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Lo
al SU(5) Uni�
ation from theHeteroti
 String
W. Bu
hmüllera, C. Lüdelingb, J. S
hmidtaa Deuts
hes Elektronen-Syn
hrotron DESY, Hamburg, Germanyb Institut für Theoretis
he Physik, Universität Heidelberg, Heidelberg, GermanyAbstra
t: We 
onstru
t a 6D supergravity theory whi
h emerges as intermediatestep in the 
ompa
ti�
ation of the heteroti
 string to the supersymmetri
 standardmodel in four dimensions. The theory has N = 2 supersymmetry and a gravitationalse
tor with one tensor and two hypermultiplets in addition to the supergravity mul-tiplet. Compa
ti�
ation to four dimensions o

urs on a T 2=Z2 orbifold whi
h hastwo inequivalent pairs of �xed points with unbroken SU(5) and SU(2)� SU(4) sym-metry, respe
tively. All gauge, gravitational and mixed anomalies are 
an
elled bythe Green-S
hwarz me
hanism. The model has partial 6D gauge-Higgs uni�
ation.Two quark-lepton generations are lo
alized at the SU(5) branes, the third family is
omposed of split bulk hypermultiplets. The top Yukawa 
oupling is given by the6D gauge 
oupling, all other Yukawa 
ouplings are generated by higher-dimensionaloperators at the SU(5) branes. The presen
e of the SU(2) � SU(4) brane breaksSU(5) and generates split gauge and Higgs multiplets with N = 1 supersymmetryin four dimensions. The third generation is obtained from two split �5-plets and twosplit 10-plets, whi
h together have the quantum numbers of one �5-plet and one 10-plet. This avoids unsu

essful SU(5) predi
tions for Yukawa 
ouplings of ordinary4D SU(5) grand uni�ed theories.Keywords: Superstrings and Heteroti
 Strings, Superstring Va
ua.
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1. Introdu
tionThe symmetries and the parti
le 
ontent of the standard model point towards granduni�ed theories (GUTs). The simplest uni�ed gauge group is SU(5) with three �5- and10-plets for the three quark-lepton generations of the standard model [1℄. Higgs dou-blets 
an be obtained from further 5- and �5-plets, with their heavy 
olor triplet part-ners de
oupled from the low energy theory. In supersymmetri
 GUTs the hierar
hy� 1 �



between the ele
troweak s
ale and the GUT s
ale is stabilized and, for the minimal
ase of two Higgs doublets, gauge 
ouplings unify at the s
aleMGUT ' 2�1016 GeV.Neutrino masses and mixings 
an be des
ribed by adding a non-renormalizable,lepton-number violating dimension-5 operator 
omposed of lepton and Higgs dou-blets, with 
oupling strength 1=�. The observed smallness of the neutrino massesthen requires � = O(MGUT), hinting at a B�L breaking s
ale of the order ofMGUT.Embedding SU(5) and U(1)B�L in SO(10) [2, 3℄, and 
ontinuing the route of uni�-
ation via ex
eptional groups, one arrives at E8, whi
h is beautifully realized in theheteroti
 string [4, 5℄.An elegant s
heme leading to 
hiral gauge theories in four dimensions is the
ompa
ti�
ation on orbifolds [6�10℄. Re
ently, 
onsiderable progress has been madein deriving uni�ed �eld theories from orbifold 
ompa
ti�
ations of the heteroti
 string[11�16℄, and it has been demonstrated that the idea of lo
al grand uni�
ation 
anserve as a guide to �nd string va
ua 
orresponding to the supersymmetri
 standardmodel [17�19℄. In this paper we study in some detail an orbifold GUT limit of themodel [17℄, where two of the 
ompa
t dimensions are larger than the other four. Inthis way we hope to obtain a better understanding of some open questions of 
urrentorbifold 
ompa
ti�
ations: the large va
uum degenera
y, the de
oupling of unwantedmassless states and the stabilization of moduli �elds.The model [17℄ is based on a Z6�II twist whi
h is the produ
t of a Z3 twistand a Z2 twist. In a �rst step, des
ribed in Se
tion 2, we 
ompa
tify the E8 � E8heteroti
 string on the orbifold T 4=Z3, where T 4 is a 4-torus with the Lie algebralatti
e G2�SU(3). The six-dimensional (6D) theory has N = 2 supersymmetry andunbroken gauge groupG6 = SU(6)� U(1)3 � �SU(3)� SO(8)� U(1)2� ; (1.1)where the bra
kets denote the subgroup of the se
ond E8. The gravitational se
-tor 
ontains one tensor multiplet whose (anti-)self-dual part belongs to the N = 2(dilaton) supergravity multiplet.Compa
ti�
ation from six to four dimensions on the orbifold T 2=Z2 with SO(4)Lie latti
e leads to additional �xed points and twisted se
tors. The massless spe
trumin four dimensions agrees with the results obtained in [17,18℄. In addition to the zeromodes, the 6D �eld theory 
ontains the Kaluza�Klein ex
itations of the large SO(4)-plane and further non-Abelian singlets. As des
ribed in Se
tion 3, the proje
tion
onditions for physi
al massless states of the model [17℄ now be
ome Z2 proje
tion
onditions for the 6D bulk �elds at the orbifold �xed points in the SO(4)�plane.Given the Z2 parities of the 6D bulk �elds, one 
an perform a highly non-trivial
onsisten
y 
he
k of the 6D �eld theory, the 
an
ellation of all gauge, gravitationaland mixed anomalies by the Green-S
hwarz me
hanism [20℄. In Se
tion 4 it is ex-pli
itly shown that all irredu
ible anomalies vanish and that the redu
ible ones areindeed 
an
elled by a unique Green�S
hwarz term in the e�e
tive a
tion [21,22℄. The� 2 �



6D theory has di�erent lo
al anomalous U(1) symmetries at the di�erent �xed pointsin the SO(4) plane. Their sum yields the anomalous U(1) of the 4D theory [18℄.The 6D theory has a GUT gauge group and N = 2 supersymmetry, and therefore
onsiderably fewer multiplets than the 4D theory. This simpli�es the de
oupling ofunwanted exoti
 states as we show in Se
tion 5. For a va
uum with spontaneouslybroken B�L symmetry we then obtain a lo
al SU(5) GUT model with two lo
alizedand two bulk quark-lepton families. The Higgs �elds are identi�ed as bulk �eldswith partial gauge-Higgs uni�
ation. The SU(5) invariant Yukawa 
ouplings and theSU(5) breaking by the Z2 orbifolding are dis
ussed in Se
tion 6. Open problems
on
erning supersymmetri
 va
ua and the stabilization of the 
ompa
t dimensionsare outlined in Se
tion 7.Finally, in Se
tion 8, we 
on
lude with a brief outlook on open questions andfurther 
hallenges for realisti
 
ompa
ti�
ations of the heteroti
 string.2. 6D Supergravity from the Heteroti
 String2.1 The Heteroti
 String on T 6=Z6�IIWe 
onsider the propagation of the E8 � E8 heteroti
 string in a spa
e-timeba
kground whi
h is the produ
t of four-dimensional Minkowski spa
e and a six-dimensional orbifold [23℄. The 
ompa
t spa
e is obtained by dividing the torusT 6 = R6=2�� by the dis
rete symmetry Z6�II = Z3 � Z2 of the Lie algebra latti
eSO(4)� SU(3)�G2. The four 
omplex 
oordinates zi, i = 1 : : : 4, 
omprise the twotransverse dimensions of Minkowski spa
e (i = 4) and the six 
ompa
t dimensions(i = 1 : : : 3).The Z6�II orbifold with the G2 � SU(3) � SO(4) latti
e is 
hara
terized by thetwist ve
torv6 = ��16 ;�13 ; 12; 0� ; (2.1)whi
h is the sum of Z3 and Z2 twist ve
tors, v6 = �v3 + v2, wherev3 = 2v6 ; v2 = 3v6 : (2.2)Note that the Z3 twist leaves the SO(4) plane invariant whereas the Z2 twist doesnot a�e
t the SU(3) plane. Both twists a
t non-trivially on the G2 plane.In the light-
one gauge the heteroti
 string 
an be des
ribed by 4 
omplex 
oor-dinates Zi(�) (i = 1 : : : 4), 4 bosonized right-moving Neveu-S
hwarz-Ramond (NSR)fermions H i(��) (i = 1 : : : 4) and 16 left-moving bosons XI(�+) (I = 1 : : : 16), where�� = � � �. The �elds XI are 
ompa
ti�ed on the 16�dimensional E8 � E8 torus.Correspondingly, the momenta of the right-moving �elds H i lie on the weight latti
eof the little group SO(8). The quantum numbers of a string state are thus given� 3 �



by the E8 � E8 root ve
tor pI for the gauge and the SO(8) weight ve
tor qi for theLorentz quantum numbers.The orbifold twist is embedded into the gauge group by the Z6 twist ve
torV6 = ��12 ;�12 ; 13 ; 05� 176 ;��52�6 ; 52 ;! : (2.3)In addition, there are two Wilson lines asso
iated with the two subtwists: a Z3Wilson line W3 in the SU(3) plane and a Z2 Wilson line W2 in the SO(4) plane,given byW3 =  �16 ; 12 ; 12 ;��16�5!�0;�23 ; 13 ; 43 ;�1; 03� ; (2.4)W2 = ��12 ; 0;�12 ; 12 ; 12 ; 03��234 ;�254 ;�214 ;�194 ;�254 ;�214 ;�174 ; 174 � :(2.5)A basis in the Hilbert spa
e of the quantized string is obtained by a
ting with the
reation operators (n < 0) for right-handed modes (�in; e�in) and left-handed modes(e�in; e�In) on the ground states of the untwisted se
tor U (k = 0) and the twistedse
tors Tk (k = 1 : : : 5). The ground states of the di�erent se
tors depend on themomentum ve
tors qi, pI and, for the twisted se
tors, also on the �xed point f(
f. [18, 23℄),jq; pi � jqi 
 jpi ; jf ; q; pi � jqshi 
 jpshi ; (2.6)with the shifted momentaqsh = q + kv6 ; psh = p+ Vf : (2.7)Here k is the order of the twist and Vf is the lo
al gauge twist at the �xed point f .It turns out that for the 
onsidered model only os
illator modes of the left-movingstrings ZiL(�+), Z�iL (�+) and XI(�+) are relevant.2.2 Intermediate Z3 Compa
ti�
ationWe are now interested in the e�e
tive �eld theory for the massless states in the limitwhere the SO(4) plane is mu
h larger the G2 and SU(3) planes, yielding approxi-mately �at 6D Minkowski spa
e. Hen
e, in a �rst step, we 
onsider the 
ompa
ti�-
ation on the orbifold T 4=Z3. The physi
al states of the gravitational se
tor,jq; ii = jqi 
 e�i�1j0i ; jq; i�i = jqi 
 e��i�1j0i ; (2.8)have to satisfy the mass equations18m2R = 12q2 � 12 = 0 ; (2.9a)
� 4 �



G2 n3 = 0n3 = 1 n3 = 2SU(3) (0; 0)
(0; 1)

(1; 0)
(1; 1)

SO(4)Figure 1: The tori of the orbifold T 6=Z6. Red 
rosses mark �xed points of the Z3 twistused for the �rst step of 
ompa
ti�
ation. The SO(4) torus is invariant, while the othertori 
ontain three �xed points ea
h. The �xed points in the G2 torus are equivalent,while the SU(3) torus 
ontains a Wilson line, and the �xed points are inequivalent andlabelled by n3. The blue 
ir
les mark the Z2 �xed points in the SO(4) plane whi
hare labelled by (n2; n02). There are further Z2 �xed points in the G2 torus whi
h arenot shown.18m2L = 12p2 � 1 + eN + eN� = 0 : (2.9b)Here p = 0, and eN; eN� are the os
illator numbers for left-moving modes in zi, z�idire
tions, summed over i: eN = Pi eNi, eN� = Pi eN�i . Furthermore, physi
al stateshave to be invariant under the Z3 twist,v3 � � eN � eN� � q� = 0 mod 1 : (2.10)The 16 bosoni
 states1 q = (0; 0;�1; 0) with i = 3; 4, together with the 16fermioni
 states q = �12 ; 12 ;�12 ;�12� ; ��12 ;�12 ;�12 ;�12� with i = 3; 4, form the familiar6D supergravity and dilaton N = 2 multiplets [24℄,(GMN ; B+MN ;	M) ; (B�MN ;�; �) : (2.11)Here B+MN (B�MN) is the antisymmetri
 tensor �eld with (anti-)self-dual �eld strength.Note that together there is only one tensor �eld BMN without self-duality 
onditions,whi
h is the spe
ial 
ase for whi
h a lagrangian exists.The 4 bosoni
 states q = (1; 0; 0; 0); (0;�1; 0; 0) with eN1 = 1; eN�2 = 0 or eN1 = 0,eN�2 = 1, together with the 
orresponding 4 fermioni
 states q = �12 ;�12 ; 12 ;�12� andthe 
harge 
onjugate states 
orrespond to two 6D hypermultiplets,C1 ; C2 : (2.12)1Underline denotes all permutations. � 5 �



They 
ontain the two `radion' �elds of the small G2 and SU(3) tori as well as o�-diagonal 
omponents of the metri
 and the tensor �elds and the asso
iated super-partners. The 
omplex stru
ture of the small dimensions is �xed. All 24 bosoni
�elds originate from the 64 bosoni
 states ĜMN , B̂MN and �̂ in 10 dimensions. Theremaining 40 bosoni
 states and their fermioni
 superpartners are proje
ted out bythe Z3 twist.The massless physi
al states of the gauge se
tor,jq; pi � jqi 
 jpi ; (2.13)have vanishing os
illator numbers and satisfy the proje
tion 
onditionsv3 � q � Vf � p = 0 mod 1 : (2.14)Here Vf = 2(V6 + n3W3) are the lo
al Z3 gauge subtwists of the model. They di�erby multiples of the Z3 Wilson line W3 in the SU(3) plane, whi
h distinguishes thethree inequivalent �xed points labelled by n3 = 0; 1; 2 (
f. Fig. 1). Eqs. (2.14) areequivalent tov3 � q � V3 � p = 0 mod 1 ; W3 � p = 0 mod 1 ; (2.15)where the se
ond 
ondition re�e
ts the fa
t that the �nite extension of the SU(3)plane is negle
ted in the 6D e�e
tive �eld theory.At ea
h �xed point in the SU(3) plane the group E8�E8 is broken to the subgroupSO(14)�U(1)� [SO(14)� U(1)℄, whi
h is di�erently embedded into E8� E8 at thedi�erent �xed points [18℄. The bra
kets denote the subgroup of the se
ond E8. TheU(1) fa
tors are sometimes omitted; they 
an always be re
onstru
ted sin
e the rankof the gauge group is preserved. One easily veri�es that the interse
tion of the threeE8�E8 subgroups, whi
h yields the unbroken gauge group of the 6D theory, is givenby G6 = SU(6)� U(1)3 � �SU(3)� SO(8)� U(1)2� ; (2.16)with the massless N = 2 ve
tor multiplets(35; 1; 1) + (1; 8; 1) + (1; 1; 28) + 5� (1; 1; 1) : (2.17)The massless ve
tor states are obtained from the 
onditions (2.14) for v3 � q = 0.There are two further possibilities, v3 � q = �1=3 and v3 � q = �2=3, whi
h lead toN = 2 hypermultiplets. A straightforward 
al
ulation yields the gauge multiplets(20; 1; 1) + (1; 1; 8) + (1; 1; 8s) + (1; 1; 8
) + 4� (1; 1; 1) ; (2.18)with the U(1) 
harges listed in Table A.2.In addition to the ve
tor and hypermultiplets from the untwisted se
tor of thestring, there are 6D bulk �elds whi
h originate from the twisted se
tors T2 and T4 of� 6 �



Se
tor Multiplet Representation #Gravity Graviton GMN 1Dilaton � 1Hyper C1, C2 2Untwisted Ve
tor (35; 1; 1) 35(1; 8; 1) 8(1; 1; 28) 285� (1; 1; 1) 5Untwisted Hyper (20; 1; 1) 20(1; 1; 8) + (1; 1; 8s) + (1; 1; 8
) 244� (1; 1; 1) 4Twisted Hyper 9� (6; 1; 1) + 9� (�6; 1; 1) 1089� (1; 3; 1; 1) + 9� (1; �3; 1; 1) 543� (1; 1; 8) + 3� (1; 1; 8s) + 3� (1; 1; 8
) 7236� (1; 1; 1) 36Table 2.1: N = 2 supermultiplets of the 6D theory: graviton, dilaton, 76 ve
tor and320 hypermultiplets. The non-Abelian symmetry group is SU(6)� [SU(3)� SO(8)℄.the Z6�II model, 
orresponding to the twisted se
tors T̂1 and T̂2 of the Z3 subtwist.The proje
tion 
onditions for physi
al states arev3 � � eNf � eN�f�� v3 � (q + v3) + Vf � (p+ Vf ) = 0 mod 1 ; (2.19)where eNf ; eN�f are the integer os
illator numbers for left-moving modes lo
alized atthe �xed point f (
f. [18℄).At ea
h �xed point one has states with eNf = eN�f = 0, whi
h yield N = 2 hyper-multiplets (14; 1) and (1; 14). With respe
t to the 6D gauge group these multipletsform the redu
ible representations(14; 1) = (6; 1; 1) + (�6; 1; 1) + 2� (1; 1; 1) ; (2.20a)(1; 14) = (1; 3; 1) + (1; �3; 1) + (1; 1; 8̂) : (2.20b)At the three SU(3) �xed points, (1; 1; 8̂) 
orresponds to (1; 1; 8), (1; 1; 8s) and(1; 1; 8
), respe
tively. Furthermore, there are os
illator states for the two small
ompa
t planes,jq + v3i 
 e�if�1jp+ Vf i ; jq + v3i 
 e��if�1jp+ Vfi ; i = 3; 4 ; (2.21)whi
h yield two non-Abelian singlet hypermultiplets for ea
h �xed point.In addition to the three inequivalent �xed points in the SU(3) plane, there arethree equivalent �xed points of the Z3 twist in the G2 plane. This yields a multipli
ityof three for all hypermultiplets from the T2 and T4 se
tors. All the multiplets of the� 7 �



6D theory are summarized in Table 2.1. The full listing in
luding the U(1) 
hargesis given in Appendix A.2.Let us �nally 
onsider the intera
tion between ve
tor and hypermultiplets. Itis 
onvenient to de
ompose all N = 2 6D multiplets in terms of N = 1 4D mul-tiplets. The 6D ve
tor multiplet splits into a pair of 4D ve
tor and 
hiral mul-tiplets, A = (V; �), and a hypermultiplet 
onsists of a pair of 
hiral multiplets,H = (HL; HR); here � and HL are left-handed, HR is right-handed. In �at spa
e,the intera
tion lagrangian takes the simple form [25℄LH = Z d4� �HyLe2gVHL +H
yR e�2gVH
R�+ Z d2� H
R �� +p2g��HL + h.
. (2.22)After 
ompa
ti�
ation to four dimensions, the �rst term yields the familiar gaugeintera
tions, whereas the se
ond term 
an give rise to Yukawa 
ouplings. For thehypermultiplet (20; 1; 1) one obtainsLH � p2g Z d2� H
R(20)�(35)HL(20) + h.
. (2.23)The SU(6) 20-plet 
ontains SU(5) 10- and 10-plets, and the 35-plet 
ontains SU(5)5- and �5-plets. As we shall see in Se
tion 6, after proje
tion onto 4D zero modes,Eq. (2.22) yields pre
isely the top Yukawa 
oupling. The Yukawa terms for thehypermultiplets (6; 1; 1) and (�6; 1; 1),LH � p2g Z d2� (H
R(6)�(35)HL(6) +H
R(�6)�(35)HL(�6)) + h.
. (2.24)will be important for the de
oupling of exoti
 states in Se
tion 5.3. Z2 Compa
ti�
ation to Four DimensionsThe 
ompa
ti�
ation from six to four dimensions on a Z2 orbifold leads to four addi-tional �xed points in the SO(4) plane and to further proje
tion 
onditions for physi
almassless states. The �xed points are labelled by (n2; n02) = (0; 0); (0; 1; ); (1; 0); (1; 1)(
f. Fig. 1). Due to the Wilson line W2, they 
ome in two pairs of equivalent �xedpoints, and the proje
tion 
onditions only depend on n2 and not on n02.At the �xed points, half of the supersymmetry generators are broken and onlyN = 1 supersymmetry remains unbroken. For the gravitational and gauge multipletsof the untwisted se
tor the proje
tion 
onditions are [18℄v2 � � ~N � ~N��� v2 � q + Vf � p = 0 mod 1 ; (3.1)where v2 = 3v6, and Vf = 3V6+n2W2 are the lo
al twists at the �xed points n2 = 0; 1in the SO(4) plane. � 8 �



n2 Gauge group0 SU(5)� U(1)4 � �SU(3)� SO(8)� U(1)2�1 SU(2)� SU(4)� U(1)4 � �SU(2)0 � SU(4)0 � U(1)4�\ SU(3)� SU(2)� U(1)5 � �SU(2)0 � SU(4)0 � U(1)4�Table 3.1: List of the lo
al gauge groups and their interse
tion.In this paper we 
onsider an anisotropi
 orbifold where the SO(4) plane is mu
hlarger than the G2 and SU(3) planes. The Kaluza�Klein states of the SO(4) plane
an be in
luded in an e�e
tive �eld theory below the string s
ale by 
onsidering �eldsin the two large 
ompa
t dimensions instead of 4D zero modes whi
h are assumedto be 
onstant in the 
ompa
t dimensions. For the Z2 twist, one has (
f. [18℄)(�3; lf)(z3f + z3) = z3f � z3, where (�3; lf) is the spa
e group element of the �xed pointf and z3 = y5 + iy6 is the 
omplex 
oordinate in the SO(4) plane. The proje
tion
onditions (3.1) for the massless states then be
ome lo
al proje
tion 
onditions for�elds in the 
ompa
t dimensions,Pf : �(yf + y) = �f(�)�(yf � y) ;�f(�) = expn2�i�v2 � ( ~N � ~N� � q) + Vf � p�o : (3.2)The momenta p, q and the os
illator number ~N � ~N� of the states determine thequantum numbers of the 
orresponding �elds �, and �f(�) = �1. Only �elds whi
hhave positive parity at all �xed points have zero modes.As an example, 
onsider the 6D metri
ds2 = gMNdxMdxN = g��dx�dx� + 2g�mdx�dym + gmndymdyn ; (3.3)where x� and ym are the 
oordinates of 4D Minkowski spa
e and the two 
ompa
tdimensions, respe
tively. One easily obtains from Eqs. (2.8) and (3.2) the proje
tion
onditionsg��(x; y) = g��(x;�y) ; g�m(x; y) = �g�m(x;�y) ; gmn(x; y) = gmn(x;�y) :(3.4)The 4D zero mode g��(x) is part of the N = 1 supergravity multiplet (g��;  �) whilethe three degrees of freedom in gmn(x) join with B56 to form the moduli multipletsT and S 
ontaining the radion �eld and the 
omplex stru
ture of the torus.The proje
tion 
onditions for the N = 2 ve
tor multiplets A are most 
onve-niently expressed in terms of the 
orresponding N = 1 ve
tor (V ) and 
hiral (�)multiplets, A = (V; �), whi
h are elements of the Lie algebra of the 6D bulk gaugegroup. The unbroken gauge group at the �xed point f is determined by the 
onditionp � Vf = 0 mod 1 : (3.5)� 9 �



At the �xed points n2 = 0 and n2 = 1 in the SO(4) plane, the bulk gauge groupSU(6)� [SU(3)�SO(8)℄ is broken to subgroups 
ontaining SU(5)� [SU(2)0�SU(4)0℄and SU(2) � SU(4) � [SU(2)0 � SU(4)0℄, respe
tively. At the two �xed points the
onditions for the ve
tor and 
hiral multiplets are given byPfV (x; yf � y)Pf = V (x; yf + y) ; Pf�(x; yf � y)Pf = ��(x; yf + y) ; (3.6)where Pf is the Z2 parity matrix. Again only N = 1 supersymmetry remains un-broken. As an example, for the SU(6) fa
tor, one has P0 = diag(1; 1; 1; 1; 1;�1) atn2 = 0, and P1 = diag(1; 1;�1;�1;�1;�1) at n2 = 1. The de
omposition of thebulk gauge �elds with respe
t to the lo
ally unbroken subgroups, together with allU(1) 
harges, are listed in Tables 3.2 and 3.3. For the unbroken subgroup, ve
torshave positive and s
alars negative parity; for the broken generators the situation isreversed.At the �xed point n2 = 0 the GUT group SU(5) � U(1) is unbroken, and theN = 2 ve
tor multiplet 35 of SU(6) splits into the N = 1 ve
tor multiplets 24 + 1with positive parity and the N = 1 
hiral multiplets 5+ �5 with positive parity fromthe 
oset SU(6) =(SU(5) � U(1)). From Table 3.3 one reads o� that the proje
tion
ondition at the �xed point n2 = 1 proje
ts out the 
olor triplets from both the 5-and the �5-plets. This is the well known doublet-triplet splitting of orbifold GUTs.As we shall dis
uss in Se
tion 5, the remaining SU(2) doublets 
an play the role ofHiggs or lepton doublets in the 4D e�e
tive theory.The N = 2 hypermultiplets H 
onsist of pairs of N = 1 left- and right-
hiralmultiplets, H = (HL; HR). For the proje
tion 
onditions one �ndsPfHL(x; yf�y) = �fHL(x; yf+y) ; PfHR(x; yf�y) = ��fHR(x; yf+y) ;(3.7)where Pf is now a matrix in the representation of H, and �f has to be 
al
ulatedusing Eq. (3.2). The parities for the hypermultiplets from the untwisted se
tor,de
omposed with respe
t to the unbroken groups at the �xed points n2 = 0 andn2 = 1 are listed in the Tables 3.4 and 3.5.Zero modes with standard model quantum numbers are 
ontained in two N = 1
hiral multiplets whi
h are SU(5) 10-plets,HL = (10; 1; 1) ; H
R = (10
; 1; 1) : (3.8)From the Tables 3.4 and 3.5 one easily veri�es that the proje
tion 
onditions at the�xed point n2 = 1 yield the following quark-lepton states as 4D zero modes:10 : (3; 2) = q ; 10
 : (�3; 1) = u
 ; (1; 1) = e
 : (3.9)Together, the zero modes have again the quantum numbers of one SU(5) 10-plet.However, as we shall see in Se
tion 6, it is 
ru
ial for their Yukawa 
ouplings thatthey originate from two distin
t SU(5) 10-plets.� 10 �



Bulk n2 = 0 V � t06(35; 1; 1) (24; 1; 1) + � 0(5; 1; 1) � + �6(�5; 1; 1) � + 6(1; 1; 1) + � 0(1; 8; 1) (1; 8; 1) + � 0(1; 1; 28) (1; 1; 28) + � 0Table 3.2: Lo
al de
omposition of ve
tor multiplets at n2 = 0.Bulk n2 = 1 V � t16 t7 t8(35; 1; 1) (3; 1; 1; 1) + � 0 0 0(1; 15; 1; 1) + � 0 0 0(2; 4; 1; 1) � + 15 0 0(2; �4; 1; 1) � + �15 0 0(1; 1; 1; 1) + � 0 0 0(1; 8; 1) (1; 1; 3; 1) + � 0 0 0(1; 1; 2; 1) � + 0 3 0(1; 1; 2; 1) � + 0 �3 0(1; 1; 1; 1) + � 0 0 0(1; 1; 28) (1; 1; 1; 15) + � 0 0 0(1; 1; 1; 6) � + 0 0 2(1; 1; 1; 6) � + 0 0 �2(1; 1; 1; 1) + � 0 0 0Table 3.3: Lo
al de
omposition of ve
tor multiplets at n2 = 1.As dis
ussed in the previous se
tion, the N = 2 hypermultiplets from the T2=T4se
tor are bulk �elds in the SO(4) plane, but lo
alized in the G2 and SU(3) planes.With respe
t to the bulk gauge group they transform as (6; 1; 1), (�6; 1; 1), (1; 3; 1),(1; �3; 1), (1; 1; 8), (1; 1; 8
), (1; 1; 8s) and (1; 1; 1). One 
an form linear 
ombinationsof the states lo
alized at the equivalent �xed points in the G2 plane, whi
h areeigenstates of the Z2 twist, �3jq
i = exp (2�iq
)jq
i. For the twisted se
tor �elds theproje
tion 
onditions depend on the phase q
, and the parities �f(�) are given by�f (�) = expn2�i�v2 � ( ~N � ~N� � q) + Vf � p+ q
�o : (3.10)For the T2=T4 twisted states q
 takes the values 0; 1=2; 1. The 
orresponding 6 paritiesfor all hypermultiplets H = (HL; HR) at the �xed points n2 = 0 and n2 = 1 are listedin Tables A.4�A.7. � 11 �



Bulk n2 = 0 HL HR t06 t1 t2 t3 t4 t5(20; 1; 1) (10; 1; 1) + � 3 �12 12 0 0 0( �10; 1; 1) � + -3 �12 12 0 0 0(1; 1;8) (1; 1;8) � + 0 0 0 0 �1 0(1; 1;8s) (1; 1;8s) + � 0 0 0 0 12 32(1; 1;8
) (1; 1;8
) + � 0 0 0 0 12 �32(1; 1; 1) (1; 1; 1) � + 0 12 12 3 0 0 U1(1; 1; 1) (1; 1; 1) + � 0 12 12 �3 0 0 U2(1; 1; 1) (1; 1; 1) + � 0 1 �1 0 0 0 U3(1; 1; 1) (1; 1; 1) + � 0 �1 �1 0 0 0 U4Table 3.4: Lo
al de
omposition of untwisted hypermultiplets at n2 = 0.Bulk n2 = 1 HL HR t16 t7 t8 t1 t2 t3 t4 t5(20; 1; 1) (2;6; 1; 1) � + 0 0 0 �12 12 0 0 0(1;4; 1; 1) + � �15 0 0 �12 12 0 0 0(1;�4; 1; 1) + � 15 0 0 �12 12 0 0 0(1; 1;8) (1; 1; 1;4) � + 0 0 �1 0 0 0 �1 0(1; 1; 1;�4) + � 0 0 1 0 0 0 �1 0(1; 1;8
) (1; 1; 1;6) � + 0 0 0 0 0 0 12 �32(1; 1; 1; 1) + � 0 0 2 0 0 0 12 �32(1; 1; 1; 1) + � 0 0 �2 0 0 0 12 �32(1; 1;8s) (1; 1; 1;4) � + 0 0 1 0 0 0 12 32(1; 1; 1;�4) + � 0 0 �1 0 0 0 12 32(1; 1; 1) (1; 1; 1; 1) � + 0 0 0 12 12 3 0 0 U1(1; 1; 1) (1; 1; 1; 1) � + 0 0 0 12 12 �3 0 0 U2(1; 1; 1) (1; 1; 1; 1) � + 0 0 0 1 �1 0 0 0 U3(1; 1; 1) (1; 1; 1; 1) � + 0 0 0 �1 �1 0 0 0 U4Table 3.5: Lo
al de
omposition of untwisted hypermultiplets at n2 = 1.The 6D theory 
ontains 9 hypermultiplets of SU(5) 5-plets and 9 hypermultipletsof �5-plets. Ea
h hypermultiplet 
ontains a pair of 5 and �5 N = 1 
hiral multiplets.� 12 �



As Table A.4 shows, the positive parities sele
t from ea
h triplet of hypermultiplets,with q
 = 0; 1=2; 1, a 
hiral 
ombination of 5-plets: one 5 and two �5's or two 5's andone �5. The proje
tion 
onditions at n2 = 1 then leave as 4D zero modes from ea
h5- or �5-plet either the SU(3) triplet or the SU(2) doublet. In this way a spe
trumof massless states is generated whi
h is 
hiral with respe
t to the standard modelgroup.The Z2 orbifolding leads from the Z3 orbifold model of Se
tion 2 to a Z6 orbifoldmodel, and therefore to new twisted se
tors T1=T5 and T3. The massless states areobtained from the 
orresponding mass equations (
f. [18℄) with k = 1 and k = 3,respe
tively. In the T3 se
tor one 
an 
hoose a basis of eigenstates of the Z3 twist,�2jq
i = exp (2�iq
)jq
i, with q
 = 0; 1=3;�1=3; 1 (
f. [18℄). The proje
tion 
ondi-tions for physi
al states now involve the parities�f (�) = expn2�i�v3 � ( ~N � ~N� � q) + Vf � p+ q
�o : (3.11)The states are bulk �elds in the SU(3) plane, whose extension we negle
t, but lo
al-ized in the G2 and SO(4) planes. All massless states from the T1=T5 and T3 se
torsat the �xed points n2 = 0 and n2 = 1 are listed in Tables A.8 and A.9.At both �xed points with n2 = 0, one standard model family with SU(5) quantumnumbers �5+10 o

urs. All other states are standard model singlets. On the 
ontrary,there are no standard model singlets at the �xed point n2 = 1, but only 
olor singletswith exoti
 SU(2)� U(1) quantum numbers.So far we have ignored the lo
alization number n02 = 0; 1 of the �xed points inthe SO(4) plane, sin
e it just leads to a doubling of the states lo
alized at n2 = 0; 1.Altogether, we have a rather simple pi
ture for the standard model non-singlet states:There are two quark-lepton families lo
alized atn2 = 0; n02 = 0; 1 : �5 + 10 : (3.12)From the bulk �elds, ve
tor and hypermultiplets, we have11� �5 + 9� 5 + 10 + 10
 : (3.13)The spe
trum is 
hiral and looks like four quark-lepton families plus 9 pairs of 5'sand �5's. However, the proje
tion 
onditions at the n2 = 1 �xed points eliminatehalf of the bulk �elds, so that one is left with three quark-lepton families and severalve
tor-like pairs of SU(3) triplets and SU(2) doublets whi
h 
an a

ommodate a pairof Higgs doublets. Whi
h �5's 
ontain the quark and lepton states of the third family,and whi
h one the Higgs doublet depends on the 
hosen va
uum. At the �xed pointsn2 = 1 there are additional lo
alized states with exoti
 quantum numbers. Using theTables 3.2�3.5 and A.4�A.9, one 
an 
he
k that the spe
trum of zero modes obtainedin [18℄ is reprodu
ed.The determination of possible supersymmetri
 va
ua, where some of the standardmodel singlet �elds a
quire large VEVs, is dis
ussed in Se
tions 5 and 6. In su
h� 13 �



U(1) Generator Embedding into E8 �E8 Bulk n2 = 0 n2 = 1t1 (0; 1; 0; 0; 0; 0; 0; 0) (0; 0; 0; 0; 0; 0; 0; 0) p p pt2 (0; 0; 1; 0; 0; 0; 0; 0) (0; 0; 0; 0; 0; 0; 0; 0) p p pt3 (1; 0; 0; 1; 1; 1; 1; 1) (0; 0; 0; 0; 0; 0; 0; 0) p p pt4 (0; 0; 0; 0; 0; 0; 0; 0) (1; 0; 0; 0; 0; 0; 0; 0) p p pt5 (0; 0; 0; 0; 0; 0; 0; 0) (0; 1; 1; 1; 0; 0; 0; 0) p p pt06 (5; 0; 0;�1;�1;�1;�1;�1) (0; 0; 0; 0; 0; 0; 0; 0) � p �t16 (5; 0; 0;�10;�10; 5; 5; 5) (0; 0; 0; 0; 0; 0; 0; 0) � � pt7 (0; 0; 0; 0; 0; 0; 0; 0) (0; 1; 1;�2; 0; 0; 0; 0) � � pt8 (0; 0; 0; 0; 0; 0; 0; 0) (0; 0; 0; 0;�1;�1;�1; 1) � � pt0an (5; 0;�4;�1;�1;�1;�1;�1) (5;�1;�1;�1; 0; 0; 0; 0) pt1an (1; 3;�1; 1; 1; 1; 1; 1) (�4; 4; 4; 4; 0; 0; 0; 0) pt(4d)an �116 ; 12 ;�32 ;�16 ;�16 ;�16 ;�16 ;�16� �1; 13 ; 13 ; 13 ; 0; 0; 0; 0�Table 4.1: De�nition of the U(1) generators. The last three 
olumns indi
ate whetherthe generator is part of a non-Abelian group (�) or 
ommutes with the semi-simplegroup (p) in the bulk and at the �xed points. The anomalous U(1)'s are linear
ombinations of the 
ommuting U(1)'s at the �xed point spe
i�ed by the supers
riptor in four dimensions; they are denoted by t0an, t1an and t(4d)an , respe
tively.va
ua, unwanted SU(3) triplets and SU(2) 
an be de
oupled. The positive andnegative parities at the �xed points n2 = 0; 1, listed in the Tables 3.2�3.5 and A.4�A.7 are also needed to 
he
k the 
an
ellation of anomalies for the 
onstru
ted 6Dsupergravity theory.4. AnomaliesAnomalies of �eld theories on orbifolds are well understood [26℄, and also the six-dimensional 
ase has been dis
ussed in detail [21, 22, 27�29℄. In general the orbifoldanomaly has bulk and brane 
ontributions. While the bulk terms are already presentin the torus 
ompa
ti�
ation, the lo
alized anomalies 
ru
ially depend on the pro-je
tion 
onditions at the orbifold �xed points and the twisted se
tors of the orbifold.Thus the requirement that all anomalies of the model 
an be 
an
elled imposes highlynon-trivial 
onditions on the spe
trum. In the present model their ful�llment is guar-anteed by the fa
t that it has been derived from string theory, whi
h automati
allyprovides the right Green�S
hwarz terms for anomaly 
an
ellation [20℄. In this se
tionwe apply its six-dimensional version [21, 22℄ to our e�e
tive T 2=Z2 orbifold model.� 14 �



4.1 Anomalies and the Green�S
hwarz Me
hanismGauge anomalies require 
hiral fermions2, so they 
an o

ur in any even dimen-sion. Gravitational anomalies3, on the other hand, only arise in 4k + 2 dimensions(k = 0; 1; : : :), hen
e they will appear in the bulk theory, but not on the branes.The anomaly A is de�ned as the (nonvanishing) gauge variation of the e�e
tivea
tion, A(�) = Æ��. It 
an be 
omputed from the anomaly polynomial, a (formal)
losed and gauge invariant (d+ 2)-form Id+2, via the Stora�Zumino des
ent equations[30℄, A(�) / Z I(1)d ; dI(1)d = Æ�I(0)d+1 ; dI(0)d+1 = Id+2 ; (4.1)where the supers
ript indi
ates the order in the parameter �. Id+2 is a polyno-mial in tra
es of powers of the Riemann and Yang�Mills �eld strength tensors Rand FI , interpreted as matrix-valued two-forms 12R b�� a dx�dx� and 12F jI �� i dx�dx� .They are derived from spin and gauge 
onne
tion one-forms as R = d
 + 
2 andFI = dAI + A2I , where I labels the fa
tors of the gauge group. Here a; b are indi
esin the ve
tor representation of SO (1; d� 1), i; j are indi
es of some representationof the gauge group, and wedge produ
ts of forms are understood. Expressions ofthe form trF nI or trRn, the building blo
ks of Id+2, are always 
losed and gaugeinvariant. Their 
oe�
ients in the anomaly polynomial depend on the numbers,representations and 
harges of the fermions under the respe
tive gauge groups.For the Green�S
hwarz me
hanism to 
an
el the anomalies, we exploit the trans-formation properties of the two-form B2 = 12B��dx�dx�. Its variation under gaugeand Lorentz transformations with parameters �I and � isÆB2 = tr (�d
)�XI �I tr(�IdAI) : (4.2)The 
oe�
ients �I are �SU(N) = 2 and �SO(N) = 1 (the U(1) 
oe�
ients are normal-ization dependent). The 
ru
ial feature of this transformation is that ÆB2 itself isthe des
ent of the 
losed and gauge invariant four-formX4 = trR2 �XI �I trF 2I ; (4.3)su
h that the 3-form �eld strength H3 = dB2�X(0)3 asso
iated with B2 is invariant.By adding appropriate intera
tion terms of the B-�eld to the a
tion it is now possibleto a
hieve a 
omplete 
an
ellation of the redu
ible anomalies.2Also (anti)self-dual tensor �elds 
an 
ontribute. Sin
e in our model there is one tensor �eld ofea
h type, their e�e
ts 
an
el.3Anomalies in lo
al Lorentz transformations and in general 
oordinate transformations are equiv-alent in the sense that the anomaly 
an be shifted from one to the other by lo
al 
ounterterms. Wewill 
onsider anomalies in lo
al Lorentz transformations and refer to those as gravitational.� 15 �



For T 2=Z2 orbifolds, the total anomaly polynomial I8 is of the formI8 = 12Ibulk8 +Xf If6 Æ2(y � yf) dy5dy6 ; (4.4)where Ibulk8 is the anomaly polynomial on R1;3 � T 2, and If6 is the lo
al anomalypolynomial at the �xed point f . If6 re
eives two kinds of 
ontributions: Brane-lo
alized �elds and bulk �elds surviving the orbifold proje
tion at this parti
ular�xed point. The latter, however, 
ontribute with a fa
tor of 14 be
ause the orbifold
ontains four �xed points. The fa
tor 12 in (4.4) enters sin
e the fundamental domainof the orbifold is half the one of the torus. These anomalies 
an be 
an
elled bythe Green�S
hwarz me
hanism if I8 is redu
ible, i.e., if it fa
torizes into a produ
tinvolving X4. For the 
omponents this meansIbulk8 = � X4Y4 ; If6 = �Xf4 Y f2 : (4.5)Here Xf4 follows from X4 by proje
tion onto the lo
al gauge group, and we havepulled out fa
tors � = i48(2�)3 and � = �i16(2�)3 . Sin
e trR = trF = 0 for non-Abelian gauge groups, the lo
alized two-forms Y f2 
an only be linear 
ombinationsof U(1) �eld strengths, whi
h 
an be rede�ned as Y f2 = 
fF f = 
fdAf . Af and the
orresponding generator are referred to as the anomalous U(1) at the �xed point f .If the anomaly polynomial fa
torizes in the required way, the total anomalyA = R I(1)6 des
ends from (4.4) and is 
an
elled by variation of the Green�S
hwarza
tion [22℄,SGS = Z (� �2Y (0)3 + �Xf 
fAfÆ2(y � yf)dy5dy6!dB+ �4Y (0)3 + �3 Xf 
fAfÆ2(y � yf)dy5dy6!X(0)3 ) : (4.6)4.2 Bulk AnomaliesWe now 
he
k the 
an
ellation of bulk anomalies in the model at hand. It is 
on-venient to split the gauge group index as I = (A; u), with A;B; : : : running overthe non-Abelian fa
tors, i.e. SU(6), SU(3) and SO(8), while u; v; : : : = 1; : : : ; 5 labelthe U(1) fa
tors. The anomaly polynomial for the six-dimensional 
ase is given inRef. [21℄. Here we �rst 
he
k that the irredu
ible pie
es 
an
el and then show thatthe remaining parts fa
torize as in (4.5).There are three 
ontributions in the anomaly polynomial whi
h 
annot be re-du
ible:� The most severe 
onstraint arises from the quarti
 pure gravitational anomaly.The 
orresponding term in the anomaly polynomial is(244 + y � s) trR4 : (4.7)� 16 �



It is sensitive only to the number of gauginos y and hyperinos s, whi
h 
on-tribute with opposite signs due to their opposite 
hiralities, and the gravitinoand dilatino. The ne
essary 
ondition s� y = 244 is ful�lled in our model, as
an be seen from Tables A.2 and A.3.� Quarti
 non-Abelian anomalies re
eive 
ontributions from the gaugino in theadjoint representation whi
h need to be 
an
elled by opposite-
hirality hyper-inos. Denoting the number of hypermultiplets in representation ri of groupfa
tor GA by siA, the quarti
 terms areTrF 4A �Xi siA trri F 4A ; A = SU(6) ; SU(3) ; SO(8) : (4.8)Here Tr and trri denote tra
es in the adjoint representation and in the repre-sentation ri, respe
tively. We 
an 
onvert all tra
es to the fundamental repre-sentation (denoted simply by tr), whi
h will introdu
e representation indi
es,and possibly terms � (trF 2A)2, and �nally leads to the following 
onstraints:SU(6) : 12 + 6s20 � s6 � s�6 = 0 ; (4.9a)SO(8) : 12s8s + 12s8
 � s8 = 0 : (4.9b)SU(3) does not have a fourth-order Casimir invariant and hen
e trF 4SU(3) doesnot give a 
ondition at this point.� Finally, the (non-Abelian)3-Abelian anomaly has to vanish for redu
ibility.Again we 
onvert all tra
es to the fundamental representation, and have to
onsider the U(1) 
harges of the hypermultiplets. We get two nontrivial 
on-ditions for ea
h U(1) (SO(8) has no third-order Casimir):SU(6) : X6i q6iu �X�6i q�6iu = 0 ; (4.10a)SU(3) : X3i q3iu �X�3i q�3iu = 0 : (4.10b)From the U(1) 
harges in Table A.3 we see that also these 
onstraints aresatis�ed.For the remaining anomaly polynomial we normalize the U(1)'s from Table 4.1by introdu
ing t̂u = tu=p2jtuj. As shown in Appendix B, this leads to a fa
torization� 17 �



of the bulk anomaly polynomial whi
h is of the form (4.5):i (2�)3 Ibulk8 = 116 "trR2 � 2 trF 2SU(6) � 2 trF 2SU(3) � trF 2SO(8) �Xu F 2u#� "trR2 �Xu;v �uvFuFv#= 116X4 Y4 : (4.11)
The symmetri
 
oe�
ient matrix �uv in the t̂u basis is

�uv = 0BBBBB�3 �1 0 �1 03 0 �1 02 0 p24 04
1CCCCCA : (4.12)We 
on
lude that all bulk anomalies of our orbifold model are 
an
elled by variationsof the terms � Y (0)3 in Eq. (4.6).4.3 Brane AnomaliesSin
e our model 
ontains one Wilson line in the SO(4) plane, the spe
tra at the �xedpoints only depend on n2 and not on n02, so that we have to evaluate two anomalypolynomials I0;16 in the following.At a �xed point, there are no gravitational anomalies, and so the only irredu
ible
ontributions are non-Abelian 
ubi
 ones. Matter now 
omes in 
hiral multipletswhi
h 
an have both 
hiralities and thus 
ontribute with opposite signs. Furthermore,the anomaly indu
ed by bulk �elds surviving the proje
tion is suppressed by a fa
torof 14 with respe
t to the 
ontributions from lo
alized �elds. Taking this into a

ount,the 
ubi
 non-Abelian anomalies are of the form14 Xbulk r�s(+)rA � s(�)rA � trr F 3A �Xlo
 r s(�)rA trr F 3A ; (4.13)where the sum is over representations r of the lo
al group fa
tor A, and the s(+)rAand s(�)rA denote the number of multiplets in that representation with positive andnegative 
hirality, respe
tively. We take the lo
alized �elds to be left-handed. UsingTables A.4 to A.9, one �nds that the model 
ontains no irredu
ible lo
al anomalies.Ve
tor multiplets do not 
ontribute to anomalies, as they are in a real representa-tion of the gauge group, and neither do the hypermultiplet remnants of 6D ve
tormultiplets, sin
e they 
ome in left- and right-handed form.� 18 �



For the lo
al redu
ible anomalies we �nd the following fa
torization at n2 = 0; 1(
f. Appendix B):i(2�)3I06 =� 148h �trR2�� 2�trF 2SU(5)�� 2�trF 2SU(3)�� �trF 2SO(8)�� 6Xu=1 F 2ui� �tr0 t̂0an�F 0 ; (4.14)i(2�)3I16 =� 148h �trR2�� 2�trF 2SU(2)�� 2�trF 2SU(4)�� 2�trF 2SU(2)0�� 2�trF 2SU(4)0�� 8Xv=1 F 2v i� �tr1 t̂1�F 1 : (4.15)The tra
es of the anomalous U(1)'s are the sums of the 
harges of the �elds presentat the given �xed point, and again the 
ontributions of surviving bulk �elds areweighted with a fa
tor of 14 . The indi
es u; v in the formulae above run over a basisspanned by the anomalous U(1) and orthogonal generators, t̂f1 � t̂fan, t̂fan � t̂fu = 0,(u > 1). The normalization is 
hosen su
h that all Abelian fa
tors have level 1,namely t̂fu = tfu=p2jtfuj. The fa
torization is of the form (4.5) su
h that we 
on
ludethat all anomalies of our model are 
an
elled by the lo
alized part of the Green�S
hwarz term (4.6).Equations (4.14) and (4.15) reveal that due to the presen
e of one Wilson linethere are two distin
t anomalous U(1) fa
tors t0an and t1an in the model, one forea
h inequivalent �xed point. For the (unnormalized) anomalous generators fromTable 4.1 we �nd the following tra
es:tr0 t0an = 2jt0anj2 = 148 ; tr1 t1an = jt1anj2 = 80 : (4.16)The 4D anomalous U(1) follows from integrating the Green�S
hwarz term over theinternal dimensions. As 
an be seen from (4.6), this amounts to summing the nor-malized lo
al U(1)'s. The four-dimensional anomaly polynomial again is of the form(4.5), so we 
an dedu
e the anomalous U(1) in four dimensions fromtr4d t(4d)anjt(4d)an j2 t(4d)an = 2�tr0 t0anjt0anj2 t0an + tr1 t1anjt1anj2 t1an� : (4.17)Here tr4d denotes the tra
e over the low-energy spe
trum, i.e. zero modes of bulk�elds and lo
alized �elds, but ex
luding bulk �elds whi
h only survive at n2 = 0 orn2 = 1. Note that the fa
tor of 14 in
luded in the de�nitions of tr0 and tr1 ensuresthat zero mode 
ontributions are 
ounted only on
e. Thus we �nd the anomalousgenerator t̂(4d)an from [18℄ with tr t(4d)an = 12 jt(4d)an j2 = 88 ast(4d)an = 16 �2 t0an + t1an� : (4.18)
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So all appearing anomalies have been 
an
elled, either among themselves or bythe Green�S
hwarz me
hanism. We would like to emphasize that there is no freeparameter involved: the �elds and gauge groups are �xed, as well as the transforma-tion property of BMN , whi
h is the only available antisymmetri
 tensor �eld whi
h
an 
an
el anomalies. Hen
e the way in whi
h the di�erent se
tors 
ombine in the
orre
t way appears highly non-trivial.5. De
oupling of Exoti
 StatesLet us now 
onsider the de
oupling of states with exoti
 standard model quantumnumbers. These are the SU(5) 5-plets of bulk hypermultiplets whi
h originate fromthe T2=T4� and the untwisted se
tor, and the SU(2) doublets and singlets with non-zero hyper
harge from the T1=T5� and T3�se
tors at the �xed points n2 = 1. Notethat no exoti
 matter is lo
ated at the �xed points n2 = 0. All the exoti
 5-pletsand most of the exoti
 matter at n2 = 1 
an be de
oupled by VEVs of just a fewstandard model singlet �elds. This de
oupling takes pla
e lo
ally at one of the �xedpoints, whi
h is a 
ru
ial di�eren
e 
ompared to previous dis
ussions of de
ouplingin four dimensions [18, 19℄.The N = 2 hypermultiplets H = (HL; HR) 
onsist of pairs of N = 1 left-and right-
hiral multiplets either from the T2 and T4 twisted se
tors, or from theuntwisted se
tor. The 
harge 
onjugate left-
hiral multiplet H
R has the oppositegauge quantum numbers as HL. Hen
e the SU(5) 5- and �5-hypermultiplets 
ontainthe exoti
 N = 1 left-
hiral multiplets 5 and �5
.The produ
ts 5n35
n3 and �5n3�5
n3 , n3 = 0; 1; 2, are total gauge singlet N = 1
hiral multiplets. They do 
arry, however, non-zero R-
harges, R = (�1;�1; 0)(
f. App. A.1). One easily veri�es (
f. Tables A.1, A.4 and A.8) that the prod-u
t �Y 
0 S1S5 of standard model singlet �elds is a total gauge singlet with R-
hargesR = (0; 0;�1). S1 and S5 are os
illator states lo
alized at the �xed points n2 = 0.One therefore obtains the lo
al N = 1 superpotential termsW1 = �Y 
0 S1S5 �505
0 + �50�5
0 + 515
1 + �51�5
1 + 525
2 + �52�5
2� : (5.1)All terms are total gauge singlets with R-
harges R = (�1;�1;�1). Hen
e, theH-momentum rules are satis�ed, as are the spa
e sele
tion rules (
f. [18℄).From Eq. (5.1) we 
on
lude that a large va
uum expe
tation value 
 �Y 
0 S1S5�removes 6 pairs of (5; �5)-plets4 from the low energy spe
trum. Sin
e we have 3positive parities for ea
h value of n3 (
f. Tables 3.2 and A.3), 6 5- or �5-plets remain.The mass terms are lo
alized at the �xed points n2 = 0. Bulk mass terms betweenhypermultiplets are forbidden by N = 2 supersymmetry.4When the distin
tion between T2�, T4� and untwisted se
tor does not matter, we 
olle
tivelydenote 5 and �5
 by 5, and �5 and 5
 by �5. � 20 �



5 �5
0 51 �5 5
0 �51 �52 5
2SU(3)� SU(2) (1; 2) (3; 1) (1; 2) (1; 2) (�3; 1) (1; 2) (�3; 1) (1; 2)U(1)B�L 0 �23 0 0 23 0 �13 �1MSSM Hu Hd d3 l3Table 5.1: The remaining 5's and �5's after the de
oupling through W1. The SU(3)�SU(2) representations, B�L 
harges and MSSM identi�
ation refer to the zero modes.Inspe
tion of Tables 3.2 and A.4 shows that from the T2-, T4- and untwistedse
tors three 5's and �ve �5's remain: 5, �5, 5
0, �5
0, 51, �51, 5
2, �52. The furtherde
oupling is motivated by phenomenologi
al arguments and by simpli
ity. Theproje
tion 
ondition at the �xed points n2 = 1 leave as 4D zero modes from ea
h5 and �5 either an SU(3) triplet or an SU(2) doublet. With respe
t to the U(1)B�Lgenerator identi�ed in [18℄,tB�L = �0; 1; 1; 0; 0;�23;�23 ;�23� �12 ; 12 ; 12 ;�12 ; 0; 0; 0; 0� ; (5.2)these massless states have the B � L 
harges listed in Table 5.1. This suggests tode
ouple �5
0 and 5
0, whi
h is possible with a lo
al 
oupling at the �xed point n2 = 0,W2 = Y0S1S5 5
0�5
0 ; (5.3)and a large VEV hY0S1S5i.From the remaining 5�plets, either 5 or 51 
an be 
hosen as Higgs �eld Hu. Alarge top-quark 
oupling is obtained for 5 � Hu. 51 
an be easily de
oupled usingthe 6D gauge 
oupling with the 
hiral multiplet �5 of the SU(6) 35-plet,WH � p2g �X055
0 + �X0�5�5
0 +X
151�5+ �X
1�515+X255
2 + �X
2�525� ; (5.4)with a large VEV h �X
1i. The remaining �5�plets 5
2 and �51 then 
orrespond to a leptondoublet and the Higgs �eld Hd, respe
tively. The 
hosen va
uum is similar to theB � L 
onserving va
uum dis
ussed in [18℄. It 
orresponds to partial gauge-Higgsuni�
ation for Hu. If one 
hooses to de
ouple 5 instead of 51, one has no gauge-Higgsuni�
ation. Alternatively, one 
an also keep 5 and �5 massless, 
orresponding to fullgauge-Higgs uni�
ation.All other exoti
 states are lo
alized at n2 = 1. The SU(2) doublets Mi and someof the SU(2) singlets S�i 
an already be de
oupled by 
ubi
 terms,W3 = �Z
1M1M4 + Z
0M2M3 ; (5.5)W4 = �Y 
2 �S+2 S�1 + S+3 S�4 �+ Z2 �S+4 S�5 + S+4 S 0�5 �+ �Z2 �S�3 S+6 + S�3 S 0+6 � + U 
1 �S+6 S�5 + S 0+6 S 0�5 � ; (5.6)
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with large VEVs h �Z
1i, hZ
0i, h �Y 
2 i, hZ2i, hU 
1i. The de
oupling of the remaining exoti
singlets with hyper
harge, S+1 , S�2 , S+5 , S�6 , S�7 , S+7 requires higher dimensionaloperators (
f. [18, 19℄), whi
h we will not dis
uss further in this paper.After the de
oupling of altogether 8 pairs of (5; �5)�plets we are left with twolo
alized families,(n2; n02) = (0; 0) : �5(1); 10(1); (n2; n02) = (0; 1) : �5(2); 10(2) ; (5.7)together with two further families and a pair of Higgs doublets in the bulk:�5(3) � 5
2; 10(3) � 10; �5(4) � �52; 10(4) � 10
; Hu � 5; Hd � �51 : (5.8)At the �xed points n2 = 0 these 
hiralN = 1multiplets form a lo
al SU(5) GUT the-ory. The 
orresponding Yukawa 
ouplings will be dis
ussed in the following se
tion.From the two bulk families, half of the states are proje
ted out by the proje
tion 
on-ditions at n2 = 1, and together they give rise to one family of zero modes (
f. Eq. (3.9)and Tab. 5.1).Note that the de
oupling terms (5.1), (5.3), (5.5) and (5.6) require VEVs of bothbulk and lo
alized �elds. The lo
alized singlets S1 and S5 
orrespond to os
illatormodes. As we will see in Se
tion 7, bulk and brane �eld ba
kgrounds are typi
allyindu
ed by lo
al Fayet�Iliopoulos (FI) terms. The non-vanishing VEVs of lo
alized�elds are often related to a resolution of the orbifold singularities [31, 32℄. However,a study of the blow-up of the 
onsidered orbifold to a smooth manifold and thegeometri
al interpretation of the lo
alized VEVs is beyond the s
ope of this work.6. Yukawa CouplingsIn the previous se
tion we have obtained four quark-lepton families transforming as(�5(i) + 10(i)) under SU(5), where i is a generation index. Two families are lo
alizedat the branes (i = 1; 2) and two are bulk �elds. The 
orresponding superpotentialreadsWYuk = C(u)ij 10(i)10(j)Hu + C(d)ij �5(i)10(j)Hd ; (6.1)where the 
ouplings C(u)ij and C(u)ij are 
omposed of singlet �elds su
h that the su-perpotential obeys the string sele
tion rules (
f. [18℄).As an example, we 
onsider a va
uum where in addition to the �elds�Y 
0 ; S1; S5; Y0; X
1; �Z
1; Z
0; �Y 
2 ; Z2; �Z2; U 
1 ; (6.2)used in Se
tion 5 for de
oupling, only the singletsY 
0 ; Y1; �Y1; S3; S4; S7 (6.3)� 22 �



a
quire non-zero VEVs. After a straightforward 
al
ulation, we �nd that up to O(8)in the �elds, this va
uum leads to 
ouplingsC(u)ij = 0BBB� a1 0 a2 a30 a1 a2 a3a2 a2 0 ga3 a3 g a4
1CCCA ; C(d)ij = 0BBB� 0 0 b1 b20 0 b1 b2b3 b3 b4 0b5 b5 b6 b25

1CCCA ; (6.4)with a1 = hY 
0 �Y 
0 S1S3i; a2 = h��Y 
0 S1�2 S5i; a3 = hY 
0 �Y 
0 S1S3S5i; (6.5)a4 = hY 
0 �Y 
0 S1S3 (S5)2i; (6.6)b1 = hY0 �Y1 (S5)3 (S7)2i; b2 = hX
1 �Y 
2 U 
1S7i; b3 = hX
1 �Y1S3 (S5S7)2i; (6.7)b4 = h(X
1)2 �Y1U 
1S4S7i; b5 = hS5i; b6 = h(X
1)2 Y1S1S7i : (6.8)Note that the 
hosen va
uum yields non-vanishing Yukawa 
ouplings while the �-term is only generated at higher order.The Yukawa 
ouplings (6.1) are SU(5) invariant, hen
e we have obtained anSU(5) GUT model. Note that the SU(5) Yukawa intera
tions are lo
al sin
e the�elds Si are lo
alized at the �xed points n2 = 0, i.e., we have a lo
al SU(5) GUTmodel. The only ex
eption is C(u)34 = C(u)43 = g, whi
h is a remnant of the SU(6)bulk gauge intera
tion. It is a 
onsequen
e of the partial gauge-Higgs uni�
ation ofthe present model, whi
h implies a phenomenologi
ally attra
tive large top Yukawa
oupling.We 
an now pro
eed and dedu
e the 
orresponding Yukawa 
ouplings in fourdimensions. As des
ribed in Se
tion 5, half of ea
h of the two bulk families is pro-je
ted out by the additional Z2 orbifold 
ondition at the se
ond pair of �xed points(n2 = 1). The remaining �elds from the split bulk matter multiplets then form the
ontent of the third standard model family. The 4D Yukawa terms areWYuk = Y (u)ij u
iqjHu + Y (d)ij d
iqjHd + Y (l)ij lie
jHd ; (6.9)where i; j = 1; 2; 3 is a family index, andY (u)ij = 0� a1 0 a30 a1 a3a2 a2 g 1A ; Y (d)ij = 0� 0 0 b20 0 b2b5 b5 b71A ; Y (l)ij = 0� 0 0 b10 0 b1b3 b3 b41A : (6.10)The Yukawa matri
es for down quarks and leptons are di�erent, although they orig-inate from SU(5) invariant 
ouplings of the 6D theory. This is due to the splitmultiplets whi
h form the third quark-lepton family. In this way the mostly unsu
-
essful SU(5) predi
tions for fermion masses are avoided. However, one also loses thesu

essful predi
tion mb(MGUT) ' m� (MGUT).� 23 �



�5� 10

�5� 10
2� �5, 2� 105, �5

exoti
s

exoti
sFigure 2: The orbifold T 2=Z2. The blue dots (on the left) label the �xed points withn2 = 0, the red ones (right) have n2 = 1. Two quark-lepton generations live at then2 = 0 �xed points, the third one originates from two SU(5) �5 and 10 multiplets inthe bulk, half of whi
h is proje
ted out due to the boundary 
onditions at n2 = 1.The obtained lo
al SU(5)GUTmodel is phenomenologi
ally not viable. Not onlyare ele
tron and down-quark massless, whi
h may be 
orre
ted by higher powers ofsinglet VEVs, but the main problem are R-parity violating Yukawa 
ouplings leadingto rapid proton de
ay, whi
h we have not listed. However, the present model is justan example of a large 
lass of models [19℄, and it is likely that the phenomenology 
anbe improved. In the above dis
ussion we have also ignored neutrino masses whi
h
an be generated by a seesaw me
hanism typi
ally involving many singlet �elds [33℄.7. Supersymmetri
 Va
uaIn the previous se
tions we have dis
ussed phenomenologi
ally wanted va
uum 
on-�gurations, i.e. expe
tations values of singlet �elds, whi
h de
ouple states with ex-oti
 quantum numbers and generate Yukawa 
ouplings for quarks and leptons. Theanalysis and 
lassi�
ation of these va
ua is a di�
ult problem. In parti
ular, onehas to show that N = 1 supersymmetry remains unbroken in four dimensions. Forthe present model the 
onditions for vanishing F - and D-terms have been dis
ussedin [18℄. A 
ru
ial role is played by the Fayet�Iliopoulos D-term of the anomalousU(1), whi
h drives �elds away from zero (
f. [34℄).In this paper we are studying the 
ase where two of the 
ompa
t dimensionsare larger than the other four. Su
h an ansatz assumes that the size of the largedimensions 
an be stabilized at a s
ale 1=MGUT � 1=Mstring. To prove this one� 24 �



has to �nd supersymmetri
 va
ua of the e�e
tive 6D �eld theory whi
h in
orporatesKaluza�Klein states with masses between MGUT and Mstring.As we saw in Se
tion 4, the 6D theory has di�erent Fayet-Iliopoulos terms at theinequivalent �xed points in the SO(4)-plane (
f. (4.17)),LFI =Xf �f Æ2(y � yf)��Df3 + F f56� ; (7.1)where at f = (n2; n02),�(0;0) = �(0;1) = gM2P384�2 tr0 t0anjt0anj2 ; �(1;0) = �(1;1) = gM2P384�2 tr1 t1anjt1anj2 : (7.2)Integrating over the two 
ompa
t dimensions reprodu
es the 4D Fayet-Iliopoulosterm of [18℄.In the 
ase of �at spa
e, lo
alized FI terms have been studied in [22℄, and it hasbeen shown that they lead to an instability of the bulk �elds and to spontaneouslo
alization towards the �xed points. For our 6D supergravity theory this analysishas to be extended to in
lude the gravitational, antisymmetri
 tensor and dilaton�elds. In general, one expe
ts warped solutions, and it is not 
lear whether N = 1supersymmetry remains unbroken in four dimensions. These questions are beyondthe s
ope of the present paper and will be studied elsewhere.In the following we will only 
he
k whether the VEVs sele
ted in Se
tions 5and 6 
orrespond to a supersymmetri
 va
uum for an isotropi
 orbifold, where theSO(4)-, SU(3)- and G2-planes all have string size, and the di�erent FI terms areapproximated by a single FI term in four dimensions. As dis
ussed in [18℄, vanishingD-terms are guaranteed if all �elds are part of gauge invariant monomials ex
ept onewhi
h 
arries negative net anomalous 
harge. These 
onditions are indeed satis�edfor the va
uum 
hosen in Se
tions 5 and 6. Expli
it examples of gauge invariantmonomials areX3X
3; X
4S1S5; X
5X
12Y 
1 Y 
4 S27 ; X
5X8Y5Y6S4S7; X
5X8X
12Z
1S3S7 ; (7.3)supplemented byX
3(X
5X7)2Y8 (7.4)whi
h has anomalous 
harge �22=3.Sin
e the superpotential of the standard model singlet �elds is unknown, we
annot prove that the F -terms vanish for the 
hosen va
uum.We expe
t, however, asimpli�
ation in the analysis of the superpotential in 6D as 
ompared to 4D, sin
e thesuperpotential is generated lo
ally at the �xed points where one has larger unbrokensymmetries than in the 4D e�e
tive theory.� 25 �



It will be very interesting to see whether a supersymmetri
 va
uum of an isotropi
orbifold 
an be obtained as limiting 
ase from an anisotropi
 orbifold. The di�er-ent FI terms at the orbifold �xed points may play a 
ru
ial role in generating theanisotropy, and it is intriguing that the mass s
ale of the FI terms is of the order ofthe grand uni�
ation s
ale, MP=p384�2 �MGUT.8. OutlookWe have 
onstru
ted a 6D supergravity theory as intermediate step in the 
om-pa
ti�
ation of the heteroti
 string to the supersymmetri
 standard model in fourdimensions. The theory has N = 2 supersymmetry and one tensor multiplet, andit has a large number of gravitational, gauge and mixed anomalies, all of whi
h are
an
elled by the Green�S
hwarz me
hanism. The theory is 
ompa
ti�ed from sixto four dimensions on a Z2 orbifold with two inequivalent pairs of �xed points withunbroken SU(5) and SU(2)� SU(4) symmetry, respe
tively.In addition to the 
an
ellation of anomalies, we have been parti
ularly interestedin the de
oupling of exoti
 states and the emergen
e of an intermediate SU(5) GUT.Compared to the 4D theory the de
oupling is more transparent due to the largersymmetries, N = 2 supersymmetry in the bulk and larger gauge symmetries at theorbifold �xed points. It is remarkable that most exoti
 states 
an be de
oupled withVEVs of a few standard model singlet �elds at the orbifold �xed points.A very interesting feature of the theory is the emergen
e of an intermediate SU(5)GUT model. Two quark-lepton families are lo
alized at the SU(5) branes and twofurther families, together with a pair of 5��5 plets are bulk �elds. SU(5) is broken bythe presen
e of the SU(2)�SU(4) branes. This generates a pair of Higgs doublets assplit multiplets. Split multiplets of the two bulk quark-lepton families also form thethird quark-lepton family, with the standard model quantum numbers of one �5-pletand one 10-plet. Due to the presen
e of the split multiplets, the Yukawa 
ouplings ofthe 4D theory break SU(5) expli
itly, thus avoiding unsu

essful SU(5) predi
tionsof ordinary 4D GUTs.The 6D theory originally has a large number of 5 � �5 pairs, most of whi
h arede
oupled. As dis
ussed in Se
tion 5, the identi�
ation of the Higgs �elds depends onthe 
hoi
e of the va
uum 
on�guration, and one 
an have no, partial or full gauge-Higgs uni�
ation. Sin
e there is no 
lear distin
tion between matter and Higgs�elds, one generi
ally expe
ts large R-parity breaking Yukawa 
ouplings leading tofast proton de
ay, as it is indeed the 
ase for the va
uum 
hosen in Se
tions 5 and 6.However, sin
e the 
onsidered model is just one example of a large 
lass of similarmodels [19℄, it is likely that the phenomenology 
an be improved.On the theoreti
al side, the main open problems 
on
erns the stabilization ofextra dimensions at a s
ale 1=MGUT � 1=Mstring and the existen
e of 
orresponding� 26 �



va
ua with unbroken N = 1 supersymmetry. We hope to address these questionselsewhere.A
knowlegmentsWe would like to thank S. Groot Nibbelink, A. Hebe
ker, J. Louis and M. Traplettifor valuable dis
ussions.
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A. StatesA.1 R-ChargesThe R-
harges of a 
hiral multiplet are de�ned as Ri = qish� ( eN � eN�)i, where qish isthe shifted H-momentum of the s
alar and the ve
tors eN and eN� denote os
illatornumbers of left-moving �elds in zi and �zi dire
tions, respe
tively.Se
tor State Ex
itation R1 R2 R3U U 
1 0 �1 0U U2; U3; U4 �1 0 0T1 All �16 �13 �12T �1 S1; S2; S7 eN� = (1; 0; 0) 56 �13 �12T �1 S4; S6 eN� = (2; 0; 0) 116 �13 �12T �1 S3; S5 eN� = (0; 1; 0) �16 23 �12T2 HL �13 �23 0T �2 Y �n3 eN = (0; 1; 0) �13 �53 0T �2 Y 0�n3 eN� = (1; 0; 0) 23 �23 0T3 All �12 0 �12T4 H
R �23 �13 0T �4 Y �
n3 eN� = (0; 1; 0) �23 23 0T �4 Y 0�
n3 eN = (1; 0; 0) �53 �13 0Table A.1: R-
harges and os
illator ex
itations of left-handed states. U denotes theuntwisted se
tor and a star represents non-vanishing os
illator numbers.

� 28 �



A.2 Bulk StatesHere we list the states of the e�e
tive 6D bulk theory. They are obtained from theheteroti
 string by an Z3 orbifold proje
tion with one Wilson line, as des
ribed inSe
tion 2. Multiplet Representation t1 t2 t3 t4 t5 #Graviton 1Tensor 1Hyper 2Ve
tor (35; 1; 1) 35(1; 8; 1) 8(1; 1; 28) 285� (1; 1; 1) 5Hyper (20; 1; 1) �12 12 0 0 0 20(1; 1; 8) 0 0 0 �1 0 8(1; 1; 8s) 0 0 0 12 32 8(1; 1; 8
) 0 0 0 12 �32 8(1; 1; 1) 12 12 �3 0 0 1(1; 1; 1) �1 �1 0 0 0 1(1; 1; 1) 1 �1 0 0 0 1(1; 1; 1) 12 12 3 0 0 1Table A.2: The massless spe
trum of the 6D theory arising from the untwisted se
tor.There are 76 ve
tor multiplets and 50 hypermultiplets. The se
ond 
olumn refers tothe representations with respe
t to SU(6)� SU(3)� SO(8), t1�t5 are the 
harges withrespe
t to the U(1) fa
tors of the bulk gauge group. The �rst three multiplets arisefrom the 10D gravitational se
tor and are 
omplete gauge singlets.
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Se
tor Representation n3 t1 t2 t3 t4 t5 #T2/T4 3� (6; 1; 1) 0 0 �13 1 23 0 183� (�6; 1; 1) 0 0 �13 �1 23 0 183� (1; 1; 1) 0 �1 �13 0 23 0 33� (1; 1; 1) 0 1 �13 0 23 0 3T2/T4 3� (1; 3; 1) 0 0 23 0 �13 1 93� (1; �3; 1) 0 0 23 0 �13 �1 93� (1; 1; 8) 0 0 23 0 �13 0 24T2/T4� 6� (1; 1; 1) 0 0 23 0 23 0 6T2/T4 3� (6; 1; 1) 1 0 �13 �1 �13 �1 183� (�6; 1; 1) 1 12 16 0 �13 �1 183� (1; 1; 1) 1 0 23 �2 �13 �1 33� (1; 1; 1) 1 12 �56 1 �113 �1 3T2/T4 3� (1; 3; 1) 1 �12 16 1 23 0 93� (1; �3; 1) 1 �12 16 1 �13 1 93� (1; 1; 8s) 1 �12 16 1 16 12 24T2/T4� 6� (1; 1; 1) 1 �12 16 1 �13 �1 6T2/T4 3� (6; 1; 1) 2 12 16 0 �13 1 183� (�6; 1; 1) 2 0 �13 1 �13 1 183� (1; 1; 1) 2 12 �56 �1 �13 1 33� (1; 1; 1) 2 0 23 2 �13 1 3T2/T4 3� (1; 3; 1) 2 �12 16 �1 �13 �1 93� (1; �3; 1) 2 �12 16 �1 23 0 93� (1; 1; 8
) 2 �12 16 �1 16 �12 24T2/T4� 6� (1; 1; 1) 2 �12 16 �1 �13 1 6Table A.3: The massless spe
trum of the 6D theory arising from the T2 and T4 se
tors.There are 270 hypermultiplets. The states are lo
alised in the G2 and SU(3) planes,whi
h 
ontain three �xed points ea
h. The equivalent G2 �xed points yield the multi-pli
ity fa
tor three, lo
alization in the SU(3) plane is given by n3. T2/T4* states havenon-vanishing os
illator numbers.
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A.3 States at the Fixed PointsHere we list the states at the �xed points n2 = 0; 1. These involve bulk states fromthe T2=T4 and the untwisted se
tor (see Tables 3.2 � 3.5) and lo
alized states fromthe se
tors T1=T5 and T3. Xi, �Xi, Yi, �Yi, Zi, �Zi and Ui are bulk �elds; S1 � S8 arelo
alized �elds.Bulk n2 = 0 n3 HL HR t06 t1 t2 t3 t4 t5(6; 1; 1) (5; 1; 1) 0 �;+;� +;�;+ �1 0 �13 1 23 0(1; 1; 1) 0 +;�;+ �;+;� 5 0 �13 1 23 0 X0(�6; 1; 1) (�5; 1; 1) 0 �;+;� +;�;+ 1 0 �13 �1 23 0(1; 1; 1) 0 +;�;+ �;+;� �5 0 �13 �1 23 0 �X0(1; 1; 1) (1; 1; 1) 0 +;�;+ �;+;� 0 1 �13 0 23 0 Y0(1; 1; 1) (1; 1; 1) 0 +;�;+ �;+;� 0 �1 �13 0 23 0 �Y0(1;3; 1) (1;3; 1) 0 �;+;� +;�;+ 0 0 23 0 �13 1(1;�3; 1) (1;�3; 1) 0 �;+;� +;�;+ 0 0 23 0 �13 �1(1; 1;8) (1; 1;8) 0 �;+;� +;�;+ 0 0 23 0 �13 0(6; 1; 1) (5; 1; 1) 1 +;�;+ �;+;� �1 0 �13 �1 �13 �1(1; 1; 1) 1 �;+;� +;�;+ 5 0 �13 �1 �13 �1 X1(�6; 1; 1) (�5; 1; 1) 1 +;�;+ �;+;� 1 12 16 0 �13 �1(1; 1; 1) 1 �;+;� +;�;+ �5 12 16 0 �13 �1 �X1(1; 1; 1) (1; 1; 1) 1 +;�;+ �;+;� 0 0 23 �2 �13 �1 Y1(1; 1; 1) (1; 1; 1) 1 +;�;+ �;+;� 0 12 �56 1 �13 �1 �Y1(1;3; 1) (1;3; 1) 1 �;+;� +;�;+ 0 �12 16 1 23 0(1;�3; 1) (1;�3; 1) 1 �;+;� +;�;+ 0 �12 16 1 �13 1(1; 1;8s) (1; 1;8s) 1 +;�;+ �;+;� 0 �12 16 1 16 12(6; 1; 1) (5; 1; 1) 2 �;+;� +;�;+ �1 12 16 0 �13 1(1; 1; 1) 2 +;�;+ �;+;� 5 12 16 0 �13 1 X2(�6; 1; 1) (�5; 1; 1) 2 +;�;+ �;+;� 1 0 �13 1 �13 1(1; 1; 1) 2 �;+;� +;�;+ �5 0 �13 1 �13 1 �X2(1; 1; 1) (1; 1; 1) 2 +;�;+ �;+;� 0 0 23 2 �13 1 Y2(1; 1; 1) (1; 1; 1) 2 �;+;� +;�;+ 0 12 �56 �1 �13 1 �Y2Table A.4 � 
ontinued on next page
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Table A.4 � 
ontinued from previous pageBulk n2 = 0 n3 HL HR t06 t1 t2 t3 t4 t5(1;3; 1) (1;3; 1) 2 +;�;+ �;+;� 0 �12 16 �1 �13 �1(1;�3; 1) (1;�3; 1) 2 +;�;+ �;+;� 0 �12 16 �1 23 0(1; 1;8
) (1; 1;8
) 2 �;+;� +;�;+ 0 �12 16 �1 16 �12Table A.4: Lo
al de
omposition of ground states from the T2=T4 se
tor at n2 = 0.The three parities for 
hiral hypermultiplet 
omponents HL, HR 
orrespond to toq
 = 0; 12 ; 1.
Bulk n2 = 1 n3 HL HR t16 t7 t8 t1 t2 t3 t4 t5(6; 1; 1) (1;4; 1; 1) 0 �;+;� +;�;+ 5 0 0 0 �13 1 23 0(2; 1; 1; 1) 0 +;�;+ �;+;� �10 0 0 0 �13 1 23 0(�6; 1; 1) (1;�4; 1; 1) 0 �;+;� +;�;+ �5 0 0 0 �13 �1 23 0(2; 1; 1; 1) 0 +;�;+ �;+;� 10 0 0 0 �13 �1 23 0(1; 1; 1) (1; 1; 1; 1) 0 +;�;+ �;+;� 0 0 0 1 �13 0 23 0 Y0(1; 1; 1) (1; 1; 1; 1) 0 +;�;+ �;+;� 0 0 0 �1 �13 0 23 0 �Y0(1;3; 1) (1; 1;2; 1) 0 +;�;+ �;+;� 0 1 0 0 23 0 �13 1(1; 1; 1; 1) 0 �;+;� +;�;+ 0 �2 0 0 23 0 �13 1 Z0(1;�3; 1) (1; 1;2; 1) 0 �;+;� +;�;+ 0 �1 0 0 23 0 �13 �1(1; 1; 1; 1) 0 +;�;+ �;+;� 0 2 0 0 23 0 �13 �1 �Z0(1; 1;8) (1; 1; 1;4) 0 +;�;+ �;+;� 0 0 �1 0 23 0 �13 0(1; 1; 1;�4) 0 �;+;� +;�;+ 0 0 1 0 23 0 �13 0(6; 1; 1) (1;4; 1; 1) 1 �;+;� +;�;+ 5 0 0 0 �13 �1 �13 �1(2; 1; 1; 1) 1 +;�;+ �;+;� �10 0 0 0 �13 �1 �13 �1(�6; 1; 1) (1;�4; 1; 1) 1 �;+;� +;�;+ �5 0 0 12 16 0 �13 �1(2; 1; 1; 1) 1 +;�;+ �;+;� 10 0 0 12 16 0 �13 �1(1; 1; 1) (1; 1; 1; 1) 1 +;�;+ �;+;� 0 0 0 0 23 �2 �13 �1 Y1(1; 1; 1) (1; 1; 1; 1) 1 +;�;+ �;+;� 0 0 0 12 �56 1 �13 �1 �Y1(1;3; 1) (1; 1;2; 1) 1 �;+;� +;�;+ 0 1 0 �12 16 1 23 0(1; 1; 1; 1) 1 +;�;+ �;+;� 0 �2 0 �12 16 1 23 0 Z1Table A.5 � 
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Table A.5 � 
ontinued from previous pageBulk n2 = 1 n3 HL HR t16 t7 t8 t1 t2 t3 t4 t5(1;�3; 1) (1; 1;2; 1) 1 +;�;+ �;+;� 0 �1 0 �12 16 1 �13 1(1; 1; 1; 1) 1 �;+;� +;�;+ 0 2 0 �12 16 1 �13 1 �Z1(1; 1;8s) (1; 1; 1;4) 1 +;�;+ �;+;� 0 0 1 �12 16 1 16 12(1; 1; 1;�4) 1 �;+;� +;�;+ 0 0 �1 �12 16 1 16 12(6; 1; 1) (1;4; 1; 1) 2 +;�;+ �;+;� 5 0 0 12 16 0 �13 1(2; 1; 1; 1) 2 �;+;� +;�;+ �10 0 0 12 16 0 �13 1(�6; 1; 1) (1;�4; 1; 1) 2 +;�;+ �;+;� �5 0 0 0 �13 1 �13 1(2; 1; 1; 1) 2 �;+;� +;�;+ 10 0 0 0 �13 1 �13 1(1; 1; 1) (1; 1; 1; 1) 2 �;+;� +;�;+ 0 0 0 0 23 2 �13 1 Y2(1; 1; 1) (1; 1; 1; 1) 2 �;+;� +;�;+ 0 0 0 12 �56 �1 �13 1 �Y2(1;3; 1) (1; 1;2; 1) 2 �;+;� +;�;+ 0 1 0 �12 16 �1 �13 �1(1; 1; 1; 1) 2 +;�;+ �;+;� 0 �2 0 �12 16 �1 �13 �1 Z2(1;�3; 1) (1; 1;2; 1) 2 �;+;� +;�;+ 0 �1 0 �12 16 �1 23 0(1; 1; 1; 1) 2 +;�;+ �;+;� 0 2 0 �12 16 �1 23 0 �Z2(1; 1;8
) (1; 1; 1;6) 2 �;+;� +;�;+ 0 0 0 �12 16 �1 16 �12(1; 1; 1; 1) 2 +;�;+ �;+;� 0 0 2 �12 16 �1 16 �12 Z 02(1; 1; 1; 1) 2 +;�;+ �;+;� 0 0 �2 �12 16 �1 16 �12 �Z 02Table A.5: Lo
al de
omposition of states from the T2=T4 se
tor at n2 = 1. The threeparities for 
hiral hypermultiplet 
omponents HL, HR 
orrespond to to q
 = 0; 12 ; 1.
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Bulk n2 = 0 n3 HL HR t06 t1 t2 t3 t4 t5(1; 1; 1) (1; 1; 1) 0 �;+;� +;�;+ 0 0 23 0 23 0 Y �0(1; 1; 1) (1; 1; 1) 0 +;�;+ �;+;� 0 0 23 0 23 0 Y 0�0(1; 1; 1) (1; 1; 1) 1 �;+;� +;�;+ 0 �12 16 1 �13 �1 Y �1(1; 1; 1) (1; 1; 1) 1 +;�;+ �;+;� 0 �12 16 1 �13 �1 Y 0�1(1; 1; 1) (1; 1; 1) 2 +;�;+ �;+;� 0 �12 16 -1 �13 1 Y �2(1; 1; 1) (1; 1; 1) 2 �;+;� +;�;+ 0 �12 16 -1 �13 1 Y 0�2Table A.6: Lo
al de
omposition of ex
ited states from the T2=T �4 se
tor at n2 = 0.The three parities for 
hiral hypermultiplet 
omponents HL, HR 
orrespond to toq
 = 0; 12 ; 1. The singlets Y �n3 have os
illator numbers eN = (0; 1; 0), the Y 0�n3 haveeN� = (1; 0; 0).Bulk n2 = 1 n3 HL HR t16 t7 t8 t1 t2 t3 t4 t5(1; 1; 1) (1; 1; 1) 0 +;�;+ �;+;� 0 0 0 0 23 0 23 0 Y �0(1; 1; 1) (1; 1; 1) 0 �;+;� +;�;+ 0 0 0 0 23 0 23 0 Y 0�0(1; 1; 1) (1; 1; 1) 1 +;�;+ �;+;� 0 0 0 �12 16 1 �13 �1 Y �1(1; 1; 1) (1; 1; 1) 1 �;+;� +;�;+ 0 0 0 �12 16 1 �13 �1 Y 0�1(1; 1; 1) (1; 1; 1) 2 �;+;� +;�;+ 0 0 0 �12 16 -1 �13 1 Y �2(1; 1; 1) (1; 1; 1) 2 +;�;+ �;+;� 0 0 0 �12 16 -1 �13 1 Y 0�2Table A.7: Lo
al de
omposition of ex
ited states from the T2=T �4 se
tor at n2 = 1.The three parities for 
hiral hypermultiplet 
omponents HL, HR 
orrespond to toq
 = 0; 12 ; 1. The singlets Y �n3 have os
illator numbers eN = (0; 1; 0), the Y 0�n3 haveeN� = (1; 0; 0).
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Se
tor n2 = 0 n3 q
 t06 t1 t2 t3 t4 t5T1/T5 (10; 1; 1) 0 � 12 0 �16 �12 13 0(�5; 1; 1) 0 � �32 0 �16 32 13 0(1; 1; 1) 0 � 52 0 �16 �52 13 0T1/T5 (1; 1;8
) 1 � 52 0 �16 �12 �16 �12(1;3; 1) 2 � 52 0 �16 32 13 0(1; 1; 1) 2 � 52 0 �16 32 �23 �1 S8T1/T5* (1; 1; 1) 0 � 52 �12 �23 12 13 0 S1(1; 1; 1) 0 � �52 12 �23 �12 13 0 S22� (1; 1; 1) 0 � 52 12 13 12 13 0 S3;42� (1; 1; 1) 0 � �52 �12 13 �12 13 0 S5;6(1;�3; 1) 1 � 52 0 �16 �12 13 0(1; 1; 1) 1 � 52 0 �16 �12 �23 1 S7T3 (1;3; 1) � �13 52 �12 0 12 0 1(1;�3; 1) � �13 �52 12 0 �12 0 �1Table A.8: Lo
al states from the se
tors T1/T5 and T3 at n2 = 0. T1/T5* denotesos
illator states. S1; S2; S7 and (1;�3; 1) from that se
tor have os
illator numberseN� = (1; 0; 0), S3 and S5 have eN� = (0; 1; 0), S4 and S6 have eN� = (2; 0; 0).
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Se
tor n2 = 1 n3 q
 t16 t7 t8 t1 t2 t3 t4 t5T1/T5 (2; 1; 1; 1) 0 � 0 1 �1 �12 �16 0 � 512 14 M1(1; 1; 1; 1) 0 � 10 1 �1 12 �16 �1 � 512 14 S�1(1; 1; 1; 1) 0 � �10 1 �1 12 �16 1 � 512 14 S+1(2; 1; 1; 1) 1 � 0 �1 1 0 13 �1 112 34 M2(1; 1; 1; 1) 1 � 10 �1 1 12 �16 1 112 34 S�2(1; 1; 1; 1) 1 � �10 �1 1 0 �23 0 112 34 S+2(2; 1; 1; 1) 2 � 0 �1 �1 0 13 1 � 512 14 M3(2; 1; 1; 1) 2 � 0 1 1 0 13 1 112 34 M4(1; 1; 1; 1) 2 � 10 �1 �1 0 �23 0 � 512 14 S�3(1; 1; 1; 1) 2 � �10 �1 �1 12 �16 �1 � 512 14 S+3(1; 1; 1; 1) 2 � 10 1 1 0 �23 0 112 34 S�4(1; 1; 1; 1) 2 � �10 1 1 12 �16 �1 112 34 S+4T3 (1; 1; 1; 1) � 0 10 1 �1 0 0 2 14 14 S�5(1; 1; 1; 1) � 1 10 1 �1 0 0 2 14 14 S0�5(1; 1; 1; 1) � 13 �10 �1 1 0 0 �2 �14 �14 S+5(1; 1; 1; 1) � 13 10 1 �1 �12 �12 �1 14 14 S�6(1; 1; 1; 1) � 0 �10 �1 1 12 12 1 �14 �14 S+6(1; 1; 1; 1) � 1 �10 �1 1 12 12 1 �14 �14 S0+6(1; 1; 1; 1) � �13 10 1 �1 12 12 �1 14 14 S�7(1; 1; 1; 1) � �13 �10 �1 1 �12 �12 1 �14 �14 S+7Table A.9: Lo
al states from the se
tors T1/T5 and T3 at n2 = 1.
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B. Anomaly PolynomialsIn Se
tion 4, we 
he
ked that the irredu
ible terms in the anomaly polynomial 
an
el.The remaining pie
e expli
itly readsi (2�)3 Ibulk8 = 116 (�trR2�2 � 16 �trR2� XA mA trF 2A +Xu;v muvFuFv!+4XA;u;v dAuv �trF 2A�FuFv + 23 Xu;v;w;xhuvwxFuFvFwFx) ; (B.1)with 
oe�
ientsmA =Xr srAvrA � v(adj)A ; muv = tr6 (tutv) =Xi qiuqiv ; (B.2)dAuv =Xr vrA srAXk=1 qkuqkv ; huvwx = tr6 (tutvtwtx) =Xi qiuqivqiwqix : (B.3)All sums are over hypermultiplets only; the ve
tor multiplets only appear in the �nalterm of mA. In the sums, i runs over all states, r over all representations of groupGA and k over all multiplets in representation r. qiu and qku are the 
harges of statesand multiplets under U(1)u, and tr6 denotes the tra
e of the U(1) generators, i.e. thesum over the 
harges of all �elds. The integers srA are the multipli
ities of statestransforming in that representation, and vrA is its quadrati
 index. Note that terms� (trF 2A) (trF 2B) for two di�erent non-Abelian fa
tors A;B add up to zero in ourmodel. By expli
it evaluation of these de�nitions in the basis t̂u = tu=p2jtuj we �ndthe resultsmA = 6 (2; 2; 1) ; muv = 6 (�uv + Æuv) ; (B.4)where �uv is given in Eq. (4.12). FurthermoredSU(6)uv = dSU(3)uv = 2dSO(8) uv = 12 �uv ; (B.5)huvwx = 32j�(uvwx)j (Æuv�wx + perm.) ; (B.6)where j�(uvwx)j 
ounts all possible distin
t permutations of indi
es u; v; w; x (andonly these are in
luded in the bra
ket).Similarly, we 
al
ulate the lo
al anomaly polynomial at a �xed point f :i(2�)3If6 = � 148Xu mfu Fu trR2 + 12XA;u dfAu Fu trF 2A + 16Xuvw hfuvw FuFvFw:(B.7)
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Here the 
oe�
ients are de�ned as follows:mfu = trf �tfu� =Xi bi qiu ; dfAu =Xr vrA srAXk=1 bk qku ; (B.8)hfuvw = trf �tfutfv tfw� =Xi bi qiuqivqiw (B.9)All sums refer to the lo
al spe
trum at �xed point f , evaluated on left-handed �elds.The lo
al tra
e trf 
ontains an additional fa
tor bi, whi
h is either one for lo
alizedstates or 1/4 for states whi
h are indu
ed by bulk �elds; the same holds for bk. We
onveniently evaluate these expressions in a basis whi
h 
onsists of t̂fan = tfan=p2jtfanj,with tfan from Table 4.1, and orthogonal generators, t̂f1 � t̂fan, t̂fan � t̂fu = 0 (u > 1).Then the only non-vanishing terms aretr0 t̂0an = 2p37 ; tr1 t̂1an = 2p10 (B.10)and d0SU(5) an = d0SU(3) an = 2d0SO(8) an = 2 tr0 t̂0an �t̂0u�2 = 23 tr0 �t̂0an�3 = 112 tr0 t̂0an ;(B.11)d1SU(2) an = d1SU(4) an = d1SU(2)0 an = d1SU(4)0 an= 2 tr0 t̂1an �t̂1u�2 = 23 tr0 �t̂1an�3 = 112 tr0 t̂1an : (B.12)This shows expli
itly that both anomaly polynomials fa
torize in the requiredway, Eq. (4.5), i.e. the Green-S
hwarz universality relations with levels �SO(N) = 1and �SU(N) = 2 are ful�lled,148 trf t̂fan = 16 trf �t̂fan�3 = 12 trf t̂fan �t̂fu�2 = 12�AdfA an : (B.13)
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