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If dark matter has a finite size that is larger than its Compton wavelength, the corresponding
self-interaction cross section decreases with the velocity. We investigate the implications of this
Puffy Dark Matter for addressing the small-scale problems of the ΛCDM model. In particular, we
show that the way the non-relativistic cross section varies with the velocity is largely independent of
the dark matter internal structure when the range of the mediating force is very short. We present
an explicit example in the context of a QCD-like theory of dark matter and show that low-threshold
direct detection experiments have the potential to probe Puffy Dark Matter.

Introduction. While the standard cosmology as des-
cribed by the ΛCDM model has been well established
thanks to the overwhelming amount of observational
data, the particle nature of dark matter (DM) still eludes
us. In this regard, the distribution of DM in astrophysical
objects may provide a very important clue [1]. Actually,
a handful of studies of the inner region of small-scale
astrophysical halos claim that DM self-scatters with a
cross section per unit of mass of σ/m & 1 cm2/g [2–4].
This is known as self-interacting dark matter (SIDM)
and provides an appealing explanation to the seemingly
mass deficit observed in objects such as dwarf galaxies
when compared to the predictions of collisionless DM.
See [5, 6] for recent reviews of these shortcomings of the
ΛCDM model as well as for a discussion of alternative
solutions such as those invoking other exotic DM candi-
dates (e.g. [7–14]) or baryonic effects (e.g. [15–24]).

Yet, the aforementioned cross sections in small-scale
objects are marginally consistent with observations of
clusters of galaxies, in which DM moves relatively faster
(see e.g. [25–27]). Thus, barring uncertainties, a veloc-
ity dependence of σ/m is preferred, with lower values
at higher velocities. Due to this, point-like DM parti-
cles that self-scatter by means of a short-range interac-
tion are often said to be disfavored because the corres-
ponding cross section is nearly constant. In this con-
text, mechanisms for obtaining a velocity-dependent σ/m
include light mediators inducing a long-range interac-
tion [28, 29], resonant SIDM [30], and processes involving
inelastic scatterings [31–33].

In this work, we point out that, supposing that the
DM particle has a finite size, rDM, the self-scattering
cross section typically decreases for DM velocities larger
than (mrDM)−1, even if the interaction associated with
the scattering has a very short range. As is shown in
Fig. 1, a momentum transfer much smaller than r−1

DM is
too small to measure the internal structure of the DM, so
the latter acts as a point-like particle. On the other hand,
when the momentum transfer becomes larger than r−1

DM,
the internal structure of the particle is probed. As speci-
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Figure 1: Form factors as a function of momentum-transfer
q in units of the inverse root-mean-square radius rDM. Solid,
dashed and dotted lines correspond to the dipole, the tophat
and the Gaussian distributions (see Table I).

fied below, this can happen in such a way that the phase
difference among the scattered waves leads to a suppres-
sion in the scattering cross section. This is indeed the
desired velocity dependence of DM self-scattering. We
will refer to this scenario as Puffy DM. We would like
to remark that, beside the self-scattering effects, the fact
that DM has a finite size leads to a very rich phenomenol-
ogy, as has been explored for several concrete DM candi-
dates (e.g. [34–51]).

This manuscript is organized as follows. In Sec. II we
elaborate further on the elastic scattering of finite-size
DM particles. In Sec. III we discuss the implications in
DM halos. In the following section we present a QCD-like
model of Puffy DM. Finally we conclude in Sec. V.

II. Scattering of finite-size DM particles. Let
us first consider the scattering of two finite-size objects,
which –for simplicity– will be modeled as a collection of
point-like constituents that coherently scatter by means
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Shape ρ(r) rDM F (q)

tophat 3

4πr
3
0

θ(r0 − r) 2
√

3r0
3(sin(r0q)−r0q cos(r0q))

r
3
0q

3

dipole e
−r/r0

8πr
3
0

√
3/5r0

1

(1+r
2
0q

2)
2

Gaussian 1

8r
3
0π

3/2 e
−r2/(4r20) √

6r0 e−r
2
0q

2

Table I: Form factors for different density distributions.

of a spin-independent Yukawa interaction. The corres-
ponding charge density, ρ(~r), characterizes the finite
shape of the scattering object. We will also assume that
the contribution of the binding force to the scattering
rate is negligible. This is the case e.g. if such a force
leads to a momentum-suppressed scattering amplitude.
Then, the interaction Hamiltonian for two objects des-
cribed by the density profiles ρ1(~x) and ρ2(~y) is

Hint =

∫
d~xd~yρ1(~x)

αe−|~x−~y|/λ

|~x− ~y|
ρ2(~y)

=

∫
d~q

(2π)3F1(~q)
4πα

~q2 + λ−2F2(−~q) . (1)

where λ is the range of the interaction, α is a cou-
pling constant, and we have introduced the form factor
Fi(~q) ≡

∫
d~r ei~q·~rρi(~r). Hence, the center-of-mass differ-

ential cross section in the Born approximation is

dσ

dΩ
= S

∣∣∣∣F1(~q)
2µα

~q2 + λ−2F2(−~q) ± (~q→ −~q)

∣∣∣∣2 , (2)

where µ is the reduced mass and ~q is the momentum
transfer. For identical (non-identical) particles, the sec-
ond term must (not) be included and S = 1/2 (1).

An illustrative example is the electron scattering off
larger objects. This is determined by a Coulomb in-
teraction (λ → ∞) with Fe(~q) = 1. In this case,
Eq. (2) gives the well-known Rutherford scattering for-
mula, which can be used to infer the shape of finite-size
objects. When applied to the proton, one finds a density
distribution decreasing exponentially with a characteris-
tic scale r−2

0 = 0.71 GeV2 [52]. The latter is the dipole
distribution (see Table I), generally expected from wave-
function solutions to various potential wells [53].

We apply now Eq. (2) to non-relativistic DM. Assum-
ing that the DM particle is spherical, i.e. F (~q) = F (q),
the S-wave differential cross section reads

dσ

dΩ
=
σ0

8π

[
F (q)2

1 + λ2q2 + (θ → π − θ)

]2

q=mv sin θ/2

, (3)

where σ0 = 4π(mαλ2)2. Here θ and v are respectively the
scattering angle and the relative velocity in the center-
of-mass frame. While the exact form of ρ(r) –and hence
F (q) in Eq. (3)– needs to be determined by solving for
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Figure 2: Transfer cross section as a function of the force
range, λ, and the DM size, rDM, both in units of 1/mv. Here
σ0 of Eq. (3) is assumed to be constant.

the wave function from the Schrödinger equation of the
composite state, the differential cross section is not sen-
sitive to the details of ρ(r) as long as it is always positive
(no screening) and it goes to zero sufficiently fast at large
radii. In that case, the DM size –or more precisely– the
root-mean-square radius

r2
DM ≡

∫
d~r ρ(r)r2 = −6

d2F (q)

dq2

∣∣∣∣∣
q=0

(4)

is positive. Thus, F (q) decreases for small momenta from
F (0) =

∫
d~rρ(r), which can be normalized to 1 without

loss of generality. Fig. 1 illustrates this for the three
representative distributions as listed in Table I. Together
with Eq. 3, all this implies that the cross section is con-
stant at low velocities and eventually approaches zero,
even if the range of the interaction is extremely short.

III. DM scattering in astrophysical halos. Be-
cause of the form factor, for low velocities we expect
isotropic scattering, whereas for larger velocities forward
scattering is more probable. Due to this, the transfer
cross section, σT ≡

∫
dΩ(1− | cos θ|)dσ/dΩ, captures the

self-interaction effects in DM halos better than σ (see e.g.
[54]), and will be adopted below.

Fig. 2 illustrates the dependence of σT on the inter-
action range λ and the particle size rDM. As apparent
from the plot, σT is largely independent of the exact ex-
pression for the form factor and therefore of ρ(r). Fur-
thermore, roughly speaking, the transfer cross section is
constant for mv � min{λ−1, r−1

DM}, starts decreasing at
mv ∼ min{λ−1, r−1

DM}, and approximately scales as 1/v4
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Figure 3: Velocity dependence of the transfer cross section of
Puffy DM. Best-fit curves to data [27] for the dipole (solid),
tophat (dashed) and the Gaussian (dotted) distributions in
Table I. The inset shows the 95% C.L. contours together with
the corresponding parameter sets of the main figure.

for mv � min{λ−1, r−1
DM}. See Appendix for details. In-

terestingly, when the range of the Yukawa force is much
larger than the size of the DM, this precisely describes
the Born regime of SIDM with a light mediator [29]. Fur-
thermore, the figure shows that there is a one-to-one cor-
respondence between the latter and the self-scattering of
finite-size DM by a short-range force, both giving the
same transfer cross section.

The DM relative velocity in astrophysical halos typ-
ically follows a Maxwell-Boltzmann distribution trun-
cated at the corresponding escape velocity, vmax. The
velocity-averaged transfer cross section is then [68]

〈σT v〉 =

∫ vmax

0

f(v)σT vdv , f(v) =
32v2e−4v

2
/π〈v〉2

π2〈v〉3
.

(5)
In the context of SIDM as a solution to the small-scale
structure problems, a semi-analytical method has been
proposed in [27] to infer, from observational data, the
value of 〈σT v〉/m for a given DM halo (see also [55]). This
method was applied to five clusters from [56], seven low-
surface-brightness spiral galaxies in [57] and six dwarf
galaxies of the THINGS sample [58]. Fig. 3 shows these
results respectively in green, blue and red. While these
values should be taken with caution due to large uncer-
tainties in the SIDM modeling of astrophysical objects
(see e.g. [59]), the set of points is in agreement with obser-
vations from the Bullet Cluster giving σT /m . 1.3 cm2/g
at cluster scales [25, 26], which is one of the strongest
constraints on DM self-interactions.

Postulating a DM finite size much larger than the range
of the Yukawa force, i.e. λ� rDM, provides an excellent
fit to the velocity-dependent cross section preferred by
the galactic and cluster systems. The corresponding best-
fit of Eq. (5) to the data above is shown in Fig. 3 for the
dipole, the tophat and the Gaussian distributions, sep-
arately. As expected from the aforementioned remarks,
there is almost no dependence on details of the form fac-
tors even though they correspond to substantially differ-
ent density distributions. The figure also shows that, in
order to have the right velocity dependence, the DM size
needs to be hundreds of times larger than the Compton
wavelength. This explains the name Puffy DM.

If the Yukawa force is associated to a mediator ρ, re-
quiring λ = 1/mρ � rDM implies mρ � 10−3m. This
shows that the mediator can be lighter than the DM and
still the velocity dependence is determined by the DM
size. Likewise, if we impose α . mρ/m as required in

the Born expansion, σ0/m = 4π(mαλ2)2/m ∼ 1 cm2/g
leads to m . 20 GeV.

IV. A model of Puffy DM. Here we only sketch a
possible realization of Puffy DM while details will be dis-
cussed elsewhere. It is a QCD-like confining theory with
Nc colors and two flavors of quarks: one “charm quark”
much heavier than the confining scale Λ and one nearly
massless “down quark”. They respectively have charges
+2/3 and −1/3 under a dark U(1)D gauge group. This is
associated with a massive “dark photon” γD, which can
act as a portal to the Standard Model (SM) by means of
the kinetic mixing between the U(1)D group and the SM
hypercharge. There are no dark weak interactions. We
assume there is an asymmetry so that anti-charm quarks
are annihilated while the remaining charm quarks end
up in the baryonic Σc(cdd) state. The latter interacts by
exchanging the pseudo-scalar η(dd̄) and the vector ρ(dd̄),
which lead to attractive and repulsive forces respectively.

On the one hand, it is likely that the η-exchange dom-
inates binding Σc baryons into nuclei because its range
is larger given that the η mass is due to the anomaly and
hence suppressed as mη ∼ Λ/

√
Nc, as opposed to the ρ

mesons for which mρ ∼ Λ. In view of this, in the follow-
ing we assume the typical mass number is 10 . A . 100.
On the other hand, the nucleus-nucleus scattering is dom-
inated by the exchange of ρ mesons because the latter are
essentially massive gauge bosons coupled to d-number
(A/2) giving rise to coherent spin-independent scat-
tering, while the η-exchange induces a spin-dependent
momentum-suppressed scattering. Therefore, the range
of the scattering force Λ−1 is shorter than the size of the

nuclei rDM ∼ A
1/3m−1

η ∼ A
1/3Λ−1√Nc. As a result, this

model is a realization of Puffy DM.

For instance, parameters such as Nc = 3, A ∼ 10,
mc ∼ mΣc

∼ 1 GeV, r−1
DM ∼ 15 MeV, mη ∼ 20 MeV,

Λ ∼ mρ ∼ 30 MeV and α ∼ mρ/m realize the desired
self-scattering cross section and its velocity dependence.
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Figure 4: Direct detection bounds on our QCD-like theory
of Puffy DM from Xenon1T [64], CMDSlite[65] and CRESST
II [66]. See text for details.

We take mγD
< mη/2 so that η decays into γDγD from

the anomaly [69]. Then the size of the kinetic mixing
is either (A) 10−5 . ε . 10−3 or (B) ε � 10−10 to
satisfy beam-dump experimental data and supernova ob-
servations [60, 61]. In the cosmological history, presum-
ably much of the entropy in this sector ends up in a
thermally populated gas of η mesons. These decay via
η → γDγD → 2(e+e−) before Big-Bang Nucleosynthe-
sis (BBN) for the range (A) if gD & 10−9. On the other
hand, the direct detection forces gD . 10−6 for a 10 GeV
DM particle.

Even though the nucleus is U(1)D neutral, it has a fi-
nite charge radius similar to the neutron, which approx-
imately equals the DM size rDM. Therefore the kinetic
mixing between our photon and the dark photon leads
to nuclear recoils. We estimate the corresponding cur-
rent direct-detection limits by implementing such a re-
coil spectrum in DDCalc [62, 63]. The results are shown

in Fig. 4 for various choices of the charge radius and
1 MeV� mγD

� mZ .

For the parameter range (B), the dark sector decou-
ples from the Standard Model early, and hence it may be
much cooler and the additional entropy ejection is lim-
ited. This case needs to be studied separately.

V. Conclusions. We have shown that if DM is a com-
posite state with a size hundreds of times larger than its
Compton wavelength, the corresponding self-interaction
cross section varies with velocity in a way that is largely
independent of its internal structure. For cross sections
larger than 1 cm2/g at v → 0, this provides a solution to
the problems of the ΛCDM model in small-scale astro-
physical objects while still being in agreement with clus-
ter observations. An important aspect of this scenario is
that it does not require a long-range force mediating DM
self-scatterings. A QCD-like theory where DM is a dark
nucleon has been used to illustrate our results, which
are nevertheless general and can be applied to a broader
range of theories. For this reason, we believe Puffy DM
opens up a new avenue for SIDM model-building.
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Appendix: The transfer cross section

The transfer cross section for DM scattering is

σT =
σ0

8π

∫
dΩ (1− | cos θ|)

[
F (q)2

1 + λ2q2 + (θ → π − θ)

]2

=

∫ (mv)
2

2

0

[
F (q)2

1 + λ2q2 +
(
q2 → (mv)2 − q2

)]2
2σ0q

2dq2

(mv)4 . (6)

Here we focus on the Puffy DM, where r−1
DM � λ−1. On

the one hand, taking the low velocity limit, mv � r−1
DM,

the factor in the square bracket approaches 2 and thus
σT → σ0 at v → 0. On the other hand, for mv � r−1

DM,
F (q) is suppressed at q � r−1

DM so that the result of the
integral is insensitive to its upper limit. The integral is

not sensitive to λ either, because for any q & λ−1 there
is always q � r−1

DM. Taking this into account allows us to
approximate σT by

σT '
2σ0

m4v4

∫ ∞
0

dq2q2F (q)4 ' σ0

(cmvrDM)4 , (7)
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with c = 0.23, 3.9, 0.97 for the tophat, the dipole, and
the Gaussian distributions, respectively. Therefore, σT
scales as 1/v4 at mv � r−1

DM. The behavior derived here
is different from that of effective range theories [67], since
the latter applies to each partial wave of the scattering
cross section, while our result applies to the total transfer
cross section. Note that at very large mv incoherent scat-
tering starts playing a role. Nevertheless, its contribution
is much smaller than σT , and is therefore neglected for
simplicity.
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ηη → γDγD can sufficiently reduce the abundance of η
mesons. If a dark axion, a, exists, the annihilation

ηη → ηa can play the same role.
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