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Loal SU(5) Uni�ation from theHeteroti String
W. Buhmüllera, C. Lüdelingb, J. Shmidtaa Deutshes Elektronen-Synhrotron DESY, Hamburg, Germanyb Institut für Theoretishe Physik, Universität Heidelberg, Heidelberg, GermanyAbstrat: We onstrut a 6D supergravity theory whih emerges as intermediatestep in the ompati�ation of the heteroti string to the supersymmetri standardmodel in four dimensions. The theory has N = 2 supersymmetry and a gravitationalsetor with one tensor and two hypermultiplets in addition to the supergravity mul-tiplet. Compati�ation to four dimensions ours on a T 2=Z2 orbifold whih hastwo inequivalent pairs of �xed points with unbroken SU(5) and SU(2)� SU(4) sym-metry, respetively. All gauge, gravitational and mixed anomalies are anelled bythe Green-Shwarz mehanism. The model has partial 6D gauge-Higgs uni�ation.Two quark-lepton generations are loalized at the SU(5) branes, the third family isomposed of split bulk hypermultiplets. The top Yukawa oupling is given by the6D gauge oupling, all other Yukawa ouplings are generated by higher-dimensionaloperators at the SU(5) branes. The presene of the SU(2) � SU(4) brane breaksSU(5) and generates split gauge and Higgs multiplets with N = 1 supersymmetryin four dimensions. The third generation is obtained from two split �5-plets and twosplit 10-plets, whih together have the quantum numbers of one �5-plet and one 10-plet. This avoids unsuessful SU(5) preditions for Yukawa ouplings of ordinary4D SU(5) grand uni�ed theories.Keywords: Superstrings and Heteroti Strings, Superstring Vaua.
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1. IntrodutionThe symmetries and the partile ontent of the standard model point towards granduni�ed theories (GUTs). The simplest uni�ed gauge group is SU(5) with three �5- and10-plets for the three quark-lepton generations of the standard model [1℄. Higgs dou-blets an be obtained from further 5- and �5-plets, with their heavy olor triplet part-ners deoupled from the low energy theory. In supersymmetri GUTs the hierarhy� 1 �



between the eletroweak sale and the GUT sale is stabilized and, for the minimalase of two Higgs doublets, gauge ouplings unify at the saleMGUT ' 2�1016 GeV.Neutrino masses and mixings an be desribed by adding a non-renormalizable,lepton-number violating dimension-5 operator omposed of lepton and Higgs dou-blets, with oupling strength 1=�. The observed smallness of the neutrino massesthen requires � = O(MGUT), hinting at a B�L breaking sale of the order ofMGUT.Embedding SU(5) and U(1)B�L in SO(10) [2, 3℄, and ontinuing the route of uni�-ation via exeptional groups, one arrives at E8, whih is beautifully realized in theheteroti string [4, 5℄.An elegant sheme leading to hiral gauge theories in four dimensions is theompati�ation on orbifolds [6�10℄. Reently, onsiderable progress has been madein deriving uni�ed �eld theories from orbifold ompati�ations of the heteroti string[11�16℄, and it has been demonstrated that the idea of loal grand uni�ation anserve as a guide to �nd string vaua orresponding to the supersymmetri standardmodel [17�19℄. In this paper we study in some detail an orbifold GUT limit of themodel [17℄, where two of the ompat dimensions are larger than the other four. Inthis way we hope to obtain a better understanding of some open questions of urrentorbifold ompati�ations: the large vauum degeneray, the deoupling of unwantedmassless states and the stabilization of moduli �elds.The model [17℄ is based on a Z6�II twist whih is the produt of a Z3 twistand a Z2 twist. In a �rst step, desribed in Setion 2, we ompatify the E8 � E8heteroti string on the orbifold T 4=Z3, where T 4 is a 4-torus with the Lie algebralattie G2�SU(3). The six-dimensional (6D) theory has N = 2 supersymmetry andunbroken gauge groupG6 = SU(6)� U(1)3 � �SU(3)� SO(8)� U(1)2� ; (1.1)where the brakets denote the subgroup of the seond E8. The gravitational se-tor ontains one tensor multiplet whose (anti-)self-dual part belongs to the N = 2(dilaton) supergravity multiplet.Compati�ation from six to four dimensions on the orbifold T 2=Z2 with SO(4)Lie lattie leads to additional �xed points and twisted setors. The massless spetrumin four dimensions agrees with the results obtained in [17,18℄. In addition to the zeromodes, the 6D �eld theory ontains the Kaluza�Klein exitations of the large SO(4)-plane and further non-Abelian singlets. As desribed in Setion 3, the projetiononditions for physial massless states of the model [17℄ now beome Z2 projetiononditions for the 6D bulk �elds at the orbifold �xed points in the SO(4)�plane.Given the Z2 parities of the 6D bulk �elds, one an perform a highly non-trivialonsisteny hek of the 6D �eld theory, the anellation of all gauge, gravitationaland mixed anomalies by the Green-Shwarz mehanism [20℄. In Setion 4 it is ex-pliitly shown that all irreduible anomalies vanish and that the reduible ones areindeed anelled by a unique Green�Shwarz term in the e�etive ation [21,22℄. The� 2 �



6D theory has di�erent loal anomalous U(1) symmetries at the di�erent �xed pointsin the SO(4) plane. Their sum yields the anomalous U(1) of the 4D theory [18℄.The 6D theory has a GUT gauge group and N = 2 supersymmetry, and thereforeonsiderably fewer multiplets than the 4D theory. This simpli�es the deoupling ofunwanted exoti states as we show in Setion 5. For a vauum with spontaneouslybroken B�L symmetry we then obtain a loal SU(5) GUT model with two loalizedand two bulk quark-lepton families. The Higgs �elds are identi�ed as bulk �eldswith partial gauge-Higgs uni�ation. The SU(5) invariant Yukawa ouplings and theSU(5) breaking by the Z2 orbifolding are disussed in Setion 6. Open problemsonerning supersymmetri vaua and the stabilization of the ompat dimensionsare outlined in Setion 7.Finally, in Setion 8, we onlude with a brief outlook on open questions andfurther hallenges for realisti ompati�ations of the heteroti string.2. 6D Supergravity from the Heteroti String2.1 The Heteroti String on T 6=Z6�IIWe onsider the propagation of the E8 � E8 heteroti string in a spae-timebakground whih is the produt of four-dimensional Minkowski spae and a six-dimensional orbifold [23℄. The ompat spae is obtained by dividing the torusT 6 = R6=2�� by the disrete symmetry Z6�II = Z3 � Z2 of the Lie algebra lattieSO(4)� SU(3)�G2. The four omplex oordinates zi, i = 1 : : : 4, omprise the twotransverse dimensions of Minkowski spae (i = 4) and the six ompat dimensions(i = 1 : : : 3).The Z6�II orbifold with the G2 � SU(3) � SO(4) lattie is haraterized by thetwist vetorv6 = ��16 ;�13 ; 12; 0� ; (2.1)whih is the sum of Z3 and Z2 twist vetors, v6 = �v3 + v2, wherev3 = 2v6 ; v2 = 3v6 : (2.2)Note that the Z3 twist leaves the SO(4) plane invariant whereas the Z2 twist doesnot a�et the SU(3) plane. Both twists at non-trivially on the G2 plane.In the light-one gauge the heteroti string an be desribed by 4 omplex oor-dinates Zi(�) (i = 1 : : : 4), 4 bosonized right-moving Neveu-Shwarz-Ramond (NSR)fermions H i(��) (i = 1 : : : 4) and 16 left-moving bosons XI(�+) (I = 1 : : : 16), where�� = � � �. The �elds XI are ompati�ed on the 16�dimensional E8 � E8 torus.Correspondingly, the momenta of the right-moving �elds H i lie on the weight lattieof the little group SO(8). The quantum numbers of a string state are thus given� 3 �



by the E8 � E8 root vetor pI for the gauge and the SO(8) weight vetor qi for theLorentz quantum numbers.The orbifold twist is embedded into the gauge group by the Z6 twist vetorV6 = ��12 ;�12 ; 13 ; 05� 176 ;��52�6 ; 52 ;! : (2.3)In addition, there are two Wilson lines assoiated with the two subtwists: a Z3Wilson line W3 in the SU(3) plane and a Z2 Wilson line W2 in the SO(4) plane,given byW3 =  �16 ; 12 ; 12 ;��16�5!�0;�23 ; 13 ; 43 ;�1; 03� ; (2.4)W2 = ��12 ; 0;�12 ; 12 ; 12 ; 03��234 ;�254 ;�214 ;�194 ;�254 ;�214 ;�174 ; 174 � :(2.5)A basis in the Hilbert spae of the quantized string is obtained by ating with thereation operators (n < 0) for right-handed modes (�in; e�in) and left-handed modes(e�in; e�In) on the ground states of the untwisted setor U (k = 0) and the twistedsetors Tk (k = 1 : : : 5). The ground states of the di�erent setors depend on themomentum vetors qi, pI and, for the twisted setors, also on the �xed point f(f. [18, 23℄),jq; pi � jqi 
 jpi ; jf ; q; pi � jqshi 
 jpshi ; (2.6)with the shifted momentaqsh = q + kv6 ; psh = p+ Vf : (2.7)Here k is the order of the twist and Vf is the loal gauge twist at the �xed point f .It turns out that for the onsidered model only osillator modes of the left-movingstrings ZiL(�+), Z�iL (�+) and XI(�+) are relevant.2.2 Intermediate Z3 Compati�ationWe are now interested in the e�etive �eld theory for the massless states in the limitwhere the SO(4) plane is muh larger the G2 and SU(3) planes, yielding approxi-mately �at 6D Minkowski spae. Hene, in a �rst step, we onsider the ompati�-ation on the orbifold T 4=Z3. The physial states of the gravitational setor,jq; ii = jqi 
 e�i�1j0i ; jq; i�i = jqi 
 e��i�1j0i ; (2.8)have to satisfy the mass equations18m2R = 12q2 � 12 = 0 ; (2.9a)
� 4 �



G2 n3 = 0n3 = 1 n3 = 2SU(3) (0; 0)
(0; 1)

(1; 0)
(1; 1)

SO(4)Figure 1: The tori of the orbifold T 6=Z6. Red rosses mark �xed points of the Z3 twistused for the �rst step of ompati�ation. The SO(4) torus is invariant, while the othertori ontain three �xed points eah. The �xed points in the G2 torus are equivalent,while the SU(3) torus ontains a Wilson line, and the �xed points are inequivalent andlabelled by n3. The blue irles mark the Z2 �xed points in the SO(4) plane whihare labelled by (n2; n02). There are further Z2 �xed points in the G2 torus whih arenot shown.18m2L = 12p2 � 1 + eN + eN� = 0 : (2.9b)Here p = 0, and eN; eN� are the osillator numbers for left-moving modes in zi, z�idiretions, summed over i: eN = Pi eNi, eN� = Pi eN�i . Furthermore, physial stateshave to be invariant under the Z3 twist,v3 � � eN � eN� � q� = 0 mod 1 : (2.10)The 16 bosoni states1 q = (0; 0;�1; 0) with i = 3; 4, together with the 16fermioni states q = �12 ; 12 ;�12 ;�12� ; ��12 ;�12 ;�12 ;�12� with i = 3; 4, form the familiar6D supergravity and dilaton N = 2 multiplets [24℄,(GMN ; B+MN ;	M) ; (B�MN ;�; �) : (2.11)Here B+MN (B�MN) is the antisymmetri tensor �eld with (anti-)self-dual �eld strength.Note that together there is only one tensor �eld BMN without self-duality onditions,whih is the speial ase for whih a lagrangian exists.The 4 bosoni states q = (1; 0; 0; 0); (0;�1; 0; 0) with eN1 = 1; eN�2 = 0 or eN1 = 0,eN�2 = 1, together with the orresponding 4 fermioni states q = �12 ;�12 ; 12 ;�12� andthe harge onjugate states orrespond to two 6D hypermultiplets,C1 ; C2 : (2.12)1Underline denotes all permutations. � 5 �



They ontain the two `radion' �elds of the small G2 and SU(3) tori as well as o�-diagonal omponents of the metri and the tensor �elds and the assoiated super-partners. The omplex struture of the small dimensions is �xed. All 24 bosoni�elds originate from the 64 bosoni states ĜMN , B̂MN and �̂ in 10 dimensions. Theremaining 40 bosoni states and their fermioni superpartners are projeted out bythe Z3 twist.The massless physial states of the gauge setor,jq; pi � jqi 
 jpi ; (2.13)have vanishing osillator numbers and satisfy the projetion onditionsv3 � q � Vf � p = 0 mod 1 : (2.14)Here Vf = 2(V6 + n3W3) are the loal Z3 gauge subtwists of the model. They di�erby multiples of the Z3 Wilson line W3 in the SU(3) plane, whih distinguishes thethree inequivalent �xed points labelled by n3 = 0; 1; 2 (f. Fig. 1). Eqs. (2.14) areequivalent tov3 � q � V3 � p = 0 mod 1 ; W3 � p = 0 mod 1 ; (2.15)where the seond ondition re�ets the fat that the �nite extension of the SU(3)plane is negleted in the 6D e�etive �eld theory.At eah �xed point in the SU(3) plane the group E8�E8 is broken to the subgroupSO(14)�U(1)� [SO(14)� U(1)℄, whih is di�erently embedded into E8� E8 at thedi�erent �xed points [18℄. The brakets denote the subgroup of the seond E8. TheU(1) fators are sometimes omitted; they an always be reonstruted sine the rankof the gauge group is preserved. One easily veri�es that the intersetion of the threeE8�E8 subgroups, whih yields the unbroken gauge group of the 6D theory, is givenby G6 = SU(6)� U(1)3 � �SU(3)� SO(8)� U(1)2� ; (2.16)with the massless N = 2 vetor multiplets(35; 1; 1) + (1; 8; 1) + (1; 1; 28) + 5� (1; 1; 1) : (2.17)The massless vetor states are obtained from the onditions (2.14) for v3 � q = 0.There are two further possibilities, v3 � q = �1=3 and v3 � q = �2=3, whih lead toN = 2 hypermultiplets. A straightforward alulation yields the gauge multiplets(20; 1; 1) + (1; 1; 8) + (1; 1; 8s) + (1; 1; 8) + 4� (1; 1; 1) ; (2.18)with the U(1) harges listed in Table A.2.In addition to the vetor and hypermultiplets from the untwisted setor of thestring, there are 6D bulk �elds whih originate from the twisted setors T2 and T4 of� 6 �



Setor Multiplet Representation #Gravity Graviton GMN 1Dilaton � 1Hyper C1, C2 2Untwisted Vetor (35; 1; 1) 35(1; 8; 1) 8(1; 1; 28) 285� (1; 1; 1) 5Untwisted Hyper (20; 1; 1) 20(1; 1; 8) + (1; 1; 8s) + (1; 1; 8) 244� (1; 1; 1) 4Twisted Hyper 9� (6; 1; 1) + 9� (�6; 1; 1) 1089� (1; 3; 1; 1) + 9� (1; �3; 1; 1) 543� (1; 1; 8) + 3� (1; 1; 8s) + 3� (1; 1; 8) 7236� (1; 1; 1) 36Table 2.1: N = 2 supermultiplets of the 6D theory: graviton, dilaton, 76 vetor and320 hypermultiplets. The non-Abelian symmetry group is SU(6)� [SU(3)� SO(8)℄.the Z6�II model, orresponding to the twisted setors T̂1 and T̂2 of the Z3 subtwist.The projetion onditions for physial states arev3 � � eNf � eN�f�� v3 � (q + v3) + Vf � (p+ Vf ) = 0 mod 1 ; (2.19)where eNf ; eN�f are the integer osillator numbers for left-moving modes loalized atthe �xed point f (f. [18℄).At eah �xed point one has states with eNf = eN�f = 0, whih yield N = 2 hyper-multiplets (14; 1) and (1; 14). With respet to the 6D gauge group these multipletsform the reduible representations(14; 1) = (6; 1; 1) + (�6; 1; 1) + 2� (1; 1; 1) ; (2.20a)(1; 14) = (1; 3; 1) + (1; �3; 1) + (1; 1; 8̂) : (2.20b)At the three SU(3) �xed points, (1; 1; 8̂) orresponds to (1; 1; 8), (1; 1; 8s) and(1; 1; 8), respetively. Furthermore, there are osillator states for the two smallompat planes,jq + v3i 
 e�if�1jp+ Vf i ; jq + v3i 
 e��if�1jp+ Vfi ; i = 3; 4 ; (2.21)whih yield two non-Abelian singlet hypermultiplets for eah �xed point.In addition to the three inequivalent �xed points in the SU(3) plane, there arethree equivalent �xed points of the Z3 twist in the G2 plane. This yields a multipliityof three for all hypermultiplets from the T2 and T4 setors. All the multiplets of the� 7 �



6D theory are summarized in Table 2.1. The full listing inluding the U(1) hargesis given in Appendix A.2.Let us �nally onsider the interation between vetor and hypermultiplets. Itis onvenient to deompose all N = 2 6D multiplets in terms of N = 1 4D mul-tiplets. The 6D vetor multiplet splits into a pair of 4D vetor and hiral mul-tiplets, A = (V; �), and a hypermultiplet onsists of a pair of hiral multiplets,H = (HL; HR); here � and HL are left-handed, HR is right-handed. In �at spae,the interation lagrangian takes the simple form [25℄LH = Z d4� �HyLe2gVHL +HyR e�2gVHR�+ Z d2� HR �� +p2g��HL + h.. (2.22)After ompati�ation to four dimensions, the �rst term yields the familiar gaugeinterations, whereas the seond term an give rise to Yukawa ouplings. For thehypermultiplet (20; 1; 1) one obtainsLH � p2g Z d2� HR(20)�(35)HL(20) + h.. (2.23)The SU(6) 20-plet ontains SU(5) 10- and 10-plets, and the 35-plet ontains SU(5)5- and �5-plets. As we shall see in Setion 6, after projetion onto 4D zero modes,Eq. (2.22) yields preisely the top Yukawa oupling. The Yukawa terms for thehypermultiplets (6; 1; 1) and (�6; 1; 1),LH � p2g Z d2� (HR(6)�(35)HL(6) +HR(�6)�(35)HL(�6)) + h.. (2.24)will be important for the deoupling of exoti states in Setion 5.3. Z2 Compati�ation to Four DimensionsThe ompati�ation from six to four dimensions on a Z2 orbifold leads to four addi-tional �xed points in the SO(4) plane and to further projetion onditions for physialmassless states. The �xed points are labelled by (n2; n02) = (0; 0); (0; 1; ); (1; 0); (1; 1)(f. Fig. 1). Due to the Wilson line W2, they ome in two pairs of equivalent �xedpoints, and the projetion onditions only depend on n2 and not on n02.At the �xed points, half of the supersymmetry generators are broken and onlyN = 1 supersymmetry remains unbroken. For the gravitational and gauge multipletsof the untwisted setor the projetion onditions are [18℄v2 � � ~N � ~N��� v2 � q + Vf � p = 0 mod 1 ; (3.1)where v2 = 3v6, and Vf = 3V6+n2W2 are the loal twists at the �xed points n2 = 0; 1in the SO(4) plane. � 8 �



n2 Gauge group0 SU(5)� U(1)4 � �SU(3)� SO(8)� U(1)2�1 SU(2)� SU(4)� U(1)4 � �SU(2)0 � SU(4)0 � U(1)4�\ SU(3)� SU(2)� U(1)5 � �SU(2)0 � SU(4)0 � U(1)4�Table 3.1: List of the loal gauge groups and their intersetion.In this paper we onsider an anisotropi orbifold where the SO(4) plane is muhlarger than the G2 and SU(3) planes. The Kaluza�Klein states of the SO(4) planean be inluded in an e�etive �eld theory below the string sale by onsidering �eldsin the two large ompat dimensions instead of 4D zero modes whih are assumedto be onstant in the ompat dimensions. For the Z2 twist, one has (f. [18℄)(�3; lf)(z3f + z3) = z3f � z3, where (�3; lf) is the spae group element of the �xed pointf and z3 = y5 + iy6 is the omplex oordinate in the SO(4) plane. The projetiononditions (3.1) for the massless states then beome loal projetion onditions for�elds in the ompat dimensions,Pf : �(yf + y) = �f(�)�(yf � y) ;�f(�) = expn2�i�v2 � ( ~N � ~N� � q) + Vf � p�o : (3.2)The momenta p, q and the osillator number ~N � ~N� of the states determine thequantum numbers of the orresponding �elds �, and �f(�) = �1. Only �elds whihhave positive parity at all �xed points have zero modes.As an example, onsider the 6D metrids2 = gMNdxMdxN = g��dx�dx� + 2g�mdx�dym + gmndymdyn ; (3.3)where x� and ym are the oordinates of 4D Minkowski spae and the two ompatdimensions, respetively. One easily obtains from Eqs. (2.8) and (3.2) the projetiononditionsg��(x; y) = g��(x;�y) ; g�m(x; y) = �g�m(x;�y) ; gmn(x; y) = gmn(x;�y) :(3.4)The 4D zero mode g��(x) is part of the N = 1 supergravity multiplet (g��;  �) whilethe three degrees of freedom in gmn(x) join with B56 to form the moduli multipletsT and S ontaining the radion �eld and the omplex struture of the torus.The projetion onditions for the N = 2 vetor multiplets A are most onve-niently expressed in terms of the orresponding N = 1 vetor (V ) and hiral (�)multiplets, A = (V; �), whih are elements of the Lie algebra of the 6D bulk gaugegroup. The unbroken gauge group at the �xed point f is determined by the onditionp � Vf = 0 mod 1 : (3.5)� 9 �



At the �xed points n2 = 0 and n2 = 1 in the SO(4) plane, the bulk gauge groupSU(6)� [SU(3)�SO(8)℄ is broken to subgroups ontaining SU(5)� [SU(2)0�SU(4)0℄and SU(2) � SU(4) � [SU(2)0 � SU(4)0℄, respetively. At the two �xed points theonditions for the vetor and hiral multiplets are given byPfV (x; yf � y)Pf = V (x; yf + y) ; Pf�(x; yf � y)Pf = ��(x; yf + y) ; (3.6)where Pf is the Z2 parity matrix. Again only N = 1 supersymmetry remains un-broken. As an example, for the SU(6) fator, one has P0 = diag(1; 1; 1; 1; 1;�1) atn2 = 0, and P1 = diag(1; 1;�1;�1;�1;�1) at n2 = 1. The deomposition of thebulk gauge �elds with respet to the loally unbroken subgroups, together with allU(1) harges, are listed in Tables 3.2 and 3.3. For the unbroken subgroup, vetorshave positive and salars negative parity; for the broken generators the situation isreversed.At the �xed point n2 = 0 the GUT group SU(5) � U(1) is unbroken, and theN = 2 vetor multiplet 35 of SU(6) splits into the N = 1 vetor multiplets 24 + 1with positive parity and the N = 1 hiral multiplets 5+ �5 with positive parity fromthe oset SU(6) =(SU(5) � U(1)). From Table 3.3 one reads o� that the projetionondition at the �xed point n2 = 1 projets out the olor triplets from both the 5-and the �5-plets. This is the well known doublet-triplet splitting of orbifold GUTs.As we shall disuss in Setion 5, the remaining SU(2) doublets an play the role ofHiggs or lepton doublets in the 4D e�etive theory.The N = 2 hypermultiplets H onsist of pairs of N = 1 left- and right-hiralmultiplets, H = (HL; HR). For the projetion onditions one �ndsPfHL(x; yf�y) = �fHL(x; yf+y) ; PfHR(x; yf�y) = ��fHR(x; yf+y) ;(3.7)where Pf is now a matrix in the representation of H, and �f has to be alulatedusing Eq. (3.2). The parities for the hypermultiplets from the untwisted setor,deomposed with respet to the unbroken groups at the �xed points n2 = 0 andn2 = 1 are listed in the Tables 3.4 and 3.5.Zero modes with standard model quantum numbers are ontained in two N = 1hiral multiplets whih are SU(5) 10-plets,HL = (10; 1; 1) ; HR = (10; 1; 1) : (3.8)From the Tables 3.4 and 3.5 one easily veri�es that the projetion onditions at the�xed point n2 = 1 yield the following quark-lepton states as 4D zero modes:10 : (3; 2) = q ; 10 : (�3; 1) = u ; (1; 1) = e : (3.9)Together, the zero modes have again the quantum numbers of one SU(5) 10-plet.However, as we shall see in Setion 6, it is ruial for their Yukawa ouplings thatthey originate from two distint SU(5) 10-plets.� 10 �



Bulk n2 = 0 V � t06(35; 1; 1) (24; 1; 1) + � 0(5; 1; 1) � + �6(�5; 1; 1) � + 6(1; 1; 1) + � 0(1; 8; 1) (1; 8; 1) + � 0(1; 1; 28) (1; 1; 28) + � 0Table 3.2: Loal deomposition of vetor multiplets at n2 = 0.Bulk n2 = 1 V � t16 t7 t8(35; 1; 1) (3; 1; 1; 1) + � 0 0 0(1; 15; 1; 1) + � 0 0 0(2; 4; 1; 1) � + 15 0 0(2; �4; 1; 1) � + �15 0 0(1; 1; 1; 1) + � 0 0 0(1; 8; 1) (1; 1; 3; 1) + � 0 0 0(1; 1; 2; 1) � + 0 3 0(1; 1; 2; 1) � + 0 �3 0(1; 1; 1; 1) + � 0 0 0(1; 1; 28) (1; 1; 1; 15) + � 0 0 0(1; 1; 1; 6) � + 0 0 2(1; 1; 1; 6) � + 0 0 �2(1; 1; 1; 1) + � 0 0 0Table 3.3: Loal deomposition of vetor multiplets at n2 = 1.As disussed in the previous setion, the N = 2 hypermultiplets from the T2=T4setor are bulk �elds in the SO(4) plane, but loalized in the G2 and SU(3) planes.With respet to the bulk gauge group they transform as (6; 1; 1), (�6; 1; 1), (1; 3; 1),(1; �3; 1), (1; 1; 8), (1; 1; 8), (1; 1; 8s) and (1; 1; 1). One an form linear ombinationsof the states loalized at the equivalent �xed points in the G2 plane, whih areeigenstates of the Z2 twist, �3jqi = exp (2�iq)jqi. For the twisted setor �elds theprojetion onditions depend on the phase q, and the parities �f(�) are given by�f (�) = expn2�i�v2 � ( ~N � ~N� � q) + Vf � p+ q�o : (3.10)For the T2=T4 twisted states q takes the values 0; 1=2; 1. The orresponding 6 paritiesfor all hypermultiplets H = (HL; HR) at the �xed points n2 = 0 and n2 = 1 are listedin Tables A.4�A.7. � 11 �



Bulk n2 = 0 HL HR t06 t1 t2 t3 t4 t5(20; 1; 1) (10; 1; 1) + � 3 �12 12 0 0 0( �10; 1; 1) � + -3 �12 12 0 0 0(1; 1;8) (1; 1;8) � + 0 0 0 0 �1 0(1; 1;8s) (1; 1;8s) + � 0 0 0 0 12 32(1; 1;8) (1; 1;8) + � 0 0 0 0 12 �32(1; 1; 1) (1; 1; 1) � + 0 12 12 3 0 0 U1(1; 1; 1) (1; 1; 1) + � 0 12 12 �3 0 0 U2(1; 1; 1) (1; 1; 1) + � 0 1 �1 0 0 0 U3(1; 1; 1) (1; 1; 1) + � 0 �1 �1 0 0 0 U4Table 3.4: Loal deomposition of untwisted hypermultiplets at n2 = 0.Bulk n2 = 1 HL HR t16 t7 t8 t1 t2 t3 t4 t5(20; 1; 1) (2;6; 1; 1) � + 0 0 0 �12 12 0 0 0(1;4; 1; 1) + � �15 0 0 �12 12 0 0 0(1;�4; 1; 1) + � 15 0 0 �12 12 0 0 0(1; 1;8) (1; 1; 1;4) � + 0 0 �1 0 0 0 �1 0(1; 1; 1;�4) + � 0 0 1 0 0 0 �1 0(1; 1;8) (1; 1; 1;6) � + 0 0 0 0 0 0 12 �32(1; 1; 1; 1) + � 0 0 2 0 0 0 12 �32(1; 1; 1; 1) + � 0 0 �2 0 0 0 12 �32(1; 1;8s) (1; 1; 1;4) � + 0 0 1 0 0 0 12 32(1; 1; 1;�4) + � 0 0 �1 0 0 0 12 32(1; 1; 1) (1; 1; 1; 1) � + 0 0 0 12 12 3 0 0 U1(1; 1; 1) (1; 1; 1; 1) � + 0 0 0 12 12 �3 0 0 U2(1; 1; 1) (1; 1; 1; 1) � + 0 0 0 1 �1 0 0 0 U3(1; 1; 1) (1; 1; 1; 1) � + 0 0 0 �1 �1 0 0 0 U4Table 3.5: Loal deomposition of untwisted hypermultiplets at n2 = 1.The 6D theory ontains 9 hypermultiplets of SU(5) 5-plets and 9 hypermultipletsof �5-plets. Eah hypermultiplet ontains a pair of 5 and �5 N = 1 hiral multiplets.� 12 �



As Table A.4 shows, the positive parities selet from eah triplet of hypermultiplets,with q = 0; 1=2; 1, a hiral ombination of 5-plets: one 5 and two �5's or two 5's andone �5. The projetion onditions at n2 = 1 then leave as 4D zero modes from eah5- or �5-plet either the SU(3) triplet or the SU(2) doublet. In this way a spetrumof massless states is generated whih is hiral with respet to the standard modelgroup.The Z2 orbifolding leads from the Z3 orbifold model of Setion 2 to a Z6 orbifoldmodel, and therefore to new twisted setors T1=T5 and T3. The massless states areobtained from the orresponding mass equations (f. [18℄) with k = 1 and k = 3,respetively. In the T3 setor one an hoose a basis of eigenstates of the Z3 twist,�2jqi = exp (2�iq)jqi, with q = 0; 1=3;�1=3; 1 (f. [18℄). The projetion ondi-tions for physial states now involve the parities�f (�) = expn2�i�v3 � ( ~N � ~N� � q) + Vf � p+ q�o : (3.11)The states are bulk �elds in the SU(3) plane, whose extension we neglet, but loal-ized in the G2 and SO(4) planes. All massless states from the T1=T5 and T3 setorsat the �xed points n2 = 0 and n2 = 1 are listed in Tables A.8 and A.9.At both �xed points with n2 = 0, one standard model family with SU(5) quantumnumbers �5+10 ours. All other states are standard model singlets. On the ontrary,there are no standard model singlets at the �xed point n2 = 1, but only olor singletswith exoti SU(2)� U(1) quantum numbers.So far we have ignored the loalization number n02 = 0; 1 of the �xed points inthe SO(4) plane, sine it just leads to a doubling of the states loalized at n2 = 0; 1.Altogether, we have a rather simple piture for the standard model non-singlet states:There are two quark-lepton families loalized atn2 = 0; n02 = 0; 1 : �5 + 10 : (3.12)From the bulk �elds, vetor and hypermultiplets, we have11� �5 + 9� 5 + 10 + 10 : (3.13)The spetrum is hiral and looks like four quark-lepton families plus 9 pairs of 5'sand �5's. However, the projetion onditions at the n2 = 1 �xed points eliminatehalf of the bulk �elds, so that one is left with three quark-lepton families and severalvetor-like pairs of SU(3) triplets and SU(2) doublets whih an aommodate a pairof Higgs doublets. Whih �5's ontain the quark and lepton states of the third family,and whih one the Higgs doublet depends on the hosen vauum. At the �xed pointsn2 = 1 there are additional loalized states with exoti quantum numbers. Using theTables 3.2�3.5 and A.4�A.9, one an hek that the spetrum of zero modes obtainedin [18℄ is reprodued.The determination of possible supersymmetri vaua, where some of the standardmodel singlet �elds aquire large VEVs, is disussed in Setions 5 and 6. In suh� 13 �



U(1) Generator Embedding into E8 �E8 Bulk n2 = 0 n2 = 1t1 (0; 1; 0; 0; 0; 0; 0; 0) (0; 0; 0; 0; 0; 0; 0; 0) p p pt2 (0; 0; 1; 0; 0; 0; 0; 0) (0; 0; 0; 0; 0; 0; 0; 0) p p pt3 (1; 0; 0; 1; 1; 1; 1; 1) (0; 0; 0; 0; 0; 0; 0; 0) p p pt4 (0; 0; 0; 0; 0; 0; 0; 0) (1; 0; 0; 0; 0; 0; 0; 0) p p pt5 (0; 0; 0; 0; 0; 0; 0; 0) (0; 1; 1; 1; 0; 0; 0; 0) p p pt06 (5; 0; 0;�1;�1;�1;�1;�1) (0; 0; 0; 0; 0; 0; 0; 0) � p �t16 (5; 0; 0;�10;�10; 5; 5; 5) (0; 0; 0; 0; 0; 0; 0; 0) � � pt7 (0; 0; 0; 0; 0; 0; 0; 0) (0; 1; 1;�2; 0; 0; 0; 0) � � pt8 (0; 0; 0; 0; 0; 0; 0; 0) (0; 0; 0; 0;�1;�1;�1; 1) � � pt0an (5; 0;�4;�1;�1;�1;�1;�1) (5;�1;�1;�1; 0; 0; 0; 0) pt1an (1; 3;�1; 1; 1; 1; 1; 1) (�4; 4; 4; 4; 0; 0; 0; 0) pt(4d)an �116 ; 12 ;�32 ;�16 ;�16 ;�16 ;�16 ;�16� �1; 13 ; 13 ; 13 ; 0; 0; 0; 0�Table 4.1: De�nition of the U(1) generators. The last three olumns indiate whetherthe generator is part of a non-Abelian group (�) or ommutes with the semi-simplegroup (p) in the bulk and at the �xed points. The anomalous U(1)'s are linearombinations of the ommuting U(1)'s at the �xed point spei�ed by the supersriptor in four dimensions; they are denoted by t0an, t1an and t(4d)an , respetively.vaua, unwanted SU(3) triplets and SU(2) an be deoupled. The positive andnegative parities at the �xed points n2 = 0; 1, listed in the Tables 3.2�3.5 and A.4�A.7 are also needed to hek the anellation of anomalies for the onstruted 6Dsupergravity theory.4. AnomaliesAnomalies of �eld theories on orbifolds are well understood [26℄, and also the six-dimensional ase has been disussed in detail [21, 22, 27�29℄. In general the orbifoldanomaly has bulk and brane ontributions. While the bulk terms are already presentin the torus ompati�ation, the loalized anomalies ruially depend on the pro-jetion onditions at the orbifold �xed points and the twisted setors of the orbifold.Thus the requirement that all anomalies of the model an be anelled imposes highlynon-trivial onditions on the spetrum. In the present model their ful�llment is guar-anteed by the fat that it has been derived from string theory, whih automatiallyprovides the right Green�Shwarz terms for anomaly anellation [20℄. In this setionwe apply its six-dimensional version [21, 22℄ to our e�etive T 2=Z2 orbifold model.� 14 �



4.1 Anomalies and the Green�Shwarz MehanismGauge anomalies require hiral fermions2, so they an our in any even dimen-sion. Gravitational anomalies3, on the other hand, only arise in 4k + 2 dimensions(k = 0; 1; : : :), hene they will appear in the bulk theory, but not on the branes.The anomaly A is de�ned as the (nonvanishing) gauge variation of the e�etiveation, A(�) = Æ��. It an be omputed from the anomaly polynomial, a (formal)losed and gauge invariant (d+ 2)-form Id+2, via the Stora�Zumino desent equations[30℄, A(�) / Z I(1)d ; dI(1)d = Æ�I(0)d+1 ; dI(0)d+1 = Id+2 ; (4.1)where the supersript indiates the order in the parameter �. Id+2 is a polyno-mial in traes of powers of the Riemann and Yang�Mills �eld strength tensors Rand FI , interpreted as matrix-valued two-forms 12R b�� a dx�dx� and 12F jI �� i dx�dx� .They are derived from spin and gauge onnetion one-forms as R = d
 + 
2 andFI = dAI + A2I , where I labels the fators of the gauge group. Here a; b are indiesin the vetor representation of SO (1; d� 1), i; j are indies of some representationof the gauge group, and wedge produts of forms are understood. Expressions ofthe form trF nI or trRn, the building bloks of Id+2, are always losed and gaugeinvariant. Their oe�ients in the anomaly polynomial depend on the numbers,representations and harges of the fermions under the respetive gauge groups.For the Green�Shwarz mehanism to anel the anomalies, we exploit the trans-formation properties of the two-form B2 = 12B��dx�dx�. Its variation under gaugeand Lorentz transformations with parameters �I and � isÆB2 = tr (�d
)�XI �I tr(�IdAI) : (4.2)The oe�ients �I are �SU(N) = 2 and �SO(N) = 1 (the U(1) oe�ients are normal-ization dependent). The ruial feature of this transformation is that ÆB2 itself isthe desent of the losed and gauge invariant four-formX4 = trR2 �XI �I trF 2I ; (4.3)suh that the 3-form �eld strength H3 = dB2�X(0)3 assoiated with B2 is invariant.By adding appropriate interation terms of the B-�eld to the ation it is now possibleto ahieve a omplete anellation of the reduible anomalies.2Also (anti)self-dual tensor �elds an ontribute. Sine in our model there is one tensor �eld ofeah type, their e�ets anel.3Anomalies in loal Lorentz transformations and in general oordinate transformations are equiv-alent in the sense that the anomaly an be shifted from one to the other by loal ounterterms. Wewill onsider anomalies in loal Lorentz transformations and refer to those as gravitational.� 15 �



For T 2=Z2 orbifolds, the total anomaly polynomial I8 is of the formI8 = 12Ibulk8 +Xf If6 Æ2(y � yf) dy5dy6 ; (4.4)where Ibulk8 is the anomaly polynomial on R1;3 � T 2, and If6 is the loal anomalypolynomial at the �xed point f . If6 reeives two kinds of ontributions: Brane-loalized �elds and bulk �elds surviving the orbifold projetion at this partiular�xed point. The latter, however, ontribute with a fator of 14 beause the orbifoldontains four �xed points. The fator 12 in (4.4) enters sine the fundamental domainof the orbifold is half the one of the torus. These anomalies an be anelled bythe Green�Shwarz mehanism if I8 is reduible, i.e., if it fatorizes into a produtinvolving X4. For the omponents this meansIbulk8 = � X4Y4 ; If6 = �Xf4 Y f2 : (4.5)Here Xf4 follows from X4 by projetion onto the loal gauge group, and we havepulled out fators � = i48(2�)3 and � = �i16(2�)3 . Sine trR = trF = 0 for non-Abelian gauge groups, the loalized two-forms Y f2 an only be linear ombinationsof U(1) �eld strengths, whih an be rede�ned as Y f2 = fF f = fdAf . Af and theorresponding generator are referred to as the anomalous U(1) at the �xed point f .If the anomaly polynomial fatorizes in the required way, the total anomalyA = R I(1)6 desends from (4.4) and is anelled by variation of the Green�Shwarzation [22℄,SGS = Z (� �2Y (0)3 + �Xf fAfÆ2(y � yf)dy5dy6!dB+ �4Y (0)3 + �3 Xf fAfÆ2(y � yf)dy5dy6!X(0)3 ) : (4.6)4.2 Bulk AnomaliesWe now hek the anellation of bulk anomalies in the model at hand. It is on-venient to split the gauge group index as I = (A; u), with A;B; : : : running overthe non-Abelian fators, i.e. SU(6), SU(3) and SO(8), while u; v; : : : = 1; : : : ; 5 labelthe U(1) fators. The anomaly polynomial for the six-dimensional ase is given inRef. [21℄. Here we �rst hek that the irreduible piees anel and then show thatthe remaining parts fatorize as in (4.5).There are three ontributions in the anomaly polynomial whih annot be re-duible:� The most severe onstraint arises from the quarti pure gravitational anomaly.The orresponding term in the anomaly polynomial is(244 + y � s) trR4 : (4.7)� 16 �



It is sensitive only to the number of gauginos y and hyperinos s, whih on-tribute with opposite signs due to their opposite hiralities, and the gravitinoand dilatino. The neessary ondition s� y = 244 is ful�lled in our model, asan be seen from Tables A.2 and A.3.� Quarti non-Abelian anomalies reeive ontributions from the gaugino in theadjoint representation whih need to be anelled by opposite-hirality hyper-inos. Denoting the number of hypermultiplets in representation ri of groupfator GA by siA, the quarti terms areTrF 4A �Xi siA trri F 4A ; A = SU(6) ; SU(3) ; SO(8) : (4.8)Here Tr and trri denote traes in the adjoint representation and in the repre-sentation ri, respetively. We an onvert all traes to the fundamental repre-sentation (denoted simply by tr), whih will introdue representation indies,and possibly terms � (trF 2A)2, and �nally leads to the following onstraints:SU(6) : 12 + 6s20 � s6 � s�6 = 0 ; (4.9a)SO(8) : 12s8s + 12s8 � s8 = 0 : (4.9b)SU(3) does not have a fourth-order Casimir invariant and hene trF 4SU(3) doesnot give a ondition at this point.� Finally, the (non-Abelian)3-Abelian anomaly has to vanish for reduibility.Again we onvert all traes to the fundamental representation, and have toonsider the U(1) harges of the hypermultiplets. We get two nontrivial on-ditions for eah U(1) (SO(8) has no third-order Casimir):SU(6) : X6i q6iu �X�6i q�6iu = 0 ; (4.10a)SU(3) : X3i q3iu �X�3i q�3iu = 0 : (4.10b)From the U(1) harges in Table A.3 we see that also these onstraints aresatis�ed.For the remaining anomaly polynomial we normalize the U(1)'s from Table 4.1by introduing t̂u = tu=p2jtuj. As shown in Appendix B, this leads to a fatorization� 17 �



of the bulk anomaly polynomial whih is of the form (4.5):i (2�)3 Ibulk8 = 116 "trR2 � 2 trF 2SU(6) � 2 trF 2SU(3) � trF 2SO(8) �Xu F 2u#� "trR2 �Xu;v �uvFuFv#= 116X4 Y4 : (4.11)
The symmetri oe�ient matrix �uv in the t̂u basis is

�uv = 0BBBBB�3 �1 0 �1 03 0 �1 02 0 p24 04
1CCCCCA : (4.12)We onlude that all bulk anomalies of our orbifold model are anelled by variationsof the terms � Y (0)3 in Eq. (4.6).4.3 Brane AnomaliesSine our model ontains one Wilson line in the SO(4) plane, the spetra at the �xedpoints only depend on n2 and not on n02, so that we have to evaluate two anomalypolynomials I0;16 in the following.At a �xed point, there are no gravitational anomalies, and so the only irreduibleontributions are non-Abelian ubi ones. Matter now omes in hiral multipletswhih an have both hiralities and thus ontribute with opposite signs. Furthermore,the anomaly indued by bulk �elds surviving the projetion is suppressed by a fatorof 14 with respet to the ontributions from loalized �elds. Taking this into aount,the ubi non-Abelian anomalies are of the form14 Xbulk r�s(+)rA � s(�)rA � trr F 3A �Xlo r s(�)rA trr F 3A ; (4.13)where the sum is over representations r of the loal group fator A, and the s(+)rAand s(�)rA denote the number of multiplets in that representation with positive andnegative hirality, respetively. We take the loalized �elds to be left-handed. UsingTables A.4 to A.9, one �nds that the model ontains no irreduible loal anomalies.Vetor multiplets do not ontribute to anomalies, as they are in a real representa-tion of the gauge group, and neither do the hypermultiplet remnants of 6D vetormultiplets, sine they ome in left- and right-handed form.� 18 �



For the loal reduible anomalies we �nd the following fatorization at n2 = 0; 1(f. Appendix B):i(2�)3I06 =� 148h �trR2�� 2�trF 2SU(5)�� 2�trF 2SU(3)�� �trF 2SO(8)�� 6Xu=1 F 2ui� �tr0 t̂0an�F 0 ; (4.14)i(2�)3I16 =� 148h �trR2�� 2�trF 2SU(2)�� 2�trF 2SU(4)�� 2�trF 2SU(2)0�� 2�trF 2SU(4)0�� 8Xv=1 F 2v i� �tr1 t̂1�F 1 : (4.15)The traes of the anomalous U(1)'s are the sums of the harges of the �elds presentat the given �xed point, and again the ontributions of surviving bulk �elds areweighted with a fator of 14 . The indies u; v in the formulae above run over a basisspanned by the anomalous U(1) and orthogonal generators, t̂f1 � t̂fan, t̂fan � t̂fu = 0,(u > 1). The normalization is hosen suh that all Abelian fators have level 1,namely t̂fu = tfu=p2jtfuj. The fatorization is of the form (4.5) suh that we onludethat all anomalies of our model are anelled by the loalized part of the Green�Shwarz term (4.6).Equations (4.14) and (4.15) reveal that due to the presene of one Wilson linethere are two distint anomalous U(1) fators t0an and t1an in the model, one foreah inequivalent �xed point. For the (unnormalized) anomalous generators fromTable 4.1 we �nd the following traes:tr0 t0an = 2jt0anj2 = 148 ; tr1 t1an = jt1anj2 = 80 : (4.16)The 4D anomalous U(1) follows from integrating the Green�Shwarz term over theinternal dimensions. As an be seen from (4.6), this amounts to summing the nor-malized loal U(1)'s. The four-dimensional anomaly polynomial again is of the form(4.5), so we an dedue the anomalous U(1) in four dimensions fromtr4d t(4d)anjt(4d)an j2 t(4d)an = 2�tr0 t0anjt0anj2 t0an + tr1 t1anjt1anj2 t1an� : (4.17)Here tr4d denotes the trae over the low-energy spetrum, i.e. zero modes of bulk�elds and loalized �elds, but exluding bulk �elds whih only survive at n2 = 0 orn2 = 1. Note that the fator of 14 inluded in the de�nitions of tr0 and tr1 ensuresthat zero mode ontributions are ounted only one. Thus we �nd the anomalousgenerator t̂(4d)an from [18℄ with tr t(4d)an = 12 jt(4d)an j2 = 88 ast(4d)an = 16 �2 t0an + t1an� : (4.18)
� 19 �



So all appearing anomalies have been anelled, either among themselves or bythe Green�Shwarz mehanism. We would like to emphasize that there is no freeparameter involved: the �elds and gauge groups are �xed, as well as the transforma-tion property of BMN , whih is the only available antisymmetri tensor �eld whihan anel anomalies. Hene the way in whih the di�erent setors ombine in theorret way appears highly non-trivial.5. Deoupling of Exoti StatesLet us now onsider the deoupling of states with exoti standard model quantumnumbers. These are the SU(5) 5-plets of bulk hypermultiplets whih originate fromthe T2=T4� and the untwisted setor, and the SU(2) doublets and singlets with non-zero hyperharge from the T1=T5� and T3�setors at the �xed points n2 = 1. Notethat no exoti matter is loated at the �xed points n2 = 0. All the exoti 5-pletsand most of the exoti matter at n2 = 1 an be deoupled by VEVs of just a fewstandard model singlet �elds. This deoupling takes plae loally at one of the �xedpoints, whih is a ruial di�erene ompared to previous disussions of deouplingin four dimensions [18, 19℄.The N = 2 hypermultiplets H = (HL; HR) onsist of pairs of N = 1 left-and right-hiral multiplets either from the T2 and T4 twisted setors, or from theuntwisted setor. The harge onjugate left-hiral multiplet HR has the oppositegauge quantum numbers as HL. Hene the SU(5) 5- and �5-hypermultiplets ontainthe exoti N = 1 left-hiral multiplets 5 and �5.The produts 5n35n3 and �5n3�5n3 , n3 = 0; 1; 2, are total gauge singlet N = 1hiral multiplets. They do arry, however, non-zero R-harges, R = (�1;�1; 0)(f. App. A.1). One easily veri�es (f. Tables A.1, A.4 and A.8) that the prod-ut �Y 0 S1S5 of standard model singlet �elds is a total gauge singlet with R-hargesR = (0; 0;�1). S1 and S5 are osillator states loalized at the �xed points n2 = 0.One therefore obtains the loal N = 1 superpotential termsW1 = �Y 0 S1S5 �5050 + �50�50 + 5151 + �51�51 + 5252 + �52�52� : (5.1)All terms are total gauge singlets with R-harges R = (�1;�1;�1). Hene, theH-momentum rules are satis�ed, as are the spae seletion rules (f. [18℄).From Eq. (5.1) we onlude that a large vauum expetation value 
 �Y 0 S1S5�removes 6 pairs of (5; �5)-plets4 from the low energy spetrum. Sine we have 3positive parities for eah value of n3 (f. Tables 3.2 and A.3), 6 5- or �5-plets remain.The mass terms are loalized at the �xed points n2 = 0. Bulk mass terms betweenhypermultiplets are forbidden by N = 2 supersymmetry.4When the distintion between T2�, T4� and untwisted setor does not matter, we olletivelydenote 5 and �5 by 5, and �5 and 5 by �5. � 20 �



5 �50 51 �5 50 �51 �52 52SU(3)� SU(2) (1; 2) (3; 1) (1; 2) (1; 2) (�3; 1) (1; 2) (�3; 1) (1; 2)U(1)B�L 0 �23 0 0 23 0 �13 �1MSSM Hu Hd d3 l3Table 5.1: The remaining 5's and �5's after the deoupling through W1. The SU(3)�SU(2) representations, B�L harges and MSSM identi�ation refer to the zero modes.Inspetion of Tables 3.2 and A.4 shows that from the T2-, T4- and untwistedsetors three 5's and �ve �5's remain: 5, �5, 50, �50, 51, �51, 52, �52. The furtherdeoupling is motivated by phenomenologial arguments and by simpliity. Theprojetion ondition at the �xed points n2 = 1 leave as 4D zero modes from eah5 and �5 either an SU(3) triplet or an SU(2) doublet. With respet to the U(1)B�Lgenerator identi�ed in [18℄,tB�L = �0; 1; 1; 0; 0;�23;�23 ;�23� �12 ; 12 ; 12 ;�12 ; 0; 0; 0; 0� ; (5.2)these massless states have the B � L harges listed in Table 5.1. This suggests todeouple �50 and 50, whih is possible with a loal oupling at the �xed point n2 = 0,W2 = Y0S1S5 50�50 ; (5.3)and a large VEV hY0S1S5i.From the remaining 5�plets, either 5 or 51 an be hosen as Higgs �eld Hu. Alarge top-quark oupling is obtained for 5 � Hu. 51 an be easily deoupled usingthe 6D gauge oupling with the hiral multiplet �5 of the SU(6) 35-plet,WH � p2g �X0550 + �X0�5�50 +X151�5+ �X1�515+X2552 + �X2�525� ; (5.4)with a large VEV h �X1i. The remaining �5�plets 52 and �51 then orrespond to a leptondoublet and the Higgs �eld Hd, respetively. The hosen vauum is similar to theB � L onserving vauum disussed in [18℄. It orresponds to partial gauge-Higgsuni�ation for Hu. If one hooses to deouple 5 instead of 51, one has no gauge-Higgsuni�ation. Alternatively, one an also keep 5 and �5 massless, orresponding to fullgauge-Higgs uni�ation.All other exoti states are loalized at n2 = 1. The SU(2) doublets Mi and someof the SU(2) singlets S�i an already be deoupled by ubi terms,W3 = �Z1M1M4 + Z0M2M3 ; (5.5)W4 = �Y 2 �S+2 S�1 + S+3 S�4 �+ Z2 �S+4 S�5 + S+4 S 0�5 �+ �Z2 �S�3 S+6 + S�3 S 0+6 � + U 1 �S+6 S�5 + S 0+6 S 0�5 � ; (5.6)
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with large VEVs h �Z1i, hZ0i, h �Y 2 i, hZ2i, hU 1i. The deoupling of the remaining exotisinglets with hyperharge, S+1 , S�2 , S+5 , S�6 , S�7 , S+7 requires higher dimensionaloperators (f. [18, 19℄), whih we will not disuss further in this paper.After the deoupling of altogether 8 pairs of (5; �5)�plets we are left with twoloalized families,(n2; n02) = (0; 0) : �5(1); 10(1); (n2; n02) = (0; 1) : �5(2); 10(2) ; (5.7)together with two further families and a pair of Higgs doublets in the bulk:�5(3) � 52; 10(3) � 10; �5(4) � �52; 10(4) � 10; Hu � 5; Hd � �51 : (5.8)At the �xed points n2 = 0 these hiralN = 1multiplets form a loal SU(5) GUT the-ory. The orresponding Yukawa ouplings will be disussed in the following setion.From the two bulk families, half of the states are projeted out by the projetion on-ditions at n2 = 1, and together they give rise to one family of zero modes (f. Eq. (3.9)and Tab. 5.1).Note that the deoupling terms (5.1), (5.3), (5.5) and (5.6) require VEVs of bothbulk and loalized �elds. The loalized singlets S1 and S5 orrespond to osillatormodes. As we will see in Setion 7, bulk and brane �eld bakgrounds are typiallyindued by loal Fayet�Iliopoulos (FI) terms. The non-vanishing VEVs of loalized�elds are often related to a resolution of the orbifold singularities [31, 32℄. However,a study of the blow-up of the onsidered orbifold to a smooth manifold and thegeometrial interpretation of the loalized VEVs is beyond the sope of this work.6. Yukawa CouplingsIn the previous setion we have obtained four quark-lepton families transforming as(�5(i) + 10(i)) under SU(5), where i is a generation index. Two families are loalizedat the branes (i = 1; 2) and two are bulk �elds. The orresponding superpotentialreadsWYuk = C(u)ij 10(i)10(j)Hu + C(d)ij �5(i)10(j)Hd ; (6.1)where the ouplings C(u)ij and C(u)ij are omposed of singlet �elds suh that the su-perpotential obeys the string seletion rules (f. [18℄).As an example, we onsider a vauum where in addition to the �elds�Y 0 ; S1; S5; Y0; X1; �Z1; Z0; �Y 2 ; Z2; �Z2; U 1 ; (6.2)used in Setion 5 for deoupling, only the singletsY 0 ; Y1; �Y1; S3; S4; S7 (6.3)� 22 �



aquire non-zero VEVs. After a straightforward alulation, we �nd that up to O(8)in the �elds, this vauum leads to ouplingsC(u)ij = 0BBB� a1 0 a2 a30 a1 a2 a3a2 a2 0 ga3 a3 g a4
1CCCA ; C(d)ij = 0BBB� 0 0 b1 b20 0 b1 b2b3 b3 b4 0b5 b5 b6 b25

1CCCA ; (6.4)with a1 = hY 0 �Y 0 S1S3i; a2 = h��Y 0 S1�2 S5i; a3 = hY 0 �Y 0 S1S3S5i; (6.5)a4 = hY 0 �Y 0 S1S3 (S5)2i; (6.6)b1 = hY0 �Y1 (S5)3 (S7)2i; b2 = hX1 �Y 2 U 1S7i; b3 = hX1 �Y1S3 (S5S7)2i; (6.7)b4 = h(X1)2 �Y1U 1S4S7i; b5 = hS5i; b6 = h(X1)2 Y1S1S7i : (6.8)Note that the hosen vauum yields non-vanishing Yukawa ouplings while the �-term is only generated at higher order.The Yukawa ouplings (6.1) are SU(5) invariant, hene we have obtained anSU(5) GUT model. Note that the SU(5) Yukawa interations are loal sine the�elds Si are loalized at the �xed points n2 = 0, i.e., we have a loal SU(5) GUTmodel. The only exeption is C(u)34 = C(u)43 = g, whih is a remnant of the SU(6)bulk gauge interation. It is a onsequene of the partial gauge-Higgs uni�ation ofthe present model, whih implies a phenomenologially attrative large top Yukawaoupling.We an now proeed and dedue the orresponding Yukawa ouplings in fourdimensions. As desribed in Setion 5, half of eah of the two bulk families is pro-jeted out by the additional Z2 orbifold ondition at the seond pair of �xed points(n2 = 1). The remaining �elds from the split bulk matter multiplets then form theontent of the third standard model family. The 4D Yukawa terms areWYuk = Y (u)ij uiqjHu + Y (d)ij diqjHd + Y (l)ij liejHd ; (6.9)where i; j = 1; 2; 3 is a family index, andY (u)ij = 0� a1 0 a30 a1 a3a2 a2 g 1A ; Y (d)ij = 0� 0 0 b20 0 b2b5 b5 b71A ; Y (l)ij = 0� 0 0 b10 0 b1b3 b3 b41A : (6.10)The Yukawa matries for down quarks and leptons are di�erent, although they orig-inate from SU(5) invariant ouplings of the 6D theory. This is due to the splitmultiplets whih form the third quark-lepton family. In this way the mostly unsu-essful SU(5) preditions for fermion masses are avoided. However, one also loses thesuessful predition mb(MGUT) ' m� (MGUT).� 23 �



�5� 10

�5� 10
2� �5, 2� 105, �5

exotis

exotisFigure 2: The orbifold T 2=Z2. The blue dots (on the left) label the �xed points withn2 = 0, the red ones (right) have n2 = 1. Two quark-lepton generations live at then2 = 0 �xed points, the third one originates from two SU(5) �5 and 10 multiplets inthe bulk, half of whih is projeted out due to the boundary onditions at n2 = 1.The obtained loal SU(5)GUTmodel is phenomenologially not viable. Not onlyare eletron and down-quark massless, whih may be orreted by higher powers ofsinglet VEVs, but the main problem are R-parity violating Yukawa ouplings leadingto rapid proton deay, whih we have not listed. However, the present model is justan example of a large lass of models [19℄, and it is likely that the phenomenology anbe improved. In the above disussion we have also ignored neutrino masses whihan be generated by a seesaw mehanism typially involving many singlet �elds [33℄.7. Supersymmetri VauaIn the previous setions we have disussed phenomenologially wanted vauum on-�gurations, i.e. expetations values of singlet �elds, whih deouple states with ex-oti quantum numbers and generate Yukawa ouplings for quarks and leptons. Theanalysis and lassi�ation of these vaua is a di�ult problem. In partiular, onehas to show that N = 1 supersymmetry remains unbroken in four dimensions. Forthe present model the onditions for vanishing F - and D-terms have been disussedin [18℄. A ruial role is played by the Fayet�Iliopoulos D-term of the anomalousU(1), whih drives �elds away from zero (f. [34℄).In this paper we are studying the ase where two of the ompat dimensionsare larger than the other four. Suh an ansatz assumes that the size of the largedimensions an be stabilized at a sale 1=MGUT � 1=Mstring. To prove this one� 24 �



has to �nd supersymmetri vaua of the e�etive 6D �eld theory whih inorporatesKaluza�Klein states with masses between MGUT and Mstring.As we saw in Setion 4, the 6D theory has di�erent Fayet-Iliopoulos terms at theinequivalent �xed points in the SO(4)-plane (f. (4.17)),LFI =Xf �f Æ2(y � yf)��Df3 + F f56� ; (7.1)where at f = (n2; n02),�(0;0) = �(0;1) = gM2P384�2 tr0 t0anjt0anj2 ; �(1;0) = �(1;1) = gM2P384�2 tr1 t1anjt1anj2 : (7.2)Integrating over the two ompat dimensions reprodues the 4D Fayet-Iliopoulosterm of [18℄.In the ase of �at spae, loalized FI terms have been studied in [22℄, and it hasbeen shown that they lead to an instability of the bulk �elds and to spontaneousloalization towards the �xed points. For our 6D supergravity theory this analysishas to be extended to inlude the gravitational, antisymmetri tensor and dilaton�elds. In general, one expets warped solutions, and it is not lear whether N = 1supersymmetry remains unbroken in four dimensions. These questions are beyondthe sope of the present paper and will be studied elsewhere.In the following we will only hek whether the VEVs seleted in Setions 5and 6 orrespond to a supersymmetri vauum for an isotropi orbifold, where theSO(4)-, SU(3)- and G2-planes all have string size, and the di�erent FI terms areapproximated by a single FI term in four dimensions. As disussed in [18℄, vanishingD-terms are guaranteed if all �elds are part of gauge invariant monomials exept onewhih arries negative net anomalous harge. These onditions are indeed satis�edfor the vauum hosen in Setions 5 and 6. Expliit examples of gauge invariantmonomials areX3X3; X4S1S5; X5X12Y 1 Y 4 S27 ; X5X8Y5Y6S4S7; X5X8X12Z1S3S7 ; (7.3)supplemented byX3(X5X7)2Y8 (7.4)whih has anomalous harge �22=3.Sine the superpotential of the standard model singlet �elds is unknown, weannot prove that the F -terms vanish for the hosen vauum.We expet, however, asimpli�ation in the analysis of the superpotential in 6D as ompared to 4D, sine thesuperpotential is generated loally at the �xed points where one has larger unbrokensymmetries than in the 4D e�etive theory.� 25 �



It will be very interesting to see whether a supersymmetri vauum of an isotropiorbifold an be obtained as limiting ase from an anisotropi orbifold. The di�er-ent FI terms at the orbifold �xed points may play a ruial role in generating theanisotropy, and it is intriguing that the mass sale of the FI terms is of the order ofthe grand uni�ation sale, MP=p384�2 �MGUT.8. OutlookWe have onstruted a 6D supergravity theory as intermediate step in the om-pati�ation of the heteroti string to the supersymmetri standard model in fourdimensions. The theory has N = 2 supersymmetry and one tensor multiplet, andit has a large number of gravitational, gauge and mixed anomalies, all of whih areanelled by the Green�Shwarz mehanism. The theory is ompati�ed from sixto four dimensions on a Z2 orbifold with two inequivalent pairs of �xed points withunbroken SU(5) and SU(2)� SU(4) symmetry, respetively.In addition to the anellation of anomalies, we have been partiularly interestedin the deoupling of exoti states and the emergene of an intermediate SU(5) GUT.Compared to the 4D theory the deoupling is more transparent due to the largersymmetries, N = 2 supersymmetry in the bulk and larger gauge symmetries at theorbifold �xed points. It is remarkable that most exoti states an be deoupled withVEVs of a few standard model singlet �elds at the orbifold �xed points.A very interesting feature of the theory is the emergene of an intermediate SU(5)GUT model. Two quark-lepton families are loalized at the SU(5) branes and twofurther families, together with a pair of 5��5 plets are bulk �elds. SU(5) is broken bythe presene of the SU(2)�SU(4) branes. This generates a pair of Higgs doublets assplit multiplets. Split multiplets of the two bulk quark-lepton families also form thethird quark-lepton family, with the standard model quantum numbers of one �5-pletand one 10-plet. Due to the presene of the split multiplets, the Yukawa ouplings ofthe 4D theory break SU(5) expliitly, thus avoiding unsuessful SU(5) preditionsof ordinary 4D GUTs.The 6D theory originally has a large number of 5 � �5 pairs, most of whih aredeoupled. As disussed in Setion 5, the identi�ation of the Higgs �elds depends onthe hoie of the vauum on�guration, and one an have no, partial or full gauge-Higgs uni�ation. Sine there is no lear distintion between matter and Higgs�elds, one generially expets large R-parity breaking Yukawa ouplings leading tofast proton deay, as it is indeed the ase for the vauum hosen in Setions 5 and 6.However, sine the onsidered model is just one example of a large lass of similarmodels [19℄, it is likely that the phenomenology an be improved.On the theoretial side, the main open problems onerns the stabilization ofextra dimensions at a sale 1=MGUT � 1=Mstring and the existene of orresponding� 26 �



vaua with unbroken N = 1 supersymmetry. We hope to address these questionselsewhere.AknowlegmentsWe would like to thank S. Groot Nibbelink, A. Hebeker, J. Louis and M. Traplettifor valuable disussions.
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A. StatesA.1 R-ChargesThe R-harges of a hiral multiplet are de�ned as Ri = qish� ( eN � eN�)i, where qish isthe shifted H-momentum of the salar and the vetors eN and eN� denote osillatornumbers of left-moving �elds in zi and �zi diretions, respetively.Setor State Exitation R1 R2 R3U U 1 0 �1 0U U2; U3; U4 �1 0 0T1 All �16 �13 �12T �1 S1; S2; S7 eN� = (1; 0; 0) 56 �13 �12T �1 S4; S6 eN� = (2; 0; 0) 116 �13 �12T �1 S3; S5 eN� = (0; 1; 0) �16 23 �12T2 HL �13 �23 0T �2 Y �n3 eN = (0; 1; 0) �13 �53 0T �2 Y 0�n3 eN� = (1; 0; 0) 23 �23 0T3 All �12 0 �12T4 HR �23 �13 0T �4 Y �n3 eN� = (0; 1; 0) �23 23 0T �4 Y 0�n3 eN = (1; 0; 0) �53 �13 0Table A.1: R-harges and osillator exitations of left-handed states. U denotes theuntwisted setor and a star represents non-vanishing osillator numbers.
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A.2 Bulk StatesHere we list the states of the e�etive 6D bulk theory. They are obtained from theheteroti string by an Z3 orbifold projetion with one Wilson line, as desribed inSetion 2. Multiplet Representation t1 t2 t3 t4 t5 #Graviton 1Tensor 1Hyper 2Vetor (35; 1; 1) 35(1; 8; 1) 8(1; 1; 28) 285� (1; 1; 1) 5Hyper (20; 1; 1) �12 12 0 0 0 20(1; 1; 8) 0 0 0 �1 0 8(1; 1; 8s) 0 0 0 12 32 8(1; 1; 8) 0 0 0 12 �32 8(1; 1; 1) 12 12 �3 0 0 1(1; 1; 1) �1 �1 0 0 0 1(1; 1; 1) 1 �1 0 0 0 1(1; 1; 1) 12 12 3 0 0 1Table A.2: The massless spetrum of the 6D theory arising from the untwisted setor.There are 76 vetor multiplets and 50 hypermultiplets. The seond olumn refers tothe representations with respet to SU(6)� SU(3)� SO(8), t1�t5 are the harges withrespet to the U(1) fators of the bulk gauge group. The �rst three multiplets arisefrom the 10D gravitational setor and are omplete gauge singlets.
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Setor Representation n3 t1 t2 t3 t4 t5 #T2/T4 3� (6; 1; 1) 0 0 �13 1 23 0 183� (�6; 1; 1) 0 0 �13 �1 23 0 183� (1; 1; 1) 0 �1 �13 0 23 0 33� (1; 1; 1) 0 1 �13 0 23 0 3T2/T4 3� (1; 3; 1) 0 0 23 0 �13 1 93� (1; �3; 1) 0 0 23 0 �13 �1 93� (1; 1; 8) 0 0 23 0 �13 0 24T2/T4� 6� (1; 1; 1) 0 0 23 0 23 0 6T2/T4 3� (6; 1; 1) 1 0 �13 �1 �13 �1 183� (�6; 1; 1) 1 12 16 0 �13 �1 183� (1; 1; 1) 1 0 23 �2 �13 �1 33� (1; 1; 1) 1 12 �56 1 �113 �1 3T2/T4 3� (1; 3; 1) 1 �12 16 1 23 0 93� (1; �3; 1) 1 �12 16 1 �13 1 93� (1; 1; 8s) 1 �12 16 1 16 12 24T2/T4� 6� (1; 1; 1) 1 �12 16 1 �13 �1 6T2/T4 3� (6; 1; 1) 2 12 16 0 �13 1 183� (�6; 1; 1) 2 0 �13 1 �13 1 183� (1; 1; 1) 2 12 �56 �1 �13 1 33� (1; 1; 1) 2 0 23 2 �13 1 3T2/T4 3� (1; 3; 1) 2 �12 16 �1 �13 �1 93� (1; �3; 1) 2 �12 16 �1 23 0 93� (1; 1; 8) 2 �12 16 �1 16 �12 24T2/T4� 6� (1; 1; 1) 2 �12 16 �1 �13 1 6Table A.3: The massless spetrum of the 6D theory arising from the T2 and T4 setors.There are 270 hypermultiplets. The states are loalised in the G2 and SU(3) planes,whih ontain three �xed points eah. The equivalent G2 �xed points yield the multi-pliity fator three, loalization in the SU(3) plane is given by n3. T2/T4* states havenon-vanishing osillator numbers.
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A.3 States at the Fixed PointsHere we list the states at the �xed points n2 = 0; 1. These involve bulk states fromthe T2=T4 and the untwisted setor (see Tables 3.2 � 3.5) and loalized states fromthe setors T1=T5 and T3. Xi, �Xi, Yi, �Yi, Zi, �Zi and Ui are bulk �elds; S1 � S8 areloalized �elds.Bulk n2 = 0 n3 HL HR t06 t1 t2 t3 t4 t5(6; 1; 1) (5; 1; 1) 0 �;+;� +;�;+ �1 0 �13 1 23 0(1; 1; 1) 0 +;�;+ �;+;� 5 0 �13 1 23 0 X0(�6; 1; 1) (�5; 1; 1) 0 �;+;� +;�;+ 1 0 �13 �1 23 0(1; 1; 1) 0 +;�;+ �;+;� �5 0 �13 �1 23 0 �X0(1; 1; 1) (1; 1; 1) 0 +;�;+ �;+;� 0 1 �13 0 23 0 Y0(1; 1; 1) (1; 1; 1) 0 +;�;+ �;+;� 0 �1 �13 0 23 0 �Y0(1;3; 1) (1;3; 1) 0 �;+;� +;�;+ 0 0 23 0 �13 1(1;�3; 1) (1;�3; 1) 0 �;+;� +;�;+ 0 0 23 0 �13 �1(1; 1;8) (1; 1;8) 0 �;+;� +;�;+ 0 0 23 0 �13 0(6; 1; 1) (5; 1; 1) 1 +;�;+ �;+;� �1 0 �13 �1 �13 �1(1; 1; 1) 1 �;+;� +;�;+ 5 0 �13 �1 �13 �1 X1(�6; 1; 1) (�5; 1; 1) 1 +;�;+ �;+;� 1 12 16 0 �13 �1(1; 1; 1) 1 �;+;� +;�;+ �5 12 16 0 �13 �1 �X1(1; 1; 1) (1; 1; 1) 1 +;�;+ �;+;� 0 0 23 �2 �13 �1 Y1(1; 1; 1) (1; 1; 1) 1 +;�;+ �;+;� 0 12 �56 1 �13 �1 �Y1(1;3; 1) (1;3; 1) 1 �;+;� +;�;+ 0 �12 16 1 23 0(1;�3; 1) (1;�3; 1) 1 �;+;� +;�;+ 0 �12 16 1 �13 1(1; 1;8s) (1; 1;8s) 1 +;�;+ �;+;� 0 �12 16 1 16 12(6; 1; 1) (5; 1; 1) 2 �;+;� +;�;+ �1 12 16 0 �13 1(1; 1; 1) 2 +;�;+ �;+;� 5 12 16 0 �13 1 X2(�6; 1; 1) (�5; 1; 1) 2 +;�;+ �;+;� 1 0 �13 1 �13 1(1; 1; 1) 2 �;+;� +;�;+ �5 0 �13 1 �13 1 �X2(1; 1; 1) (1; 1; 1) 2 +;�;+ �;+;� 0 0 23 2 �13 1 Y2(1; 1; 1) (1; 1; 1) 2 �;+;� +;�;+ 0 12 �56 �1 �13 1 �Y2Table A.4 � ontinued on next page
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Table A.4 � ontinued from previous pageBulk n2 = 0 n3 HL HR t06 t1 t2 t3 t4 t5(1;3; 1) (1;3; 1) 2 +;�;+ �;+;� 0 �12 16 �1 �13 �1(1;�3; 1) (1;�3; 1) 2 +;�;+ �;+;� 0 �12 16 �1 23 0(1; 1;8) (1; 1;8) 2 �;+;� +;�;+ 0 �12 16 �1 16 �12Table A.4: Loal deomposition of ground states from the T2=T4 setor at n2 = 0.The three parities for hiral hypermultiplet omponents HL, HR orrespond to toq = 0; 12 ; 1.
Bulk n2 = 1 n3 HL HR t16 t7 t8 t1 t2 t3 t4 t5(6; 1; 1) (1;4; 1; 1) 0 �;+;� +;�;+ 5 0 0 0 �13 1 23 0(2; 1; 1; 1) 0 +;�;+ �;+;� �10 0 0 0 �13 1 23 0(�6; 1; 1) (1;�4; 1; 1) 0 �;+;� +;�;+ �5 0 0 0 �13 �1 23 0(2; 1; 1; 1) 0 +;�;+ �;+;� 10 0 0 0 �13 �1 23 0(1; 1; 1) (1; 1; 1; 1) 0 +;�;+ �;+;� 0 0 0 1 �13 0 23 0 Y0(1; 1; 1) (1; 1; 1; 1) 0 +;�;+ �;+;� 0 0 0 �1 �13 0 23 0 �Y0(1;3; 1) (1; 1;2; 1) 0 +;�;+ �;+;� 0 1 0 0 23 0 �13 1(1; 1; 1; 1) 0 �;+;� +;�;+ 0 �2 0 0 23 0 �13 1 Z0(1;�3; 1) (1; 1;2; 1) 0 �;+;� +;�;+ 0 �1 0 0 23 0 �13 �1(1; 1; 1; 1) 0 +;�;+ �;+;� 0 2 0 0 23 0 �13 �1 �Z0(1; 1;8) (1; 1; 1;4) 0 +;�;+ �;+;� 0 0 �1 0 23 0 �13 0(1; 1; 1;�4) 0 �;+;� +;�;+ 0 0 1 0 23 0 �13 0(6; 1; 1) (1;4; 1; 1) 1 �;+;� +;�;+ 5 0 0 0 �13 �1 �13 �1(2; 1; 1; 1) 1 +;�;+ �;+;� �10 0 0 0 �13 �1 �13 �1(�6; 1; 1) (1;�4; 1; 1) 1 �;+;� +;�;+ �5 0 0 12 16 0 �13 �1(2; 1; 1; 1) 1 +;�;+ �;+;� 10 0 0 12 16 0 �13 �1(1; 1; 1) (1; 1; 1; 1) 1 +;�;+ �;+;� 0 0 0 0 23 �2 �13 �1 Y1(1; 1; 1) (1; 1; 1; 1) 1 +;�;+ �;+;� 0 0 0 12 �56 1 �13 �1 �Y1(1;3; 1) (1; 1;2; 1) 1 �;+;� +;�;+ 0 1 0 �12 16 1 23 0(1; 1; 1; 1) 1 +;�;+ �;+;� 0 �2 0 �12 16 1 23 0 Z1Table A.5 � ontinued on next page� 32 �



Table A.5 � ontinued from previous pageBulk n2 = 1 n3 HL HR t16 t7 t8 t1 t2 t3 t4 t5(1;�3; 1) (1; 1;2; 1) 1 +;�;+ �;+;� 0 �1 0 �12 16 1 �13 1(1; 1; 1; 1) 1 �;+;� +;�;+ 0 2 0 �12 16 1 �13 1 �Z1(1; 1;8s) (1; 1; 1;4) 1 +;�;+ �;+;� 0 0 1 �12 16 1 16 12(1; 1; 1;�4) 1 �;+;� +;�;+ 0 0 �1 �12 16 1 16 12(6; 1; 1) (1;4; 1; 1) 2 +;�;+ �;+;� 5 0 0 12 16 0 �13 1(2; 1; 1; 1) 2 �;+;� +;�;+ �10 0 0 12 16 0 �13 1(�6; 1; 1) (1;�4; 1; 1) 2 +;�;+ �;+;� �5 0 0 0 �13 1 �13 1(2; 1; 1; 1) 2 �;+;� +;�;+ 10 0 0 0 �13 1 �13 1(1; 1; 1) (1; 1; 1; 1) 2 �;+;� +;�;+ 0 0 0 0 23 2 �13 1 Y2(1; 1; 1) (1; 1; 1; 1) 2 �;+;� +;�;+ 0 0 0 12 �56 �1 �13 1 �Y2(1;3; 1) (1; 1;2; 1) 2 �;+;� +;�;+ 0 1 0 �12 16 �1 �13 �1(1; 1; 1; 1) 2 +;�;+ �;+;� 0 �2 0 �12 16 �1 �13 �1 Z2(1;�3; 1) (1; 1;2; 1) 2 �;+;� +;�;+ 0 �1 0 �12 16 �1 23 0(1; 1; 1; 1) 2 +;�;+ �;+;� 0 2 0 �12 16 �1 23 0 �Z2(1; 1;8) (1; 1; 1;6) 2 �;+;� +;�;+ 0 0 0 �12 16 �1 16 �12(1; 1; 1; 1) 2 +;�;+ �;+;� 0 0 2 �12 16 �1 16 �12 Z 02(1; 1; 1; 1) 2 +;�;+ �;+;� 0 0 �2 �12 16 �1 16 �12 �Z 02Table A.5: Loal deomposition of states from the T2=T4 setor at n2 = 1. The threeparities for hiral hypermultiplet omponents HL, HR orrespond to to q = 0; 12 ; 1.
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Bulk n2 = 0 n3 HL HR t06 t1 t2 t3 t4 t5(1; 1; 1) (1; 1; 1) 0 �;+;� +;�;+ 0 0 23 0 23 0 Y �0(1; 1; 1) (1; 1; 1) 0 +;�;+ �;+;� 0 0 23 0 23 0 Y 0�0(1; 1; 1) (1; 1; 1) 1 �;+;� +;�;+ 0 �12 16 1 �13 �1 Y �1(1; 1; 1) (1; 1; 1) 1 +;�;+ �;+;� 0 �12 16 1 �13 �1 Y 0�1(1; 1; 1) (1; 1; 1) 2 +;�;+ �;+;� 0 �12 16 -1 �13 1 Y �2(1; 1; 1) (1; 1; 1) 2 �;+;� +;�;+ 0 �12 16 -1 �13 1 Y 0�2Table A.6: Loal deomposition of exited states from the T2=T �4 setor at n2 = 0.The three parities for hiral hypermultiplet omponents HL, HR orrespond to toq = 0; 12 ; 1. The singlets Y �n3 have osillator numbers eN = (0; 1; 0), the Y 0�n3 haveeN� = (1; 0; 0).Bulk n2 = 1 n3 HL HR t16 t7 t8 t1 t2 t3 t4 t5(1; 1; 1) (1; 1; 1) 0 +;�;+ �;+;� 0 0 0 0 23 0 23 0 Y �0(1; 1; 1) (1; 1; 1) 0 �;+;� +;�;+ 0 0 0 0 23 0 23 0 Y 0�0(1; 1; 1) (1; 1; 1) 1 +;�;+ �;+;� 0 0 0 �12 16 1 �13 �1 Y �1(1; 1; 1) (1; 1; 1) 1 �;+;� +;�;+ 0 0 0 �12 16 1 �13 �1 Y 0�1(1; 1; 1) (1; 1; 1) 2 �;+;� +;�;+ 0 0 0 �12 16 -1 �13 1 Y �2(1; 1; 1) (1; 1; 1) 2 +;�;+ �;+;� 0 0 0 �12 16 -1 �13 1 Y 0�2Table A.7: Loal deomposition of exited states from the T2=T �4 setor at n2 = 1.The three parities for hiral hypermultiplet omponents HL, HR orrespond to toq = 0; 12 ; 1. The singlets Y �n3 have osillator numbers eN = (0; 1; 0), the Y 0�n3 haveeN� = (1; 0; 0).
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Setor n2 = 0 n3 q t06 t1 t2 t3 t4 t5T1/T5 (10; 1; 1) 0 � 12 0 �16 �12 13 0(�5; 1; 1) 0 � �32 0 �16 32 13 0(1; 1; 1) 0 � 52 0 �16 �52 13 0T1/T5 (1; 1;8) 1 � 52 0 �16 �12 �16 �12(1;3; 1) 2 � 52 0 �16 32 13 0(1; 1; 1) 2 � 52 0 �16 32 �23 �1 S8T1/T5* (1; 1; 1) 0 � 52 �12 �23 12 13 0 S1(1; 1; 1) 0 � �52 12 �23 �12 13 0 S22� (1; 1; 1) 0 � 52 12 13 12 13 0 S3;42� (1; 1; 1) 0 � �52 �12 13 �12 13 0 S5;6(1;�3; 1) 1 � 52 0 �16 �12 13 0(1; 1; 1) 1 � 52 0 �16 �12 �23 1 S7T3 (1;3; 1) � �13 52 �12 0 12 0 1(1;�3; 1) � �13 �52 12 0 �12 0 �1Table A.8: Loal states from the setors T1/T5 and T3 at n2 = 0. T1/T5* denotesosillator states. S1; S2; S7 and (1;�3; 1) from that setor have osillator numberseN� = (1; 0; 0), S3 and S5 have eN� = (0; 1; 0), S4 and S6 have eN� = (2; 0; 0).
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Setor n2 = 1 n3 q t16 t7 t8 t1 t2 t3 t4 t5T1/T5 (2; 1; 1; 1) 0 � 0 1 �1 �12 �16 0 � 512 14 M1(1; 1; 1; 1) 0 � 10 1 �1 12 �16 �1 � 512 14 S�1(1; 1; 1; 1) 0 � �10 1 �1 12 �16 1 � 512 14 S+1(2; 1; 1; 1) 1 � 0 �1 1 0 13 �1 112 34 M2(1; 1; 1; 1) 1 � 10 �1 1 12 �16 1 112 34 S�2(1; 1; 1; 1) 1 � �10 �1 1 0 �23 0 112 34 S+2(2; 1; 1; 1) 2 � 0 �1 �1 0 13 1 � 512 14 M3(2; 1; 1; 1) 2 � 0 1 1 0 13 1 112 34 M4(1; 1; 1; 1) 2 � 10 �1 �1 0 �23 0 � 512 14 S�3(1; 1; 1; 1) 2 � �10 �1 �1 12 �16 �1 � 512 14 S+3(1; 1; 1; 1) 2 � 10 1 1 0 �23 0 112 34 S�4(1; 1; 1; 1) 2 � �10 1 1 12 �16 �1 112 34 S+4T3 (1; 1; 1; 1) � 0 10 1 �1 0 0 2 14 14 S�5(1; 1; 1; 1) � 1 10 1 �1 0 0 2 14 14 S0�5(1; 1; 1; 1) � 13 �10 �1 1 0 0 �2 �14 �14 S+5(1; 1; 1; 1) � 13 10 1 �1 �12 �12 �1 14 14 S�6(1; 1; 1; 1) � 0 �10 �1 1 12 12 1 �14 �14 S+6(1; 1; 1; 1) � 1 �10 �1 1 12 12 1 �14 �14 S0+6(1; 1; 1; 1) � �13 10 1 �1 12 12 �1 14 14 S�7(1; 1; 1; 1) � �13 �10 �1 1 �12 �12 1 �14 �14 S+7Table A.9: Loal states from the setors T1/T5 and T3 at n2 = 1.
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B. Anomaly PolynomialsIn Setion 4, we heked that the irreduible terms in the anomaly polynomial anel.The remaining piee expliitly readsi (2�)3 Ibulk8 = 116 (�trR2�2 � 16 �trR2� XA mA trF 2A +Xu;v muvFuFv!+4XA;u;v dAuv �trF 2A�FuFv + 23 Xu;v;w;xhuvwxFuFvFwFx) ; (B.1)with oe�ientsmA =Xr srAvrA � v(adj)A ; muv = tr6 (tutv) =Xi qiuqiv ; (B.2)dAuv =Xr vrA srAXk=1 qkuqkv ; huvwx = tr6 (tutvtwtx) =Xi qiuqivqiwqix : (B.3)All sums are over hypermultiplets only; the vetor multiplets only appear in the �nalterm of mA. In the sums, i runs over all states, r over all representations of groupGA and k over all multiplets in representation r. qiu and qku are the harges of statesand multiplets under U(1)u, and tr6 denotes the trae of the U(1) generators, i.e. thesum over the harges of all �elds. The integers srA are the multipliities of statestransforming in that representation, and vrA is its quadrati index. Note that terms� (trF 2A) (trF 2B) for two di�erent non-Abelian fators A;B add up to zero in ourmodel. By expliit evaluation of these de�nitions in the basis t̂u = tu=p2jtuj we �ndthe resultsmA = 6 (2; 2; 1) ; muv = 6 (�uv + Æuv) ; (B.4)where �uv is given in Eq. (4.12). FurthermoredSU(6)uv = dSU(3)uv = 2dSO(8) uv = 12 �uv ; (B.5)huvwx = 32j�(uvwx)j (Æuv�wx + perm.) ; (B.6)where j�(uvwx)j ounts all possible distint permutations of indies u; v; w; x (andonly these are inluded in the braket).Similarly, we alulate the loal anomaly polynomial at a �xed point f :i(2�)3If6 = � 148Xu mfu Fu trR2 + 12XA;u dfAu Fu trF 2A + 16Xuvw hfuvw FuFvFw:(B.7)
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Here the oe�ients are de�ned as follows:mfu = trf �tfu� =Xi bi qiu ; dfAu =Xr vrA srAXk=1 bk qku ; (B.8)hfuvw = trf �tfutfv tfw� =Xi bi qiuqivqiw (B.9)All sums refer to the loal spetrum at �xed point f , evaluated on left-handed �elds.The loal trae trf ontains an additional fator bi, whih is either one for loalizedstates or 1/4 for states whih are indued by bulk �elds; the same holds for bk. Weonveniently evaluate these expressions in a basis whih onsists of t̂fan = tfan=p2jtfanj,with tfan from Table 4.1, and orthogonal generators, t̂f1 � t̂fan, t̂fan � t̂fu = 0 (u > 1).Then the only non-vanishing terms aretr0 t̂0an = 2p37 ; tr1 t̂1an = 2p10 (B.10)and d0SU(5) an = d0SU(3) an = 2d0SO(8) an = 2 tr0 t̂0an �t̂0u�2 = 23 tr0 �t̂0an�3 = 112 tr0 t̂0an ;(B.11)d1SU(2) an = d1SU(4) an = d1SU(2)0 an = d1SU(4)0 an= 2 tr0 t̂1an �t̂1u�2 = 23 tr0 �t̂1an�3 = 112 tr0 t̂1an : (B.12)This shows expliitly that both anomaly polynomials fatorize in the requiredway, Eq. (4.5), i.e. the Green-Shwarz universality relations with levels �SO(N) = 1and �SU(N) = 2 are ful�lled,148 trf t̂fan = 16 trf �t̂fan�3 = 12 trf t̂fan �t̂fu�2 = 12�AdfA an : (B.13)
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