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HU-EP-07/16, DESY 07-063The phase stru
ture of a 
hirally invariant latti
e Higgs-Yukawa modelfor small and for large values of the Yukawa 
oupling 
onstantP. Gerholda, K. JansenbaHumboldt-Universit�at zu Berlin,Institut f�ur Physik, Newtonstr. 15,D-12489 Berlin, GermanybDESY,Platanenallee 6, D-15738 Zeuthen, Germany(Dated: June 26, 2007)We 
onsider a 
hirally invariant latti
e Higgs-Yukawa model based on the Neuberger overlapoperator D(ov). As a �rst step towards the eventual determination of Higgs mass bounds we studythe phase diagram of the model analyti
ally in the large Nf -limit. We present an expression forthe e�e
tive potential at tree-level in the regime of small Yukawa and quarti
 
oupling 
onstantsand determine the order of the phase transitions. In the 
ase of strong Yukawa 
ouplings the modele�e
tively be
omes an O(4)-symmetri
 non-linear �-model for all values of the quarti
 
oupling
onstant. This leads to the existen
e of a symmetri
 phase also in the regime of large values ofthe Yukawa 
oupling 
onstant. On �nite and small latti
es, however, strong �nite volume e�e
tsprevent the expe
tation value of the Higgs �eld from vanishing thus obs
uring the existen
e of thesymmetri
 phase at strong Yukawa 
ouplings.PACS numbers:Keywords: Higgs-Yukawa model, 1/N expansion, phase diagramI. INTRODUCTIONNon-perturbative investigations of latti
e regularized Higgs-Yukawa models as a limit of the ele
-troweak se
tor of the Standard Model have been subje
t of many investigations in the early 1990's,see e.g. the review arti
les of Refs. [1, 2, 3, 4, 5, 6, 7℄. These latti
e studies were motivated by theinterest in a better understanding of the fermion mass generation via the Higgs me
hanism on a non-perturbative level. In addition, the fo
us has been on the determination of bounds on the Higgs massand the Yukawa 
ouplings whi
h translate dire
tly into bounds on the - at that time not yet dis
overed- top quark mass. However, these investigations were blo
ked, sin
e the in
uen
e of unwanted fermiondoublers 
ould not su

essfully be suppressed. Moreover, the latti
e models of these studies su�eredfrom the la
k of 
hiral symmetry. The latter, however, would be indispensable for a 
onsistent latti
eregularization of 
hiral gauge theories su
h as the Standard Model of ele
troweak intera
tions.Here, we want to extend these earlier investigations in a new dire
tion in order to over
ome thepreviously en
ountered drawba
ks by following the proposition of L�us
her [8℄ for a 
hirally invariantlatti
e Higgs-Yukawa model based on the Neuberger overlap operator [9℄. Within this model an exa
tlatti
e 
hiral symmetry 
an be established while suppressing the fermion doublers at the same time.This is possible despite of the Nielsen-Ninomiya theorem [10℄, sin
e the established latti
e 
hiralsymmetry is not the 
ontinuum 
hiral symmetry itself, but re
overs the latter symmetry only in the
ontinuum limit. We 
onsider here a Higgs-Yukawa model in
luding only the two heaviest fermions,i.e. the top-bottom doublet, and the Higgs �elds. This simpli�
ation is reasonable, sin
e the fermion-Higgs 
oupling is proportional to the fermion mass and hen
e small for the light doublets. We alsonegle
t any gauge �elds within this model, sin
e they 
an be taken into a

ount via perturbationtheory.As a �rst step towards a numeri
al investigation of this Higgs-Yukawa model we begin by studyingits phase stru
ture. Here we present an analyti
al investigation of the phase diagram in the largeNf -limit following Refs. [11, 12℄. We refer the reader to these referen
es for earlier works on latti
eHiggs-Yukawa models. (See also Ref. [13℄ for a �rst a

ount of our work.) In the present paper wea

ess the phase stru
ture of the model at small and at large values of the Yukawa 
oupling 
onstant,putting parti
ular emphasis on the existen
e of a symmetri
 phase also in the strong Yukawa 
ouplingregime. The latter strong 
oupling regime of a 
losely related, 
hirally invariant Higgs-Yukawa modelin two dimensions was also studied in the re
ent work [14℄ and 
orresponding Monte-Carlo simulations,performed in that model, support the existen
e of su
h phase [15℄. Extensions of our present paper, in
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2parti
ular 
on
erning the veri�
ation of the analyti
ally obtained phase stru
ture by expli
it numeri
alsimulations and addressing the question of lower and upper bounds on the Higgs boson mass, will bedis
ussed in forth
oming publi
ations.The outline of this paper is as follows: In Se
tion II we brie
y des
ribe the Higgs-Yukawa model
onsidered here. In the following Se
tion III we derive an expression for the e�e
tive potential in termsof the amplitudes of the 
onstant and staggered modes of the Higgs �eld, whi
h is a reasonable approx-imation at small values of the Yukawa and quarti
 
oupling 
onstants. We then present the resultingphase diagram in the large Nf -limit and determine the order of the o

urring phase transitions. Thephase stru
ture in the regime of large values of the Yukawa 
oupling 
onstant and arbitrary quarti

oupling 
onstants is then a

essed by means of a di�erent large Nf -limit presented in Se
tion IV.We show that a symmetri
 phase also exists at large Yukawa 
oupling 
onstants. On small latti
es,however, this symmetri
 phase is shadowed by �nite volume e�e
ts preventing the expe
tation valueof the Higgs �eld from vanishing. We then end with a short summary and outlook.II. THE MODELAspiring to investigate the Higgs Se
tor of the Standard Model of ele
troweak intera
tions, we
onsider here a four-dimensional, 
hirally invariant latti
e Higgs-Yukawa model 
ontaining one four-
omponent, real Higgs �eld � and a number of Nf fermion doublets. The latter are represented byeight-
omponent spinors  (i), � (i) with i = 1; :::; Nf . However, these Nf doublets are all degeneratedwithin this model and 
orrespond to the heaviest fermion doublet only, i.e. to the top-bottom doublet.This is a reasonable simpli�
ation due to the fermion-Higgs 
oupling being proportional to the fermionmass. We have introdu
ed the fermion doublet number Nf nonetheless, be
ause it will be possible toa

ess the model analyti
ally in the limit of large numbers of (degenerated) fermion doublets.Furthermore, there are also Nf auxiliary fermioni
 doublets �(i), ��(i) present in the model, whi
hserve as a 
onstru
tion tool for the 
reation of a 
hirally invariant Yukawa intera
tion term. However,on
e the 
hiral invarian
e is established, these unphysi
al �elds 
an be integrated out leading to a more
ompli
ated model depending then only on the Higgs �eld � and the Nf physi
al fermion doublets (i). The partition fun
tion of the given model 
an be written asZ = Z D� NfYi=1 hD (i)D � (i)D�(i)D��(i)i exp ��S� � SkinF � SY � (1)with the total a
tion being de
omposed into the Higgs a
tion S�, the kineti
 fermion a
tion SkinF ,and the Yukawa 
oupling term SY . It should be stressed on
e again that no gauge �elds are in
ludedwithin this model.The four-dimensional spa
e-time latti
e, that the model is dis
retized upon, is assumed to haveL latti
e sites per dimension su
h that its total volume is V = L4. Here we allow for both, �nitesize latti
es with even L 2 N as well as latti
es with in�nite extension, i.e. L = 1, and we set thelatti
e spa
ing a to unity for 
onvenien
e. The kineti
 fermion a
tion des
ribing the propagation ofthe physi
al fermion �elds  (i), � (i) is then given in the usual manner a

ording toSkinF = NfXi=1Xn;m � (i)n D(ov)n;m (i)m � 2���(i)n 1n;m�(i)m (2)where the four-dimensional 
oordinates n;m as well as all �eld variables and 
oupling 
onstantsare given in dimensionless latti
e units throughout this paper. Here, the (doublet) Dira
 operatorD(ov) = D̂(ov)
D̂(ov) is given by the Neuberger overlap operator D̂(ov), whi
h is related to the Wilsonoperator D̂(W ) = 
E� 12 (rf� +rb�)� r2rb�rf� byD̂(ov) = �(1 + ÂpÂyÂ) ; Â = D̂(W ) � �; 1 � � < 2r (3)



3withrf�, rb� denoting the forward and ba
kward di�eren
e quotients, respe
tively. In absen
e of gauge�elds the eigenve
tors and eigenvalues of the Neuberger operator are expli
itly known. In momentumspa
e with the allowed four-
omponent momentap 2 P = ( (��; �℄
4 : for L =1f2�n=L : n 2 N0; n < Lg
4 : for L <1 (4)the eigenve
tors of the doublet operator D(ov) are given as	p;��kn = eip�n � u��k(p); u��k(p) =r12 � u�k(p)�u�k(p) � ; � = �1; � = �1; k 2 f1; 2g (5)with u�k(p) denoting the usual four-
omponent spinor stru
tureu�k(p) =r12  �k� ~p ��p~p2 �k ! for ~p 6= 0 and u�k(p) =r12 � �k��k � for ~p = 0; (6)respe
tively. Here �k 2 C2 are two orthonormal ve
tors and the four 
omponent quaternioni
 ve
tors�, �� are de�ned as � = (1;�i~�) and �� = (1;+i~�) = �y with ~� denoting the ve
tor of Pauli matri
es.It is well known that the eigenvalues ��(p) of D̂(ov) with Im[��(p)℄ ? 0 form a 
ir
le in the 
omplexplane, the radius of whi
h is given by the parameter �. These eigenvalues are expli
itly given by��(p) = �+ � � �ip~p2 + 2rp̂2 � �p~p2 + (2rp̂2 � �)2 ; ~p� = sin(p�); p̂� = sin�p�2 � : (7)The auxiliary �elds �(i) on the other hand do not propagate at all and their 
ontribution to SkinF is
hosen su
h that the model will obey an exa
t latti
e 
hiral symmetry.The Higgs �eld 
ouples to the fermions a

ording to the Yukawa 
oupling termSY = yNXn;m NfXi=1( � (i)n + ��(i)n ) �1n;m (1� 
5)2 �n + 1n;m (1 + 
5)2 �yn�| {z }Bn;m ( (i)m + �(i)m ) (8)where yN denotes the Yukawa 
oupling 
onstant and Bn;m will be referred to as Yukawa 
ouplingmatrix. Here the Higgs �eld �n is rewritten as a quaternioni
, 2� 2 matrix �n = �0n1� i�jn�j a
tingon the 
avor index of the fermioni
 doublets. Due to the 
hiral 
hara
ter of this model, left- andright-handed fermions 
ouple di�erently to the Higgs �eld, as 
an be seen from the appearan
e of theproje
tors (1� 
5)=2 in the Yukawa term. Multiplying out the involved Gamma- and Pauli-matri
esone 
an rewrite the Yukawa 
oupling matrix in the 
ompa
ti�ed formBm;n = Æm;n � B̂(�n); B̂(�n) = � �0n1+ i�3n
5 �2n
5 + i�1n
5��2n
5 + i�1n
5 �0n1� i�3n
5 � (9)being blo
k diagonal in position spa
e. The model then obeys an exa
t, but latti
e modi�ed, 
hiralsymmetry a

ording toÆ (i) = i� �
5�1� 12�D(ov)� (i) + 
5�(i)� ; Æ�(i) = i�
5 12�D(ov) (i); Æ� = 2i�� (10)Æ � (i) = i� � � (i) �1� 12�D(ov)� 
5 + ��(i)
5� ; Æ ��(i) = i� � (i) 12�D(ov)
5; Æ�y = �2i��y (11)with � denoting here the in�nitesimal parameter of the 
hiral transformation. Sin
e the (here omitted)latti
e spa
ing a appears in front of the Dira
 operators, this exa
t symmetry re
overs the 
ontinuum
hiral symmetry (after having integrated out the auxiliary fermion �elds) in the 
ontinuum limit [8℄.



4Finally, we use a slightly unusual notation for the Higgs a
tion S� given byS� = ��NXn;� �yn [�n+�̂ +�n��̂℄ +Xn �yn�n + �NXn ��yn�n �Nf�2 (12)where �N denotes the hopping parameter and �N is the quarti
 
oupling 
onstant. This notationwith Nf appearing in the quarti
 
oupling term (whi
h turns out to be more 
onvenient for the lateranalyti
al 
onsiderations) 
an easily be shown to be equivalent to the more 
ommonly used latti
eversion of the '4-a
tionS' = ��Xn;� 'yn ['n+�̂ + 'n��̂℄ +Xn 'yn'n + �Xn �'yn'n � 1�2 (13)by res
aling the 
oupling 
onstants �; �; y and the Higgs �eld ' a

ording to� = C � '; �N = �C4 ; �N = �C2 ; yN = yC ; (14)where the 
onstant C has to obey the 
onditionC2 � 2�NNfC2 = 1� 2�: (15)Furthermore, this latter a
tion in Eq. (13) 
an also easily be 
onne
ted to the usual 
ontinuum notationS'̂ = Xn �12 �rf�'̂�ynrf�'̂n + 12m20'̂yn'̂n + �0 �'̂yn'̂n�2� ; (16)whi
h expli
itly involves a bare mass m0 and the forward di�eren
e quotient rf�. This 
onne
tion isestablished by s
aling the �eld and 
oupling 
onstants a

ording to'n = '̂n̂C ; � = Ĉ4 � �0; � = Ĉ22 ; y = y0 � Ĉ (17)where the 
onstant Ĉ has to obey the relation1 = Ĉ2 � �m20 + 82 + 2�0Ĉ2� : (18)For the further analyti
al treatment of this model we integrate out the fermioni
 degrees of freedomleading to an e�e
tive Higgs model given byZ = Z D� exp (�Seff [�℄) (19)with the e�e
tive a
tion Seff [�℄ de�ned asexp (�Seff [�℄) = Z NfYi=1 hD (i)D � (i)D�(i)D��(i)i exp ��S� � SkinF � SY � : (20)By applying some adequate substitutions the Grassmann integrations 
an be performed allowing towrite the e�e
tive a
tion Seff [�℄ in terms of fermioni
 determinants a

ording toSeff [�℄ = S�[�℄�Nf � log hdet�yNBD(ov) � 2�D(ov) � 2�yNB�i : (21)



5III. LARGE Nf -LIMIT FOR SMALL YUKAWA COUPLING PARAMETERSIn this se
tion we will derive the phase stru
ture of the introdu
ed Higgs-Yukawa model in the largeNf -limit for small values of the Yukawa and quarti
 
oupling 
onstants. The idea is to fa
torize thenumber of involved fermion doublets Nf out of the e�e
tive a
tion Seff [�℄, sin
e the integral overall Higgs �eld 
on�gurations in Eq. (19) 
an then be redu
ed to the sum over all absolute minimaof the e�e
tive a
tion when sending Nf to in�nity. This fa
torization 
an be a
hieved by s
aling the
oupling 
onstants and the Higgs �eld itself a

ording toyN = ~yNpNf ; �N = ~�NNf ; �N = ~�N ; �n =pNf � ~�n ; (22)where the quantities ~yN , ~�N , ~�N , and ~�n are kept 
onstant in the limit Nf !1.One is thus left with the problem of �nding the absolute minima of Seff [�℄ in terms of the latterquantities. In general the operators B and D(ov) do not share a 
ommon eigenve
tor basis makingthe analyti
al evaluation of the determinant in Eq. (21) impossible for general, spa
e-time dependentHiggs �elds. However, for suÆ
iently small values of the Yukawa and quarti
 
oupling 
onstants thekineti
 term of the Higgs a
tion be
omes dominant allowing to restri
t the sear
h for the absoluteminima of Seff [�℄ to the ansatz�n = �̂ �pNf � �m+ s � (�1)P� n�� (23)taking only a 
onstant and a staggered mode of the Higgs �eld into a

ount. Here �̂ 2 IR4 denotesa 
onstant 4-dimensional unit ve
tor (j�̂j = 1), and we will refer to m; s 2 IR in the following asmagnetization and staggered magnetization, respe
tively.For the a
tual evaluation of the e�e
tive a
tion we use the fa
t that the matrix B now has adiagonal-plus-subdiagonal-blo
k-stru
ture in momentum spa
e due to the 
hosen ansatz for the Higgs�eld a

ording to�D(ov) � yN2� B �D(ov) � 2��� (p1; p2) = � ~yN2� "m � Æ(p1; p2) � B̂(p2)(�̂) � �D(ov)(p2)� 2�� (24)+ s � Æ(p1; }2) � U(p1; p2) � B̂(p2) � �D(ov)(p2)� 2��#+ Æ(p1; p2) � D(ov)(p2) ;where the diagonal part is 
aused by the 
onstant mode of the Higgs �eld, while the sub-diagonal
ontribution is 
reated by the staggered mode. In Eq. (24) this is expressed by }2 denoting the shiftedmomenta }2 = p2 + (�; �; �; �), where adequate modulo-operations are impli
it to guarantee that}2 2 P . The matri
es U(p1; p2), D(ov)(p), and B̂(p) are 8� 8-matri
es with the indi
es �1�1k1; �2�2k2and denote the spinor basis transformation matrixU(p1; p2)�1�1k1;�2�2k2 = �u�1�1k1(p1)�y u�2�2k2(p2); (25)the Dira
 matrix D(ov)(p)�1�1k1;�2�2k2 = Æ�1;�2 � Æk1;k2 � Æ�1;�2 � ��1(p); (26)and the Yukawa 
oupling matrixB̂(p)(�̂)�1�1k1;�2�2k2 = �u�1�1k1(p)�y B̂(�̂)u�2�2k2(p) (27)= Æk1;k2hÆ�1;�2Æ�1;�2 � �̂0 + Æ�1;��2ni�2Æ�1;�2�̂1 + Æ�1;��2 hi�̂3 + �2�̂2ioi;



6respe
tively. Due to this diagonal-subdiagonal-blo
k-stru
ture the determinant in Eq. (21) 
an thusbe fa
torized by merging the four 8 � 8 blo
ks, whi
h 
orrespond to the momentum indi
es (p; p),(}; p), (p; }), and (}; }). Up to some 
onstant terms, whi
h are independent of �, we 
an thus rewritethe e�e
tive a
tion asSeff [�℄ = S�[�℄�Nf � log �det�D(ov) � yN2� � B � �D(ov) � 2���� (28)= S�[�℄�Nf � log" Yp2P0�p3<� det�D(ov)(p)
D(ov)(})� ~yN2�M(p)�#; (29)where the restri
tion 0 � p3 < � has just been introdu
ed to prevent the double 
ounting that wouldo

ur if one would have performed the produ
t over all p 2 P after having merged the blo
ks. HereM(p) denotes these merged, momentum dependent 16� 16 matri
es given byM(p) = �M1;1(p) M1;2(p)M2;1(p) M2;2(p) � (30)with M1;1(p) = m � B̂(p)(�̂) � �D(ov)(p)� 2�� ; (31)M1;2(p) = s � U(p; }) � B̂(})(�̂) � �D(ov)(})� 2�� ; (32)M2;1(p) = s � U(}; p) � B̂(p)(�̂) � �D(ov)(p)� 2�� ; (33)M2;2(p) = m � B̂(})(�̂) � �D(ov)(})� 2�� : (34)The expression in Eq. (29) 
an be written more 
ompa
tly, taking the fa
t into a

ount that thematri
es involved in that expression are diagonal with respe
t to the index k due to Eq. (26), Eq. (27)and U(p; })�1�1k1;�2�2k2 = Æ�1;�2 � Æ�1;��2 � Æk1;k2 : (35)Sin
e one easily �nds that the determinant in Eq. (29) is invariant under the permutation p $ },one 
an extend the produ
t in that equation, whi
h is performed only over one half of the wholemomentum spa
e, again to the full momentum spa
e P by fa
torizing out the identity Æk1;k2 . Onethen obtains for the e�e
tive a
tionSeff [�℄ = S�[�℄�Nf � log24Yp2P det� �D(ov)(p)
 �D(ov)(})� ~yN2� �M(p)�35 ; (36)with the de�nitionsD(ov)(p) = Æk1;k2 � �D(ov)(p); M(p) = Æk1;k2 � �M(p); and Ma;b(p) = Æk1;k2 � �Ma;b(p); (37)where a; b 2 f1; 2g. Sele
ting a spe
ial order for the indi
es �� a

ording to f++;+�;�+;��g thelatter four 4� 4 matri
es are expli
itly given by�M1;1(p) = m �0BB� �̂0!+(p) i�̂1!�(p) 0 (i�̂3 � �̂2)!�(p)i�̂1!+(p) �̂0!�(p) (i�̂3 � �̂2)!+(p) 00 (i�̂3 + �̂2)!�(p) �̂0!+(p) �i�̂1!�(p)(i�̂3 + �̂2)!+(p) 0 �i�̂1!+(p) �̂0!�(p) 1CCA(38)�M1;2(p) = s �0BB� i�̂1!+(}) �̂0!�(}) (i�̂3 � �̂2)!+(}) 0�̂0!+(}) i�̂1!�(}) 0 (i�̂3 � �̂2)!�(})(i�̂3 + �̂2)!+(}) 0 �i�̂1!+(}) �̂0!�(})0 (i�̂3 + �̂2)!�(}) �̂0!+(}) �i�̂1!�(}) 1CCA(39)



7where the abbreviation !�(p) = ��(p) � 2� was used. The remaining matri
es �M2;2(p) and �M2;1(p)are obtained from �M1;1(p), �M1;2(p) by inter
hanging p and }. Using some algebrai
 manipulationpa
kage, the determinant of the 8�8 matrix in Eq. (36) 
an be 
omputed leading to the �nal expressionfor the e�e
tive a
tionSeff [�℄ = S�[�℄�Nf �Xp2P log " ����+(p)�� � ���+(})��+ ~y2N4�2 �m2 � s2� � ���+(p)� 2��� � ���+(})� 2����2+ m2 ~y2N4�2� ���+(p)� 2��� � ���+(})��� ���+(})� 2��� � ���+(p)�� �2#2: (40)With the ansatz in Eq. (23) the Higgs �eld a
tion S� 
an also be written in terms of the quantitiesm and s. One easily �ndsS� = Nf � L4 �(� 8~�N�m2 � s2�+m2 + s2 + ~�N�m4 + s4 + 6m2s2 � 2 �m2 + s2� �): (41)Two remarks are in order here for the orientation of the reader.(I) The resulting phase stru
ture in the large Nf -limit 
an now be obtained by minimizing thee�e
tive a
tion with respe
t to m and s. In prin
iple one 
ould derive the 
orresponding phasediagrams for all values of the quarti
 
oupling 
onstant ~�N � 0. However, as one 
an easily �nd fromEq. (15) the 
ase ~�N > 0:5 
orresponds to the strong self-
oupling regime � � 1 of the physi
allyunderlying '4-theory given in Eq. (13) for large values of Nf . In that regime it is no longer reasonableto evaluate the e�e
tive a
tion due to the strong self-intera
tion of the Higgs-�eld in that 
ase. Wetherefore restri
t the allowed range for the quarti
 
oupling to 0 � ~�N < 0:5, whi
h 
orresponds tothe weak self-
oupling regime of the physi
al model in Eq. (13).(II) The sum over all allowed momenta P in Eq. (40) be
omes a four-dimensional momentumintegral over P for L =1 a

ording to1L4 Xp2P ::: ! Zp2P d4p(2�)4 ::: (42)whi
h was a
tually used in the numeri
al evaluation of the e�e
tive a
tion.~�N = 0:1 ~�N = 0:3
~�N

~yN
SYM FMAFM AFM FI ~�N

~yN
SYM FMAFM AFMFI!FIG. 1: Phase diagrams with respe
t to the Yukawa 
oupling 
onstant ~yN and the hopping parameter ~�N forthe 
onstant quarti
 
ouplings ~�N = 0:1 (left) and ~�N = 0:3 (right). The bla
k line indi
ates the �rst orderphase transitions. Both phase diagrams were determined for L =1. An explanation of the o

urring phasesis given in the text.



8We now present the phase diagrams for ~�N = 0:1 and ~�N = 0:3 in Fig. 1. These phase diagramswere 
al
ulated for an in�nite latti
e, i.e. for L =1. Here we distinguish between the following fourphases:(I) The symmetri
 phase (SYM): m = 0; s = 0(II) The ferromagneti
 phase (FM): m 6= 0; s = 0(III) The anti-ferromagneti
 phase (AFM): m = 0; s 6= 0(IV) The ferrimagneti
 phase (FI): m 6= 0; s 6= 0In both 
ases, i.e. ~�N = 0:1 and ~�N = 0:3, one �nds a symmetri
 phase approximately 
entered around~�N = 0 at suÆ
iently small values of the Yukawa 
oupling 
onstant ~yN , as one would have expe
ted,sin
e the model be
omes the pure �4-theory in the limit ~yN ! 0. From the same 
onsideration onewould also expe
t the a

ompanying phase transitions to be of se
ond order. This is indeed the 
aseas 
an 
learly be seen in Fig. 2 showing the expe
tation values of the amplitudes m and s for di�erentvalues of ~yN as obtained in the minimization pro
ess. With in
reasing ~yN the symmetri
 phase bendsdownwards to negative values of the hopping parameter ~�N , unless it either hits a �rst order phasetransition to an anti-ferromagneti
 phase (bla
k line in Fig. 1), the order of whi
h 
an be determinedfrom Fig. 3 (this is the 
ase for ~�N = 0:1), or it eventually goes over into two FM-FI and FI-AFMse
ond order phase transitions, whi
h is the 
ase for ~�N = 0:3.Here we present only the expe
tation values of m and s for ~�N = 0:3 and not for ~�N = 0:1, sin
ethe latter plots would not provide qualitatively new information to the reader.Interestingly, the ferrimagneti
 phase (FI) exists in both presented s
enarios, i.e. for ~�N = 0:1 and~�N = 0:3, even deeply inside the anti-ferromagneti
 phase region in the neighbourhood of the �rstorder phase transition boundary. However, due to the small expe
tation value of the amplitude m ofthe 
onstant mode (see Fig. 2) it is questionable whether this ferrimagneti
 phase will be observablein 
orresponding numeri
al simulations.
IV. LARGE Nf -LIMIT FOR LARGE YUKAWA COUPLING PARAMETERSIn this se
tion we will examine the phase diagram of the 
onsidered Higgs-Yukawa model in theregime of large values of the Yukawa 
oupling 
onstant yN and for arbitrary values of the quarti

oupling 
onstant �N � 0. This will be done in three steps. Firstly, the e�e
tive a
tion is expanded inpowers of the inverse 
oupling 
onstant 1=yN . Taking only the �rst non-vanishing 
ontribution of thispower series into a

ount and performing the large Nf -limit in su
h a way, that the amplitude of theHiggs �eld is �xed, the model then e�e
tively be
omes an O(4)-symmetri
, non-linear sigma-modelup to some �nite volume terms. Finally, the phase diagram of the latter sigma-model is determinedby an additional large N -limit, where N denotes here the number of Higgs �eld 
omponents.For an evaluation of the e�e
tive a
tion it is 
ru
ial to pay spe
ial attention to the fermion doublermodes Q� = �	p;��k : p� 2 f0; �g; p 6= 0; �; � = �1; k 2 f1; 2g	 (43)whi
h we will refer to as �-modes in the following. Given these 120 modes one 
an de�ne the 
orre-sponding proje
tion operator P� = X	2Q�		y (44)proje
ting to the sub-spa
e V� = span(Q�) spanned by Q�. Using this notation one 
an easilyestablish the very helpful relationdet (E (1� P�) + P�FP�) = det ((1� P�)E (1� P�) + P�FP�)= det ((1� P�)E + P�FP�) = det0 (E) � det� (F ) (45)
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ỹN = 0.0 ỹN = 0.5 ỹN = 1.0

-0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2~�N0.00.51.01.52.02.50.00.51.01.52.02.50.00.51.01.52.02.53.0

FIG. 2: Expe
tation values for the amplitudes of the 
onstant (m: bla
k 
urve) and staggered (s: gray
urve) modes for several sele
ted values of the Yukawa 
oupling 
onstant ~yN and a 
onstant quarti
 
oupling~�N = 0:3. The results were obtained for L =1.where E and F are arbitrary operators de�ned on the same spa
e V as D(ov) and B. Here theexpression det� (F ) denotes the determinant of F with respe
t to the sub-spa
e V� and det0 (E) is thedeterminant of E with respe
t to the 
omplementary spa
e V=V� � span(Q=Q�), where Q denotesthe full set of all modes. Using Eq. (45) several times one 
an rewrite the e�e
tive a
tion a

ording toe�Seff [�℄�S�Nf = det�yNB �D(ov) � 2��� 2�D(ov)� (46)= ��4�2�120 � det0 �yNB0 �D0(ov) � 2�10�� 2�D0(ov)�= ��4�2�120 � det0 (yN ) � det0 �D0(ov) � 2�10� � det0�B0 � 2�yND0(ov) �D0(ov) � 2�10��1�= Const � det�B � (B � 1)P� � 2�yNA�= Const � det (B) � det �1� �1�B�1�P�� � det�1� 2�yN B�1A �1� �1�B�1�P���1�where D0(ov), B0, and 10 denote the restri
tion of the operators D(ov), B, and 1 to the sub-spa
e



10
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ỹN = 6.0 ỹN = 6.5 ỹN = 7.0
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FIG. 3: Expe
tation values for the amplitudes of the 
onstant (m: bla
k 
urve) and staggered (s: gray
urve) modes for several sele
ted values of the Yukawa 
oupling 
onstant ~yN and a 
onstant quarti
 
oupling~�N = 0:3. The results were obtained for L =1.V=V�. This restri
tion is introdu
ed, sin
e it guarantees D0(ov) � 2�10 to be invertible. The operatorA is then de�ned by extending the domain of the inverse of D0(ov)� 2�10 again to the full spa
e V byinserting the proje
tor 1� P� a

ording toA = D0(ov) � hD0(ov) � 2�10i�1 � (1� P�) ; (47)whi
h is well-de�ned and �nite over the whole spa
e V . The last determinant in Eq. (46) 
an furtherbe redu
ed by using the result�1� �1�B�1�P���1 = 1� P� + P� �1� P� + P�B�1P���1 P�� (1� P�)B�1P� �1� P� + P�B�1P���1 P� (48)and by applying again relation (45) leading to the 
ompa
t notation for the e�e
tive a
tionSeff [�℄ = S� � Nf � log det (B)�Nf � log det� �B�1��Nf � log det��1+ 2�yN F [�℄�� Nf � log det�1� 2�yN A �B�1� ; (49)



11with the abbreviation F [�℄ de�ned as the somewhat lengthy expressionF [�℄ = �1� 2�yN B�1A��1B�1AB�1P� �1� P� + P�B�1P���1 : (50)However, the latter determinants det� only give rise to some �nite volume e�e
ts, sin
e these determi-nants are only performed over the 120-dimensional sub-spa
e V� . Their 
ontributions to the e�e
tivea
tion do therefore not s
ale proportional to L4 as the latti
e size in
reases in 
ontrast to all otherappearing terms. We will 
ome ba
k to dis
ussing these �nite volume e�e
ts later. Here, we will �rst
ontinue with the evaluation of the last term in Eq. (49) by rewriting the 
orresponding tra
e as apower series in the inverse 
oupling 
onstant 1=yN a

ording toTr log�1� 2�yNA � B�1� = �Tr 1Xr=1 2rr � �yN �r �AB�1�r (51)and by eventually 
utting o� this power series after the �rst non-vanishing term, whi
h is well-justi�edfor suÆ
iently large yN . For our purpose of establishing the desired 
onne
tion to a sigma-model itis most 
onvenient to evaluate these expressions in position spa
e. Here the matrix B�1 is blo
kdiagonal and expli
itly given byB�1 = By � �BBy��1 ; B�1m;n = Æm;n � B̂(��n=j�nj2); (52)where the notation (��n)0 = �0n, (��n)i = ��in was used and B̂ was de�ned in Eq. (9). In positionspa
e the matrix AB�1 
an hen
e be written as�AB�1�n1;n2 = Xp2PX��k eipn1u��k(p)��(p)e�ipn2 �u��k(p)�yj	p;��kj2 B̂(��n2=j�n2 j2) (53)= 1L4 Xp2P X��k�0�0k0 ��(p)eip(n1�n2)u��k(p) �B̂(p)(��n2=j�n2 j2)���k;�0�0k0 hu�0�0k0(p)iywith B̂(p) as de�ned in Eq. (27). The s
alars ��(p) denote the eigenvalues of the anti-hermitianoperator A 
orresponding to its eigenve
tors 	p;��k and are expli
itly given byiIR 3 ��(p) = ( ��(p)��(p)�2� : p 2 P ; ��(p) 6= 2�0 : p 2 P ; ��(p) = 2� : (54)The result for the tra
e of the operator AB�1 is then dire
tly found to beTr �AB�1� = 1L4 Xn Xp2PTr8�8 hj�nj�2A(p)B̂(p)(��n)i ; (55)whi
h 
an be generalized to the tra
e of the r-th power of AB�1 yieldingTr �AB�1�r = Xn1;:::;nrp1;:::;pr2P Tr8�8 " rYi=1 eipi(ni�ni+1)L4 j�ni+1 j�2A(pi)�B̂(pi)(��ni+1)�U(pi; pi+1)#(56)where pn+1 is identi�ed with p1, and xn+1 with x1, and the expression A(p) stands for the diagonalmatrix A(p)�1�1k1;�2�2k2 = Æ�1;�2 � Æ�1;�2 � Æk1;k2 � ��1(p): (57)At this point we refer the interested reader to Appendix A for the details of this 
al
ulation in orderto sustain the readability of this text.



12However, it turns out that the evaluation of Eq. (56) be
omes mu
h easier, if one inserts the identityU(pi; 0)U(0; pi) at some proper pla
es. The remaining 8� 8 tra
e 
an then be simpli�ed toTr8�8 " rYi=1A(pi)�B̂(pi)(��ni+1)�U(pi; pi+1)# = Tr8�8 " rYi=1A(0)(pi)�B̂(0)(��ni+1)�# ; (58)where the representation B̂(0)(�yn) of the Yukawa 
oupling matrix 
an dire
tly be taken from Eq. (27)and A(0)(p) is given by A(0)(p) = U(0; p)A(p)U(p; 0)= �+(p)p~p2 � � ~p0 �~~p~�~~p~� �~p0 �
� ~p0 �~~p~�~~p~� �~p0 � (59)where the relation �+(p) = ���(p) has impli
itly been used. Due to the insertion of the spinor basistransformation matri
es U(pi; 0) and U(0; pi) the sums over the momenta in Eq. (56) fa
torize nowa

ording toTr �AB�1�r = Xn1;:::;nr Tr8�8 " rYi=10�Xpi2P eipi(ni�ni+1)L4 A(0)(pi)1A j�ni+1 j�2 �B̂(0)(��ni+1)�| {z }Tni;ni+1 # (60)where ea
h momentum sum is a four-dimensional Fourier transform of an anti-symmetri
 and purelyimaginary summand, hen
e yielding real values. With the de�nitionIR 3 ��(�n) = ���(��n) =Xp2P eip�nL4 �+(p) � ~p�p~p2 (61)the hermitian matrix Tn;m appearing in Eq. (60) 
an 
ompa
tly be written asTn;m = 1j�mj2 �0BB� �0m�0 + i�1m~�~� �i�1m�0 � �0m~�~� (i�3m � �2m)~�~� (�i�3m +�2m)�0�0m~�~�+ i�1m�0 �i�1m~�~�� �0m�0 (i�3m � �2m)�0 (�i�3m +�2m)~�~�(i�3m +�2m)~�~� �(i�3m +�2m)�0 �0m�0 � i�1m~�~� i�1m�0 � �0m~�~�(i�3m +�2m)�0 �(i�3m +�2m)~�~� �0m~�~�� i�1m�0 i�1m~�~�� �0m�0 1CCA (62)with the abbreviations �� � ��(�n) and �n = n �m. Therefore, the �rst order summand of thepower series in Eq. (51) reading Tr �AB�1� =Xn Tr8�8 [Tn;n℄ = 0 (63)is identi
al to zero and the �rst non-vanishing 
ontribution is the se
ond order term, whi
h 
an beevaluated by expli
itly 
omputing the 8� 8 tra
e, yieldingTr �AB�1�2 = Xn1;n2 Tr8�8 [Tn1;n2Tn2;n1 ℄= �8 � Xn1;n2 ��n1��n2j�n1 j2 � j�n2 j2 � j�(�n)j2 : (64)Cutting o� the power series in Eq. (51) after this �rst non-vanishing term, whi
h is well justi�ed forsuÆ
iently large values of the Yukawa 
oupling 
onstant, the e�e
tive a
tion 
an be written asSeff [�℄ = S� � Nf � Xn log(j�nj8) + (4�)2y2N Xn1;n2 j�(�n)j2 �yn1�n2j�n1 j2 � j�n2 j2! (65)� Nf � log det� �B�1��Nf � log det��1+ 2�yN F [�℄�



13where the matrix F [�℄ has been de�ned in Eq. (50).Some remarks 
on
erning the remaining determinants in the latter result are in order here for theorientation of the reader. Here det� denotes the determinant over the sub-spa
e V�, whi
h has thedimension 120. In 
ontrast to all other terms appearing in the e�e
tive a
tion these determinants arenot proportional to L4. They are therefore suppressed as the latti
e size L goes to in�nity. Moreover,the very last term in Eq. (65) even vanishes on �nite latti
es when the Yukawa 
oupling 
onstant yNbe
omes large. This is in 
ontrast to the determinant det�(B�1) being independent of yN . However,it is nevertheless quite instru
tive to 
onsider these �nite volume e�e
ts in more detail. This 
an atleast be done for the �rst determinant det�(B�1), whi
h 
an be exa
tly evaluated for the ansatz givenin Eq. (23) taking only a 
onstant and a staggered mode of the Higgs �eld into a

ount. In that 
asethe inverse of B 
an also be des
ribed in terms of a 
onstant and a staggered mode a

ording to�n=j�nj2 = �̂ �N� 12f �� ~m+ ~s � (�1)P� n�� ; ~m = mm2 � s2 ; ~s = ss2 �m2 (66)whi
h allows to determine the desired determinant in a similar manner as des
ribed in Se
tion IIIyielding log det� �B�1� = �60 log (Nf ) + 8 log j ~mj+ 56 log �� ~m2 � ~s2�� : (67)The obvious asymmetry in m and s is 
aused by the fa
t that the 8 zero modes 	0;��k are notin
luded in the sub-spa
e V� . The e�e
t of the latter terms and espe
ially the asymmetry in m and sis 
learly observed in 
orresponding Monte-Carlo simulations [16℄ on small latti
es and large values ofthe Yukawa 
oupling 
onstant yN . Moreover, the result in Eq. (67) would also hinder the expe
tationvalue of the Higgs �eld from vanishing, thus obs
uring the potential existen
e of symmetri
 phases atlarge yN on small latti
es. However, as the latti
e size in
reases these �nite volume e�e
ts eventuallydisappear. In the following we will therefore negle
t the det� terms in the e�e
tive a
tion (65), whi
his well justi�ed on suÆ
iently large latti
es.To establish the announ
ed 
onne
tion to a sigma-model we now 
onsider the large Nf -limit wherethe 
oupling 
onstants s
ale a

ording toyN = ~yN ; ~yN = 
onst; �N = ~�NNf ; ~�N = 
onst; �N = ~�NNf ; ~�N = 
onst; (68)and for the Higgs �eld we 
onsider an ansatz in whi
h the amplitude of the lo
al ve
tors �n is �xedto ' 2 IR a

ording to �n =pNf � ' � �n; j�nj = 1 (69)where the four-
omponent, spa
e-time position dependent unit ve
tors �n are arbitrary. In this settingthe 
ontributions to the (redu
ed) e�e
tive a
tion are either of order O(Nf ) or O(1). Consideringonly the leading order terms, for whi
h the fermion doublet number Nf 
an be 
ompletely fa
torizedout, then allows to �x the Higgs �eld amplitude ' by the determination equation0 = �4 � 1'2 + 1 + 2~�N � �'2 � 1� : (70)With this �xation of the Higgs �eld amplitude the model in Eq. (65) be
omes e�e
tively a non-lo
al,four-dimensional, non-linear sigma-model in the large Nf -limit given bySeff = � Xn1;n2 �effn1;n2 � �yn1�n2 (71)with the e�e
tive, non-lo
al 
oupling matrix�effn1;n2 = 16�2~y2N'2 j�(�n)j2 + ~�N � '2 � �4X�=�1 Æ�n;ê� : (72)



14Here the notation "non-lo
al" simply refers to the fa
t, that the �eld �n at any latti
e site n 
ouplesitself to any other site of the latti
e. This leaves nevertheless open the possibility that the intera
tion islo
al in a �eld theoreti
al sense with exponentially de
aying 
oupling strength [17℄. We did, however,not investigate the question in this paper, sin
e eventually we are mostly interested in the smallYukawa 
oupling region.Basi
ally, the out
ome in Eq. (72) reprodu
es the result whi
h was found for a Higgs-Yukawa modelbased on Wilson fermions [12℄ with the only di�eren
e that the 
oupling matrix in that 
ase 
onsistedonly of nearest-neighbour 
ouplings.The phase diagram of the obtained sigma-model (71) 
an be determined analyti
ally by an additionallargeN -limit withN denoting here the number of 
omponents of the ve
tors �n. The �rst step towardsthis evaluation is to remove the restri
tion j�nj = 1 by introdu
ing an auxiliary one-
omponent, real�eld �n. This 
an be done at least in two ways. One 
an either en
ode the restri
tion j�nj = 1 as aÆ-fun
tion [18℄ written in terms of an integration of exp(i�n(j�nj2 � 1)) over �n, or alternatively, one
an address this restri
tion by introdu
ing the �eld variables �n as Lagrange-multipliers [19℄. Herewe follow the latter approa
h whi
h leads us to the extended a
tionS[�; �℄ = 1tN �(Xn1;n2 NXi=1 ��effn1;n2 � �in1 � �in2 +Xn �n � NXi=1 ��in�2 � 1!) (73)the minima of whi
h 
an now be sear
hed for without having to 
onsider any restri
tion on the Higgs�eld amplitude. Here, an additional parameter tN was introdu
ed. For tN = 1 the given a
tion
orresponds to the prior form of the a
tion. This new parameter is inserted, sin
e it will allow tofa
torize a fa
tor N out of the a
tion as required by the large N approa
h. This 
an be a
hieved bys
aling tN a

ording to tN = ~tNN ; ~tN = 
onst; (74)where we 
hoose the setting ~tN = 4, sin
e this re
overs our a
tual e�e
tive sigma-model at N = 4.The remaining problem to solve is to �nd the minimum of the a
tion S[�; �℄. However, it is wellknown from investigations of pure sigma-models that the phase transitions of su
h models 
annotbe 
orre
tly determined by evaluating the e�e
tive a
tion S[�; �℄ in Eq. (73) dire
tly by restri
tingthe 
onsideration to only some sele
ted modes of the �elds � and �. (Doing so would yield a �rstorder phase transition at ~�N = 0.) This is in 
ontrast to the situation we dis
ussed in Se
tion III.Instead, we �rst integrate out all modes of all N 
omponents of the �eld � ex
ept for the 
onstantand staggered modes. This 
an be done by taking only the 
onstant mode of the auxiliary �eld �ninto a

ount, i.e. �n � � = 
onst. Doing so redu
es the a
tion S[�; �℄ toS[mi; si; �℄ = � ln �det0 ���eff + ����N=2 + 1tN( NXi=1 �mi�2 � 
0 ����eff + ��� 0�+ NXi=1 �si�2 � 
� ����eff + ������ L4�); (75)depending only on the real s
alar � and the amplitudes mi, si of the 
onstant and staggered modes,respe
tively. Here the notations j0i and j�i were used, denoting the 
onstant and staggered modes(normalized by a fa
tor 1=pL4) a

ording tojki � r 1L4 eik�n (76)being eigenve
tors of �eff and det0 is the determinant negle
ting the two latter modes. For 
onve-nien
e, the introdu
ed short-hand notation 0 � (0; 0; 0; 0) and � � (�; �; �; �) will also be applied inthe following where it is unambiguous.One remark is in order here for the orientation of the reader. The performed Gauss-integrationsare only well-de�ned, if the involved eigenvalues of the operator ��eff + � are positive, whi
h is not



15guaranteed at this point. However, this step will be justi�ed (and made more pre
ise) a posterioriwhen a 
ertain value for the s
alar � will be assumed by solving the resulting gap equations. Here wewill �rst 
ontinue with this formal expression and postpone its further dis
ussion to the end of thisse
tion.To evaluate this latter determinant, the eigenvalues of the matrix �eff need to be known. Theeigenve
tors are simply plane waves with wave ve
tors k 2 P and one easily �nds the 
orrespondingeigenvalues a

ording toXn2 �effn1;n2 � eikn2 =  2~�N'2 4X�=1 
os(k�) + 16�2~y2N'2 � q(k)! � eikn1 (77)where q(k) denotes the eigenvalues of the matrix j�(�n)j2 given byIR 3 q(k) = 1L4 Xp2P �+(p) � �+(}) � ~p � ~}p~p2 �p ~}2 ; } = k � p: (78)For the numeri
al evaluation of this quantity it is useful to use some symmetries of q(k). One hasq(k) = q(k0) at least, if k0 is a permutation of the 
omponents of k, or if k0� = �k� for all �.Now we 
an sear
h for the absolute minima of the e�e
tive a
tion in Eq. (75). For this purpose werelate the amplitudes mi, si to the values of the overall magnetization m and staggered magnetizations, respe
tively, a

ording to mi =rL4N m and si =rL4N s: (79)With this notation one dire
tly obtains from the e�e
tive a
tion in Eq. (75) the following expressionin terms of the quantities m; s and �S[m; s; �℄ = N2 Tr0 ln ���eff + ��+ N~tN �m2 � L4 � ��8~�N'2 � 16�2~y2N'2 q(0) + ��+ N~tN � s2 � L4 ��+8~�N'2 � 16�2~y2N'2 q(�) + ��� N~tN L4�; (80)where the summation over the 
oupling matrix 
omponents has been performed by using Eq. (77) withthe settings k = (0; 0; 0; 0) � 0 and k = (�; �; �; �) � �, respe
tively. Analogously to det0, Tr0 denotesthe tra
e negle
ting the modes j0i and j�i. We 
an now derive the 
orresponding gap equations bydi�erentiating with respe
t to m, s, and � leading to0 = m � ����8~�N'2 + 16�2~y2N'2 � q(0)�� ; (81)0 = s � �����8~�N'2 + 16�2~y2N'2 � q (�)�� ; (82)m2 + s2 = 1� ~tN4 1L4 Xk2P0 6=k 6=� "�~�N'2 4X�=1 
os(k�)� 8�2~y2N'2 q(k) + �2#�1 : (83)Equation (81) implies that m or the given argument within the square bra
kets has to vanish. Ananalogous observation 
an be drawn from Eq. (82). For the investigation of the phase stru
ture we now
onsider two di�erent s
enarios for the amplitudes m and s, namely a ferromagneti
 phase (m 6= 0,s = 0) and an anti-ferromagneti
 phase (m = 0, s 6= 0). For ea
h of these 
ases we 
an then derive aself-
onsisten
y relation:
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AFMFIG. 4: Phase diagrams for L = 1 with respe
t to the Yukawa 
oupling 
onstant ~yN and the hoppingparameter ~�N for several sele
ted values of the quarti
 
oupling 
onstant ~�N . The presented phase stru
turewas determined for � = 10�1, while the bla
k lines show the phase transition lines obtained for � = 10�3. Anexplanation of the �-dependen
e of the presented results is given in the text.1. For a ferromagneti
 phase (FM) (m 6= 0, s = 0) one obtains from (81)� = 8~�N'2 + 16�2~y2N'2 � q(0) (84)and hen
e the following self-
onsisten
y relation0 < m2 = 1� ~tN4 1L4 Xk2Pm(�)0 6=k 6=� " ~�N'2 4X�=1 (1� 
os(k�)) + 8�2~y2N'2 (q(0)� q(k))| {z }Wm(k) #�1: (85)2. For an anti-ferromagneti
 phase (AFM) (m = 0, s 6= 0) one obtains from (82)� = �8~�N'2 + 16�2~y2N'2 � q (�) (86)and hen
e the self-
onsisten
y relation0 < s2 = 1� ~tN4 1L4 Xk2Ps(�)0 6=k 6=� "�~�N'2 4X�=1 (1 + 
os(k�)) + 8�2~y2N'2 (q (�)� q(k))| {z }Ws(k) #�1: (87)
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FIG. 5: Expe
tation values for the amplitudes of the 
onstant (m: bla
k 
urve) and staggered (s: gray 
urve)modes for several sele
ted values of the Yukawa 
oupling 
onstant ~yN and the quarti
 
oupling parameters~�N = 0:0 and ~�N = 0:1. The results were obtained for L =1.Three further remarks shall be given here.(I) The equations (85) and (87) are denoted as self-
onsisten
y relations be
ause the assumption ofa (anti-)ferromagneti
 phase be
omes in
onsistent, if the resulting value for m2 (or s2, respe
tively)be
omes non-positive. If both assumptions be
ome in
onsistent simultaneously, this 
orresponds toa symmetri
 phase (SYM) with m = s = 0, while the 
ase m2 > 0 and s2 > 0 is denoted as aferrimagneti
 phase (FI).(II) For the ferromagneti
 phase the 
hoi
e of � a

ording to Eq. (84) justi�es the integrationperformed in Eq. (75) a posteriori, be
ause it suÆ
iently shifts the eigenvalues 2Wm(k) of the matrix��eff + � to make all of them positive, ex
ept for the 
onstant mode (k = 0) whi
h was ex
ludedfrom the Gauss-integration.(III) For the anti-ferromagneti
 phase, in 
ontrast, 
hoosing � a

ording to Eq. (86) does notguarantee all eigenvalues 2Ws(k) of ��eff + � to be positive. The Gauss-integration in Eq. (75) 
antherefore only be performed for all those modes 0 6= k 6= � whi
h ful�ll Ws(k) � � with an arbitrarylower bound � > 0. The details of this statement are presented in Appendix B. The results of thismore 
areful 
onsideration are already presented in Eq. (85) and Eq. (87). The only di�eren
e to thenaive result is that the set over whi
h the sum has to be performed is redu
ed from P to Ps(�) withthe de�nitions Pm(�) = nk 2 P : Wm(k) � �o and Ps(�) = nk 2 P : Ws(k) � �o; (88)where the introdu
tion of the set Pm(�) is a
tually unne
essary due to the previous remark (II).The 
orresponding phase stru
ture 
an now be obtained by numeri
ally evaluating equations (85)and (87). For some sele
ted values of the quarti
 
oupling ~�N the resulting phase diagrams withrespe
t to the parameters ~�N and ~yN are shown in Fig. 4. All presented results were obtained foran in�nite latti
e, i.e. L = 1. For ~yN ! 1 the e�e
tive 
oupling matrix in Eq. (72) 
onverges to
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FIG. 6: Expe
tation values for the amplitudes of the 
onstant (m: bla
k 
urve) and staggered (s: gray 
urve)modes for several sele
ted values of the Yukawa 
oupling 
onstant ~yN and the quarti
 
oupling parameters~�N = 1:0 and ~�N = 10:0. The results were obtained for L =1.the 
oupling stru
ture of a pure nearest-neighbour sigma-model. One therefore expe
ts a symmetri
phase 
entered around ~�N = 0 at large values of the Yukawa 
oupling 
onstant ~yN as 
an be observedin the plots. For de
reasing ~yN the symmetri
 phase bends towards negative values of ~�N . In theplots the results for the phase transition lines obtained for � = 10�1 and � = 10�3 are 
ompared toea
h other. While the phase transition line to the ferromagneti
 phase is una�e
ted by small 
hangesto � as expe
ted, the 
urves start to di�er for the anti-ferromagneti
 phase transition at small valuesof ~yN . The dis
repan
y between these two lines 
an serve as an indi
ator down to whi
h value of~yN the negle
tion of the modes with Ws(k) < � 
an be 
onsidered as a good approximation (besidesthe un
ertainties arising from 
utting o� the power series in Eq. (51) at small values of ~yN ). Weadd here, that we 
hose the presented parameter range in all phase diagrams su
h that the volumeof the spa
e of the 
onsidered modes is at least 95% of the volume of the whole mode spa
e, i.e.Vol(Ps(�)) � 0:95 �Vol(P). For ~yN !1 the volume of the negle
ted modes vanishes and the problemen
ountered during the Gauss-integration in Eq. (75) eventually disappears.The order of the phase transitions 
an again be determined by 
al
ulating the expe
tation values ofthe amplitudes of the 
onstant and staggered modes m and s dire
tly from equations (85) and (87).The 
orresponding results are presented in Fig. 5 and Fig. 6. One 
learly sees that the o

urring phasetransitions are of se
ond order as one would also expe
t from the limit ~yN ! 1 where the modelbe
omes a sigma-model. V. SUMMARY AND CONCLUSIONSIn this paper we have studied analyti
ally the phase stru
ture of a 
hirally invariant latti
e Higgs-Yukawa model, originally proposed by L�us
her. This was possible in the large Nf -limit for smallas well as for large values of the Yukawa 
oupling 
onstant and it 
ould be shown that the modelpossesses a ri
h phase stru
ture.In Se
tion III we began by 
onsidering the model at small values of the Yukawa and quarti
 
oupling
onstant and argued that taking only the 
onstant (m) and staggered (s) modes of the Higgs �eld



19into a

ount is suÆ
ient for the determination of the phases in that regime of the Yukawa and quarti

oupling 
onstant. We then presented an expli
it expression for the e�e
tive potential at tree-levelin terms of m and s and showed the 
orresponding phase diagrams for some sele
ted values of thequarti
 
oupling 
onstant. In these diagrams all possible phases, i.e. symmetri
 (m = 0, s = 0),ferromagneti
 (m 6= 0, s = 0), anti-ferromagneti
 (m = 0, s 6= 0), and ferrimagneti
 phases (m 6= 0,s 6= 0), 
ould be observed. Furthermore, we 
on
luded from our result for the e�e
tive potentialthat the o

urring phase transitions from the symmetri
 to the ferromagneti
 and anti-ferromagneti
phases are of se
ond order.In the following Se
tion IV we pro
eeded to the regime of large values of the Yukawa 
oupling
onstant yN . We showed that for suÆ
iently large values of yN and arbitrary values of the quarti

oupling 
onstant �N the model be
omes an O(4)-symmetri
, non-linear sigma-model in the large Nf -limit up to some �nite-volume terms. In parti
ular, this relation to a sigma-model has the 
onsequen
ethat a symmetri
 phase also exists at large values of the Yukawa 
oupling 
onstant. We determined thephase stru
ture of the latter sigma-model by an additional large N -limit with N denoting the numberof Higgs �eld 
omponents here. The 
orresponding phase diagrams revealed again a ri
h stru
ture
onsisting of symmetri
, ferromagneti
, and anti-ferromagneti
 phases separated by se
ond order phasetransitions. The symmetri
 phase, however, was shown to emerge only in the in�nite volume limit.For small latti
es, �nite volume e�e
ts 
ause an asymmetry in m and s whi
h one would not expe
tin a pure sigma-model. These �nite volume e�e
ts may easily give rise to a misleading interpretationthat a symmetri
 phase at strong values of the Yukawa 
oupling 
onstant does not exist. However, onsuÆ
iently large latti
es the symmetri
 phase should be
ome 
learly observable and the asymmetryshould disappear.The validity of our analyti
al results and in parti
ular the latter predi
tions about the symmetri
phase at large yN will be 
onfronted in an up
oming paper with the results of 
orresponding Monte-Carlo simulations in
luding the 
hiral invariant fermions in a fully dynami
al fashion.APPENDIX AIn this appendix we would like to make up for the negle
ted derivation of Eq. (56). Starting fromEq. (53) one �ndsTr �AB�1�r = Xn1;:::;nr Tr8�8 ��AB�1�n1;n2 � ::: � �AB�1�nr;n1� (A1)= Xn1;:::;nr X�1�1k1;:::;�r�rkr�01�01k01;:::;�0r�0rk0r Xp1;:::;pr2P eip1(n1�n2)L4 � ::: � eipr(nr�n1)L4� Tr8�8 "u�1�1k1(p1)��1(p1)�B̂(p1)(��n2=j�n2 j2)��1�1k1;�01�01k01 hu�01�01k01(p1)iy � u�2�2k2(p2)| {z }U(p1;p2)�01�01k01;�2�2k2� ��2(p2)�B̂(p2)(��n3=j�n3 j2)��2�2k2;�02�02k02 hu�02�02k02(p2)iy � : : : � u�r�rkr (pr)��r (pr)� �B̂(pr)(��n1=j�n1 j2)��r�nkr ;�0r�0rk0r hu�0r�0rk0r (pr)iy #= Xn1;:::;nr Xp1;:::;pr2P Tr8�8 " rYi=1 eipi(ni�ni+1)L4 j�ni+1 j�2A(pi)�B̂(pi)(��ni+1)�U(pi; pi+1)# ;where the de�nition of the spinor basis transformation matrix U(p1; p2) given in Eq. (25) was used.



20APPENDIX BIn this appendix we want to deal with the possibly non-positive eigenvalues of the operator��eff+�,whi
h would not allow the option of performing the Gauss-integration in Eq. (75) over all modes, ina more pre
ise manner. We therefore restart our 
al
ulation beginning in Eq. (73). Now we performthe Gauss-integration solely over those modes k 2 P ; 0 6= k 6= � whi
h have their 
orrespondingeigenvalue of the operator ��eff + � not smaller than 2� > 0. We denote the subset of these modesas P(�; �). A

ording to Eq. (77) it is given asP(�; �) = nk 2 P : �~�N'2 4X�=1 
os(k�)� 8�2~y2N'2 � q(k) + �2 � �o: (B1)Performing the Gauss-integration only over these modes the a
tion redu
es toS[mi; si; �; �ik℄ = � ln �det00 ���eff + ����N=2 + 1tN( NXi=1 �mi�2 � 
0 ����eff + ��� 0�� L4�+ NXi=1 �si�2 � 
� ����eff + �����+ NXi=1 Xk2 �P(�;�)0 6=k 6=� ��ik�2 � 
k ����eff + ��� k�) (B2)= N2 Tr00 ln ���eff + ��+ N~tN �m2 � L4 � ��8~�N'2 � 16�2~y2N'2 q(0) + ��+ N~tN � s2 � L4 ��+8~�N'2 � 16�2~y2N'2 q(�) + ��� N~tN L4�+ Xk2 �P(�;�)0 6=k 6=� N~tN � �2k � L4 � �2~�N'2 4X�=1 
os(k�)� 16�2~y2N'2 q(k) + �! ; (B3)where �ik denote the amplitudes of the ex
luded modes with k 2 �P(�; �); 0 6= k 6= � and �P(�; �) �P=P(�; �) is the 
omplement of P(�; �). Here the notation�ik =rL4N �k (B4)was introdu
ed 
orrespondingly to Eq. (79) and the plane wave modes jki were expli
itly given inEq. (76). The determinant det00 and the tra
e Tr00, respe
tively, are now only performed over themodes k 2 P(�; �); 0 6= k 6= �, as desired. The resulting gap equations 
an now be obtained bydi�erentiating the e�e
tive a
tion with respe
t to m; s; � and all �k . This leads again to Eq. (81) andEq. (82). Only the third one, Eq. (83), is modi�ed yielding nowm2 + s2 + Xk2 �P(�;�)0 6=k 6=� �2k = 1� ~tN4 1L4 Xk2P(�;�)0 6=k 6=� "�~�N'2 4X�=1 
os(k�)� 8�2~y2N'2 q(k) + �2#�1 : (B5)Furthermore, one obtains one additional gap equation for every mode k 2 �P(�; �); 0 6= k 6= � a

ordingto 0 = �k � "�� +2~�N'2 4X�=1 
os(k�) + 16�2~y2N'2 q(k)!# 8k 2 �P(�; �); 0 6= k 6= �: (B6)Again we 
onsider the s
enario of a purely ferromagneti
 phase and the s
enario of a purely anti-ferromagneti
 phase for the investigation of the phase stru
ture. The only parti
ularity here is thatwe assume all �k to be zero in both 
ases. (In prin
iple, with this approa
h one 
ould also study thephase stru
ture of some of the amplitudes �k, but this is beyond our interest here.) We thus arrive



21dire
tly at the prior equations (84) and (86), respe
tively, �xing the value of � as before. With this�xation of � the subset P(�; �) now be
omes Pm(�) for the ferromagneti
 phase as already de�ned inEq. (88). For the anti-ferromagneti
 phase it be
omes Ps(�). We have now arrived at the �nal resultsfor the self-
onsisten
y equations that were already presented in Eq. (85) and Eq. (87).In order to get a rough estimate about the validity of negle
ting the modes k 2 �P(�; �) one should
he
k the volume of this subset and 
ompare it to the volume of the full set P as we did in ourdis
ussion in the main text. A
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