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Abstract

In this work, we use a recast of the Run II search for invisible Higgs decays within Vector Boson Fusion

to constrain the parameter space of the Inert Doublet model, a two Higgs doublet model with a dark matter

candidate. When including all known theoretical as well as collider constraints, we find that the above can

rule out a relatively large part in the mH , λ345 parameter space, for dark scalar masses mH ≤ 100 GeV.

Including the latest dark matter constraints, a smaller part of parameter space remains which is solely

excluded from the above analysis. We also discuss the sensitivity of monojet searches and multilepton final

states from Run II.
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I Introduction

I. INTRODUCTION

The Inert Doublet model (IDM) is one of the most straighforward extensions of the Standard

Model (SM) [1–3]. It belongs to the class of Two Higgs Doublet Models (2HDM) which contain

two SU(2) doublets in the scalar sector. One of these doublets, φS , has a nonvanishing vacuum

expectation value (vev) which is responsible for the spontaneous breaking of electroweak symmetry

in the Standard Model while the second scalar doublet φD by construction does not acquire such a

vev. This second doublet is hence not involved in the spontaneous mass generation in the Standard

Model and does not couple to the SM fermions.

Within this model we impose an additional Z2 symmetry, labelled D-symmetry, defined via the

transformation

φD → −φD, φS → φS , SM→ SM, (1)

which should be respected by the Lagrangian and the vacuum.

As electroweak symmetry breaking in this model proceeds completely analogous to the SM

without the second doublet, φS provides the SM-like Higgs particle and is assumed to be even

under the D symmetry. The second inert or dark doublet contains two charged and two neutral

scalars and as they are odd under imposed D-parity, its lightest neutral component provides a

natural candidate for dark matter (DM). It provides a “perfect example” of a WIMP [4–7], and

leads to an interesting pattern for the evolution of the Universe, towards the Inert phase as given

by the IDM, with one, two or three phase transitions [8]. Furthermore, the IDM can provide

a strong first-order phase transition [9–13] as required by the Sakharov conditions to generate a

baryon asymmetry of the Universe. After the discovery of a SM-like Higgs particle in 2012, many

studies have been performed in the context of the IDM which use Higgs measurements as well

as astrophysical observations, see e.g. [14–23].1 In addition, proposals were made how to search

for dark scalars at the LHC in leptonic final states [15, 22, 28–31] and in single or dijet channels

[32, 33].

Recently, also the important issue of vacuum (meta-)stability in the IDM has been discussed,

and it was found that additional, possibly heavy scalars can have a strong impact on it [19, 34–36].2

While the model is intruiging per se and in spite of benchmark scenarios for the current LHC

run [22, 39], it has not yet been studied explicitly by the LHC collaborations. However, recasts of

other BSM searches with similar topologies have been presented in the literature, with prominent

examples for searches for supersymmetric particles at LEP [40] as well as the first LHC run [20].

In this work, we present a recast of the Run II analyses presented in Ref. [41], presented by

the CMS collaboration which target an invisibly decaying SM-like Higgs boson produced in vector

boson fusion (VBF), and Ref. [42] by the ATLAS collaboration and which focusses on monojet

1 Recent analyses for models which extend the IDM by an additional singlet have been performed in [24–27].
2 Similar solutions can be found in a simple singlet extension of the SM Higgs sector, cf. e.g. [37, 38] and references

therein.
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II The model

final states. We reinterpret the results of these searches within the IDM by making use of the

CheckMATE [43, 44] framework.

The regions considered in this work are tested against all currently available theoretical and

experimental constraints, with scan procedure and limits as described in Refs. [22, 23, 45].

We explore the reach of the above searches for the model’s parameter space and identify regions

which cannot be excluded by any of the other tested constraints. Finally, we briefly comment on

other experimental BSM searches at LHC Run II that could be used as recasts for the IDM and

are expected to yield further constraints on its parameter space.

II. THE MODEL

Imposing symmetry under the D-transformation given in Eq. (1), the full scalar potential of the

IDM is given by

V (φS , φD) = −1
2

[
m2

11(φ†SφS)+m2
22(φ†DφD)

]
+ λ1

2 (φ†SφS)2+ λ2
2 (φ†DφD)2

+λ3(φ†SφS)(φ†DφD)+λ4(φ†SφD)(φ†DφS) + λ5
2

[
(φ†SφD)2+(φ†DφS)2

]
.

(2)

In this formulation, all parameters are real (see e.g. [8]).

Depending on the signs and values of the individual parameters in V (φS , φD), the minimisation

conditions may result in different vacuum configurations where none, one or both vevs of φS or

φD are non-vanishing. Within this work, we focus on the IDM realisation 〈φD〉 6= 0, 〈φS〉 = 0, for

which the decomposition around the vacuum state is given by

φS =

(
φ+

1√
2

(v + h+ iξ)

)
, φD =

(
H+

1√
2

(H + iA)

)
. (3)

Here, v = 246 GeV denotes the SM vacuum expectation value and the scalar field component of

φS contains the SM-like Higgs boson h with mass

m2
h = λ1v

2 = m2
11, (4)

fixed by the experimentally observabed value of 125.1 GeV.

In addition to the components known from the Standard Model, the second scalar doublet of

the IDM, φD, contains four dark or inert scalar field components H, A, H± with masses given as

follows:

m2
H± =

1

2

(
λ3v

2 −m2
22

)
, (5)

m2
A = m2

H± +
1

2
(λ4 − λ5) v2 =

1

2
(λ̄345v

2 −m2
22), (6)

m2
H = m2

H± +
1

2
(λ4 + λ5) v2 =

1

2
(λ345v

2 −m2
22), (7)

where we have defined λ345 := λ3 +λ4 +λ5 and λ̄345 = λ3 + λ4 − λ5. While their interactions with

the Standard Model vector bosons can be derived from the gauge kinetic term in the Lagrangian,

3



III Constraints III.1 Theoretical constraints

the absence of any gauge invariant Yukawa-like interaction between φS and the Standard Model

fermion sector prohibits any tree level interactions between these four dark particles and the SM

fermions. Moreover, due to the exact D-symmetry the lightest neutral scalar cannot decay and

may therefore provide a candidate for dark matter.3 Note that, contrarily to generic Two-Higgs-

Doublet-Models which denote H/A as the scalar/pseudoscalar components of a doublet, we cannot

make such a unique idenfication here as there is no interaction of φD with the Standard Model

fermions. In fact, we can swap the roles of H and A by making the replacement λ5 ↔ −λ5, cf.

Appendix A.

Within this work, we make the choice mH < mA,mH± and assume H to be the DM candidate.

According to Eqs. (5-7), this choice implies the relations λ5 < 0 and λ45 := λ4 + λ5 < 0. The

parameters λ345 and λ̄345 are related to the triple and quartic coupling between the SM-like Higgs h

and the DM candidate H or the scalar A, respectively. λ3 is relevant for the h interaction with the

charged scalars H±. Lastly, the parameter λ2 describes the quartic self-couplings of dark particles.

A list of all relevant Feynman rules for this model is provided in Appendix A.

Starting from the general scalar potential in Eq. (2), the IDM has 7 degrees of freedom. As

φS plays the same role as the SM Higgs doublet for electroweak symmetry breaking, the two

parameters mh and v are fixed by the Higgs mass measurement and electroweak precision data,

respectively. We are therefore left with 5 degrees of freedom which we choose to be the physical

parameters (mH ,mA,mH± , λ2, λ345). From these the corresponding dependent values of the other

theory parameters can be derived by applying the relations given above.

III. CONSTRAINTS

As has been widely discussed in the literature, the IDM is subject to numerous constraints

which can be derived from both theoretical grounds as well as experimental results. We briefly

remind the reader of these constraints here and refer to the literature

[2, 4–6, 15, 21–23, 28, 30–33, 45, 47–67] for further details.

The constraints we use in this work have been extensively discussed in Refs. [22, 23, 45] and we

refer the reader to this work for more detailed explanations. Here, we only summarise all relevant

constraints and focus on updated experimental constraints whenever these have been applied. The

calculation of the IDM spectrum and tests of several of the below constraints have been obtained

using 2HDMC [68].

III.1. Theoretical constraints

We apply the following theoretical constraints:

3 Charged DM

has been strongly limited by astrophysical analyses [46].
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III Constraints III.1 Theoretical constraints

• The vacuum of the model needs to be bounded from below.4 These lead to the conditions

λ1 > 0, λ2 > 0, λ3 +
√
λ1λ2 > 0, λ345 +

√
λ1λ2 > 0 (8)

• All couplings must allow for a perturbative discussion which is why we restrict all couplings

to be smaller than 4π.

• All 2 → 2 scalar scattering processes must not violate perturbative unitarity and we apply

standard bounds as implemented in 2HDMC.

• In generic Two Higgs Doublet Models, several vacua can coexist. The tree level condition to

be in the inert vacuum has been calculated in

[8, 55, 56]

m2
11√
λ1
≥ m2

22√
λ2

(9)

Here, m11 and m22 can directly be derived from Eqs. (4) - (7) and the above condition

translates to

λ345 ≤
√
λ2mh v + 2m2

H

v2

The above constraint links the value of λ345 and the dark scalar mass to the coupling λ2 which

describes self-couplings in the scalar sector and has no influence on collider phenomenology

(see e.g. the discussion in [45]). Requiring the Higgs self-coupling vertices to acquire maxi-

mally allowed values of 4π leads e.g. to λ2 . 4 [22]. This bound, in the parameter region

with relatively light dark scalars with masses mH . 100 GeV, would result in λ345 ≤ O(1).

Note, however, that this bound is not completely mandatory. Several minima may coexist

(see e.g. [69, 70]) and the inert one may only be a local one as long as the transition time

to the global non-inert minimum is sufficiently large. Moreover, the above condition may

be significantly altered at next-to-leading order, see e.g. Refs. [60, 71]. The next-to-leading

order effects are however quite involved and can not easily be generalized, but need to be

recalculated for on a case-by-case basis 5 In this work, where we focus on current constraints

from LHC searches that are independent of λ2, we therefore also consider values of λ345 & 1.

In case of a discovery, a detailed analysis would be needed in order to correctly evaluate the

above condition beyond leading order, see e.g. related studies in Refs. [71, 72].

4 The constaints are applied at tree level; see e.g. Refs. [19, 35] for a discussion of changes using higher order

predictions.
5 We thank P. Ferreira and B. Swiezewska for useful discussions regarding this point.
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III Constraints III.2 Experimental constraints

III.2. Experimental constraints

In addition to the theoretical constraints listed above, several experimental observations put

tight constraints on the parameter space of the IDM:

• We fix the mass of the SM-like Higgs boson h to

mh = 125.1 GeV (10)

in agreement with the results from the LHC experiments [73]. Note that this constraint has

already been accounted for when we chose (mH ,mA,mH± , λ2, λ345) as the five degrees of

freedom of the IDM.

• We furthermore require the total width of the 125 GeV Higgs to obey Ref. [74]

Γtot ≤ 9 MeV

which constrains those regions of parameter space which predict additional decays of the

SM-like Higgs boson.

• Furthermore, we take into account strong bounds from the measured total widths of the elec-

troweak SM gauge bosons, cf. e.g. Ref. [75], by forbidding potentially dangerous kinematic

mass configurations via the following hard constraints:

mA,H +mH± ≥ mW , (11)

mA +mH ≥ mZ , (12)

2mH± ≥ mZ . (13)

• We furthermore require a 2σ, i.e. 95% C.L., agreement with electroweak precision observ-

ables, parameterized through the electroweak oblique parameters S, T and U [76–79].

• In order to evade bounds from long-lived charged particle searches, we conservatively set an

upper limit on the charged scalar lifetime of τ ≤ 10−12 s, to guarantee decay before the

innermost detector layer. This translates to a lower bound on the total decay width of the

charged scalar H± of Γtot ≥ 6.58 × 10−13 GeV. Mass dependent bounds on the charged

scalar lifetime have been studied in detail in Ref. [67].

• A bound on the lower mass of mH± has been derived in Ref. [80]. Although a more dedicated

analysis of this bound within the current models’ framework would be required, we take

mH± ≥ 70 GeV as a conservative lower limit.
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III Constraints III.2 Experimental constraints

• We also require agreement with the null-searches from the LEP, Tevatron, and LHC ex-

periments using HiggsBounds-5.2.0beta [81–84], including all experimental bounds up to

Moriond 2017.6

• We update the limits on the invisible decay of mh and take the results presented in Ref. [86]

which require BRh→ inv ≤ 0.24.

• Furthermore, we apply new limits on the branching ratio h → γ γ taken from [87] and

require µ = 1.14+0.19
−0.18. Since within the IDM the production cross sections of the SM-like

Higgs are unaffected, we use the bound on µ in combination with the Standard Model value

[39] of BR (h → γ γ) = 2.270 × 10−3 and require

BR (h → γ γ) ∈ [1.77; 3.45]× 10−3 (14)

at the two-sigma level.

• In addition, we require agreement within 2σ for the 125 GeV Higgs signal strength mea-

surements. For this, we make use of the publicly available tool HiggsSignals-2.2.1beta [88],

and require ∆χ2 ≤ 11.3139, corresponding to the 95% confidence level of a 5-dimensional

fit.7

• We also include limits on the model’s parameter space that have been obtained in previous

reinterpretations of collider dark matter searches, predominantly within supersymmetric

scenarios. Major limits stem from the reinterpretation of a LEP analysis [40] within the

IDM framework [52]. This particularly rules out all regions where

mA ≤ 100 GeV, (15)

mH ≤ 80 GeV, (16)

∆M(A,H) ≥ 8 GeV (17)

are simultaneously fulfilled.

• After taking into account all the above limits we are outside of the region excluded due to

the recent reinterpretation of the SUSY analysis from LHC Run I [20].

• We apply dark matter relic density limits obtained by the Planck experiment [89]:

Ωc h
2 = 0.1200 ± 0.0012 (18)

In this work, we do not require the dark matter candidate of the IDM to provide the full

relic density, but use it as an upper limit8 Being conservative, we require

Ωc h
2 ≤ 0.1224, (19)

6 Please see the tool’s documentation material in Ref. [85] for a detailed discussion of the included limits.
7 We used a combination of Run I combination, Run II, and simplified template cross sections within HiggsSignals .
8 In such a scenario, additional dark matter candidates would be needed in order to account for the missing relic

density; cf. e.g. Ref. [90] for a dedicated discussion of such scenarios within a supersymmetric setup.
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IV LHC Analysis of VBF and Monojets

which corresponds to not overclosing the universe at 95 % confidence level. In addition to

this bound, we specifically identify those regions which reproduce the observed DM density

within the 2 σ interval around the above best fit value value. The dark matter relic density

has been calculated using MicrOmegas version 4.3.5 [91].

• Regarding direct detection dark matter constraints, we compare to the most recent results

of XENON1T [92].9

As before, we consider the possibility of a multi-component dark matter scenario in which

the IDM only makes up for a fraction of the total dark matter relic density. In this case,

the upper limit from direct detection depends on the actual DM relic density for the specific

point in parameter space; therefore, we have to introduce a rescaling factor, leading to the

(relic density dependent) limit

σ (mH , {. . .}) ≤ σXENON1T(mH)× ΩPlanck

Ω(mH , {. . .})
, (20)

where mH now denotes the dependence on the mass of our dark matter candidate H and

{. . .} is short for all other parameters specifying the respective IDM parameter point.10

Direct detection cross sections are again obtained using MicrOmegas.

The scan setup has been described in great detail in Ref. [22]. To determine allowed regions

in parameter space, we follow the procedure discussed therein, including the experimental updates

listed above.

IV. LHC ANALYSIS OF VBF AND MONOJETS

In this work, we choose to constrain ourselves to cases for dark matter candidate masses mH ≤
100 GeV. Due to the relatively high production cross section in such cases, these will be the regions

which are most sensitive to collider searches (see e.g. [30, 32, 33, 98] for recent work on low mass

scenario studies at the LHC).

We here concentrate on the 13 TeV CMS search for an invisibly decaying Higgs [41] produced

through vector boson fusion (VBF) and a 13 TeV ATLAS search [99] for dark matter candidates

in the monojet channel. Theses respectively lead to the collider signatures

p p → j j + /ET , (VBF) (21)

p p → j + /ET , (Monojet). (22)

In this study, we mainly focus on the VBF channel which, as we show later, provides the strongest

sensitivity. We however also determine bounds on the IDM using a monojet reinterpretation for

comparision. A dedicated exploration of this channel including sensitivity prospects of the high

luminosity LHC can be found in Ref. [32].

9 We here use the data available from Ref. [93] in a digitalized format. In our code, we use an approximation function

which reproduces these constraints on the per-cent level.
10 See also Refs. [90, 94–97].
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IV LHC Analysis of VBF and Monojets

Requirement Cut-and-Count Shape

Leading Jet pT >80 GeV

Second Jet pT >40 GeV

Emiss
T >250 GeV

|∆φj,Emiss
T
| >0.5

|∆φjj | <1.5

η1 · η2 <0

|∆ηjj | >4.0 >1.0

mjj >1.3 TeV > 200 GeV (binned)

TABLE I. Summary of the main kinematic requirements in the signal regions in Ref. [41].

IV.1. Features of the VBF Channel

The two jets in the VBF channel typically have a large separation in pseudorapidity. The

corresponding cuts used in the above analysis are listed in table I. These form a “Cut-and-Count

analysis” and a “Shape analysis”. The former is designed for a large signal-to-background ratio

and requires a large value for the invariant mass mjj of the jet pair, whilst the latter defines

several signal regions binned in mjj and used collectively in a fit. Using these signatures, the CMS

collaboration finds an upper limit on the invisible Higgs branching ratio of BRmax
h→ inv = 0.53 using

the cut-and-count analysis and 0.28 for the shape analysis which are both weaker than the upper

limit BRmax
h→ inv = 0.24 used as a hard cut in our scan (see section III.2). This constraint is only

applicable to parameter points in the IDM for which mH < mh/2. However, points with heavier

scalars would also predict additional signal events in the above analysis due to processes with off-

shell h production (pp → h∗jj → HHjj) and contributions from decay chains with hadronically

decaying final state particles (e.g. pp → H±H → jjHH). We recast the above mentioned VBF

analysis in the context of these processes to potentially extract additional constraints applicable

to regions with larger values of mH .

IV.2. Simulation and Validation of the VBF Channel

In this work, we concentrate on the above VBF search which has been implemented within

the CheckMATE [43, 44] framework. CheckMATE uses simulated event files for any BSM model,

applies detector efficiencies and follows the event selection procedure of the implemented BSM

searches from ATLAS and CMS to determine if any resulting signal prediction would violate the

corresponding experimental bound.11 Validation has been performed by reproducing the quoted

numbers expected from the Standard Model Higgs boson with 100% invisible branching ratio.

Following the procedure described in the experimental publication, we use the POWHEG-Box

[101–104] for simulating Monte-Carlo events at next-to-leading order in QCD and subsequently

11 For more information about how CheckMATE works we refer to the corresponding manuals in Refs. [43, 44]. We

implemented the above mentioned VBF search using the AnalysisManager tool described in Ref. [100].

9



IV LHC Analysis of VBF and Monojets IV.2 Simulation and Validation of the VBF Channel

Region Data Background SM prediction with BR(h→invisible) = 100 %

CMS CMS Our Simulation

Powheg-Box MG5 aMC@NLO Ratio

CutandCount 2053 1779 ± 96 851 ± 148 758 468 1.6

mjj ∈ [200, 400] GeV 16177 14878 ± 566 591 ± 285 708 390 1.8

mjj ∈ [400, 600] GeV 10008 9401 ± 387 571 ± 232 664 374 1.8

mjj ∈ [600, 900] GeV 7277 6658 ± 271 566 ± 172 737 433 1.7

mjj ∈ [900, 1200] GeV 3138 2994 ± 144 472 ± 131 483 293 1.7

mjj ∈ [1200, 1500] GeV 1439 1283 ± 69 307 ± 64 314 202 1.7

mjj ∈ [1500, 2000] GeV 911 834 ± 51 344 ± 83 319 203 1.6

mjj ∈ [2000, 2750] GeV 408 358 ± 29 228 ± 40 218 126 1.8

mjj ∈ [2750, 3500] GeV 87 73.8 ± 9.4 90.3 ± 18.8 80.1 48.8 1.7

mjj > 3500 GeV 29 30.3 ± 7.4 37.4 ± 9.1 38.2 19.9 1.9

TABLE II. Observed and expected number of events for all regions listed in Table I. SM predictions are

determined for an entirely invisibly decaying Standard Model Higgs boson with mh = 125 GeV produced

both in Vector Boson Fusion and Gluon Fusion. CMS numbers are taken from Ref. [41] and compared to

our numbers determined with our analysis implementation in CheckMATE, using both the LO-QCD generator

MG5 aMC@NLO and the NLO-QCD Monte Carlo simulation Powheg-Box. Uncertainties quoted for CMS include

both statistical and systematical uncertainties.

interface it to Pythia 6.4.21 [105] to account for parton showering and hadronization of the final

state. We perform the simulation separately for vector-boson-fusion (vbf) and gluon-initiated final

states (ggf) which may also pass the aforementioned cuts.

As we are bound to leading order Monte Carlo tools for the simulation of the IDM, we addition-

ally generate tree-level parton events with MG5 aMC@NLO [106] showered with Pythia 8.219 [107]

— the same tools which we use for our subsequent IDM analysis — to quantify the effect of an

LO-only simulation. Both event samples are processed with CheckMATE and the resulting signal

predictions are shown in table II.

As can be seen, our setup reproduces the experimentally quoted results sufficiently well within

the experimentally quoted error margin when using simulated events generated with an NLO-QCD

Monte Carlo event generator. A leading order Monte Carlo analysis, in comparision, significantly

underestimates the signal prediction with a nearly constant ratio of ≈ 1.7 across all signal region.

The numbers in Tab. II can be used to derive upper limits on the invisible branching ratio of

the Standard Model Higgs. For this purpose we employ a profile likelihood ratio test paired with

the CLs prescription. For the shape analysis, we make use of the full background covariance matrix

provided in Ref. [41]. As no such detailed information is provided for the signal, we conservatively

assume that it is fully correlated across all bins. Our resulting distribution for the test statistics

is shown in Fig. 1. We are able to reproduce this distribution sufficiently well by either using our

results determined with POWHEG or by rescaling the results of our leading-order simulation with a

constant K-factor of 1.7.

From our validation and the comparision of the above results using LO and NLO simulation,

10



IV LHC Analysis of VBF and Monojets IV.3 Features and Setup of the Monojet analysis
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FIG. 1. Comparision of the log-likelihood-ratio, using the numbers in Tab. II.

we conclude that a leading order simulation of the IDM signal is expected to systematically under-

estimate the correct number. However, as a full next-to-leading order simulation of the off-shell

VBF channel within the IDM is beyond the scope of this work, we still determine results using a

leading order simulation of the IDM. To be more precise, we simulate pp → HHjj event samples

for the IDM within MG5 aMC@NLO and Pythia 8.219 by making use of the UFO model description

of Ref. [19]. We include an invariant mass cut mjj ≥ 130 GeV and a pseudorapidity difference cut

∆ηjj ≥ 0.5 with η1η2 < 0 in our parton event generation. Note that these are weaker than the

signal region cuts in Tab. I.

From our above findings, we expect our resulting bounds to be conservative. However, motivated

from the results in Table II we also discuss the bounds we get if our signal prediction is upscaled

with the global K-factor of 1.7 motivated before to illustrate the potential impact of next-to-

leading-order QCD effects.

IV.3. Features and Setup of the Monojet analysis

Nearly any particle model with a dark matter candidate H predicts the standard monojet

signature pp → HHj for the LHC where the jet may originate from initial state radiation or, in

some specific models other than ours, from the hard vertex. It is therefore to be expected that this

channel is sensitive to the IDM in which H plays the role of the dark matter candidate. A detailed

analysis of this channel can be found in Ref. [32]. However, as has for example been shown in Ref.

[108] in the context of a different model with similar topology, the vector boson fusion channel is

expected to be significantly more sensitive than the monojet search. We reproduce this finding

11



V Parameter space constraints IV.3 Features and Setup of the Monojet analysis

later.

The analysis of the monojet channel is performed within CheckMATE, similarly to the analysis

above. As this analysis had already been implemented in the public code, we do not provide a

separate validation here.12 We simulate the partonic process qq̄, gg → HHj with MG5 aMC@NLO and

apply a pT cut of 200 GeV on the leading jet, in accordance with the signal region requirement

pjT ≥ 250 GeV of this analysis.

V. PARAMETER SPACE CONSTRAINTS

In this section, we present the constraints resulting from the our recast of the searches for an

invisibly decaying Higgs in both the vector boson fusion and the monojet channel. We initially

consider parameter points which have passed all bounds presented in section III, apart from the

constraints imposed by dark matter bounds, i.e. dark matter relic density as well as direct detection

constraints, cf. Eqs. (19) and (20). This approach allows for an investigation of the complementary

between astrophysical and collider searches for this model.

Collider Constraints

We now demonstrate the effect of including the searches in Refs. [41], [42] as introduced in

the previous section. Our results are shown in Fig. 2 (left) where we only consider points which

pass all prior constraints discussed in Sec. III.13 The general influence of these constraints has

been discussed in detail in Refs. [22, 45] and will not be repeated here. For values mH ≤ mh/2,

it is especially the branching ratio limit on h → invisible which leads to the tight constraint

|λ345| . 0.03. For larger mH values, however, λ345 can reach values up to the perturbativity limit

4π which has been imposed as a hard upper cut in the scan setup. Note that we have explicitly

verified that the small stripe for mH > 80 GeV, λ345 > 6 contains no viable parameter points

as it is excluded by combining perturbativity requirements with limits on the electroweak oblique

parameters and Rγγ , see e.g. discussion in Ref. [22].

We separately indicate which points are respectively excluded by the monojet and by the VBF

search. For the latter, we explicitly distinguish the following exclusion categories.

• In CutAndCount@LO, we only determine the number of signal events in the cut-and-count

signal region of Ref. [41] and use a single-bin likelihood ratio test to determine whether it is

compatible with the numbers of observed and expected Standard Model events, see Tbl. II.

• In Shape Fit@LO we determine the number of signal events in all mjj binned signal regions

of Tbl. II and use a joint likelihood, including the background correlation matrix provided

in Ref. [41], to determine the overall p-value.

12 Validation material for this analysis can be found on the official CheckMATE website, https://checkmate.hepforge.

org/AnalysesList/ATLAS_13TeV.html.
13 We note that the density of points has no theoretical meaning but is just a reflection of a bias in the generation

of theoretical parameter tuples.
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FIG. 2. Allowed and excluded points after consideration of VBF and monojet analysis but without dark

matter relic density and direct detection constraints. VBF results are shown using different results, see

in-text discussion. Left: Results in (mH , λ345) parameter plane. Right: Results in mH -σ plane where σ is

the LHC VBF production cross sections at 13 TeV including the partonic cuts given in Sec. IV.2.

• Whilst for the above two approaches we use the signal numbers as determined with the Monte

Carlo generator MG5 aMC@NLO at leading order, for Shape Fit@LO*K-Factor we multiply all

numbers with the constant K-factor of 1.7, c.f. discussion in Sec.IV.2.

According to our SM validation, we expect LO results to significantly underestimate the number

of signal events and therefore lead to conservative bounds. Showing the results including the K-

factor determined from our SM validation renders an estimate of the impact of higher order QCD

contributions.

In general, we observe that a significant fraction of points can be constrained by the two collider

searches considered in this work. As foreseen in Sec. IV.3, the monojet channel shows a significantly

reduced sensitivity as compared to the VBF search.14 Though both channels suffer largely from

SM QCD background sources, the VBF channel can make more precise predictions on the extected

kinematics of the jets in the final state. This ultimatively allows for a higher signal-to-background

ratio in the signal bins and thus results in a better sensitivity for many models in which both

channels are present simultaneously.

Whilst monojet studies alone are sensitive to values of λ345 down to 2.5 and mH masses in the

range [mh/2 - 70] GeV, we observe VBF reinterpretations to constrain λ345 down to 1 and extend

the sensitivity range on mH values up to the maximum of 100 GeV we consider. No parameter

14 Our results appear to be compatible with former monojet sensitivity studies shown in Ref. [32] which show no

sensitivity for a benchmark point with λ345 = 1.7 using an older version of the monojet search with only 10% of

the integrated luminosity that our analysis uses.
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V Parameter space constraints

point with mH < mh/2 can be constrained as the small values of λ345 predict a far too small cross

section. This can also be seen in the right of Fig. 2 where we show our bounds in terms of the

VBF cross section, including the partonic cuts described in Sec. IV.2. In fact, this region is largely

constrained by the cut on BRh→ inv ≤ 0.24 which we discuss in Sec. III.2. As the VBF channel

consists of one sub-measurement of this observable, it is evident that it cannot provide additional,

stronger bounds than the one on the invisible branching ratio which has been used to generate our

parameter samples.

Note that, though the bound is clearly very much dependent on the size of the cross section,

we observe in the right of Fig. 2 that it is not flat in the mH -σ-plane. This can be explained by

differences in the signal efficiency from additional, small IDM contributions like pp→ H±H,H± →
jjH which, in addition to mH , also depend on the masses of the other inert scalars. The fact that

the bound is not only dependent on the total cross section shows the importance of dedicated

Monte Carlo recast analyses including off-shell effects.

Dark Matter Constraints

We now impose the dark matter constraints specified by Eqs. (19) and (20) on the parameter

space. As has been noted in Refs. [23, 45], it is especially direct detection constraints which have

improved by an order of magnitude with respect to the previous study in Ref. [22] which used the
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FIG. 3. Parameter space after including dark matter relic density and direct detection constraints. Left:

allowed and forbidden regions in the (mH , λ345) plane. Right: Constraints in the (mH ,Ωch
2) plane. On the

right plot, we also show the dominant annihilation cross section for each parameter point. The “Best Relic

Density” point yields Ωch
2 = 0.1141 which is the closest to the nominal Planck value, c.f. Eq. (18), out of

all tested points.
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V Parameter space constraints

2013 LUX results, c.f. Ref. [109]. The parameter space is severely constrained, as is demonstrated

in Fig. 3 where we now discuss the dark matter bounds on our parameter space without applying

the VBF/Monojet limits. Fig. 3, left, shows the results in the mH -λ345 plane and Fig. 3, right,

displays the relic density abundance Ωch
2 in dependence on mH . The second figure also labels the

dominant annihilation channel for each tested parameter point as determined via MicrOmegas.15

We also indicate the point in our sample whose predicted value of Ωch
2 = 0.1141 is closest to the

Planck value in Eq. (18). This point yields 95 % of the required cold dark matter relic density.

Especially for masses mH ≥ 63 GeV, we find that |λ345| needs to be small, . 0.14 for mH ≈ 100

GeV and even tighter bounds for lighter mH . However, there also exists a small mass window,

mH ∈ [mh/2; 63 GeV] which allows for values of λ345 up to our theoretical limit of 4π. As can be

seen in the right of Fig. 3, this region predicts particularly small values of Ω and therefore avoids

both relic density and direct detection constraints, see Eq. (20). When the intermediate SM-like

Higgs boson h is on shell, the annihilation cross section HH → b b̄ is enhanced and results in a

considerably smaller dark matter relic density (see also discussion in [22, 98]).

Combination

Finally, in Fig. 4, we show the allowed and excluded parameters mH and λ345, as well as Ωch
2,

after all the above constraints are taken into account. As can be seen, collider results start to
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FIG. 4. Parameter space after including all constraints (see also explanations below Fig. 3)

15 For relatively small mass differences between the two dark neutral scalars A and H, typically of a few GeV, the

co-annihilation channel AH → d d̄ becomes dominant. As this requires a relatively fine-tuned scenario, our scan

only tested 2 such points. See also the discussion in [22, 98].

15



VI Null Results from other recast channels

close the annihilation window, mH ≈ mh/2, which could bypass direct detection constraints by

significantly reducing the predicted relic density Ωch
2. Here, only collider searches can constrain

values of λ345 above 1. However, this only constrains points with very small Ωch
2; therefore still a

large number of points in this kinematic window remain allowed, including our “Best Relic Density”

point discussed above. Moreover, for values of mH significantly larger than mh/2, collider limits

may yield important bounds. However in the IDM we find that these are always already excluded

by direct detection limits.

It must be noted, though, that if the lightest IDM scalar H couples to an extended dark sector

and in fact decays to the actual, lighter dark matter candidate, relic density and direct detection

constraints can change significantly while the above collider bounds are typically unaffected if H has

further invisible decays (see e.g. Ref. [110] in the context of the so-called “radiative seesaw model”

which extends the IDM with an additional Majorana neutrino dark matter candidate). Therefore,

even though in the pure IDM collider limits seem to hardly provide additional sensitivity compared

to direct detection limits, they still constitute an important analysis channel complementary to

dark matter findings.

VI. NULL RESULTS FROM OTHER RECAST CHANNELS

The above VBF and monojet analyses focus on the dark matter candidate H and thus are

largely independent of the masses mA,mH± of the other two scalar particles and their decay rates.

However, within our scan we constrained ourselves to dark masses ≤ 500 GeV. Thus the question

may arise if any of the many other BSM searches performed by ATLAS and CMS could result in

additional, stronger constraints than the one considered.

In Fig. 5 we display the masses mH± ,mA for all points that are allowed by our previous scan.

Similar to findings in Refs. [22, 45], we observe a relatively strong mass degeneracy of these two

heavier dark scalars. We also show the corresponding mass differences mA−(mH+mZ) and mH±−
(mH +mW±) of the allowed points. This quantity can be used to roughly estimate the kinematics

of the expected decays for the heavier scalars A and H±. For mass differences larger/smaller than

0, we expect on/off-shell decays into gauge bosons, e.g. A → HZ(∗), with 100% branching ratio

due to the absence of any other lighter D-odd particles. We focus on the leptonic decay modes

of the gauge bosons as within the analyses we consider, hadronic modes are typically harder to

distinguish from QCD background.

The larger the mass difference, the more energy is expected to be passed on to the daughter

particles. A high-momentum H in the final state is expected to produce missing transverse mo-

mentum (MET) in the event, a key observable for BSM signals. However, as can be seen in Fig. 5,

viable IDM points only predict large mass differences for parameter points if also the absolute

masses of mA and mH± are increased. Points with a large mass splitting and good final state effi-

ciency therefore in turn suffer from respectively smaller expected LHC production cross sections.

Therefore, a dedicated Monte Carlo recast procedure is necessary in order to identify which points

are subject to constraints from direct LHC searches.
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FIG. 5. Allowed combinations of the scalar masses mH± , mA and mH which are relevant for collider

analysis of the channels pp→ HA and pp→ H±A.

Fortunately, CheckMATE bears the great advantage of being capable of quickly testing many such

analyses simultaneously. We hence used it to perform a more inclusive scan of other potentially

relevant final states. To be more precise, we considered the two body final states

pp→ HA, HH±, AA, AH± and H+H−. (23)

We simulated all above processes in MG5 aMC@NLO, including a full consideration of the 2- and

3-body decays of A and H± into H and a set of Standard Model particles. These events are

subsequently tested against all 13 TeV analyses implemented in CheckMATE — a full list is given

in the appendix B.

It turns out that none of our > 10, 000 considered parameter tuples appear to be excluded by

any search other than the already considered VBF and monojet channels.

Note that though we inclusively test all possible final states, the highest sensitivity is expected

from the following leptonic final states, i.e.

pp→AH,A→ Z
(∗)
lepH (24)

pp→AH±, A→ Z
(∗)
lepH,H

± →W±lepH. (25)

The first signature is covered by Ref. [111] which searches for final state with invisible particles

produced in association with a leptonically decaying Z-boson.16 We refer to this analysis as “2`”

in the following. In contrast, the second example signature is covered17 by Ref. [112] — for

short “3`” in the following text — which looks for various leptonic (and hadronic) final states

in Supersymmetric electroweakino production, i.e. χ̃+
1 χ̃
−
1 and χ̃±1 χ̃

0
2. The expected final state for

16 Note that this final state has been analysed before in Ref. [20] using Run 1 dilepton final states. However, the

parameter regions they consider are excluded after applying constraints from dark matter relic density and the

invisible width of the SM Higgs boson.
17 Note that Checkmate, and therefore also our analysis, makes use of preliminary results in Ref. [112] which were

subsequently updated by a full publication in Ref. [113]. However, the published results are identical to those in

the preliminary conference note.
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FIG. 6. Results for our LHC reinterpretation of SUSY electroweakino results on the masses of the IDM.

The x-axis shows mass differences which are strongly correlated to the MET distribution in the final state.

The y-axis denotes the r-value, defined as the ratio of the signal prediction divided by the 95 % confidence

limit on the signal.

mixed chargino-neutralino production is experimentally identical to the aforementioned AH± decay

chain and thus may be used to constrain the IDM.

To understand the reason for the non-sensitivity of current electroweakino searches, we show

our results for the AH-channel and the H±A channel in Fig. 6. In each subplot, we show the

respective r-value of the analysis, defined as

r =
Signal predicted by CheckMATE for the most sensitive signal region

Model independent upper limit on a signal in this signal region
. (26)

Most importantly, r scales with the predicted signal cross section and a value of r ≥ 1 can be

interpreted as a model point excluded at 95% confidence level.

For the x-axis, we respectively show the mass difference of a heavy inert scalar, A or H±,

and the summed masses of the two particles it decays into, e.g. mA − (mZ + mH) for A → ZH.

As explained before, the mass difference provides an estimate for the typical energy given to the

leptons and to the dark matter candidate H in the form of MET.

As can be seen from the figures, there is no 1:1 correspondence between the aforementioned mass

difference and the model exclusion. This is obvious since the limit also depends on the absolute

mass scales which for a given mass difference can change within ±50 GeV, c.f. Fig. 5. However, one

observes an overall rise-and-fall of the sensitivity and a global maximum near mA−(mH+mZ) ≈ 50

GeV and mH± − (mH +mW±) ≈ 125 GeV. This structure can be explained from our discussion at

the beginning of this section: The larger the mass difference, the higher the expected amount of

lepton pT and MET in the final state becomes and so the overall signal efficiency increases. However,
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FIG. 7. Predicted number of events in the 2`/3` channels. The x-axis shows mass differences as in Fig. 6. The

y-axis denotes the product of integrated luminosity, total production cross section and leptonic branching

ratio of the expected gauge boson(s) in the final state.

in order to obtain higher mass differences, electroweak precision constraints require larger masses

for A and H± and thus generally predicts smaller cross sections for viable IDM realisations. Hence,

large mass differences simultaneously increase the final state efficiency and decrease the expected

cross section. For the 2` analysis, this results in a peak at a mass difference of approximately 30

GeV which is related to the minimum pT cut on the signal leptons and the MET requirement of

this analysis. For the 3` analysis, no overall peak can be determined as the final state consists

of two separate decay chains whose kinematic configurations simultaneously depend on mA and

mH± . Still, a similar behaviour can be observed.

However, as can be seen, the peak values for both analyses still only predict at most 15 % of the

required number of events for the analyses to be sensitive to the signal. Hence, we conclude that

electroweakino searches are currently not sensitive to the IDM and from a statistical point of view,

this may only change in the high luminosity limit of LHC 14. Still, the presented analysis only shows

reinterpreted results motivated from different signal models and therefore not necessarily optimised

towards the IDM. It may therefore be possible that a collider search specifically targeting the IDM

may improve upon the results determined here via reinterpretation.

As an example, Fig. 7 illustrates how many events with leptonic final states are respectively

expected from the processes in Eqs. (24), (25), without applying any event selection cuts. Note that

for a signal to be observable e.g. in the 2` analyses one requires at least 200 events after requiring

the missing transverse momentum to be at least 90 GeV. It becomes apparent from Fig. 7 that a

considerably softer cut on MET would significantly increase the number of expected signal events
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VII Conclusions

after cuts within the IDM. A full sensitivity study would however require the re-evaluation of

SM background after modifying cuts. Such an analysis would provide important complementary

information since, as can be seen from the different categories shown in Fig. 6, many points in

the peak region of the direct search are neither excluded by the VBF channel nor by dark matter

direct detection.

VII. CONCLUSIONS

In this paper, we have considered the Inert Doublet Model, a two Higgs doublet model with

a discrete Z2 symmetry containing a scalar dark matter candidate. We have included all current

theoretical and experimental collider constraints on this model as discussed in Ref. [45]. Concen-

trating on the region where mH ≤ 100 GeV, we have investigated limits on the models’ parameter

space from a recast of recent LHC search where the invisibly decaying SM Higgs is produced either

in vector boson fusion, Ref [41], or in association with a hard jet, Ref. [42]. For this, we have

implemented the above searches in the collider phenomenology tool CheckMATE and tested their

sensitivity compared to constraints from dark matter and direct detection.

We observe that the VBF channel outperforms the monojet analysis and is sensitive to a large

fraction of IDM parameter space and a proper recast of this analysis results in important bounds

on the IDM model. Our search can significantly constrain a specific window in parameter space

with dark matter masses ∼ 62 − 63 GeV which evades dark matter limits due to an enhanced

annihilation rate and leads to a significantly reduced relic abundance. This softens constraints

from direct detection experiments like XENON1T. For larger masses, the VBF channel still provides

relevant bounds which however do not improve direct detection limits within the pure IDM. The

latter, however, could be avoided by coupling the lightest IDM scalar to a lighter dark matter

sector which would have nearly no consequence for our presented collider analysis.

As no direct search for IDM scalars exist, we further reinterpret searches for BSM particles with

the same experimental signature and conclude that these do not put further constraints on the

IDM. We trace this back to the effect that either the cross section is too small or the mass splitting

is not large enough to predict sufficiently high-energetic final state particles. In this context, it

might be interesting to pursue whether a dedicated search for the inert scalars could enhance the

expected LHC sensitivity and eventually provide complementary information to the VBF channel

and dark matter direct detection, especially about the other scalar masses of the dark sector.
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Appendix A: IDM Feynman rules and other relations

The parameters m2
22, λ3, λ4, λ5 can be re-expressed in terms of our input parameters:

m2
22 = λ345 v

2 − 2m2
H , (A1)

λ3 = λ345 −
2

v2

(
m2
H −m2

H±
)
, λ4 =

m2
A +m2

H − 2m2
H±

v2
, λ5 =

m2
H −m2

A

v2
(A2)

For completeness, we list the relevant Feynman rules of the IDM scalars in Tables III,IV and

V, omitting Goldstone modes as we are working in the unitary gauge at tree level. Note that the

second, inert doublet neither participates in electroweak symmetry breaking not in the generation of

fermion masses. Hence, the couplings of the SM-like Higgs h to electroweak gauge bosons as well as

fermions are given by their SM values, see e.g. [114], with the convention ghW+
µ W

−
ν

= ie2v/2sW
2gµν

.

vertex coupling

hHH λ345 v

hAA λ̄345 v

hhh 3λ1 v

hH+H− λ3 v

TABLE III. Triple scalar ver-

tices

vertex coupling

hhhh 3λ1
H+H+H−H− 2λ2
HHAA λ2
HHHH 3λ2
AAAA 3λ2
H+H−AA λ2
H+H−HH λ2
hhH+H− λ3
hhHH λ345
hhAA λ̄345

TABLE IV. Quartic scalar ver-

tices

vertex coupling

H−H+ γ i e

H−H+ Z i g2
cos (2θW )
cos θW

HH±W∓ ∓ i g2
AH∓W± − g2
H AZ − g

2 cos θW

TABLE V. Gauge-scalar vertices

Appendix B: List of Applied CheckMATE Analyses

Table VI gives the full list of used CheckMATE analyses with a centre-of-mass energy of
√
s =

13 TeV. The first column shows the CheckMATE idenitifer, the second the purpose for which the

analysis was designed for. The last three columns show the number of signal regions in the cor-

responding analysis (marked #SR), the integrated luminosity for that analysis and the reference

to the publication or conference notes from the experimental collaborations. We mark all analyses
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B List of Applied CheckMATE Analyses

CheckMATE identifier Search designed for #SR Lint Ref.
atlas 1602 09058 Supersymmetry in final states with jets and two SS leptons or 3 leptons 4 3.2 [115]
atlas 1604 01306 New phenomena in events with a photon and /ET 1 3.2 [116]
atlas 1604 07773 New phenomena in final states with an energetic jet and large /ET 13 3.2 [117]
atlas 1605 03814 q̃ and g̃ in final states with jets and /ET 7 3.2 [118]
atlas 1605 04285 Gluinos in events with an isolated lepton, jets and /ET 7 3.3 [119]
atlas 1605 09318 Pair production of g̃ decaying via t̃ or b̃ in events with b-jets and /ET 8 3.3 [120]
atlas 1606 03903 t̃ in final states with one isolated lepton, jets and /ET 3 3.2 [121]
atlas 1609 01599 Measurement of ttV cross sections in multilepton final states 9 3.2 [122]
atlas conf 2015 082 Supersymmety in events with leptonically decaying Z, jets and /ET 1 3.2 [123]
atlas conf 2016 013 Vector-like t pairs or 4 t in final states with leptons and jets 10 3.2 [124]
atlas conf 2016 050 t̃ in final states with one isolated lepton, jets and /ET 5 13.3 [125]
atlas conf 2016 054 q̃, g̃ in events with an isolated lepton, jets and /ET 10 14.8 [126]
atlas conf 2016 076 Direct t̃ pair production and DM production in final states with 2` 6 13.3 [127]
atlas conf 2016 078 Further searches for q̃ and g̃ in final states with jets and /ET 13 13.3 [128]
atlas conf 2016 096 Supersymmetry in events with 2` or 3` and /ET 8 13.3 [129]
atlas conf 2017 022 q̃, g̃ in final states with jets and /ET 24 36.1 [130]
atlas conf 2017 039 Electroweakino production in final states with 2 or 3 leptons 37 36.1 [112]
atlas conf 2017 040 Dark Matter or invisibly decaying h, produced in associated with a Z 2 36.1 [131]
atlas conf 2017 060 New phenomena in final states with an energetic jet and large /ET 13 36.1 [99]
cms pas sus 15 011 New physics in final states with an OSSF lepton pair, jets and /ET 47 2.2 [132]
cms pas hig 17 023 Search for invisible decays of h produced through VBF 10 36.1 [41]

TABLE VI. Full list of all
√
s = 13 TeV CheckMATE analyses used for this study. Entries in boldface are

relevant for the model studied in this work and are discussed in the main text. The column labelled #SR

yields the number of signal regions. Entries for the integrated luminosities Lint are given in fb−1.

discussed in our main discussion in boldface. Note that Checkmate regularly implements prelim-

inary results published as conference notes by the experimental LHC collaborations and use the

corresponding conf-note identifiers. Often, these are published at a later stage by the collabora-

tions without any changes to analysis procedure or results. More details on the individual analyses
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