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Abstract

This paper describes the reconstruction of the topological string partition function for certain
local Calabi-Yau (CY) manifolds from the quantum curve, an ordinary differential equation
obtained by quantising their defining equations. Quantum curves are characterised as solu-
tions to a Riemann-Hilbert problem. The isomonodromic tau-functions associated to these
Riemann-Hilbert problems admit a family of natural normalisations labelled by topological
types of the Fenchel-Nielsen networks used in the Abelianisation of flat connections. To each
chamber in the extended Kähler moduli space of the local CY under consideration there cor-
responds a unique topological type. The corresponding isomonodromic tau-functions admit a
series expansion of generalised theta series type from which one can extract the topological
string partition functions for each chamber.

DESY-18-198

Contents

1 Introduction 3

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Predictions from string dualities 8

ar
X

iv
:1

81
1.

01
97

8v
2 

 [
he

p-
th

] 
 1

4 
N

ov
 2

01
8



2

3 A family of local CY 10

3.1 Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Four-dimensional limit and local mirror symmetry . . . . . . . . . . . . . . . . 12

3.3 Extended Kähler moduli space . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Quantum curves, D-modules and integrability 15

4.1 Relation to the Hitchin system . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 From quantum curves to D-modules . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Isomonodromic deformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.4 Isomonodromic tau-function . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 From quantum curves to free fermion partition functions 23

5.1 From D-modules to free fermion states . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Free fermion conformal blocks from D-modules . . . . . . . . . . . . . . . . . 25

5.3 Chiral partition functions as isomonodromic tau-functions . . . . . . . . . . . 27

5.4 Issues to be addressed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Factorising the tau-functions 28

6.1 Coordinates from factorisation of Riemann-Hilbert problems . . . . . . . . . . 29

6.2 Factorisation of free fermion conformal blocks . . . . . . . . . . . . . . . . . 32

6.3 Factorisation expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7 Representing free fermion partition functions as generalised theta-series 35

7.1 Explicit form of the factorisation expansion . . . . . . . . . . . . . . . . . . . 36

7.2 Rewriting as generalised theta series . . . . . . . . . . . . . . . . . . . . . . . 37

7.3 Alternative representations as theta series . . . . . . . . . . . . . . . . . . . . 38

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8 The topological vertex calculations 39

8.1 The topological vertex formalism . . . . . . . . . . . . . . . . . . . . . . . . . 40

8.2 The strip geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

8.3 Flopping the strip geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



3

8.4 Gluing two strips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8.5 Four-dimensional limit and final result . . . . . . . . . . . . . . . . . . . . . . 45

9 Abelianisation 46

9.1 Spectral Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

9.2 W-framed flat connections on C . . . . . . . . . . . . . . . . . . . . . . . . . 50

9.3 Four-punctured sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

9.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9.5 Exact WKB expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

10 Summary and outlook 56

10.1 The result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

10.2 Role of integrable structures I . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

10.3 Role of integrable structures II . . . . . . . . . . . . . . . . . . . . . . . . . . 59

10.4 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

A Details on the topological vertex computation 62

A.1 The strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

A.2 The four-dimensional limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B Grassmannians and Sato-Segal-Wilson tau-function 65

B.1 Grassmannians and tau-functions . . . . . . . . . . . . . . . . . . . . . . . . . 65

B.2 Free fermion states associated to points in the infinite Grassmannian . . . . . . 66

B.3 Determinant representation of fermionic matrix elements . . . . . . . . . . . . 68

C On the factorisation of free fermion conformal blocks 69

D Abelianisation for the three punctured sphere 71

1. Introduction

Topological string theory on Calabi-Yau (CY) manifolds is a subject which has attracted con-
siderable interest both from theoretical physics and from mathematics. From the point of view
of physics, it can provide non-perturbative information on various string compactifications with
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possible applications to supersymmetric field theories and black hole physics. The subject is
mathematically related to various curve counting invariants and to the phenomenon of mir-
ror symmetry. A very fruitful interplay between mathematics and physics on this subject has
emerged, with duality conjectures motivated by arguments from theoretical physics suggesting
profound and unexpected relations between different parts of mathematics, and mathematical
research providing the groundwork for making the ideas from physics sufficiently precise for
extracting the relevant predictions, and understanding the theoretical foundations.

A key object in topological string theory is the topological string partition function. String the-
ory dualities suggest that it has dual interpretations as generating function of the enumerative in-
variants associated with the names Gromov-Witten, Donaldson-Thomas and Gopakumar-Vafa.
These interpretations do not easily lead to a conceptual characterisation of the topological par-
tition functions as mathematical objects of their own right, as the relevant generating functions
are without further input only defined in the sense of formal series. Various alternative charac-
terisations have been proposed, including matrix models, topological recursion, Chern-Simons
theory and the quantisation of the moduli spaces of geometric structures of the relevant families
of CY manifolds.

These approaches all have their virtues and drawbacks, as usual, and it seems to us that there
is still room for an improvement of our understanding of the topological partition functions as
a mathematical object of its own right. Our paper is an attempt to improve our understanding
of the topological string partition functions for a certain class of local CY manifolds. The
manifolds of our interest can be locally described by equations of the form

uv −R(x, y) = 0, (1.1)

where x and y are local coordinates for the cotangent bundle T ∗C of a given Riemann surface
C such that the equation R(x, y) = 0 defines a covering of C. This class of local CY manifolds
may be referred to as class Σ. The local CY in this class are relevant [Sm] for the description of
the N = 2, d = 4-supersymmetric field theories of class S [Ga, GMN09] within string theory
by geometric engineering [KKV, KMV]. Theories of class S are labelled by the data (C, g),
with C being a possibly punctured Riemann surface, and g a Lie algebra of ADE-type. Our
goal is to give a non-perturbative definition of the topological string partition functions for local
CY of class Σ. A subset of the local CY of class Σ can be represented by certain limits of toric
CY, but such a description does not seem to be known for all CY of class Σ.

As main example we will consider the case C = C0,4, the Riemann sphere with four punctures,
and R(x, y) = y2 − q(x), q(x) being a quadratic differential on C with regular singularities at
the punctures. It corresponds to an A1-theory of class S often referred to as the SU(2), Nf = 4

theory. The generalisation to the cases C = C0,n is absolutely straightforward, and the cases
where C has higher genus or q has irregular singularities are certainly within reach. We believe
that the resulting picture has a high potential for further generalisations. Covers of higher order
corresponding to An-theories of class S, for example, can be an interesting next step.
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The approach taken here is inspired by previous work of many authors including [N, OP, LMN,
NO, ADKMV], indicating a deep interplay between topological string partition functions, free
fermions on algebraic curves, and the theory of classically integrable hierarchies. Our approach
can be seen in particular as a concrete realisation of some ideas discussed in [ADKMV] suggest-
ing that a non-commutative deformation of the curve Σ, often referred to as “quantum curve”,
can be used to characterise the topological string partition functions. It seems to us, however,
that these ideas have not been realised concretely for the local CY of class Σ yet. We will here
offer a precise definition of the quantum curves for the cases of our interest, and explain how
the quantum curve can be used to define the topological string partition functions.

Another source of inspiration for us were the works [DHSV, DHS] where it has been argued on
the basis of string dualities that there exists a dual description for the topological string in terms
of a system of D4 and D6 branes intersecting along the surface Σ. This leads to the prediction
that the topological string partition function can be extracted from the partition function of free
fermions on Σ. Having a nonzero value of the topological string coupling λ corresponds to
turning on a B-field on the D6-branes. The effect of the B-field can be described in terms
of a non-commutative deformation of Σ. In [DHS] it has been proposed that in the case of
local CY of class Σ it is possible to describe the relevant deformation of Σ by a differential
equation, or equivalently a D-module, on the underlying base curve C. A generalisation of
the Krichever correspondence [Kr77a, Kr77b] is proposed in [DHS] leading to a construction
of the relevant free fermion partition as Fredholm determinants of certain operators build from
the solutions of the differential equation defining the quantum curve. This proposal can lead to
an elegant mathematical characterisation of the topological string partition function whenever
one knows how to define the partition functions of free fermionic field theories on the relevant
non-commutative surfaces, and how exactly to extract the topological string partition functions
from these objects. The program suggested in [DHSV, DHS] has been realised in some basic
examples. Our goal here is to realise it in a case that is sufficiently rich to indicate what needs
to be done to generalise this approach to much wider classes of cases.

We will observe that two main issues that need to be addressed. It will, on the one hand, be
crucial in our approach to allow certain quantum corrections to the equation of the quantum
curve, represented by terms of higher order in λ. The quantum corrections turn out to be deter-
mined by the integrable structures of the problem. We will furthermore observe that the issue
of normalisation of the solutions plays a crucial role: Different normalisations for the solutions
yield different partition functions. It turns out that there exist distinguished choices of normali-
sation which are mathematically very natural, and are found to define partition functions which
coincide with the results of topological vertex calculations. The impatient reader may jump to
Section 10.1 or the overview in Section 1.1 for slightly more precise summaries of our results.

In the context of Donaldson-Thomas theory for toric CY there is an interesting approach to the
emergence of the quantum curve [O09], revealing the origin of the integrable structures of the
topological string [OR]. Our goals are different. We use the quantum curve as a key ingredient
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in a precise description of the topological string partition functions as analytic objects. The re-
sults can be described as products of certain Fredholm determinants with explicit meromorphic
functions. Other approaches to the reconstruction of the topological string partition functions
from the quantum curve have been proposed in [ACDKV, GS, GHM, MS]1.

The precise relation between free fermion partition functions and topological string partition
functions established in this paper can be seen as a prediction of the duality conjectures used
in [DHSV, DHS]. From a mathematical point of view one may find this relation quite non-
obvious. One may, in particular, regard our results as a rather non-trivial quantitative check of
the string duality conjectures predicting such relations. We’d ultimately hope that learning to
define the topological string partition function non-perturbatively may provide the groundwork
for a mathematical understanding of various string dualities.

1.1 Overview

Our goal is to define and calculate the topological string partition functions for the families Yz,u
of local CY,

vw −R(x, y) = 0, (1.2)

where Σ = Σz,u is the double cover of a Riemann surface C defined by the equation R(x, y) =

0, where R(x, y) = q(x) − y2, q(x) being a quadratic differential on C. This will be fully
worked out in the case C = C0,4, which is prototypical enough to suggest a conjecture for the
case of general C. For C = C0,4 one has

R(x, y) =
a2

1

x2
+

a2
2

(x− z)2
+

a2
3

(x− 1)2
+

κ

x(1− x)
+
z(z − 1)

x(x− 1)

u

z(x− z)
− y2. (1.3)

The solution will be described in the following steps.

• Section 2: Review of the discussion in [DHSV]: String dualities predict that there exists a
theory of free fermions on a non-commutative deformation of Σz,u governed by a param-
eter λ allowing one to define a free fermionic partition function Zff(σ, z;λ) related to the
topological string partition functions by an expansion of the form

Zff(σ, τ ; z;λ) =
∑
n∈Z

einτZtop(σ + n; z;λ), (1.4)

with λ being identified with the topological string coupling in Ztop(σ; z;λ). Validity of
(1.4) would imply that Ztop(σ; z;λ) can be computed from Zff(σ, τ ; z;λ).

• Section 3: We summarise the relevant features of the geometry of the family Yz,u of local
CY, and of their mirror manifolds Xz,u which can be described as certain limits of a family

1The approach of [GHM] considers Fredholm determinants constructed from the quantum curves of toric CY.
However, the relation to the Fredholm determinants appearing in our paper is not clear to us.
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of toric CY. The extended Kähler moduli space of the relevant toric CY can be decomposed
into chambers Cα defined by positivity of the real parts of the Kähler parameters. Vanishing
of these real parts defines the walls separating the chambers. The passage through walls
separating adjacent chambers is described by flop transitions.

• Section 4: We introduce the differential equations defining the quantum curves. A new
feature is the occurrence of certain quantum corrections. We explain how these quantum
corrections are determined by the integrable structures of this problem, the Hitchin inte-
grable system, and its “deformation” to the isomonodromic deformation problem.

• Section 5: We argue that the free fermion partition function Zff is proportional to the
isomonodromic tau-function T (µ; z) for the case at hand, a function of the monodromy
data µ specifying the relevant D-modules via the Riemann-Hilbert correspondence, and
the complex structure parameter z for the family of base curves C = C0,4 playing the role
of the deformation parameter in our case. We thereby arrive at the proposal that there exists
a function N(µ) of the monodromy data such that

Zff(σ, τ ; z;λ) = N(µ)T (µ(σ, τ); z), (1.5)

assuming that (σ, τ) are coordinates µ = µ(σ, τ) for the spaceM =Mflat(C0,4) of mon-
odromy data. The tau-functions T (µ; z) depend on λ through theD-module defining them.

• Section 6: Representing C0,4 by gluing two three holed spheres leads to a factorisation of
the relevant Riemann-Hilbert problem, on the one hand defining natural parameters (σ, τ)

for the monodromy data µ(σ, τ), and on the other hand leading to expansions of the form

T (σ, τ ; z) =
∑
n∈Z

einτTn(σ; z). (1.6)

The coordinates (σ, τ) are uniquely defined only after choosing the normalisations for the
solutions of the Riemann-Hilbert problems on the subsurfaces from which C0,4 is con-
structed. Changing the normalisations changes both the coordinate τ and the coefficients
Tn(σ; z) in (1.6).

• Section 7: The exists a rather small family of choices for the coordinate τ where the
expansion coefficients Tn(σ; z) in (1.6) take the form

Tn(σ; z) =
1

N(σ)
G(σ + n; z). (1.7)

In these cases one may choose the function N(µ) in such a way that the partition function
Zff(σ, τ ; z) = N(σ)T (σ, τ ; z) has an expansion of generalised theta-series type,

Zff(σ, τ ; z) =
∑
n∈Z

einτG(σ + n; z) ; (1.8)
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The coordinates (σ, τ) corresponding to these normalisation choices are called FN-type
coordinates, relatives of the Fenchel-Nielsen coordinates which are particular Darboux
coordinates forM.

• Section 8: We revisit the calculation of the topological string partition functions with the
help of the topological vertex formalism. It is observed that the result is not invariant
under flop transitions, as has previously been claimed in the literature. Instead we will
find simple rules relating the topological string partition functions Zαtop(σ; z) associated to
different chambers Cα. For some, but not all possible choices of τ ≡ τα we find a match
Zαtop(σ; z) = GNα(σ; z), with GNα(σ; z) defined by replacing τ by τα in (1.6)-(1.8).

• Section 9: A subset of the coordinate systems giving theta series expansions (1.8) can
be defined by a procedure called Abelianisation in [HN]. Their definition depends on a
graph called FN-network on C which depends on the choice of quadratic differential q(x).
We observe that to each chamber CR,α in the extended Kähler moduli space introduced in
Section 4 there corresponds a topological type of FN-network. For each chamber CR,α one
gets a system of coordinates (σ, τα) from abelianisation, a corresponding normalisation
factor Nα(σ) from (1.6), (1.7), and thereby a function GNα(σ; z) via (1.8). We find that

Zαtop(σ; z) = GNα(σ; z). (1.9)

This is our main result. It proves that (1.4) is true for the case studied here.

• Section 10: After presenting a concise summary of our results we present two observations
which shed further light on the role of integrable structures in the context.

2. Predictions from string dualities

We start with a review of predictions of [DHSV], [DHS]: The Fourier-Transformation of topo-
logical string partition function is a free fermion partition function on a non-commutative de-
formation of spectral curve which is called the quantum curve.

In [DHSV] it was argued that the list of dual representations of the topological string partition
functions includes the so-called I-brane system, a system of D6-branes and D4-branes inter-
secting along a two-dimensional surface Σ. The topological string coupling constant λ gets
mapped to the parameter of a constant B-field on the D-branes. The topological string partition
functions get related to the partition functions of free fermion systems on a non-commutative
deformation of Σ, where the fermions represent the open strings between D4- and D6-branes,
and λ is the parameter controlling the non-commutative deformation. The rest of this section
will present a very brief review of some of the results of [DHSV, DHS].

A chain of dualities was proposed in [DHSV] relating the following three string theories:
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i) I-brane: Type IIA string theory on R3×B×R2×S1 with B being C×C with coordinates
(u, v), in the presence of a D6-brane on B ×R2 × S1, and a D4-brane on R3 ×Σ, Σ being
the curve in B defined by the equation R(u, v) = 0.

ii) Geometric: Type IIB string theory on TN × Y , where Y is the non-compact Calabi-Yau
manifold

xy −R(u, v) = 0, (2.1)

and TN is the Taub-NUT space.

iii) D-branes: Type IIA string theory on R3×S1×X , whereX is the mirror of the Calabi-Yau
Y manifold in ii), with a D6-brane wrapping S1 ×X .

The partition function in the duality frame associated to ii) above is the usual partition function
of topological string B-model on the Calabi-Yau Y . The duality between backgrounds ii) and
iii) above is related to the conjectures in [MNOP, INOV] which can be motivated from string
duality conjectures [Ka, DVV]. It implies the relation

Ztop(u(t), λ) = e−
1

6λ2 t
3− 1

24
tc2ZDT(t;λ), (2.2)

where ZDT(t;λ) is the partition function naturally associated to the duality frame iii) above,
with t ∈ H2(x) being the complexified Kähler class related to the complex structure moduli u
of Y by the mirror map. ZDT(t;λ) can be mathematically defined as the generating function of
Donaldson-Thomas invariants counting bound states of D-branes in the D0-D2-D6-system,

ZDT(t;λ) =
∑
n,d

DT(n, d)e−nλed·t. (2.3)

The partition function ZDT(t;λ) is closely related to the partition function of the D0-D2-D4-
D6-system, naturally defined as

Z ′DT(ξ, t;λ) =
∑
p,d′,n′

ep(ξ−
t2

2λ
) e−λn

′
ed
′tDT′(p, n′, d′), (2.4)

where the summation is over all allowed values of p, d′, n′. The new variable ξ is a chemical
potential for the number p of D4-branes. The relation between ZDT(t;λ) and Z ′DT(ξ, t;λ) fol-
lows from the observation made in [DHSV] that the presence of p additional D4-branes will not
modify the BPS-degeneracies, in the sense that

DT(d, n) = DT′(p, d′(d, p), n′(n, d, p)),

with charges n′ and d′ of the D0 and D2-branes in the presence of the D4-branes related to the
corresponding charges n and d in the absence of D4 branes according to

d→ d′(d, p) = d− 1

2
p2 − 1

24
c2, (2.5a)

n→ n′(n, d, p) = n+ dp+
1

6
p3 +

1

24
pc2. (2.5b)
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Using (2.5) to rewrite the summation over n′, d′ as a summation over n, d one may rewrite the
D0-D2-D4-D6 partition function Z ′DT(v, t;λ) as

Z ′DT(ξ, t;λ) =
∑

p∈H2(Y,Z)

∑
d∈H2(Y,Z)

∑
n∈Z

ep(ξ−
t2

2λ
) e−λ(n+dp+ 1

6
p3+ 1

24
pc2) e(d− 1

2
p2− 1

24
c2)tDT(n, d)

(2.3)
=

∑
p∈H2(Y,Z)

ep(ξ−
t2

2λ
)e−( 1

2
p2+ 1

24
c2)te−( 1

6
p3+ p

24
c2)λe−

t3

6λ2ZDT(t+ pλ;λ)

(2.2)
=

∑
p∈H2(Y,Z)

epξZtop(t+ pλ, λ). (2.6)

The duality chain relating backgrounds i) and iii) then predicts that ZI(ξ, t;λ) = Z ′DT(ξ, t;λ).
It is furthermore argued in [DHSV] that only the massless fermionic strings between D4 and
D6-brane contribute to the partition function, identifying ZI(ξ, t;λ) with the partition function
Zff(ξ, t;λ) of a two-dimensional system of chiral free fermions supported on Σ. The dualities
relate λ to a B-field on the I-brane system, inducing a non-commutative deformation of Σ.

This line of thought seems to offer a potentially very powerful approach to a fairly general char-
acterisation of the topological string partition functions for local CY in terms of free fermions
on a quantum deformation of a covering Σ → C. It was furthermore argued in [DHSV, DHS]
that the quantum deformation of Σ can be described in terms of certainD-modules on C. In the
following we will see, however, that some important additional ingredients are needed in order
to turn these ideas into a general and sufficiently precise way to characterise the topological
string partition functions mathematically.

Remark 1. Considering purely imaginary ξ one may regard (2.6) as a Fourier-series. However,
the form of the coefficients in (2.6) is by no means generic, the arguments of Ztop(t, λ) being
shifted by lattice translations. The requirement that ZI(ξ, t;λ) should admit expansions of this
form will turn out to constrain these functions very severely. We will in the following refer
to series of the form (2.6) as generalised theta series. This terminology can be motivated in
two ways. Weighted sums over functions with arguments shifted by lattice translations are
sometimes called theta series in the mathematical literature. We will show, on the other hand,
that ordinary theta functions can be recovered from ZI(ξ, t;λ) in the limit λ → 0. We may
therefore regard the partition functions ZI(ξ, t;λ) as deformations of ordinary theta functions.

3. A family of local CY

In this section we will discuss the relevant geometric features of the families of local CY-
manifolds studied in the paper. As algebraic varieties one may define the manifolds Y by
equations of the form

vw −R(x, y) = 0, (3.1)
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where R(x, y) is a polynomial in two variables. Important geometric features of Y are encoded
in the curve Σ defined by the equation R(x, y) = 0. Families of curves Σ define families
Y ≡ YΣ of local CY via (3.1).

3.1 Curves

We will mainly focus our attention on the family Yu,z ≡ YΣu,z of local CY associated to the
family of curves Σu,z defined as

Σu,z =
{

(x, y) ∈ T ∗C ; y2 = q(x)
}
,

q(x) =
a2

1

x2
+

a2
2

(x− z)2
+

a2
3

(x− 1)2
+

κ

x(1− x)
+
z(z − 1)

x(x− 1)

u

(x− z)
,

(3.2)

with κ = a2
1 + a2

2 + a2
3 − a2

4. It has a complex two-dimensional moduli space parameterised
by the complex variables z and u. We will see below that the defining equation for Σu,z can
be brought into the form R(x, v) = 0 with a polynomial R(x, v) by a change of coordinates
v = v(x, y). The curve Σu,z is a two-fold covering of the four-punctured sphere Cz ≡ C0,4 =

P1 \ {0, z, 1,∞}. The variable u determines how Σ covers the base curve Cz, in particular the
positions of the four branch points.

The description simplifies in a useful way in the limit z → 0 corresponding to a degeneration
of the base curve Cz. Let γs be the cycle on Cz that is pinched when z → 0, and let γ̂s be a
lift of γs to Σu,z which is odd under the involution exchanging the sheets. We will be interested
in degenerations keeping the period of the canonical differential ydx along γ̂s finite for z → 0.
This will be the case if we consider families (z, uz) such that uz = 1

z
(a2− a2

1− a2
2), with a ∈ C

finite. Indeed, setting u = 1
z
(a2−a2

1−a2
2) in (3.2), it is straightforward to see that the region on

Σu,z with x = O(1) for z → 0 can be approximately represented by the branched cover Σout of
C0,3 = P1 \ {0, 1,∞} defined by the equation

y2 =
x2a2

4 − x(a2 + a2
4 − a2

3) + a2

x2(x− 1)2
. (3.3)

From (3.3) is easy to see that the integral
∫
γ̂s
ydx is proportional to a, as required.

The region in Σu,z with x = tz, with t finite when z → 0, may be represented as another
branched cover Σin of C0,3, defined by

(zy)2 =
t2a2 − t(a2 + a2

1 − a2
2) + a2

1

t2(t− 1)2
. (3.4)

We see that Σu,z degenerates into the union of Σout and Σin for z → 0. The parameter a
determining the behaviour of the parameter u in the degeneration of Σu,z is found to describe
the singular behaviour at the points of Σout and Σin corresponding to the double point on Σu,z

arising in the degeneration.
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Figure 1: The toric graph of the mirror XR;U,z to the local CY YR;U,z.

3.2 Four-dimensional limit and local mirror symmetry

It will later be useful to recall that the family of curves Σu,z can be represented as the limit
R → 0 of a certain family of curves ΣR;U,z in C∗ × C∗ related by mirror symmetry to the
family of toric Calabi-Yau manifolds2 having the toric graph depicted in Figure 1. The Kähler
parameters t1, . . . , t4, tF , tB of the toric Calabi-Yau manifolds will be parameterised through
the variables Qi = e−ti , i = 1, . . . , 4, QF = e−tF , QB = e−tB assigned to the edges of the toric
graph in Figure 1.

We will consider a certain scaling limit of the Kähler parameters which has been used for the
geometric engineering [KKV, KMV] of the four-dimensional, N = 2 supersymmetric gauge
theory with gauge group SU(2) and four flavors within string theory, see e.g. [HIV] for a review
discussing this case. The relevant limit, in the following referred to as four-dimensional (4d)
limit, is most easily defined by parameterising the Kähler parameters t1, . . . , t4, tF , tB as

t1 = R(m1 − a),

t2 = R(−a−m2),

t3 = R(−a−m3),

t4 = R(m4 − a),
tF = 2Ra, (3.5)

and sending R→ 0. To simplify the exposition we will assume that mi ∈ R for i = 1, . . . , 4. In
(3.5) we are anticipating a parameterisation which will turn out to be useful later. It is based on
the fact that the Kähler parameter associated to an edge with equation rx + sv = c and length
l is simply given as l/

√
r2 + s2. Applying this rule to the toric graph in Figure 1 gives a direct

relation between the parameters mi ∈ R, i = 1, . . . , 4, in (3.5) and the values of the coordinate
v of the corresponding horizontal external edges indicated in Figure 1.

2Section 2 in [AKMV] summarises the relevant background on toric geometry in a well-suited form.
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Local mirror symmetry [CKYZ] relates this family of toric CY to a family of local CY denoted
by ΣR;U,z. Based on the duality with brane constructions it has been argued in [BPTY]3 that the
curves ΣR;U,z can be defined by the equations

(w −M1)(w −M2)x2

−
(

(M1M2)
1
2

[(
1 + zM− 1

2

)
w2 +

(
1 + zM+ 1

2

)]
− Uw

)
x (3.6)

+ z

(
M1M2

M3M4

) 1
2

(w −M3)(w −M4) = 0 .

We are using the notation M = M1M2M3M4. Considering fixed values for M1, . . . ,M4, we
will regard the two variables z and U as parameters for the family of curves ΣR;U,z. The pa-
rameters M1, . . . ,M4, U, z of the curve defined by the equation (3.6) are related to the Kähler
parameters by the mirror map, expressing t1, . . . , t4, tF , tB as periods of the canonical one-form

λ = log(w)d log(x) , (3.7)

along a suitable set of cycles. The rules of local mirror symmetry imply a simple relation
between the parameters M1, . . . ,M4 in (3.6) and the parameters m1, . . . ,m4 introduced via
(3.5), Mi = e−Rmi for i = 1, . . . , 4. Indeed, it is easy to see that x → ∞ implies that the
coordinate v = − 1

R
log(w) must approach one of the values v = m1 or v = m2, and similarly

for x→ 0. The relation between the parameters U, z in (3.6) and the parameters tB, tF = 2Ra

is more complicated. There exists cycles γB and γF on ΣR;U,z allowing us to represent the
parameters tB and tF as the periods tB =

∫
γB
λ and tF =

∫
γF
λ, respectively.

As discussed in detail in Appendix B of [BPTY], taking the limit R → 0 of the equation (3.6)
with w being of the form w = e−Rv yields the following equation

(v −m1)(v −m2)x2+
(
−(1 + z)v2 + z(m1 +m2 +m3 +m4)v + h

)
x

+ z(v −m3)(v −m4) = 0 ,
(3.8)

with parameter h being related to the higher order terms in the expansion of U in powers of
R. This curve can be identified with the curve defined in (3.2) by the change of coordinates
(x, v)→ (x, y) defined by

xy = v − P1(x)

2(x− 1)(x− q)
, P1(x) = (m1 +m2)x2 − z m̄ x+ z(m3 +m4), (3.9)

with m̄ = m1 +m2 +m3 +m4, bringing the equation for the curve to the form

y2 =
P 2

1 (x)− 4(x− 1)(x− z)P2(x)

4x2(x− 1)2(x− z)2
, P2(x) = m1m2x

2 + hx+ zm3m4 . (3.10)

3It is possible that the following results have been derived more directly in the mathematical literature on mirror
symmetry, but we did not find a reference where this has been worked out explicitly for the case of our interest.
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This is easily recognised as the curve (3.2),

m4 −m3 = 2a4 , m4 +m3 = 2a3 , m1 −m2 = 2a1 , m1 +m2 = 2a2 , (3.11)

assuming a certain relation between h and u that won’t be needed in the following.

3.3 Extended Kähler moduli space

It will be important for us to notice that only a part of the moduli space of the complex structures
of ΣR;U,z is covered by the mirror duals of the toric CY having toric graph depicted in Figure 1.
To cover the full moduli space of complex structures one will need other toric CY, related to the
one considered above by flop transitions. We may introduce an extended Kähler moduli space
which can be described as a collection of chambers representing the Kähler moduli spaces of
all toric CY having a mirror dual of the same topological type, joined along walls associated to
flop transitions.

Our next goal is to describe the chamber structure of the extended Kähler moduli space in the
case R → 0 of our main interest. It is instructive to first analyse the situation in the limit
z → 0 where Σu,z can be described as the union of Σout and Σin. The curves Σin and Σout are
determined by the parameters a2, a2

i , i = 1, . . . , 4. We get an unambiguous parameterisation
assuming Re(a) ≥ 0 and Re(ai) ≥ 0, i = 1, . . . , 4. The equation for Σin can be written as

y2t2(t− 1)2 = a2

(
t− a2 + a2

1 − a2
2

2a2

)2

− D(a)

4a2
, (3.12)

with
D(a) = (a+ a1 + a2)(a− a1 − a2)(a+ a1 − a2)(a− a1 + a2). (3.13)

In the case a1 > a2 we see that there exist three chambers,

Cin
1 = { a ∈ C ; Re(a) ≥ 0 , a1 − a2 > Re(a) }, (3.14)

Cin
2 = { a ∈ C ; Re(a) ≥ 0 , a1 − a2 < Re(a) < a1 + a2 }, (3.15)

Cin
3 = { a ∈ C ; Re(a) ≥ 0 ,Re(a) > a1 + a2 }. (3.16)

The boundaries of the chambers correspond to zeros of D(a). Vanishing of D(a) implies that
the two branch points of the covering Σin → C0,3 coalesce. We may note, on the other hand,
that it follows from (3.5) and (3.11) that

t1 = R(a2 + a1 − a), t2 = R(a1 − a− a2). (3.17)

Vanishing of D is therefore equivalent to the vanishing of a Kähler parameter. The case where
Re(ti) > 0 for i = 1, 2 corresponds to the chamber Cin

1 .

A similar decomposition into chambers can be introduced for the parameter space of Σout.
Taken together we arrive at a decomposition of the extended Kähler moduli space of Σu,z for
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Figure 2: Representation of the flop transition on a subgraph of a toric graph.

z → 0 into nine chambers denoted Ci,j, with i = 1, 2, 3 labelling the chambers of Σout, and
j = 1, 2, 3 labelling the chambers of Σin.

The resulting qualitative picture can be expected to hold more generally at least in some neigh-
bourhood of the boundary component corresponding to the degeneration z → 0. The Kähler
parameters ti, i = 1, . . . , 4 can be represented as periods of the canonical one-forms along
cycles surrounding suitable pairs of branch points. Coalescence of the branch points implies
vanishing of the corresponding periods. When one of the periods corresponding to a Kähler
parameter ti becomes negative, one can no longer represent the mirror of the curves ΣR;U,z as
the toric CY having the graph in Figure 1. The mirror of ΣR;U,z may instead be represented
by another toric graph obtained from the one in Figure 1 by the local modification depicted in
Figure 2. This transition is often referred to as a flop. In Figure 2 we have also indicated the
choice of Kähler parameters on the toric graph related to the original one by a flop. For the case
at hand it is easy to verify that the rule indicated in Figure 2 is necessary to preserve the values
of mi in Figure 1.

At least in the case where z is sufficiently small, we expect to get all relevant toric graphs by
applying flops to the toric CY having the toric graph depicted in Figure 1.

4. Quantum curves, D-modules and integrability

One of the main ideas in [DHSV, DHS] is to regard the relevant free fermion partition func-
tions as deformations of the chiral free fermion partition functions on the curves Σ generated
by turning on a B-field proportional to λ on the D6-branes. The deformation induces a non-
commutativity of the coordinates (x, y), turning the curves Σ into objects called a quantum
curves described by certain ordinary differential equations. We are later going to formulate a
precise proposal how to associate a free fermion partition function to a quantum curve. In this
section we will explain what a quantum curve is, and why it is natural to allow for quantum
corrections in the definition of the quantum curve represented by terms of higher order in λ.

In Subsection 4.1 below we will observe that the limit λ → 0 has a natural relation to the
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Hitchin integrable system. The relevant quantum corrections are basically determined by the
requirement to have a consistent deformation of the integrable structure that is present at λ = 0,
which will be briefly reviewed in 4.1. A general discussion of the differential equations rep-
resenting the non-commutative deformation of Σ is given in Section 4.2. It is then observed
that the moduli space of holomorphic connections on C is a natural one-parameter deformation
of the Hitchin system. The moduli space of flat holomorphic connections has an equivalent
representation as the moduli space of the second order differential operators representing the
quantum curves if one allows quantum corrections in the quantum curve related to apparent sin-
gularities. The integrable flows of the Hitchin system get “deformed” into the isomonodromic
deformation flows. These flows can be represented as motions of the positions of apparent sin-
gularities, which is how the λ-deformed integrable structure of the Hitchin system is represented
by quantum corrected quantum curves.

To simplify the exposition we will mostly restrict to the case of surfaces C of genus 0 from now
on. It is, however, not hard to generalise the following discussion to more general cases.

4.1 Relation to the Hitchin system

To motivate our proposal let us revisit the case λ = 0, recalling that the chiral free fermion
partition functions on Σ can be represented as theta functions [AMV], schematically

ZΣ(ϑ,u) =
∑
n

ein·ϑ e
i
2
n·τΣ(u)·neF1(u). (4.1)

The tuples of integers n represent the fermion fluxes through cycles of Σ, and τΣ(u) is the
period matrix of Σ ≡ Σu. The variables ϑ in (4.1) are naturally interpreted as coordinates on
the Jacobian of Σ parameterising degree zero line bundles L on Σ. The free fermion partition
function ZΣ(ϑ,u) is thereby recognised as a function of the pair of data (Σ,L). It provides a
local description of a section of a holomorphic line bundle on the Jacobian fibration over the
base manifold B with coordinates u parameterising the complex structures of Σ.

Such Jacobian fibrations naturally arise in the theory of Hitchin systems [Hi] studying Higgs
pairs (E , ϕ) consisting of a holomorphic bundle E and an element ϕ ∈ H0(C,End(E) ⊗ KC)

modulo gauge transformations. The integrability of the Hitchin system is realised through the
one-to-one correspondence between Higgs pairs and pairs (Σ,L), where Σ is the spectral curve,

Σ = { (x, y) ∈ T ∗C ; det(y id− ϕ(x)) = 0 }, (4.2)

and L is the line bundle on Σ of degree zero having fibres which can be identified with the
one-dimensional space spanned by an eigenvector of ϕ. Conversely, given a pair (Σ,L), where
Σ ⊂ T ∗C is a double cover of C, and L a holomorphic line bundle on Σ, one can recover (E , ϕ)

via (E , ϕ) = (π∗(L), π∗(y)), where π is the covering map Σ→ C, and π∗ is the direct image.
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To make this construction more explicit, let us consider the case of holomorphic SL(2)-bundles
E , and introduce a suitably normalised eigenvector Φ(x) of ϕ(x) called Baker-Akhiezer func-
tion. It can locally be represented as

Φ(x) =
1

ϕ0 + y

(
ϕ0 − y
ϕ−

)
, (4.3)

where y = y(x) is the eigenvalue satisfying y2 = q(x), q(x) = ϕ2
0+ϕ+ϕ−. The Baker-Akhiezer

function Φ(x) defined in this way has zeros at the points x̂k projecting to a zero xk of ϕ− where
furthermore ϕ0 = y, and poles at x̌k = σ(x̂k), with σ being the sheet involution. The divisor
D =

∑
k(x̂k − x̌k) characterises the line bundle L.

To further simplify the exposition let us now restrict attention to the case where the surface C
has genus zero g = 0 with n punctures at z1, . . . , zn. The Hitchin system will then coincide
with the Gaudin model. The quadratic differential q(x) defining the curve Σ then has the form

q(x) =
n∑
r=1

(
a2
r

(x− zr)2
+

Hr

x− zr

)
. (4.4)

Fix a canonical basis {α1, . . . , αn−3, β1, . . . , βn−3} for H1(Σ). The periods of ydx along αk,
k = 1, . . . , n− 3, give local coordinates ak for B. The Abel-map of the divisor D,

ϑl =

∫
γ

ωl , (4.5)

with {ωl; l = 1, . . . , n − 3} being a basis for H1(Σ, K) such that
∫
αk
ωl = δkl, and γ in

(4.5) being a one-dimensional chain4 such that ∂γ = D, provides coordinates on the Jacobian
parameterising the choices of the line bundle L. The coordinates (a, ϑ), a = (a1, . . . , an−3),
ϑ = (ϑ1, . . . , ϑn−3) are action-angle coordinates for the Hitchin system. There is a locally
defined function F(a) allowing to express the periods aD

k along the dual cycles βk as aD
k =

∂
∂ak
F(a). The period matrix τΣ is obtained from F as τΣ

kl = ∂2

∂ak∂al
F(a).

Another useful description of the integrable structure of the Hitchin system uses the pairs
(xk, yk), with yk = y(xk) for k = 1, . . . , n − 3 as basic coordinate functions. This descrip-
tion, often referred to as the Separation of Variables (SoV) representation5, represents the phase
space as the symmetric product (T ∗C)[n−3] with Darboux coordinates (xk, yk), k = 1, . . . , n−3.

It is worth noting that such Jacobian fibrations arise very naturally in the context of local CY of
the type considered in this paper. For the case of compact base curves C it has been shown in
[DDDHP, DDP] that the corresponding Jacobian fibrations are isomorphic to the intermediate
Jacobian fibrations of the associated family YΣ of local CY.

4A formal linear combination of oriented paths, not necessarily closed, with integral coefficients.
5Going back to [Sk], applied to Hitchin systems in [Hu, GNR, Kr02], and reviewed in [T17b, Section 2].
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4.2 From quantum curves to D-modules

In [DHSV, DHS] it is argued that turning on a B-field on the D6-branes induces a non-
commutative deformation of the algebra of functions on Σ described in terms of the coordinates
(x, y) by the commutation relations [x, y] = iλ. The deformed algebra of functions can natu-
rally be identified with the Weyl algebra of differential operators with generators x and −iλ∂x.
It seems natural to describe the resulting deformation of the curve Σ with the help of a deformed
version of the equation y2 − q(x) = 0 defining Σ which is obtained by replacing y by −iλ∂x.
The equation of the curve gets replaced by the differential equation

(λ2∂2
x + q(x))χ = 0. (4.6)

A useful framework for making these ideas precise is provided by the theory of D-modules.

4.2.1 D-modules, differential equations and flat connections

We will now introduce the basic notions of the theory of D-modules, and later explain why it is
consistent with the point of view of [DHS] to allow certain quantum corrections to the quantum
curve obtained by canonical quantisation of the equation for the classical curve Σu,z.

A D-module is a sheaf of left modules over the sheaf DV of differential operators on a smooth
complex algebraic variety V . For each open subset U ⊂ V we are given a module F(U) over
D(U), the algebra of differential operators on U . The various modulesF(U) attached to subsets
U satisfy the compatibility conditions defining a sheaf.

An important class of D-modules is associated to systems of differential equations. Let GV
be a sub-algebra of the algebra DV of differential operators on V , generated by commuting
differential operators Di, i = 1, . . . ,m. To the system of differential equations

DiΨ = 0, i = 1, . . . ,m, (4.7)

one may associate the D-module

∆GV := DV /(DV · GV ). (4.8)

A solution Ψ of the system (4.7) defines a D-module homomorphism sending 1 ∈ ∆GV to Ψ.
Conversely, having aD-module homomorphism from ∆GV to a sheaf F one gets a solution Ψ to
(4.7) with Ψ ∈ F as the image of 1 ∈ ∆GV . The discussion above suggests that we are looking
for D-modules of this type, with GV being generated by a single differential operator Dq of the
form Dq = λ2∂2

x + q(x).

One may note, on the other hand, that another simple type of D-module is the sheaf of sections
of a complex vector bundle E on V with a holomorphic flat λ-connection ∇λ. The connection
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∇λ, locally represented as

∇λ = λ∂x + ϕ(x), ϕ =

(
ϕ0 ϕ+

ϕ− −ϕ0

)
, (4.9)

with ϕ0, ϕ± holomorphic on C, defines the action of the differential operators in D(U) on
the sections of E . The D-modules defined from pairs (E ,∇λ) can be regarded as a natural
λ-deformation of the Higgs pairs (E , ϕ).

Within the moduli spaceMflat(C) of pairs (E ,∇λ) there is a half-dimensional subspace repre-
sented by λ-connections which are gauge equivalent to λ-connections of the form.

∇Op = λ∂x +

(
0 q

1 0

)
. (4.10)

Flat connections of this form are called opers. The horizontality condition∇Op

(
χ1
χ2

)
= 0 implies

that χ2 solves the equation Dqχ2 = 0, and that χ1 = ∂xχ2.

Looking for a deformed version of the free fermion partition function associated to quantum
curves one may note that theD-modules defined by opers only depend on half as many variables
as the function ZΣ(ϑ,u) does. The D-modules associated to pairs (E ,∇λ), on the other hand,
depend on just the right number of variables.

4.2.2 Opers with apparent singularities

We are now going to observe that allowing certain quantum corrections in the defining equations
produces quantum curves in a natural one-to-one correspondence to flat connections. To this
aim we will use the fact that any holomorphic connection is gauge equivalent to an oper con-
nection away from certain singularities of a very particular type which may occur at a collection
of points xk ∈ C0,n, k = 1, . . . , d. Given a λ-connection of the form ∇λ = λ∂x +

( ϕ0 ϕ+
ϕ− −ϕ0

)
it

can be shown by an elementary calculation that ∇λ can be brought to oper form λ∂x +
(

0 qλ
1 0

)
by means of a gauge transformation h,

∇Op = h−1 · ∇λ · h = λ∂y +

(
0 qλ
1 0

)
, (4.11)

which is well-defined on a cover of C branched at the zeros xk, k = 1, . . . , d, of ϕ− = ϕ−(x).
The resulting formula for the matrix element qλ is found to be of the form

qλ(x) =
n∑
r=1

(
a2
r

(x− zr)2
+

Hr

x− zr

)
+ λ

d∑
k=1

(
yk

x− xk
− 3λ

4(x− xk)2

)
. (4.12)

Assuming that ∇λ is holomorphic on C0,n, it follows from (4.11) that the monodromy of ∇Op

around the points xk is proportional to the identity matrix and therefore trivial in PSL(2,C).
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Singularities having this property are called apparent singularities. Having an apparent singu-
larity at x = xk is equivalent to the fact that the parameters (xk, yk) introduced in (4.12) satisfy
the equations

λ2y2
k + q

(k)
0 = 0, k = 1, . . . , d, qλ(x) =

∑
n=−2

(x− xk)nq(k)
n . (4.13)

Taking into account the constraints (4.13) and the constraints from regularity at infinity it is not
hard to see that for fixed ar, r = 1, . . . , n, in (4.12) one gets a family of quadratic differentials
qλ on C depending on 2(n− 3) independent parameters.

Conversely, if the constraints (4.13) are satisfied, and if d ≤ n− 3, there exists a unique gauge
transformation h holomorphic on a double cover of C0,n \ {x1, . . . , xd} with branch points only
at x1, . . . , xd such that the connection∇λ defined from∇Op = λ∂x +

(
0 qλ
1 0

)
by means of (4.11)

is holomorphic on C0,n with first order poles only at x = zr. Indeed, by defining

ϕ−(x) = c0

∏d
k=1(x− xk)∏n
r=1(x− zr)

, ϕ0(x) =
d∑

k=1

yk

(
n∏
r=1

xk − zr
x− zr

)
d∏
l=1
l 6=k

x− xl
xk − xl

, (4.14)

and using these functions to build

h =

(
1/
√
ϕ− 0

0
√
ϕ−

)(
1 α

0 1

)
, α(x) =

λ

2

ϕ′−
ϕ−
− ϕ0(x), (4.15)

we find that the connection∇ is holomorphic on C0,n.

Allowing quantum corrections to the quantum curve represented by apparent singularities there-
fore gives us a way to represent all the data characterising a gauge equivalence class of holomor-
phic connections in terms of meromorphic opers. The equivalence between flat sl2-connections
∇λ on C0,n and opers ∇Op observed above can be seen as a deformation of the Separation of
Variables (SOV) for the classical Gaudin model [Sk, DM] with deformation parameter λ. Com-
paring with (4.3) we see that the positions (x1, . . . , xd) of the apparent singularities are directly
related to the divisor D characterising the line bundle L in the limit λ→ 0.

4.3 Isomonodromic deformations

We are now going to observe that the deformation of the Higgs pairs (E , ϕ) into λ-connections
leads to a natural deformation of the integrable flows of the Hitchin system, given by the
isomonodromic deformation flows. It will turn out that this integrable structure controls how
the free fermion partition function gets deformed when λ is non-zero.

4.3.1 Riemann-Hilbert correspondence

The Riemann-Hilbert correspondence assigns holomorphic connections to representations ρ :

π1(C) → G of the fundamental group π1(C) in a group G, here taken to be G = SL(2,C).
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Considering curves C of genus 0 with a base point x0 one may characterise the representations
ρ by the matrices Mr representing closed curves γr around the punctures zr. We will consider
the cases where the matrices Mr are diagonalizable, Mr = C−1

r e2πiDrCr, for a fixed choice of
diagonal matrices Dr. The Riemann-Hilbert problem is to find a multivalued analytic matrix
function Ψ(x) on C0,n such that the monodromy along γr is represented by

Ψ(γr.x) = Ψ(x) ·Mr. (4.16)

The solution to this problem is unique up to left multiplication with single valued matrix func-
tions. In order to fix this ambiguity we need to specify the singular behaviour of Ψ(x) at x = zr,
leading to the following refined version of the Riemann-Hilbert problem:

Find a matrix function Ψ(x) such that the following conditions are satisfied.

i) Ψ(x) is a multivalued, analytic and invertible on C0,n, and satisfies a normalisa-
tion condition.

ii) There exist neighborhoods of zk, k = 1, . . . , n where Ψ(x) can be represented
as

Ψ(x) = Ŷ (k)(x) · (x− zk)Dk · Ck , (4.17)

with Ŷ (k)(x) holomorphic and invertible at x = zk, Ck ∈ G, and Dk being
diagonal matrices for k = 1, . . . , n.

A standard choice of a normalisation condition is to require that Ψ(x0) = 1 at a fixed point
x0 ∈ C. Other options are to fix the matrix Ŷ (k)(zk) appearing in (4.17) for one particular
value of k. If such a function Ψ(x) exists, it is uniquely determined by the monodromy data
C = (C1, . . . , Cn) and the diagonal matrices D = (D1, . . . , Dn). It is known that the solution
to the Riemann-Hilbert problem exists for generic representations ρ : π1(C0,n)→ G.

4.3.2 Isomonodromic deformations

We shall now briefly indicate how the Riemann-Hilbert problem is related to the isomonodromic
deformation problem. Given a solution Ψ(x) = Ψ(x;µ, z) to the Riemann-Hilbert problem we
may define a connection A(x) as

A(x) := (∂xΨ(x)) · (Ψ(x))−1 , (4.18)

It follows from ii) that A(x) is a rational function of x which has the form

A(x) =
n∑
r=1

Ar(µ, z)

x− zr
. (4.19)
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A variation of the position of the punctures z for fixed monodromy data µ leads to a variation of
the matrix residues Ar. It is not hard to show (see e.g. [BBT]) that the resulting variations are
described by a nonlinear first order system of partial differential equations called the Schlesinger
equations. Variations of the positions zr will not change the monodromies of the connection
A(y) provided that the matrix residues Ak = Ak(z) satisfy the following equations,

∂zkAk = −
∑
l 6=k

[Ak, Al]

zk − zl
,

∂zlAk =
y0 − zk
y0 − zl

[Ak, Al]

zk − zl
, k 6= l ,

∂x0Ak = −
∑
l 6=k

[Al, Ak]

x0 − zl
. (4.20)

In the limit x0 →∞ one finds the Schlesinger equations

∂zkAk = −
∑
l 6=k

[Ak, Al]

zk − zl
, ∂zlAk =

[Ak, Al]

zk − zl
, k 6= l . (4.21)

The Schlesinger equations are nonlinear partial differential equations for the matrices Ar. In
special cases n = 4 it is known that one may reduce these equations to the Painlevé VI-equation.

The Schlesinger equations represent Hamiltonian flows generated by the Hamiltonians

Hr :=
1

2
Res
x=zr

trA2(x) =
∑
s 6=r

tr(ArAs)

zr − zs
, (4.22)

using the Poisson structure

{
A (x) ⊗, A (x′)

}
=

[
P

x− x′
, A (x)⊗ 1 + 1⊗ A (x′)

]
, (4.23)

where P denotes the permutation matrix.

4.3.3 Garnier system

With the help of the equivalence between holomorphic connections and meromorphic opers one
may describe the isomonodromic deformation flows as the flows describing isomonodromic
deformations of the second order differential operator Dqλ . It is worth noting that

(i) the Hamiltonians Hr generating the isomonodromic deformation flows are related to the
residues Hr in (4.12) by the transformation from holomorphic connections to opers with
apparent singularities,

(ii) the equations (4.13) are a system of linear equations for the residues Hr in (4.12) which
can be solved explicitly to get Hr ≡ Hr(x,y;λ), x = (x1, . . . , xn−3), y = (y1, . . . , yn−3),
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(iii) the isomonodromic deformation equations can then be represented in Hamiltonian form as

∂xk
∂zr

=
∂Hr

∂yk
,

∂yk
∂zr

= −∂Hr

∂xk
, (4.24)

(iv) the coordinates (x,y) are Darboux coordinates for the Poisson structure (4.23), as equa-
tions (4.24) suggest.

The proof of these statements can be found in [Ok, IKSY, DM]. In this form it becomes easy to
see that the isomonodromic deformation flows turn into flows of the Hitchin integrable system
for λ→ 0, with (x,y) being the variables in the SOV representation [DM]. One may recall, in
particular, that the variables xk defining the divisor D are nothing but the zeros of ϕ−(x), and
note that the functions Hr(x,y;λ) turn into the Hamiltonians of the Hitchin system for λ→ 0.

4.4 Isomonodromic tau-function

Out of the matrix residues Ar one may construct

Hr :=
1

2
Res
x=zr

trA2(x) =
∑
s 6=r

tr(ArAs)

zr − zs
. (4.25)

The isomonodromic tau-function T (µ, z) is then defined as the generating function for the
Hamiltonians Hr,

Hr = ∂zr log T (µ, z) . (4.26)

It can be shown that the integrability of (4.26) is a direct consequence of the Schlesinger
equations. Equation (4.26) determines T (µ, z) only up to addition of a function of the mon-
odromy data. Having fixed this freedom by suitable supplementary conditions, one may use the
Schlesinger equations to determine the dependence of T (µ, z) on z via (4.25) and (4.26).

We will see in the following that the free fermion partition functions we want to associate to
the D-modules representing the quantum curves can be identified with the isomonodromic tau
functions coming from the Riemann-Hilbert problem characterising the relevant D-modules.

5. From quantum curves to free fermion partition functions

We are now going to explain how to define free fermion partition functions from the solutions
of the differential equation defining the quantum curve. This construction generalises the de-
formed version of the Krichever construction used in [DHS]. The relation to the theory of
infinite Grassmannians and of the Sato-Segal-Wilson tau-functions used in [DHS] is explained
in Appendix B. The free fermion partition functions defined in this way turn out to be closely
related to conformal blocks of the free fermion vertex operator algebra (VOA). The conformal
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Ward identities determininig the dependence of the free fermion partition functions with respect
to the complex structure of C are equivalent to the equations defining the isomonodromic tau-
functions. It will follow that a suitable choice of normalisation factors, which may still depend
on the monodromy data characterising the equation of the quantum curve through the Riemann-
Hilbert correspondence, allows us to relate the free fermion partition functions of our interest
to isomonodromic tau-functions.

5.1 From D-modules to free fermion states

5.1.1 Free fermions

The free fermion super VOA is generated by fields ψs(z), ψ̄s(z), s = 1, . . . , N , The fields ψs(z)

will be arranged into a row vector ψ(z) = (ψ1(z), . . . , ψN(z)), while ψ̄(z) will be our notation
for the column vector with components ψ̄s(z). The modes of ψ(z) and ψ̄(z), introduced as

ψ(z) =
∑
n∈Z

ψnz
−n−1 , ψ̄(z) =

∑
n∈Z

ψ̄nz
−n , (5.27)

are row and column vectors with components ψs,n and ψ̄s,n satisfying the commutation relations

{ψs,n , ψ̄t,m } = δs,tδn,−m , {ψs,n , ψt,m } = 0 , { ψ̄s,n , ψ̄t,m } = 0 . (5.28)

We will here consider a representation generated from a highest weight vector f0 satisfying

ψs,n · f0 = 0 , n ≥ 0 , ψ̄s,n · f0 = 0 , n > 0 . (5.29)

The Fock spaceF is generated from f0 by the action of the modes ψs,n, n < 0, and ψ̄s,m,m ≤ 0.

We will also consider the conjugate representation F∗, a right module generated from a highest
weight vector f∗0 satisfying

f∗0 · ψs,n = 0 , n < 0 , f∗0 · ψ̄s,n = 0 , n ≤ 0 . (5.30)

The Fock space F∗ is generated from f∗0 by the right action of the modes ψs,n, n ≥ 0, and ψ̄s,m,
m > 0. A natural bilinear form F∗ ⊗F → C is defined by the expectation value,

〈 f∗0 · Of∗ , Of · f0 〉 = Ω(Of∗Of · f0), (5.31)

where Ω(f) = c if f = c f0 +
∑N

s=1(
∑

n<0 ψs,nfs,n +
∑

m≤0 ψ̄s,mfs,m).

5.1.2 Free fermion states from the Riemann-Hilbert correspondence

A simple and natural way to characterise a state f ≡ fG ∈ F is through the matrix G(x, y) ≡
Gf(x, y) of two-point functions having matrix elements

Gf(x, y)st =
〈
ψ̄s(x)ψt(y)

〉
f
≡ 〈 f0 , ψ̄s(x)ψt(y) f 〉

〈 f0 , f 〉
. (5.32)
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Indeed, given a function G(x, y) such that

G(x, y) =
1

x− y
+ A(x, y) , (5.33)

with A(x, y) having an expansion of the form

A(x, y) =
∑
l≥0

y−l−1
∑
k>0

x−kAkl, (5.34)

there exists a state fG, unique up to normalisation, such that its two-point function is given by
G(x, y). States fG having this property can be constructed as

fG = NG exp

(
−
∑
k>0

∑
l≥0

ψ−k · Akl · ψ̄−l
)
f0 , (5.35)

with matrices Akl defined by the expansion (5.34), and NG ∈ C being a normalisation constant.
This can be verified by a straightforward computation.

We will be mainly interested in two-point functions G(x, y) that have a multi-valued analytic
continuation with respect to both x and y to the Riemann surfaces C = C0,n with given mon-
odromies. The monodromies describing the analytic continuation in x are required to act on
G(x, y) from the left, while the analytic continuation in y generates monodromies acting from
the right. Consistency with having a pole at x = y with residue being the identity matrix
requires

G(x, γr.y) = G(x, y) ·Mr, G(γr.x, y) = M−1
r ·G(x, y). (5.36)

This means that the family of functions Gx(y) := G(x, y) is a solution to a generalisation of
the Riemann-Hilbert problem formulated above where one allows a first order pole at y = x,
and the family Gy(x) := G(x, y) is a solution to a conjugate version of this Riemann-Hilbert
problem. Uniqueness of the solution to the Riemann-Hilbert problem implies that G(x, y) must
have the following form

GΨ(x, y) =
(Ψ(x))−1Ψ(y)

x− y
, (5.37)

with Ψ(y) being a solution to the Riemann-Hilbert problem formulated in Section 4.3.1.

The construction of the fermionic states fG described above therefore gives us a natural way to
assign fermionic states fΨ ≡ fGΨ

to solutions Ψ of the Riemann-Hilbert problem.

5.2 Free fermion conformal blocks from D-modules

We are now offering a useful change of perspective by re-interpreting the fermionic states asso-
ciated to D-modules as free fermion conformal blocks. This will allow us to use methods and
ideas from conformal field theory which will be useful for the computation of tau-functions. To
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this aim we will show that the states fΨ ∈ F constructed in Section 5.1.2 are characterised by
a set of Ward identities defined from a solution Ψ(x) of the RH problem. Given that confor-
mal blocks can be defined as solutions to such Ward identities6 we are led to identify the states
fΨ ∈ F as conformal blocks for the free fermion algebra.

Let us define the following infinite-dimensional spaces of multi-valued vector functions onC0,n:

W̄ =
{
v̄(x) ·Ψ(x); v̄(x) ∈ CN ⊗ C[P1\{∞}]

}
,

W =
{

Ψ−1(x) · v(x); v(x) ∈ CN ⊗ C[P1\{∞}]
}
,

(5.38)

where v̄ and v are row and column vectors with N components, respectively, and C[P1\{∞}]
is the space of meromorphic functions on P1 having poles at ∞ only. The elements of the
space W̄ represent solutions of a generalisation of the RH problem from Section 4.3.1 where
the condition of regularity at infinity has been dropped.

Let us next note that the vectors fΨ defined in (5.35) can equivalently be characterised up to
normalisation by the conditions

ψ[g] · fΨ = 0 , ψ̄[f̄ ] · fΨ = 0 , (5.39)

for all g ∈ W , f̄ ∈ W̄ , where the operators ψ[f̄ ] are constructed as

ψ[g] =
1

2πi

∫
C
dz ψ(z) · g(z) , ψ̄[f̄ ] =

1

2πi

∫
C
dz f̄(z) · ψ̄(z) , (5.40)

with C being a circle separating∞ from z1, . . . , zn.

Indeed, it can easily be shown that the vector fΨ is defined uniquely up to normalisation by the
identities (5.39). Let us note that the columns of Ḡl(x), l ≥ 0, and the rows of the matrix-valued
functions Gk(y), k > 0, defined through the expansions

(Ψ(x))−1Ψ(y)

x− y
=


∑
l≥0

y−l−1Ḡl(x), Ḡl(x) = −xl 1 +
∑
k>0

x−kAkl ,∑
k>0

x−kGk(y), Gk(y) = yk−1 1 +
∑
l≥0

y−l−1Akl .
(5.41)

generate bases for the spaces W̄ and W associated to Ψ(x), respectively. The conditions (5.39)
are equivalent to the validity of

ψ̄k fΨ = −
∑
l≥0

(Akl · ψ̄−l) fΨ, ψl fΨ =
∑
k>0

(ψ−k · Akl) fΨ, (5.42)

for all k > 0 and all l ≥ 0. The identities (5.42) can be used to calculate the values of 〈v, fΨ〉F
for fΨ ∈ F satisfying (5.39) and arbitrary v ∈ F in terms of 〈f0, fΨ〉F . This implies that the

6A review of CFT with a very similar perspective can be found in [T17a].
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solution to the conditions (5.39) is unique up to normalisation. It is not hard to check that the
vector fΨ defined using (5.41) and (5.35) indeed satisfies the identities (5.42).

The definition of fΨ through the identities (5.39) is analogous to the definition of Virasoro
conformal blocks through the conformal Ward identities. The uniqueness of fΨ implies that the
space of conformal blocks for the free fermionic VOA is one-dimensional.

5.3 Chiral partition functions as isomonodromic tau-functions

Out of the free fermion VOA one may define a representation of the Virasoro algebra by intro-
ducing the energy-momentum tensor as

T (z) =
1

2
lim
w→0

N∑
s=1

(
∂zψs(w)ψ̄s(z) + ∂zψ̄s(w)ψs(z) +

1

(w − z)2

)
. (5.43)

Conformal blocks for the free fermion VOA represent conformal blocks for the Virasoro al-
gebra defined via (5.43). On the space of conformal blocks of the Virasoro algebra there is a
canonical connection [FS] allowing us to represent the variations of a conformal block induced
by variations of the complex structure of the underlying Riemann surface C0,n in the form7

∂zr fΨ = Hr fΨ, (5.44)

with Hr being suitable linear combinations of the modes of T (z). This connection preserves
the one-dimensional space of free fermion conformal blocks due to the fact that the adjoint
action of the Virasoro algebra acts geometrically on the free fermions, transforming them as
half-differentials.

The operators Hr generate a commutative subalgebra of the Virasoro algebra, embedded into
the Lie algebra generated by fermion bilinears via (5.43). Keeping in mind the fact that only the
normalisation of fΨ was left undetermined by (5.39) one sees that the equations (5.44) together
with (5.39) can be used to determine fΨ(z) unambiguously in terms of fΨ(z0) for any given path
connecting z and z0 inM0,n, the moduli space of complex structures on C0,n. Using only the
Ward identities one can show that8

∂zr log〈 f0 , fΨ(z) 〉 =
〈 f0 ,Hr fΨ(z) 〉
〈 f0 , fΨ(z) 〉

= Hr(µ, z), (5.45)

with Hr being the isomonodromic deformation Hamiltonians defined in (4.25). This means that
the isomonodromic tau-function coincides up to a function N(µ) of the monodromy data with

Zff(µ, z) = N(µ)T (µ, z), Zff(µ, z) := 〈 f0 , fΨ(z)〉, (5.46)
7This is reviewed in [T17a] using a very similar formalism as used in our paper.
8The main idea is simple [Mo]: Consider the expansion of the fermion two point function GΨ(x, y) around

x = y. Using (5.41) and ∂xΨ = AΨ one may observe that the trace part contains trA2(x) at order O(x − y).
The expansion may also be calculated using the OPE of the fermionic fields where T (x) appears at the same order.
Comparing the resulting expressions yields (5.45). A proof within the formalism used here was outlined in [T17a].
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relating the isomonodromic tau-functions to free fermion conformal blocks.

Remark 2. Starting from a Lagrangian description of the free fermions on a Riemann surface C
one would naturally arrive at a description of the free fermion partition functions as determinants
of Cauchy-Riemann-operators on C. Such determinants have been studied for C = C0,n in [Pa]
where it was shown that they are related to the isomonodromic tau-functions. This offers an
alternative approach to the relation between free fermion partition functions and isomonodromic
tau-functions expressed in (5.46).

A solution to the Riemann Hilbert problem has first been constructed using fermionic twist
fields in [SMJ], and the relation to conformal field theory was previously discussed in [Mo].

5.4 Issues to be addressed

Two points should be noted at this stage: First, let us note that the Riemann-Hilbert correspon-
dence relates the moduli spaceMflat(C0,n) of flat connections ∂y−A(y) onC0,n to the character
varietyMch(C0,n) = Hom(π1(C0,n), SL(2,C))/SL(2,C). The definition above therefore de-
fines the tau-function as a function of two types of data: The variables z specifying the complex
structure of C, and the monodromy data M , represented by the matrices Mr appearing in the
Riemann-Hilbert problem. Picking a parameterisation Mr = Mr(µ), µ = (µ1, . . . , µ2n−6), of
the monodromy data Mr is equivalent to introducing coordinates µ for the character variety.
Doing this will allow us to represent the tau-functions as actual functions T (µ, z) depending
on two types of variables. The identification of the tau-function T (µ, z) with the free fermion
partition function Zff(ξ, t;λ) must therefore involve a map between the variables (t, ξ) and the
geometric data (µ, z) that needs to be determined.

Second, the definition above defines the tau-function up to multiplication with functions of the
monodromy data which do not depend on z. For the time being we will call a tau-function any
function T (µ, z) satisfying Hr = ∂zr log T (µ, z), r = 1, . . . , n − 3. We will later find natural
ways to fix this ambiguity. Remarkably it will turn out that the choice of coordinates µ for
Mch(C0,n) will determine natural ways for fixing the normalisation of Zff(µ, z).

6. Factorising the tau-functions

The definition of the free fermion partition functions given in the previous section, elegant as it
may be, is not immediately useful for computations. Recently it has been shown in [GIL, ILT]
how to compute the series expansions for the isomonodromic tau-functions T (µ, z) in cross-
ratios of the positions zr explicitly. This result has been re-derived in [GL16] by a different
method which can be seen as a special case of the general relations between Riemann-Hilbert
factorisation problems and tau-functions discussed in [CGL].

In this section we are going to explain how the existence of the combinatorial expansions found
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in the references above is naturally explained from the theory of free chiral fermions. The
factorisation over a complete set of intermediate states will lead to expressions which in the
case C = C0,4 take the schematic form

T (σ, κ; z) =
∑
n∈Z

einκTn(σ; z). (6.1)

This will allow us to determine the precise relation between the variables σ, κ in (6.1) and certain
coordinates for the moduli spaceMflat(C0,4) of flat SL(2)-connections on C0,4, addressing one
of the main issues formulated at the end of Section 5.

6.1 Coordinates from factorisation of Riemann-Hilbert problems

Let us first discuss how the factorisation of Riemann-Hilbert problems leads to the definition of
coordinates for the space of monodromy data. Within this subsection we will specialise to the
case N = 2.

6.1.1 Fenchel-Nielsen type coordinates

Useful sets of coordinates for Mch(Cg,n) are e.g. given by the trace functions Lγ := tr ρ(γ)

associated to simple closed curves γ on Cg,n [Go]. Conjugacy classes of irreducible represen-
tations of π1(C0,4) are uniquely specified by seven conjugation invariants

Lk = TrMk = 2 cos 2πθk, k = 1, . . . , 4, (6.2a)

Ls = TrM1M2, Lt = TrM1M3, Lu = TrM2M3, (6.2b)

generating the algebra of invariant polynomial functions onMchar(C0,4). These trace functions
satisfy the quartic equation

L1L2L3L4 + LsLtLu + L2
s + L2

t + L2
u + L2

1 + L2
2 + L2

3 + L2
4 = (6.3)

= (L1L2 + L3L4)Ls + (L1L3 + L2L4)Lt + (L2L3 + L1L4)Lu + 4.

For fixed choices of θ1, . . . , θ4 in (6.2a) one may use equation (6.3) to describe the character
variety as a cubic surface in C3. This surface admits a parameterisation in terms of coordinates
(σ, τ) of the form

Ls = 2 cos 2πσ ,
(2 sin(2πσ))2 Lt = C+

t (σ) eiκ + C0
t (σ) + C−t (σ) e−iκ ,

(2 sin(2πσ))2 Lu = C+(σ) eiκ + C0
u(σ) + C−(σ) e−iκ ,

(6.4)

where C±t (σ) = C±(σ)e∓2π iσ,

C0
t (σ) = Ls(L2L3 + L1L4)− 2(L1L3 + l2L4)

C0
u(σ) = Ls(L1L3 + L2L4)− 2(L2L3 + l1L4).

(6.5)
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Equation (6.3) only constrains the productC+(σ)C−(σ), leaving the freedom to trade a redefini-
tion of κ in (6.4) for a redefinition of C+(σ) and C−(σ) which leaves C+(σ)C−(σ) unchanged.
We will in the rest of this subsection discuss natural ways to fix this ambiguity. The coordinates
defined in this way will be called coordinates of Fenchel-Nielsen type.

6.1.2 Factorising Riemann-Hilbert problems

Let us assume |z| < 1. We may represent the surfaces C0,4 = P1 \ {0, z, 1,∞} by gluing two
three-punctured spheres C in and Cout. Let us represent both C in and Cout as P1 \ {0, 1,∞},
and let Ain = {x ∈ C in; |1| < |x| < |z|−1} and Aout = {x ∈ Cout; |z| < |x| < 1} be annuli in
C in and Cout, respectively. By identifying points x in Ain with points x′ in Aout iff x′ = zx one
recovers the Riemann surface C0,4 from C in and Cout.

Having represented the Riemann surface C0,4 by means of the gluing construction there is an
obvious way to define Riemann-Hilbert problems for C in and Cout using the matrices M1,M2

and M3,M4, respectively. A solution Ψ(x) to the Riemann-Hilbert problem on C0,4 allows us
to define solutions Ψin(x) and Ψout(x) to the corresponding Riemann-Hilbert problems on the
open surfaces Din = {x ∈ C; |x| < |z|−1} and Dout = {x ∈ P1; |x| > |z|} in an obvious way,
setting Ψout(x) = Ψ(x)T in onDout and Ψin(x) = Ψ(zx)T out onDin, with T in, T out ∈ SL(2,C)

being fixed matrices describing a possible change of normalisation condition in the definition of
the Riemann-Hilbert problems onC in andCout. By choosing T in, T out appropriately we can get
functions Ψin(x) and Ψout(x) both having diagonal monodromy along the boundary circles of
Din and Dout, respectively. The matrices T in, T out which ensure this condition can only differ
by a diagonal matrix, leading to a relation of the form Ψin(x) = Ψout(zx)T, for x ∈ A.

Coordinates for the moduli space of flat connections Mflat(C0,4) can then be obtained by
choosing a parameterisation for the two pairs of matrices (M1,M2) and (M3,M4), and us-
ing the parameter κ for the family of matrices Tκ = diag(eiκ, e−iκ) as a complementary co-
ordinate forMflat(C0,4). An equivalent representation can be obtained by trading a nontrivial
choice of the matrix T for an overall conjugation of M1,M2 by T . It will be convenient to
consider Ψin

z,κ(x) := Ψin(x/z)T−1 instead of Ψin(x), which is related to Ψout(x) simply as
Ψin
z,κ(x) = Ψout(x) for x ∈ A.

6.1.3 Coordinates from the gluing construction

Representing C = C0,4 by the gluing construction as described in Section 6.1.2 one needs the
solutions of the Riemann-Hilbert problem for C in ' C0,3 and Cout ' C0,3. It is a classical
result that the solutions to the Riemann-Hilbert problem on C0,3 can be expressed through the
hypergeometric function. We may, in particular, choose Ψout as Ψout(x) =

(
χ′+ χ′−
χ+ χ−

)
, with

χε(x) = νout
ε xε(σ−

1
2

)(1− x)εθ3F (Aε, Bε, Cε;x), (6.6)
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for ε = ±1, where νout
ε are normalisation factors to be specified later, F (A,B,C;x) is the

Gauss hypergeometric function and

A+ = A, A− = 1− A,
B+ = B, B− = 1−B,

C+ = C,

C− = 2− C,
A = θ3 + θ4 + σ,

B = θ3 − θ4 + σ,
C = 2σ. (6.7)

Ψin, on the other hand, may be chosen as Ψin =
( ξ′+ ξ′−
ξ+ ξ−

)
, where ξε(x) are obtained from χε(x)

by the replacements x→ x−1, θ4 → θ1, θ3 → θ2 and ε→ −ε.

The well-known formulae for the monodromies of the hypergeometric function then yield, in
particular, formulae for the monodromy Mout

3 of Ψout(x) around z3 = 1 of the form

Mout
3 =

(
∗ µ+

3

µ−3 ∗

)
, µε3 = −ε

(
νout

+

νout
−

)ε
2πi Γ(Cε)Γ(Cε − 1)

Γ(Aε)Γ(Bε)Γ(Cε − Aε)Γ(Cε −Bε)
. (6.8)

A similar formula gives the monodromy M in
2 of Ψin(x) around 1. Keeping in mind the set-up

introduced in Section 6.1.2 it is easy to see that tr(M2M3) gets represented as

tr(M2M3) = tr(T−1M in
2 TM

out
3 ) = eiκµ−2 µ

+
3 + e−iκµ+

2 µ
−
3 +N0, (6.9)

where N0 is κ-independent, and T = diag(eiκ/2, e−iκ/2). The parameters (σ, κ) introduced in
this way represent coordinates forMflat(C0,4) of Fenchel-Nielsen type. From equations (6.8)
and (6.9) it is easy to see, in particular, that the definition of the coordinate κ is directly linked
to the choice of normalisation factors νout

± , ν in
± in the definition of Ψout, Ψin.

Two choices appear to be particularly natural from this point of view. One may, on the one
hand, choose νout

+ = 1, ν in
− = 1 and νout

− = (1− 2σ)−1, ν in
+ = (1− 2σ)−1 in order to ensure that

(i) the determinant of Ψout(x) and Ψin(x) is equal to 1, and (ii) the coefficients appearing in the
series expansions of Ψin(x) and Ψin(x) are rational functions of σ, θi, i = 1, . . . , 4. In that case
we easily see that C±(σ) = C±r (σ), with

C±r (σ) =
(2π)2Γ(1± (2σ − 1))4∏

s,s′=±1 Γ
(

1
2
±
(
σ − 1

2

)
+ sθ1 + s′θ2

)
Γ
(

1
2
±
(
σ − 1

2

)
+ sθ3 + s′θ4

) . (6.10)

The normalisation factors νout
± , ν in

± can alternatively be chosen such that µ−2 µ
+
3 = 1, in which

case we have
(sin(2πσ))2µ+

2 µ
−
3 = − 2

∏
s,s′=±1

sin π(σ + sθ1 + s′θ2), (6.11)

leading to C+(σ) = 1 and

C−(σ) =
∏

s,s′=±1

2 sinπ(σ + sθ1 + s′θ2)) 2 sin π(σ + sθ3 + s′θ4)) (6.12)

= (L2
s + L2

1 + L2
2 − LsL1L2 − 4)(L2

s + L2
3 + L2

4 − LsL3L3 − 4). (6.13)

It is worth noting that C±(σ) are polynomials in Ls in this parameterisation.



32

6.2 Factorisation of free fermion conformal blocks

We had previously observed that the free fermion state associated with the solution Ψ of the
Riemann-Hilbert problem on C defines a conformal block of the free fermion vertex algebra on
C. A standard construction in conformal field theory allows us to represent conformal blocks
on Riemann surfaces C obtained by gluing two surfaces C in and Cout in terms of the conformal
blocks associated to C in and Cout, respectively. Adapting this construction to our case will
allow us to represent the free fermion partition functions as overlaps of the form

Zff(µ, z) =
〈
f∗out , fin

〉
F , (6.14)

where fout, fin are states in the free fermion Fock space defined by factorising the RH problem
along a contour γ separating C into two open surfaces Cout and C in as described in Section
6.1.2. The representation (6.14) for Zff(µ, z) can be used to calculate the free fermion partition
functions more explicitly.

6.2.1 Twisted representations

As a further preparation we will need to generalise the construction from Section 5.2 a bit.
We will need twisted representations Fσ of the free fermion algebra labelled by a tuple σ =

(σ1, . . . , σN) where the fermions have non-trivial monodromy around z = 0,

ψt(x) =
∑
n∈Z

ψt,nx
−n−1+σt , ψ̄s(x) =

∑
n∈Z

ψ̄s,nx
−n−σs , (6.15)

with s, t = 1, . . . , N . The twist fields describing such representations can be conveniently
described by means of bosonisation. To this aim let us introduce N free bosonic fields,

φs(x) = qs + ps log x+ i
∑
n6=0

1

n
as,nx

−n, (6.16)

s = 1, . . . , N , having modes satisfying the commutation relations

[qr, ps] =
i

2
δr,s, [ar,m, as,n] =

m

2
δr,sδn,−m. (6.17)

We will consider Fock space representation Vp labelled by a tuple p = (p1, . . . , pN) generated
from vectors vp satisfying

an,s vp = 0, n > 0, ps vp = ps vp, e2iδqsvp = vp−δes , (6.18)

for all s = 1, . . . , N , with es being the unit vector having 1 at the s-th component, and δ ∈ R.

The direct sum of Fock spaces
Fσ =

⊕
n∈ 1

2
ZN

Vσ+n, (6.19)
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is a representation of the free fermion VOA generated by the fields

ψs(x) =: eiφs(x) : , ψ̄s(x) =: e−iφs(x) : , (6.20)

from the vector fσ ≡ vσ satisfying the usual highest weight conditions. As before we may
introduce a conjugate right module F∗σ . The spaces F∗σ and Fσ are naturally paired by the
bilinear form 〈., .〉Fσ : F∗σ ⊗Fσ → C defined in the same way as previously done for σ = 0.

6.2.2 Representing conformal blocks within twisted representations

The construction of free fermion states corresponding to the solutions of the Riemann-Hilbert
problem described in Section (5.1.2) can now easily be generalised to the cases where one of
the points where Ψ(x) can be singular is equal to 0 or ∞. We will look for a state fΨ,σ ∈ F
characterised through the matrix GΨ(x, y) of two-point functions with matrix elements

GΨ(x, y)st =
〈
ψ̄s(x)ψt(y)

〉
Ψ
≡
〈 fσ , ψ̄s(x)ψt(y) fΨ,σ 〉Fσ

〈 fσ , fΨ,σ 〉Fσ
. (6.21)

However, in order to apply (5.35) and (5.34) we now need to use a modified form of the
relation between the two-point function and the function A(x, y), taking into account that
Ψ(x) = Φ(1/x)xD near x = ∞, with D being the the diagonal matrix D = diag(σ1, . . . , σN),
and Φ(x) regular at x = 0. It follows that A(x, y) can be introduced via

GΨ(x, y) =
(Ψ(x))−1Ψ(y)

x− y
= x−D

(
1

x− y
+ A(x, y)

)
yD , (6.22)

In a similar way one may define a state f∗Ψ,σ ∈ F∗σ such that

GΨ(x, y)st =
〈
ψ̄s(x)ψt(y)

〉
Ψ
≡
〈 f∗Ψ,σ , ψ̄s(x)ψt(y) fσ 〉Fσ

〈 f∗Ψ,σ , fσ 〉Fσ
. (6.23)

The states fΨ,σ and f∗Ψ,σ are as before defined uniquely up to normalisation.

6.2.3 Factorisation of free fermion conformal blocks

Using these constructions, and referring back to the factorisation of the Riemann-Hilbert prob-
lem described in Section 6.1.2, we can now associate a state fin ≡ fin(z, κ) ∈ Fσ to Ψin

z,κ, and
a state f∗out ∈ F∗σ to Ψout. Using the variable z as coordinate for M0,4 in the case C = C0,4

one may, on the other hand, use (5.44) to define the family of states fΨ(z) up to a z-independent
normalisation factor. We claim that fΨ(z) can be normalised in such a way that we have

Zff(µ, z) =
〈
f0 , fΨ(z)

〉
F =

〈
f∗out , fin(z, κ)

〉
Fσ
. (6.24)
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In Appendix C it is explained how the relation (6.24) can be derived using ideas from conformal
field theory. It basically represents the free fermion conformal block by the gluing construction
from CFT associated to the decomposition of C into C in and Cout described in Section 6.1.2.
It is well-known that the gluing construction defines families of conformal blocks satisfying
(5.44). It follows from (6.24) and (5.46) that〈

f∗out , fin(z, κ)
〉
Fσ

= N(µ)T (µ; z), (6.25)

with T (µ; z) being the isomonodromic tau-function.

6.3 Factorisation expansions

It is furthermore explained in Appendix B how to represent the matrix element occurring in
(6.24) in terms of the Fredholm determinant

T
(
σ, κ ; θ ; z

)
:=

〈
f∗out , fin

〉
Fσ〈

f∗out , f0
〉
Fσ

〈
f0 , fin

〉
Fσ

= det(1 + AoutAin), (6.26)

with Ain being the operator represented by the matrices Ain
kl defined from Ψin

q,κ by first defining
Ain(x, y) from

(Ψin
q,κ(x))−1Ψin

q,κ(y)

x− y
= x−D

(
1

x− y
+ Ain(x, y)

)
yD , (6.27)

and then expanding Ain(x, y) in a double series of the form (5.41). The operator Aout is defined
in an analogous way. According to (6.25) one may identify the function T (σ, κ; θ; z) as the
isomonodromic tau-function defined with a specific choice of normalisation condition. Repre-
senting

〈
f∗out , fin

〉
Fσ

in terms of a Fredholm determinant makes it manifest, in particular, that
Zff(µ, z) is mathematically well-defined.

Standard identities for determinants allow us to express det(1+AoutAin) as sum over products of
sub-determinants of the infinite matrices formed out of the matrices Ain

kl and Aout
kl , respectively,

see [CGL] or Appendix B.3 for more details. In this way it is not hard to see that in the case
C = C0,4 equation (6.26) yields series expansions of the following form:

T
(
σ, κ ; θ ; z

)
=
∑
n∈Z

einκ
∞∑
m=0

zmRn,m(σ, θ). (6.28)

To understand this structure it may be useful to recall that the matrix elements Ain
kl of Ain are

2×2-matrices in the case N = 2 of our interest. It easily follows from the discussion in Section
6.1.2 together with (6.27) that the dependence of the 2× 2-matrices Ain

kl on κ is for all k, l given
by the same factors e±iκ in the off-diagonal matrix elements of Ain

kl. It follows easily that the
summation index n simply counts the difference of numbers of upper- and lower off-diagonal
elements of matricesAin

kl in the sub-determinants appearing in the expansion of det(1+AoutAin).
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One should furthermore note that 〈f0, fin
〉
Fσ

has a dependence on z of the form〈
f0 , fin

〉
Fσ

= Nin z
σ2−θ2

1−θ2
2 , (6.29)

as follows from the relation between fin and a conformal block on C0,3 = P1 \ {∞, z, 0} using
the conformal Ward identities, Nin being a constant.

The discussion in this section clarifies in particular how the normalisation factors νout
ε entering

the definition of Ψout(x), Ψin(x) given in Section 6.1 via equation (6.6) determine unambigu-
ously both (i) the precise definition of the variable κ in (6.28), and (ii) how κ is related to the
coordinates for Mflat(C0,4) defined in Section 6.1. A canonical choice is of course νout

ε = 1

corresponding to the coordinates (σ, κ) defined in Section 6.1 using (6.4) together with formula
(6.10) for C±(σ). In this case one will get an expansion of the form (6.28) with coefficients
Rn,m(σ, θ) which are rational functions of (σ, θ). This follows easily from the fact that the ma-
trix elements of Ain

kl and Aout
kl are assembled from the power series expansion coefficients of the

hypergeometric function, which are rational functions of (σ, θ).

Remark 3. The resulting picture is closely related to the recent work [CGL]. Indeed, using
the basic results from the theory of chiral free fermions summarised in Appendix B one may
recognise the Fredholm determinants discussed in [CGL] as the free fermion matrix elements
appearing here. A more direct proof that the Fredholm determinant on the right of (6.26) is the
isomonodromic tau-function can be found in [CGL]. The normalisation prescription following
from the definition (6.26) of the tau-functions is equivalent to the one used in [ILP].

7. Representing free fermion partition functions as generalised theta-series

The results of the last section imply that Zff(σ, κ; z) :=
〈
f∗out , fin

〉
Fσ

can be expanded as

Zff(σ, κ; z) =
∑
n∈Z

einκFn(σ, θ). (7.1)

The string duality conjectures briefly reviewed in Section 2 predict that the functions Fn(σ, θ)

can be identified with the topological string partition function. A necessary condition is that
Fn(σ, θ) depends on n only through σ + n, Fn(σ, θ) ≡ F(σ + n, θ).

So far we had not fixed a normalisation for the states f∗out and fin, leaving the normalisation fac-
tors Nout = 〈f∗out, f0〉Fσ and Nin = zθ

2
1+θ2

2−σ2〈f0, fin〉Fσ entering the relation (6.26) between free
fermion partition partition functions and Fredholm determinants arbitrary up to now. Consider-
ing generic choices for Nout and Nin we will observe that the free fermion partition functions
Zff(σ, κ; z) do not admit series expansions of the desired form.

However, we will also see that there exist a few distinguished choices for Nout ≡ Nout(µ)

and Nin ≡ Nin(µ) depending on the monodromy data µ, combined with suitable choices of
coordinates µ = µ(σ, κ), such that the free fermion partition function Zff(σ, κ; z) admits a
series expansion of the required form.
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7.1 Explicit form of the factorisation expansion

Explicit series expansions for the isomonodromic tau functions have first been conjectured in
[GIL]. Proofs of this conjecture were given in [ILT], [BS] and [GL16] by rather different
methods. The proof closest to the formulation used in this paper is the one in [GL16]. It
proceeds by explicit calculation of the determinant on the right side of (6.26) using an expansion
as sum over sub-determinants. After stating the result we will discuss some of its features that
will be important in the following.

The result of [GIL, ILT, BS, GL16] can be written as follows:9

T
(
σ, κ ; θ ; z

)
=
∑
n∈Z

einκ Fn(σ , θ )F(σ + n , θ ; z ), (7.2)

using the following notations:

• The variables σ and κ are the coordinates forMch(C0,4) which are defined in Section 6.1
using (6.4) with the normalisation choice giving formula (6.10) for C±(σ).

• The functions Fn(σ , θ ) can be represented as

Fn(σ , θ ) =

∏
ε,ε′=±Hn(σ + εθ2 + ε′θ1)Hn(σ + εθ3 + ε′θ4)

(H2n(2σ))2
,

where Hn(σ) is the family of functions defined as

Hn(σ) =
G(1 + σ + n)

G(1 + σ)(Γ(σ))n
, (7.3)

withG(p) being the BarnesG-function satisfyingG(p+1) = Γ(p)G(p). Note that Fn(σ, θ)

are for all n ∈ Z rational functions of σ, as predicted by the discussion in Section 6.3.

• F(σ , θ ; z ) can be represented by a power series of the following form

F(σ , θ ; z ) = zσ
2−θ2

1−θ2
2(1− z)2θ2θ3

∑
ξ,ζ∈Y

z|ξ|+|ζ|Fξ,ζ(σ, θ), (7.4)

where the summation is extended over pairs (ξ, ζ) of partitions. The explicit formulae
for the coefficients Fξ,ζ(σ, θ) can be found in [GIL, GL16], where it is also observed
that they are related to the instanton partition functions in the four-dimensional, N = 2-
supersymmetric SU(2)-gauge theory with four flavors.

The normalisations in (7.2) are fixed such that F∅,∅(σ, θ) = 1.

9Comparing (7.2) with the results of [GIL, ILT, GL16] it may be helpful to take the discussion in Sections 7.2
and 7.3 into account. Formula (7.2) is equivalent, and more directly related to the discussion in Section 6.
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7.2 Rewriting as generalised theta series

The discussion in Section 2 suggests that the relevant fermionic partition functions should admit
an expansion taking the form (2.6) of a generalised theta series. Formula (7.2) is not of this
form, the summand depends on the variable σ not only in the combination σ + n. One may
note, however, that there are two types ambiguities involved in the definition of the partition
functions in general, and in the form of its series expansion in particular:

• There is generically a normalisation freedom in the definition of partition functions. While
the dependence w.r.t. the variable z is governed by Ward identities, mathematically ex-
pressed in the definition (4.26) of the isomonodromic tau-function, the normalisation am-
biguities leave the freedom to multiply the tau-function by a function depending only on
the monodromy data.

• The coefficients in the series expansions of tau-functions like (7.2) depend on the precise
definition of the coordinate κ. A change of coordinates from (σ, κ) to (σ, τ) with τ satis-
fying eiκ = eiτD(σ, θ) would change the coefficients Fn in (7.2) by a factor of (D(σ, θ))n.

By combining these observations we will find a renormalised version of the tau-functions which
will indeed admit an expansion of generalised theta-series type.

To this aim let us note that the change of variables from the coordinates (σ, κ) defined through
(6.4) with C±r (σ) given in (6.10) to coordinates (σ, τ) with C±(σ) given in (6.12) is such that

eiτ = eiκ
(2π)2(Γ(2σ))4∏

s,s′=±1 Γ(σ + sθ1 + s′θ2

)
Γ(σ + sθ3 + s′θ4)

. (7.5)

Rewriting (7.2) in terms of τ therefore yields the expansion

T
(
σ, κ ; θ ; z

)
:=
∑
n∈Z

einτ Gn(σ , θ )F(σ + n , θ ; z ), (7.6)

where the coefficients Gn can be represented in the form

Gn(σ , θ ) =
N(σ + n, θ4, θ3)N(σ + n, θ2, θ1)

N(σ, θ4, θ3)N(σ, θ2, θ1)
, (7.7)

with

N(θ3, θ2, θ1) =

∏
ε,ε′=±G(1 + θ3 + εθ2 + ε′θ1)

G(1 + 2θ3)G(1 + 2θ2)G(1 + 2θ1)
. (7.8)

The structure of the right hand side of formula (7.6) now suggests to define

Z
(
σ, τ ; θ ; z

)
= N(σ, θ4, θ3)N(σ, θ2, θ1)T0

(
σ, κ ; θ ; z

)
, (7.9)

which can indeed be represented in the form of a theta-series.

Z
(
σ, τ ; θ ; z

)
=
∑
n∈Z

einτ G(σ + n , θ ; z ), (7.10)
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with G(σ, θ; z) = N(σ, θ4, θ3)N(σ, θ2, θ1)F(σ, θ; z). Comparing (7.10) with equation (2.6) one
may be tempted to identify the functions G(σ, θ; z) in (7.10) as a promising candidate for the
topological string partition functions.

7.3 Alternative representations as theta series

In this section we will identify a small family of normalisation conditions defining tau-functions
sharing the feature to admit an expansion as a theta-series as expected from the discussion in
Section 2. We will observe that all normalisation conditions in this class are obtained from
(7.10) by combining a redefinition of the normalising factors N(θ3, θ2, θ1) with a modification
of the definition of the coordinate τ . Each such choice of normalisation thereby corresponds to
a particular set of coordinates for the space of monodromy data.

To find alternatives to the expansion (7.10) let us consider the possibility to replace the functions
N(θ3, θ2, θ1) in (7.9) by functions N ′(θ3, θ2, θ1) such that, for example,

N(θ3, θ2, θ1) =
∏
ε=±

S(θ3 + ε(θ2 − θ1))N ′(θ3, θ2, θ1), (7.11)

where S(x) is the special function S(x) = (2π)−xG(1+x)
G(1−x)

.Noting that the function S(x) satisfies
the functional relation

S(x± 1) = ∓ (2 sinπx)∓1 S(x) , (7.12)

we find the relation

N(σ + n, θ4, θ3)N(σ + n, θ2, θ1)

N(σ, θ4, θ3)N(σ, θ2, θ1)
=
N ′(σ + n, θ4, θ3)N ′(σ + n, θ2, θ1)

N ′(σ, θ4, θ3)N ′(σ, θ2, θ1)
(7.13)

×
∏
ε=±

[
2 sinπ(σ + ε(θ2 − θ1))2 sinπ(σ + ε(θ4 − θ3))

]−n
.

Introducing a new coordinate τ ′ = τ(σ, τ) which is defined such that

eiτ = eiτ
′ ∏
ε=±

2 sinπ(σ + ε(θ1 − θ2)) 2 sin π(σ + ε(θ3 − θ4)), (7.14)

along with

Z ′
(
σ, τ ′(σ, τ) ; θ ; z

)
=

N(σ, θ4, θ3)N(σ, θ2, θ1)

N ′(σ, θ4, θ3)N ′(σ, θ2, θ1)
Z
(
σ, τ ; θ ; z

)
. (7.15)

we see that Z ′(σ, τ ′; θ; z) also has a representation as a generalised theta series,

Z ′
(
σ, τ ′ ; θ ; z

)
=
∑
n∈Z

einτ
′ G ′(σ + n , θ ; z ). (7.16)

It is clear the partition functionsZ ′(σ, τ ′; θ; z) andZ(σ, τ ; θ; z) differ by a factor only depending
on monodromy data, We conclude that a change of normalisation of the partition functions
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correlated with the change of coordinates (σ, τ) → (σ, τ ′) may preserve the feature that the
partition function can be represented as a generalised theta-series.

There are, of course, a few other options similar to (7.11) one might consider. It is natural
to restrict attention to redefinitions of the function N(θ3, θ2, θ1) in order to preserve a form of
the expansion adapted to the pants decomposition it corresponds to. By redefinitions similar to
(7.11) one can change the sign of the argument of each of the four G-functions appearing in
(7.8), giving sixteen options in total.

7.4 Discussion

According to the discussion in Section 2 one might expect that there exists particular normali-
sations such that the expansion coefficients of the partition functions defined by such normal-
isations can be identified with the topological string partition functions of the local CY Yu,z.
We now see that the requirement that the free fermion partition functions admit an expansion
of generalised theta-series type restricts the normalisation freedom considerably. Only very
special choices of possibly monodromy-dependent normalisation factors have this property.
However, the requirement to have a generalised theta series expansion does not fix the normal-
isation choice uniquely, there is a small family of choices which all yield expansions of theta
series type. The comparison with the topological vertex computations performed in the fol-
lowing section will show that there exist some normalisation choices having generalised theta
series expansions with coefficients related to topological string partition functions, while other
normalisation choices are not related to the topological string partition functions in this way.
We will later see what distinguishes the normalisations corresponding to these two cases.

One should also note that the discussion in Section 7.2 does not determine the choice of the
functions N(θ3, θ2, θ1) uniquely. Multiplying N(θ3, θ2, θ1) with an arbitrary function of θ2 and
θ1 would also do the job. In (7.8) we have adopted a choice which appears to be natural.

8. The topological vertex calculations

We have seen that the requirement that the tau-function should admit an expansion of theta-
series form restricts the remaining normalisation ambiguities in the definition of the fermionic
partition function considerably, but not completely. In order to motivate the proposal we are
about to formulate we will now consider an alternative computation of the topological string
partition function which can be done with the help of the topological vertex [AKMV].

The topological string partition functions have been computed previously for the case of our
interest in [IK03a, IK03b, EK, HIV, IK04]. A key issue for our goals is the behaviour of
the partition functions under flops, which was previously studied in [IK04, KM]. The partition
functions of toric CY related by a flop differ by a factor depending only on the Kähler parameter
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degenerating in the transition. As the precise form of this factor will be important for us, we’ll
revisit the necessary calculations. We will furthermore observe that the 4d limit is subtle for the
case of our interest. As we could not find a discussion of this issue in the literature, we include
such a discussion here.

8.1 The topological vertex formalism

To compute the topological partition function, we use the topological vertex formalism
[AKMV]. For completeness we begin by sketching the rules for reading off the topological
string partition function from a toric graph.

Let G be a toric graph with set of vertices G0 and set of internal10 edges G1. To each internal
edge e ∈ G1 let us associate a Kähler parameter Qe, a Young diagram Ye, and the following
function of Qe and Ye,

Ee(Qe, Ye) = (−Qe)
|Ye|(−1)ne|Ye|q−

neκ(Ye)
2 , (8.1)

where |Y | is the number of boxes of Y , κ(Y ) = 2
∑

(i,j)∈Y (Yi − i− j + 1), Yi being the length
of the i-th row of Y , and ne = det (~vin ~vout) is an integer defined from two vectors ~vin, ~vout

introduced in Figure 3. We will also associate a Young diagram to each external edge.

~vin

~vout
e

ne ne = 1 ne = 0

Figure 3: The integer ne associated to the edge e in the graph on the left is defined as ne =

det (~vin ~vout). Applying this definition to the graphs in the middle and on the right yields the
values ne = 1 and ne = 0, respectively.

The unrefined topological vertex is the function Cλµν of three Young diagrams defined as

Cλµν = q
κλ
2 sν(q

ρ)
∑
η

sλt/η(q
ν+ρ)sµ/η(q

νt+ρ) , (8.2)

where sµ(x) and sµ/ν(x) are the Schur and skew-Schur functions of a possibly infinite vector
x = (x1, . . .), respectively [Mac]. We use the notation that for a partition ν = (ν1, ν2, . . . ), the
vector qρ+ν is given by

qρ+ν = (q
1
2
−ν1 , q

3
2
−ν2 , q

5
2
−ν3 , . . .). (8.3)

The function Cλµν has cyclic invariance Cµνλ = Cνλµ = Cλµν . If the three edges meeting
at v in clockwise order all carry arrows pointing into the vertex and are decorated with the

10Edges with both endpoints being vertices in G0.
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Young diagrams λv, µv and νv, respectively, we will assign to this vertex the function Cλvµvνv .
Changing the orientation of an edge meeting at the vertex v is represented by replacing the
corresponding Young diagram by its transpose.

The topological vertex formalism leads to an expression for the topological string partition
function of the following form

Z top =
∑

Ye;e∈G1

∏
e∈G1

Ee(Qe, Ye)
∏
v∈G0

Cλvµvνv . (8.4)

This gives an expression for a Z top as a formal series in the Kähler parameters Qe.

8.2 The strip geometry

The toric graph depicted in Figure 1 has a subgraph called strip depicted in Figure 4.

R2

∅

Y2

R1

∅

Y1

Q1

Q2

Q3

µ1

µ2

µ3

Figure 4: The strip graph.

The contribution associated to the strip graph can be computed as follows:

LR1 Y1
R2 Y2

(Q3, Q2, Q1) ≡
∑

µ1,µ2,µ3

(−1)|µ2|q−
1
2
κµ2

3∏
i=1

(−Qi)
|µi| (8.5)

× C∅µt1R1
(q)Cµ2µ1Y t1

(q)Cµt3µt2Y t2 (q)Cµ3∅R2(q).

In appendix A.1 it is explained how to perform the summations over Young diagrams in (8.5).
The final result can be brought into the form

LR1 Y1
R2 Y2

(Q3, Q2, Q1) = sR1(qρ) sR2(qρ) sY t1 (qρ) sY t2 (qρ) (8.6)

×
RRt1Y1

(Q1)RY t2R2
(Q3)RRt1Y2

(Q1Q2)RY t1R2
(Q2Q3)

RY t1 Y2
(Q2)RRt1R2

(Q1Q2Q3)
,
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Y 2

Q1
−1

Q3

Q1Q2

Figure 5: A second version of the strip geometry, related to the first one via flopping.

using the notations

RY1Y2(Q) ≡
∞∏

i,j=1

(1−Qq−Y1i−Y2j+i+j−1) = RY2Y1(Q) . (8.7)

We will find it useful to factorise the functionsRY1Y2(Q) in (8.6) as follows

RY1Y2(Q) =
NY1Y t2

(Q)

M(Q)
, (8.8)

where NY1Y t2
(Q) is a polynomial in Q, and the special functionM(Q) is defined as

M(Q) ≡ (Qq; q, q)−1
∞ , (8.9)

with (Q; t, q)∞ being the shifted factorial

(Q; t, q)∞ =
∞∏

i,j=0

(1−Qtiqj) for |t| < 1, |q| < 1, (8.10)

converging for all Q. This allows us to write (8.6) as

LR1 Y1
R2 Y2

(Q3, Q2, Q1) = L̃R1 Y1
R2 Y2

(Q3, Q2, Q1)N(Q3, Q2, Q1). (8.11)

with

N ≡ N(Q3, Q2, Q1) ≡ L ∅ ∅∅ ∅(Q3, Q2, Q1) =
M(Q1Q2Q3)M(Q2)

M(Q1)M(Q1Q2)M(Q2Q3)M(Q3)
, (8.12)

and L̃R1 Y1
R2 Y2

(Q3, Q2, Q1) being a rational function of Q1, Q2, Q3.

8.3 Flopping the strip geometry

The flop transition in the previous section would produce a toric CY in which the toric subgraph
depicted in Figure 4 is replaced by the graph in Figure 5.
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To understand the resulting modifications of the topological string partition function, we begin
by calculating from scratch the topological string partition function for the toric diagram in
Figure 5. In the same way as in the case above, we compute the topological string partition
function for the second version of the strip depicted on the right of Figure 5,

H R1 Y1
R2 Y2

(Q1, Q2, Q3) = sR1(qρ) sR2(qρ) sY t1 (qρ) sY t2 (qρ)

×
RY t1R1

(Q−1
1 )RRt1Y2

(Q1Q2)RY t2R2
(Q3)RY t1R2

(Q2Q3)

RY t1 Y2
(Q2)RRt1R2

(Q1Q2Q3)
. (8.13)

Comparing the expression for the original strip partition function (8.6) and it’s flopped version
(8.13) we observe that

LR1 Y1
R2 Y2

(Q3, Q2, Q1) =
RRt1Y1

(Q1)

RY t1R1
(Q−1

1 )
H R1 Y1

R2 Y2
(Q1, Q2, Q3) (8.14)

Factoring the functionRY1Y2(Q, q) as in (8.8), defining the function

S(Q) =
M(Q−1)

M(Q)
, (8.15)

and using the relation

NRP (Q) = (−Q)|R|+|P |q
κR−κP

2 NPR(Q−1) (8.16)

we may write (8.14) in the form

LR1 Y1
R2 Y2

(Q3, Q2, Q1) = S(Q1)(−Q1)|R1|+|Y1|q
κY1
−κR1
2 H R1 Y1

R2 Y2
(Q1, Q2, Q3) . (8.17)

A very similar formula will describe the effect of the flop transition applied to the subgraph on
the left of Figure 5 containing the edge having Kähler parameter Q3 assigned.

Remark 4. An identity has been proposed in [IK04] expressing the function S(Q) in terms of
more elementary functions. To see that such an identity can not possibly hold it suffices to note
that S(Q) = (Γ(Qq; q, q))−1, where Γ(z; p, q) is the elliptic gamma function,

Γ(z; p, q) =
(pqz−1; p, q)∞

(z; p, q)∞
=

∞∏
j,k=0

1− pqz−1pjqk

1− zpjqk
, (8.18)

which is quite non-elementary.

8.4 Gluing two strips

By gluing two strip geometries we obtain the toric graph depicted in Figure 1. This toric graph
has been associated with chamber C1,1 in Section 3.3. The partition function for this toric
diagram is then given as

Ztop
1,1 =

∑
Y1,Y2

Q
|Y1|+|Y2|
B q

κY1
2
−
κY2

2 L ∅Y2

∅Y1
(Q3, QF , Q4)L

∅Y t1
∅Y t2

(Q1, QF , Q2) . (8.19)
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Figure 6: Two toric diagrams related via flopping both engineering SU(2) superconformal
QCD with Nf = 4 fundamental hypermultiplets.

The toric diagram on the right of Figure 6 is associated to chamber C1,2. The corresponding
partition function is found to be

Ztop
1,2 =

∑
Y1,Y2

Q
|Y1|+|Y2|
B (−Q2)|Y1| q

−κY2
2 L ∅Y2

∅Y1
(Q3, QF , Q4)H Y2 ∅

Y1 ∅ (Q−1
1 , Q1Q2QF , Q

−1
2 )

=
M(Q2)

M(Q−1
2 )

Ztop
1,1 . (8.20)

The identity (8.20) also follows from Theorem 4.4 in [KM].

Continuing is this way we arrive at the conclusion that the partition functions Ztop
i,j associated

to the chambers Ci,j can be represented the form,

Ztop
i,j = Zout

i Z in
j Z

inst, (8.21)

Z inst =
∑
Y1,Y2

(Q1Q4QB)|Y2|(Q2Q3QB)|Y1|q
κY2

2
−
κY1

2

2∏
i=1

sYi(q
ρ)sY ti (qρ) (8.22)

×
∏

i=2,3NY1∅
(
Q−1
i

)
N∅Y2

(
QiQF

)∏
i=1,4N∅Y2

(
Q−1
i

)
NY1∅

(
QiQF

)
NY1Y2

(
QF

)
NY1Y2

(
QF

) .

The factor denoted Z inst in (8.21) is known in the literature as the five dimensional Nekrasov
instanton partition function [N]. This part is independent of the choice of a chamber. Of main
interest for us are the factors Zout

i , Z in
j . In the case (i, j) = (3, 3) corresponding to the octagonal

toric diagram depicted on the right of Figure 7 we find, for example,

Zout
3 =

M(QF )M(Q3Q4QF )∏4
i=3M

(
Q−1
i

)
M
(
QiQF

) , Z in
3 =

M
(
QF

)
M(Q1Q2QF )∏2

i=1M
(
Q−1
i

)
M
(
QiQF

) . (8.23)

The results for the other chambers are similar, differing by factors S(Qi), i = 1, 2, 3, 4, which
can easily be found from the discussion of flop transitions above. In this way we can define Ztop

as a piecewise analytic function on the union of the chambers Cij which is at least continuous at
the walls corresponding to the flop transitions.
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Figure 7: The Octagon web diagram can be obtained via four floppings.

8.5 Four-dimensional limit and final result

Taking the limit R → 0 of the topological string partition functions is delicate as the functions
M(Q) diverge in this limit. In Appendix A.2 it is shown that the limit

Ztop
2,2 = lim

R→0
Z̃top

2,2 , Z̃top
2,2 :=M(e−2Ra2)M(e−2Ra3)(M(1))2 Ztop

2,2 , (8.24)

exists. It follows from the existence of a limit for Z̃top
2,2 that the singular behavior of Ztop

2,2 does
not depend on the variables σ = − 1

λR
logQF and z = QB. While there do exist alternatives

for the definition of finite quantities from Ztop
2,2 in the limit R → 0, it is both unnecessary and

unnatural to introduce extra factors altering the dependence on σ and z in the definition of this
limit.

In this way we finally arrive at the following definition for the four-dimensional limit of Ztop
2,2 :

Ztop
2,2 ( a , m ; z ) = M(σ, θ4, θ3)M(σ, θ2, θ1)F(σ , θ ; z ), (8.25)

using the following notations:

• the Kähler parameters of X are related to the variables σ and θ1, . . . , θ4 as follows:

σ = a/λ, θi = mi/λ, i = 1, . . . , 4. (8.26)

• The function M(θ3, θ2, θ1) is explicitly given as

M(θ3, θ2, θ1) = (8.27)

=
G(1 + θ3 + θ2 + θ1)G(1− θ3 + θ2 + θ1)G(1 + θ3 − θ2 + θ1)G(1 + θ3 + θ2 − θ1)

G(1 + 2θ3)G(1 + 2θ2)G(1 + 2θ1)G(1)
,

where G(p) is the Barnes G-function that satisfies G(p+ 1) = Γ(p)G(p).

• F(σ , θ ; z ) has been defined in (7.4).
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The definition of Ztop
i,j for all i, j = 1, 2, 3 is obtained from (8.25) by the rules describing the

effect of flop transitions with S(e−Rx) replaced by S(x) := Γ(1+x)
Γ(1−x)

. In this way we find, for
example

Ztop
3,3 ( a , m ; z ) = N(σ, θ4, θ3)N(σ, θ2, θ1)F(σ , θ ; z ), (8.28)

with N(θ3, θ2, θ1) defined in (7.8).

Comparing with the discussion in Section 7 we see that the topological string partition functions
Ztop

i,j for all chambers Ci,j are obtained as generalised theta series expansion coefficients for
suitable choices of coordinates (σ, τ). However, only a subset of the normalisation factors
giving generalised theta series expansions appears in this way. We will next see that there
is a canonical relation between the coordinates determining the partition functions Ztop

i,j and
coordinates defined using abelianisation [HN].

9. Abelianisation

We had seen in the previous sections that there is a direct correspondence between natural nor-
malisations of the tau-functions and choices of coordinates forMflat(C0,4). It was furthermore
found that the topological string partition functions for the local CY manifolds of class Σ repre-
sent theta series coefficients of tau-functions for certain choices of coordinates, as expected. So
far it is not clear, however, what distinguishes the coordinates giving topological string partition
functions in the theta series expansions from others. We will now observe that there is a natural
way to define a system of coordinates forMflat(C) associated to each chamber in the space of
quadratic differentials on C defined above. The relevant systems of coordinates will be defined
by a procedure introduced in [HN] called abelianisation.

9.1 Spectral Networks

The curves Σ ∈ T ∗C defined in Section 3.1 as two-fold coverings of base curves C, with
C representing a punctured sphere, were specified by quadratic differentials q(x) in equations
(3.2)-(3.4).

A quadratic differential q(x) defines a singular foliation F(q) on C, with singularities at the
zeros and poles of this differential. Let P = P0∪P∞ be the set of points that are the zeros (also
called turning or branch points) and respectively the poles of the quadratic differential q(x).

A trajectory of q(x) is a leaf of the foliation on C\P defined by

Im
∫ x√

q(x′)dx′ = constant . (9.29)

A Stokes curve is a trajectory of q(x) with one end point at a turning point. In a local coordinate
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q (x)=x

z=0
(ij)

ij

ij

ji

Figure 8: (Left) Stokes curves or walls emanating from a simple zero of the quadratic differential
with q(x) = x. (Right) Walls emanating from a branch point of the quadratic differential q(x)

defining the double cover Σ → C are labeled by pairs of integers i, j ∈ {1, 2} corresponding
to the sheets of Σ.

x on C, a Stokes curve emanating from a turning point a ∈ P0 is defined by

Im
∫ x

a

√
q(x′)dx′ = 0 . (9.30)

Let qθ(x) = e2iθq(x) be a new quadratic differential. A Stokes curve in the direction θ ∈ R/2πZ
emanating from a turning point a ∈ P0 is defined by

Im
(
eiθ
∫ x

a

√
q(x′)dx′

)
= 0 . (9.31)

There are exactly three trajectories emanating from a simple zero and which are Stokes curves,
as depicted in Figure 8 on the left. For a double pole p ∈ P∞, there are three cases to distinguish
for Stokes curves, depending on the residue rp = Resx=p

√
q(x)dx:

(a) radial arcs entering p, when rp ∈ R;

(b) closed trajectories around p, when rp ∈ iR;

(c) clockwise or counterclockwise logarithmic spirals wrap onto p, when rp /∈ R ∪ iR.

A Stokes curve can be: a saddle trajectory, flowing into points in P0 at both ends; a separating
trajectory, one of whose endpoints belongs to P0, while the other belongs to P∞ or a divergent
trajectory, the latter however will not play a role here. Of particular interest for us will be
saddle trajectories. These are of regular type if they connect two different points in P0 and of
degenerate type if they form a loop around a double pole p ∈ P∞.

The spectral network Wθ(q) or Stokes graph for a quadratic differential q(x) is a graph on C
with vertices at the points in P and oriented edges (called walls) given by the Stokes curves of
q(x) [IN]. Wθ(q) can therefore be obtained from the critical locus of the singular foliation F(q)

[HK].

For practical purposes, it is useful to choose a trivialization of the covering, that is a choice
of branch cuts on the base C and labels for the sheets of Σ. Each wall of the network is then
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ji

ij

ij

ji

Figure 9: Possible resolutions are infinitesimal ways of displacing the walls in a double wall.

labeled by an ordered pair of integers i, j ∈ {1, 2} corresponding to the sheets i and j. Given a
positively oriented tangent vector v to the wall and θ ∈ R/2πZ, this wall carries the label ji if
e−iθ(λi − λj)(v) ∈ R+ and ij if e−iθ(λi − λj)(v) ∈ R− [HK]. A branch point where sheets i
and j coincide is a turning point from which three walls of type ij or ji emanate, as depicted in
Figure 8 on the right.

Punctures, boundaries and annuli on C\W are then assigned decorations [HN]. These are
orderings of the sheets of Σ→ C over every puncture, for each direction around the punctures
and compatible with the labelings of the walls around them. Over a boundary component or
annulus (equivalently pants curve), they are orderings of the sheets for each way of going around
the boundary or annulus, compatible with the labelings of the wall around it. 11

A Stokes graph in direction θ consists of the Stokes curves in direction θ and the points in P . By
varying θ continuously, the topology of the spectral network changes when a saddle trajectory
appears. For special values of q(x) and θ, two walls ij and ji overlap and create a double
wall. When this occurs there exist two possible resolutions, which are the infinitesimal ways of
displacing the walls with respect to each other depicted in Figure 9.

When the quadratic differential q(x) obeys the Strebel condition
∮
γi

√
q(x)dx ∈ R+ for the

period integrals around the curves {γi} defining a pair of pants decomposition of C, all leaves
of the foliation are compact, either closed or saddle trajectories. The corresponding spectral
network is called a Fenchel-Nielsen (FN) network and is composed of double walls only. Such
networks can be seen as a limiting case of spectral networks coming from a general quadratic
differential on C. A FN network respects a pair of pants decomposition of the Riemann surface
C, in the sense that the restriction of such a network to every three-punctured sphere in this
decomposition is a network of only double walls.

9.1.1 Three-punctured sphere

When the base curve is C0,3 = P1\{0, 1,∞}, the quadratic differential defining the branched
covering Σin → C0,3 was given in equation (3.4) by

q(t)(dt)2 =
t2a2 − t(a2 + a2

1 − a2
2) + a2

1

t2(t− 1)2
(dt)2 . (9.32)

11 Note that punctures, marked points and branch points are part of the definition of a spectral network. Branch
cuts and the labelling of sheets of the covering Σ are however not.
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a) b) c)

d) e) f)

Figure 10: Fenchel-Nielsen networks on the three-punctured sphere for different values of the
parameters a, a1, a2, with punctures depicted by the blue dots at positions z = 0, 1 while the
third puncture is at infinity. The different isotopies occur in different regions of the parameter
space. They correspond to the possible choices of a chamber CR,α in a real subspace of the space
of quadratic differentials on C0,3. For example Molecule I, as depicted by the FN network a),
corresponds to the chamber Cin

1 in Section 3.3, while the Molecule I depicted by the FN network
b) corresponds to the chamber Cin

3 . Lastly, Molecule II pictured on the bottom row corresponds
to the chamber Cin

2 .

There exist two inequivalent types of FN networks and these can have one of two topologies,
called Molecule I on the top line of Figure 10 or Molecule II, on the bottom line12. For each of
these topologies, there is a choice for the resolution. This can be British, where the outer walls
of the network are oriented clockwise, or American, where the outer walls are oriented counter-
clockwise. To simplify the discussion let us assume that all the parameters a are real, t ∈ R
and that θ = π. The branch points will then either be real, or come in complex conjugate pairs.
The transitions between different types of molecules occur when two branch points coalesce,
corresponding to the flop transitions discussed in Section 3.3. The branch points t± are easily
read off from equation (3.12), giving(

t± −
a2 + a2

1 − a2
2

2a2

)2

=
(a2 − (a1 + a2)2)(a2 − (a1 − a2)2)

4a4
. (9.33)

Flop transitions occur when a2 = (a1 + a2)2 and a2 = (a1 − a2)2. It is easy to show that

t± < 1 for a2 = (a1 + a2)2,

t± > 1 for a2 = (a1 − a2)2.
(9.34)

Therefore a molecule changes its isotopy class [HK] when the parameter a crosses any of the
planes a = ±a1± a2. The triplets of parameters {a1, a2, a} for the examples depicted in Figure

12 These figures have been plotted using the Mathematica package [Npl].
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10 take the following values: a) {0.51, 0.32, 0.18}, b) {0.49, 0,48, 1} and c) {0.32, 0.51, 0.18}
on the top line, and d) {0.47, 0.1, 0.4}, e) {0.51, 0.5, 1} and f) {0.1, 0.47, 0.4} on the bottom
line. Thus the network in Figure 10 a) corresponds to the chamber Cin

1 in Section 3.3, the
molecule in Figure 10 b) corresponds to the chamber Cin

3 , while the networks on the bottom row
correspond to the chamber Cin

2 .

On a general Riemann surface C, FN networks can be defined with respect to a pants decom-
position of C and found by gluing together molecules in the same resolution on the individual
pants. One needs to fix a branched cover Σ → C over each pair of pants. Molecules are then
glued along the boundaries of the pants, inserting a circular branch cut around the gluing curve
and lastly specifying the decoration [HN]. The reason for inserting the branch cut is such that
the decorations of the two glued boundaries agree. The label for each way of going around the
annulus where pants are glued is then chosen to match the decoration around the nearest wall.
Fixing the decoration of one wall therefore fixes the decorations of all walls.

9.2 W-framed flat connections on C

For a punctured Riemann surface C, let ∇ be a flat SL(2)-connection in a complex vector
bundle E over C with fixed conjugacy class Dk = diag(e2πiθk , e−2πiθk) at the kth puncture. For
a fixed a branched cover π : Σ → C, let thenW be a Fenchel-Nielsen network subordinate to
this covering. W decomposes the base curve into annular regions Ai, like for example in Figure
11 in the case C = C0,4, over which the flat connection∇ can be diagonalised.

D1 '

D1 D2

D2 '

D12

D12 '

J1

J12 J 2 T

D34

D34 '

J 3

J 4
J 34

D3

D3 '

D4

D4 '

1 2 3 4

Figure 11: Fenchel-Nielsen network on the four-punctured sphere.

Fix PC to be the set of distinguished points on C consisting of two base points on either side
of each wall of the network and points along the boundary components of C. These points are
marked by black dots in Figure 11. Let GC be the set of all paths ℘ that begin and end at points
of PC , up to homotopy. A path ℘ ∈ GC is called “short” if it does not cross any walls.

For a choice of basis (s1, s2) of the vector bundle E at any point on C\W , the parallel transport
of (s1, s2) over a short path ℘ ⊂ C\W is represented as follows:

(a) within a pair of pants and not crossing a branch cut, it is given by a diagonal matrix D℘ =

diag(d, d−1) ∈ SL(2);
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21 12
Jw21 Jw12

Figure 12: The jump matrices of equation (9.36) associated to a wall in terms of its decoration.

(b) traversing an annulus between two pairs of pants, it is given by a diagonal matrix T℘ =

diag(eiτ/2, e−iτ/2);

(c) crossing a branch cut emanating from a simple branch point ij, it is represented by

D℘ =

(
0 d

−d−1 0

)
. (9.35)

Across a single wall w ∈ W of the Fenchel-Nielsen network, the non-abelian parallel transport
of (s1, s2) is represented by a non-diagonal jump matrix Jw, which is either upper or lower
triangular and whose precise form depends on the decoration assigned to the wall13 [HK]

Jw12 =

(
1 0

∗ 1

)
, Jw21 =

(
1 ∗
0 1

)
(9.36)

like in Figure 12. The entries marked with a “ * ” are determined uniquely in terms of the
matrices D℘ by consistency conditions. These state that over every composition of paths ℘
contractible to a turning point (marked with an orange “ × ” in Figure 11), the corresponding
parallel transport is represented by a product of matrices which is equal to the identity. The
determination of the off-diagonal elements of the matrices Jwij is described in more detail in
Appendix D. Note that the map from the path groupoid GC to the corresponding SL(2) matrices
is an anti-homomorphism. Having a composition ℘ = ℘1℘2 of a path ℘1 from point i1 to i2 with
a path ℘2 from i2 to i3 one composes the holonomy matrices D℘1 and D℘2 associated to ℘1 and
℘2, respectively, as D℘ = D℘2D℘1 .

9.3 Four-punctured sphere

Following the rules to determine the monodromy and wall crossing matrices, which were out-
lined in Section 9.2, one can repeat the process for FN networks on the four-punctured sphere.
Consider the pants decomposition defined by the dashed orange curve in Figure 13, separating
the punctures with labels 1 and 2 on the left from those labelled by 3 and 4 on the right. A com-
bination of molecules that respects this pants decomposition is depicted in the British resolution
in Figure 13. The monodromy around the orange pants curve is

S =

(
e2πiσ 0

0 e−2πiσ

)
, (9.37)

13 Note that in Figure 11 the labels of the wall crossing matrices are not of the form wij but rather i ∈ {1, . . . , 4},
representing the label of the puncture towards which the corresponding path is directed, or ij ∈ {12, 34}, repre-
senting the labels of the punctures closest to the end points of the corresponding path.
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corresponding to the invariant Ls in Section 6.1. The clockwise monodromy around punctures
23 is computed by

U = T−1M out
3 TM in

2 = T−1J−1
3 D3J3TJ

−1
2 D2J2, (9.38)

and determines the FN coordinate which supplements σ, with the matrix T = diag(eiτ/2, e−iτ/2)

representing abelian parallel transport.

D1 ' D2 '

D2 ' 'D1 ' '

D1 D2
J1

J 2
J12

D3 ' D4 '

D4 ' 'D3 ' '

D3 D4
J 3

J 4

J 34

T
1 2 3 4

21

12

21

12

12

21

12

21

12

21
21

12

Figure 13: Fenchel-Nielsen networks on the four-punctured sphere, Molecule I-I.

This monodromy matrix has trace

Lu = P−1
+ +N0 + P+N , (9.39)

where

P+ = ei(τ+2πσ) , (9.40)

after setting d′2d
′
4d
′′
4 = −d′′2d′′3 2 for the coefficients of the D-type parallel transport matrices by

gauge transformations at the walls of the network. The coefficients in equation (9.39) are

(2 sin(2πσ))2N0 =− 2 [cos 2πθ1 cos 2πθ4 + cos 2πθ2 cos 2πθ3] (9.41)

+ 2 cos 2πσ [cos 2πθ1 cos 2πθ3 + cos 2πθ2 cos 2πθ4] ,

and

(2 sin(2πσ))4N =
∏

s,s′=±1

2 sinπ(σ + sθ1 + s′θ2)2 sinπ(σ + sθ3 + s′θ4) . (9.42)

Note that switching the resolution of the network in Figure 13 changes equation (9.38) to

Lu = NP−1
+ +N0 + P+ , (9.43)

which is equivalent to replacing P+ by P−1
+ .
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9.3.1 Flop transitions

We will now analyse how the choice of network affects the equations defining the corresponding
coordinates. In Section 9.1.1 we had associated to each chamber Cout

j and Cin
i , i, j = 1, 2, 3

unique FN-networks on Cout
0,3 and C in

0,3, respectively, and observed a correspondence between
flop transitions and changes of topological type of the FN-networks. We are now going to derive
rules describing the effect of flop transitions on the coordinates defined by abelianisation.

D1 '

D1 D2

D2 '

D12

D12 '

J1 J12 J 2 T

D34

D34 '

J 3 J 4
J 34

D3

D3 '

D4

D4 '

1 2 3 4
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12 12
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21
12

21
12
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21
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Figure 14: Fenchel-Nielsen networks on the four-punctured sphere, Molecule II-II.

Considering the FN network in Figure 14, for example, we’d find in a similar way as above the
monodromy matrix

U = T−1M out
3 TM in

2 = T−1J−1
3 D3D

′
3J3TJ

−1
2 D′2D2J2 , (9.44)

which has a trace given by the formula

Lu = P ′−1
+ +N0 + P ′+N, (9.45)

and where the coefficient P ′+ is

P ′+ = P+/ (2i sin π(σ − θ1 − θ2)2i sin π(σ − θ3 − θ4)) . (9.46)

In this way one can find a simple set of rules for the changes of coordinates induced by flop
transitions. The result is summarised in Table 1.14

14 In Section 9.3 gauge transformations at the walls of the FN network were used to fix the coefficients of the
D-matrices such that d′2d

′
4d
′′
4 = −d′′2d′′3 2. Thus the trace function Lu of the monodromy which describes parallel

transport around the punctures 23 on C0,4 contains the term P+ as determined by equation (9.40). Similarly, it is
necessary to fix a gauge for the other possible FN networks on C0,4 that combine the remaining isotopies for type
I or II molecules depicted in Figure 10, and which appear on the three-punctured spheres in a pants decomposition
of C0,4. For example when changing the type I molecules in Figure 13 to type II in Figure 14, in order to arrive at
equation (9.46) it is necessary to set d′′2/d

′
2 = eπi(σ−θ1−θ2)d′1d

′
12/d2 and d′4d

′′
4/d
′′
3

2 = e−πi(σ−θ3−θ4)d4/d
′
3d
′
34.

Such conditions can be found systematically by sequentially changing to the isotopy class of any one molecule,
starting with the FN network in Figure 13.
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Enclosed punctures

(12) 2i sin π(σ − θ1 − θ2) 2i sin π(σ + θ1 − θ2) 2i sin π(σ − θ1 + θ2)

Table 1: The relations between the change of FN coordinates on a four-punctured sphere to
changes in the isotopy class of the molecules on the three-punctured spheres in a pair of pants
decomposition. When the FN network consists of type I molecules, like in Figure 13, equation
(9.39) computes the trace function Lu around punctures 23. Changing the isotopy class of
either molecule as depicted on the top row above leads to dividing the term containing P+ in
the expression for Lu by the factors in the second row of this table.

9.4 Comparison

In Subsection 6.1 we had explained how the factorisation of Riemann-Hilbert problems de-
scribed in Section 6.1.2 can be used to define coordinates for Mflat(C0,4). To round off the
picture, let us now observe that the coordinates defined by abelianization are of course special
cases of the coordinates from the factorisation of Riemann-Hilbert problems.

Indeed, it is clear from the discussion in Section 6.1 that it suffices to fix the ratio νout
− /νout

+ of
normalisation factors in (6.6) appropriately in order to ensure that the coordinates (σ, η) defined
in this way coincide with FN-type coordinates defined by abelianisation. The abelianisation
approach will then simply amount to a representation of the monodromy matricesM in

2 andMout
3

in (6.9) in the form J−1
2 D2J2 and J−1

3 D3J3, making (9.38) equivalent to (6.9). Changing the
ratio νout

− /νout
+ scales the two off-diagonal elements of M3 by factors which are inverse to each

other, which is equivalent to the effect of conjugation of the matrix M3 by a diagonal matrix. In
this way one can relate all the different coordinate systems defined using abelianisation with a
fixed pants decomposition.

Let us next recall, on the one hand, that to each chamber Ci,j, i, j = 1, 2, 3 there corresponds a
toric diagram from which we can calculate the topological string partitions using the topological
vertex. We had, on the other hand, explained above how each molecule defines corresponding
coordinates forMflat(C0,4), and how each such system determines a normalisation for the free
fermion partition functions admitting a theta-series expansion, leading to a correspondence be-
tween molecules and the functions appearing as coefficients in the theta series expansions. We
see that the functions defined in this way indeed coincide with the topological string partition
functions if the molecules labelling the different theta series expansions are identified with the
chambers Ci,j according to the dictionary stated in Section 9.1.1 above.

This holds for a specific choice of resolution, as specified above. However, changing the resolu-
tion is equivalent to a change of coordinates (σ, τ) = (−σ′,−τ ′), which does not give anything
substantially new in our context.
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9.5 Exact WKB expansion

In Section 6.1 we had observed a direct relation between the normalisation choices for the solu-
tions to the Riemann-Hilbert problem and the choices of coordinates forMflat(C0,4). Abelian-
isation provides distinguished coordinates associated to FN-networks. We are now going to
observe that the solutions to the Riemann-Hilbert problem associated to the coordinates defined
by abelianisation are distinguished by the feature that they can be obtained by Borel-summation
of the λ-expansion for the solutions to (λ2∂2

x + qλ(x))χ(x) = 0. These solutions are therefore
determined by the quantum curve in the most canonical way.

The solutions of the basic ODE (λ2∂2
x + qλ(x))χ(x) = 0 can be represented as an expansion in

the parameter λ. This expansion, often referred to as the WKB-expansion can be conveniently
described by first expanding the solution η of the Ricatti equation qλ = η2 − λη′ as

η(x) ≡ η(x;λ) =
∞∑

k=−1

λkηk(x). (9.47)

The family of functions {ηk(x); k ≥ −1} must satisfy the recursion relations

(η−1(x))2 = q0(x) (9.48a)

2η−1ηn+1 +
∑
k+l=n

0≤k,l≤n

ηkηl − η′n = ϑn+2 for n ≥ −1. (9.48b)

The first of the equations (9.48) is recognised as the equation for Σ. Picking a solution η−1(x)

is related to picking a sheet of this covering. The series (9.47) is usually not convergent, but
may be Borel summable, see [IN] for a careful discussion of the relevant results.

With the help of the solutions χ to the Ricatti equation obtained by Borel summation one may
define two linearly independent solutions χ±(x) of the ODE (λ2∂2

x + qλ(x))χ(x) = 0 charac-
terised by leading asymptotics for λ→ 0 of the form

χ±(x, λ) =

√
λ

(q0(x))
1
4

exp

(
±
∫ x

du

(
1

λ

√
q0(u) +

q1(u)

2
√
q0(u)

))
(1 +O(λ)). (9.49)

The solutions χ±(x, λ) are analytic in the annular region A. In the vicinity of a puncture at
x = 0 we have q0(x) ∼ m2

x2 . It follows from (9.48a) that χ−1(x) ∼ ±m
x

. We thereby see that the
two solutions defined by (9.49) both have diagonal monodromy around x = 0.

For any given Fenchel-Nielsen network the Borel summation defines a collection of distin-
guished bases, one for each annular region. The analytic continuation of the basis elements
defines solutions to the Riemann-Hilbert problem normalised in a particular way. In the case of
the three-punctured sphere the two solutions defined in this way must therefore coincide with
the solutions defined in (6.6) for particular choices of normalisation constants νout

ε . The nor-
malisation factors νout

ε defined by the Borel-resummation are not easy to calculate, but the ratio
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νout
+ /νout

− can be determined indirectly by matching the monodromy matrices determined by
abelianisation to (6.8).

10. Summary and outlook

10.1 The result

To conclude, let us reformulate our results in a way that suggests various generalisations. Our
results amount to a reconstruction of the topological string partition functions from the quantum
curve at least for certain degenerating families Cz of base curves parameterised by a complex
number z which controls the degeneration occurring for z → 0.

We had observed that the extended Kähler moduli space admits a chamber decomposition with
chambers separated by walls associated to flop transitions. The chambers admit a natural com-
plexification. The union of the complexified chambers should be mirror dual to the moduli space
of the complex structures of Σu,z. To each chamber there corresponds a unique Fenchel-Nielsen
network separating C into annular regions.

The quadratic differential qλ(x) appearing in the equation defining the quantum curve,

(λ2∂2
x + qλ(x))χ±(x) = 0, (10.1)

is defined for given monodromy data µ = µ(σ, τ) through the Riemann-Hilbert correspon-
dence. The Borel resummation of the WKB expansion for the solutions χ± to (10.1) defines
distinguished solutions to this equation in each annular region defined by a Fenchel-Nielsen
network. From the solutions χ± one may uniquely construct the tau-functions T (σ, τ ; z) as the
Fredholm determinants of an integral operator canonically associated to χ±. The tau-functions
T (σ, τ ; z) admit an expansion in powers of z around the degeneration point z = 0. If σ, τ
are the coordinates defined by abelianisation with the given Fenchel-Nielsen network, there ex-
ist distinguished normalisations defining free fermion partition functions admitting generalised
theta series expansions,

Z(σ, τ ; z) := N(σ)T (σ, τ ; z) =
∑
n∈Z

einτGN(σ + n; z) . (10.2)

The coefficient functions GN(σ; z) appearing in the expansions (10.2) have been shown to be
equal to the topological string partition functions for the chambers associated to the respective
Fenchel-Nielsen networks.

It may look surprising that there is an essentially unambiguous way to reconstruct the partition
function from the quantum curve. The key ingredients fixing conceivable ambiguities are:

• Integrability controls possible quantum corrections to the quantum curve as explained in
Section 4.



57

• The Borel-resummation of the λ-expansion for the solutions to (10.1) provides a distin-
guished basis for the space of solutions, defining the free fermion two point function.

• A one-to-one correspondence between the bases from WKB-resummation and normalisa-
tions for the free fermion partition function admitting generalised theta series expansions.

The generalisation to the case of C = C0,n is straightforward. The variables (σ, τ) get replaced
by tuples (σ, τ) where σ = (σ1, . . . , σn−3), and τ = (τ1, . . . , τn−3), and z gets similarly replaced
by z = (z1, . . . , zn−3). Cases like higher genus surfaces C = Cg,n or surfaces with irregular
singularities15 are certainly within reach. The generalisation to covers of higher degree should
be very interesting.

10.2 Role of integrable structures I

A source of motivation for our proposal has been the relation between the free fermion partition
function at λ = 0,

ZΣ(ϑ, a) =
∑
n

ein·ϑ e
i
2
n·τ(a)·neF1(u). (10.3)

and the Hitchin integrable system, established by the identification of the variables (a, ϑ) as
action-angle variables of the Hitchin integrable system. The goal of this and the following
subsection is to clarify in which sense our proposal above can be regarded as a deformation of
the integrable structure of the Hitchin system. To begin with, we will demonstrate how (10.3)
is recovered in the limit λ→ 0.

10.2.1 Deformation of the Baker-Akhiezer function

We are first going to explain in which sense the solution of the Riemann-Hilbert problem Ψ(y)

is a natural deformation of the Baker-Akhiezer function Φ(y) of the Hitchin system. The basic
observation is simple. The horizontality condition (∂x + 1

λ
ϕ(x))Ψ(x) can be solved to leading

order in λ in the form

Ψ(x) = e−
1
λ
S(x)Φ(x)(1 +O(λ))

if ϕ(x)Φ(x) = y(x)Φ(x), ∂yS(y) = y(x),
(10.4)

already indicating that the function Φ(x) in (10.4) can be identified with the Baker-Akhiezer
function defined in (4.3). However, one should keep in mind that the normalisation of the
eigenvector of ϕ adopted in (4.3) relates the zeros and poles of Φ(x) to the coordinates xk of
the SOV-representation. We need to verify that the same is true for the function Φ(x) in (10.4).

15See [BGT16, BLMST, BGT17] for similar results obtained by different approaches in some cases with irreg-
ular singularities.
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To this aim it will be convenient to work in a gauge where ∂x + 1
λ
ϕ(x) is of oper form with

ϕ(x) = ( 0 qλ
1 0 ). This allows us to represent Ψ(x) in the form Ψ =

(
∂xχ+ ∂xχ−
χ+ χ−

)
, with χ± being

the solutions to the equation defined by the deformed quantum curve λ2∂2
x + qλ(x). Expanding

qλ(x) as qλ(x) = q(x)+λq1(x)+O(λ2) it is straightforward to show that the leading behaviour
of the solutions χ±(x, λ) for λ → 0 can be represented in the form (9.49). Let us consider the
term q1

2
√
q0

in (9.49). It is not hard to see that this term defines a meromorphic one-form ωD on
Σ which has poles at the lifts of xk with residues ±1. The third kind differential ωD = q1

2
√
q0
dx

is characterised by the divisor D =
∑

k(x̌k − x̂k), with x̌k, x̂k: lifts of xk to different sheets of
Σ. It follows that χ+(x, λ) is of the form

χ+(x, λ) =

√
λ

(q0(x))
1
4

exp

(
1

λ

∫ x

du
√
q(u)

)
ζ+(u, λ) (1 +O(λ)), (10.5)

where ζ+(x, λ) = exp
( ∫ u

ωD
)

is meromorphic on Σ with zeros at x = x̂k and poles at x = x̌k.
This makes it easy to verify that the vector

( yχ+
χ+

)
represents the Baker-Akhiezer function (4.3)

in the gauge where ϕ(x) = ( 0 q
1 0 ) with q = y2.

10.2.2 Undeformed limit of free fermion partition function

We’d now like to indicate how to recover the partition functions (4.1) from our proposal in
the limit λ → 0. We may use the inverse of the Abel map in order to recover the divisor
(x1, . . . , xn−3) from (ϑ1, . . . , ϑn−3). The holonomy map combined with the definition of FN-
type coordinates (σ, τ) gives us functions (σ(a, ϑ;λ), τ(a, ϑ;λ)) parameterically depending on
λ. By using (9.49) and the Riemann bilinear identity16

θl =
∑
k

∫ x̌k

x̂k

ωl =
∑
k

(∫
αk

ωl

∫
βk

ωD −
∫
βk

ωl

∫
αk

ωD

)
(10.6)

=

∫
βl

ωD − τkl
∫
αk

ωD, (10.7)

it follows that the leading order behavior of the coordinates (σ, τ) is of the form

σk ≡ σk(a, ϑ) =
1

λ
(ak + λδk +O(λ2)), (10.8a)

τk ≡ τk(a, ϑ) =
1

λ
(aD

k + λ(ϑk + τΣ
klδ

l) +O(λ2)), (10.8b)

with δk ≡ δk(a, ϑ) being the periods of ωD along αk.

Inverting the relation between σ and a, to leading order represented in (10.8a), allows us to
regard τ as function of σ and ϑ, τ = τ(σ, ϑ;λ). This corresponds to parameterising families of

16We are using the summation convention in the second line.
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deformed quantum curves through (x,y) with x ≡ x(ϑ) determined by a point on the Jacobian
with coordinates θ through the inverse of the Abel map, and y = y(σ, ϑ;λ) determined by
the condition that the trace function Lγ associated to any cutting curve γ is given as Lγ =

2 cos(2πσγ). From (10.8) we get the expansion

τk ≡ τk(σ, ϑ ; λ) =
1

λ
∂akF(λσ) + ϑk +O(λ). (10.9)

Using (10.8) and logZtop( 1
λ
a) = 1

λ2F(a) + F1(a) +O(λ2), we easily find that

log
[
ein·τ( 1

λ
a,ϑ;λ)Ztop(λ−1a + n)

]
= (10.10)

=
1

λ2
F(a) + iϑ · n +

1

2
n · τΣ · n + F1(a) +O(λ).

This implies that

lim
λ→0

e−
1
λ2F(a)ZΣλ

(
λ−1a , τ(λ−1a, ϑ;λ)

)
= ZΣ(ϑ, a), (10.11)

in the limit λ → 0 with a and ϑ fixed. Equation (10.11) clarifies in which sense ZΣλ is a
“quantum” deformation of ZΣ.

10.3 Role of integrable structures II

It seems to intriguing to observe that the dependence on both (σ, τ) and z appears to be con-
trolled by the integrable structures of the problem, as can be expressed by the pairs of equations

∂zrTN(σ, τ ; z) = Hr TN(σ, τ ; z), (10.12a)

e∂σkTN(σ, τ ; z) = e−iτk TN(σ, τ ; z). (10.12b)

The factors Hr appearing on the right hand side of (10.12a) are defined through the Riemann-
Hilbert correspondence as functions Hr = Hr(σ, τ ; z). The definition of the coordinate τk
appearing on the right of (10.12b), on the other hand, is unambiguously fixed by using the
solutions χ±(x) obtained by Borel summation in the definition of coordinates described in
Sections 6.1 and 9.

While (10.12a) is the definition of the isomonodromic tau-function through a solution to the
Schlesinger equations, the difference equations (10.12b) are associated to the integrable struc-
ture ofMflat(C0,n) manifested in the Fenchel-Nielsen type coordinates, allowing one to regard
the coordinates σ as action-variables, and τ as angle coordinates, together forming a system
of Darboux coordintates for the natural symplectic structure onMflat(C0,n). Equations (10.8)
indicate that the integrable structure ofMflat(C0,n) expressed through the Darboux coordinates
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(σ, τ) can be regarded as a deformation of the integrable structure of the Hitchin system made
manifest through the definition of the action-angle coordinates (a, ϑ).

It is clear that equation (10.12b) severely restricts the dependence of TN(σ, τ ; z) on (σ, τ), and
therefore the choice of the normalisation factors left undetermined by the definition (10.12a) of
the isomonodromic tau-function.

10.4 Perspectives

Having given a precise analytic characterisation of the topological string partition function may
also shed light on what remains to be done to make other approaches fully effective.

10.4.1 Topological recursion

Topological recursion provides a systematic approach to the expansion of the topological string
partition functions in powers of λ, see [Ey] for a review and further references. With the help
of the non-perturbative answer given in this paper one may hope to address two important
questions:

(i) Which initial conditions characterise the topological string partition functions for local CY
of class Σ with the help of the topological recursion?

(ii) To what extend can one hope to reconstruct the non-perturbative answer from the formal
series in λ defined by the topological recursion?

Concerning question (ii) it seems encouraging to note that the two-point function is indeed
canonically defined from the WKB expansion by means of Borel summation.

10.4.2 Matrix models

Matrix models [DV02, DV09] can potentially give answers for the values of the topological
string partition functions which are non-perturbative in λ but restricted to a lattice in the set of
allowed Kähler parameters defined by the integrality of the numbers of integrations. The precise
answer will depend on the choice of integration contours, in general. Interesting questions are:

(i) Which choice of integration contours will reproduce the non-perturbative partition func-
tions defined in our paper?

(ii) Is there a canonical way to reconstruct the full partition functions from the functions on
the lattices in the set of Kähler parameters defined by the matrix models?

Partial results concerning the first question (i) have been obtained in [CDV].
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10.4.3 Topological vertex and beyond

It is not known if the series defined by the topological vertex formalism are convergent, in
general, see however [FM] for recent results allowing to prove the convergence in some cases.
For the theories of class Σ one may infer the fact that the series obtained using the topological
vertex yield well-defined functions with the help of the Fredholm determinant representations
discussed in this paper.

It is worth noting, however, that the class of theories for which the approach taken in this paper
suggests an answer includes many cases for which it is not known how to represent the local CY
as limits of toric CY. This will be the case for coverings of surfaces C of higher genus and the
so-called Sicilian quivers. It should be possible to generalise our approach to arrive at precise
predictions for this class of local CY for which not much seems to be known at present.

10.4.4 N = 1 theories

Going beyond the various applications of topological string theory to the study ofN = 2 super-
symmetric field theories studied in the literature, there should also be interesting applications to
field theories having only N = 1 supersymmetry in four dimensions. Intriligator and Seiberg
have made a first step in this direction by generalizing the Seiberg-Witten theory [IS]. Using
their work we can characterize the low-energy physics of field theories with an abelian Coulomb
branch by spectral curves in a way which is somewhat analogous to the cases with N = 2 su-
persymmetry. It would be very interesting if the technology developed in this paper could be
generalized to predict partition functions for N = 1 theories for which only very few tools
exist, see [CPTY, MP, BP] for some previous work in this direction.

Acknowledgements: Important steps of this work were taken during J.T.’s visit at MSRI in
the Spring of 2018, where the results have first been presented. J.T. would like to thank M.
Aganagic, A. Okounkov and the MSRI for the hospitality, and M. Aganagic, T. Bridgeland, A.
Klemm and A. Okounkov for interesting discussions related to this work.

The work of EP is supported by the German Research Foundation (DFG) via the Emmy Noether
programm “Exact results in Gauge theories”.

The work of IC is supported by ERC starting grant H2020 ERC StG No.640159.



62

A. Details on the topological vertex computation

A.1 The strip

The contribution (8.5) associated to the strip graph depicted in Figure 4 can be computed as
follows:

LR1 Y1
R2 Y2

(Q3, Q2, Q1) ≡
∑

µ1,µ2,µ3

(−1)|µ2|q−
1
2
κµ2

3∏
i=1

(−Qi)
|µi|

× C∅µt1R1
(q)Cµ2µ1Y t1

(q)Cµt3µt2Y t2 (q)Cµ3∅R2(q)

= sR1(qρ) sR2(qρ) sY t1 (qρ) sY t2 (qρ) (A.1)

×
∑

µ1,µ2,µ3

∑
ν,λ

sµt1(−Q1Q2q
Rt1+ρ) sµ1/ν(Q

−1
2 qY1+ρ) sµt2/ν(Q2q

Y t1 +ρ)

× sµt2/λ(q
Y2+ρ) sµ3/λ(q

Y t2 +ρ) sµt3(−Q3q
R2+ρ).

To obtain the last expression we substitute the explicit form of the topological vertex (8.2) and
use the homogeneity properties of skew Schur functions

sµ/λ(Qx) = Q|µ|−|λ|sµ/λ(x) . (A.2)

At this stage we observe that we can perform all the sums over partitions obtaining a factorised
form for the topological string amplitude for the strip geometry depicted in Figure 4 by employ-
ing the Cauchy formulae [Mac]∑

µ

sµ/R(x)sµ/Y (y) =
∏
i,j

(1− xiyj)−1
∑
µ

sR/µ(y)sY/µ(x) , (A.3)∑
µ

sµt/R(x)sµ/Y (y) =
∏
i,j

(1 + xiyj)
∑
µ

sRt/µt(y)sY t/µ(x) , (A.4)

noticing that sY/∅ = sY and s∅/Y = δY,∅. To perform all the sums over partitions we may apply
(A.3), (A.4) in the following order. Firstly, in (A.1) we employ (A.4) for the summations over
µ1, µ3. Using (A.4) we may calculate, for example,∑

µ1

sµt1(−Q1Q2q
Rt1+ρ) sµ1/ν(Q

−1
2 qY1+ρ)

=
∏
i,j

(1−Q1q
−Y1i+i−Rt1j+j−1)

∑
µ1

s∅/µt1(Q−1
2 qY1+ρ) sνt/µ1(−Q1Q2q

Rt1+ρ)

= RY1Rt1
(Q1) sνt(−Q1Q2q

Rt1+ρ) ,
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where we have been using that s∅/µ = δµ,∅ in the second step, and we found it useful to introduce
the special functionRY1Y2(Q) defined as

RY1Y2(Q) ≡
∞∏

i,j=1

(1−Qq−Y1i−Y2j+i+j−1) = RY2Y1(Q) . (A.5)

Performing the summations over µ1, µ3 in this way will be followed by using (A.3) for the
summation over µ2. We may then perform the summations over ν and λ by again using (A.3),
creating terms containing s∅/ν and s∅/λ which only give non-vanishing contributions for ν = ∅
and λ = ∅. Finally, we perform the summation over µ2 using (A.3) once more. The final result
is equation (8.6) in the main text.

A.2 The four-dimensional limit

A.2.1 Instanton part

The limit R→ 0 of the factor Z inst in (8.21) is straightforward and well-known. It can be found
by rewriting the normalized partition function for the strip geometry in the form

L̃R1 Y1
R2 Y2

= 2|R1|+|R2|+|Y1|+|Y2|

(√
Q1

Q3

)|R1|−|R2|(√
Q1Q3

)|Y1|+|Y2|
q

1
4

(κR1
−κR2

−κY1
+κY2

) (A.6)

× sR1(qρ) sR2(qρ) sY T1 (qρ) sY T2 (qρ)
NR
R1Y1

(Q1)NR
R1Y2

(Q1Q2)NR
Y1R2

(Q2Q3)NR
Y2R2

(Q3)

NR
R1R2

(Q1Q2Q3)NR
Y1Y2

(Q2)
,

where the function NR
λµ(m) is defined as NR

λµ(m) = NR
λµ(m; ε,−ε) with

NR
λµ(m; ε1, ε2) =

∏
(i,j)∈λ

2 sinh
R

2

[
m+ ε1(λi − j + 1) + ε2(i− µtj)

]
×
∏

(i,j)∈µ

2 sinh
R

2

[
m+ ε1(j − µi) + ε2(λtj − i+ 1)

]
. (A.7)

The limit R → 0 of (A.6) is now straightforward, reproducing the instanton partition function
of the four-dimensional N = 2 supersymmetric SU(2) gauge theory with four flavors [N].

A.2.2 Factorising off the singular part

The existence of a well-defined limit R → 0 for the remaining factors Zout
i and Z in

j is less
obvious as the functions M(Q) representing the building blocks for Zout

i , Z in
j have a rather

singular behaviour in the limit R → 0. In Section A.2.3 it is shown that the renormalised
partition function

Z̃ in
2 :=M(Q1/Q2)M(1)Z in

2 =
M(1)M

(
QF

)
M(Q1/Q2)M(Q1Q2QF )

M(Q1)M
(
Q−1

2

)
M
(
Q1QF

)
M
(
Q2QF

) . (A.8)



64

has a well-defined limit for R→ 0, given as

G(1 + σ + θ1 + θ2)G(1 + σ + θ1 − θ2)G(1 + σ − θ1 + θ2)G(1− σ + θ1 + θ2)

G(1 + σ)G(1 + 2θ2)G(1 + 2θ1)G(1)
, (A.9)

where G(x) is the Barnes double Gamma function satisfying G(x+ 1) = Γ(x)G(x). A similar
result holds for Z̃out

2 :=M(Q4/Q3)M(1)Zout
2 . It follows that the renormalised partition func-

tion Z̃top
2,2 :=M(Q1/Q2)M(Q4/Q3)(M(1))2Ztop

2,2 has a well-defined limit. We conclude from
this observation in particular that the singular behaviour of Ztop

2,2 does not affect the dependence
on the variables σ and z which is of particular interest for us. While possible alternative defini-
tions of renormalised partition functions may well differ from Z̃top

2,2 by factors depending on θ2

and θ3, it is not necessary to consider renormalisations of Ztop
2,2 which involve additional factors

depending on σ and z.

Having fixed a renormalisation prescription for Ztop
2,2 it is natural to extend it to a renormalisation

prescription for Ztop
i,j for all i, j = 1, 2, 3 as follows. We had seen that the expression for Ztop

2,2

contains a factor of the form G(1 + t/λ) with t being the period undergoing a sign change in
one of the flop transitions. The partition function associated to the chamber reached in this
transition will then be obtained from Ztop

2,2 by replacing G(1 + t/λ) by G(1− t/λ).

A.2.3 Limit of the regular part

For the following discussion it will be helpful to use the notation GR(x) = (qx; q, q)∞, q =

e−λR. Using the relation between the variables QF and Qi, and the variables σ and θi, i = 1, 2

specified in equation (8.26) we may write

Z̃ in
2 =

GR(1 + σ + θ1 + θ2)GR(1 + σ + θ1 − θ2)GR(1 + σ − θ1 + θ2)GR(1− σ + θ1 + θ2)

GR(1 + 2σ)GR(1 + 2θ2)GR(1 + 2θ1)GR(1)
.

(A.10)
Let us consider, a bit more generally, infinite products of the form

PR(a,b; q) =
∞∏

i,j=0

l∏
k=1

1− qak+i+j

1− tbk+i+j
,

a = (a1, . . . , al),

b = (b1, . . . , bl),
(A.11)

with |q| < 1, |t| < 1 represented as q = e−λR. Pairs (a,b) of tuples of complex numbers will
be called perfectly balanced if

∑l
k=1(ak − bk) = 0 and

∑l
k=1(a2

k − b2
k) = 0. It is easy to check

that Z̃ in
2 is represented by a perfectly balanced product.

Our goal is to show that the limit limR→0 PR(a,b; q) exists, and is given as

lim
R→0

PR(x,y; q) =
l∏

k=1

G(ak)

G(bk)
, (A.12)
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with G(x) being the Barnes function satisfying G(x+ 1) = Γ(x)G(x). To this aim let us recall
the infinite product representation for the Barnes function,

G(x) = (2π)−
1
2
xec1x+c2x2

x
∏
i,j=0

(i,j)6=(0,0)

(
1 +

x

i+ j

)
e

x
i+j
− x2

2(i+j)2 , (A.13)

with c1 and c2 being numerical constants which are not relevant here. The exponential factors
under the product are necessary to make the infinite product in (A.13) convergent. The right
hand side of (A.12) can then be represented as the infinite product

l∏
k=1

G(ak)

G(bk)
=

l∏
k=1

ak
bk

∏
i,j=0

(i,j)6=(0,0)

ak + i+ j

bk + i+ j
, (A.14)

as follows easily when (a,b) is perfectly balanced. This means that we do not need any expo-
nential factors in the product (A.14) in order to get convergent product representations for the
ratios of Barnes functions with perfectly balanced arguments.

With the help of these observations it is getting clear that one can indeed safely exchange the
limit R → 0 with the infinite product defining the function PR(x,y; q) in (A.12), giving the
right hand side of (A.14).

B. Grassmannians and Sato-Segal-Wilson tau-function

The construction of free fermion partition function proposed in [DHS] was based on the theory
of infinite Grassmannians pioneered in [Sa, SW]. We will here compare our formulation to the
one used in [DHS].

B.1 Grassmannians and tau-functions

B.1.1 Infinite Grassmannians

Let H = L2(S1,CN), where S1 will often be identified with the equator of P1. Elements of
H will be represented as vectors having functions on S1 in each of their N components. We
have H = H+ ⊕ H−, where the functions in H+ (H−) can be continued analytically inside
S1 (outside of S1 and vanish at infinity). The Segal-Wilson Grassmannian Gr(H) is the set of
all closed subspaces W of H such that (i) the orthogonal projection W → H+ is a Fredholm
operator, and (ii) the orthogonal projectionW → H− is a compact operator. A subspace W in
Gr(H) is spanned by the columns of the rectangular matrix w = ( w+

w− ) called a frame of W .
Frames related by right multiplication with elements of the group C of invertible operators t

such that t− 1 is trace class describe the same point in Gr(H).
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A frame is called admissible if w+ − 1 is a trace-class operator onH+. A frame for a space W
can be transformed into an admissible frame if w+ is invertible,(

w+

w−

)
=

(
1

w−w
−1
+

)
· w+ =:

(
1

A

)
· w+. (B.1)

This means that the space W can the be described as the graph of the operator A : H+ → H−,
A := w−w

−1
+ . Such a space W is called transverse toH−.

A natural line bundle on the Segal-Wilson Grassmannian Gr(H) is the dual of the determinant
bundle Det∗, which can be represented by pairs (w, λ) with (w, λ) and (w′, λ′) considered to be
equivalent iff w′ = wt and λ′ = λdet(t) for t ∈ C. Det∗ has a canonical section σ represented
by the pairs (w, det(w+)).

B.1.2 Definition of Sato-Segal-Wilson tau-functions

Let Γ be the group of continuous maps S1 → GL(N), regarded as multiplication operators
on H. The subgroups Γ+ and Γ− are represented by real analytic functions f which extend
holomorphically inside the unit circle satisfying f(0) = 1 and outside of the unit circle with
f(∞) = 1, respectively. Noting that the multiplication by g−1 ∈ Γ+ is represented on H =

H+ ⊕H− by a matrix of the form (
a b

0 d

)
(B.2)

one may define the tau-function τW (g) for W transverse toH− as a function on Γ+ by setting

τW (g) =
σ(g−1W )

g−1σ(W )
, (B.3)

where g−1σ is the natural action of g−1 on sections of Det∗, see [SW] for details. It is not hard
to see that the function τW can be represented as the Fredholm determinant

τW (g) = detH+
(1 + BgA), Bg = a−1b. (B.4)

This construction can be applied in particular to the case W = Ψ−1 · H+, with Ψ being the fun-
damental solution matrix of holonomicD-modules which can be analytically continued outside
of S1 and is twice differentiable on S1. In this way we get a natural way to associate points in
Gr(H) to D-modules.

B.2 Free fermion states associated to points in the infinite Grassmannian

We are now going to show that the tau-function defined in (B.4) can be represented as a matrix
element in the fermionic Fock space. This connection was part of the motivation for the proposal
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made in [DHS] that the free fermion partition functions relevant for topological string theory
can be defined using the above-mentioned connection betweenD-modules and points in Gr(H).
The approach described in the main text realises these ideas for the case of our interest.

Recall that the spaces W Segal-Wilson Grassmannian can be specified by graphs of opera-
tors A : H+ → H−. Let the operator A : H+ → H− be represented by matrices Akl
with respect to the bases B+ and B− for the Hilbert spaces H+ and H−, respectively, where
B+ = {eszl, s = 1, . . . , N ; l = 0, 1, . . . }, and B− = {esz−k, s = 1, . . . , N ; k = 1, 2 . . . }, with
{es, s = 1, . . . , N} being the canonical basis of CN . We may then define a vector fA ∈ F as

fA := UA · f0, UA = exp

(
−
∑
k>0

∑
l≥0

ψ−k · Akl · ψ̄−l
)
. (B.5)

A function Ψ(y) : S1 → GL(N,C) analytic outside of S1 and twice-differentiable on S1 defines
a multiplication operator onH allowing us to define the operator

AΨ = Π−Ψ−1 Π+ Ψ Π+, (B.6)

where Π± : H → H± are the canonical projections. The operator Π−Ψ−1 Π+ is trace-class
[SW, Propositon 2.3], from which it follows that AΨ is trace-class as well. One may represent
AΨ as an integral operator

(AΨf)(x) =
i

2π

∫
C
dy

(Ψ(x))−1Ψ(y)

x− y
f(y). (B.7)

From (B.7) it is clear that the matrices representing AΨ with respect to this basis are defined
using (5.37) and (5.34). We recover the construction used in Section 5.1 to define free fermion
states fΨ ∈ F from solutions to the Riemann-Hilbert problem.

An operator B : H− → H+ represented by matrices Blk can in a similar way be used to define

f∗B := f∗0 · VB, VB = exp

(
−
∑
l≥0

∑
k>0

ψ̄l ·Blk · ψk
)
. (B.8)

One may again associate such operators in particular to functions Ψ(y) analytic inside of S1

and twice differentiable on S1. Representing the multiplication operator (Ψout)−1 with respect
toH ' H+ ⊕H− in the form ( a b

0 d ), allows us to define a trace-class operator BΨ : H− → H+,
BΨ = a−1b and a state f∗Ψ ∈ F∗ in a way which is analogous to the definition of AΨ and fΨ
given above.

The Fredholm determinants representing the Sato-Segal-Wilson tau-functions τW (g) via (B.4)
can now be represented as matrix elements in the free fermion Fock-space,

detH+
(1 + BgA) = 〈 f∗Bg , fA 〉, (B.9)

see the following subsection B.3 for a self-contained proof of the identity (B.9).
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B.3 Determinant representation of fermionic matrix elements

Our goal in this subsection is to prove the identity

detH+
(1 + BA) = 〈 f∗B , fA 〉, (B.10)

where A : H+ → H− and B : H− → H+ are trace-class operators, and fA ∈ F and f∗B ∈ F∗
are the states defined from A and B in (B.5) and (B.8), respectively. Identities like (B.10) are
probably known, but we did not find a convenient reference for the proof.

It will be useful to represent the elements of H = L2(S1,CN) using an isomorphism H '
L2(S1,C) called blending. Introducing the canonical basis (e1, . . . , eN) of CN , one may map

L2(S1,CN) 3 f(x) =
∑
n∈Z

N∑
k=1

fn,kx
−nek, 7→ g(x) =

∑
m∈Z

gmx
−m ∈ L2(S1,C),

where gnN+k := fn,k, k = 1, . . . , N, n ∈ Z. (B.11)

Let us next notice that

detH+
(1 + BA) = detH(1 + D), D =

(
0 −B
A 0

)
. (B.12)

Using the blending isomorphism we may represent D as a Z × Z-matrix D. The determinant
detH(1 + D) can then be expanded as

detH(1 + D) =
∑

S⊂Z , |S|<∞

det(DS), (B.13)

where DS is the matrix obtained from D by deleting all rows and columns in Z \ S.

We may further decompose S ⊂ Z into two sets P = S ∩ Z≥0 and H = S ∩ Z<0. The block
structure of D implies that P and H have the same cardinality. Using the blending isomorphism
we may represent A as a Z≥0 × Z<0-matrix Ab, and B as a Z<0 × Z≥0-matrix Bb. Due to the
block structure of D one may factorise det(DS) as

det(DS) = det(BHP)det(APH), (B.14)

where APH is obtained from Ab by deleting all rows with indices not contained in P and all
columns having indices not in H, with BHP defined in an analogous way.

The formula following by inserting (B.14) into (B.13) can be directly compared to the repre-
sentation of 〈 f∗B , fA 〉 in terms of the expansion

〈 f∗B , fA 〉 =
∑
ı∈I

〈 f∗B , fı 〉〈 f∗ı , fA 〉, (B.15)

with {fı; ı ∈ I} and {f∗ı ; ı ∈ I} being bases forF andF∗, respectively, such that 〈 f∗ , fı 〉 = δı,.
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The blending isomorphism relates N-component vectors ψ(z), ψ̄(z) on a punctured disc to
fermions φ(z), φ̄(z) on an N-fold cover of the punctured disc with modes being related as
φnN+s−1 = ψs,n, φ̄nN+s = ψ̄s,n. The Fock-space F thereby gets an alternative representation
as Fock space of a single species of free fermions. A useful pair of dual bases for F and F∗ can
be generated from the vectors

f∗PH = f∗0 φnp . . . φn1φ̄m1 . . . φ̄mh , fHP = φ−mh . . . φ−m1φ̄−n1 . . . φ̄−np f0 , (B.16)

associated to the finite sets P = {n1, . . . , np} ⊂ Z≥0 and H = {−m1, . . . ,−mq} ⊂ Z<0.

It remains to prove the identities

〈 f∗PH , fA 〉 = (−)p det(APH), (B.17a)

〈 f∗B , fHP 〉 = (−)p det(BHP). (B.17b)

To prove (B.17a) one may use the identities

φ̄k fA = −
∑
l≥0

Abklφ̄−l fA, (B.18)

following directly from the definition of fA, allowing us to calculate

〈 f∗PH , fA 〉 = 〈 f∗0 , φnp . . . φn1φ̄m1 . . . φ̄mp fA〉

(B.18)
= −(−)p−1

∑
m

Abm1m
〈 f0 , φnp . . . φn1φ̄m2 . . . φ̄mpφ̄−m fA〉

= −
p∑
l=1

Abm1nl
(−)l−1〈 f∗0 , φnp . . . φnl+1

φnl−1
. . . φn1φ̄m2 . . . φ̄mp fA〉

Using this identity recursively, and comparing the result with Laplace’s formula for det(APH)

one gets the identity (B.17a). The proof of (B.17b) is completely analogous.

C. On the factorisation of free fermion conformal blocks

Given the relation between tau-functions and conformal blocks pointed out above, the repre-
sentations of the form (6.24) can be recognised as special instances of the gluing construction
in conformal field theory, allowing one to construct conformal blocks on a Riemann surface C
which can be decomposed into two subsurfaces Cout and C in by cutting along a simple closed
curve from the conformal blocks associated to the subsurfaces. The goal of the rest of this
subsection is to outline a proof of (6.24) based on such ideas from conformal field theory.

As a preparation let us consider solutions Ψ(x) to the Riemann-Hilbert problem on C = C0,n in
the case where z1 = 0. For this case we will first introduce operators YΨ : Fσ → F0 satisfying

ψ∞[g] · YΨ = YΨ · ψ0[g], ψ̄∞[f̄ ] · YΨ = YΨ · ψ̄0[f̄ ], (C.1)
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where

ψı[g] =
1

2πi

∫
Cı
dx ψ(x) · g(x) , ψ̄ı[f̄ ] =

1

2πi

∫
Cı
dx f̄(x) · ψ̄(x) , (C.2)

for ı = 0,∞, with C∞ being a circle separating∞ from z1, . . . , zm, C0 being a circle separating
z1 = 0 from z2, . . . , zm,∞, and g ∈ W∞,0, f̄ ∈ W̄∞,0, with

W̄∞,0(Ψ) =
{
v̄(x) ·Ψ(x); v̄(x) ∈ CN ⊗ C[P1\{∞, 0}]

}
,

W∞,0(Ψ) =
{

Ψ−1(x) · v(x); v(x) ∈ CN ⊗ C[P1\{∞, 0}]
}
.

(C.3)

The intertwining conditions (C.1) can be used to determine all matrix elements of YΨ up to the
constant 〈 f∗0,YΨ · fσ〉F . One may fix the normalisations of YΨ, fΨ and f∗Ψ,σ in such a way that

YΨ · fσ = fΨ, f∗0 · YΨ = f∗Ψ,σ. (C.4)

Let us recall from Section 6.1.2 the factorisation of the Riemann-Hilbert problem induced by
the decomposition of C into C in and Cout. We are now going to demonstrate that the state fΨ
can be represented in the factorised form

fΨ = Yout · fin, Yout ≡ YΨout . (C.5)

To this aim let us verify that the right hand side satisfies the identities (5.39) defining fΨ uniquely
up to a constant. This is not hard. Restricting g ∈ W to Cout clearly defines an element gout of
W∞,0(Ψout). We may therefore calculate

ψ[g] · Yout · fin =
(
ψ∞[gout] · Yout − Yout · ψ0[gout]

)
· fin + Yout · ψ0[gout] · fin (C.6)

The first two terms cancel due to (C.1). According to the discussion in Section 6.1.2 we have
gout(x) = gin(q−1x)T = gin

q,κ(x) on A ⊂ C. As fin satisfies by definition ψ∞[gin
q,κ] · fin = 0, we

see that the last term in (C.6) also vanishes. The other half of the identities (5.39) is verified in
a completely analogous same way.

One should keep in mind that the space of conformal blocks of the free fermion VOA is one-
dimensional. This means that the conformal block fΨ is proportional to a conformal block
defined by the gluing construction. By choosing the normalisations of Yout and fin appropriately
we may ensure that the representation (C.5) for fΨ holds. It remains to notice that〈

f∗0 , Yout · fin
〉
F0

=
〈
f∗out , fin

〉
Fσ
, (C.7)

in order to complete the proof of (6.24).
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Figure 15: (Left) Molecule I and (Right) Molecule II on the three-punctured sphere.

D. Abelianisation for the three punctured sphere

The monodromy matrices which describe parallel transport along paths ℘ ∈ GC between
marked points on the three-punctured sphere are fixed, up to conjugation by a diagonal SL(2)

matrix, by the constraints we review below. These constraints are associated to paths around
the branch points, as was discussed in Section 9.2. The Fenchel-Nielsen networks depicted in
figure 15 are Molecule I on the left and Molecule II on the right, both in the British resolution.

Molecule I: The monodromy matrices around the punctures are of the form

D1 =

(
m1 0

0 m−1
1

)
, D2 =

(
m2 0

0 m−1
2

)
, D′2D

′
1D
′′
1D
′′
2 =

(
m−1
α 0

0 mα

)
(D.8)

and the wall crossing matrices Sw

J1 =

(
1 0

c̃1 1

)(
1 c1

0 1

)
, J12 =

(
1 c12

0 1

)(
1 0

c̃12 1

)
, J2 =

(
1 0

c̃2 1

)(
1 c2

0 1

)
(D.9)

satisfy the following constraints

D′′1J12D
′
1J
−1
1 D1J1 = 1 , D′2J

−1
12 D

′′
2J
−1
2 D2J2 = 1 . (D.10)

These determine the wall crossing matrices J in terms of the coefficients of the matrices D℘

c1 =
d′′21 d

′
2d
′′
2mα(m1m2 −mα)(m1 −m2mα)

m1m2 (m2
α − 1)

, c̃1 =
m1

d′′21 d
′
2d
′′
2 (m2

1 − 1) mα

(D.11)

c2 =
d′2(m1m2 −mα)(m1mα −m2)

d′′2m1m2 (m2
α − 1)

, c̃2 =
d′′2m2

d′2 (1−m2
2)

c12 =
d′2d
′′
2mα (m1mα (1 + m2

2)−m2 (1 + m2
1))

m1m2 (m2
α − 1)

, c̃12 =
m1(1 + m2

2)−m2mα(1 + m2
1)

d′2d
′′
2m1m2 (m2

α − 1)
.

The wall crossing and monodromy matrices describing the parallel transport along paths asso-
ciated to the FN networks depicted in figures 10 a) and 10 c) are determined similarly.
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Molecule II: The monodromy matrices around the punctures are of the form

D1D
′
1 =

(
m1 0

0 m−1
1

)
, D′2D2 =

(
m2 0

0 m−1
2

)
= M2 , D12D

′
12 =

(
m−1
α 0

0 mα

)
,

(D.12)
and the wall crossing matrices J are the same as in equations (D.9). They satisfy

D′12J
−1
2 D′2J12D

′
1J1 = 1 , D−1

12 J
−1
2 D−1

2 J12D
−1
1 J1 = 1 . (D.13)

The above constraints fix the coefficients of the monodromy matrices associated to the paths
℘ ∈ GC up to abelian gauge transformations G at the endpoints i(℘) and f(℘) of a path ℘, that
act on the matrices D℘ by [HK]

D℘ → D℘,new = Gf(℘)D℘G
−1
i(℘) . (D.14)
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theory correspondence, Lett. Math. Phys. 107 (2017) 2359–2413, arXiv:1612.06235.

[BP] T. Bourton and E. Pomoni, Instanton counting in Class Sk, arXiv:1712.01288 [hep-th].

[CGL] M. Cafasso, P. Gavrylenko, O. Lisovyy, Tau functions as Widom constants, Commun.
Math. Phys. (2018). https://doi.org/10.1007/s00220-018-3230-9, arXiv:1712.08546.

[CDV] M.C.N. Cheng, R. Dijkgraaf, C. Vafa, Non-Perturbative Topological Strings And Con-
formal Blocks, JHEP 1109 (2011) 022, arXiv:1010.4573.

[CKYZ] T. -M. Chiang, A. Klemm, S. -T. Yau, E. Zaslow, Local Mirror Symmetry: Calcula-
tions and Interpretations, Adv. Theor. Math. Phys. 3 (1999) 495–565, hep-th/9903053.

[CPTY] I. Coman, E. Pomoni, M. Taki and F. Yagi, Spectral curves of N = 1 theories of class
Sk, JHEP 1706 (2017) 136 doi:10.1007/JHEP06(2017)136 [arXiv:1512.06079 [hep-th]].

[DDP] D. E. Diaconescu, R. Donagi, and T. Pantev, Intermediate Jacobians and ADE Hitchin
systems, Math. Res. Lett. 14 (2007) 745–756.

[DDDHP] D.-E. Diaconescu, R. Dijkgraaf, R. Donagi, C. Hofman, and T. Pantev, Geometric
transitions and integrable systems, Nuclear Phys. B 752 (2006) 329–390.

[DV02] R. Dijkgraaf, C. Vafa, Matrix models, topological strings, and supersymmetric gauge
theories, Nucl. Phys. B 644 (2002) 3, hep-th/0206255.

[DV09] R. Dijkgraaf, C. Vafa, Toda Theories, Matrix Models, Topological Strings and N = 2

Gauge Systems, arXiv:0909.2453.

[DVV] R. Dijkgraaf, C. Vafa, E. Verlinde, M-theory and a Topological String Duality, hep-
th/0602087.

[DHSV] R. Dijkgraaf, L. Hollands, P. Sulkowski, C. Vafa, Supersymmetric Gauge Theories,
Intersecting Branes and Free Fermions, JHEP 0802 (2008) 106, arXiv:0709.4446.

[DHS] R. Dijkgraaf, L. Hollands, P. Sulkowski, Quantum Curves and D-Modules, JHEP 0911
(2009) 047, arXiv:0810.4157.

[DM] Dubrovin, M. Mazzocco, Canonical Structure and Symmetries of the Schlesinger Equa-
tions, Comm. Math. Phys. 271 (2007) 289–373.

[EK] T. Eguchi and H. Kanno, Topological strings and Nekrasov’s formulas, JHEP 0312 (2003)
006, hep-th/0310235.

[Ey] B. Eynard, A short overview of the ”Topological recursion”, Proceedings of the ICM
2014, arXiv:1412.3286.

http://arxiv.org/abs/1612.06235
http://arxiv.org/abs/1712.01288
http://arxiv.org/abs/1712.08546
http://arxiv.org/abs/1010.4573
http://arxiv.org/abs/hep-th/9903053
http://arxiv.org/abs/1512.06079
http://arxiv.org/abs/hep-th/0206255
http://arxiv.org/abs/0909.2453
http://arxiv.org/abs/hep-th/0602087
http://arxiv.org/abs/hep-th/0602087
http://arxiv.org/abs/0709.4446
http://arxiv.org/abs/0810.4157
http://arxiv.org/abs/hep-th/0310235
http://arxiv.org/abs/1412.3286


74

[FM] G. Felder, M. Müller-Lennert, Analyticity of Nekrasov Partition Functions, Commun.
Math. Phys. 364 (2018) 683–718, arXiv:1709.05232.

[FS] D. Friedan, S. Shenker, The Analytic Geometry of Two-Dimensional Conformal Field
Theory, Nucl. Phys. B281 (1987) 509–545.

[Ga] D. Gaiotto, N = 2 dualities, JHEP 1208 (2012) 034, arXiv:0904.2715.

[GMN09] D. Gaiotto, G. W. Moore, and A. Neitzke, Wall-crossing, Hitchin systems, and the
WKB approximation, Adv. Math. 234 (2013) 239–403, arXiv:0907.3987.

[GMN12] D. Gaiotto, G. W. Moore and A. Neitzke, Spectral networks, Annales Henri Poincare
14 (2013) 1643, arXiv:1204.4824.

[GIL] O. Gamayun, N. Iorgov, O. Lisovyy, Conformal field theory of Painlevé VI, J. High
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