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HU-EP-07/16, DESY 07-063The phase struture of a hirally invariant lattie Higgs-Yukawa modelfor small and for large values of the Yukawa oupling onstantP. Gerholda, K. JansenbaHumboldt-Universit�at zu Berlin,Institut f�ur Physik, Newtonstr. 15,D-12489 Berlin, GermanybDESY,Platanenallee 6, D-15738 Zeuthen, Germany(Dated: June 26, 2007)We onsider a hirally invariant lattie Higgs-Yukawa model based on the Neuberger overlapoperator D(ov). As a �rst step towards the eventual determination of Higgs mass bounds we studythe phase diagram of the model analytially in the large Nf -limit. We present an expression forthe e�etive potential at tree-level in the regime of small Yukawa and quarti oupling onstantsand determine the order of the phase transitions. In the ase of strong Yukawa ouplings the modele�etively beomes an O(4)-symmetri non-linear �-model for all values of the quarti ouplingonstant. This leads to the existene of a symmetri phase also in the regime of large values ofthe Yukawa oupling onstant. On �nite and small latties, however, strong �nite volume e�etsprevent the expetation value of the Higgs �eld from vanishing thus obsuring the existene of thesymmetri phase at strong Yukawa ouplings.PACS numbers:Keywords: Higgs-Yukawa model, 1/N expansion, phase diagramI. INTRODUCTIONNon-perturbative investigations of lattie regularized Higgs-Yukawa models as a limit of the ele-troweak setor of the Standard Model have been subjet of many investigations in the early 1990's,see e.g. the review artiles of Refs. [1, 2, 3, 4, 5, 6, 7℄. These lattie studies were motivated by theinterest in a better understanding of the fermion mass generation via the Higgs mehanism on a non-perturbative level. In addition, the fous has been on the determination of bounds on the Higgs massand the Yukawa ouplings whih translate diretly into bounds on the - at that time not yet disovered- top quark mass. However, these investigations were bloked, sine the inuene of unwanted fermiondoublers ould not suessfully be suppressed. Moreover, the lattie models of these studies su�eredfrom the lak of hiral symmetry. The latter, however, would be indispensable for a onsistent lattieregularization of hiral gauge theories suh as the Standard Model of eletroweak interations.Here, we want to extend these earlier investigations in a new diretion in order to overome thepreviously enountered drawbaks by following the proposition of L�usher [8℄ for a hirally invariantlattie Higgs-Yukawa model based on the Neuberger overlap operator [9℄. Within this model an exatlattie hiral symmetry an be established while suppressing the fermion doublers at the same time.This is possible despite of the Nielsen-Ninomiya theorem [10℄, sine the established lattie hiralsymmetry is not the ontinuum hiral symmetry itself, but reovers the latter symmetry only in theontinuum limit. We onsider here a Higgs-Yukawa model inluding only the two heaviest fermions,i.e. the top-bottom doublet, and the Higgs �elds. This simpli�ation is reasonable, sine the fermion-Higgs oupling is proportional to the fermion mass and hene small for the light doublets. We alsoneglet any gauge �elds within this model, sine they an be taken into aount via perturbationtheory.As a �rst step towards a numerial investigation of this Higgs-Yukawa model we begin by studyingits phase struture. Here we present an analytial investigation of the phase diagram in the largeNf -limit following Refs. [11, 12℄. We refer the reader to these referenes for earlier works on lattieHiggs-Yukawa models. (See also Ref. [13℄ for a �rst aount of our work.) In the present paper weaess the phase struture of the model at small and at large values of the Yukawa oupling onstant,putting partiular emphasis on the existene of a symmetri phase also in the strong Yukawa ouplingregime. The latter strong oupling regime of a losely related, hirally invariant Higgs-Yukawa modelin two dimensions was also studied in the reent work [14℄ and orresponding Monte-Carlo simulations,performed in that model, support the existene of suh phase [15℄. Extensions of our present paper, in
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2partiular onerning the veri�ation of the analytially obtained phase struture by expliit numerialsimulations and addressing the question of lower and upper bounds on the Higgs boson mass, will bedisussed in forthoming publiations.The outline of this paper is as follows: In Setion II we briey desribe the Higgs-Yukawa modelonsidered here. In the following Setion III we derive an expression for the e�etive potential in termsof the amplitudes of the onstant and staggered modes of the Higgs �eld, whih is a reasonable approx-imation at small values of the Yukawa and quarti oupling onstants. We then present the resultingphase diagram in the large Nf -limit and determine the order of the ourring phase transitions. Thephase struture in the regime of large values of the Yukawa oupling onstant and arbitrary quartioupling onstants is then aessed by means of a di�erent large Nf -limit presented in Setion IV.We show that a symmetri phase also exists at large Yukawa oupling onstants. On small latties,however, this symmetri phase is shadowed by �nite volume e�ets preventing the expetation valueof the Higgs �eld from vanishing. We then end with a short summary and outlook.II. THE MODELAspiring to investigate the Higgs Setor of the Standard Model of eletroweak interations, weonsider here a four-dimensional, hirally invariant lattie Higgs-Yukawa model ontaining one four-omponent, real Higgs �eld � and a number of Nf fermion doublets. The latter are represented byeight-omponent spinors  (i), � (i) with i = 1; :::; Nf . However, these Nf doublets are all degeneratedwithin this model and orrespond to the heaviest fermion doublet only, i.e. to the top-bottom doublet.This is a reasonable simpli�ation due to the fermion-Higgs oupling being proportional to the fermionmass. We have introdued the fermion doublet number Nf nonetheless, beause it will be possible toaess the model analytially in the limit of large numbers of (degenerated) fermion doublets.Furthermore, there are also Nf auxiliary fermioni doublets �(i), ��(i) present in the model, whihserve as a onstrution tool for the reation of a hirally invariant Yukawa interation term. However,one the hiral invariane is established, these unphysial �elds an be integrated out leading to a moreompliated model depending then only on the Higgs �eld � and the Nf physial fermion doublets (i). The partition funtion of the given model an be written asZ = Z D� NfYi=1 hD (i)D � (i)D�(i)D��(i)i exp ��S� � SkinF � SY � (1)with the total ation being deomposed into the Higgs ation S�, the kineti fermion ation SkinF ,and the Yukawa oupling term SY . It should be stressed one again that no gauge �elds are inludedwithin this model.The four-dimensional spae-time lattie, that the model is disretized upon, is assumed to haveL lattie sites per dimension suh that its total volume is V = L4. Here we allow for both, �nitesize latties with even L 2 N as well as latties with in�nite extension, i.e. L = 1, and we set thelattie spaing a to unity for onveniene. The kineti fermion ation desribing the propagation ofthe physial fermion �elds  (i), � (i) is then given in the usual manner aording toSkinF = NfXi=1Xn;m � (i)n D(ov)n;m (i)m � 2���(i)n 1n;m�(i)m (2)where the four-dimensional oordinates n;m as well as all �eld variables and oupling onstantsare given in dimensionless lattie units throughout this paper. Here, the (doublet) Dira operatorD(ov) = D̂(ov)
D̂(ov) is given by the Neuberger overlap operator D̂(ov), whih is related to the Wilsonoperator D̂(W ) = E� 12 (rf� +rb�)� r2rb�rf� byD̂(ov) = �(1 + ÂpÂyÂ) ; Â = D̂(W ) � �; 1 � � < 2r (3)



3withrf�, rb� denoting the forward and bakward di�erene quotients, respetively. In absene of gauge�elds the eigenvetors and eigenvalues of the Neuberger operator are expliitly known. In momentumspae with the allowed four-omponent momentap 2 P = ( (��; �℄
4 : for L =1f2�n=L : n 2 N0; n < Lg
4 : for L <1 (4)the eigenvetors of the doublet operator D(ov) are given as	p;��kn = eip�n � u��k(p); u��k(p) =r12 � u�k(p)�u�k(p) � ; � = �1; � = �1; k 2 f1; 2g (5)with u�k(p) denoting the usual four-omponent spinor strutureu�k(p) =r12  �k� ~p ��p~p2 �k ! for ~p 6= 0 and u�k(p) =r12 � �k��k � for ~p = 0; (6)respetively. Here �k 2 C2 are two orthonormal vetors and the four omponent quaternioni vetors�, �� are de�ned as � = (1;�i~�) and �� = (1;+i~�) = �y with ~� denoting the vetor of Pauli matries.It is well known that the eigenvalues ��(p) of D̂(ov) with Im[��(p)℄ ? 0 form a irle in the omplexplane, the radius of whih is given by the parameter �. These eigenvalues are expliitly given by��(p) = �+ � � �ip~p2 + 2rp̂2 � �p~p2 + (2rp̂2 � �)2 ; ~p� = sin(p�); p̂� = sin�p�2 � : (7)The auxiliary �elds �(i) on the other hand do not propagate at all and their ontribution to SkinF ishosen suh that the model will obey an exat lattie hiral symmetry.The Higgs �eld ouples to the fermions aording to the Yukawa oupling termSY = yNXn;m NfXi=1( � (i)n + ��(i)n ) �1n;m (1� 5)2 �n + 1n;m (1 + 5)2 �yn�| {z }Bn;m ( (i)m + �(i)m ) (8)where yN denotes the Yukawa oupling onstant and Bn;m will be referred to as Yukawa ouplingmatrix. Here the Higgs �eld �n is rewritten as a quaternioni, 2� 2 matrix �n = �0n1� i�jn�j atingon the avor index of the fermioni doublets. Due to the hiral harater of this model, left- andright-handed fermions ouple di�erently to the Higgs �eld, as an be seen from the appearane of theprojetors (1� 5)=2 in the Yukawa term. Multiplying out the involved Gamma- and Pauli-matriesone an rewrite the Yukawa oupling matrix in the ompati�ed formBm;n = Æm;n � B̂(�n); B̂(�n) = � �0n1+ i�3n5 �2n5 + i�1n5��2n5 + i�1n5 �0n1� i�3n5 � (9)being blok diagonal in position spae. The model then obeys an exat, but lattie modi�ed, hiralsymmetry aording toÆ (i) = i� �5�1� 12�D(ov)� (i) + 5�(i)� ; Æ�(i) = i�5 12�D(ov) (i); Æ� = 2i�� (10)Æ � (i) = i� � � (i) �1� 12�D(ov)� 5 + ��(i)5� ; Æ ��(i) = i� � (i) 12�D(ov)5; Æ�y = �2i��y (11)with � denoting here the in�nitesimal parameter of the hiral transformation. Sine the (here omitted)lattie spaing a appears in front of the Dira operators, this exat symmetry reovers the ontinuumhiral symmetry (after having integrated out the auxiliary fermion �elds) in the ontinuum limit [8℄.



4Finally, we use a slightly unusual notation for the Higgs ation S� given byS� = ��NXn;� �yn [�n+�̂ +�n��̂℄ +Xn �yn�n + �NXn ��yn�n �Nf�2 (12)where �N denotes the hopping parameter and �N is the quarti oupling onstant. This notationwith Nf appearing in the quarti oupling term (whih turns out to be more onvenient for the lateranalytial onsiderations) an easily be shown to be equivalent to the more ommonly used lattieversion of the '4-ationS' = ��Xn;� 'yn ['n+�̂ + 'n��̂℄ +Xn 'yn'n + �Xn �'yn'n � 1�2 (13)by resaling the oupling onstants �; �; y and the Higgs �eld ' aording to� = C � '; �N = �C4 ; �N = �C2 ; yN = yC ; (14)where the onstant C has to obey the onditionC2 � 2�NNfC2 = 1� 2�: (15)Furthermore, this latter ation in Eq. (13) an also easily be onneted to the usual ontinuum notationS'̂ = Xn �12 �rf�'̂�ynrf�'̂n + 12m20'̂yn'̂n + �0 �'̂yn'̂n�2� ; (16)whih expliitly involves a bare mass m0 and the forward di�erene quotient rf�. This onnetion isestablished by saling the �eld and oupling onstants aording to'n = '̂n̂C ; � = Ĉ4 � �0; � = Ĉ22 ; y = y0 � Ĉ (17)where the onstant Ĉ has to obey the relation1 = Ĉ2 � �m20 + 82 + 2�0Ĉ2� : (18)For the further analytial treatment of this model we integrate out the fermioni degrees of freedomleading to an e�etive Higgs model given byZ = Z D� exp (�Seff [�℄) (19)with the e�etive ation Seff [�℄ de�ned asexp (�Seff [�℄) = Z NfYi=1 hD (i)D � (i)D�(i)D��(i)i exp ��S� � SkinF � SY � : (20)By applying some adequate substitutions the Grassmann integrations an be performed allowing towrite the e�etive ation Seff [�℄ in terms of fermioni determinants aording toSeff [�℄ = S�[�℄�Nf � log hdet�yNBD(ov) � 2�D(ov) � 2�yNB�i : (21)



5III. LARGE Nf -LIMIT FOR SMALL YUKAWA COUPLING PARAMETERSIn this setion we will derive the phase struture of the introdued Higgs-Yukawa model in the largeNf -limit for small values of the Yukawa and quarti oupling onstants. The idea is to fatorize thenumber of involved fermion doublets Nf out of the e�etive ation Seff [�℄, sine the integral overall Higgs �eld on�gurations in Eq. (19) an then be redued to the sum over all absolute minimaof the e�etive ation when sending Nf to in�nity. This fatorization an be ahieved by saling theoupling onstants and the Higgs �eld itself aording toyN = ~yNpNf ; �N = ~�NNf ; �N = ~�N ; �n =pNf � ~�n ; (22)where the quantities ~yN , ~�N , ~�N , and ~�n are kept onstant in the limit Nf !1.One is thus left with the problem of �nding the absolute minima of Seff [�℄ in terms of the latterquantities. In general the operators B and D(ov) do not share a ommon eigenvetor basis makingthe analytial evaluation of the determinant in Eq. (21) impossible for general, spae-time dependentHiggs �elds. However, for suÆiently small values of the Yukawa and quarti oupling onstants thekineti term of the Higgs ation beomes dominant allowing to restrit the searh for the absoluteminima of Seff [�℄ to the ansatz�n = �̂ �pNf � �m+ s � (�1)P� n�� (23)taking only a onstant and a staggered mode of the Higgs �eld into aount. Here �̂ 2 IR4 denotesa onstant 4-dimensional unit vetor (j�̂j = 1), and we will refer to m; s 2 IR in the following asmagnetization and staggered magnetization, respetively.For the atual evaluation of the e�etive ation we use the fat that the matrix B now has adiagonal-plus-subdiagonal-blok-struture in momentum spae due to the hosen ansatz for the Higgs�eld aording to�D(ov) � yN2� B �D(ov) � 2��� (p1; p2) = � ~yN2� "m � Æ(p1; p2) � B̂(p2)(�̂) � �D(ov)(p2)� 2�� (24)+ s � Æ(p1; }2) � U(p1; p2) � B̂(p2) � �D(ov)(p2)� 2��#+ Æ(p1; p2) � D(ov)(p2) ;where the diagonal part is aused by the onstant mode of the Higgs �eld, while the sub-diagonalontribution is reated by the staggered mode. In Eq. (24) this is expressed by }2 denoting the shiftedmomenta }2 = p2 + (�; �; �; �), where adequate modulo-operations are impliit to guarantee that}2 2 P . The matries U(p1; p2), D(ov)(p), and B̂(p) are 8� 8-matries with the indies �1�1k1; �2�2k2and denote the spinor basis transformation matrixU(p1; p2)�1�1k1;�2�2k2 = �u�1�1k1(p1)�y u�2�2k2(p2); (25)the Dira matrix D(ov)(p)�1�1k1;�2�2k2 = Æ�1;�2 � Æk1;k2 � Æ�1;�2 � ��1(p); (26)and the Yukawa oupling matrixB̂(p)(�̂)�1�1k1;�2�2k2 = �u�1�1k1(p)�y B̂(�̂)u�2�2k2(p) (27)= Æk1;k2hÆ�1;�2Æ�1;�2 � �̂0 + Æ�1;��2ni�2Æ�1;�2�̂1 + Æ�1;��2 hi�̂3 + �2�̂2ioi;



6respetively. Due to this diagonal-subdiagonal-blok-struture the determinant in Eq. (21) an thusbe fatorized by merging the four 8 � 8 bloks, whih orrespond to the momentum indies (p; p),(}; p), (p; }), and (}; }). Up to some onstant terms, whih are independent of �, we an thus rewritethe e�etive ation asSeff [�℄ = S�[�℄�Nf � log �det�D(ov) � yN2� � B � �D(ov) � 2���� (28)= S�[�℄�Nf � log" Yp2P0�p3<� det�D(ov)(p)
D(ov)(})� ~yN2�M(p)�#; (29)where the restrition 0 � p3 < � has just been introdued to prevent the double ounting that wouldour if one would have performed the produt over all p 2 P after having merged the bloks. HereM(p) denotes these merged, momentum dependent 16� 16 matries given byM(p) = �M1;1(p) M1;2(p)M2;1(p) M2;2(p) � (30)with M1;1(p) = m � B̂(p)(�̂) � �D(ov)(p)� 2�� ; (31)M1;2(p) = s � U(p; }) � B̂(})(�̂) � �D(ov)(})� 2�� ; (32)M2;1(p) = s � U(}; p) � B̂(p)(�̂) � �D(ov)(p)� 2�� ; (33)M2;2(p) = m � B̂(})(�̂) � �D(ov)(})� 2�� : (34)The expression in Eq. (29) an be written more ompatly, taking the fat into aount that thematries involved in that expression are diagonal with respet to the index k due to Eq. (26), Eq. (27)and U(p; })�1�1k1;�2�2k2 = Æ�1;�2 � Æ�1;��2 � Æk1;k2 : (35)Sine one easily �nds that the determinant in Eq. (29) is invariant under the permutation p $ },one an extend the produt in that equation, whih is performed only over one half of the wholemomentum spae, again to the full momentum spae P by fatorizing out the identity Æk1;k2 . Onethen obtains for the e�etive ationSeff [�℄ = S�[�℄�Nf � log24Yp2P det� �D(ov)(p)
 �D(ov)(})� ~yN2� �M(p)�35 ; (36)with the de�nitionsD(ov)(p) = Æk1;k2 � �D(ov)(p); M(p) = Æk1;k2 � �M(p); and Ma;b(p) = Æk1;k2 � �Ma;b(p); (37)where a; b 2 f1; 2g. Seleting a speial order for the indies �� aording to f++;+�;�+;��g thelatter four 4� 4 matries are expliitly given by�M1;1(p) = m �0BB� �̂0!+(p) i�̂1!�(p) 0 (i�̂3 � �̂2)!�(p)i�̂1!+(p) �̂0!�(p) (i�̂3 � �̂2)!+(p) 00 (i�̂3 + �̂2)!�(p) �̂0!+(p) �i�̂1!�(p)(i�̂3 + �̂2)!+(p) 0 �i�̂1!+(p) �̂0!�(p) 1CCA(38)�M1;2(p) = s �0BB� i�̂1!+(}) �̂0!�(}) (i�̂3 � �̂2)!+(}) 0�̂0!+(}) i�̂1!�(}) 0 (i�̂3 � �̂2)!�(})(i�̂3 + �̂2)!+(}) 0 �i�̂1!+(}) �̂0!�(})0 (i�̂3 + �̂2)!�(}) �̂0!+(}) �i�̂1!�(}) 1CCA(39)



7where the abbreviation !�(p) = ��(p) � 2� was used. The remaining matries �M2;2(p) and �M2;1(p)are obtained from �M1;1(p), �M1;2(p) by interhanging p and }. Using some algebrai manipulationpakage, the determinant of the 8�8 matrix in Eq. (36) an be omputed leading to the �nal expressionfor the e�etive ationSeff [�℄ = S�[�℄�Nf �Xp2P log " ����+(p)�� � ���+(})��+ ~y2N4�2 �m2 � s2� � ���+(p)� 2��� � ���+(})� 2����2+ m2 ~y2N4�2� ���+(p)� 2��� � ���+(})��� ���+(})� 2��� � ���+(p)�� �2#2: (40)With the ansatz in Eq. (23) the Higgs �eld ation S� an also be written in terms of the quantitiesm and s. One easily �ndsS� = Nf � L4 �(� 8~�N�m2 � s2�+m2 + s2 + ~�N�m4 + s4 + 6m2s2 � 2 �m2 + s2� �): (41)Two remarks are in order here for the orientation of the reader.(I) The resulting phase struture in the large Nf -limit an now be obtained by minimizing thee�etive ation with respet to m and s. In priniple one ould derive the orresponding phasediagrams for all values of the quarti oupling onstant ~�N � 0. However, as one an easily �nd fromEq. (15) the ase ~�N > 0:5 orresponds to the strong self-oupling regime � � 1 of the physiallyunderlying '4-theory given in Eq. (13) for large values of Nf . In that regime it is no longer reasonableto evaluate the e�etive ation due to the strong self-interation of the Higgs-�eld in that ase. Wetherefore restrit the allowed range for the quarti oupling to 0 � ~�N < 0:5, whih orresponds tothe weak self-oupling regime of the physial model in Eq. (13).(II) The sum over all allowed momenta P in Eq. (40) beomes a four-dimensional momentumintegral over P for L =1 aording to1L4 Xp2P ::: ! Zp2P d4p(2�)4 ::: (42)whih was atually used in the numerial evaluation of the e�etive ation.~�N = 0:1 ~�N = 0:3
~�N

~yN
SYM FMAFM AFM FI ~�N

~yN
SYM FMAFM AFMFI!FIG. 1: Phase diagrams with respet to the Yukawa oupling onstant ~yN and the hopping parameter ~�N forthe onstant quarti ouplings ~�N = 0:1 (left) and ~�N = 0:3 (right). The blak line indiates the �rst orderphase transitions. Both phase diagrams were determined for L =1. An explanation of the ourring phasesis given in the text.



8We now present the phase diagrams for ~�N = 0:1 and ~�N = 0:3 in Fig. 1. These phase diagramswere alulated for an in�nite lattie, i.e. for L =1. Here we distinguish between the following fourphases:(I) The symmetri phase (SYM): m = 0; s = 0(II) The ferromagneti phase (FM): m 6= 0; s = 0(III) The anti-ferromagneti phase (AFM): m = 0; s 6= 0(IV) The ferrimagneti phase (FI): m 6= 0; s 6= 0In both ases, i.e. ~�N = 0:1 and ~�N = 0:3, one �nds a symmetri phase approximately entered around~�N = 0 at suÆiently small values of the Yukawa oupling onstant ~yN , as one would have expeted,sine the model beomes the pure �4-theory in the limit ~yN ! 0. From the same onsideration onewould also expet the aompanying phase transitions to be of seond order. This is indeed the aseas an learly be seen in Fig. 2 showing the expetation values of the amplitudes m and s for di�erentvalues of ~yN as obtained in the minimization proess. With inreasing ~yN the symmetri phase bendsdownwards to negative values of the hopping parameter ~�N , unless it either hits a �rst order phasetransition to an anti-ferromagneti phase (blak line in Fig. 1), the order of whih an be determinedfrom Fig. 3 (this is the ase for ~�N = 0:1), or it eventually goes over into two FM-FI and FI-AFMseond order phase transitions, whih is the ase for ~�N = 0:3.Here we present only the expetation values of m and s for ~�N = 0:3 and not for ~�N = 0:1, sinethe latter plots would not provide qualitatively new information to the reader.Interestingly, the ferrimagneti phase (FI) exists in both presented senarios, i.e. for ~�N = 0:1 and~�N = 0:3, even deeply inside the anti-ferromagneti phase region in the neighbourhood of the �rstorder phase transition boundary. However, due to the small expetation value of the amplitude m ofthe onstant mode (see Fig. 2) it is questionable whether this ferrimagneti phase will be observablein orresponding numerial simulations.
IV. LARGE Nf -LIMIT FOR LARGE YUKAWA COUPLING PARAMETERSIn this setion we will examine the phase diagram of the onsidered Higgs-Yukawa model in theregime of large values of the Yukawa oupling onstant yN and for arbitrary values of the quartioupling onstant �N � 0. This will be done in three steps. Firstly, the e�etive ation is expanded inpowers of the inverse oupling onstant 1=yN . Taking only the �rst non-vanishing ontribution of thispower series into aount and performing the large Nf -limit in suh a way, that the amplitude of theHiggs �eld is �xed, the model then e�etively beomes an O(4)-symmetri, non-linear sigma-modelup to some �nite volume terms. Finally, the phase diagram of the latter sigma-model is determinedby an additional large N -limit, where N denotes here the number of Higgs �eld omponents.For an evaluation of the e�etive ation it is ruial to pay speial attention to the fermion doublermodes Q� = �	p;��k : p� 2 f0; �g; p 6= 0; �; � = �1; k 2 f1; 2g	 (43)whih we will refer to as �-modes in the following. Given these 120 modes one an de�ne the orre-sponding projetion operator P� = X	2Q�		y (44)projeting to the sub-spae V� = span(Q�) spanned by Q�. Using this notation one an easilyestablish the very helpful relationdet (E (1� P�) + P�FP�) = det ((1� P�)E (1� P�) + P�FP�)= det ((1� P�)E + P�FP�) = det0 (E) � det� (F ) (45)
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FIG. 2: Expetation values for the amplitudes of the onstant (m: blak urve) and staggered (s: grayurve) modes for several seleted values of the Yukawa oupling onstant ~yN and a onstant quarti oupling~�N = 0:3. The results were obtained for L =1.where E and F are arbitrary operators de�ned on the same spae V as D(ov) and B. Here theexpression det� (F ) denotes the determinant of F with respet to the sub-spae V� and det0 (E) is thedeterminant of E with respet to the omplementary spae V=V� � span(Q=Q�), where Q denotesthe full set of all modes. Using Eq. (45) several times one an rewrite the e�etive ation aording toe�Seff [�℄�S�Nf = det�yNB �D(ov) � 2��� 2�D(ov)� (46)= ��4�2�120 � det0 �yNB0 �D0(ov) � 2�10�� 2�D0(ov)�= ��4�2�120 � det0 (yN ) � det0 �D0(ov) � 2�10� � det0�B0 � 2�yND0(ov) �D0(ov) � 2�10��1�= Const � det�B � (B � 1)P� � 2�yNA�= Const � det (B) � det �1� �1�B�1�P�� � det�1� 2�yN B�1A �1� �1�B�1�P���1�where D0(ov), B0, and 10 denote the restrition of the operators D(ov), B, and 1 to the sub-spae
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FIG. 3: Expetation values for the amplitudes of the onstant (m: blak urve) and staggered (s: grayurve) modes for several seleted values of the Yukawa oupling onstant ~yN and a onstant quarti oupling~�N = 0:3. The results were obtained for L =1.V=V�. This restrition is introdued, sine it guarantees D0(ov) � 2�10 to be invertible. The operatorA is then de�ned by extending the domain of the inverse of D0(ov)� 2�10 again to the full spae V byinserting the projetor 1� P� aording toA = D0(ov) � hD0(ov) � 2�10i�1 � (1� P�) ; (47)whih is well-de�ned and �nite over the whole spae V . The last determinant in Eq. (46) an furtherbe redued by using the result�1� �1�B�1�P���1 = 1� P� + P� �1� P� + P�B�1P���1 P�� (1� P�)B�1P� �1� P� + P�B�1P���1 P� (48)and by applying again relation (45) leading to the ompat notation for the e�etive ationSeff [�℄ = S� � Nf � log det (B)�Nf � log det� �B�1��Nf � log det��1+ 2�yN F [�℄�� Nf � log det�1� 2�yN A �B�1� ; (49)



11with the abbreviation F [�℄ de�ned as the somewhat lengthy expressionF [�℄ = �1� 2�yN B�1A��1B�1AB�1P� �1� P� + P�B�1P���1 : (50)However, the latter determinants det� only give rise to some �nite volume e�ets, sine these determi-nants are only performed over the 120-dimensional sub-spae V� . Their ontributions to the e�etiveation do therefore not sale proportional to L4 as the lattie size inreases in ontrast to all otherappearing terms. We will ome bak to disussing these �nite volume e�ets later. Here, we will �rstontinue with the evaluation of the last term in Eq. (49) by rewriting the orresponding trae as apower series in the inverse oupling onstant 1=yN aording toTr log�1� 2�yNA � B�1� = �Tr 1Xr=1 2rr � �yN �r �AB�1�r (51)and by eventually utting o� this power series after the �rst non-vanishing term, whih is well-justi�edfor suÆiently large yN . For our purpose of establishing the desired onnetion to a sigma-model itis most onvenient to evaluate these expressions in position spae. Here the matrix B�1 is blokdiagonal and expliitly given byB�1 = By � �BBy��1 ; B�1m;n = Æm;n � B̂(��n=j�nj2); (52)where the notation (��n)0 = �0n, (��n)i = ��in was used and B̂ was de�ned in Eq. (9). In positionspae the matrix AB�1 an hene be written as�AB�1�n1;n2 = Xp2PX��k eipn1u��k(p)��(p)e�ipn2 �u��k(p)�yj	p;��kj2 B̂(��n2=j�n2 j2) (53)= 1L4 Xp2P X��k�0�0k0 ��(p)eip(n1�n2)u��k(p) �B̂(p)(��n2=j�n2 j2)���k;�0�0k0 hu�0�0k0(p)iywith B̂(p) as de�ned in Eq. (27). The salars ��(p) denote the eigenvalues of the anti-hermitianoperator A orresponding to its eigenvetors 	p;��k and are expliitly given byiIR 3 ��(p) = ( ��(p)��(p)�2� : p 2 P ; ��(p) 6= 2�0 : p 2 P ; ��(p) = 2� : (54)The result for the trae of the operator AB�1 is then diretly found to beTr �AB�1� = 1L4 Xn Xp2PTr8�8 hj�nj�2A(p)B̂(p)(��n)i ; (55)whih an be generalized to the trae of the r-th power of AB�1 yieldingTr �AB�1�r = Xn1;:::;nrp1;:::;pr2P Tr8�8 " rYi=1 eipi(ni�ni+1)L4 j�ni+1 j�2A(pi)�B̂(pi)(��ni+1)�U(pi; pi+1)#(56)where pn+1 is identi�ed with p1, and xn+1 with x1, and the expression A(p) stands for the diagonalmatrix A(p)�1�1k1;�2�2k2 = Æ�1;�2 � Æ�1;�2 � Æk1;k2 � ��1(p): (57)At this point we refer the interested reader to Appendix A for the details of this alulation in orderto sustain the readability of this text.



12However, it turns out that the evaluation of Eq. (56) beomes muh easier, if one inserts the identityU(pi; 0)U(0; pi) at some proper plaes. The remaining 8� 8 trae an then be simpli�ed toTr8�8 " rYi=1A(pi)�B̂(pi)(��ni+1)�U(pi; pi+1)# = Tr8�8 " rYi=1A(0)(pi)�B̂(0)(��ni+1)�# ; (58)where the representation B̂(0)(�yn) of the Yukawa oupling matrix an diretly be taken from Eq. (27)and A(0)(p) is given by A(0)(p) = U(0; p)A(p)U(p; 0)= �+(p)p~p2 � � ~p0 �~~p~�~~p~� �~p0 �
� ~p0 �~~p~�~~p~� �~p0 � (59)where the relation �+(p) = ���(p) has impliitly been used. Due to the insertion of the spinor basistransformation matries U(pi; 0) and U(0; pi) the sums over the momenta in Eq. (56) fatorize nowaording toTr �AB�1�r = Xn1;:::;nr Tr8�8 " rYi=10�Xpi2P eipi(ni�ni+1)L4 A(0)(pi)1A j�ni+1 j�2 �B̂(0)(��ni+1)�| {z }Tni;ni+1 # (60)where eah momentum sum is a four-dimensional Fourier transform of an anti-symmetri and purelyimaginary summand, hene yielding real values. With the de�nitionIR 3 ��(�n) = ���(��n) =Xp2P eip�nL4 �+(p) � ~p�p~p2 (61)the hermitian matrix Tn;m appearing in Eq. (60) an ompatly be written asTn;m = 1j�mj2 �0BB� �0m�0 + i�1m~�~� �i�1m�0 � �0m~�~� (i�3m � �2m)~�~� (�i�3m +�2m)�0�0m~�~�+ i�1m�0 �i�1m~�~�� �0m�0 (i�3m � �2m)�0 (�i�3m +�2m)~�~�(i�3m +�2m)~�~� �(i�3m +�2m)�0 �0m�0 � i�1m~�~� i�1m�0 � �0m~�~�(i�3m +�2m)�0 �(i�3m +�2m)~�~� �0m~�~�� i�1m�0 i�1m~�~�� �0m�0 1CCA (62)with the abbreviations �� � ��(�n) and �n = n �m. Therefore, the �rst order summand of thepower series in Eq. (51) reading Tr �AB�1� =Xn Tr8�8 [Tn;n℄ = 0 (63)is idential to zero and the �rst non-vanishing ontribution is the seond order term, whih an beevaluated by expliitly omputing the 8� 8 trae, yieldingTr �AB�1�2 = Xn1;n2 Tr8�8 [Tn1;n2Tn2;n1 ℄= �8 � Xn1;n2 ��n1��n2j�n1 j2 � j�n2 j2 � j�(�n)j2 : (64)Cutting o� the power series in Eq. (51) after this �rst non-vanishing term, whih is well justi�ed forsuÆiently large values of the Yukawa oupling onstant, the e�etive ation an be written asSeff [�℄ = S� � Nf � Xn log(j�nj8) + (4�)2y2N Xn1;n2 j�(�n)j2 �yn1�n2j�n1 j2 � j�n2 j2! (65)� Nf � log det� �B�1��Nf � log det��1+ 2�yN F [�℄�



13where the matrix F [�℄ has been de�ned in Eq. (50).Some remarks onerning the remaining determinants in the latter result are in order here for theorientation of the reader. Here det� denotes the determinant over the sub-spae V�, whih has thedimension 120. In ontrast to all other terms appearing in the e�etive ation these determinants arenot proportional to L4. They are therefore suppressed as the lattie size L goes to in�nity. Moreover,the very last term in Eq. (65) even vanishes on �nite latties when the Yukawa oupling onstant yNbeomes large. This is in ontrast to the determinant det�(B�1) being independent of yN . However,it is nevertheless quite instrutive to onsider these �nite volume e�ets in more detail. This an atleast be done for the �rst determinant det�(B�1), whih an be exatly evaluated for the ansatz givenin Eq. (23) taking only a onstant and a staggered mode of the Higgs �eld into aount. In that asethe inverse of B an also be desribed in terms of a onstant and a staggered mode aording to�n=j�nj2 = �̂ �N� 12f �� ~m+ ~s � (�1)P� n�� ; ~m = mm2 � s2 ; ~s = ss2 �m2 (66)whih allows to determine the desired determinant in a similar manner as desribed in Setion IIIyielding log det� �B�1� = �60 log (Nf ) + 8 log j ~mj+ 56 log �� ~m2 � ~s2�� : (67)The obvious asymmetry in m and s is aused by the fat that the 8 zero modes 	0;��k are notinluded in the sub-spae V� . The e�et of the latter terms and espeially the asymmetry in m and sis learly observed in orresponding Monte-Carlo simulations [16℄ on small latties and large values ofthe Yukawa oupling onstant yN . Moreover, the result in Eq. (67) would also hinder the expetationvalue of the Higgs �eld from vanishing, thus obsuring the potential existene of symmetri phases atlarge yN on small latties. However, as the lattie size inreases these �nite volume e�ets eventuallydisappear. In the following we will therefore neglet the det� terms in the e�etive ation (65), whihis well justi�ed on suÆiently large latties.To establish the announed onnetion to a sigma-model we now onsider the large Nf -limit wherethe oupling onstants sale aording toyN = ~yN ; ~yN = onst; �N = ~�NNf ; ~�N = onst; �N = ~�NNf ; ~�N = onst; (68)and for the Higgs �eld we onsider an ansatz in whih the amplitude of the loal vetors �n is �xedto ' 2 IR aording to �n =pNf � ' � �n; j�nj = 1 (69)where the four-omponent, spae-time position dependent unit vetors �n are arbitrary. In this settingthe ontributions to the (redued) e�etive ation are either of order O(Nf ) or O(1). Consideringonly the leading order terms, for whih the fermion doublet number Nf an be ompletely fatorizedout, then allows to �x the Higgs �eld amplitude ' by the determination equation0 = �4 � 1'2 + 1 + 2~�N � �'2 � 1� : (70)With this �xation of the Higgs �eld amplitude the model in Eq. (65) beomes e�etively a non-loal,four-dimensional, non-linear sigma-model in the large Nf -limit given bySeff = � Xn1;n2 �effn1;n2 � �yn1�n2 (71)with the e�etive, non-loal oupling matrix�effn1;n2 = 16�2~y2N'2 j�(�n)j2 + ~�N � '2 � �4X�=�1 Æ�n;ê� : (72)



14Here the notation "non-loal" simply refers to the fat, that the �eld �n at any lattie site n ouplesitself to any other site of the lattie. This leaves nevertheless open the possibility that the interation isloal in a �eld theoretial sense with exponentially deaying oupling strength [17℄. We did, however,not investigate the question in this paper, sine eventually we are mostly interested in the smallYukawa oupling region.Basially, the outome in Eq. (72) reprodues the result whih was found for a Higgs-Yukawa modelbased on Wilson fermions [12℄ with the only di�erene that the oupling matrix in that ase onsistedonly of nearest-neighbour ouplings.The phase diagram of the obtained sigma-model (71) an be determined analytially by an additionallargeN -limit withN denoting here the number of omponents of the vetors �n. The �rst step towardsthis evaluation is to remove the restrition j�nj = 1 by introduing an auxiliary one-omponent, real�eld �n. This an be done at least in two ways. One an either enode the restrition j�nj = 1 as aÆ-funtion [18℄ written in terms of an integration of exp(i�n(j�nj2 � 1)) over �n, or alternatively, onean address this restrition by introduing the �eld variables �n as Lagrange-multipliers [19℄. Herewe follow the latter approah whih leads us to the extended ationS[�; �℄ = 1tN �(Xn1;n2 NXi=1 ��effn1;n2 � �in1 � �in2 +Xn �n � NXi=1 ��in�2 � 1!) (73)the minima of whih an now be searhed for without having to onsider any restrition on the Higgs�eld amplitude. Here, an additional parameter tN was introdued. For tN = 1 the given ationorresponds to the prior form of the ation. This new parameter is inserted, sine it will allow tofatorize a fator N out of the ation as required by the large N approah. This an be ahieved bysaling tN aording to tN = ~tNN ; ~tN = onst; (74)where we hoose the setting ~tN = 4, sine this reovers our atual e�etive sigma-model at N = 4.The remaining problem to solve is to �nd the minimum of the ation S[�; �℄. However, it is wellknown from investigations of pure sigma-models that the phase transitions of suh models annotbe orretly determined by evaluating the e�etive ation S[�; �℄ in Eq. (73) diretly by restritingthe onsideration to only some seleted modes of the �elds � and �. (Doing so would yield a �rstorder phase transition at ~�N = 0.) This is in ontrast to the situation we disussed in Setion III.Instead, we �rst integrate out all modes of all N omponents of the �eld � exept for the onstantand staggered modes. This an be done by taking only the onstant mode of the auxiliary �eld �ninto aount, i.e. �n � � = onst. Doing so redues the ation S[�; �℄ toS[mi; si; �℄ = � ln �det0 ���eff + ����N=2 + 1tN( NXi=1 �mi�2 � 
0 ����eff + ��� 0�+ NXi=1 �si�2 � 
� ����eff + ������ L4�); (75)depending only on the real salar � and the amplitudes mi, si of the onstant and staggered modes,respetively. Here the notations j0i and j�i were used, denoting the onstant and staggered modes(normalized by a fator 1=pL4) aording tojki � r 1L4 eik�n (76)being eigenvetors of �eff and det0 is the determinant negleting the two latter modes. For onve-niene, the introdued short-hand notation 0 � (0; 0; 0; 0) and � � (�; �; �; �) will also be applied inthe following where it is unambiguous.One remark is in order here for the orientation of the reader. The performed Gauss-integrationsare only well-de�ned, if the involved eigenvalues of the operator ��eff + � are positive, whih is not



15guaranteed at this point. However, this step will be justi�ed (and made more preise) a posterioriwhen a ertain value for the salar � will be assumed by solving the resulting gap equations. Here wewill �rst ontinue with this formal expression and postpone its further disussion to the end of thissetion.To evaluate this latter determinant, the eigenvalues of the matrix �eff need to be known. Theeigenvetors are simply plane waves with wave vetors k 2 P and one easily �nds the orrespondingeigenvalues aording toXn2 �effn1;n2 � eikn2 =  2~�N'2 4X�=1 os(k�) + 16�2~y2N'2 � q(k)! � eikn1 (77)where q(k) denotes the eigenvalues of the matrix j�(�n)j2 given byIR 3 q(k) = 1L4 Xp2P �+(p) � �+(}) � ~p � ~}p~p2 �p ~}2 ; } = k � p: (78)For the numerial evaluation of this quantity it is useful to use some symmetries of q(k). One hasq(k) = q(k0) at least, if k0 is a permutation of the omponents of k, or if k0� = �k� for all �.Now we an searh for the absolute minima of the e�etive ation in Eq. (75). For this purpose werelate the amplitudes mi, si to the values of the overall magnetization m and staggered magnetizations, respetively, aording to mi =rL4N m and si =rL4N s: (79)With this notation one diretly obtains from the e�etive ation in Eq. (75) the following expressionin terms of the quantities m; s and �S[m; s; �℄ = N2 Tr0 ln ���eff + ��+ N~tN �m2 � L4 � ��8~�N'2 � 16�2~y2N'2 q(0) + ��+ N~tN � s2 � L4 ��+8~�N'2 � 16�2~y2N'2 q(�) + ��� N~tN L4�; (80)where the summation over the oupling matrix omponents has been performed by using Eq. (77) withthe settings k = (0; 0; 0; 0) � 0 and k = (�; �; �; �) � �, respetively. Analogously to det0, Tr0 denotesthe trae negleting the modes j0i and j�i. We an now derive the orresponding gap equations bydi�erentiating with respet to m, s, and � leading to0 = m � ����8~�N'2 + 16�2~y2N'2 � q(0)�� ; (81)0 = s � �����8~�N'2 + 16�2~y2N'2 � q (�)�� ; (82)m2 + s2 = 1� ~tN4 1L4 Xk2P0 6=k 6=� "�~�N'2 4X�=1 os(k�)� 8�2~y2N'2 q(k) + �2#�1 : (83)Equation (81) implies that m or the given argument within the square brakets has to vanish. Ananalogous observation an be drawn from Eq. (82). For the investigation of the phase struture we nowonsider two di�erent senarios for the amplitudes m and s, namely a ferromagneti phase (m 6= 0,s = 0) and an anti-ferromagneti phase (m = 0, s 6= 0). For eah of these ases we an then derive aself-onsisteny relation:



16~�N = 0:0 ~�N = 0:1
10 20 30 40 50

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

~�N
~yN

SYMFM
AFM

10 20 30 40 50
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

~�N
~yN

SYMFM
AFM~�N = 1:0 ~�N = 10:0

10 20 30 40 50
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

~�N
~yN

SYMFM
AFM

10 20 30 40 50
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

~�N
~yN

SYMFM
AFMFIG. 4: Phase diagrams for L = 1 with respet to the Yukawa oupling onstant ~yN and the hoppingparameter ~�N for several seleted values of the quarti oupling onstant ~�N . The presented phase struturewas determined for � = 10�1, while the blak lines show the phase transition lines obtained for � = 10�3. Anexplanation of the �-dependene of the presented results is given in the text.1. For a ferromagneti phase (FM) (m 6= 0, s = 0) one obtains from (81)� = 8~�N'2 + 16�2~y2N'2 � q(0) (84)and hene the following self-onsisteny relation0 < m2 = 1� ~tN4 1L4 Xk2Pm(�)0 6=k 6=� " ~�N'2 4X�=1 (1� os(k�)) + 8�2~y2N'2 (q(0)� q(k))| {z }Wm(k) #�1: (85)2. For an anti-ferromagneti phase (AFM) (m = 0, s 6= 0) one obtains from (82)� = �8~�N'2 + 16�2~y2N'2 � q (�) (86)and hene the self-onsisteny relation0 < s2 = 1� ~tN4 1L4 Xk2Ps(�)0 6=k 6=� "�~�N'2 4X�=1 (1 + os(k�)) + 8�2~y2N'2 (q (�)� q(k))| {z }Ws(k) #�1: (87)
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FIG. 5: Expetation values for the amplitudes of the onstant (m: blak urve) and staggered (s: gray urve)modes for several seleted values of the Yukawa oupling onstant ~yN and the quarti oupling parameters~�N = 0:0 and ~�N = 0:1. The results were obtained for L =1.Three further remarks shall be given here.(I) The equations (85) and (87) are denoted as self-onsisteny relations beause the assumption ofa (anti-)ferromagneti phase beomes inonsistent, if the resulting value for m2 (or s2, respetively)beomes non-positive. If both assumptions beome inonsistent simultaneously, this orresponds toa symmetri phase (SYM) with m = s = 0, while the ase m2 > 0 and s2 > 0 is denoted as aferrimagneti phase (FI).(II) For the ferromagneti phase the hoie of � aording to Eq. (84) justi�es the integrationperformed in Eq. (75) a posteriori, beause it suÆiently shifts the eigenvalues 2Wm(k) of the matrix��eff + � to make all of them positive, exept for the onstant mode (k = 0) whih was exludedfrom the Gauss-integration.(III) For the anti-ferromagneti phase, in ontrast, hoosing � aording to Eq. (86) does notguarantee all eigenvalues 2Ws(k) of ��eff + � to be positive. The Gauss-integration in Eq. (75) antherefore only be performed for all those modes 0 6= k 6= � whih ful�ll Ws(k) � � with an arbitrarylower bound � > 0. The details of this statement are presented in Appendix B. The results of thismore areful onsideration are already presented in Eq. (85) and Eq. (87). The only di�erene to thenaive result is that the set over whih the sum has to be performed is redued from P to Ps(�) withthe de�nitions Pm(�) = nk 2 P : Wm(k) � �o and Ps(�) = nk 2 P : Ws(k) � �o; (88)where the introdution of the set Pm(�) is atually unneessary due to the previous remark (II).The orresponding phase struture an now be obtained by numerially evaluating equations (85)and (87). For some seleted values of the quarti oupling ~�N the resulting phase diagrams withrespet to the parameters ~�N and ~yN are shown in Fig. 4. All presented results were obtained foran in�nite lattie, i.e. L = 1. For ~yN ! 1 the e�etive oupling matrix in Eq. (72) onverges to
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FIG. 6: Expetation values for the amplitudes of the onstant (m: blak urve) and staggered (s: gray urve)modes for several seleted values of the Yukawa oupling onstant ~yN and the quarti oupling parameters~�N = 1:0 and ~�N = 10:0. The results were obtained for L =1.the oupling struture of a pure nearest-neighbour sigma-model. One therefore expets a symmetriphase entered around ~�N = 0 at large values of the Yukawa oupling onstant ~yN as an be observedin the plots. For dereasing ~yN the symmetri phase bends towards negative values of ~�N . In theplots the results for the phase transition lines obtained for � = 10�1 and � = 10�3 are ompared toeah other. While the phase transition line to the ferromagneti phase is una�eted by small hangesto � as expeted, the urves start to di�er for the anti-ferromagneti phase transition at small valuesof ~yN . The disrepany between these two lines an serve as an indiator down to whih value of~yN the negletion of the modes with Ws(k) < � an be onsidered as a good approximation (besidesthe unertainties arising from utting o� the power series in Eq. (51) at small values of ~yN ). Weadd here, that we hose the presented parameter range in all phase diagrams suh that the volumeof the spae of the onsidered modes is at least 95% of the volume of the whole mode spae, i.e.Vol(Ps(�)) � 0:95 �Vol(P). For ~yN !1 the volume of the negleted modes vanishes and the problemenountered during the Gauss-integration in Eq. (75) eventually disappears.The order of the phase transitions an again be determined by alulating the expetation values ofthe amplitudes of the onstant and staggered modes m and s diretly from equations (85) and (87).The orresponding results are presented in Fig. 5 and Fig. 6. One learly sees that the ourring phasetransitions are of seond order as one would also expet from the limit ~yN ! 1 where the modelbeomes a sigma-model. V. SUMMARY AND CONCLUSIONSIn this paper we have studied analytially the phase struture of a hirally invariant lattie Higgs-Yukawa model, originally proposed by L�usher. This was possible in the large Nf -limit for smallas well as for large values of the Yukawa oupling onstant and it ould be shown that the modelpossesses a rih phase struture.In Setion III we began by onsidering the model at small values of the Yukawa and quarti ouplingonstant and argued that taking only the onstant (m) and staggered (s) modes of the Higgs �eld



19into aount is suÆient for the determination of the phases in that regime of the Yukawa and quartioupling onstant. We then presented an expliit expression for the e�etive potential at tree-levelin terms of m and s and showed the orresponding phase diagrams for some seleted values of thequarti oupling onstant. In these diagrams all possible phases, i.e. symmetri (m = 0, s = 0),ferromagneti (m 6= 0, s = 0), anti-ferromagneti (m = 0, s 6= 0), and ferrimagneti phases (m 6= 0,s 6= 0), ould be observed. Furthermore, we onluded from our result for the e�etive potentialthat the ourring phase transitions from the symmetri to the ferromagneti and anti-ferromagnetiphases are of seond order.In the following Setion IV we proeeded to the regime of large values of the Yukawa ouplingonstant yN . We showed that for suÆiently large values of yN and arbitrary values of the quartioupling onstant �N the model beomes an O(4)-symmetri, non-linear sigma-model in the large Nf -limit up to some �nite-volume terms. In partiular, this relation to a sigma-model has the onsequenethat a symmetri phase also exists at large values of the Yukawa oupling onstant. We determined thephase struture of the latter sigma-model by an additional large N -limit with N denoting the numberof Higgs �eld omponents here. The orresponding phase diagrams revealed again a rih strutureonsisting of symmetri, ferromagneti, and anti-ferromagneti phases separated by seond order phasetransitions. The symmetri phase, however, was shown to emerge only in the in�nite volume limit.For small latties, �nite volume e�ets ause an asymmetry in m and s whih one would not expetin a pure sigma-model. These �nite volume e�ets may easily give rise to a misleading interpretationthat a symmetri phase at strong values of the Yukawa oupling onstant does not exist. However, onsuÆiently large latties the symmetri phase should beome learly observable and the asymmetryshould disappear.The validity of our analytial results and in partiular the latter preditions about the symmetriphase at large yN will be onfronted in an upoming paper with the results of orresponding Monte-Carlo simulations inluding the hiral invariant fermions in a fully dynamial fashion.APPENDIX AIn this appendix we would like to make up for the negleted derivation of Eq. (56). Starting fromEq. (53) one �ndsTr �AB�1�r = Xn1;:::;nr Tr8�8 ��AB�1�n1;n2 � ::: � �AB�1�nr;n1� (A1)= Xn1;:::;nr X�1�1k1;:::;�r�rkr�01�01k01;:::;�0r�0rk0r Xp1;:::;pr2P eip1(n1�n2)L4 � ::: � eipr(nr�n1)L4� Tr8�8 "u�1�1k1(p1)��1(p1)�B̂(p1)(��n2=j�n2 j2)��1�1k1;�01�01k01 hu�01�01k01(p1)iy � u�2�2k2(p2)| {z }U(p1;p2)�01�01k01;�2�2k2� ��2(p2)�B̂(p2)(��n3=j�n3 j2)��2�2k2;�02�02k02 hu�02�02k02(p2)iy � : : : � u�r�rkr (pr)��r (pr)� �B̂(pr)(��n1=j�n1 j2)��r�nkr ;�0r�0rk0r hu�0r�0rk0r (pr)iy #= Xn1;:::;nr Xp1;:::;pr2P Tr8�8 " rYi=1 eipi(ni�ni+1)L4 j�ni+1 j�2A(pi)�B̂(pi)(��ni+1)�U(pi; pi+1)# ;where the de�nition of the spinor basis transformation matrix U(p1; p2) given in Eq. (25) was used.



20APPENDIX BIn this appendix we want to deal with the possibly non-positive eigenvalues of the operator��eff+�,whih would not allow the option of performing the Gauss-integration in Eq. (75) over all modes, ina more preise manner. We therefore restart our alulation beginning in Eq. (73). Now we performthe Gauss-integration solely over those modes k 2 P ; 0 6= k 6= � whih have their orrespondingeigenvalue of the operator ��eff + � not smaller than 2� > 0. We denote the subset of these modesas P(�; �). Aording to Eq. (77) it is given asP(�; �) = nk 2 P : �~�N'2 4X�=1 os(k�)� 8�2~y2N'2 � q(k) + �2 � �o: (B1)Performing the Gauss-integration only over these modes the ation redues toS[mi; si; �; �ik℄ = � ln �det00 ���eff + ����N=2 + 1tN( NXi=1 �mi�2 � 
0 ����eff + ��� 0�� L4�+ NXi=1 �si�2 � 
� ����eff + �����+ NXi=1 Xk2 �P(�;�)0 6=k 6=� ��ik�2 � 
k ����eff + ��� k�) (B2)= N2 Tr00 ln ���eff + ��+ N~tN �m2 � L4 � ��8~�N'2 � 16�2~y2N'2 q(0) + ��+ N~tN � s2 � L4 ��+8~�N'2 � 16�2~y2N'2 q(�) + ��� N~tN L4�+ Xk2 �P(�;�)0 6=k 6=� N~tN � �2k � L4 � �2~�N'2 4X�=1 os(k�)� 16�2~y2N'2 q(k) + �! ; (B3)where �ik denote the amplitudes of the exluded modes with k 2 �P(�; �); 0 6= k 6= � and �P(�; �) �P=P(�; �) is the omplement of P(�; �). Here the notation�ik =rL4N �k (B4)was introdued orrespondingly to Eq. (79) and the plane wave modes jki were expliitly given inEq. (76). The determinant det00 and the trae Tr00, respetively, are now only performed over themodes k 2 P(�; �); 0 6= k 6= �, as desired. The resulting gap equations an now be obtained bydi�erentiating the e�etive ation with respet to m; s; � and all �k . This leads again to Eq. (81) andEq. (82). Only the third one, Eq. (83), is modi�ed yielding nowm2 + s2 + Xk2 �P(�;�)0 6=k 6=� �2k = 1� ~tN4 1L4 Xk2P(�;�)0 6=k 6=� "�~�N'2 4X�=1 os(k�)� 8�2~y2N'2 q(k) + �2#�1 : (B5)Furthermore, one obtains one additional gap equation for every mode k 2 �P(�; �); 0 6= k 6= � aordingto 0 = �k � "�� +2~�N'2 4X�=1 os(k�) + 16�2~y2N'2 q(k)!# 8k 2 �P(�; �); 0 6= k 6= �: (B6)Again we onsider the senario of a purely ferromagneti phase and the senario of a purely anti-ferromagneti phase for the investigation of the phase struture. The only partiularity here is thatwe assume all �k to be zero in both ases. (In priniple, with this approah one ould also study thephase struture of some of the amplitudes �k, but this is beyond our interest here.) We thus arrive
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