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A novel way of computing high-order amplitudes in the multi-Regge
limit of planar maximally supersymmetric Yang-Mills theory is presented.
In this framework, we are able to obtain high-loop and high-leg results
by an easy operation on known amplitudes with fewer loops and lower
multiplicity. This mechanism will be reviewed, along with an ensuing fac-
torisation which allows us to determine leading logarithmic MHV results
for any number of legs at a fixed loop order.

1. Introduction

Maximally supersymmetric Yang-Mills theory in four dimensions (N = 4
SYM) is one of the most studied models in modern physics. In recent years,
many properties have been uncovered which led to insights on the perturba-
tive regime of the theory. For one, beyond the ordinary conformal symmetry
which N = 4 SYM exhibits, a dual conformal symmetry [1, 2, 3, 4, 5] was
discovered in the planar limit. This symmetry fixes the 4 and 5-particle
case completely to the so-called Bern-Dixon-Smirnov (BDS) ansatz [6]. Be-
yond 5 particles there is an additional non-trivial dual conformally invariant
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contribution [7]. Dual conformal symmetry also spawned a new approach
to kinematics in terms of momentum twistors [8]. This reformulation has
led to a deeper understanding of the function space of amplitudes in planar
N = 4 SYM for the MHV and NMHV case [9] and their singularity struc-
ture in general [10].
Due to these developments, many impressive results in planar N = 4 SYM
at high loop orders with many particles were obtained. The 6-particle am-
plitude is known at 5 loops [11]. At 7 particles the MHV amplitude is known
analytically at 2 loops [12] and at symbol level up to 4 loops in the MHV
case and at 3 loops in the NMHV case [13]. However, the techniques used
to obtain these results are currently limited to 7 or fewer external parti-
cles, and further study of the high-particle case is required to move beyond
the state of the art. One way to achieve this goal is by studying a special
kinematic limit. In what follows, we will study amplitudes in planar N = 4
SYM in the multi-Regge limit.

2. Amplitudes in the Multi-Regge Limit

Let us introduce the multi-Regge limit. Consider 1 + 2 → 3 + · · ·+N
scattering with all particles outgoing and introduce lightcone coordinates:

p± ≡ p0 ± pz, pk ≡ pk⊥ = pxk + ipyk . (1)

If we choose the reference frame in which the momenta of the initial state
gluons lie on the z-axis with p02 = pz2, implying p+1 = p−2 = p1 = p2 = 0, the
multi-Regge limit corresponds to the limit where

p+3 ≫ p+4 ≫ · · · ≫ p+N−1 ≫ p+N , |p3| ≃ · · · ≃ |pN | . (2)

We introduce dual coordinates xi as xi − xi−1 = pi. Amplitudes in pla-
nar N = 4 SYM obey dual conformal invariance, which implies that the
kinematical dependence can be expressed in terms of conformal cross-ratios
of the dual coordinates. Of these, only 3N − 15 are algebraically indepen-
dent in four dimensions. In the multi-Regge limit, where amplitudes only
depend non-trivially on the transverse momenta pi, this number of inde-
pendent complex cross ratios reduces to N − 5. The set of independent
transverse cross ratios zi that we will use is defined as

zi ≡
(x1 − xi+3) (xi+2 − xi+1)

(x1 − xi+1) (xi+2 − xi+3)
= −

qi+1 ki

qi−1 ki+1
, (3)

with transverse dual coordinates qi = xi+2 − x1 and ki = xi+2 − xi+1.
With these kinematical considerations in mind, we turn to the form of

amplitudes in multi-Regge kinematics (MRK) in planar N = 4 SYM. As
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mentioned before, dual conformal symmetry fixes the 4 and 5 point ampli-
tude to all orders but beyond 5 points the amplitude diverges from the BDS
ansatz and we get an additional dual conformally invariant contribution. In
the multi-Regge limit helicity is conserved by the gluons going very forward,
and thus the helicity configuration is determined by the produced gluons
exclusively. Denoting these helicities by h1, . . . , hN−4, we define the ratio

eiΦh1,...,hN−4Rh1,...,hN−4
≡

AN (−,+, h1, . . . , hN−4,+,−)

ABDS
N (−,+, h1, . . . , hN−4,+,−)

∣

∣

∣

∣

MRK

(4)

where eiΦh1,...,hN−4 is a phase factor such that in the Euclidian region we
have Rh1,...,hN−4

= 1. When performing an analytic continuation to another
Mandelstam region, Rh1,...,hN−4

picks up contributions called Regge cuts.
In the Mandelstam region where the energy components of all produced
particles are analytically continued, it can be written as a dispersion integral
of a product of building blocks. In the multi-Regge limit large logarithms
appear, resummed to leading logarithmic accuracy (LLA) in these large
logarithms, Rh1,...,hN−4

is given by [14, 15]

Rh1,...,hN−4
=1 + a iπ

[

N−5
∏

k=1

+∞
∑

nk=−∞

(

zk
z̄k

)

nk
2
∫ +∞

−∞

dνk
2π

|zk|
2iνk

]

×

[

N−5
∏

k=1

ea log(τk)Ek

]

χh1

1

[

N−5
∏

k=2

Chk

k−1,k

]

χ
−hN−4

N−5 .

(5)

Here, τk ≡ δk

√

|qk−1|
2|qk+1|

2|pk+3|
2

|qk|
4|pk+4|

2 where in the multi-Regge limit we have

δk = p+k+4/p
+
k+3 −−−→

MRK
0, and thus log τk denotes the large logarithm. Fur-

thermore, a is the ’t Hooft coupling and χhi

k ≡ χhi(νk, nk),

Chk

k−1,k ≡ Chk(νk−1, nk−1, νk, nk) and Ek ≡ E(νk, nk) are the leading or-
der parts of building blocks called the impact factor, the central emission
block and the BFKL eigenvalue respectively. The product of these build-
ing blocks is put through an integral transform called the Fourier-Mellin
transform which is given by

F [f ](z) =

+∞
∑

n=−∞

(z

z̄

)
n
2

∫ +∞

−∞

dν

2π
|z|2iνf(ν, n). (6)

We are interested in the perturbative expansion of eq. (5). We may write
it at ℓ loops as

R
(ℓ)
h1,...,hN−4

= 2πiaℓ
∑

∑
ik=ℓ−1

(

N−5
∏

k=1

logik τk
ik!

)

g
(i1,...,iN−5)
h1,...,hN−4

({zi}). (7)
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The objects g
(i1,...,iN−5)
h1,...,hN−4

will henceforth be referred to as perturbative coef-

ficients and are given by an (N − 5)-fold Fourier-Mellin transform

g
(i1,...,iN−5)
h1,...,hN−4

= FN−5

[

χh1

1

(

N−5
∏

k=2

Chk

k−1,k

)

χ
−hN−4

N−5

(

N−5
∏

l=1

Eil
l

)]

. (8)

In [16, 15] it was shown that in momentum space these objects are made
up of functions called multiple polylogarithms

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1
G(a2, . . . , an; t) , G(; z) = 1, (9)

in combinations such that their branch cuts cancel. In what follows, we will
study the Fourier-Mellin transform in some more detail to use its mathemat-
ical properties to facilitate the computation of the perturbative coefficients.

3. Perturbative Coefficients through Convolutions

The objects we wish to compute are Fourier-Mellin transforms of prod-
ucts of building blocks. The Fourier-Mellin transform maps products into
convolutions, so that for F [F ] = f and F [G] = g we have F [F · G] =
F [F ] ∗ F [G] = f ∗ g where the convolution is given by

(f ∗ g)(z) =
1

π

∫

d2w

|w|2
f(w) g

( z

w

)

. (10)

Thus, rather than recomputing the Fourier-Mellin integral for every pertur-
bative coefficient, we might hope to use this convolution product to compute
the perturbative orders recursively. Take, for instance a three-loop coeffi-

cient at seven points g
(1,1)
h1,h2,h3

= F2

[

χh1

1 Ch2

1,2χ
−h3

2 E1E2

]

= F [E1] ∗ g
(0,1)
h1,h2,h3

,

we see that it can be computed by convolution of a two-loop seven-point
coefficient. Since the perturbative coefficients are single-valued [16], the
evaluation of the convolution integrals can be simplified to a residue com-
putation, as was shown in [17]. Let f(z) be a single-valued combination
of polylogarithms over rational functions with singularities at z = ai and
z = ∞. Define the holomorphic residue of f at z = a as the coefficient of
the simple holomorphic pole with no logarithmic singularities. The integral
of f over the whole complex plane, if it exists, is given by the sum of the
holomorphic residues of its single-valued antiholomorphic primitive F , i.e.
if ∂̄F = f , then

∫

d2z

π
f(z) = Resz=∞F (z)−

∑

i

Resz=aiF (z) . (11)
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Thus, single-valuedness allows us to compute these convolution integrals
easily. Further noting that the Fourier-Mellin transform of the BFKL eigen-
value is a rational function F [Ei] = −(zi + z̄i)/(2|1− zi|

2), we see that it is
easy to go up in loop order recursively via

g
(i1,...,ik+1,...,iN−5)
h1,...,hN−4

= F [Eik ] ∗ g
(i1,...,ik,...,iN−5)
h1,...,hN−4

, (12)

as the perturbative coefficients are made up of multiple polylogarithms, and
their integration over rational kernels are easy to compute. We can also use
this method to change helicities. For example, take an NMHV three-loop
coefficient at seven points

g
(1,1)
−,+,+ = F2

[

χ−
1 C

+
1,2χ

−
2 E1E2

]

= F

[

χ−
1

χ+
1

]

∗ g
(1,1)
+,+,+, (13)

the extracted term is given by F
[

χ−
i /χ

+
i

]

= −(zi)/(1 − zi)
2, and thus we

can obtain perturbative coefficients beyond MHV by convoluting their MHV
counterparts with a rational function. In fact, one can show that convolu-
tions of this sort allow you to obtain all different helicity configurations.

Using this method, we may start from the known 2-loop MHV amplitude
for any number of points [14] and move our way through all helicities and up
in loop number recursively. However, there is even more to be learned from
convolutions. In fact, this method led to the discovery of a factorisation of
the LLA perturbative coefficients [15], which for the MHV case states that if
we express the coefficients in terms of the transverse dual coordinates {xi}

g
(0,...,0,ia1 ,0,...,0,ia2 ,0,...,0,iak ,0,...,0)
+,...,+ (x1, . . . ,xN−5)

= g
(ia1 ,ia2 ,...,iak )
+,...,+ (xa1 , . . . ,xak).

(14)

Since at leading logarithmic accuracy
∑

j iaj = ℓ−1, the factorisation allows
us to determine MHV LLA amplitudes with any number of external legs,
from the set of amplitudes with up to ℓ+ 4 external legs.

4. Conclusion

We have presented a framework to compute scattering amplitudes in the
multi-Regge limit of planar N = 4 SYM efficiently. Using these methods,
higher-loop contributions can be obtained by recursive operation on lower-
loop results and helicity configurations beyond MHV can be obtained from
MHV results. We have also presented a factorisation which allows us to
determine scattering amplitudes for any number of particles by computing
a finite number of perturbative coefficients.
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These methods were first presented in [15] and allowed for the computa-
tion of the LLA MHV amplitude for any number of particles to 5 loops, the
LLA amplitude for 8 or less particles for any helicity configuration up to
4 loops. In [18] a first extension beyond leading logarithmic accuracy was
considered which led to the 7 point amplitude at next-to-leading logarithmic
accuracy (NLLA) through 5 loops for the MHV case, and through 3 and 4
loops for the two independent NMHV helicity configurations, respectively.
A study beyond leading logarithmic accuracy for an arbitrary number of
particles with an extension of the factorisation beyond LLA was presented
in [19], which was applied to the 8 particle case in [20] to give the 8 point
NLLA amplitude for any helicity configuration at 3 loops. In addition, the
same formalism was applied beyond N = 4 SYM to the computation of the
BFKL ladder at NLLA in [21].
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