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Quark line disconnected matrix elements of an operator, such as the axial current, are difficult to
compute on the lattice. The standard method uses a stochastic estimator of the operator, which is
generally very noisy. We discuss and develop further our alternative approach using the Feynman-
Hellmann theorem which involves only evaluating two-point correlation functions. This is applied
to computing the contribution of the quark spin to the nucleon and in particular for the strange
quark. In this process we also pay particular attention to the development of an SU(3) flavour
breaking expansion for singlet operators.
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1. Introduction/Approach

The proton consists of two valence up quarks and one down quark together with a ‘sea’ of
quark anti-quark pairs and gluons. How each constituent contributes to the total spin of the pro-
ton has remained a mystery for many years. In particular the quark contribution is much smaller
than expected from the naive quark model. We discuss here our lattice QCD determination of the
quark contribution, using a novel technique, based on a field theoretic application of the Feynman-
Hellmann theorem, [1, 2].

There are two common spin decompositions or ‘schemes’: Jaffe–Manohar (JM), [3], and Ji,
[4]. They both have a common quark spin term, ∆Σ/2 but other pieces vary. In particular the JM
approach has a gluon spin piece, ∆G, which can be measured in pp machines, while the Ji approach
is more suitable for polarised DIS and DVCS processes and also lattice QCD determinations.

The Ji gauge invariant decomposition of the proton spin derived from the symmetric energy–
momentum tensor is given by

1
2
=

1
2

∆Σp +∑
q

Lq + Jg , (1.1)

where Lq is the orbital angular momentum of valence quark q and Jg is the gluon angular mo-
mentum. We shall not discuss these terms further here. The total quark spin ∆Σp = ∆Σcon

p +∆Σdis
p

with

∆Σ
con
p = ∆ucon

p +∆dcon
p , ∆Σ

dis
p = ∆udis

p +∆ddis
p +∆sdis

p , (1.2)

where ∆qcon,dis
p are the quark line connected and disconnected proton, p, matrix elements of the

axial current respectively. We shall discuss the disconnected matrix elements further in the next
section noting here that for the proton there is only a disconnected piece for the strange quark, so
∆sdis

p ≡ ∆sp. Similar relations also hold for the other members of the baryon, B, nucleon octet.
The ‘Spin crisis’, discovered many years ago is that ∆Σp is small and only around ∼ 35% of

total spin, whereas in the naive quark model it would be expected that the valence quarks give the
complete contribution ∆Σp ∼ 1. Here we shall consider ∆Σdis

B and the ∆sdis
B pieces.

2. Feynman–Hellmann applied to field theories

If we modify the action by S(λ ) = S+λO, then it can be shown that [1]

∂EB(λ )

∂λ
=

1
2EB(λ )

〈
B
∣∣∣: Ô :

∣∣∣B〉
λ

, (2.1)

(where : . . . : means that the vacuum term has been subtracted.) Thus by suitably choosing O and
by identifying numerically the gradient of EB(λ ) at λ = 0 we can determine the desired matrix
element. The computation requires only 2-point correlation functions (rather than the more com-
plicated 3-point functions).

The modification location determines the contributions we access, as indicated in Fig. 1. We
can modify the Dirac fermion matrix before quark propagator inversion

D′−1 = [D+λO]−1 ⇒ ∂

∂λ
D′−1

∣∣∣∣
λ=0

= D−1OD−1 ,

1
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Figure 1: Left panel: Quark line connected 3-point correlation functions; Right panel: Quark line discon-
nected 3-point correlation functions.

which inserts connected contributions on the quark line or we can modify the field weighting during
the HMC

detD′ e−Sg = det[D+λO]e−Sg ⇒ ∂

∂λ
detD′

∣∣∣∣
λ=0

= tr(D−1O) detD , (2.2)

which acesses disconnected contributions. (Or do both modifications and obtain both connected
and disconnected terms.) While the connected piece is easy to implement, the disconnected piece
requires the generation of new configurations.

For a nucleon polarised in the z-direction we have

〈B,σ |iqγ3γ5q|B,σ〉= 2MBσ∆q σ =± , (2.3)

which may be determined by applying the FH theorem to

Cσ (λ , t)≡ (Γσ )βα〈Bα(t)Bβ (0)〉λ = AB(σλ )e−EB(σλ ) , (2.4)

with corresponding projection operator Γσ = 1
2(1+ γ4)(1+ iσγ3γ5). As can be seen from eq. (2.3)

flipping the sign of λ is equivalent to flipping the spin polarisation, so we can write the amplitude
and energy as a combined function of σλ . For the connected contributions this is sufficient, but a
further complication arises for the disconnected terms, as for the generation of configurations using
HMC the fermion matrix in the action must be γ5-hermitian for HMC, i.e. we now need

S = Sg +∑
qx

λqq(x)γ3γ5q(x) , (2.5)

(rather than for the connected pieces, D′ = D+ i∑qx λqq(x)γ3γ5q(x)). The correlation function thus
develops imaginary parts in both the amplitude AB(σλ )→ AB(σλ )eiδ (σλ ), and energy EB(σλ )→
EB(σλ )+ iφ(σλ ). Forming the ratio

R(λ , t) =
ImC+(λ , t)− ImC−(−λ , t)
ReC+(λ , t)−ReC−(−λ , t)

=− tan(φ(λ )t−δ (λ )) , (2.6)

with effective phase shift

φ(λ ) =
1
t

tan−1 (−R(λ , t)) , where φ(λ ) = φ0λ +φ1λ
3 + . . . , (2.7)

2
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giving

∆qB =
∂φ(λ )

∂λ

∣∣∣∣
λ=0

. (2.8)

This expression also holds for the connected piece and a test has been performed for the connected
piece using the imaginary signal, to demonstrate its feasibility. (But of course it is better to use in
this case the form where no imaginary piece develops.)

3. SU(3) flavour symmetry breaking quark mass expansion

In [5] we developed SU(3) flavour breaking expansions for hadron masses for 2+ 1 flavours
and extended it to matrix elements in [6]. We follow and extend the results given there (here just to
‘leading order’ or LO). The flavour structure is given from

AI =
1√
3

(
ūγu+ d̄γd + s̄γs

)
, Aπ0

=
1√
2

(
ūγu− d̄γd

)
, Aη =

1√
6

(
ūγu+ d̄γd−2s̄γs

)
(3.1)

where γ ∼ γiγ5, A for the axial current. So we can solve for q̄γq ∼ ∆q in terms of AI , Aπ0
and

Aη . SU(3) flavour breaking expansions for Aπ0
, Aη , are given in [6]. In addition for the singlet

operators, AI we need to consider 8×1×8 tensors, which are similar to the mass expansions, [5].
We now consider the quark line ‘connected’ and ‘disconnected’ pieces separately and just give

here the results for the disconnected part. (Complete expansions will be given in [7].) To LO we
have for the SU(3) flavour breaking expansion for AI for the baryon octet

1√
3

∆Σ
dis
N = adis

0 +3adis
1 δml

1√
3

∆Σ
dis
Σ = adis

0 −3adis
2 δml

1√
3

∆Σ
dis
Ξ = adis

0 −3(adis
1 −adis

2 )δml , (3.2)

together with ∆Σdis
Λ
/
√

3 = adis
0 + 3adis

2 δml and ∆Σdis
Ns
/
√

3 = adis
0 − 6adis

1 δml , where ∆Σdis
B = ∆udis

B +

∆ddis
B +∆sdis

B . All the expansions used here are for 2+1 quark flavours, mu = md ≡ ml , ms and the
‘distance’ from the flavour symmetric point (ml = ms) is given by δml = ml −m, [5], where m is
the average quark mass, held constant in simulations, so the expansion parameters remain constant.
We have extended the nucleon octet to include a fictitious nucleon consisting of strange quarks,
denoted by Ns. (As well as the N, Σ and Ξ this state can also be measured in a lattice simulation.)
As we are primarily interested in the nucleon, and hence just adis

1 , it is convenient to consider the
average of the Σ and Ξ expansions

1
2
√

3
(∆Σ

dis
Σ +∆Σ

dis
Ξ ) = adis

0 −
3
2

adis
1 δml . (3.3)

Using the above results together with those for Aπ0
and Aη gives the separate expansions of

∆sdis
N =

1√
3

adis
0 +

(√
3adis

1 −
2√
6

rdis
1

)
δml

3



The strange quark contribution to . . . R. Horsley

∆sdis
Σ =

1√
3

adis
0 +

(
−
√

3adis
2 −

2√
6

rdis
1

)
δml

∆sdis
Ξ =

1√
3

adis
0 +

(
−
√

3(adis
1 −adis

2 )− 2√
6

rdis
1

)
δml , (3.4)

together with ∆sdis
Λ
= adis

0 /
√

3 + (
√

3adis
2 − 2(rdis

1 + 2rdis
2 )/
√

6)δml , ∆sdis
Ns

= adis
0 /
√

3 + (−2
√

3adis
2 −

2rdis
1 /
√

6)δml . Due to isospin invariance we have ∆qdis
p =∆qdis

n ≡∆qdis
N , ∆qdis

Σ+ =∆qdis
Σ− ≡∆qdis

Σ
, ∆qdis

Ξ0 =

∆qdis
Ξ− ≡ ∆qdis

Ξ
, for q= u, d, s. Note that due to constraints, the cancellation of the disconnected piece

in ∆udis
N −∆ddis

N , ∆udis
Σ
−∆ddis

Σ
and ∆udis

Ξ
−∆ddis

Ξ
leads to the vanishing of f dis, ddis, rdis

3 , sdis
1 , sdis

2 in [6].
The results are more complicated for the ‘connected’ pieces; there are less constraints, [7].

Useful results are here to consider a ‘singlet of singlets’ and the strange quark terms alone

X dis
∆Σ ≡

1
3
(∆Σ

dis
N +∆Σ

dis
Σ +∆Σ

dis
Ξ ) =

√
3adis

0

1
3
(∆sdis

N +∆sdis
Σ +∆sdis

Ξ ) =
1√
3

adis
0 −

√
2
3

rdis
1 δml , (3.5)

which together with eq. (3.3) allow separate determinations of adis
0 , adis

1 and rdis
1 .

4. Renormalisation

As the axial non-singlet currents Aπ0
and Aη are (partially) conserved currents, they have no

anomalous dimensions and so are scheme and scale independent. However the singlet current, AI

is no longer conserved if n f 6= 0, as a topological term ∝ 2n f (αs/4π)Fµν F̃µν appears in the Ward
identity. Thus we expect the renormalisation constant to become scheme and scale dependent. It is
also convenient to again consider the renormalisation of the quark line connected and disconnected
pieces separately. We find [8, 9, 10]

∆qconR = ZA∆qcon , ∆qdisR = ZA∆qdis +
1
3
(ZS

A−ZA)(∆Σ
con +∆Σ

dis) , (4.1)

where ZA is the non-singlet renormalisation and ZS
A is the singlet renormalisation factor. This gives

∆Σ
conR = ZA∆Σ

con , ∆Σ
disR = ZS

A∆Σ
dis +(ZS

A−ZA)∆Σ
con . (4.2)

5. Results and Conclusions

We have a pion mass range from the flavour symmetric point Mπ ∼ 460MeV down to ∼
300MeV on a∼ 0.074fm, 323×64 lattices and configurations as given in Table 1.

We first consider X dis
∆Σ

. In the left panel of Fig. 2 we show φ∆Σ = λ∆ΣX∆Σ, from eq. (3.5) the
gradient gives an estimation of

√
3adis

0 . Note that we can now use all the available data sets, 1–6, to
determine X dis

∆Σ
and hence adis

0 .
In the RH panel of Fig. 2 we show ∆Σdis

N /X dis
∆Σ

, (∆Σdis
Σ
+∆Σdis

Ξ
)/(2X dis

∆Σ
) and ∆Σdis

Ns
/X dis

∆Σ
for data

set 6. From eqs. (3.2,3.3) we expect the numerical values of 1+3adis
1 /adis

0 δml , 1+3/2adis
1 /adis

0 δml

and 1−6adis
1 /adis

0 δml (where δml ∼−0.07) for N, (Σ+Ξ)/2 and Ns respectively. We presently see
very little pattern in the data, so presently we take adis

1 ≈ 0. This indicates that this disconnected

4
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Data set # κl κs λl λs

1 0.120900 -0.00625
2 0.120900 -0.0125
3 0.120900 0.0300
4 0.121095 0.120512 0.0000 0.0500
5 0.121095 0.120512 -0.0250
6 0.121095 0.120512 -0.0750

Table 1: Data sets used in the analysis.
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Figure 2: Left panel: φ∆Σ = λ∆ΣX dis
∆Σ

together with a linear fit using data sets 1–3 and 5, 6; Right panel:
∆Σdis

N /X dis
∆Σ

, (∆Σdis
Σ
+∆Σdis

Ξ
)/(2X dis

∆Σ
) and ∆Σdis

Ns
/X dis

∆Σ
for data set 6.

part is very small for all the baryons in the octet. A tentative general conclusion is that there is very
little sign of SU(3) flavour symmetry breaking effects in the disconnected pieces. Furthermore
with adis

1 ≈ 0 this also implies that

∆sdis
N ≈

1
3
(∆sdis

N +∆sdis
Σ +∆sdis

Ξ ) , (5.1)

also away from the SU(3) flavour symmetry point. So when using data set 4 we can avoid a direct
determination of rdis

1 .
We have computed ZA and ZS

A at 2GeV in [11], also using the FH method to give ZA =

0.8458(8), ZS
A(2GeV) = 0.8662(34) (the latter in the MS scheme). Note that this means that,

as expected (ZS
A−ZA)/ZS

A ∼ 2% a small difference, which we shall presently ignore. In Fig. 3 we
show the renormalised results for ∆sN in the MS scheme at a scale of 2GeV. Linearly extrapolating
to the physical pion mass we find a preliminary result of ∆sN(2GeV) =−0.032(26).

In conclusion ‘disconnected’ quantities are notoriously difficult quantities to compute as they
are a short distance quantity and suffers from large fluctuations. As alternative to more standard
‘stochastic’ approaches we have developed a method using the Feynman–Hellmann theorem, to-
gether with a SU(3) flavour breaking expansion.
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Figure 3: ∆sN in the MS scheme at a scale of 2GeV versus δml . The vertical line indicates where the
physical pion mass lies, [12].
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