyinherited from that of its bosoni
 subgroup. Consequently, given a supergroup G with bosoni
subgroup G0 = ~G0=�, there exists a 
overing supergroup ~G with bosoni
 subgroup ~G0, and one hasG = ~G=�. Note that 
entral elements in ~G0 are also 
entral in ~G. Having 
onstru
ted the WZNWmodel on the 
overing supergroup ~G, we would like to divide by �. But, as we have just stated,elements of � 
an all be identi�ed with elements in the 
enter of the bosoni
 subgroup ~G0. Therefore,they label 
ertain simple 
urrents of the ~G0 WZNW model. As indi
ated in the previous paragraph,we may think of these simple 
urrents as (equivalen
e 
lasses of) spe
tral 
ow automorphisms of ĝ0.A

ording to the results of subse
tion 5.2, all su
h spe
tral 
ow automorphisms may be extendedfrom ĝ0 to the 
urrent Lie superalgebra ĝ, in a way that is even 
onsistent with the free fermion
onstru
tion. Consequently, the elements of our designated orbifold group � label a 
ertain set ofspe
tral 
ow automorphisms of ĝ. It is the a
tion of these spe
tral 
ow automorphisms that onehas to use in order to 
onstru
t the orbifold CFT belonging to the supergroup G = ~G=�.Our dis
ussion so far has been fairly abstra
t and we would like to 
esh it out a bit more.A
tually, the details of the orbifold 
onstru
tion are not mu
h di�erent from what is done inbosoni
 models. For simpli
ity, let us assume that � is 
y
li
 and of �nite order. We shall denotethe generating element by 
. In order to illustrate the relation between orbifolds and spe
tral 
owautomorphisms, we depart from the 
onventional orbifold approa
h. Namely, we in
lude (
hiral)twisted se
tors on whi
h the super
urrents X satisfy boundary 
onditions of the formX(e2�iz) = �
(X)�(z) : (5.26)There exists a basisX�, on whi
h 
 a
ts diagonally as a multipli
ation with some phase exp(2�i
�).If 
� is an integer, then X� has integer moding in the twisted se
tor, otherwise its modes are34



rational. All these twisted se
tors emerge by a
ting with 
ertain (meromorphi
 or not) spe
tral
ow automorphisms on the untwisted representations (see subse
tion 5.2). The dis
ussion of theprevious paragraph supplied us with the relevant set of spe
tral 
ow automorphisms and hen
e witha list of 
hiral se
tors to be in
orporated in the 
onstru
tion of the G = ~G=� orbifold theory. Se
torsof the full non-
hiral theory are obtained by independent a
tion of spe
tral 
ow automorphisms onleft and right-movers in the parent theory on ~G. Therefore, even meromorphi
 spe
tral 
ows leadto new non-
hiral se
tors, though these are put together from untwisted representations of the leftand right movers. All this has been worked out for many interesting bosoni
 models, su
h as e.g.the SO(3) = SU(2)=Z2 WZNW model. WZNW models on non-simply-
onne
ted supergroups areno harder to deal with.26Let us �nally 
omment on the 
onne
tion of the algebrai
 orbifolds with the Lagrangian pi
ture.Looking at our free �eld resolution (3.5) one might have had the naive idea to repla
e the bosoni
model by its orbifold and then to add fermions and intera
tion terms in the same way as before. Butthis is not at all what we suggest to do. In parti
ular, the orbifold group � need not be a symmetryof the intera
tion term if there is no a
tion on the fermions. Even worse, the vertex operatorRab(gB) o

uring in the intera
tion may not be part of the spe
trum of the purely bosoni
 WZNWmodel. As a 
onsequen
e, the perturbed 
orrelation fun
tions with insertions of this operatorare not well-de�ned. This happens, for example, if we try to supersymmetrize the bosoni
 groupSO(3) � U(1). The fermions of the extended model with su(2j1) symmetry transform in the spin1=2 representation of SU(2) whi
h does not des
end to a representation of SO(3) = SU(2)=Z2.Hen
e, it is absolutely 
ru
ial to depart from the full SU(2j1) WZNW model and to divide the fullorbifold a
tion on both bosoni
 and fermioni
 variables.6 Lessons for other logarithmi
 CFTsVarious logarithmi
 
onformal �eld theories have been 
onsidered in the literature. The beststudied examples are the triplet models in whi
h the 
onformal symmetry is extended by a tripletof 
urrents, ea
h having spin h = 2p � 1 [68℄. For most of these algebras only 
hiral aspe
ts havebeen investigated so far, but in 
ase of p = 2, Gaberdiel and Kaus
h have been able to 
ome up witha 
onsistent lo
al theory [11℄. The extended 
hiral symmetry of the triplet models is denoted byW1;p. The latter are believed to be part of a family of more generalW-algebrasWq;p where p and qare 
o-prime. All of these possess interesting inde
omposable representations. Their representationtheory is parti
ularly well understood for q = 1, see [14℄ and referen
es therein.This �nal se
tion has two aims. First of all we would like to illustrate that the existing resultson the representation theory of W1;p-algebras and the lo
al triplet model (for p = 2) �t very ni
elyinto one 
ommon pi
ture with the logarithmi
 WZNW models on type I supergroups. But giventhe remarkable progress with the latter, and in parti
ular with the 
onstru
tion of in�nitely manyfamilies of new lo
al non-
hiral models, our results lead to a number of interesting predi
tions onWq;p-algebras and the asso
iated lo
al logarithmi
 
onformal �eld theories.26 The SO(3) theory also shows that the orbifold 
onstru
tion might su�er from obstru
tions, depending on the
hoi
e of the level. A more detailed treatment of su
h issues for supergroup orbifolds is left for future work.
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6.1 Chiral representation theoryLet us begin this subse
tion by reviewing some results on the representation theory ofW1;p =W(p)(see [14℄ and referen
es therein). This 
hiral algebra is known to admit 2p irredu
ible highestweight representations V�s where s = 1; : : : ; p. While V�p do not admit non-split extensions, allother 2(p� 1) representations appear in the head of the following inde
omposables,27R�s : V�s ! 2V�p�s ! V�s (6.1)where s runs from s = 1 to s = p � 1. Hen
e the representations V�p 
an be 
onsidered typi
alwhereas all others are atypi
al.28 Moreover, the inde
omposables R�s are the proje
tive 
overs ofthe atypi
als V�s and play the role of the representations P in se
tion 2.2.3. The typi
al modulesV�p are proje
tive as well, in agreement with results on the fusion for W(2) representations, see[69℄. The fusion rules of Wp;q-models have re
ently been addressed in [16℄.The representation theory of W(p)-algebras also 
ontains analogues of our Ka
 modules foratypi
al representations. These have the formK�s : V�s ! V�p�s (6.2)where s = 1; : : : ; p � 1. In view of the role they are going to play we will simply refer to therepresentations K�s as \Ka
 modules" as well.29 They are obtained as quotients of the proje
tive
overs R�s . For the typi
al representations V�p , the asso
iated irredu
ibles, \Ka
 modules" andproje
tive 
overs all 
oin
ide. In this sense, we shall also write K�p = V�p = R�p , just as fortypi
al representations of Lie superalgebras. Furthermore, among the quotients of the proje
tive
overs one 
an also �nd 4(p � 1) \zig-zag" modules, 
ontaining three irredu
ible representationsea
h. It seems likely, that these are just the �rst few examples among an in�nite series of zig-zagrepresentations ofW(p), in 
lose analogy to representations of the Lie superalgebra gl(1j1) (see e.g.[71℄). The main di�eren
e between gl(1j1) and W(p) zig-zag modules is that the 
onstituents ofthe former are pairwise inequivalent. Zig-zag modules of W(p), on the other hand, are built froma pair of irredu
ibles, ea
h appearing with some multipli
ity. This opens the possibility to 
losezig-zag modules of W(p) into rings. Representations of all these di�erent shapes were found andinvestigated for the quantum groups [72, 73℄ whi
h are dual to W(p), in the sense of Kazhdan-Lusztig duality.Let us also 
ompare some further properties of W(p)-modules with those we dis
ussed for Liesuperalgebras of type I. For example, we have pointed out that all proje
tive modules of type Isuperalgebras possess a \Ka
 
omposition series". The same is true for the proje
tive 
overs R�s ,R�s : K�s ! K�p�s (for s < p) ; R�p = K�p : (6.3)Moreover, we also observe that the multipli
ities in the \Ka
 
omposition series" of inde
ompos-able proje
tive 
overs (redu
ible and irredu
ible) and those of irredu
ible representations in the
omposition series of \Ka
 modules" are related by(R� : K�) = [K� : V�℄ : (6.4)27These diagrams have to be read as follows: To the right we write the maximal fully redu
ible submodule.Everything left of the rightmost arrow des
ribes the quotient module of the original module with respe
t to thesubmodule mentioned before. One 
an then pro
eed iteratively to de�ne the whole diagram.28We use the quali�ers \atypi
al" and \typi
al" only to 
larify the analogy to the supergroup WZNW models. In
ontrast to the latter, the atypi
al representations are obviously the generi
 ones for the algebra W(p).29Using the analogy to the Kazhdan-Lusztig dual quantum group, they have been 
alled Verma modules in [70℄.36



This establishes an analogue of the re
ipro
ity theorem (2.11) that has been an important ingredientin our des
ription of supergroup WZNW models and, in parti
ular, in exhibiting its modularinvarian
e.The agreement between algebrai
 stru
tures in the representation theory of Lie superalgebrasand of symmetries in minimal logarithmi
 
onformal �eld theories is remarkable. But let us thinkahead and see what Lie superalgebras may tea
h us for future studies of inde
omposable W-algebra representations. While irredu
ible representations and their proje
tive 
overs are 
ertainly
entral obje
ts for all Lie superalgebras, some of their properties may di�er 
onsiderably fromwhat we have seen in the 
ase of type I. We have pointed out already that the existen
e of a \Ka

omposition series" (or a similar 
ag) for proje
tives and the re
ipro
ity property (2.11) do nothold for more general Lie superalgebras. Hen
e, these features of W(p)-modules should not beexpe
ted to 
arry over to more general W-algebras either. In fa
t, numeri
al results of [74℄ mayindi
ate that violations even o

ur for Wq;p with p; q 6= 1. Furthermore, the tensor produ
ts forirredu
ible representations of Lie superalgebras 
an develop a remarkable 
omplexity. In this sense,the Lie superalgebra gl(1j1) is rather well-behaved. Representations of psl(2j2), for example, aremu
h less tame. In parti
ular, tensor powers of its adjoint representation lead to an in�nite seriesof inde
omposables (see [71℄ for details). The similarities between representations of gl(1j1) andW1;p suggest that the latter may also be rather unusual 
reatures in the zoo ofW-algebras. In fa
t,when it 
omes to the features of fusion, the algebras Wq;p may have mu
h more generi
 properties,resembling very 
losely those of psl(2j2).306.2 Lo
al logarithmi
 
onformal �eld theoriesRegarding the 
onstru
tion of lo
al �eld theories, the progress with WZNW models on supergroupshas been signi�
antly faster than for minimal logarithmi
 CFTs. In fa
t, only the minimal tripletmodel asso
iated with W(2) has been 
onstru
ted in all detail [11℄. Imposing lo
ality 
onstraintson 
orrelation fun
tions, the state spa
e H of this model was shown to have the formH = I1 � �V+2 
 �V+2 �� �V�2 
 �V�2 � : (6.5)Here, V�2 are the typi
al modules of W(2), in view of their 
onformal dimensions previously alsodenoted by V�1=8 and V3=8, and I1 is a 
ompli
ated non-
hiral inde
omposable (denoted by R in[11℄) whi
h was obtained originally as a 
ertain quotient of the spa
e �R+1 
 �R+1 � � �R�1 
 �R�1 �.The module I1 is known to possess the following 
omposition seriesI1 : �V+1 
 �V+1 �� �V�1 
 �V�1 �! 2�V+1 
 �V�1 �� 2�V�1 
 �V+1 �! �V+1 
 �V+1 �� �V�1 
V�1 � ; (6.6)where we used the 
orresponden
e V+1 = V0 and V�1 = V1 for the atypi
al irredu
ibles of W(2).When a
ting with elements of either the left or right 
hiral algebra only, H de
omposes into a sumof proje
tives, ea
h appearing with in�nite multipli
ity. The individual multipli
ity spa
es 
annotbe promoted to representation spa
es of the 
ommuting 
hiral algebra, but they 
ome equippedwith a grading that is given by the (generalized) eigenvalues of L0 or �L0. When 
onsidered asgraded ve
tor spa
es, they 
oin
ide with the graded 
arrier spa
es of irredu
ible representations.All this is very reminis
ent of what we found in eq. (4.6) while studying the harmoni
 analysis onsupergroups.30A 
ertain similarity between the representation theory of Wq;p (or rather its dual quantum group) and psl(2j2)is suggested by the stru
ture of their respe
tive proje
tive 
overs, 
f. e.g. Figure 7 of [75℄ with eq. (2.12) of [76℄.37



Carrying on with the 
omparison between the triplet model and WZNWmodels on supergroups,we also observe that the 
omposition series of the state spa
e (6.5) agrees with that of the module�K+1 
 �K+1 �� �K�1 
 �K�1 �. Hen
e, the partition fun
tion of the triplet model 
an be expressed asZ(q; �q) = Xi=1;2X�=��K�i (q) ��K�i (�q) : (6.7)This result is reminis
ent of what we found for supergroup WZNW models in se
tion 5.3. Note thatthe modular transformation behaviour for 
hara
ters of Ka
 modules is rather simple whi
h makesit easy to 
he
k that Z(q; �q) is modular invariant. In 
omparison, the transformation behaviour of
hara
ters belonging to atypi
al irredu
ible representations of W(2) is rather involved [69℄, just asfor 
urrent superalgebras.The striking similarities between the lo
al triplet theory and the harmoni
 analysis on super-groups suggest some far rea
hing generalizations, in parti
ular 
on
erning the state spa
e of a wide
lass of lo
al logarithmi
 
onformal �eld theories. Let us denote the irredu
ible representationsof some 
hiral algebra W by Va and their proje
tive 
overs by Pa. For typi
al representationsthe latter agree (by de�nition) with the irredu
ibles. We also introdu
e the symbol Va when Vais 
onsidered merely as an L0-graded ve
tor spa
e. Given this notation, we propose that a lo
allogarithmi
 
onformal �eld theory with symmetry W 
an be 
onstru
ted on the state spa
eH = Ma Va 
 �Pa : (6.8)Our proposal des
ribes the state spa
e of the 
onje
tured lo
al theory as a graded representationspa
e for W. The extension to the full W
 �W is severely 
onstrained by requiring symmetry withrespe
t to an ex
hange of left and right 
hiral algebras. Con
erning the impli
ations for W(p)-models it is interesting to observe that the same stru
tures were found in the regular representationof the dual quantum group, see [70℄, page 24, and 
ompare with eq. (2.9) in [37℄. Let us point outthat lo
al theories may probably also be built on other state spa
es. Examples are given by theorbifold models we des
ribed in se
tion 5.4 or by some ex
eptional trun
ations of WZNW modelson simply 
onne
ted Lie supergroups (see [37℄ for a few examples).Before we 
on
lude we would like to go one step beyond the previous analogy and to proposea more detailed 
onje
ture for the natural state spa
e of the W(p) triplet models for arbitrary p.In a straightforward extension of the result (6.5) for p = 2 we believe that a lo
al theory may bebuilt on the spa
e H = Ms 6=p Is �M�=�V�p 
 �V�p : (6.9)The non-
hiral inde
omposable representations o

urring here have the 
omposition seriesIs : �V+s 
 �V+s �� �V�p�s
 �V�p�s�! 2�V+s 
 �V�p�s�� 2�V�p�s
 �V+s �! �V�p�s
 �V�p�s�� �V+s 
V+s �whi
h 
oin
ides with the 
omposition series of �K+s 
 K+s � � �K�p�s 
 K�p�s�. Consequently, ourproposal is manifestly modular invariant sin
e the partition fun
tion 
an be written as a sum overall \Ka
 modules", just as in eq. (6.7). Figure 1 provides an alternative 2-dimensional pi
ture ofthe inde
omposables Is. In this form the similarities with analogous pi
tures for gl(1j1) and sl(2j1)[36, 37℄ and for the quantum group dual of W(p)-models [70℄ are 
learly displayed.38



V+s 
 V+s
((QQQQQQQ

,,YYYYYYYYYYYYYYYYYYYYYY

--\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

vvmmmmmmm

V�p�s 
 V�p�s
((QQQQQQ

vvmmmmmm

rreeeeeeeeeeeeeeeeeeee

qqbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbV�p�s 
 V+s
((QQQQQQ

--\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ V+s 
V�p�s
vvmmmmmm

,,YYYYYYYYYYYYYYYYYYYYYY
V+s 
 V�p�s

rreeeeeeeeeeeeeeeeeeee

((QQQQQQQ

V�p�s 
 V+s
vvmmmmmmm

qqbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbV�p�s 
 V�p�s V+s 
 V+sFigure 1: The stru
ture of the non-
hiral representation Is.The parti
ular relevan
e of proje
tive modules for lo
al bulk theories is one of the main out
omesfrom the study of WZNW models on supergroups, see also [36, 24, 37℄. Their role for logarithmi
extensions of minimal models was also emphasized in [75, 77℄, mostly based on studies of the dualquantum group. It seems worth pointing out, though, that for quotients of supergroups, proje
tivemodules might not play su
h a prominent role, even though some of them are likely to be logarithmi
as well. Similarly, boundary spe
tra in logarithmi
 
onformal �eld theories are known to involveatypi
al irredu
ibles as well as proje
tives. For the triplet model, boundary 
onditions with anatypi
al irredu
ible spe
trum of boundary operators were exhibited in the re
ent work of Gaberdieland Runkel [18℄. Studies of branes on supergroups 
on�rm the existen
e of su
h boundary spe
traand they provide a beautiful geometri
 explanation [78℄.7 Outlook and open questionsIn our paper we presented the main ingredients for a 
omplete solution of arbitrary supergroupWZNW models based on basi
 Lie superalgebras of type I. All our results relied on a free fermionresolution of the underlying 
urrent superalgebra whi
h allowed to keep the bosoni
 subsymmetrymanifest in all expressions we en
ountered, i.e. in a
tion fun
tionals, representations, 
orrelationfun
tions and other quantities. On the level of the Lagrangian we showed that the original WZNWLagrangian 
ould be written as a sum of a WZNW model for the bosoni
 subgroup with renor-malized metri
 and possibly a dilaton, the a
tion for a set of free fermions and an intera
tion termwhi
h 
ouples the fermions to a vertex operator of the bosoni
 model. The usefulness of this 
on-stru
tion has also been demonstrated in the full quantum theory, e.g. when we re
onstru
ted the
urrent superalgebra in terms of the 
orresponding bosoni
 
urrent algebra and free fermions.In order to solve the WZNWmodel we �rst fo
used on its semi-
lassi
al, or small 
urvature limitwhi
h allowed to redu
e the 
onstru
tion of the spa
e of ground states to a problem in harmoni
analysis on a supergroup. We 
ould 
on�rm previous observations [58, 36, 24, 37℄ that the spa
e offun
tions splits into two qualitative very di�erent se
tors. First of all, there exists a typi
al se
torwhi
h de
omposes into a tensor produ
t of irredu
ible typi
al representations under the a
tion ofthe supergroup isometry g � g. On this subspa
e, the Lapla
ian is fully diagonalizable and itseigenvalues are determined by a spe
i�
 quadrati
 Casimir of g. In addition, the spa
e of fun
tionson a supergroup always exhibits an atypi
al se
tor 
onsisting of proje
tive 
overs entangled in a
ompli
ated way su
h that the resulting non-
hiral modules 
annot be written as (a dire
t sum of)tensor produ
t representations. In this se
tor the Lapla
ian is not diagonalizable and the ne
essityfor a non-trivial entanglement may eventually be tra
ed ba
k to the fa
t that the left and right39



regular a
tion lead to the same expression for the Lapla
ian. We wish to emphasize that ourderivation of the spe
trum has been very general and just relied on the validity of a re
ipro
itytheorem proven by Zou and Brundan [48, 49℄.Starting from this semi-
lassi
al trun
ation it has been argued that all its interesting featurespersist in the full quantum theory. In parti
ular, the full state spa
e of the WZNW model isstill 
omposed of a typi
al and an atypi
al se
tor. Again, the representations in the latter donot fa
torize and the dilatation operators L0 and �L0 may not be diagonalized. Sin
e the va
uumrepresentation is always atypi
al this automati
ally implies the existen
e of a logarithmi
 partner ofthe identity �eld and makes supergroup WZNW models genuine examples of logarithmi
 
onformal�eld theories.It should be noted that, in 
omparison to ordinary free �eld 
onstru
tions [38, 39, 40, 41, 42℄whi
h are based on a 
hoi
e of an abelian subalgebra, our free fermion resolution is mu
h easierto deal with. In parti
ular, the representations of the 
urrent superalgebra obtained from thegeneralized Fo
k spa
es (5.1) are typi
ally irredu
ible. This observation lets us suggest that theserepresentations are the proper generalization of Ka
 modules in the in�nite dimensional setting.Furthermore, there was no need of introdu
ing various s
reening 
harges and BRST operators, asimplifying feature that re
e
ts itself in the 
al
ulation of 
orrelation fun
tions. The latter 
ouldbe redu
ed to a perturbative but �nite expansion in terms of 
orrelation fun
tions in the produ
tof a purely bosoni
 WZNW model with renormalized metri
 and a theory of free fermions.Finally, we 
ommented on possible partition fun
tions and we explained how they are 
on-stru
ted as a produ
t of partition fun
tions for the 
onstituents in our free fermion resolution.This rather simple behavior is rooted in the fa
t that tra
es are insensitive to the 
ompositionstru
ture of representations. Hen
e, the full WZNW theory possesses the same partition fun
tionas the de
oupled free fermion theory in whi
h produ
ts of (redu
ible) Ka
 modules appear insteadof proje
tive 
overs. Taking this assertion for granted, the torus modular invarian
e of our theoryis satis�ed automati
ally. It might be helpful to add that torus partition fun
tions of many non-rational bosoni
 
onformal �eld theories, e.g. of Liouville theory or of the H3+ model, are equallyinsensitive to the intera
tion. This does 
ertainly not imply that the theories are trivial, neither in
ase of non-rational 
onformal �eld theories, nor for WZNW models on supergroups.In the last se
tion of this work we pla
ed our new results on 
hiral and non-
hiral aspe
ts ofsupergroup WZNW models in the 
ontext of previous and ongoing work on other logarithmi
 
on-formal �eld theories, in parti
ular on logarithmi
 extensions of minimal models. The similarities areremarkable and provide some novel insight that helps to separate generi
 properties of logarithmi

onformal �eld theories from rather singular 
oin
iden
es. As an appli
ation of the analogies we
onje
tured a pre
ise formula for the state spa
e of a fully 
onsistent lo
al theory based on an arbi-trary 
hiral algebra. It adopts a parti
ularly ni
e shape for the minimal logarithmi
W(p)-theories.Working with supergroup WZNW models has two important advantages over the 
onsiderationof non-geometri
 logarithmi
 
onformal �eld theories. Con
erning the study of 
hiral aspe
ts, the
lose link between the 
urrent superalgebra ĝ and its horizontal subsuperalgebra g provides a ratherstrong handle on the representation theory of W = ĝ. In fa
t, sin
e the representation theory of gis under good 
ontrol, the same is true for its aÆne extension ĝ. Even though we have not reallypushed this to the level of mathemati
al theorems, there is no doubt that rigorous results 
an beestablished along the lines of our dis
ussion. For some parti
ular examples, this has been 
arriedout already [36, 24, 37℄. The se
ond advantage of supergroup WZNW models is the existen
eof an a
tion prin
iple. The latter is parti
ularly powerful when it 
omes to the 
onstru
tion of40



lo
al logarithmi
 �eld theories, a subje
t that has been notoriously hard to address for logarithmi
extensions of minimal models. In fa
t, we have seen in se
tion 5.3 that the a
tion leads to arigorous tool for 
onstru
ting bulk 
orrelation fun
tions. As su
h, it has already been exploited inthe 
onstru
tion of 
orrelation fun
tions for the GL(1j1) WZNW model [36℄.The present work admits natural extensions in several dire
tions. Among these, the problemof �nding 
on
rete expressions for the full 
orrelation fun
tions or, at least, 
onformal blo
ks isprobably the most urgent. Another issue of 
onsiderable signi�
an
e is the extension of our ideasto world-sheets with boundaries or, in string theory language, the dis
ussion of D-branes. Inthis 
ontext it seems ne
essary to obtain a better handle on modular transformation properties of
hara
ters, in
luding those of irredu
ible atypi
al representations [13℄. We hope that our work willbe helpful in deriving new 
hara
ter formulas along the lines of [24, 37℄. It would also be interestingto work out in greater detail the solution of WZNW models with non-trivial modular invariants.In order to a
quire more experien
e with supersymmetri
 �-models and for various appli
ationsit would be desirable to extend our study to super
oset models. In 
ontrast to bosoni
 models,there is 
onsiderably more freedom in 
hoosing how to gauge. Besides gauging the standard adjointa
tion, as is done in [79, 80, 81, 82℄ there are many 
ases in whi
h purely one-sided 
osets areknown or believed to be 
onformally invariant [19, 20, 21, 22℄. Those latter 
ases are relevant forthe des
ription of AdS-spa
es, proje
tive superspa
es and even 
at Minkowski spa
e. It is worthnoting that the harmoni
 analysis on 
oset models G=H with H a bosoni
 subgroup a
ting fromthe right, g � gh, 
an easily be obtained from our results, see se
tion 4.2 and espe
ially eq. (4.8)(
mp. also [83℄). All the additional input required is the bran
hing of g0-modules into h-modules.Even before 
arrying out any su
h de
omposition expli
itly, we may 
on
lude from eq. (4.8) thatthe resulting g-modules are all proje
tive. This parti
ularly applies to all generalized symmetri
spa
es whi
h are relevant for the des
ription of AdS-spa
es. Let us stress, however, that 
osetsG=H by some non-trivial supergroup H may behave di�erently. In fa
t, some simple examplesshow how even atypi
al irredu
ibles may emerge in their spe
trum.Apart from these stru
tural and 
on
eptual issues we also expe
t our work to have 
on
reteimpli
ations, e.g. in string theory. Let us re
all that it is not diÆ
ult to write down 
lassi
al �-models whi
h 
an be used to des
ribe string theory on AdS-spa
es with various types of ba
kground
uxes for instan
e [19, 84℄. But for a long time it has not been 
lear how to quantize these �eldtheories while keeping the target spa
e supersymmetry manifest. It was only re
ently that the purespinor approa
h 
losed this gap to some extent [85, 86℄. Although substantial progress has beenmade on 
ertain aspe
ts of the pure spinor formulation, there exist a variety of open 
on
eptualissues, in parti
ular when 
urved ba
kgrounds are involved. It was proposed to over
ome some ofthem through a reformulation in terms of supergroup WZNW models [87℄. The ideas presentedabove may help to gain more 
ontrol over the relevant models.For a 
omplete pi
ture we also need to solve WZNW models beyond Lie supergroups of type I.These in
lude, in parti
ular, supergroups of type II where the fermions o

ur in a single multipletof the bosoni
 subgroup. Stru
turally, type II implies that there is no natural Z-grading anymorewhi
h is 
onsistent with the intrinsi
 Z2-grading of the underlying Lie superalgebra. This issue
on
erns the two series B(m;n) = osp(2m+1j2n) and D(m;n) = osp(2mj2n) of Ka
' 
lassi�
ation[45℄ whi
h e.g. 
onstitute the isometries of superspheres S2n+m�1j2n [5, 88℄. Moreover, these seriesin
lude the spe
ial 
ases D(2; 1;�) and D(n+1; n) whi
h have been shown [22℄ to have similarly ex-
iting properties as A(n; n) = psl(n+1jn+1) [23℄. Let us note that the WZNWmodels based on thefamily of ex
eptional Lie superalgebras D(2; 1;�) are also relevant for a manifestly supersymmetri
41



des
ription of string ba
kgrounds involving AdS3 � S3 � S3. Sin
e type II superalgebras do notadmit a 
anoni
al (
ovariant) split of fermioni
 
oordinates into holomorphi
 and antiholomorphi
degrees of freedom, they require a rather signi�
ant extension of the above analysis. In
idently,the same is true for the representation theory of type II superalgebras whi
h is 
onsiderably more
ompli
ated than in the type I 
ase [50℄. We hope to return to these issues in future work.A
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