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Hamburger Beiträge zur Mathematik 750

Combinatorial Quantisation of

GL(1|1) Chern-Simons Theory I: The Torus

Nezhla Aghaei a Azat M. Gainutdinov b Michal Pawelkiewicz c Volker Schomerus d,e

aAlbert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern,

Sidlerstrasse 5, Bern, ch-3012, Switzerland.
bInstitut Denis Poisson, CNRS, Université de Tours, Université d’Orléans, Parc de Grammont, 37200
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Abstract: Chern-Simons Theories with gauge super-groups appear naturally in string theory

and they possess interesting applications in mathematics, e.g. for the construction of knot and

link invariants. This paper is the first in a series where we propose a new quantisation scheme

for such super-group Chern-Simons theories on 3-manifolds of the form Σ × R. It is based on

a simplicial decomposition of an n-punctured Riemann surface Σ = Σg,n of genus g and allows

to construct observables of the quantum theory for any g and n from basic building blocks,

most importantly the so-called monodromy algebra. In this paper we restrict to the torus case,

i.e. we assume that Σ = T2, and to the gauge super-group G = GL(1|1). We construct the

corresponding space of quantum states for the integer level k Chern-Simons theory along with an

explicit representation of the modular group SL(2,Z) on these states. The latter is shown to be

equivalent to the Lyubachenko-Majid action on the centre of a restricted version of the quantised

universal enveloping algebra of the Lie super-algebra gl(1|1) at the primitive k-th root of unity.
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1 Introduction

Chern-Simons theories and their quantisation are an important research topic with many links

in particular to mathematics, such as the theory of 3-manifold invariants and knot theory. Their

role in this context was first developed in the seminal paper [1] and then further explored through

much subsequent work. Chern-Simons theories also play an important role in physics. They

provide key examples of topological field theories and thereby are relevant for topological phases

of matter and in particular for quantum Hall fluids, see e.g. [2–5] and many references therein.

Most of the past research and applications have been developed for Chern-Simons theories

in which the gauge group is an ordinary (Lie) group. The generalisation to gauge supergroups,

that is also the subject of this work, has received limited attention in the past, see e.g. [6–10].

There exist various motivations, both from physics and from mathematics, to consider Chern-

Simons theories in which the gauge connection takes values in a Lie superalgebra. In particular,

these models appear in the context of brane constructions. As observed in [11], Chern-Simons

theories can emerge by topological twisting from the intersection of N D3 and NS5 branes in 10-

dimensional type IIB superstring theory. Three of the four extended directions of the D3 branes

are assumed to extend along the NS5 branes while the forth direction runs along one of the

transverse coordinates x. The NS5 branes split this transverse direction x into two disconnected

parts and if we split our stack of N = n + m D3 branes into n that extend to the left and m

extending to the right of the NS5 branes, then the topologically twisted effective theory on the

3-dimensional intersection was shown to be Chern-Simons theory with gauge supergroup U(n|m)

[9, 11]. The level k of the Chern-Simons theory is determined by the complexified string coupling,

see [10] for details and references. The brane construction we sketched here is closely related

to the realisation of Chern-Simons theory through a Kapustin-Witten topological twist [12] of

4-dimensional N = 4 supersymmetric Yang-Mills theory. The latter arises as the low energy

effective field theory on a stack of D3 branes. Related constructions of Chern-Simons theories

with gauge supergroup were also explored in [13].

On the more mathematical side, Chern-Simons theory possesses the relation with invariants

of knots/links and 3-manifolds. If the gauge group is G = SU(2), for example, expectation values

of Wilson lines in the fundamental representation give rise to the famous Jones polynomial. For

other groups and representations one obtains other classes of polynomials that have also been

explored extensively. Knot invariants for Lie supergroups have not been explored as much, see

however [6, 7] and more recent developments in [14, 15]. If the Wilson line operators are evaluated

in maximally atypical representations of the gauge supergroup, the expectation values of Wilson

lines turn out to be identical to the ones for a cohomologically reduced bosonic theory, see e.g. [16].

In the case the representations are not maximally atypical, on the other hand, one expects some

new invariants. Such representations possess zero super-dimension which causes sever problems

when one attempts to extend the usual constructions for bosonic (or purely even) gauge groups. It

is one of the motivations of our program to develop a systematic route towards such generalizations

that work for arbitrary supergroups and representations.

We should also mention here that a way to overcome the problem of vanishing dimensions was

already proposed in [17] where one uses so-called re-normalized or modified dimensions that have

nice topological properties generalising those of Reshetikhin–Turaev type. This more categorical
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approach has launched an avalanche of results [15, 18–24] in a direction related to our (though

not quite directly). We however do not follow this rather abstract route and instead use a

combinatorial approach based on graph algebras that is inspired by lattice gauge theory.

Another important aspect of Chern-Simons theories is their intimate relation with 2-dimensi-

onal Wess–Zumino–Novikov–Witten conformal field theories. According to common folklore, the

state space of Chern-Simons theory on 3-manifold M of the form M = Σ⊗R with an n-punctured

Riemann surface Σ = Σg,n of genus g coincides with the space of conformal n-point blocks of the

WZNW theory. For gauge supergroups, however, the relation has not been explored well enough.

While WZNW models for gauge supergroups have been constructed systematically [25], at least

on surfaces of genus g = 0, the state spaces of associated Chern-Simons theories on M = Σ ⊗ R
were only constructed for a few supergroups and surfaces Σ, see in particular [10] for an extensive

discussion of the GL(1|1) Chern-Simons theory for a surface Σ of genus g = 1. At least in this

special case it was shown that the state spaces coincide with the spaces of conformal blocks, just

as expected. Through the approach we develop below we recover the same state space as in [10],

but in a way that makes the generalisation to arbitrary supergroups and surfaces Σ of any genus

rather straightforward. To lay the foundations for such an extension is indeed one of the main

goals of this work.

In order to do so, we extend the combinatorial approach to the Hamiltonian quantisation of

Chern-Simons theory that was first developed in a series of papers [26–29], and then consequently

axiomatized in [30]. It applies to cases in which the underlying 3-manifold M = Σ×R splits into

a spacial 2-dimensional Riemann surface Σ and a time direction R. The classical phase space

of this theory is provided by the space of all gauge fields on Σ modulo gauge transformations.

The idea of the combinatorial quantisation is to replace the continuous space Σ through a lattice

(simplicial decomposition). While for most gauge theories such a lattice discretisation is only an

approximation, for Chern-Simons theories it is exact due to the topological nature, at least as

long as the lattice properly encodes the topology of the underlying surface Σ. In lattice gauge

theory, the group valued holonomies of the gauge fields along the links of the lattice describe field

configurations and gauge transformations act on these holonomies at the vertices. In the classical

theory the space of such field configurations comes equipped with a Poisson bracket that respects

the gauge transformations. The combinatorial quantisation developed in [26, 27] is achieved by

replacing the algebra of functions on the link through a q-deformed algebra with a deformation

parameter q that is determined by the level k of the Chern-Simons theory. It can be shown that

the algebra of gauge invariant observables depends only on the underlying surface, not on the

lattice discretisation. Therefore it is possible to work with one canonical lattice, one for each

surface Σ. For an n-punctured Riemann surface of genus g, this canonical lattice has 2g+n links

and a single vertex. The quantum “graph” algebra corresponding to such a lattice is made out

of elementary blocks – monodromy algebras for each closed link – where the algebraic relations

between different cycles elements are encoded by the quantum R-matrix.

These graph algebras had a reincarnation recently within the context of factorisation homol-

ogy, a notion that was originally introduced by Beilinson and Drinfeld [31] as an abstraction from

chiral conformal field and then extended to a topological setting in [32–34]. In [35] these general

concepts were made explicit for 2-dimensional surfaces and the resulting algebras were found to

– 3 –



agree with those that were introduced in [26, 27].

The algebra of observables of the Chern-Simons theory carries an action of the mapping class

(or Teichmüller) group of the underlying surface Σ, i.e. of the group of orientation preserving

homeomorphisms Homeo+(Σ) of the surface Σ divided by its identity component Homeo+0 (Σ).

The latter consists of homeomorphisms that can be smoothly deformed to the identity. This group

is generated by so-called Dehn twists. These are special homeomorphisms that are associated to

non-contractible cycles γ of Σ. They amount to cutting Σ along γ, rotating one of the resulting

boundary circles by 2π and then gluing the circles back together. In the special case of a torus,

i.e. a Riemann surface Σ1,0 this mapping class group is given by the modular group SL(2,Z). As

usual in quantum physics this action of the mapping class group on observables lifts to a projective

action on the space of states. For Chern-Simons theories with bosonic gauge groups G, the latter

was worked out in [29, 36] and it was shown to agree with the Reshetikhin-Turaev representation

of the mapping class group [37–39]. Let us note that this representation is intimately related to

knot and 3-manifold invariants [40]. The relation is based on the representation of 3-manifolds

through Heegaard splitting into two handlebodies of genus g. In particular, we can take a closed

3-sphere S3 and remove a handlebody H3 from it. By definition, the boundary ∂H3 of the 3-

manifold H3 is a Riemann surface Σ = ∂H3. Gluing this handlebody H3 back into its complement

S3 \ H3 with a non-trivial element from the mapping class group of the surface Σ one obtains

some 3-manifold M . The resulting relation between 3-manifolds and elements of the mapping

class group may be employed to build 3-manifold invariants from representations of the mapping

class group [41]. There exists another widely known representation of 3-manifolds through Dehn

surgery on a (framed) knot or link complement which assigns 3-manifolds to framed links. When

combined with the previous construction one also obtains a map from elements of the mapping

class group to framed links, see [40] for an explicit construction. Hence, representations of the

mapping class group are intimately related with invariants of 3-manifolds and of links. This may

explain our focus on the mapping class group and its representations.

The main goal of this paper is to discuss the quantisation of Chern-Simons theory for one

of simplest Lie supergroups, namely the supergroup GL(1|1). While this will allow us to be

extremely explicit, the supergroup GL(1|1) is sufficiently non-trivial to provide a prototypical

example, at least for Chern-Simons theories with gauge supergroup of type I. As we mentioned

above, we expect an intimate relation between Chern-Simons theory and 2-dimensional WZNW

models. Supergroup versions of the latter were studied extensively, see [42] for a review. The

first complete solution of the GL(1|1) model was worked out in [43]. This solution was then

generalized in several steps to type I supergroups [25, 44]. In the end it turned out that all the

crucial elements of the theory were already visible in the GL(1|1) example, see also [42].

In this work we describe a first step of a longer programme which aims at the construction of

Chern-Simons theory at both integer and non-integer levels and for arbitrary gauge supergroups

on a manifold M = Σ⊗R with a Riemann surface Σ of any genus and any number of punctures.

Compared to our goal, the actual constructions and results we shall describe below may seem

rather modest at first. In fact, we shall focus on the Lie supergroup GL(1|1), a surface Σ of genus

g = 1 and (odd) integer level k. Overcoming all our restrictive assumptions is actually less of

an issue than it may naively appear. As we mentioned before, we do not expect the extension
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to other supergroups to create any new problems. Furthermore, the combinatorial quantisation

we explore here is ideally suited to address surfaces of higher genus. The restriction to integer

level may actually seem the most problematic since representations of the modular group SL(2,Z)

associated with Uq gl(1|1) for generic q are not known so far. Nevertheless, we will construct such

representations within our approach in a forthcoming paper.

In the next section we extend the combinatorial quantisation developed in [26, 27, 45] for

semisimple (modular) Hopf algebras to not necessarily semisimple super Hopf algebras of finite

dimension, at least for the torus Σ = T2. In this case, the associated mapping class group coincides

with the modular group SL(2,Z). We describe two different actions of the latter. The first one is

the action on observables and states of Chern-Simons theory on M = T2 × R. Our construction

follows the general procedure in [29] and generalizes the latter to finite-dimensional ribbon and

factorisable (i.e. with non-degenerate monodromy) super Hopf algebras. The second action of the

modular group we shall describe is the action on the centre of such super Hopf algebras introduced

by Lyubachenko and Majid [46]. We believe that the two actions are (projectively) equivalent in

cases where they are both well defined, see our explicit conjecture in Section 2.8, but we check

this claim only for the case of GL(1|1).

In Section 3, we illustrate the general construction of quantisation at a simple (bosonic)

example, namely where the lattice gauge group is played by the group algebra of a finite cyclic

group. Section 4 contains our main example which is relevant for Chern-Simons theory with the

gauge supergroup GL(1|1) at integer odd level k. There we introduce the restricted version of the

deformed universal enveloping algebra Uq gl(1|1), denoted by U q gl(1|1), where the deformation

parameter q satisfies qp = 1 for p odd integer. This is a finite-dimensional ribbon factorisable Hopf

algebra. The connection to the level is simple: p = k (it would be however shifted by the dual

Coxeter number for other supergroups). In this case, we then describe the combinatorial approach

to the Hamiltonian quantisation of Chern-Simons theory on the manifold M = T2 × R. Special

attention is paid to the action of the modular group on observables and states. We construct this

action in all detail and verify that we obtain a representation of the modular group indeed, and

in Section 4.9 we finally compare this representation with the one obtained in [10] based on the

brane construction discussed above. Next in Section 4.10, we discuss the (projective) action of

the modular group on the centre of U q gl(1|1) that is defined following Lyubachenko-Majid and

show that the latter is projectively equivalent to our representation on states of the Chern-Simons

theory. In the concluding section we outline how the results of this work can be possibly extended

to other Lie superalgebras, for surfaces of higher genus and beyond the cases of q a root of unity.

We should also note that at the final stage of writing this paper we became aware of very

recent results [47] on a related subject that proves our Conjecture from Section 2.8 in the purely

even case.

2 Torus observables for super Hopf algebras

In this first section we provide background material and outline the main constructions and results.

These will be illustrated through explicit examples in later sections. Our discussion starts with

a short review of ribbon super Hopf algebras. Then we turn to the construction of monodromies

and handle algebras within the framework of combinatorial quantization that was developed for
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bosonic gauge groups in [26–28, 48]. We extend these algebras to allow for gauge supergroups

where the underlying super Hopf algebra comes from (restricted) deformed universal enveloping of

the corresponding Lie superalgebra. The associated spaces of Chern-Simons states and an action

of the modular group on these states are discussed in Sections 2.5 and 2.6, following and extending

the semisimple cases [29] when necessary. We conjecture that the resulting representation of the

modular group is (projectively) equivalent to the Lyubashenko-Majid action on the center of the

underlying super Hopf algebra. For convenience of the reader we review the latter in Section 2.7.

The conjectured equivalence between representations is not proven in general, but in our two key

examples to be discussed in Sections 3 and 4.

2.1 Conventions on super Hopf algebras

In this part we recall some basics about Z2-graded ribbon Hopf algebras over C. We begin

with Z2-graded algebras, and then recall useful identities in the theory of integrals, and define

Z2-graded ribbon Hopf algebras.

A Z2-graded algebra G over the field of complex numbers C is a complex Z2-graded vector

space equipped with a multiplication map m : G ⊗ G → G and a unit map η : C → G which are

C-linear and respect the grading. In other words, G decomposes into two subspaces G = G0 ⊕G1,
called even and odd respectively, on which the multiplication acts as follows

m : Gi ⊗ Gj → Gi+j ,

where the index is taken modulo 2. The grade of the element a ∈ Gi is defined as |a| = i, and

we call it even if |a| = 0 and odd otherwise. The multiplication and the unit satisfy the standard

algebra axioms, including associativity. Following physics conventions we will also refer to this

structure as a superalgebra.

Having two super algebras G and H, we define Z2-graded algebra structure on the tensor

product G ⊗H by

(a1 ⊗ b1) · (a2 ⊗ b2) = (−1)|b1||a2|a1a2 ⊗ b1b2, a1, a2 ∈ G, b1, b2 ∈ H . (2.1)

To define a Z2-graded Hopf algebra, we also require the co-product ∆: G → G⊗G and the co-unit

ε : G → C maps to exist. Both of them should be Z2-graded algebra homomorphisms, where C is

purely even, and they are assumed to satisfy the following co-associativity and co-unit axioms:

(∆⊗ id) ◦∆ = ∆ ◦ (id⊗∆), (2.2)

(ε⊗ id) ◦∆ = id = (id⊗ ε) ◦∆. (2.3)

Let us also introduce the opposite co-product

∆op := τ ◦∆, (2.4)

where we used the flip map of super vector spaces τ : G ⊗ G → G ⊗ G defined on homogeneous

elements as

τ(a⊗ b) = (−1)|a||b|b⊗ a . (2.5)
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Further, we require a grade preserving map S : G → G, called an antipode, which is an algebra

anti-homomorphism, that is

S(ab) = (−1)|a||b|S(b)S(a), a, b ∈ G, (2.6)

and a co-algebra anti-homomorphism, that is

∆ ◦ S = (S ⊗ S) ◦∆op. (2.7)

In addition, it also satisfies

m ◦ (id⊗ S) ◦∆ = m ◦ (S ⊗ id) ◦∆ = η ◦ ε. (2.8)

Finally, a Z2-graded algebra G equipped with a co-product ∆, a co-unit ε and an antipode S

is called Z2-graded or super Hopf algebra, and will be denoted by the same symbol G as the

underlying algebra in the following.

A super Hopf algebra is quasi-triangular if its tensor square admits an invertible element

called universal R-matrix R ∈ (G ⊗ G)0 satisfying the following relations

R ·∆(x) = ∆op(x) ·R, x ∈ G,
(id⊗∆)(R) = R13 ·R12, (2.9)

(∆⊗ id)(R) = R13 ·R23,

where we set

R12 = R⊗ 1, R23 = 1⊗R, (2.10)

R13 = (id⊗ τ)(R⊗ 1),

with τ as defined in equation (2.5).

One can define a monodromy matrix M ∈ G ⊗ G using the universal R-matrix

M = R′ ·R, (2.11)

where

R′ = R21 = τ(R)

and we keep using ‘·’ notation to emphasise that the product is as in equation (2.1). We will call

a monodromy matrix M non-degenerate if it can be expanded

M =

dim(G)∑
i=1

fi ⊗ gi (2.12)

with {fi} and {gi} being two bases in G. If such an expansion of M exists, we call G factorisable.

A Z2-graded Hopf algebra G is called ribbon if it admits a so-called ribbon element v ∈ G,

which is an even central element satisfying

M ·∆(v) = v ⊗ v, S(v) = v. (2.13)
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We note that in the case of semisimple ribbon and factorisable G, the name “modular Hopf

algebra” is also used because representations of G provide then a modular category.

In a ribbon super Hopf algebra, we have the identities

v2 = uS(u), ε(v) = 1, (2.14)

where we used the so-called Drinfeld element

u = m ◦ (S ⊗ id)(R′) . (2.15)

One can find an explicit expression for the ribbon element from the properties of a right integral

in the manner described below.

2.2 Integrals and co-integrals

We now review standard facts from the theory of integrals [49] for a Hopf algebra. We will use

the same theory in our super algebra setting, as super Hopf algebras are normal Hopf algebras

too.

A linear form µ ∈ G∗ will be called a right integral of G if it satisfies

(µ⊗ id) ◦∆(x) = µ(x)1, (2.16)

for all x ∈ G. Similarly, one can define a left integral, with µ hitting the second tensor factor

instead. If an integral exists it is unique up to a scalar. Moreover, it is known that a finite-

dimensional Hopf algebra always allows such integrals [50]. However in general a right integral

does not have to coincide with a left one. Such a deviation of a right integral from being a left

one is measured by a group-like element a called co-modulus: 1

(id⊗ µ) ◦∆(x) = µ(x)a. (2.17)

A right co-integral of G is an element c ∈ G such that

cx = ε(x)c , x ∈ G . (2.18)

We note that this notion is actually dual to the notion of the integral: under a canonical identifi-

cation between G and G∗∗, the element c defines a right integral of G∗. We can likewise define the

left co-integral using instead the left multiplication by x. Non-trivial right and left co-integrals

are unique up to scalar [50]. A Hopf algebra is called unimodular if its right co-integral is also

left.

In the case when we have a universalR-matrix and correspondingM -matrix is non-degenerate,

the integral can be normalised by

(µ⊗ µ)(M) = 1. (2.19)

This will be the case for our examples below. From now on, we will consider only finite-dimensional

quasi-triangular Hopf algebras with a non-degenerate monodromy matrix.

1It is called the distinguished group-like element in [49].
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If the co-modulus can be expressed as a square of a group-like element in G, i.e.

a = g2, (2.20)

then such an element g satisfies S2(x) = gxg−1, for x ∈ G, and it is called a balancing element.

The balancing element is important for two reasons. First, it provides us the ribbon element

v = g−1u, (2.21)

where we recall the Drinfeld element (2.15). This is a concrete formula for the ribbon element

that will be used in the following sections.

Secondly, the balancing element provides us with a notion of quantum trace over a represen-

tation π : G → End(V ),

strq
(
π(x)

)
:= str

(
π(g−1x)

)
, x ∈ G , (2.22)

where str(−) = tr(ω(−)) is the supertrace with ω the parity map. The quantum trace over a

representation π of G can be used to produce a central element of G:

zπ :=
(
(strq ◦ π)⊗ id

)
(M) ∈ Z(G), (2.23)

see e.g. [51] for non-graded case. Though in general not all central elements of G can be produced

this way: the map RepG → Z(G) defined in (2.23) is surjective if only if the algebra G is

semisimple.

2.3 Reconstruction of G

Let G be a finite-dimensional factorisable (super) Hopf algebra. We recall that the monodromy

matrix M from (2.11) is an element in G ⊗ G which can be expanded as in (2.12) where the two

sets of elements fi and gi both provide a basis of G. The algebra G can be reconstructed from

such non-degenerate M . Indeed, the linear map

G∗ → G, f 7→ (f ⊗ id)(M) (2.24)

is an isomorphism if and only if M is non-degenerate, e.g. one can run here over f being the dual

elements f∗i to the basis fi to recover all basis elements gi ∈ G.

The reconstruction of G from M can be processed also on the algebraic level. We first recall

that M satisfies an “exchange” relation:

R21 ·M13 ·R12 ·M23 = M23 ·R21 ·M13 ·R12, (2.25)

which follows straightforwardly from the relations (2.9), and here we used conventions for Mij as

in (2.10). We then think of the above relation as a set of dim(G)2 (anti-)commutation relations for

the elements in the third tensor factor, each relation corresponding to a basis element of G⊗G. In

terms of the basis expansions (2.12) this means the following: Let us introduce R =
∑

i,j ai ⊗ bj
which serve us as “structure constants” matrix. Then the above equation can be written in
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components as follows

dim(G)∑
i,j,k,l,m,n=1

(−1)|ai|(|bj |+|fk|+|al|)+|gk|(|al|+|bm|+|fn|)bjfkal ⊗ aibmfn ⊗ gkgn =

=

dim(G)∑
i,j,k,l,m,n=1

(−1)|ai|(|bj |+|fk|+|al|)+|fn||bm|+|fk|(|al|+|bm|)bjfkal ⊗ fnaibm ⊗ gngk,

(2.26)

where we simplified the minus signs by taking into account that the monodromy matrix is an even

element in G ⊗ G, i.e. |fi| = |gi|. It is clear that using the (anti-)commutation relations of G one

can arrange the elements on the second tensor factor of the right hand side of the above equation

in such a way that they agree with those on the second tensor factor on the left, and by equating

the corresponding terms we thus obtain defining relations for the third tensor factor in terms of

the basis elements gk. In fact, using equation (2.25) one can reconstruct the relations of the initial

algebra G without knowing the commutation relations of the elements on the third tensor factor.

We will pursue a similar treatment for an algebra which we will define as the handle algebra T .

2.4 Handle algebra T and its Fock representation

In this section, we describe how to define a so-called handle algebra for a given ribbon super Hopf

algebra. We will see that certain elements of the handle algebra give a realisation of the SL(2,Z)

group, i.e. the mapping class group of the torus, acting on its Fock-type representation.

Let G be a finite-dimensional factorisable (super) Hopf algebra. One can define an algebra

using the notion of universal element [45], which belongs to a tensor product of the Hopf algebra G
and of the algebra being defined, subject to a set of equations. We have already encountered in

Section 2.3 an example of a universal element given by the monodromy matrix M of the Hopf

algebra G, which one can regard as an element in G ⊗ G.

The handle algebra T is defined using a pair of universal elements A,B ∈ G ⊗ T subject to

the exchange relations

R21 ·A13 ·R12 ·A23 = A23 ·R21 ·A13 ·R12, (2.27)

R21 ·B13 ·R12 ·B23 = B23 ·R21 ·B13 ·R12, (2.28)

R−112 ·A13 ·R12 ·B23 = B23 ·R21 ·A13 ·R12, (2.29)

which are equations in the vector space G ⊗ G ⊗ T . In a fixed basis in T , these equations can be

written explicitly in the same manner as (2.26). In other words, the handle algebra T is generated

algebraically by the images of A and B under the “evaluation” map

f ⊗ id : G ⊗ T → T , for f ∈ G∗ . (2.30)

In particular, running over all f ∈ G∗ and applying this map to A we recover a subalgebra in

T isomorphic to G, as this single element A satisfies the same relation (2.25) as the monodromy

matrix M does. We will thus call A = M(a) the universal element or monodromy corresponding to

the a-cycle of the torus, and the corresponding algebra loop or monodromy algebra. Similarly, we

call B = M(b) the monodromy of the b-cycle. Therefore, the universal elements A and B generate
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two subalgebras T (a) and T (b) of T , which are both isomorphic to G, and the units of these

subalgebras coincide with the unit of T . However, the elements from T (a) do not commute with

those from T (b) – the third exchange relation (2.29) provides non-trivial commutation relations

between elements of such subalgebras. Explicit examples of this construction will be provided in

the next two sections for both semisimple and non-semisimple cases.

The handle algebra T has a representation (this is motivated by [29, Thm. 21])

D : T → EndCR

on a finite-dimensional vector space R that has the form of a Fock module which is constructed

in two steps:

1. Introduce a vacuum state |0〉 ∈ R which is by definition left invariant with respect to the

universal element B associated to the b-cycle{
(id⊗D)B

}
(1⊗ |0〉) = 1⊗ |0〉. (2.31)

This is an equation on elements of G ⊗R. The only solution of this equation is

g(b)|0〉 = ε(g)|0〉, (2.32)

where g ∈ G and g(b) is the corresponding element in T (b) under the isomorphism G ∼= T (b).

We also note that practically we can rewrite the above equation (2.31) “component-wise”

on representations π of G as {
(π ⊗D)B

}
(v ⊗ |0〉) = v ⊗ |0〉,

for all representations π and for all vectors v in the representation space of π. This gives

us a system of equations for the action of elements from the second tensor factor, i.e. the

algebra T (b), on the vacuum, c.f. [29, Eq. (7.3)]2.

2. The Fock module R is then defined as a free module over T (a) generated from the vacuum |0〉.
In other words, the rest of the vectors |f〉 ∈ R that belong to the representation space is

obtained by applying the elements from the subalgebra T (a) on the vacuum without imposing

extra relations, and these are

|f〉 =
{

(f ⊗D)A
}
|0〉, for f ∈ G∗ . (2.33)

As the solution for A will be provided by the non-degenerate monodromy matrix M = M(a),

in this case the Fock module is isomorphic to G as a vector space. We thus see by construction

that R is a representation of T (a), it is actually isomorphic to the regular representation of

G ∼= T (a). We thus only need to show that the action of T (b) is well-defined on such vectors –

this follows from the third exchange relation (2.29) in T that provides commutation relations

2We note that we however use a different normalisation, which facilitates a comparison of two SL(2,Z) actions

discussed below.

– 11 –



between elements in T (a) and T (b). These are obtained from equations analogous to (2.26)

and they are of the form:3

dim(G)∑
k,n=1

fk,n g
(a)
k · g

(b)
n =

dim(G)∑
k,n=1

f̃k,n g
(b)
n · g

(a)
k , (2.34)

where fk,n and f̃k,n are complex numbers (possibly zero), and g
(a)
k and g

(b)
n are elements in

the basis expansions (2.12) corresponding to M(a) and M(b) respectively. Under the action

of T (b) on the free T (a)-module R, we can always use (2.34) to pass elements of T (b) through

those of T (a) until they reach the vacuum where we already fixed the action via (2.32).

We recall that in the case when G is semisimple, it is known that the handle algebra T can

be also constructed as the Heisenberg double of the Hopf algebra G. We did not investigate

an analogue of this in the non-semisimple case but we believe that such an isomorphism to a

Heisenberg double also holds. Furthermore, due to this relation to the Heisenberg double, the

handle algebra in the semisimple case admits a unique irreducible representation given by the Fock

module defined above. Again, in the non-semisimple case it is an open problem of classification of

representations of T but for the analysis of SL(2,Z) action below we will need the Fock module

only.

2.5 Gauge invariant subalgebra and its representation

In analogy with the construction in the semisimple case [45], our next step in defining the SL(2,Z)

action is to introduce the so-called gauge invariant subalgebra A in the handle algebra T . To

this end let us first define a so-called “adjoint” action of the Hopf algebra G on T . We recall that

T is generated by elements from its a− and b− cycle subalgebras T (i) ⊂ T , for i = a, b, as was

discussed in Section 2.4. Moreover, we have an algebra isomorphism:

κ(i) : G → T (i) , M 7→M(i) (2.35)

written in terms of the universal elements. We can now define the G-action of “adjoint” type on

these subalgebras:

x(f) =
∑
(x)

(−1)|f ||x
′′|κ(i)(x′) · f · κ(i)

(
S(x′′)

)
, x ∈ G , f ∈ T (i) , (2.36)

where we used the standard Sweedler notation for co-product components

∆(x) =
∑
(x)

x′ ⊗ x′′. (2.37)

In particular, using the Hopf algebra axioms we have x(1) = ε(x)1.

The action (2.36) makes T a module algebra over the Hopf algebra G, i.e. the action is

compatible with the multiplication in T in the sense that

x(f · g) =
∑
(x)

(−1)|f ||x
′′|x′(f) · x′′(g) , (2.38)

3Formally, we have dim(G)2 number of such relations, though not necessarily all of them are algebraically

independent.
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where x ∈ G and f, g ∈ T . Therefore, one can construct a smash product algebra T̄ = T o G by

defining the multiplication

(f ⊗ x) · (g ⊗ y) =
∑
(x)

(−1)|g||x
′′|f · x′(g)⊗ x′′ · y, (2.39)

where f, g ∈ T and x, y ∈ G. We will denote the element f ⊗ x as f · ι(x), where

ι : G → T̄ , x 7→ 1⊗ x,

is the canonical embedding map. Using (2.39) for the choice y = 1 and f equal the unit in T , we

note the relation

ι(x) · g =
∑
(x)

(−1)|g||x
′′|x′(g) · ι(x′′) , x ∈ G , g ∈ T , (2.40)

that we use below. The smash product T̄ = T o G can be alternatively and equivalently defined

[29, 45] using the universal elements A and B, by the following relations{
(id⊗ ι)∆(x)

}
·A = A ·

{
(id⊗ ι)∆(x)

}
, (2.41){

(id⊗ ι)∆(x)
}
·B = B ·

{
(id⊗ ι)∆(x)

}
, (2.42)

where x ∈ G and the universal elements A and B are considered as elements of G ⊗ T̄ , i.e. in

G ⊗ T ⊗ G where we identify A with A⊗ 1 ∈ G ⊗ T ⊗ G and B with B ⊗ 1 ∈ G ⊗ T ⊗ G.

Finally, the gauge invariant subalgebra A of the handle algebra is defined as the subalgebra

of G-invariant elements

A = {f ∈ T ⊂ T̄ | ι(x)f = (−1)|f ||x|fι(x), ∀x ∈ G}. (2.43)

We note that the above definition of A is equivalent to

A = {f ∈ T | x(f) = ε(x)f, ∀x ∈ G}

and it is clear that x(f · g) = ε(x)f · g, for f, g ∈ A, as follows from (2.38) and using the super

Hopf algebra axioms on the co-unit. Therefore A forms indeed a subalgebra in T .

We show now that A contains an important subalgebra, the one generated by the two centres

Z(T (a)) and Z(T (b)). The crucial observation here is that central elements in a Hopf algebra H

are invariants under the adjoint action, i.e. if z ∈ Z(H) then
∑

(x) x
′zS(x′′) = ε(x)z for all x ∈ H.

The same applies for the super Hopf algebras where the adjoint action is now defined as in (2.36),

i.e. with the sign factors4. We thus have that under the G action (2.36) on the subalgebra T (a)

the following equalities hold for all x ∈ G and z ∈ Z(T (a)):

x(z) = ε(x)z, (2.44)

and similarly for the b−cycle centre Z(T (b)). We thus get that

Z(T (a)) ( A, Z(T (b)) ( A (2.45)

4However, we note that as central elements are even the signs in (2.36) and in (2.43) do not play a role.
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and all products of elements from the two centres belong to A too. However, the two centres

do not in general generate the algebra A, as it can be seen on the example of U q gl(1|1) in next

sections.

The Fock representation of the handle algebra T can be extended to a representation of T̄
and then to one of A. For any element ι(x), x ∈ G, we impose that on the representation space

R it acts in the following way (compare with [45, Prop. 12])

D(ι(x))|0〉 = ε(x)|0〉 , (2.46)

while the action on other vectors is obtained using the commutation relations (2.40). Indeed,

recall that any vector in the Fock module can be written as D(g)|0〉 for some g ∈ T (a). Therefore

we can write

D(ι(x))
(
D(g)|0〉

)
= D

(
ι(x) · g

)
|0〉 =

∑
(x)

(−1)|g||x
′′|D
(
x′(g)

)
· ε(x′′)|0〉 = D

(
x(g)

)
|0〉. (2.47)

Here, we first used the requirement that D is an algebra map, then (2.40) in the second equality,

and then the Hopf algebra co-unit axiom for the last equality – however a comment is necessary

for odd elements g: the sign factors (−1)|g||x
′′| are actually irrelevant due to the fact that ε is

an even map, in particular ε(x′′) = 0 for odd x′′, while the sign is +1 for even x′′. This finally

proves (2.47), and therefore D indeed constitutes a representation of T̄ . For brevity, we will use

the same notation D for both T and T̄ .

Of course, we can define a representation of A as a restriction of D to A. However, we need

a much smaller space – the subspace of G-invariants in R that can be formally defined as

Inv(R) := HomG(C,R). (2.48)

This subspace corresponds in [29] to the “flatness” restriction on D. In the semisimple case, such

a restriction can be constructed using an appropriate projector. In the non-semisimple case, such

a projector generally does not exist. We however do not need to follow this way as the space

Inv(R) of gauge-invariant states, i.e. those that D(ι(x))|f〉 = ε(x)|f〉, can be constructed directly

from the (gauge-invariant) vacuum |0〉 by applying all possible gauge-invariant operators, and

we know that these are all in A. We thus consider a “truncation” of the representation D to a

representation D(A) of the gauge-invariant subalgebra A generated from the vacuum by A:

R(A) := D(A)|0〉. (2.49)

This clearly defines a representation of A, which is a subspace in R. Assume now g ∈ A then

D(g)|0〉 is a gauge-invariant state – indeed, this follows from (2.47) because x(g) = ε(x)g. In

other words we have shown that R(A) ⊂ Inv(R). Moreover, we claim that the subspace R(A)
contains all gauge-invariant states, i.e.

R(A) = Inv(R). (2.50)

This follows from the fact that |0〉 is a cyclic vector generating the whole module R under the

action of T , and similarly all the gauge-invariant states are generated from this cyclic vector by
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the centraliser of G, which is A by definition. We note the importance of the cyclic vector: in the

semisimple case, A acts on the multiplicity space of G-invariants via an irreducible representation,

and thus it would be enough to use any non-zero gauge-invariant state to produce the whole

space of G-invariants via the action of A on it; in the non-semisimple case, the action of A on the

multiplicity space (2.48) is not necessarily irreducible but it is indecomposable, and thus from a

gauge-invariant state we might generate only a proper subspace in Inv(R), however from a cyclic

vector the action of A generates the whole space of G-invariants.

It is clear that R(A) contains an important subspace generated by the a-cycle centre:

D
(
Z(T (a))

)
|0〉 ⊂ R(A).

From the action (2.32) of the b-cycle centre on the vacuum, it is also clear that the algebra

generated by both centres Z(T (a)) and Z(T (b)) (a subalgebra in A) generates the same subspace

D
(
Z(T (a))

)
|0〉. We will however see in our non-semisimple example in Section 4 that the gauge-

invariant algebra A is much bigger than the algebra generated by Z(T (a)) and Z(T (b)). Assume

now a ∈ A is an element that is not necessarily written as a product of elements from Z(T (a))

and Z(T (b)). It is however can be written as, recall relations (2.34) and that T has dimension

dim(G)2,

a =

dim(G)∑
k,n=1

fk,n g
(a)
k · g

(b)
n ,

for some numbers fk,n. Applying such a general element on the vacuum and using (2.32) we get

a|0〉 =

dim(G)∑
k,n=1

fk,n ε
(
g(b)n
)
g
(a)
k |0〉 ,

i.e. we have

a|0〉 ∈ D
(
T (a)

)
|0〉 .

But we assumed that a ∈ A or a|0〉 is a G-invariant, and the only operators from D
(
T (a)

)
that produce G-invariants from |0〉 are invariants under the adjoint action, or operators from

D
(
Z(T (a))

)
. We thus conclude that

R(A) = D
(
Z(T (a))

)
|0〉. (2.51)

In other words, as a vector space R(A) is isomorphic to the centre of G.

We will use this representation R(A) for our formulation of the (projective) action of the

mapping class group of the torus.

2.6 Representation of mapping class group of the torus

In this section, we describe the realisation of the SL(2,Z) group through elements of the gauge-

invariant subalgebra A of the handle algebra T . Then, we define our projective action of SL(2,Z)

on the subspace R(A) in R generated by A from the gauge-invariant vacuum. (This projective

representation can be interpreted as the space of Chern-Simons observables.) In order to define

such a representation, we first recall some facts about the mapping class group of the torus.
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The first homotopy group π1(T2) of the torus is generated by the elements a, b associated to

the corresponding cycles on T2, which are subjected to the following relation

ba−1b−1a = e. (2.52)

This relation is interpreted as a lack of punctures or discs removed from the torus. On the group

π1(T2), one can define two automorphisms α and β which act as

α(a) = a, α(b) = ba, (2.53)

β(a) = b−1a, β(b) = b,

and they can be interpreted as Dehn twists along the a- and b-cycles. Recall that Aut
(
π1(T2)

)
is SL(2,Z). We can relate those automorphisms to the standard generators σ, τ of SL(2,Z) as

follows

σ = α ◦ β ◦ α = β ◦ α ◦ β, (2.54)

τ = α−1. (2.55)

It is easy to see that they satisfy the expected relations

σ4 = id (στ)3 = σ2. (2.56)

The main idea now is to use a quantised version of the automorphisms α, β. We have seen in

the previous sections that in defining a quantum theory we associate the universal elements A and

B to the a-and b-cycles respectively. In fact, the handle algebra T admits a pair of automorphisms

α, β : T → T which realise a “quantum” version of the action (2.53):5

(id⊗ α)(A) = A,

(id⊗ α)(B) = (v−1 ⊗ 1) ·BA,
(id⊗ β)(A) = (v ⊗ 1) ·B−1A,
(id⊗ β)(B) = B,

(2.57)

where v is the ribbon element of G introduced in (2.21). That α and β are automorphisms, i.e.

respect the relations (2.27)-(2.29), is proven along the same lines as in the proof of [45, Lem. 6]

where the semisimplicity assumption on G was not actually used but only the general properties

of v and of the universal elements A and B that are valid in our case too.

The automorphisms α and β can be expressed as inner automorphisms of the handle algebra,

given by the adjoint actions

α(x) =
(
v̂(a)

)−1 · x · v̂(a), β(x) =
(
v̂(b)

)−1 · x · v̂(b), x ∈ T , (2.58)

of the following elements of the handle algebra T

v̂(a) = (µ⊗ id)
(
(v−1 ⊗ 1) ·A

)
,

v̂(b) = (µ⊗ id)
(
(v−1 ⊗ 1) ·B

)
.

(2.59)

5The appearance of the ribbon element, when compared to the classical equations above, reflects the quantum

nature of the automorphisms α and β.
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The proof of (2.58) essentially repeats6 the one of [45, Lem. 9], and so we omit it. We will interpret

the elements v̂(a) and v̂(b) as the “quantum” Dehn twists operators along the a− and b−cycles

of the torus, correspondingly.

For the further analysis it will be important to note that the elements (2.59) actually belong

to the gauge-invariant subalgebra A. Indeed, recall the standard result due to [51]: let H be a

unimodular finite-dimensional Hopf algebra over C and K ∈ H ⊗H such that K∆(x) = ∆(x)K

for all x ∈ H, and let φ : H → C be a linear map such that

φ(xy) = φ(S2(y)x) (2.60)

then (φ ⊗ id)(K) is in the centre of H. Applying this to K = (v−1 ⊗ 1) ·M and φ = µ (the

equation (2.60) holds for the integral µ, see [49]) we then get that

(µ⊗ id)
(
(v−1 ⊗ 1) ·M

)
∈ Z(G)

and therefore both the elements v̂(a) and v̂(b) are in the centres Z
(
T (a)

)
and Z

(
T (b)

)
, respectively.

Using the result in (2.45), we conclude that both v̂(a) and v̂(b) belong to A. We note however

that these elements are not necessarily in the centre of A.

Using the special elements v̂(a) and v̂(b) inA, we can make a statement, which in the following

chapters will be treated very concretely in the cases of a simple “toy” model based on a finite

cyclic group, and then for the U q gl(1|1) case at a root of unity. Using the quantum Dehn twist

operators, we can define the elements that correspond to the actions of the SL(2,Z) group:

S := v̂(b)v̂(a)v̂(b), (2.61)

T :=
(
v̂(a)

)−1
. (2.62)

Recall that both v̂(a) and v̂(b) belong to A, therefore the elements S and T are in the gauge-

invariant subalgebra A too.

While S and T provide a modular group action on the elements of the handle algebra T they

do not necessarily furnish a projective representation of SL(2,Z) on its representation space R.

However, S and T can be realised as operators on the subspace R(A) of gauge-invariant states

introduced in (2.49), recall also our result in (2.50). This realisation follows from the above result

that S ,T ∈ A, and therefore

D(S ) : R(A) → R(A), D(T ) : R(A) → R(A).

Moreover, we claim that S and T operators provide a projective representation of SL(2,Z), i.e.

they satisfy

D(A)(S
4) = id, (2.63)

D(A)
(
(S T )3

)
= λD(A)(S

2), (2.64)

where λ ∈ C×. This statement is strictly speaking conjectural, it naturally generalises [29,

Thm. 28] to not necessarily semisimple algebras, and our conjecture is supported by a non-trivial

example we demonstrate in Section 4.

6The only difference with the elements defined in [45, Lem. 9] is in normalization factor which we omit so that

v̂(a) and v̂(b) are invertible.
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2.7 Lyubashenko–Majid SL(2,Z) action on the centre

We recall here another construction of a (projective) SL(2,Z) representation associated with G.

Having a ribbon factorisable (super) Hopf algebra G, one can construct an infinite series of map-

ping class group representations on certain spaces of intertwining operators [52]. In particular

for a torus without punctures, we have a (projective) representation of the group SL(2,Z) on the

centre of G, see the original reference [46]. We will now review this construction for the case of

torus, mainly following the more recent exposition [53].

The construction involves three main ingredients: integral, monodromy matrix, and a ribbon

element. Let Z(G) denotes the centre of G. The S- and T -transformations from the modular

group acting on Z(G) are defined as

SZ(z) = (µ⊗ id)
{

(S(z)⊗ 1) ·M
}
, z ∈ Z(G). (2.65)

TZ(z) = v−1 z, (2.66)

with the ribbon element v defined in (2.21). These two linear maps provide a projective repre-

sentation of SL(2,Z):

S 4
Z = id, (SZTZ)3 = λSZ

2,

with some non-zero number λ. It is known that in the case of a modular Hopf algebra G, i.e. in

the semisimple case, such a representation of SL(2,Z) is equivalent to the Reshetikhin-Turaev

construction [37, 38], where the S-transformation is provided by the closure (taking the quantum

trace) of the double braiding of a pair of irreducible representations. It was demonstrated that the

Reshetikhin-Turaev construction is equivalent to the handle algebra construction in [29, Thm. 29].

2.8 Conjecture on equivalence of two SL(2,Z) actions

So far, we have defined two SL(2,Z) actions, one based on the handle algebra in Section 2.6 and

the Lyubashenko-Majid one in Section 2.7, and both are realized on the same vector space – the

centre of G. Recall our result in (2.51). As we just mentioned for the semisimple case, it is known

that the two actions agree projectively. Let us make the following conjecture.

Conjecture: Let G be a finite-dimensional ribbon factorisable (super) Hopf algebra over C.

The two SL(2,Z) representations, one defined in (2.61)-(2.62) on R(A) ∼= Z(G) and the other

in (2.65)-(2.66), are projectively isomorphic.

We will next demonstrate on two examples the two constructions of (projective) SL(2,Z)

actions, one based on the handle algebra and the Lyubashenko-Majid one, and show explicitly

that they are indeed equivalent. We begin with a “toy” model based on a cyclic group.

3 Toy model — the cyclic group case

In this section, we demonstrate the construction described in the previous section in the simplest

possible case – the choice of the Hopf algebra G given by (the group algebra) of the finite cyclic

group Zp with p ∈ N elements. We will denote this algebra by Ap. This is a semisimple algebra,

while a non-semisimple case is considered in the next section.

– 18 –



The Hopf algebra Ap := CZp is generated by k with the only relation kp = 1. It has the basis

{kn}p−1n=0 with the commutative multiplication knkm = kn+m, and the group-like co-product ∆,

the co-unit ε and the antipode S such that

∆(kn) = kn ⊗ kn, ε(kn) = 1, S(kn) = k−n. (3.1)

We will also use the notation q = e2πi/p. For the algebra Ap, the universal R-matrix is then

R =
1

p

p−1∑
n,m=0

q−nmkn ⊗ km. (3.2)

It is straightforward to check the R-matrix axioms.

The monodromy matrix (2.11) is then

M =
1

p

p−1∑
n,m=0

q−2nmk2n ⊗ k2m. (3.3)

It is however non-degenerate for odd values of p only. Indeed, the monodromy matrix can be

rewritten as M =
∑p−1

n=0 k
2n ⊗ en where we introduced the idempotents

en =
1

p

p−1∑
m=0

q−2nmk2m.

It is clear that en, for 0 ≤ n ≤ p− 1, form a basis in Ap for odd values of p, while for even p we

have en+p/2 = en. Similarly, {k2n}p−1n=0 is a basis in Ap for odd p only. Therefore, the monodromy

matrix takes the form (2.12) for odd values of p only, and Ap is thus factorisable. By this reason,

we will assume below that p is odd.

For Ap, the integral (2.16) takes the well-known form:

µ(kn) = N δn,0, (3.4)

where we use the normalisation (2.19) that gives

N =
√
p. (3.5)

Moreover, the co-integral (2.18) is given by (using also the normalisation µ(c) = 1)

c =
1
√
p

p−1∑
n=0

kn. (3.6)

Using the definitions (2.20) and (2.21) one can find that the balancing element g = 1 and the

expression for the ribbon element v is given by

v±1 =
i∓ω(p)
√
p

p−1∑
n=0

q±n
2
k2n, (3.7)

where we used the “Gauss sum” identity

p−1∑
m=0

qm
2

= iω(p)
√
p, (3.8)

with

ω(p) =

{
1, p ∈ 4Z + 3,

0, p ∈ 4Z + 5.
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3.1 Representations of Ap

The finite cyclic group has a very simple representation theory, given that it is a commutative and

co-commutative algebra. It admits only 1-dimensional irreducible representations πn : Ap → C
which are

πn(k) = qn , n = 0, . . . , p− 1 . (3.9)

On those representations, we have

(πn ⊗ id)R = kn,

(πn ⊗ id)M = k2n.

Moreover, since the balancing element is trivial and the algebra is non-graded, the quantum

trace (2.22) is simply the ordinary trace on 1-dimensional representations

strq(πn(km)) = qnm.

3.2 The handle algebra of Ap

In this section, we solve the exchange equations (2.27)-(2.29) which define the handle algebra T
commutation relations. Since these first two of those relations are identical to the relations for

the monodromy matrix of our toy model algebra, we use the following Ansatz for the universal

elements A and B

A =
1

p

p−1∑
n,m=0

q−2nmk2n ⊗
(
k(a)

)2m
, (3.10)

B =
1

p

p−1∑
n,m=0

q−2nmk2n ⊗
(
k(b)
)2m

, (3.11)

where the subalgebra spanned by
{(
k(a)

)n}p−1
n=0

is the algebra isomorphic to Ap associated to the

a-cycle, while
{(
k(b)
)n}p−1

n=0
— the one associated to the b-cycle.

Because the algebra Ap is commutative and the R-matrix is symmetric, the third exchange

relation (2.29) simplifies to

A13B23 = (R12)
2B23A13. (3.12)

One can show easily that this equation is satisfied when one imposes the following commutation

relation on the elements of the handle algebra(
k(a)

)n(
k(b)
)m

= q
nm
2
(
k(b)
)m(

k(a)
)n
.

Indeed, it is the commutation relations for the elements of the Heisenberg double of Ap (recall

the discussion above Section 2.5). We have thus found all the defining relations in T .
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3.3 Fock module R

In the following we explain the construction of the representation D of the handle algebra from

Section 2.4. This representation has a cyclic vector, the vacuum defined by the trivial action of

the b-cycle elements:

D
(
(k(b))m

)
|0〉 = |0〉 , (3.13)

which of course agrees with (2.32). The representation space R is spanned by vectors {|n〉}p−1n=0

which are defined via application of the elements of the a-cycle subalgebra to the vacuum:

|n〉 := D
(
(k(a))2n

)
|0〉, (3.14)

which follows from the definition (2.33) and the form of the universal element A. We note that

actually all powers of k(a), odd and even, appear here – it is due to the relation (k(a))p = 1 and

the condition that p is odd. From here, using the commutation relations in T , one can calculate

the action on arbitrary vectors of R

D
(
(k(b))n

)
|m〉 = q−nm|m〉. (3.15)

3.4 Gauge-invariance conditions

Now, we want to investigate the gauge-invariance conditions, explained in Section 2.5, and find

the gauge-invariant subalgebra A of the handle algebra. Because of the commutativity of Ap, the

equation (2.36) gives

k(k(i)) = k(i), (3.16)

for i = a, b. From this follow the commutation relations for the elements of the smash product T̄

ι(kn)
(
k(a)

)m
=
(
k(a)

)m
ι(kn),

ι(kn)
(
k(b)
)m

=
(
k(b)
)m
ι(kn),

(3.17)

for all n,m = 0, . . . , p− 1. Because all elements of T commute with all elements of {ι(x)|x ∈ G},
the gauge-invariant subalgebra is in fact isomorphic to the handle algebra itself

A = T . (3.18)

Finally, we extend the representation D of the handle algebra T to the smash product T̄ by

D(ι(kn))|m〉 = |m〉.

where we also used the relations (3.17).

3.5 SL(2,Z) action from the handle algebra

In this section, we construct the projective SL(2,Z) representation via operators on the represen-

tation space of the gauge-invariant subalgebra, which is the handle algebra in this case. We obtain

the matrix coefficients of the S and T transformations and we verify that those transformations

indeed satisfy the relations of SL(2,Z).
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Using the integral (3.4) and the ribbon element (3.7), we get the explicit formulae for the

quantum Dehn twist operators defined by (2.59)

v̂(a) =
1
√
p

p−1∑
n=0

qn
2(
k(a)

)−2n
, v̂(b) =

1
√
p

p−1∑
n=0

qn
2(
k(b)
)−2n

. (3.19)

One can directly check that their adjoint actions via the automorphisms α and β given by (2.58)

indeed satisfy the equations (2.57). The two Dehn twists are represented on the representation

space R by

D(v̂(a))|n〉 =
1
√
p

p−1∑
m=0

qm
2 |n−m〉, (3.20)

D(v̂(b))|n〉 = iω(p)q−n
2 |n〉, (3.21)

where we used the identity (3.8). Using this representation, the S - and T -matrices, defined by

(2.61) and (2.62) respectively, are realised as

D(S )|m〉 =
(−1)ω(p)
√
p

p−1∑
n=0

q−2nm|n〉, (3.22)

D(T )|m〉 =
1
√
p

p−1∑
n=0

q−n
2 |m+ n〉. (3.23)

From this explicit action, one can easily calculate that

D(S 2)|m〉 = | −m〉, D(S 4)|m〉 = |m〉, (3.24)

and by iteratively applying the above expressions we get

D
(
(S T )3

)
|m〉 = | −m〉. (3.25)

By comparing the expressions, we see that the SL(2,Z) relations are indeed satisfied:

(S T )3 = S 2, S 4 = id. (3.26)

3.6 Lyubashenko–Majid SL(2,Z) action on the centre

As the algebra Ap is commutative, the centre Z(Ap) is Ap. However, we note that the canonical

construction of central elements via the map defined in (2.23) gives

an ≡ zπn = (πn ⊗ id)(M) = k2n.

By using equation (2.65) one can find the S transformation on the central elements

SZ(an) =
1
√
p

p−1∑
m=0

q−2nmam, (3.27)
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and therefore

S 2
Z(an) = a−n, S 4

Z(an) = an.

In addition we have TZ transformation as it was defined in the equation (2.66)

TZ(an) =
iω(p)
√
p

p−1∑
m=0

q−(m−n)
2
am. (3.28)

Therefore

(SZTZ)(an) =
1
√
p

p−1∑
m=0

qm
2−2nmam, (SZTZ)3(an) = iω(p)a−n,

where we used again the identity (3.8). Therefore, we get the relation

(SZTZ)3 = λSZ
2, (3.29)

for λ = iω(p), i.e. we have indeed a projective representation of SL(2,Z).

3.7 Equivalence of two actions

In this section, we show that the two SL(2,Z) actions presented in Sections 3.5 and 3.6 agree

projectively. In order to do that, we first establish that the centre Z(Ap) = Ap and the represen-

tation space R of the gauge-invariant algebra A for G = Ap are isomorphic as vector spaces, and

this of course agrees with our general result established in (2.51).

Explicitly, we have that

Z(Ap) 3 an
'7−→ |n〉 ∈ R. (3.30)

Moreover, if we take into account this isomorphism, we can compare the coefficients of the relevant

actions in the two cases. In order to do that, let us define the coefficients of the S - and T -actions

as

D(S )|m〉 =

p−1∑
n=0

(ST )nm|n〉, D(T )|m〉 =

p−1∑
n=0

(TT )nm|n〉,

for the handle algebra and

SZ(am) =

p−1∑
n=0

(SZ)nman, TZ(am) =

p−1∑
n=0

(TZ)nman,

for the centre of Ap in the LM picture. It is easy to read-off that those coefficients are

(ST )nm = (−1)ω(p)(SZ)nm = (−1)ω(p)
1
√
p
q−2nm,

(TT )nm = i−ω(p)(TZ)nm =
1
√
p
q−(n−m)2 .

We see therefore that those two actions agree up to multiplicative constants, i.e. they agree

projectively, as it was claimed.
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4 U q gl(1|1) algebra and its representation

In this section, we introduce a restricted version of the quantum enveloping Hopf algebra U q gl(1|1)

with q being the primitive pth root of unity, where p is an odd integer. To simplify notation, it

will be understood that within this section G = U q gl(1|1).

We begin in Section 4.1 with recalling the Hopf algebra structure on G and compute its

(co)integrals. Then in Section 4.2, we introduce the ribbon structure: we give the universal

R-matrix, and calculate the corresponding monodromy matrix and the ribbon element. In Sec-

tion 4.3, we also review known facts about the representation theory of this algebra. Then we

construct the corresponding handle algebra T in Section 4.5 in terms of generators and relations,

its gauge-invariant subalgebra A is studied in Section 4.7, and its Fock module R(A) is described

in Section 4.8. The SL(2,Z) action from the handle algebra approach is analysed in Section 4.9

where we also establish an equivalence with the modular action in [10]. Finally, in Section 4.11

we compare this action to the Lyubashenko–Majid action of SL(2,Z) analysed in Section 4.10,

confirming the conjecture formulated in Section 2.8.

4.1 Definition and (co)integrals

The restricted quantum group for gl(1|1) that will be denoted by G = U q gl(1|1) is a super Hopf

algebra generated by kα, kβ and e+, e− with the defining relations

kpα = kpβ = 1,

kαe± = e±kα,

kβe± = q±1e±kβ,

kαkβ = kβkα,

{e±, e±} = 0,

{e+, e−} =
kα − k−1α
q − q−1

,

(4.1)

where the parameter is q = e2πi/p and we assume p is a positive odd integer. We note that the

generator kα is central. It is a finite-dimensional algebra with the basis

{knαkmβ er+es− | 0 ≤ n,m ≤ p− 1 , 0 ≤ r, s ≤ 1} . (4.2)

The co-product has the form

∆(kα) = kα ⊗ kα,
∆(kβ) = kβ ⊗ kβ,

∆(e+) = e+ ⊗ 1 + k−1α ⊗ e+,
∆(e−) = e− ⊗ kα + 1⊗ e−,

(4.3)

the co-unit is

ε(kα) = ε(kβ) = 1, ε(e+) = ε(e−) = 0, (4.4)

and the antipode is

S(kα) = k−1α ,

S(kβ) = k−1β ,

S(e+) = −kαe+,
S(e−) = −e−k−1α .

(4.5)

The right integral as it was defined in (2.16) evaluated on the basis (4.2) of G has the following

form

µ(knαk
m
β e

r
+e

s
−) = N δn,−1δm,0δr,1δs,1, (4.6)
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or alternatively we can write it as

µ = N (k−1α e+e−)∗, (4.7)

where the normalisation N will be fixed later.

It can be easily checked that the co-integral (2.18) is given by

c =
1

N

p−1∑
n,m=0

knαk
m
β e+e−, (4.8)

where as usual we normalise it by µ(c) = 1. It is a two-sided co-integral.

4.2 R-matrix and ribbon element

The super Hopf algebra G is quasi-triangular with the universal R-matrix

R =
1

p2
(
1⊗ 1− (q − q−1)e+ ⊗ e−

) p−1∑
n,m=0

p−1∑
s,t=0

qnt+msknαk
m
β ⊗ k−sα k−tβ . (4.9)

This form of R-matrix was motivated by the construction [54] in the case of generic values of q.

In addition, it will be useful (for the handle algebra relations) to spell explicitly the inverse of the

R-matrix

R−1 =
1

p2
(
1⊗ 1 + (q − q−1)kαe+ ⊗ k−1α e−

) p−1∑
n,m=0

p−1∑
s,t=0

q−nt−msknαk
m
β ⊗ k−sα k−tβ . (4.10)

And we also need the monodromy matrix

M =
(
(q − q−1)−11⊗ 1 + e− ⊗ e+ − k−1α e+ ⊗ kαe− + (q − q−1)k−1α e−e+ ⊗ kαe+e−)

× (q − q−1) 1

p2

p−1∑
n,m,s,t=0

q−2nt−2msk2nα k
2m
β ⊗ k2sα k2tβ .

(4.11)

Introducing the idempotents

en,m =
1

p2

p−1∑
s,t=0

q−2nt−2msk2sα k
2t
β ,

the second line in (4.11) can be written as (q − q−1)
∑p−1

n,m=0 k
2n
α k

2m
β ⊗ en,m. Then similarly

to analysis of M in Section 3, we conclude that M takes the form (2.12), and it is thus non-

degenerate. We note that this is true for odd p only, because only then {k2nα k2mβ er+e
s
−}

p−1,p−1,1,1
n,m,r,s=0

and {en,mer+es−}
p−1,p−1,1,1
n,m,r,s=0 are bases of G. (This is why we assumed above that p is odd.) Therefore,

G is a factorisable super Hopf algebra.

With the monodromy matrix (4.11) and according to the equation (2.19) we can fix the

normalisation for the integral in (4.7) as

N =
ip

q − q−1
. (4.12)
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Using the right integral µ from (4.7), we find the co-modulus a ∈ G (2.17) to be

a = k−2α , (4.13)

which admits a group-like square root, and therefore the balancing element g is just

g = k−1α . (4.14)

We note that the element g is central and it satisfies S2(x) = gxg−1 for all x ∈ G, and this is

consistent with the fact that S2 = id in this case.

Then, using the expression for the ribbon element v from (2.21) we find its explicit form

(after making appropriate re-summation)

v±1 =
1

p
k±1α (1∓ (q − q−1)k∓1α e−e+)

p−1∑
n,m=0

q±2nmk2nα k
2m
β . (4.15)

One can of course directly check the ribbon axioms (2.13). We therefore conclude that G is a

ribbon factorisable super Hopf algebra.

4.3 Representations of U q gl(1|1)

Here, we briefly review representation theory of G, which has been studied e.g. in [8, 55–57].

The important class of representations consists of 1-dimensional atypical representations, 2-

dimensional typical representations and 4-dimensional indecomposable projective representations7

that we describe below in a basis. The major difference from the previous section when we

considered the algebra Ap based on the finite cyclic group is that U q gl(1|1) is not semisimple

— as we recall below, there are 4-dimensional projective representations which are reducible but

indecomposable.

We start describing the so-called atypical representations πn : G → C1|0, for n = 0, . . . , p− 1,

πn(kα) = 1,

πn(kβ) = qn,

πn(e+) = 0,

πn(e−) = 0,
(4.16)

All the atypical representations are one-dimensional and clearly irreducible. The co-unit ε cor-

responds to the atypical representation π0. Moreover, we have a series of the so-called typical

representations πe,n : G → End(C1|1) with e, n = 0, . . . , p− 1

πe,n(kα) = qe

(
1 0

0 1

)
,

πe,n(kβ) = qn

(
q−1 0

0 1

)
,

πe,n(e+) =

(
0 0

[e]q 0

)
,

πe,n(e−) =

(
0 1

0 0

)
,

(4.17)

where [x]q = qx−q−x
q−q−1 is the q-number. The typical representations πe,n are two-dimensional (with

1 even and 1 odd degrees), and when e 6= 0 they are irreducible. When e = 0, the representation

7These are actual linear representations, also often called “projective modules”, and should not be confused with

projective representations from group theory which are linear up to a multiplicative constant.
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π0,n is not irreducible anymore, but it is still indecomposable: it is built up from two atypi-

cal irreducible representations πn and πn−1 connected by the action of e−. The corresponding

subquotient structure can be written diagrammatically as

πn → πn−1, (4.18)

where the arrow points to a submodule and it corresponds to a “non-invertible” action of the

algebra.

Besides the atypical and typical representations, one has as well the projective representations

πPN : G → Hom(C2|2), which are defined by the matrix realisations on 4-dimensional vector space

with 2 even and 2 odd degrees as follows

πPN (kα) =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 ,

πPN (kβ) = qN


q−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 q

 ,

πPN (e+) =


0 0 0 0

−q−1 0 0 0

1 0 0 0

0 1 q−1 0

 ,

πPN (e−) =


0 1 q−1 0

0 0 0 q−1

0 0 0 −1

0 0 0 0

 ,

(4.19)

where vectors (1 0 0 0)t and (0 0 0 1)t are odd and (0 1 0 0)t and (0 0 1 0)t are even, and where t

denotes the transposition.

The representations πPN are reducible but indecomposable, and come from the tensor product

of two typical representations π−e,N ⊗ πe,1. They are built up from 4 atypical representations

πN+1, πN , πN , πN−1 which constitute the module according to the subquotient diagram

πPN =

πN

##{{
πN+1

##

πN−1

{{
πN

σ

OO

(4.20)

where the arrows are meant to be actions of e± (and here the map σ should be ignored for a

moment, it will be explained later). Explicitly, the following vectors of the 4-dimensional module

constitute the modules of the atypical representations in the diagram
1

0

0

0

 ∈ πN−1,


0

−q−1

1

0

 ∈ bottom πN ,


0

0

0

1

 ∈ πN+1,


0

1

q

0

 ∈ top πN .

It is worthwhile to note that the Casimir element of G evaluated on the projective represen-

tation πPN maps the top atypical representation to the bottom one, and it is zero otherwise. It

is not realised by an invertible matrix.

– 27 –



For the purposes of the next section, we want to find a matrix σ that maps the bottom

atypical sub-representation to the top one and it is zero otherwise, i.e. σ satisfies the following

relations

σ


0

−q−1

1

0

 =


0

1

q

0

 , σ


0

1

q

0

 =


0

0

0

0

 , σ


1

0

0

0

 =


0

0

0

0

 , σ


0

0

0

1

 =


0

0

0

0

 ,

which determines σ up to a multiplicative constant. It is realised as a matrix

σ =
q

2


0 0 0 0

0 −1 q−1 0

0 −q 1 0

0 0 0 0

 . (4.21)

Finally, let us recall the definition of the quantum supertrace. The ordinary supertrace of an

n× n matrix X with the coefficients [X]ij = Xi
j is defined as

str(X) =
n∑
i=1

(−1)|i|Xi
i , (4.22)

where |i| denotes the grading of the diagonal element Xi
i . As applied to two-dimensional matrices

on C1|1, the supertrace is explicitly

str

(
x11 x

1
2

x21 x
2
2

)
= x11 − x22,

and for four-dimensional matrices on C2|2

str


x11 x

1
2 x

1
3 x

1
4

x21 x
2
2 x

2
3 x

2
4

x31 x
3
2 x

3
3 x

3
4

x41 x
4
2 x

4
3 x

4
4

 = x11 − x22 − x33 + x44.

Then, the quantum supertrace is defined by inserting the inverse balancing element g−1:

strq(π(X)) = str(π(g−1X)), (4.23)

where π is, for our purposes, a representation of G, i.e. π = πn, πe,n, πPN .

4.4 The centre of G

In this section, we construct a basis in the centre Z(G) of G using the description of projective

representations in the previous section.

First, we recall that central elements can be constructed using the so-called Drinfeld map

φ 7→ (φ⊗ id)(M)
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for φ satisfying (2.60). Examples of such φ are the quantum traces strq over representations of G,

recall (2.22). Using this construction for the typical and atypical representations, we obtain the

central elements

ce,n = (strq ⊗ id)
{

(πe,n ⊗ id)M
}
, 1 ≤ e ≤ p− 1, 0 ≤ n ≤ p− 1. (4.24)

an = (strq ⊗ id)
{

(πn ⊗ id)M
}
, 0 ≤ n ≤ p− 1, (4.25)

p2 elements in total. Their span however gives only a proper subalgebra in Z(G). To construct the

missing central elements, we follow an approach in [58] that uses the so-called pseudo-traces. For

this, one has to consider a direct sum of all projective indecomposables from the same (categorical)

block which is not semisimple. We recall that each block corresponds to a two-sided ideal in the

algebra and vice versa, and in our case we have just one such non-semisimple block (in contrast

to [58] where one had to consider p− 1 of them). We thus have only one missing central element

and it is given by

b = (strq ⊗ id)
{

(πσ ⊗ id)M
}
, (4.26)

where we introduced a special map πσ : G → End(⊕NPN ) as

πσ(−) :=

p−1⊕
N=0

σ ◦ πPN (−) (4.27)

and the linear map σ is defined in (4.20)-(4.21). (The quantum trace strq precomposed with such

a map is what we call pseudo-traces, see more details in [58].)

Explicitly, the central elements introduced above are given by the following expressions

ce,n = qe(q − q−1)
{

(1− q−2e)e+e− −
kα − k−1α
q − q−1

}
k2n−1α k2eβ , (4.28)

an = k2nα , (4.29)

b = −2(q − q−1)2
p−1∑
t=0

k2tα e+e−. (4.30)

We first note that these are linearly independent elements in the centre of G. To show that any

central element is a linear combination of these ones, we first calculate dimension of the centre

by analysing bimodule endomorphisms of the regular representation along the lines in [59], and

conclude that the dimension

dim
(
Z(G)

)
= p2 + 1 (4.31)

agrees with the number of the central elements given above.

4.5 The handle algebra of U q gl(1|1)

In this section, we describe the handle algebra of G in terms of generators and relations.
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We start by stating the form of the universal elements A and B corresponding to the a- and

b-cycles, which solve the exchange equations (2.27)-(2.28):

A =
[
(q − q−1)−1 + e− ⊗ e(a)+ − k−1α e+ ⊗ k(a)α e

(a)
− + (q − q−1)k−1α e−e+ ⊗ k(a)α e

(a)
+ e

(a)
−

]
× 1

p2
(q − q−1)

p−1∑
n,m,s,t=0

q−2nt−2msk2nα k
2m
β ⊗

(
k(a)α

)2s(
k
(a)
β

)2t
,

B =
[
(q − q−1)−1 + e− ⊗ e(b)+ − k−1α e+ ⊗ k(b)α e

(b)
− + (q − q−1)k−1α e−e+ ⊗ k(b)α e

(b)
+ e

(b)
−

]
× 1

p2
(q − q−1)

p−1∑
n,m,s,t=0

q−2nt−2msk2nα k
2m
β ⊗

(
k(b)α
)2s(

k
(b)
β

)2t
.

where the elements {(
k(a)α

)n(
k
(a)
β

)m(
e
(a)
+

)r(
e
(a)
−
)s}p−1,p−1,1,1

n,m,r,s=0

span the subalgebra T (a) isomorphic to G associated to the a-cycle, and

{(
k(b)α
)n(

k
(b)
β

)m(
e
(b)
+

)r(
e
(b)
−
)s}p−1,p−1,1,1

n,m,r,s=0

— the one associated to the b-cycle.

One can show that the third exchange relation (2.29) implies the following “mixed” commu-

tation relations

(
k
(a)
β

)2a(
k
(b)
β

)2b
=
(
k
(b)
β

)2b(
k
(a)
β

)2a
,(

k
(a)
β

)2a(
k(b)α
)2b

= q2ab
(
k(b)α
)2b(

k
(a)
β

)2a
,(

k
(a)
β

)2a
e
(b)
− = q−ae

(b)
−
(
k
(a)
β

)2a
,(

k
(b)
β

)2a
e
(a)
+ = q2ae

(a)
+

(
k
(b)
β

)2a
,

[(
k(a)α

)a
, e

(b)
+

]
= 0,[(

k(a)α

)a
, e

(b)
−
]

= 0,

(
k(a)α

)2a(
k(b)α
)2b

=
(
k(b)α
)2b(

k(a)α

)2a
,(

k(a)α

)2a
(k

(b)
β )2b = q2ab(k

(b)
β )2b(k(a)α )2a,[(

k
(a)
β

)2a
, e

(b)
+

]
= qa[a]q(q − q−1)e(a)+

(
k
(a)
β

)2a
,(

k
(b)
β

)2a
e
(a)
− = q−ae

(a)
−
(
k
(b)
β

)2a
+

− q−2a[a]q(q − q−1)(k(a)α )
(
k(b)α
)−1

e
(b)
− (k

(b)
β )2a,[(

k(b)α
)a
, e

(a)
+

]
= 0,[(

k(b)α
)a
, e

(a)
−
]

= 0,

(4.32)

and the following anti-commutation relations

{e(a)+ , e
(b)
+ } = 0, {e(a)+ , e

(b)
− } = k(b)α (q − q−1)−1,

{e(a)− , e
(b)
− } = 0, {e(a)− , e

(b)
+ } =

(
k(a)α −

(
k(a)α

)−1 − k(a)α

(
k(b)α
)−2)

(q − q−1)−1.
(4.33)

We claim that the above relations, together with the U q gl(1|1) relations for the generators of the

subalgebras T (a) and T (b) due to the isomorphisms noted above, constitute the complete set of

defining relations for T .

– 30 –



4.6 The action of G on T

Now, we want to investigate the left action of G on T , with the end-goal of constructing the smash

product T̄ . Using (2.36) we obtain

kα(k(i)α ) = k(i)α ,

kβ(k(i)α ) = k(i)α ,

e+(k(i)α ) = 0,

e−(k(i)α ) = 0,

kα(k
(i)
β ) = k

(i)
β ,

kβ(k
(i)
β ) = k

(i)
β ,

e+(k
(i)
β ) =

[
e
(i)
+ , k

(i)
β

]
,

e−(k
(i)
β ) =

[
e
(i)
− , k

(i)
β

](
k(i)α
)−1

,

kα(e
(i)
+ ) = e

(i)
+ ,

kβ(e
(i)
+ ) = qe

(i)
+ ,

e+(e
(i)
+ ) = 0,

e−(e
(i)
+ ) =

1−
(
k
(i)
α

)−2

q − q−1
,

kα(e
(i)
− ) = e

(i)
− ,

kβ(e
(i)
− ) = q−1e

(i)
− ,

e+(e
(i)
− ) =

k
(i)
α −

(
k
(i)
α

)−1

q − q−1
,

e−(e
(i)
− ) = 0,

for i = a, b, and with the obvious choice of algebra isomorphisms κ(i) : G → T (i)

κ(i)(kα) = k(i)α , κ(i)(kβ) = k
(i)
β , κ(i)(e±) = e

(i)
± . (4.34)

This leads to the following (anti-)commutation relations for the elements of the smash product

algebra T̄

ι(kα)
(
k(i)α
)2n

=
(
k(i)α
)2n

ι(kα),

ι(kα)
(
k
(i)
β

)2n
=
(
k
(i)
β

)2n
ι(kα),

ι(kα)e
(i)
+ = e

(i)
+ ι(kα),

ι(kα)e
(i)
− = e

(i)
− ι(kα),

ι(kβ)
(
k(i)α
)2n

=
(
k(i)α
)2n

ι(kβ),

ι(kβ)
(
k
(i)
β

)2n
=
(
k
(i)
β

)2n
ι(kβ),

ι(kβ)e
(i)
+ = e

(i)
+ (ι(kβ) + 1),

ι(kβ)e
(i)
− = e

(i)
− (ι(kβ)− 1),

(4.35)

and

ι(e+)
(
k(i)α
)2n

=
(
k(i)α
)2n

ι(e+),

ι(e+)
(
k
(i)
β

)2n
=
(
k
(i)
β

)2n
ι(e+)− q−n[n]q(q − q−1)

(
k
(i)
β

)2n
e
(i)
+ ,

ι(e+)e
(i)
+ = −e(i)+ ι(e+),

ι(e+)e
(i)
− = −e(i)− ι(e+) +

k
(i)
α −

(
k
(i)
α

)−1

q − q−1
,

(4.36)

and

ι(e−)
(
k(i)α
)2n

=
(
k(i)α
)2n

ι(e−),

ι(e−)
(
k
(i)
β

)2n
=
(
k
(i)
β

)2n
ι(e−) + qn[n]q(q − q−1)

(
k(i)α
)−1(

k
(i)
β

)2n
e
(i)
− ι(kα),

ι(e−)e
(i)
+ = −e(i)+ ι(e−) +

1−
(
k
(i)
α

)−2

q − q−1
ι(kα),

ι(e−)e
(i)
− = −e(i)− ι(e−),

(4.37)

for i = a, b. It can be checked that the above (anti-)commutation relations are reproduced from

the equations (2.41)-(2.42) that are explicitly given in our case by the system of equations:

(1⊗ ι(kα))A = A(1⊗ ι(kα)),

(1⊗ ι(kβ))A = A(1⊗ ι(kβ)),

(k−1α ⊗ ι(e+) + e+ ⊗ ι(1))A = A(k−1α ⊗ ι(e+) + e+ ⊗ ι(1)),

(1⊗ ι(e−) + e− ⊗ ι(kα))A = A(1⊗ ι(e−) + e− ⊗ ι(kα)),

(4.38)
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for the a-cycle, while for the b-cycle they are

(1⊗ ι(kα))B = B(1⊗ ι(kα)),

(1⊗ ι(kβ))B = B(1⊗ ι(kβ)),

(k−1α ⊗ ι(e+) + e+ ⊗ ι(1))B = B(k−1α ⊗ ι(e+) + e+ ⊗ ι(1)),

(1⊗ ι(e−) + e− ⊗ ι(kα))B = B(1⊗ ι(e−) + e− ⊗ ι(kα)).

(4.39)

4.7 The gauge-invariant subalgebra A

Here, we study the gauge-invariant subalgebra A. In order to investigate it, we begin with an

arbitrary vector in A of the form

f =

p−1∑
n1,m1,
n2,m2=0

1∑
r1,s1,
r2,s2=0

fr1,s1,r2,s2(n1,m1, n2,m2)
(
k(a)α

)2n1
(
k
(a)
β

)2m1
(
e
(a)
+

)r1(e(a)− )s1×
×
(
k(b)α
)2n2

(
k
(b)
β

)2m2
(
e
(b)
+

)r2(e(b)− )s2 .
(4.40)

While the indices n1,m1, n2,m2 of the coefficients fr1,s1,r2,s2(n1,m1, n2,m2) are a priori integers,

we extend them to half-integers by equating the indices n ± 1
2 with n + p±1

2 . We will use this

convention in this and the following sections. Then, the gauge-invariance conditions

ι(x)f = (−1)|f ||x|fι(x), x = kα, kβ, e+, e−, (4.41)

translate to a set of conditions for the coefficients

f1,1,1,1(n1,m1, n2 −
1

2
,m2)− f1,1,1,1(n1,m1, n2 +

1

2
,m2) + q−m2 [m2]q(q − q−1)2f1,1,0,0(n1,m1, n2,m2)

= −q−m1 [m1]q(q − q−1)2f0,1,1,0(n1,m1, n2,m2),

f1,1,1,1(n1 −
1

2
,m1, n2,m2)− f1,1,1,1(n1 +

1

2
,m1, n2,m2) + q−m1 [m1]q(q − q−1)2f0,0,1,1(n1,m1, n2,m2)

= q−m2 [m2]q(q − q−1)2f1,0,0,1(n1,m1, n2,m2),

f1,1,0,0(n1 −
1

2
,m1, n2,m2)− f1,1,0,0(n1 +

1

2
,m1, n2,m2) + q−m1 [m1]q(q − q−1)2f0,0,0,0(n1,m1, n2,m2)

= f1,0,0,1(n1,m1, n2 +
1

2
,m2)− f1,0,0,1(n1,m1, n2 −

1

2
,m2),

f0,0,1,1(n1,m1, n2 −
1

2
,m2)− f0,0,1,1(n1,m1, n2 +

1

2
,m2) + q−m2 [m2]q(q − q−1)2f0,0,0,0(n1,m1, n2,m2)

= f0,1,1,0(n1 −
1

2
,m1, n2,m2)− f0,1,1,0(n1 +

1

2
,m1, n2,m2),

f1,1,1,1(n1,m1, n2,m2)− f1,1,1,1(n1 + 1,m1, n2,m2)− q−m1 [m1]q(q − q−1)2f0,0,1,1(n1 +
1

2
,m1, n2,m2)

= −qm2−2m1 [m2]q(q − q−1)2f0,1,1,0(n1,m1, n2 +
1

2
,m2),

f1,1,1,1(n1,m1, n2,m2)− f1,1,1,1(n1,m1, n2 + 1,m2) + q−m2 [m2]q(q − q−1)2f1,1,0,0(n1,m1, n2 +
1

2
,m2)

= qm1−2m2 [m1]q(q − q−1)2f1,0,0,1(n1 +
1

2
,m1, n2,m2),
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f0,0,1,1(n1,m1, n2,m2)− f0,0,1,1(n1,m1, n2 + 1,m2) + q−m2 [m2]q(q − q−1)2f0,0,0,0(n1,m1, n2 +
1

2
,m2)

= q2(m1−m2) (f1,0,0,1(n1 + 1,m1, n2,m2)− f1,0,0,1(n1,m1, n2,m2)) ,

f1,1,0,0(n1,m1, n2,m2)− f1,1,0,0(n1 + 1,m1, n2,m2) + q−m1 [m1]q(q − q−1)2f0,0,0,0(n1 +
1

2
,m1, n2,m2)

= q2(m2−m1) (f0,1,1,0(n1,m1, n2,m2)− f0,1,1,0(n1,m1, n2 + 1,m2)) ,

for n1, n2,m1,m2 = 0, . . . p− 1, and all the other coefficients are zero. The equations above have

been obtained in the following way: one can commute elements ι(x) through the elements from

the expansion (4.40)

er1,s1,r2,s2(n1,m1, n2,m2) =
(
k(a)α

)2n1
(
k
(a)
β

)2m1
(
e
(a)
+

)r1(e(a)− )s1×
×
(
k(b)α
)2n2

(
k
(b)
β

)2m2
(
e
(b)
+

)r2(e(b)− )s2 ,
and this produces terms coming from the non-trivial commutation relations (4.35)-(4.37). Then in

the sum (4.40), as the elements er1,s1,r2,s2(n1,m1, n2,m2) are linearly independent, the coefficients

in front of them have to vanish independently from one another, and this leads to a set of

equations on the coefficients fr1,s1,r2,s2(n1,m1, n2,m2). First, the equations corresponding to the

commutation with ι(kβ) imply that all the coefficients except f1,1,1,1, f1,1,0,0, f0,0,1,1, f1,0,0,1, f0,1,1,0
and f0,0,0,0 are zero. In particular, we see that A is even. Then, the first four equations above

were obtained from the commutation with ι(e+), while the remaining four were obtained in the

case with ι(e−).

We now make an important observation: A contains all elements f ∈ Z(T (i)) which are

central within the i-cycle subalgebra T (i), or such that[
f, k(i)α

]
=
[
f, k

(i)
β

]
=
[
f, e

(i)
±
]

= 0.

This of course follows from our general result in (2.45). One can also see this via a direct

calculation. As said above f should be even, and we further assume that f can be written

as a sum of products of even elements corresponding to the two cycles a and b, and we show

below that such an assumption gives non-trivial solutions. From the assumption, it follows that

r1 + s1 = 0 mod 2 and r2 + s2 = 0 mod 2. In other words, we take the following Ansatz for the

coefficients from (4.40):

fr1,s1,r2,s2(n1,m1, n2,m2) = f (a)r1,s1(n1,m1)f
(b)
r2,s2(n2,m2) (4.42)

with

f
(i)
0,1(n,m) = f

(i)
1,0(n,m) = 0, i = a, b. (4.43)

So, in particular f1,0,0,1(n1,m1, n2,m2) = f0,1,1,0(n1,m1, n2,m2) = 0. Then, the gauge-invariance

equations reduce to the following simple equation

f
(i)
1,1(n+

1

2
,m)− f (i)1,1(n−

1

2
,m) = q−m[m]q(q − q−1)2f (i)0,0(n,m). (4.44)

We now recall the description of the centre in Section 4.4, and check that (4.43) and (4.44)

are satisfied if and only if the element

f (i) =

p−1∑
n,m=0

1∑
r,s=0

f (i)r,s (n,m)
(
k(i)α
)2n(

k
(i)
β

)2m(
e
(i)
+

)r(
e
(i)
−
)s
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belongs to the centre of T (i). We establish this result using the basis of the centre provided

by (4.24)-(4.26). We thus conlcude that the centres of the both cycle subalgebras are indeed

contained in the gauge-invariant subalgebra A.

The subalgebra in A generated by the two centres of T (i) turns out to be only a proper

subalgebra. Using a symbolic algebra computer program, we obtained all solutions to the gauge-

invariance equations (the eight equations below (4.41)) for values of p ranging from 3 to 13. Based

on those results, we claim that

dimA = 2p4 + 4. (4.45)

We see that only (p2 + 1)2 linearly independent elements out of 2p4 + 4 are generated by central

elements of T (a) and T (b). In other words, there are still many elements in A that do not satisfy

the assumption (4.43). For an example of such elements, we have

p−1∑
n,m=0

(
k(a)α

)2n
e
(a)
±
(
k(b)α
)2m

e
(b)
∓ ∈ A,

which clearly cannot be obtained as a linear combination of products of elements from Z(T (a))

and Z(T (b)). We do not give a basis in A. However our aim is to describe the Fock representation

of A, and for this we actually do not need to know an explicit basis – it is turned out that only

Z(T (a)) contributes to gauge-invariant states as it is explained below, of course in agreement with

the general result in (2.51).

4.8 Fock representation

Here, we investigate the Fock-type representation of A and find an explicit basis in it.

We begin with the representation D of the handle algebra T . We define the vacuum vector

|0〉 ∈ R such that

D
(
k(b)α
)
|0〉 = D

(
k
(b)
β

)
|0〉 = |0〉, D

(
e
(b)
+

)
|0〉 = D

(
e
(b)
−
)
|0〉 = 0, (4.46)

recall (2.32). The vectors of the representation space

R =
{
|n,m, r, s〉

}p−1,p−1,1,1
n,m,r,s=0

are defined by the action of the a-cycle elements on the vacuum vector as follows

|n,m, r, s〉 := D
((
k(a)α

)2n(
k
(a)
β

)2m(
e
(a)
+

)r(
e
(a)
−
)s)|0〉. (4.47)

The representation D extends to a representation of T̄ by

D(ι(kα))|0〉 = D(ι(kβ))|0〉 = |0〉, D(ι(e±))|0〉 = 0. (4.48)

We now turn to the representation R(A) of A defined by (2.49). The representation space

R(A) is in fact isomorphic as a vector space to the centre Z(G) of the Hopf algebra G, recall our

– 34 –



result in (2.51). One can actually check this result by a direct calculation. Indeed, using the

general form (4.40) of an element in A, we get

D(f)|0〉 =

p−1∑
n1,m1=0

1∑
r1,s1=0

 p−1∑
n2,m2=0

fr1,s1,0,0(n1,m1, n2,m2)

 |n1,m1, r1, s1〉 =

=:

p−1∑
n1,m1=0

1∑
r1,s1=0

f̃r1,s1(n1,m1)|n1,m1, r1, s1〉.

One can show that when the coefficients fr1,s1,r2,s2(n1,m1, n2,m2) satisfy the gauge-invariance

equations – the eight equations below (4.41) – the appropriate coefficients f̃r1,s1(n1,m1) do satisfy

the equations (4.43)-(4.44), which are satisfied if and only if the corresponding vector belongs to

the vector space D
(
Z(T (a))

)
|0〉. We thus conclude that the vector space of solutions is isomorphic

to the centre of G.

Recall that the centre of G and its basis are described in Section 4.4. The embedding map κ(a)

from (4.34) applied to the central elements from (4.28)-(4.30) gives the gauge-invariant vectors

ve,n := D
(
κ(a)(ce,n)

)
|0〉, xn := D

(
κ(a)(an)

)
|0〉, w := D

(
κ(a)(b)

)
|0〉. (4.49)

From the above discussion, or from (2.51), we thus have

basis in R(A) =
{
ve,n, w, xn

}p−1,p−1
e=1,n=0

. (4.50)

A straightforward calculation gives

ve,n = (q − q−1)2[e]q|n− 1

2
, e, 1, 1〉 − qe

(
|n, e, 0, 0〉 − |n− 1, e, 0, 0〉

)
, (4.51)

w = −2(q − q−1)2
p−1∑
t=0

|t, 0, 1, 1〉, (4.52)

xn = |n, 0, 0, 0〉. (4.53)

And we follow here the convention where the vectors corresponding to half-integer values are

identified with those corresponding to the integer ones according to

|n± 1

2
,m, r, s〉 := |n+

p± 1

2
,m, r, s〉.

Moreover, the indices e, n of the elements ve,n, xn are taken modulo p, and in what follows we use

ve±p,n := ve,n, ve,n±p := ve,n, xn±p := xn.

4.9 SL(2,Z) action from the handle algebra

In this section, we construct the realisation of the SL(2,Z) group as operators on the representa-

tion space of the gauge-invariant subalgebra of the handle algebra. In order to do that, we use the

definitions of the mapping class group operators (2.59) corresponding to the Dehn twists along

the cycles of the torus. In the end, we obtain matrix coefficients of the S and T transformations,

and check explicitly the SL(2,Z) relations.
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Proceeding as in the case of the toy model, by a direct evaluation of (2.59) we get the following

expressions

v̂(i) = − i
p

p−1∑
n,m=0

qm(2n+1)
(
k(i)α
)2n(

k
(i)
β

)2m(
1 + (q − q−1)k(i)α e

(i)
+ e

(i)
−
)
, i = a, b. (4.54)

The quantum Dehn twist operators evaluated on the representation D are then given by the

matrix coefficients

D(v̂(b))|n,m, 0, 0〉 = −iqm(1−2n)|n,m, 0, 0〉,
D(v̂(b))|n,m, 0, 1〉 = −iq−2nm|n,m, 0, 1〉,
D(v̂(b))|n,m, 1, 0〉 = −iqm(1−2n)|n,m, 1, 0〉,

D(v̂(b))|n,m, 1, 1〉 = −iq−2nm
(
|n,m, 1, 1〉 − q2m

q − q−1
|n− 1

2
,m, 0, 0〉

)
,

(4.55)

and

D(v̂(a))|n,m, 0, 0〉 =− i

p

p−1∑
s,t=0

qt(2s+1) (|n+ s,m+ t, 0, 0〉+

+(q − q−1)|n+ s+
1

2
,m+ t, 1, 1〉

)
,

D(v̂(a))|n,m, 0, 1〉 = − i

p

p−1∑
s,t=0

qt(2s+1)|n+ s,m+ t, 0, 1〉,

D(v̂(a))|n,m, 1, 0〉 = − i

p

p−1∑
s,t=0

qt(2s+1)|n+ s+ 1,m+ t, 1, 0〉,

D(v̂(a))|n,m, 1, 1〉 = − i

p

p−1∑
s,t=0

qt(2s+1)|n+ s+ 1,m+ t, 1, 1〉.

(4.56)

S -transformation

On the representation D, the S -transformation (2.61) is given explicitly by

D(S )|n,m, 0, 0〉 =
i

p
(q − q−1)qm

p−1∑
s,t=0

q−2nt−2ms|s, t, 1, 1〉,

D(S )|n,m, 0, 1〉 =
i

p
q−m

p−1∑
s,t=0

q
−2(n−

1

2
)t−2ms|s, t, 0, 1〉,

D(S )|n,m, 1, 0〉 =
i

p
q2m

p−1∑
s,t=0

q−2nt−2ms|s, t, 1, 0〉,

D(S )|n,m, 1, 1〉 =
i

p

p−1∑
s,t=0

q
−2(n−

1

2
)t−2ms [

qm(−1 + q−2t)|s, t, 1, 1〉 − 1

q − q−1
|s, t, 0, 0〉

]
.
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Then, the action of S on the gauge-invariant vectors (4.50) in R(A) is

D(A)(S )ve,n =
i

p

p−1∑
s,t=0
s 6=0

q
−2s(n−

1

2
)−2e(t−

1

2
)
vs,t − i

p
(qe − q−e)

p−1∑
t=0

q−2etxt, (4.57)

D(A)(S )w = 2i(q − q−1)
p−1∑
t=0

xt, (4.58)

D(A)(S )xn =
i

p(q − q−1)

p−1∑
s,t=0
s 6=0

q−2ns

[s]q
vs,t − i

2p(q − q−1)
w. (4.59)

and so it can be calculated that

D(A)(S
2)ve,n = −v−e,1−n, D(A)(S

4)ve,n = ve,n,

D(A)(S
2)w = w, D(A)(S

4)w = w,

D(A)(S
2)xn = x−n, D(A)(S

4)xn = xn,

where e, n indices are taken modulo p and therefore we set v−e,n := vp−e,n, etc. One sees that the

fourth power of S is an identity on the subset of gauge-invariant vectors

D(A)(S
4)y = y, ∀y = ve,n, w, xn. (4.60)

We note the similarity between our S-transformation in (4.57)-(4.59) and the one spelled

out in [10, Sec. 3.5.4]. Mikhaylov describes the action of the S-transformation on p2 + p states,

denoted by |Ln,m〉, |Lm〉 and |LP,m〉. But these are not linearly independent. By inspection one

can see that his representation space is spanned by p2 + 1 linearly independent states, just as

ours. More specifically, one can identify our vectors vn,m, xm, w with the respective states |Ln,m〉,
|Lm〉 and the sum

∑
m |LP,m〉, up to some normalization. In this basis, Mikhaylov’s action of the

S-transformation can be seen to agree with the formulas we displayed above.

T -transformation

On the representation space R, T -transformation (2.62) is given explicitly by

D(T )|n,m, 0, 0〉 =
i

p

p−1∑
s,t=0

q−t(2s−1)
(
|n+ s,m+ t, 0, 0〉+

− (q − q−1)|n+ s− 1

2
,m+ t, 1, 1〉

)
,

D(T )|n,m, 0, 1〉 =
i

p

p−1∑
s,t=0

q−t(2s−1)|n+ s,m+ t, 0, 1〉,

D(T )|n,m, 1, 0〉 =
i

p

p−1∑
s,t=0

q−t(2s−1)|n+ s− 1,m+ t, 1, 0〉,

D(T )|n,m, 1, 1〉 =
i

p

p−1∑
s,t=0

q−t(2s−1)|n+ s− 1,m+ t, 1, 1〉.
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Then, the action of T on gauge-invariant vectors is

D(A)(T )ve,n =
i

p

p−1∑
s,t=0,
s 6=−e

q−2stve+s,n+t +
i

p
(qe − q−e)

p−1∑
t=0

q
2e(t−n+

1

2
)
xt, (4.61)

D(A)(T )w = iw, (4.62)

D(A)(T )xn = − i

p(q − q−1)

p−1∑
s,t=0
s 6=0

q−s(2t−1)

[s]q
vs,n+t +

i

2p(q − q−1)
w +

i

p

p−1∑
t=0

xt. (4.63)

It can be calculated that in fact, together with the S -transformation, the T -transformation

defined in this way provides an action of SL(2,Z) on the sub-space of gauge-invariant vectors

D(A)
(
(S T )3

)
y = D(A)(S

2)y, ∀y = ve,n, w, xn. (4.64)

Let us once again compare with the formulas for the T -transformation in [10]. At first sight

the two sets of formulas look quite different even after Mikhaylov’s formulas are written in a

proper basis, as we described after (4.60). But the two representations turn out to be equivalent

via the conjugation with the modular S-matrix. Put differently, our T -transformation was defined

through a Dehn twist along the a-cycle. But equivalently, one can also use the Dehn twist along

the b-cycle. These two Dehn twists are related by a modular S-transformation and, in our

terminology, it is the Dehn twist along the b-cycle that is described by the formulas in [10]. In

conclusion, the representation of the modular group we obtained through the general formalism

we developed in Section 2 is equivalent to the one of Mikhaylov when the gauge group G of our

Chern-Simons theory is G = GL(1|1).

4.10 Lyubashenko–Majid SL(2,Z) action on the centre

In this section, we consider the SL(2,Z) action of LM type and compute the S - and T -

transformations on the basis elements of Z(G) constructed in Section 4.4. Moreover, we check

that these transformations provide a projective SL(2,Z) action indeed.

S -transformation

Using equation (2.65), we find the LM-type S -transformation

SZ(ce,n) = − i

p

p−1∑
s,t=0
s 6=0

q
−2e(t−

1

2
)−2s(n−

1

2
)
cs,t +

i

p
(qe − q−e)

p−1∑
t=0

q−2etat, (4.65)

SZ(b) = −2i(q − q−1)
p−1∑
t=0

at, (4.66)

SZ(an) = − i

p(q − q−1)

p−1∑
s,t=0,
s 6=0

q−2ns

[s]q
cs,t +

i

2p(q − q−1)
b. (4.67)
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Iterative application of the formulae (4.65)-(4.67) then leads to

S 2
Z(ce,n) = −c−e,−n+1, S 4

Z(ce,n) = ce,n,

S 2
Z(b) = b, S 4

Z(b) = b,

S 2
Z(an) = a−n, S 4

Z(an) = an,

where we recall that e, n indices are taken modulo p and so we have c−e,n := cp−e,n, etc. We thus

see that the fourth power of the S -transformation is an identity on the centre of G:

S 4
Z = id. (4.68)

T -transformation

Using equation (2.66) we find the action of the T -transformation on the central elements of G

TZ(ce,n) =
1

p

p−1∑
s,t=0,
s 6=−e

q−2stce+s,n+t +
1

p

p−1∑
t=0

q
2e(t+

1

2
)
(qe − q−e)an+t, (4.69)

TZ(b) = b, (4.70)

TZ(an) = − 1

p(q − q−1)

p−1∑
s,t=0,
s 6=0

q−s(2t−1)

[s]q
cs,n+t +

1

p

p−1∑
t=0

at +
1

2p(q − q−1)
b. (4.71)

Iteratively applying the above T -transformation, as well as the S -transformation considered

above, we can establish that on the centre of G we have the following identity

(SZTZ)3 = −iS 2
Z . (4.72)

Therefore, we see that on the centre of the quantum group we have a projective SL(2,Z) action.

4.11 Equivalence of two actions

In this section, we show that the two SL(2,Z) actions presented in the sections above agree

projectively.

We first note that the centre Z(G) and the representation space R(A) of the gauge-invariant

subalgebra A are isomorphic as vector spaces, in agreement with (2.51). Explicitly, we have the

correspondence, recall definitions in (4.49):

Z(G) 3 ce,n 7−→ ve,n ∈ R(A), (4.73)

Z(G) 3 an 7−→ xn ∈ R(A), (4.74)

Z(G) 3 b 7−→ w ∈ R(A). (4.75)

Moreover, if we take into account the above isomorphism between Z(G) and R(A), we can compare

the coefficients of the relevant actions in the two cases. In order to do that, let us define the
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coefficients of the S -action for the handle algebra:

D(A)(S )vn,m =

p−1∑
s,t=0
s 6=0

(ST )s,tn,mvs,t +

p−1∑
t=0

(ST )tn,mxt + (ST )•n,mw,

D(A)(S )xm =

p−1∑
s,t=0
s6=0

(ST )s,tm vs,t +

p−1∑
t=0

(ST )tmxt + (ST )•mw,

D(A)(S )w =

p−1∑
s,t=0
s 6=0

(ST )s,t• vs,t +

p−1∑
t=0

(ST )t•xt + (ST )••w,

and for the T -action as

D(A)(T )vn,m =

p−1∑
s,t=0
s 6=0

(TT )s,tn,mvs,t +

p−1∑
t=0

(TT )tn,mxt + (TT )•n,mw,

D(A)(T )xm =

p−1∑
s,t=0
s 6=0

(TT )s,tm vs,t +

p−1∑
t=0

(TT )tmxt + (TT )•mw,

D(A)(T )w =

p−1∑
s,t=0
s 6=0

(TT )s,t• vs,t +

p−1∑
t=0

(TT )t•xt + (TT )••w.

And similarly for the transformations on Z(G):

SZ(cn,m) =

p−1∑
s,t=0
s 6=0

(SZ)s,tn,mcs,t +

p−1∑
t=0

(SZ)tn,mat + (SZ)•n,mb,

SZ(am) =

p−1∑
s,t=0
s 6=0

(SZ)s,tm cs,t +

p−1∑
t=0

(SZ)tmat + (SZ)•mb,

SZ(b) =

p−1∑
s,t=0
s 6=0

(SZ)s,t• cs,t +

p−1∑
t=0

(SZ)t•at + (SZ)••b,
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and

TZ(cn,m) =

p−1∑
s,t=0
s 6=0

(TZ)s,tn,mcs,t +

p−1∑
t=0

(TZ)tn,mat + (TZ)•n,mb,

TZ(am) =

p−1∑
s,t=0
s 6=0

(TZ)s,tm cs,t +

p−1∑
t=0

(TZ)tmat + (TZ)•mb,

TZ(b) =

p−1∑
s,t=0
s 6=0

(TZ)s,t• cs,t +

p−1∑
t=0

(TZ)t•at + (TZ)••b.

It can be read-off that the non zero coefficients are

(ST )s,tn,m = −(SZ)s,tn,m =
i

p
q
−2s(m−

1

2
)−2n(t−

1

2
)
, (TT )s,tn,m = i(TZ)s,tn,m =

i

p
q−2(s−n)(t−m),

(ST )tn,m = −(SZ)tn,m = − i

p
(qn − q−n)q−2nt, (TT )tn,m = i(TZ)tn,m =

i

p
(qn − q−n)q

2n(t−m+
1

2
)
,

(ST )s,tm = −(SZ)s,tm =
i

p(q − q−1)

q−2ms

[s]q
, (TT )s,tm = i(TZ)s,tm = − i

p(q − q−1)

q
−2s(t−m−

1

2
)

[s]q
,

(ST )•m = −(SZ)•m = − i

2p(q − q−1)
, (TT )tm = i(TZ)tm =

i

p
,

(ST )t• = −(SZ)t• = 2i(q − q−1), (TT )•m = i(TZ)•m =
i

2p(q − q−1)
,

(TT )•• = i(TZ)•• = i.

Comparing the coefficients of S and T from the handle algebra to the ones SZ and TZ from

the LM construction, we see that they indeed agree projectively:

SZ = −ST , TZ = −iTT . (4.76)

5 Outlook

In this work, we considered the quantisation of GL(1|1) Chern-Simons theory at odd integer level

on a torus Σ = Σ1,0 = T2 with no punctures. While the general framework of combinatorial

quantisation allows to consider an arbitrary simplicial decomposition of Σ, we only considered

the minimal decomposition of the torus with a single 2-cell, two 1-cells and one 0-cell. There are

a number of extensions that we shall address in forthcoming work.

To begin with, we will replace the torus T2 by a Riemann surface Σ = Σg,n of arbitrary

genus g and with any number n of punctures. The first step is then to choose some simplicial

decomposition. The minimal choice would involve (n+ 1) number of 2-cells, (2g + n) 1-cells and

a single 0-cell. If we adopt this choice, the monodromy (or loop) algebra we have discussed in

this work is the only building block that is used in the combinatorial quantisation. Of course,

one needs as many of these algebras as there are 1-cells and they satisfy exchange relations that

must reflect the topology of our surface, generalising what we saw here for the torus. For more
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general simiplicial decomposition with more than one 0-cell, one needs a second building block,

the holonomy (or link) algebra. It is a close relative of the GL(1|1) quantum group, i.e. of the

Hopf-dual for GL(1|1). Once introduced, link and loop algebras must be combined into a larger

algebraic structure in which they satisfy a system of exchange relations which are determined by

the simplicial decomposition and by the R-matrix of G. All this will be discussed in detail in

forthcoming work. There we will also show that the spaces of Chern-Simons states are actually

independent of the simplicial decomposition so that the minimal choice can always be adopted.

The construction of representations of the modular group SL(2,Z) that was our main focus

above also possesses a natural extension to Σ = Σg,n. In fact, for higher genus and in the

presence of punctures, the modular group gets replaced by the (pure) mapping class group of

the n-punctured surface. The fundamental generators are the Dehn twists along non-contractible

curves on Σ. To construct representations of the mapping class group, we can follow precisely

the constructions we have described in this work. All we need to prescribe are the corresponding

Chern-Simons observables that are associated with the non-contractible curves on Σ. In this step

we can use the same formula as for the two non-trivial cycles of the torus, see (2.59). In some sense,

one key result of the present work was to show that this prescription is equivalent to Lyubachenko–

Majid’s construction for the torus as well as to Mikhaylov’s representation [10] of the modular

group, at least for GL(1|1) at integer level. Once this is established, the inherent factorisability

of the combinatorial prescription provides a canonical extension to punctured surfaces of higher

genus. Constructing the corresponding representation of the mapping class group is one of the

main goals of our future work. Again, our construction will be restricted to GL(1|1) Chern-Simons

theory at integer level.

There are two additional extensions we are planning to describe in forthcoming papers. One

of them is to go beyond the case of integer levels. In other words, we want to admit deformation

parameters q which are no longer given by a root of unity. Very little is known from other

approaches about such an extension. So, it seems worthwhile to look at it in the case of the torus

Σ = T2 first. Once the theory for the torus is developed, the combinatorial approach provides a

straightforward extension to other surfaces.

The final step is then to go beyond GL(1|1). As we have mentioned in the introduction, for

2-dimensional supergroup WZNW models the quantisation resembles that of the GL(1|1) model

whenever the gauge group G is of type I. Given the usual duality between WZW models and

Chern-Simons theory, we expect the same to be true for the 3-dimensional model. One of the

more immediate goals therefore is to develop the combinatorial quantisation of supergroup Chern-

Simons theory for gauge supergroups G of type I, at least as long as the level is integer. The

integer level is important here as it reduces the quantum symmetry to a finite-dimensional super

Hopf algebra – the case where our general construction in Section 2 is applicable. Carrying out

these extensions, we hope to construct a plethora of new representations of mapping class groups

for 2-dimensional surfaces Σg,n or arbitrary genus g.
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