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Abstract: Jet vetoes are widely used in experimental analyses at the LHC to distin-

guish different hard-interaction processes. Experimental jet selections require a cut on

the (pseudo)rapidity of reconstructed jets, |ηjet| ≤ ηcut. We extend the standard jet-pT
(jet-veto) resummation, which implicitly works in the limit ηcut → ∞, by incorporating

a finite jet rapidity cut. We also consider the case of a step in the required pcut
T at an

intermediate value of |η| ' 2.5, which is of experimental relevance to avoid the increased

pile-up contamination beyond the reach of the tracking detectors. We identify all relevant

parametric regimes, discuss their factorization and resummation as well as the relations

between them, and show that the phenomenologically relevant regimes are free of large

nonglobal logarithms. The ηcut dependence of all resummation ingredients is computed to

the same order to which they are currently known for ηcut → ∞. Our results pave the

way for carrying out the jet-veto resummation including a sharp cut or a step at ηcut to

the same order as is currently available in the ηcut → ∞ limit. The numerical impact of

the jet rapidity cut is illustrated for benchmark qq̄ and gg initiated color-singlet processes

at NLL′+NLO. We find that a rapidity cut at high ηcut = 4.5 is safe to use and has little

effect on the cross section. A sharp cut at ηcut = 2.5 can in some cases lead to a substantial

increase in the perturbative uncertainties, which can be mitigated by instead using a step

in the veto.
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1 Introduction

Measurements that involve a veto on additional jets, or more generally that divide events

into exclusive jet bins, play an important role at the LHC, e.g. in Higgs and diboson

measurements or in searches for physics beyond the Standard Model. The jet binning

differentiates between hard processes that differ in the number of hard signal jets, and
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Figure 1. Cartoon of possible strategies to avoid contamination from unsuppressed pile up in

jet-binned analyses. The pile-up suppression is much better in the pseudorapidity range |η| . 2.5,

where it can use information from the tracking detectors. To avoid the higher pile-up contamination

in the forward region, one can raise the jet threshold (left panel), only consider central jets (middle

panel), or combine both approaches by using a step-like jet selection (right panel).

hence allows one to separate signal and background processes. The separation into 0-jet

and ≥ 1-jet bins also provides a model-independent way to discriminate between qq̄ and

gg initiated processes [1].

A veto on jets with transverse momentum pT > pcut
T gives rise to double logarithms

ln2(pcut
T /Q) at each order in αs, where Q is the characteristic momentum transfer of the

hard interaction. These logarithms dominate the perturbative series when pcut
T � Q, and

represent an important source of theory uncertainty [2, 3]. They can be systematically

resummed to improve the perturbative predictions and assess the associated uncertainties,

which has been well-developed in Drell-Yan and Higgs production [2, 4–17], and has also

been applied to several other color-singlet processes [1, 18–25].

Experiments can only reconstruct jets up to some maximal pseudorapidity |η| ≤ ηcut

due to the range of the detector, e.g. for ATLAS and CMS ηcut ∼ 4.5. In principle, the

utility of the jet binning to discriminate between different hard processes increases for a

tighter jet veto (smaller pcut
T ). However, jets with small transverse momenta are difficult

to reconstruct experimentally, especially for pseudorapidity |η| & 2.5 beyond the reach

of the tracking detectors, which are important to suppress the large contamination from

pile up (e.g. in the jet vertex tagging algorithm used by ATLAS [26]). This is illustrated

in figure 1. As the LHC luminosity increases and pile-up conditions become harsher, the

contamination from unsuppressed pile-up jets grows worse and must be avoided. One

option is to increase the overall pcut
T . For example, in the context of Higgs measurements,

the increased pile up in Run 2 has forced raising the jet threshold from 25 GeV to 30 GeV.

This however weakens the jet veto and thus reduces its utility. Alternatively, to avoid

raising the jet threshold, one can consider jets only in a restricted pseudorapidity range

of |η| . 2.5. However, this looses the discrimination power from forward jets, which are

a distinguishing feature of some processes (most notably weak-boson fusion topologies in

Higgs and diboson production). The best possible option combines both approaches and

performs a step-like jet selection, with a lower pcut
T threshold for central jets and a somewhat

higher p̃cut
T threshold for forward jets. For example, recent ATLAS Higgs measurements [27]

reconstruct jets using pcut
T = 25 GeV for |η| < 2.4 and p̃cut

T = 30 GeV for |η| > 2.4 (and no
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jets beyond rapidity |y| = 4.4).

A discontinuous step in the jet threshold can also pose challenges on its own, as it

makes the experimental measurements more complex. Theoretically, we will see that it

can complicate the resummation of logarithms in some extreme cases. An alternative to

a step is to use jet vetoes that smoothly depend on the jet rapidity [16, 28], providing a

tighter veto at central rapidities and a looser one at forward rapidities. These rapidity-

dependent vetoes can also be supplemented with an additional sharp jet rapidity cut, which

we briefly discuss in appendix B.

The usual jet-pT resummations [6–9, 12, 13] do not account for any jet rapidity de-

pendence, i.e., the resummation is performed for ηcut → ∞. Using parton-shower Monte

Carlos, one finds that a jet rapidity cut at ηcut = 4.5 has a very small numerical effect,

while ηcut = 2.5 has a sizable effect on the jet-pT spectrum in Higgs production (see e.g.

refs. [2, 6]), so it is important to properly include it in the resummation. This was already

pointed out in ref. [8], where it was also speculated that a jet rapidity cut might change

the resummation structure.

Our analysis in this paper fully addresses these questions by systematically incorpo-

rating the jet rapidity cut into the jet-pT resummation, including in particular the case

of a step-like veto. For this purpose, we extend the formalism of refs. [8, 13], which uses

the framework of Soft-Collinear Effective Theory (SCET) [29–32]. To be concrete, our

discussion focuses on color-singlet production, including the important cases of Higgs and

Drell-Yan production. Our results for how to incorporate the ηcut dependence also carry

over to processes with additional signal jets in the final state to the same extent to which

the usual jet-pT resummation for color-singlet production carries over to such cases [10, 11].

We identify all relevant parametric regimes in the veto parameters pcut
T , ηcut, p̃

cut
T ,

and discuss the factorization and resummation structure for each regime. We also study

the relations between the different regimes and perform numerical studies to check their

respective ranges of validity. An important conclusion of our analysis is that all regions

of parameter space that are of phenomenological interest can be described by parametric

regimes that are free of large nonglobal logarithms.

We analytically compute the ηcut dependence of all ingredients at O(αs) as well as of

the dominant O(α2
s) corrections (those enhanced by jet-veto or jet clustering logarithms),

which matches the order to which they are currently known in the ηcut → ∞ limit. Our

results allow for carrying out the jet-veto resummation including jet rapidity cuts to the

same order as is currently available without such cuts, which for color-singlet production is

NNLL′+NNLO. (Reaching this level also requires the still unknown nonlogarithmic O(α2
s),

which can be extracted numerically from the full NNLO calculation, as was done for ηcut →
∞ in ref. [13]. Carrying out such an analysis is beyond the scope of this paper.)

The effect of a rapidity cut for transverse momentum vetoes has also been considered

independently in refs. [33, 34] for dijet production, and more recently for the transverse

energy event shape in Drell-Yan in ref. [35]. We compare their results to our results for

the case of a sharp cut at ηcut and no measurement beyond in section 2.5.

The paper is organized as follows: In section 2, we discuss the parametric regimes

and corresponding effective field theory (EFT) setups for a sharp cut on reconstructed
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Figure 2. Illustration of the parametric regimes for a jet veto with a jet rapidity cut. Emissions

above the black solid lines are vetoed as pT > pcutT up to |η| < ηcut = 2.5. The thick gray line

corresponds to pT /Q = e−|η|, and emissions above and to the right of it are power suppressed.

The colored circles indicate the relevant modes in the effective theory for a given hierarchy between

pcutT /Q and e−ηcut . For pcutT = 25 GeV, the given examples for pcutT /Q correspond to Q = 125 GeV

(left panel, upper case), Q = 300 GeV (left panel, lower case), Q = 1 TeV (right panel).

jets at ηcut and no measurement beyond, as in the middle panel of figure 1. We give the

perturbative ingredients at O(αs) and the leading small-R clustering terms at O(α2
s) for all

partonic channels. We numerically validate the EFT setup by comparing to the relevant

singular limits of full QCD, and also compare the regimes to each other and identify their

respective ranges of validity. In section 3, we generalize the results of section 2 to a step in

the jet veto at ηcut, as in the right panel of figure 1. In section 4, we illustrate the numerical

impact of the rapidity cut at NLL′+NLO for Drell-Yan at Q = mZ and Q = 1 TeV and

for gg → H at mH = 125 GeV and gg → X at mX = 1 TeV for different values of ηcut.

We conclude in section 5. Details of our calculations can be found in appendix A. In

appendix B, we briefly discuss how an additional sharp rapidity cut affects the description

of the rapidity-dependent jet vetoes introduced in ref. [16].

2 Factorization with no constraint beyond ηcut (p̃cutT =∞)

2.1 Overview of parametric regimes

We consider exclusive 0-jet cross sections, where the veto is applied by identifying jets

with radius R (the details of the jet-clustering algorithm are not relevant at the order

we are working) and cutting on the transverse momentum pjet
T of the leading jet within

|ηjet| < ηcut,

max
k∈jets: |ηk|<ηcut

|~pT,k| < pcut
T . (2.1)

The resulting constraints on the rapidities and transverse momenta of initial-state radiation

(ISR) are displayed as black lines in figure 2. We can identify two distinct power-counting

parameters that govern the typical angular size of energetic collinear ISR with energy

E ∼ Q, where Q is the momentum transferred in the hard interaction: First, the pT of the
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emissions is constrained by pT < pcut
T for |η| < ηcut, corresponding to a maximum opening

angle
pT
E

.
pcut
T

Q
. (2.2)

Second, the pT of an energetic emission at rapidity η is parametrically pT ∼ Qe−|η|. The

rapidity cut removes the first constraint for |η| > ηcut. Hence, if ηcut is central enough,

emissions beyond ηcut can reach a characteristic pT . Qe−|ηcut|, corresponding to a maxi-

mum opening angle
pT
E

. e−ηcut . (2.3)

There are three parametric regimes for pcut
T /Q and e−ηcut , which are illustrated in

figure 2 for ηcut = 2.5. The thick black lines show the veto for different values of pcut
T /Q.

The thick gray curve shows the relation pT /Q = e−|η|, while the thin gray lines show the

values of ηcut and pT /Q = e−ηcut .

The first parametric regime is pcut
T /Q� e−ηcut . As we will demonstrate in section 2.2,

in this regime effects due to the rapidity cut are power suppressed by Qe−ηcut/pcut
T . Hence,

they can be treated as a fixed-order power correction to the standard jet-veto resum-

mation, which implicitly works in the limit ηcut = ∞. For Higgs measurements with

pcut
T = 25 GeV, ηcut = 4.5, Q ≡ mH = 125 GeV, this parametric assumption is well justi-

fied, as mHe
−ηcut/pcut

T ∼ 5%.

For heavier final states and/or more central rapidity cuts the relevant parametric

regime is pcut
T /Q ∼ e−ηcut . This is the case for example for Q = 1 TeV and ηcut = 4.5

or Q = 125 GeV and ηcut = 2.5 at pcut
T = 25 GeV. In section 2.3, we show that in this

regime the rapidity cut effects must be treated as a leading-power correction, and that they

can be seamlessly incorporated into the existing jet-veto resummation without rapidity cut.

We will see that they affect only the boundary terms in the resummed cross section, but

not the anomalous dimensions and evolution factors. Hence, they start contributing at

NLL′ or NNLL.

Finally in section 2.4, we discuss the parametric regime pcut
T /Q � e−ηcut . This case

is conceptually interesting, since logarithms of the ratio of scales Qe−ηcut and pcut
T appear,

changing the logarithmic structure already at leading-logarithmic (LL) order. In addition,

formally large nonglobal logarithms of the same ratio appear. This regime is of very limited

phenomenological relevance for typical jet-binned analyses at the LHC. For example, for

ηcut = 2.3 corresponding to e−ηcut = 0.1, it would require an extremely tight jet veto

pcut
T � 0.1Q, which is unrealistic as it would leave almost no signal in the 0-jet cross

section. For the purpose of explicitly probing this regime experimentally, one could lower

ηcut ' 1.0− 1.5, such that the jet veto only acts on radiation in the very central region.

2.2 Regime 1: pcutT /Q� e−ηcut (standard jet veto resummation)

As usual, the scaling of the modes in the EFT follows from the nontrivial constraints im-

posed on emissions by the measurement. Soft emissions at central rapidities are always

restricted by the jet veto. Collinear emissions with energy ∼ Q and rapidity η have a trans-

verse momentum ∼ Qe−|η| and are constrained by the measurement if Qe−|η| ∼ pcut
T , which
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determines their scaling. Since Qe−ηcut � pcut
T , these collinear modes are parametrically

not forward enough to be sensitive to the rapidity cut, such that the description of their

dynamics is simply governed by the power counting in pcut
T /Q. The relevant EFT modes

in this regime are thus the same as for a jet veto without any rapidity cut,

soft: pµ ∼
(
pcut
T , pcut

T , pcut
T

)
,

na-collinear: pµ ∼
(

(pcutT )2

Q , Q, pcut
T

)
,

nb-collinear: pµ ∼
(
Q,

(pcutT )2

Q , pcut
T

)
. (2.4)

Here and below, we give the scaling of momenta in terms of light-cone components defined

as (with n ≡ na, n̄ ≡ nb),

pµ = n̄·p n
µ

2
+ n·p n̄

µ

2
+ pµ⊥ ≡ (n·p, n̄·p, ~p⊥) ≡ (p+, p−, ~p⊥) . (2.5)

In addition, there are the usual inclusive collinear modes that describe the initial protons

at the scale ΛQCD, and which are not specific to our discussion here.

In principle, we can consider collinear emissions that are forward enough to resolve

rapidities |η| ∼ ηcut,

na-collinear (ηcut): pµ ∼
(
Qe−2ηcut , Q,Qe−ηcut

)
,

nb-collinear (ηcut): pµ ∼
(
Q,Qe−2ηcut , Qe−ηcut

)
. (2.6)

However, since Qe−ηcut � pcut
T , these emissions have too little transverse momentum to

be affected by the jet veto, and are therefore unconstrained and integrated over without

requiring additional modes in the EFT. To explicitly see that the ηcut dependence is power

suppressed, note that the full jet-veto measurement for the collinear modes contains a θ

function

θ(ηcut − |η|) = θ(1− e|η|−ηcut) = 1 +O(Qe−ηcut/pcut
T ) , (2.7)

which thus only induces power corrections in Qe−ηcut/pcut
T .

Therefore, at leading order in the power expansion,1 we recover the factorization for

the 0-jet cross section with ηcut =∞ [7, 8, 13],

σ0(pcut
T , ηcut, R,Φ) = Hκ(Φ, µ)Ba(p

cut
T , R, ωa, µ, ν)Bb(p

cut
T , R, ωb, µ, ν)Sκ(pcut

T , R, µ, ν)

×
[
1 +O

(pcut
T

Q
,
Qe−ηcut

pcut
T

, R2
)]
. (2.8)

The hard function Hκ contains the short-distance matrix element for producing a color-

singlet final state and depends on the hard kinematic phase space Φ, which encodes e.g.

the total rapidity Y and invariant mass Q of the color-singlet final state. The soft function

Sκ encodes soft radiation restricted by pcut
T . The partonic channel is denoted by κ and is

1As discussed in refs. [8, 13], one formally needs to count R� 1 to avoid soft-collinear mixing terms of

O(R2). A detailed discussion of possible approaches to include them at O(α2
s) can be found in ref. [28].
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implicitly summed over (if necessary). The beam functions Ba,b are forward proton matrix

elements of collinear SCET fields and encode the perturbative collinear ISR constrained

by pcut
T as well as the unconstrained ISR below that scale down to the nonperturbative

scale of the PDFs [4]. In eq. (2.8), they are evaluated at ωa,b = Qe±Y . They are given by

a convolution of perturbative matching coefficients Iij , which encode the pcut
T constraint,

and the standard inclusive quark and gluon PDFs fj ,

Bi(p
cut
T , R, ω, µ, ν) =

∑
j

∫ 1

x

dz

z
Iij(pcut

T , R, ω, z, µ, ν) fj

( ω

zEcm
, µ
)[

1 +O
(ΛQCD

pcut
T

)]
.

(2.9)

As discussed in detail in ref. [13], all logarithms of the ratio pcut
T /Q in eq. (2.8) are

resummed by evaluating each of the hard, beam, and soft functions at their characteristic

virtuality and rapidity scales,

µH ∼ Q =
√
ωaωb , µB ∼ µS ∼ pcut

T , νB ∼ Q , νS ∼ pcut
T , (2.10)

and evolving them to common scales µ, ν using renormalization group (RG) evolution.

The power corrections in eq. (2.8) can be included at fixed order in αs by matching the

resummed result to the corresponding fixed-order result in full QCD. The O(Qe−ηcut/pcut
T )

corrections stop being suppressed for large Q, small pcut
T , or central ηcut. In the next section,

we show that they can be incorporated into the beam functions in eq. (2.9).

2.3 Regime 2: pcutT /Q ∼ e−ηcut (ηcut dependent beam functions)

In this regime, the scaling of soft and collinear modes is unchanged from the previous case.

However, the characteristic rapidity of the collinear modes now coincides parametrically

with ηcut, i.e.,

soft: pµ ∼
(
pcut
T , pcut

T , pcut
T

)
,

na-collinear: pµ ∼
(

(pcutT )2

Q , Q, pcut
T

)
∼
(
Qe−2ηcut , Q,Qe−ηcut

)
,

nb-collinear: pµ ∼
(
Q,

(pcutT )2

Q , pcut
T

)
∼
(
Q,Qe−2ηcut , Qe−ηcut

)
. (2.11)

Thus, collinear emissions resolve the rapidity cut, and are constrained by the jet veto for

|η| < ηcut, while for |η| > ηcut they are unconstrained. As a result, the cross section

factorizes at leading power as

σ0(pcut
T , ηcut, R,Φ) = Hκ(Φ, µ)Ba(p

cut
T , ηcut, R, ωa, µ, ν)Bb(p

cut
T , ηcut, R, ωb, µ, ν)

× Sκ(pcut
T , µ, ν)

[
1 +O

(pcut
T

Q
, e−ηcut , R2

)]
. (2.12)

The beam functions now explicitly depend on both pcut
T and ηcut, while the hard and soft

functions are unchanged (with their characteristic scales still given by eq. (2.10)). The RG

consistency of the cross section fixes the anomalous dimensions of the beam function in

– 7 –



terms of those for the soft and hard functions. Thus, the ηcut dependence cannot change

the renormalization of the beam function, i.e.,

µ
d

dµ
lnBi(p

cut
T , ηcut, R, ω, x, µ, ν) = γiB(ω, µ, ν) ,

ν
d

dν
lnBi(p

cut
T , ηcut, R, ω, x, µ, ν) = γiν,B(pcut

T , R, µ) , (2.13)

where the anomalous dimensions are the same as in the ηcut →∞ limit [8, 13],

γiB(ω, µ, ν) = 2Γicusp[αs(µ)] ln
ν

ω
+ γiB[αs(µ)] ,

γiν,B(pcut
T , R, µ) = 2ηiΓ(pcut

T , µ) + γiν,B[αs(p
cut
T ), R] , (2.14)

and ηiΓ in the resummed rapidity anomalous dimension is given by

ηiΓ(µ0, µ) =

∫ µ

µ0

dµ′

µ′
Γicusp[αs(µ

′)] . (2.15)

Hence, the ηcut effects do not affect the RG evolution itself, but only change the beam

function boundary conditions, and therefore first appear at NLL′. The RG evolution

between µB ∼ pcut
T ∼ Qe−ηcut and µH ∼ Q now resums all large logarithms of µB/µH ∼

pcut
T /Q ∼ e−ηcut , while the beam function boundary condition now explicitly depends on the

ratio Qe−ηcut/pcut
T ∼ O(1), which in contrast to regime 1 is not power suppressed anymore.

In analogy to eq. (2.9) the beam functions can be factorized into collinear matching

coefficients, which now also depend on ηcut, and the PDFs. We write the matching co-

efficients as the sum of the usual ηcut-independent matching coefficients plus a correction

term that encodes the ηcut dependence,

Iij(pcut
T , ηcut, R, ω, z, µ, ν) = Iij(pcut

T , R, ω, z, µ, ν) + ∆Iij(pcut
T , ηcut, R, ω, z, µ, ν) . (2.16)

The ηcut-independent Iij are given in appendix A.2, and in the following we focus on the

∆Iij .
Consistency between the cross sections in eqs. (2.8) and (2.12) implies that ∆Iij van-

ishes as ηcut →∞. Specifically, defining

ζcut ≡ ωe−ηcut/pcut
T , (2.17)

the ∆Iij scale like

∆Iij
(
pcut
T , ηcut, R, ω, z, µ, ν

)
∼ O(ζcut) for ζcut → 0 , (2.18)

which is simply the statement from the previous subsection that the ηcut effects are power

suppressed in ζcut for ζcut � 1.

In fact, ∆Iij vanishes altogether for z > ζcut/(1 + ζcut), which can be seen from purely

kinematic considerations as follows: For the n-collinear sector the term ∆Iij accounts for

the case where at least one jet with pjet
T ≥ pcut

T and ηjet ≥ ηcut is reconstructed (and no
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jet with ηjet < ηcut). For R � 1 all radiation in this jet has η ≥ ηcut, as well. Thus,

contributions to ∆Iij can only appear if

pcut
T ≤ |~p jet

T | ≤
∑
k∈jets

|~pT,k| =
∑
k∈jets

p−k e
−ηk , (2.19)

where the second equality follows from the jets being massless for R � 1. Rewriting this

in terms of momentum fractions p−k = zk P
−
n = zk ω/z yields, with

∑
k zk + z = 1 and P−n

the momentum of the initial state proton,

pcut
T ≤

∑
k∈jets

zk
z
ωe−ηk ≤ 1− z

z
ωe−ηcut . (2.20)

The second inequality follows from all reconstructed n-collinear jets having ηk > ηcut. This

implies that eq. (2.18) is trivially satisfied since the domain of integration in z scales as

x ≤ z . ζcut. Hence ∆Iij is parametrically important for ζcut ∼ z ∼ 1, but vanishes in the

threshold limit z → 1. This leads to an additional numerical suppression due to the falloff

of the PDFs towards larger partonic momentum fractions.

The RGE of ∆Iij follows from the beam-function RGE eq. (2.13) and the analogue of

the matching onto the PDFs in eq. (2.9). It is given by (with the remaining arguments of

∆Iij understood)

µ
d

dµ
∆Iij(z, µ, ν) = γiB(ω, µ, ν) ∆Iij(z, µ, ν)−

∑
k

∆Iik(z, µ, ν)⊗z 2Pkj [αs(µ), z] ,

ν
d

dν
∆Iij(z, µ, ν) = γiν,B(pcut

T , R, µ) ∆Iij(z, µ, ν) . (2.21)

The Mellin convolution ⊗z is defined as

g(z)⊗z h(z) =

∫ 1

z

dξ

ξ
g(ξ)h

(z
ξ

)
, (2.22)

and 2Pij(αs, z) is the standard PDF anomalous dimension with respect to µ,

µ
d

dµ
fi(x, µ) =

∑
j

∫ 1

x

dz

z
2Pij [αs(µ), z] fj

(x
z
, µ
)
. (2.23)

Note that the RGE in eq. (2.21) does not mix ∆Iij with Iij and therefore does not change

the ζcut scaling in eq. (2.18). Solving eq. (2.21) order by order in perturbation theory, we

find the following structure through two loops:

∆Iij(z) =
αs(µ)

4π
∆I(1)

ij (z) +
α2
s(µ)

(4π)2
∆I(2)

ij (z) +O(α3
s) ,

∆I(1)
ij (z) = ∆I

(1)
ij

(ωe−ηcut
pcut
T

, z
)
,

∆I(2)
ij (z) = ln

µ

pcut
T

[
2Γi0 ln

ν

ω
+ 2β0 + γiB 0

]
∆I

(1)
ij

(ωe−ηcut
pcut
T

, z
)

− 2 ln
µ

pcut
T

∑
k

∆I
(1)
ik

(ωe−ηcut
pcut
T

, z
)
⊗z P (0)

kj (z) + ∆I
(2)
ij

(ωe−ηcut
pcut
T

, R, z
)
, (2.24)
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where ∆I
(n)
ij is the boundary condition of the RGE at µ = pcut

T , ν = ω, and the required

anomalous dimension coefficients are collected in appendix A.1. By dimensional analysis

and boost invariance, ∆I
(n)
ij can only depend on ζcut = ωe−ηcut/pcut

T in addition to R and

z.

In appendix A.3 we determine the one-loop contribution ∆I
(1)
ij , which has the simple

form

∆I
(1)
ij

(
ζcut, z

)
= θ
( ζcut

1 + ζcut
− z
)

2P
(0)
ij (z) ln

ζcut(1− z)
z

, (2.25)

with the one-loop splitting functions P
(0)
ij (z) as given in eq. (A.6). The correction vanishes

at the kinematic threshold encoded in the overall θ-function, which also cuts off the singular

distributions in P
(0)
ij (z) at z = 1. The Mellin convolutions of ∆I

(1)
ik ⊗z P

(0)
kj appearing in

the coefficient of ln(µ/pcut
T ) in ∆I(2)

ij (z) are given in appendix A.6.

While the computation of the full two-loop contribution ∆I
(2)
ij is beyond the scope of

this paper, we analytically compute its leading contribution in the small-R limit, which

contains a clustering logarithm of R. We write the full two-loop result as

∆I
(2)
ij (ζcut, R, z) = lnR∆I

(2,lnR)
ij (ζcut, z) + ∆I

(2,c)
ij (ζcut, z) +O(R2) . (2.26)

In the limit R � 1, we exploit that for the emission of two close-by collinear partons

with relative rapidity ∆η ∼ R, the collinear matrix element factorizes into two sequential

collinear splittings at the scale µ ∼ pcut
T and µ ∼ pcut

T R, respectively. This allows us to

evaluate the coefficient of lnR in a generic two-loop beam function as a convolution of a

primary on-shell emission and (the anomalous dimension of) the semi-inclusive jet function

of ref. [36]. Specifically, for the case of ∆I
(2)
ij we find

∆I
(2,lnR)
ij (ζcut, z) = θ

( ζcut

1 + ζcut
− z
)

2P
(0)
ij (z)

[
θ
(
z − ζcut

2 + ζcut

)
cR,cut
ij

( z

ζcut(1− z)
)
− cRij

]
,

(2.27)

where the coefficient functions cR,cut
ij are given by

cR,cut
gg (x) = cR,cut

qq (x) = −2

∫ x

1/2

dz

z

∫ z

1/2
dzJ

[
P (0)
gg (zJ) + 2nfP

(0)
qg (zJ)

]
,

cR,cut
gq (x) = cR,cut

qg (x) = −2

∫ x

1/2

dz

z

∫ z

1/2
dzJ

[
P (0)
qq (zJ) + P (0)

gq (zJ)
]
, (2.28)

depending on whether the primary emission we split is a gluon (first line) or a quark (second

line). Their explicit expressions read

cR,cut
gg (x) = cR,cut

qq (x) = 2CA

[5

8
+
π2

3
− 3x+

9

2
x2 − 2x3 − 2 ln2 x− 4 Li2(x)

]
+ 2β0

[
−29

24
− ln 2 + 3x− 3

2
x2 +

2

3
x3 − lnx

]
,

cR,cut
gq (x) = cR,cut

qg (x) = 2CF

[
−3 +

π2

3
− 3 ln 2 + 6x− 3 lnx− 2 ln2 x− 4 Li2(x)

]
. (2.29)
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Figure 3. Comparison of the singular contributions to the fixed O(αs) (LO1) pjetT spectrum for

gg → H (left) and Drell-Yan (right). The orange solid lines show the singular contributions in

regime 2 with ηcut dependent beam functions. The dashed blue lines show the singular contributions

in regime 1 in the limit ηcut =∞, pcutT � Qe−ηcut . Their difference, shown by the dotted green lines,

correctly scales as a power in Qe−ηcut/pjetT . The vertical lines indicate the point pjetT = Qe−ηcut .

The coefficients cRij in eq. (2.27) are the (in principle known) coefficients of lnR in the

ηcut-independent two-loop beam function [13, 19], which we also verified.2 They satisfy

cRij = lim
x→1

cR,cut
ij (x) , (2.30)

and are given by

cRgg = cRqq =
1

4

[(
1− 8π2

3

)
CA +

(23

3
− 8 ln 2

)
β0

]
,

cRqg = cRgq = 2CF

(
3− π2

3
− 3 ln 2

)
. (2.31)

Our general setup for computing the small-R clustering contributions implies that the

coefficient of the lnR terms of the two-loop rapidity anomalous dimension must be equal

to cRgg = cRqq, in agreement with the corresponding result given in refs. [8, 13]. In addition,

it also applies to the leading ln2R and lnR terms in the beam functions for rapidity

dependent jet vetoes in ref. [28], with which we agree as well.

The R-independent term ∆I
(2,c)
ik (ζcut, z) and theO(R2) terms in eq. (2.26) are currently

unknown. Their contribution to the cross section can in principle be obtained numerically

from the singular limit of the full-theory calculation at O(α2
s), as was done for the corre-

sponding ηcut-independent pieces in ref. [13].

Numerical validation. To validate our results numerically and highlight the differences

in the singular behavior for regimes 1 and 2, we consider the fixed O(αs) p
jet
T spectrum,

dσ/dpjet
T , where pjet

T is the transverse momentum of the leading jet within |ηjet| < ηcut. Its

2The coefficient of the cRgq contribution in eq. (39) of ref. [13] has a typo, missing an overall factor of 2.

We also find that the CA term of the coefficient cRqq in eq. (9) of ref. [19] misses a factor of 1/2 compared

to ref. [13] and our result.
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Figure 4. Comparison of singular and nonsingular contributions to the fixed O(αs) (LO1) pjetT
spectrum with rapidity cut |ηjet| < ηcut for gg → H (top row) and gg → X (bottom row), ηcut = 2.5

(left) and ηcut = 4.5 (right). The orange solid lines show the full results, the dashed blue lines the

regime 2 results with ηcut dependent beam functions, and the dotted green lines their difference.

The dashed and dotted gray lines show the corresponding regime 1 results, which do not describe

the singular behavior of the full cross section for finite ηcut.

relation to the jet veto cross section with a jet rapidity cut is simply

σ0(pcut
T , ηcut, R) =

∫ pcutT

0
dpjet

T

dσ(ηcut, R)

dpjet
T

. (2.32)

At leading power in pjet
T /Q, we obtain it by taking the derivative with respect to pcut

T of

either eq. (2.12), retaining the exact dependence on ηcut in the beam functions (regime 2),

or of eq. (2.8), incurring power corrections in Qe−ηcut/pjet
T (regime 1). The numerical results

for all singular spectra are obtained with the help of SCETlib [37]. The O(αs) spectra in

full QCD are obtained from MCFM 8.0 [38–40].

As representative gluon-induced processes, we consider gluon-fusion Higgs production

gg → H at mH = 125 GeV in the infinite top-mass limit, rescaled with the exact LO

top-mass dependence for mt = 172.5 GeV (rEFT). In addition, we consider gluon fusion to

a hypothetical heavy color-singlet scalar X, gg → X, mediated by the contact operator

Leff = −CX
Λ

αsG
a
µνG

a,µνX . (2.33)
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Figure 5. Comparison of singular and nonsingular contributions to the fixed O(αs) (LO1) pjetT
spectrum with rapidity cut |ηjet| < ηcut for Drell-Yan at Q = mZ (top row) and Q = 1 TeV (bottom

row), ηcut = 2.5 (left) and ηcut = 4.5 (right). The meaning of the curves are as in figure 4.

We always choose mX = 1 TeV, Λ = 1 TeV, and divide the cross section by |CX |2. To the

order we are working, this is equivalent to setting CX ≡ 1, since CX only starts to run at

O(α2
s).

3 For quark-induced processes we consider Drell-Yan pp → Z/γ∗ → `+`− at the Z

pole (Q = mZ) and at Q = 1 TeV, where Q = m`` is the invariant mass of the lepton pair.

Here we set all scales to µFO = mH , mX , or Q, respectively. We use PDF4LHC nnlo 100

[45–50] NNLO PDFs with αs(mZ) = 0.118 throughout.

In figure 3, we compare the regime 2 and regime 1 leading-power (singular) results for

dσ/dpjet
T at fixed pjet

T as a function of ηcut for gg → H and Drell-Yan. The regime 1 result

(dashed blue) does not depend on ηcut, while the regime 2 result (solid orange) decreases as

ηcut becomes more central. The difference between the two (dotted green) has the expected

behavior, vanishing as Qe−ηcut/pjet
T for ηcut → ∞. We observe that regime 1 is applicable

beyond ηcut & 4, where the difference to regime 2 is suppressed by an order of magnitude.

Another check is provided by comparing the regime 1 and regime 2 singular results

to the full QCD result, which is shown in figures 4 and 5 for gluon-fusion and Drell-Yan.

3In MCFM 8.0 we mock up this process using a standard-model Higgs with mH = 1 TeV and manually

account for the nonzero one-loop contribution from integrating out the top quark in the SM, which differs

from our choice of CX = 1 +O(α2
s) for the effective coupling of X to gluons. We also checked the results

against the native gg → X support of SusHi 1.6.1 [41–44].
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For ηcut = 2.5 (left panels), it is clear that regime 1 (dashed gray) fails to describe the

singular limit of full QCD, with their difference (dotted gray) diverging for pjet
T → 0 like an

inverse power of pjet
T as expected. While the singular mismatch becomes less pronounced

for ηcut = 4.5 (right panels), the uncanceled singular contributions are still clearly visible in

the difference. On the other hand, regime 2 (dashed blue) correctly reproduces the singular

limit pjet
T → 0, with the difference (dotted green) vanishing like a power of pjet

T as it must.

This provides a strong check of the intricate pcut
T dependence encoded in our O(αs) results

for ∆Iij . (The power corrections in e−ηcut , which are present in regime 2, drop out when

taking the derivative of the fixed-order cumulant with respect to pcut
T .)

Note that at mX = 1 TeV or Q = 1 TeV, the fixed-order spectrum is completely

dominated by the rapidity-cut dependent singular result up to pjet
T . 100 GeV. Hence,

the resummation should provide a significant improvement over the fixed-order result for

typical pcut
T ∼ 50 GeV, which we will indeed find in section 4.

2.4 Regime 3: pcutT /Q� e−ηcut (collinear NGLs)

The hierarchy pcut
T � Qe−ηcut (with e−ηcut � 1) exhibits different features than the regimes

discussed before. The typical transverse momentum for emissions with |η| > ηcut is para-

metrically Qe−|η|, indicated by the horizontal gray line in figure 2, which is now much

larger than for the strongly constrained emissions at |η| < ηcut. While the soft modes at

central rapidities are not affected, there are now two types of collinear modes at forward

rapidities with |η| ∼ ηcut,

na-collinear: pµ ∼ Q
(
e−2ηcut , 1, e−ηcut

)
,

na-soft-collinear: pµ ∼
(
pcut
T e−ηcut , pcut

T eηcut , pcut
T

)
= pcut

T eηcut
(
e−2ηcut , 1, e−ηcut

)
, (2.34)

and analogously for the nb-collinear sector.

The collinear and soft-collinear modes have the same angular resolution and only

differ in their energy. This makes their all-order factorization challenging and leads to the

appearance of nonglobal logarithms ln(Qe−ηcut/pcut
T ) starting at O(α2

s). Their factorization

and resummation requires the marginalization over all possible configurations of energetic

collinear emissions, involving soft-collinear matrix elements with a separate Wilson line

along each individual energetic collinear emission, see e.g. refs. [51–54].

Since this regime has no immediate phenomenological relevance, we will not carry

out this complete procedure but restrict ourselves to the configuration with soft-collinear

Wilson lines along n and n̄, i.e, along the two main collinear emitters. This is sufficient for

the LL resummation, for isolating the nonglobal effects, and for discussing the relation to

the other regimes. Our discussion here is in close analogy to the regime 3 in the factorization

of the exclusive jet mass spectrum with small jet radius R in ref. [55], where the rapidity

cut e−ηcut here takes the role of R there.4

4The main difference is that here, emissions for |η| < ηcut are constrained by their pT relative to the

same collinear (beam) direction. In the jet mass case, emissions outside the jet are not constrained by their

pT relative to the same collinear (jet) direction (but also relative to the beam direction).
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The factorized cross section takes the form

σ0(pcut
T , ηcut, R,Φ) = Hκ(Φ, µ)Ba(pcut

T , ηcut, R, ωa, µ, ν)Bb(pcut
T , ηcut, R, ωb, µ, ν)

× Sκ(pcut
T , R, µ, ν)

[
1 +O

( pcut
T

Qe−ηcut
, e−ηcut , R2

)]
. (2.35)

The initial-state collinear functions Bi encode the contributions of both soft-collinear and

energetic collinear modes. They are related to the ηcut dependent beam functions Bi in

eq. (2.12) by an expansion in the limit pcut
T /(ωe−ηcut)� 1,

Bi(p
cut
T , ηcut, R, ω, µ, ν) = Bi(pcut

T , ηcut, R, ω, µ, ν)

[
1 +O

( pcut
T

ωe−ηcut

)]
. (2.36)

Without further factorization, Bi contains large unresummed Sudakov double logarithms

αns ln2n(pcut
T /ωe−ηcut). To resum the leading double logarithms, we can decompose Bi as

Bi(pcut
T , ηcut, R, ω, µ, ν) = B

(cut)
i (ηcut, ω, µ)S(cut)

i (pcut
T , ηcut, R, µ, ν)

×
[
1 + B(NG)

i

( pcut
T

ωe−ηcut
, ω,R

)]
. (2.37)

The function B
(cut)
i mainly describes contributions from the energetic collinear modes. It

was dubbed “unmeasured” beam function in refs. [33, 34], in analogy to the unmeasured

jet function [56]. At one loop its matching coefficients account for an energetic collinear

emission with |η| > ηcut. They are calculated in appendix A.3 and read

I(cut)
gg (ηcut, ω, z, µ) = δ(1− z) +

αs(µ)CA
4π

[
δ(1− z)

(
4 ln2 ωe

−ηcut

µ
− π2

6

)
+ 4Pgg(z) ln

ωe−ηcut

µ z
+ 8L1(1− z) + 8

(1

z
− 2 + z − z2

)
ln(1− z)

]
+O(α2

s) ,

I(cut)
gq (ηcut, ω, z, µ) =

αs(µ)CF
4π

[
4Pgq(z) ln

ωe−ηcut(1− z)
µ z

+ 2z

]
+O(α2

s) ,

I(cut)
qq (ηcut, ω, z, µ) = δ(1− z) +

αs(µ)CF
4π

[
δ(1− z)

(
4 ln2 ωe

−ηcut

µ
− 6 ln

ωe−ηcut

µ
− π2

6

)
+ 4Pqq(z) ln

ωe−ηcut

µ z
+ 8L1(1− z)− 4(1 + z) ln(1− z) + 2(1− z)

]
+O(α2

s) ,

I(cut)
qg (ηcut, ω, z, µ) =

αs(µ)TF
4π

[
4Pqg(z) ln

ωe−ηcut(1− z)
µ z

+ 4z(1− z)
]

+O(α2
s) , (2.38)

where Ln(1−z) ≡ [lnn(1−z)/(1−z)]+, Pij(z) are the color-stripped LO splitting functions

given in eq. (A.7), and the flavor structure is trivial,

I(cut)
q̄iq̄j = I(cut)

qiqj = δijI(cut)
qq +O(α2

s) , I(cut)
qiq̄j = I(cut)

q̄iqj = O(α2
s) . (2.39)

As argued in ref. [33] the results are directly related to the matching coefficients for frag-

menting jet functions in ref. [57].
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The function S(cut)
i in eq. (2.37) mainly describes contributions from soft-collinear

modes. At one loop it accounts for a soft-collinear emission that couples eikonally to the

incoming collinear parton i. The emission is constrained to pT < pcut
T for |η| < ηcut by the

jet veto, and is unconstrained for |η| > ηcut. Using the η regulator [58, 59] it is given by

(see appendix A.4)

S(cut)
i (pcut

T , ηcut, R, µ, ν) = 1 +
αs(µ)

4π
S(cut,1)
i +

α2
s(µ)

(4π)2
S(cut,2) +O(α3

s) ,

S(cut,1)
i (pcut

T , ηcut, R, µ, ν) = Ci

(
4 ln2 p

cut
T

µ
− 8 ln

pcut
T

µ
ln
νe−ηcut

µ
+
π2

6

)
, (2.40)

where Ci = CF for an incoming quark or antiquark and CA for an incoming gluon. We

checked explicitly that the above results obey the consistency constraint in eq. (2.36). For

this purpose, one has to note that eq. (2.25) becomes distribution valued in (1− z) when

taking the limit ζcut � 1.

At two loops S(cut)
i contains a lnR enhanced term. Focusing on the constant terms

not predicted by the RG evolution, we have

S(cut,2)
i (pcut

T , ηcut, R, µ = pcut
T , ν = µeηcut) = lnRS(cut,2,lnR)

i + S(cut,2,c)
i +O(R2) , (2.41)

with S(cut,2,c)
i an unknown two-loop constant. The coefficient of lnR is obtained by ex-

panding the lnR coefficient in the ηcut dependent beam function [see eqs. (2.27) and (A.21)]

to leading power in 1/ζcut. In the limit ζcut � 1, the sum I
(2,lnR)
ij + ∆I

(2,lnR)
ij becomes

proportional to δ(1−z), as the arguments of both θ-functions in eq. (2.27) approach z = 1.

The coefficient of δ(1− z) is then given by the ζcut →∞ limit of the integral of ∆I
(2,lnR)
ij ,

which vanishes for i 6= j and for i = j leaves

S(cut,2,lnR)
i = 8Ci

∫ 1

1/2

dx

x
cR,cut
ii (x) (2.42)

= Ci

{
CA

[1622

27
− 548

9
ln 2− 88

3
ln2 2− 8ζ3

]
+ nfTF

[
−652

27
+

232

9
ln 2 +

32

3
ln2 2

]}
.

The anomalous dimensions of B
(cut)
i and S(cut)

i have the general structure

γiScut(ηcut, µ, ν) = 2Γicusp[αs(µ)] ln
νe−ηcut

µ
+ γiScut [αs(µ)] ,

γiν,Scut(p
cut
T , R, µ) = 2ηiΓ(pcut

T , µ) + γiν,Scut [αs(p
cut
T ), R] ,

γiBcut

(
ωe−ηcut , µ

)
= 2Γicusp[αs(µ)] ln

µ

ωe−ηcut
+ γiBcut [αs(µ)] , (2.43)

where the coefficients of the cusp anomalous dimension follow from our explicit one-loop

calculation. Consistency with eq. (2.14) implies

γiScut(αs) + γiBcut(αs) = γiB(αs) ,

γiν,Scut(αs, R) = γiν,B(αs, R) = −1

2
γiν(αs, R) . (2.44)
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All of the above noncusp anomalous dimensions vanish at one loop. The canonical scales

for B
(cut)
i and S(cut)

i are

µ
(cut)
B ∼ Qe−ηcut , µ

(cut)
S ∼ pcut

T , ν
(cut)
S ∼ pcut

T eηcut . (2.45)

With these choices and the anomalous dimensions in eq. (2.43) one may resum logarithms

of eηcut , pcut
T /Q to any logarithmic order, and at LL also logarithms of pcut

T /Qe−ηcut .

Starting at O(α2
s), the B(NG)

i term in eq. (2.37) contains nonglobal logarithms of the

form αns lnn(pcut
T /Qe−ηcut). A boost by ηcut translates the measurement into two hemi-

spheres with one loose (η > ηcut) and one tight constraint (η < ηcut) on emissions. The

nonglobal structure in such a scenario is well understood [60]. Depending on the desired

accuracy, the NGLs may be included at fixed order via B(NG)
i as indicated in eq. (2.37), or

(partially) summed using more steps in a dressed parton expansion [53].

Note that beyond one loop there is some freedom in the choice of measurement that de-

fines the B
(cut)
i and S(cut)

i . In particular, different measurements that reduce to eqs. (2.38)

and (2.40) for a single emission could give rise to different results for the two-loop noncusp

anomalous dimensions and finite terms because the difference can be absorbed into B(NG)
i .

We stress that the result eq. (2.42) for the lnR coefficient in the two-loop soft-collinear

function is, however, still unique. This is because a lnR contribution to B(NG) requires

a collinear parton in the unconstrained region to emit a soft-collinear gluon into the con-

strained region, which then undergoes a further collinear splitting. This is only possible

starting at O(α3
s).

Numerical validation. To illustrate the numerical relevance of regime 3, we again con-

sider the fixed O(αs) p
jet
T spectrum. In regime 2, it is given to leading power in pjet

T /Q by

the derivative of eq. (2.12), while in regime 3, it is given to leading power in pjet
T /(Qe

−ηcut)

by the derivative of eq. (2.35).

In figure 6 we compare the two results for ηcut = 2.5. In regime 3, the 0-jet cross

section at O(αs) contains only single logarithms of pcut
T , because the double logarithms

cancel between the soft and soft-collinear functions. For this reason, the dashed-blue

regime 3 spectrum with respect to ln pjet
T is just a constant. The exact regime 2 result

(solid orange) becomes well approximated by the further factorized regime 3 expression for

pjet
T → 0, with their difference (dotted green) behaving like a power in pjet

T . This provides

a strong check of the regime 3 ingredients, more precisely, of the pcut
T dependence encoded

in the soft-collinear function. (Since the beam function in regime 3 is independent of pcut
T ,

it drops out when computing the fixed-order spectrum.)

We also observe that for gg → H and Drell-Yan at Q = mZ , the regime 3 limit

is applicable only at very small pjet
T . 1 GeV and already at pjet

T ∼ 10 − 20 GeV the

power corrections with respect to regime 2 are of the same size as the full regime 2 result.

This means that one would have to turn off the additional regime 3 resummation above

this region. For gg → X with mX = 1 TeV and Drell-Yan at Q = 1 TeV, the canonical

regime 3 resummation region, i.e., the region where the regime 3 singular corrections clearly

dominate, extends up to pjet
T . 10 GeV, while regime 2 power corrections become O(1)

around pjet
T ∼ 60 GeV.
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Figure 6. Comparison of the singular contributions to the fixed O(αs) p
jet
T spectrum for gg → H

(top left), gg → X (top right), and Drell-Yan at Q = mZ (bottom left) and Q = 1 TeV (bottom

right). The solid orange lines show the full regime 2 singular spectrum, the blue dashed lines the

further factorized regime 3 result. Their difference shown by the dotted green lines vanishes as a

power in pjetT /Qe−ηcut for small pjetT . The vertical lines indicate where the relation pjetT = Qe−ηcut is

satisfied.

Hence, we find that the additional resummation of logarithms of pjet
T /(Qe

−ηcut) in

regime 3 is not relevant for jet veto analyses at the LHC, where the lowest jet cuts are

pcut
T ∼ 25 GeV, for ηcut = 2.5 and final states in the Q ∼ 100 GeV range. This also holds

for final states at very high invariant mass, e.g. in new physics searches, since in this case

one would typically also apply higher jet thresholds to retain enough signal in the 0-jet

bin. Realistically, one would not go below pcut
T ∼ 0.1Q, which means one never enters

the limit where the regime 3 resummation is necessary. This of course does not exclude

the possibility that measurements designed to probe simultaneously very high Q and very

low pjet
T could benefit from the regime 3 resummation. To explicitly explore this regime

experimentally, the best option is to restrict the jet veto to the very central region with

ηcut ∼ 1− 1.5.

2.5 Comparison to the literature

Jet vetoes in a restricted rapidity range were already encountered in ref. [33] for the case

of dijet production. Without spelling it out explicitly, ref. [33] used a factorization for
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the regime 3 hierarchy pcut
T � Qe−ηcut � Q, but did not distinguish between the soft and

soft-collinear modes necessary in this regime. As a result, parametrically large rapidity

logarithms ln eηcut were not captured, which are relevant starting at NLL. The numerical

results in ref. [33] were obtained for Q ∼ 1 TeV, ηcut = 5, and pcut
T = 20 GeV, which rather

corresponds to the opposite regime 1, pcut
T � Qe−ηcut . The difference between regimes 1

and 3 already matters at LL.

In ref. [34], the soft and soft-collinear modes in regime 3 are distinguished and the

presence of nonglobal logarithms in this regime is recognized. Their factorization for dijet

production is carried out at a level analogous to ours in the previous subsection. That is,

at NLL and beyond it only captures logarithms of “global” origin, but does not capture

nonglobal logarithms that are parametrically of the same size. Our results for the one-

loop quark matching coefficients in eq. (2.38) and the one-loop soft-collinear function in

eq. (2.40) agree with ref. [34] [see their eqs. (3.27), (B.3), and (B.5)]. Our results for the

gluon channels and the two-loop clustering corrections are new.

Ref. [34] does not consider regime 2 as a separate parametric regime. Instead, it

attempts to extend the validity of the regime 3 factorization into regime 2. This is done

by effectively adding the regime 2 nonsingular corrections appearing in eq. (2.36) to the

unmeasured beam functions. Since some of the regime 3 modes become redundant in

regime 2, this also requires them to account for a nontrivial soft-collinear zero bin. At

fixed order, the sum of all their contributions must reproduce our result for the regime 2

beam function; in appendix A.5 we check that this is indeed the case for the quark matrix

elements given in ref. [34]. As we have seen in figure 6, outside the canonical regime 3, there

are large cancellations between the terms that are singular in the regime 3 limit and the

remaining regime 2 nonsingular contributions. This means that the distinction between

these contributions becomes arbitrary in regime 2 and that they must not be treated

differently, as otherwise one risks inducing large miscancellations. (This is completely

analogous to the situation when matching to full QCD, in which case the pcut
T resummation

must be turned off when entering the fixed-order region at large pcut
T to properly recover

the full-QCD result.) In particular, in regime 2 all contributions that belong to the full

ηcut-dependent regime 2 beam function must be evaluated at a common scale µ ' pcut
T and

evolved together according to eq. (2.13). This is not the case in ref. [34], where individual

contributions to the regime 2 beam function are evaluated at different scales throughout

(µcut
B and µcut

S in our notation).

Recently, the setup of ref. [34] was applied in ref. [35] to the case of transverse energy

ET in a restricted rapidity range in Drell-Yan. In ref. [35], profile scales are used to

combine regimes 3 and 1, requiring that asymptotically µ
(cut)
B = µ

(cut)
S in the regime 1 limit

ET � Qe−ηcut . While this can alleviate the issue raised above, formally this relation must

be satisfied already in regime 2 for ET ∼ Qe−ηcut .
As we have seen in section 2.3, there is no need to distinguish collinear and soft-collinear

modes in regime 2. Since for jet-veto analyses regimes 1 and 2 are the phenomenologically

relevant ones, doing so unnecessarily complicates the description. Recovering the NNLL′

structure in regime 2 [see eq. (2.24)] based on regime 3 would be quite challenging due to

the intricate nonglobal structure in regime 3. Our dedicated treatment of regime 2 makes
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the absence of nonglobal logarithms manifest, avoiding the associated complications, and

automatically ensures the correct treatment of the regime 2 nonsingular terms. Further-

more, it shows how regime 2 generalizes the well-understood regime 1, and as we will see

in the next section allows for the generalization to a step in the jet veto.

Concerning regime 1, ref. [35] also gave an argument that regime 1 holds up to

power corrections in Qe−ηcut/ET , which was more intricate due to immediately comparing

regime 1 to regime 3. The power suppression of ηcut effects at sufficiently large ηcut was

also pointed out briefly in a somewhat different context in ref. [61].

3 Generalization to a step in the jet veto at ηcut

3.1 Overview of parametric regimes

We now generalize our results to the experimentally relevant scenario of the step-like jet

veto illustrated in the right panel of figure 1. Here, jets with pjet
T > pcut

T are vetoed if

|ηjet| < ηcut, while for |ηjet| > ηcut the veto is loosened to pjet
T > p̃cut

T > pcut
T . The 0-jet cross

section is thus defined by the following measurement:

max
k∈jets: |ηk|<ηcut

|~pT,k| < pcut
T and max

k∈jets: |ηk|>ηcut
|~pT,k| < p̃cut

T . (3.1)

There are now three relevant power-counting parameters pcut
T /Q, p̃cut

T /Q, and e−ηcut

with four distinct parametric regimes (assuming pcut
T ≤ p̃cut

T ), illustrated in figure 7:

• pcut
T /Q ∼ p̃cut

T /Q ∼ e−ηcut (collinear step, top left),

• pcut
T /Q� p̃cut

T /Q ∼ e−ηcut (collinear NGLs, top right),

• pcut
T /Q ∼ p̃cut

T /Q� e−ηcut (soft-collinear step, bottom left),

• pcut
T /Q� p̃cut

T /Q� e−ηcut (soft-collinear NGLs, bottom right).

We discuss each of them in turn in the following subsections. For pcut
T /Q ∼ e−ηcut (top left)

the only relevant case is p̃cut
T ∼ pcut

T , leading to a modified measurement on the collinear

modes, a collinear step, compared to the case without a step (p̃cut
T = pcut

T ).

For pcut
T /Q � e−ηcut , we have to distinguish three cases depending on p̃cut

T . Keeping

p̃cut
T ∼ e−ηcut implies the hierarchy pcut

T /Q � p̃cut
T /Q ∼ e−ηcut (top right). Here, the mode

setup is the same as for regime 3 without step (corresponding to p̃cut
T = ∞). As in that

case, the large difference in the constraints on collinear radiation above and below ηcut

gives rise to collinear NGLs.

For p̃cut
T /Q � e−ηcut , we can then have either pcut

T /Q ∼ p̃cut
T /Q � e−ηcut (bottom

left) or pcut
T /Q � p̃cut

T /Q � e−ηcut (bottom right). For the former, the standard jet veto

factorization is recovered except that there are additional soft-collinear modes that resolve

the shallow step at ηcut. For the latter, the steep step pcut
T � p̃cut

T at ηcut gives rise to two

distinct sets of soft-collinear modes with parametrically large soft-collinear NGLs between

them.
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Figure 7. Illustration of the parametric regimes for a jet veto with a step. Emissions above the

black lines are vetoed, and the thick gray line corresponds to pT /Q = e−|η|. The colored circles

indicate the relevant modes in the effective theory. The regimes in the top row are characterized

by p̃cutT ∼ e−ηcut , while those in the bottom row have p̃cutT � e−ηcut . The regimes on the left have

pcutT ∼ p̃cutT , while those on the right have pcutT � p̃cutT and involve parametrically large non-global

logarithms.

3.2 pcutT /Q ∼ p̃cutT /Q ∼ e−ηcut (collinear step)

We first note that the hierarchy pcut
T /Q ∼ e−ηcut � p̃cut

T /Q is effectively equivalent to the

case without any jet veto beyond ηcut (regime 2 in section 2.3). Since collinear emissions

with |η| > ηcut cannot resolve the loose veto at p̃cut
T , its effect is suppressed by 1/p̃cut

T and

vanishes for p̃cut
T →∞.

The first nontrivial hierarchy is pcut
T /Q ∼ p̃cut

T /Q ∼ e−ηcut , illustrated in the top

left panel of figure 7. In this regime, the required modes are the same as in regime 2

in section 2.3. The collinear radiation resolves the step at ηcut while soft emissions are

insensitive to it, leading to a generalization of eq. (2.12),

σ0(pcut
T , p̃cut

T , ηcut, R,Φ) = Hκ(Φ, µ)

×Ba(pcut
T , p̃cut

T , ηcut, R, ωa, µ, ν)Bb(p
cut
T , p̃cut

T , ηcut, R, ωb, µ, ν)

× Sκ(pcut
T , R, µ, ν)

[
1 +O

(pcut
T

Q
,
p̃cut
T

Q
, e−ηcut , R2

)]
, (3.2)
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with the beam functions now additionally depending on p̃cut
T . In analogy to eq. (2.16) we

write the modified beam function matching coefficients as

Iij(pcut
T , p̃cut

T , ηcut, R, ω, z, µ, ν) = Iij(pcut
T , R, ω, z, µ, ν) + ∆Iij(pcut

T , p̃cut
T , ηcut, R, ω, z, µ, ν) .

(3.3)

The first term on the right-hand side is again the matching coefficient for a single veto

at pcut
T without any rapidity dependence. The second term is the correction due to the

step in the jet veto at |η| = ηcut, which vanishes for pcut
T = p̃cut

T . The correction is again

renormalized according to eq. (2.21), which as before follows from RG consistency. In

particular, its two-loop structure predicted by the RGE is the same as in eq. (2.24), where

the finite terms now depend on two dimensionless ratios,

ζcut =
ωe−ηcut

pcut
T

, ζ̃cut =
ωe−ηcut

p̃cut
T

. (3.4)

The one-loop and lnR enhanced two-loop finite terms in ∆Iij can be written in terms of

the results in eqs. (2.25) and (2.27) as

∆I
(1)
ij (ζcut, ζ̃cut, z) = ∆I

(1)
ij (ζcut, z)−∆I

(1)
ij (ζ̃cut, z) ,

∆I
(2)
ij (ζcut, ζ̃cut, R, z) = lnR

[
∆I

(2,lnR)
ij (ζcut, z)−∆I

(2,lnR)
ij (ζ̃cut, z)

]
,

+ ∆I
(2,c)
ij (ζcut, ζ̃cut, z) +O(R2) , (3.5)

since for a single (primary) na-collinear emission at (η, pT ) the measurement function for

the step correction can be rewritten as

θ(η − ηcut)
[
θ(p̃cut

T − pT )− θ(pcut
T − pT )

]
= θ(η − ηcut) θ(pT − pcut

T )− θ(η − ηcut) θ(pT − p̃cut
T ) . (3.6)

Due to the presence of correlated emissions with rapidities smaller and larger than ηcut at

two loops, this decomposition no longer applies for the full two-loop finite term ∆I
(2,c)
ij ,

which therefore needs to be determined separately.

This regime is free of large nonglobal logarithms and is of direct phenomenological in-

terest. The parametric assumptions are satisfied e.g. for high-mass searches, Q & 300 GeV,

a realistic rapidity cut ηcut = 2.5, and veto parameters pcut
T = 25 GeV, p̃cut

T = 50 GeV,

which clearly warrant resummation of logarithms of pcut
T /Q ∼ p̃cut

T /Q ∼ e−ηcut . Evolving

the beam function from µB ∼ pcut
T ∼ p̃cut

T ∼ Qe−ηcut to µH ∼ Q achieves this resummation

for all of the above large ratios in the cross section, while the full (logarithmic and nonlog-

arithmic) dependence on all of the O(1) ratios pcut
T /p̃cut

T , Qe−ηcut/pcut
T , and Qe−ηcut/p̃cut

T is

included at fixed order via the beam function boundary condition.

Numerical validation. We now check that the factorized 0-jet cross section in eq. (3.2)

reproduces the singular limit of full QCD. For this purpose, we construct an observable that

simultaneously forces pcut
T → 0 and p̃cut

T → 0 as it approaches its singular limit. Following

the rapidity-dependent jet vetoes in ref. [16], we define

Tstep = max
k∈jets

|~pT,k|fstep(ηk) , fstep(η) =

{
1
ρ , |η| > ηcut ,

1, |η| < ηcut ,
(3.7)
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Figure 8. Comparison of singular and nonsingular contributions to the fixed O(αs) (LO1) Tstep
spectrum with a step at ηcut = 2.5 and ρ = p̃cutT /pcutT = 2 for gg → H (left) and Drell-Yan at

Q = mZ (right). The orange solid lines show the full results, the dashed blue lines the singular

result that accounts for the jet veto step at ηcut in the beam function, and the dotted green lines

their difference. The dashed and dotted gray lines show the corresponding results without taking

into account the step in the jet veto, which do not describe the singular behavior of the full cross

section.

i.e., we can express the step veto by ordering the jets with respect to their weighted

transverse momenta, where for |η| > ηcut the corresponding step weight function fstep(η)

is given by the ratio of veto parameters,

ρ ≡ p̃cut
T

pcut
T

> 1 . (3.8)

The differential spectrum in Tstep is then related to the jet-vetoed cross section with a step

by the relation

σ0(pcut
T , ρ pcut

T , ηcut, R) =

∫ pcutT

0
dTstep

dσ(ρ, ηcut, R)

dTstep
. (3.9)

In figure 8 we compare dσ(ρ, ηcut)/dTstep at fixed O(αs) in full QCD to the singular

spectrum predicted by eq. (3.2) as well as the standard factorization eq. (2.8) without a

step for gg → H (left panel) and Drell-Yan at the Z pole (right panel). The singular result

using the full p̃cut
T and ηcut dependent beam functions (dashed blue) correctly reproduces

the singular behavior of full QCD (solid orange) in the limit Tstep → 0, with the difference

to the full QCD spectrum (dotted green) vanishing like a power in Tstep as it should. On

the other hand, the standard factorization without step (dashed gray) does not reproduce

the correct singular behavior of full QCD, with the difference (dotted gray) diverging for

Tstep → 0. Note that the mismatch here is reduced compared to the p̃cut
T =∞ case shown

in figures 4 and 5, owing to the larger phase space available to unconstrained radiation at

|η| > ηcut for p̃cut
T =∞.

3.3 pcutT /Q� p̃cutT /Q ∼ e−ηcut (collinear NGLs)

This regime is a direct extension of regime 3 without a step in section 2.4. For e−ηcut �
p̃cut
T /Q, the effect of p̃cut

T is again suppressed by 1/p̃cut
T and vanishes for p̃cut

T →∞, yielding
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the same result as in section 2.4. The nontrivial new hierarchy is pcut
T /Q� p̃cut

T /Q ∼ e−ηcut ,
shown in the top right panel of figure 7. In this regime, the mode setup is as in section 2.4.

However, the collinear modes are now additionally constrained for |η| > ηcut by the jet veto

at p̃cut
T , making them sensitive to both p̃cut

T and the kinematic scale Qe−ηcut . This leads to

a modification of the overall initial-state collinear functions in eqs. (2.35) and (2.36) by

Bi(pcut
T , p̃cut

T , ηcut, R, ω, µ, ν) = B
(cut)
i (p̃cut

T , ηcut, R, ω, µ)S(cut)
i (pcut

T , ηcut, R, µ, ν)

×
[
1 + B(NG)

i

( pcut
T

ωe−ηcut
,
pcut
T

p̃cut
T

, ω,R
)]
. (3.10)

Here S(cut)
i is the same soft-collinear function as in eq. (2.37). By RG consistency the

functions B
(cut)
i have the same renormalization as those in eq. (2.37), i.e., the additional

dependence on p̃cut
T does not change their renormalization. The associated matching coef-

ficients at one loop are given by subtracting the correction term ∆I
(1)
ij in eq. (2.25), which

accounts for an n-collinear emission with η > ηcut and pT > p̃cut
T , from the coefficient I(cut)

ij

in eq. (2.38), which accounts for an n-collinear emission with η > ηcut without constraints

from a jet veto, such that

I(cut)
ij (p̃cut

T , ηcut, R, ω, z, µ) = I(cut)
ij (ηcut, ω, z, µ)− αs(µ)

4π
∆I

(1)
ij

(ωe−ηcut
p̃cut
T

, z, R
)

+O(α2
s) .

(3.11)

The B(NG)
i term in eq. (3.10) contains nonglobal logarithms of pcut

T /p̃cut
T ∼ pcut

T /Qe−ηcut .

3.4 pcutT /Q ∼ p̃cutT /Q� e−ηcut (soft-collinear step)

In this regime (bottom left panel of figure 7), the mode setup in section 2.2 is extended by

soft-collinear modes that resolve the step in the jet veto at ηcut,

na-soft-collinear: pµ ∼ pcut
T (e−ηcut , eηcut , 1) ∼ p̃cut

T (e−ηcut , eηcut , 1) ,

nb-soft-collinear: pµ ∼ pcut
T (eηcut , e−ηcut , 1) ∼ p̃cut

T (eηcut , e−ηcut , 1) . (3.12)

At the same time, the collinear modes only see the jet veto at p̃cut
T , while the soft modes

only see the veto at pcut
T . This yields the factorized cross section

σ0(pcut
T , p̃cut

T , ηcut, R,Φ) = Hκ(Φ, µ)Ba(p̃
cut
T , R, ω, µ, ν)Bb(p̃

cut
T , R, ω, µ, ν)Sκ(pcut

T , µ, ν)

× Sa(pcut
T , p̃cut

T , ηcut, R, µ, ν)Sb(pcut
T , p̃cut

T , ηcut, R, µ, ν)

×
[
1 +O

(pcut
T

Q
,
p̃cut
T

Q
,

pcut
T

Qe−ηcut
,

p̃cut
T

Qe−ηcut
, R2

)]
. (3.13)

The soft-collinear function Si encodes the actual step at ηcut and is defined by the mea-

surement eq. (3.1). For p̃cut
T = pcut

T there is no step in the jet veto and Si has to vanish.

The RG consistency of the cross section implies that its µ anomalous dimension vanishes

in general, while its resummed ν anomalous dimension is given by

γiν,S(pcut
T , p̃cut

T , R) = 2ηiΓ(pcut
T , p̃cut

T ) +
1

2

{
γiν [αs(p̃

cut
T ), R]− γiν [αs(p

cut
T ), R]

}
. (3.14)
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It does not depend on µ at all, as required by exact path independence in the (µ, ν) plane.

Note that the beam functions in eq. (3.13) depend on p̃cut
T (rather than pcut

T ) because

collinear radiation is too forward to be constrained by the tighter central veto. This is

reflected in the somewhat curious rapidity anomalous dimension of Si in eq. (3.14), which

accounts for the mismatch between the logarithms of pcut
T and p̃cut

T generated by the soft

and beam rapidity evolution, respectively.

Solving eq. (3.14) order by order in αs we find the following very simple structure of

the soft-collinear function through two loops:

Si(pcut
T , p̃cut

T , ηcut, R, µ, ν) = 1 +
αs(µ)

4π

[
2Γi0 ln ρLνS + Si,1(ρ)

]
(3.15)

+
α2
s(µ)

(4π)2

{
2(Γi0)2ln2ρ (LνS)2+2 ln ρLνS

[
2LµSβ0Γi0+Γi0Si,1(ρ)+Γi1

]
+ 2β0L

µ
S Si,1(ρ) + Si,2(ρ,R)

}
+O(α3

s) ,

where

ρ ≡ p̃cut
T

pcut
T

, LνS ≡ ln
ν√

pcut
T p̃cut

T eηcut
, LµS ≡ ln

µ√
pcut
T p̃cut

T

. (3.16)

It is straightforward to check that the one-loop finite term vanishes (see appendix A.4),

Si,1 = 0 . (3.17)

The two-loop finite term is a generic function of the dimensionless ratio ρ and the jet

radius parameter R, which must satisfy Si,2(ρ = 1, R) = 0. As usual, we can decompose it

according to its R dependence as

Si,2(ρ,R) = −8Cic
R
ii ln ρ lnR+ S(c)

i,2 (ρ) +O(R2) , (3.18)

where cRii is given by eq. (2.31) and Ci = CF (CA) for i = q (g). The coefficient of lnR at this

order is completely determined by the R dependence of the noncusp rapidity anomalous

dimensions in eq. (3.14). The full two-loop finite term Si,2(ρ,R) could readily be obtained

numerically using the methods of refs. [62, 63], which would enable the full NNLL′ resum-

mation.

This regime is again free of nonglobal logarithms and hence can easily be applied to

phenomenological studies. It can be used to supplement the EFT setup from section 3.2,

which enables the resummation of logarithms of the ratio pcut
T /Q ∼ p̃cut

T /Q, with an addi-

tional resummation of logarithms of the ratio pcut
T /Qe−ηcut ∼ p̃cut

T /Qe−ηcut by choosing the

canonical scales

µB ∼ p̃cut
T , µS ∼

√
pcut
T p̃cut

T , µS ∼ pcut
T ,

νB ∼ Q , νS ∼
√
pcut
T p̃cut

T eηcut , νS ∼ pcut
T . (3.19)

Here, the rapidity evolution between νS and νS is responsible for resumming the large

logarithms of e−ηcut ∼ νS/νS .
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Figure 9. Comparison of the singular contributions to the fixed O(αs) (LO1) Tstep spectrum for

ηcut = 2.5 and ρ = 2 for gg → H (top left), gg → X (top right), and Drell-Yan at Q = mZ (bottom

left) and Q = 1 TeV (bottom right). The solid orange lines show the singular spectrum for the

collinear-step regime and the blue dashed lines the further factorized result in the soft-collinear-

step regime. Their difference, shown by the dotted green lines vanishes as a power of Tstep. The

vertical lines indicate where the parametric relation Tstep/Q = e−ηcut is satisfied.

Numerical Validation. To validate our setup in this regime, we exploit that eq. (3.13)

provides a refactorization of the collinear step in eq. (3.2), where

Iij(pcut
T , p̃cut

T , ηcut, R, ω, z, µ, ν) = Si(pcut
T , p̃cut

T , ηcut, R, µ, ν) Iij(pcut
T , R, ω, z, µ, ν)

×
[
1 +O

( pcut
T

ωe−ηcut
,

p̃cut
T

ωe−ηcut
, R2

)]
. (3.20)

In particular, eq. (3.13) must reproduce eq. (3.2) up to power corrections in pcut
T /Qe−ηcut

and p̃cut
T /Qe−ηcut . We can test this numerically using the Tstep observable defined in sec-

tion 3.2, which simultaneously probes both classes of power corrections. In figure 9, we

show the fixed O(αs) Tstep spectra for the collinear step (solid orange) and soft-collinear

step (dashed blue). In all cases their difference (dotted green) vanishes like a power in

Tstep.

The additional resummation using the soft-collinear step may be applicable up to

values of pcut
T = 20 GeV (pcut

T = 80 GeV) for Q ∼ 100 GeV (Q = 1 TeV), for the choice

of ρ = 2, ηcut = 2.5 displayed in figure 9. This can be read off from the relative size of
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leading-power (soft-collinear step) and subleading power (difference) contributions, which

leave some room where resummation in the leading-power cross section can improve the

prediction. We find a slightly larger potential resummation region than for the analogous

refactorization in the p̃cut
T = ∞ case, where an earlier onset of the power corrections was

observed in figure 6.

3.5 pcutT /Q� p̃cutT /Q� e−ηcut (soft-collinear NGLs)

For this hierarchy (bottom right panel of figure 7), two types of soft-collinear modes arise,

na-soft-collinear (pcut
T ): pµ ∼ pcut

T (e−ηcut , eηcut , 1) ,

na-soft-collinear (p̃cut
T ): pµ ∼ p̃cut

T (e−ηcut , eηcut , 1) , (3.21)

and analogously for the nb-soft-collinear sectors, which are both parametrically distinct

from the energetic collinear modes. Compared to the regime pcut
T ∼ p̃cut

T � Qe−ηcut there

are now parametrically large logarithms ln(pcut
T /p̃cut

T ) in the soft-collinear function Si in

eq. (3.13). The cross section can be written as in eq. (3.13), where the soft-collinear

function is refactorized as

Si(pcut
T , p̃cut

T , ηcut, R, µ, ν) = S(cut)
i (pcut

T , ηcut, R, µ, ν)
[
S(cut)
i (p̃cut

T , ηcut, R, µ, ν)
]−1

×
[
1 + S(NG)

i

(pcut
T

p̃cut
T

, R
)]
×
[
1 +O

(pcut
T

p̃cut
T

)]
, (3.22)

with S(cut)
i the same soft-collinear function as in eqs. (2.37) and (3.10). Both the power

corrections and the nonglobal piece S(NG)
i are absent at one loop and at O(α2

s lnR). Equiv-

alently this regime can be interpreted as a refactorization of eq. (3.10), where compared to

the hierarchy for pcut
T � p̃cut

T ∼ Qe−ηcut there are large (rapidity) logarithms ln(p̃cut
T eηcut/Q)

in the beam function B
(cut)
i . Evolving the two soft-collinear functions to separate renor-

malization scales µS,1 = pcut
T , νS,1 = pcut

T eηcut and µS,2 = p̃cut
T , νS,2 = p̃cut

T eηcut resums

Sudakov logarithms of pcut
T /p̃cut

T , but does not account for the nonglobal logarithms of the

same ratio in S(NG)
i .

4 Numerical results

In section 2 we discussed in detail how to incorporate the jet rapidity cut into the re-

summed 0-jet cross section. In particular, in the regime pcut
T /Q ∼ e−ηcut (regime 2), the

dependence on ηcut is incorporated into the resummation via the RG evolution of the

ηcut dependent beam functions. In this section, we illustrate these results by presenting

numerical predictions for the resummed cross section at NLL′+NLO.

In section 4.1, we outline how the resummed results are combined with the full QCD

results, as well as our estimation of perturbative uncertainties. In section 4.2, we assess the

impact of the additional perturbative ingredients by comparing the different treatments of

ηcut. In section 4.3, we show the predictions for selected ηcut as a function of pcut
T .

In the following, we consider the four cases of gluon-fusion Higgs production gg → H

at mH = 125 GeV, gluon fusion to a generic heavy scalar gg → X with mX = 1 TeV,
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and Drell-Yan production at Q = mZ and Q = 1 TeV, with the same setup and inputs

as described in section 2.3. The numerical results for the resummed predictions for all

processes are obtained from our implementation in SCETlib [37]. The NLO results in full

QCD are obtained from MCFM 8.0 [38–40].

4.1 Fixed-order matching and perturbative uncertainties

The resummed cross section obtained from eq. (2.12) describes the 0-jet cross section up to

power corrections in pcut
T /Q, which become relevant when pcut

T ∼ Q. We account for them

by the usual additive matching,

σ0(pcut
T , ηcut) = σres

0 (pcut
T , ηcut) +

[
σFO

0 (pcut
T , ηcut)− σsing

0 (pcut
T , ηcut)

]
. (4.1)

Here, σres
0 is the resummed singular cross section obtained from eq. (2.12), σsing

0 is its

fixed-order expansion, and σFO
0 is the fixed-order result in full QCD. By construction,

the difference in square brackets is nonsingular and vanishes as pcut
T → 0, ηcut → ∞ and

can therefore be included at fixed order even at small pcut
T . The dominant corrections

at small pcut
T are resummed in σres

0 . At large pcut
T , fixed-order perturbation theory is the

appropriate description, so eq. (4.1) should recover σFO
0 . This is achieved by turning off the

resummation in σres
0 as a function of pcut

T , and by constructing σres
0 such that it precisely

reproduces σsing when the resummation is fully turned off.

To smoothly turn off the resummation as we approach pcut
T → Q, we use profile

scales [64, 65], following the setup developed in ref. [13]. We stress that the profile scales

for regime 2 are in one-to-one correspondence with the standard treatment in regime 1,

since both regimes have the same RG structure. Similarly, our treatment of perturbative

uncertainties is based on profile scale variations following ref. [13]. We distinguish an over-

all yield uncertainty ∆µ0, which is determined by a collective variation of all scales up and

down, and a resummation (jet bin migration) uncertainty ∆resum from varying individual

scales in the beam and soft functions. For the gluon-induced processes, we follow ref. [66]

and include an additional uncertainty ∆ϕ from varying the complex phase of the hard scale,

which was not considered in ref. [13]. The total uncertainty is then obtained by considering

the different uncertainty sources as independent, and hence uncorrelated, and adding them

in quadrature,

∆total = ∆µ0 ⊕∆ϕ ⊕∆resum ≡
(
∆2
µ0 + ∆2

ϕ + ∆2
resum

)1/2
. (4.2)

4.2 Comparing different treatments of the jet rapidity cut

It is interesting to consider the impact of the additional perturbative ingredients in the

ηcut dependent beam function on the prediction, e.g. compared to treating the rapidity cut

effects purely at fixed order. In figures 10 and 11, we plot the results for fixed pcut
T as a

function of ηcut starting at ηcut = ∞ on the left and decreasing toward the right. The

corresponding values of the Qe−ηcut scale are shown at the top.

Our result for the 0-jet cross section using the matching in eq. (4.1) is shown as

orange bands. We refer to this prediction as NLL′(ηcut)+NLO(ηcut), because both the

NLL′ resummed singular cross section and the fixed-order matching are exact in ηcut. To
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Figure 10. The 0-jet cross section for gg → H at mH = 125 GeV for pcutT = 30 GeV (left) and

gg → X at mX = 1 TeV and pcutT = 50 GeV (right) as a function of ηcut. The same observable (σ0)

is calculated in three different ways, shown by the different bands, as described in the text.

highlight the effect of the additional ηcut dependence in the regime 2 beam function, we

consider two more alternative treatments of ηcut. For the regime 1 result, shown by the

blue bands and denoted by NLL′(∞)+NLO(ηcut), the ηcut dependence in the resummed

cross section is dropped,

σ0(pcut
T , ηcut) = σres

0 (pcut
T ,∞) +

[
σFO

0 (pcut
T , ηcut)− σsing

0 (pcut
T ,∞)

]
. (4.3)

The resummation then only acts on the singular cross section for ηcut = ∞, while all ηcut

effects are included purely at fixed order via the matching term in square brackets. Note

that the matching term is now no longer nonsingular, i.e., it no longer vanishes like a power

in pcut
T as pcut

T → 0, as we saw in figures 4 and 5. The plain fixed-order calculation without

any resummation,

σ0(pcut
T , ηcut) = σFO

0 (pcut
T , ηcut) , (4.4)

is denoted by NLO(ηcut) and shown by the gray bands. In this case, the uncertainties are

evaluated using the ST procedure [3].

We first consider gluon-fusion Higgs production shown in the left panel of figure 10,

where we set pcut
T = 30 GeV. The NLO(ηcut) prediction (gray band) exhibits a slight, phys-

ical rise in the cross section as ηcut decreases towards the right. This is not surprising as at

fixed order, decreasing ηcut simply amounts to accumulating the squared LO1 matrix ele-

ment over a larger part of phase space. The rise is less pronounced than for the resummed

results (orange and blue bands), but still compatible with them within each others’ uncer-

tainties. Comparing NLL′(ηcut)+NLO(ηcut) (orange) to NLL′(∞)+NLO(ηcut) (blue) we

find that the additional tower of logarithms predicted by NLL′(ηcut) on top of the fixed

NLO ηcut dependence barely affects the central value of the prediction down to ηcut = 2.

This is perhaps not surprising since Qe−ηcut is at most half of pcut
T , which means we are

not far from regime 1. However, we do observe a noticeable increase in the perturbative
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Figure 11. The 0-jet cross section for Drell-Yan atQ = mZ and pcutT = 20 GeV (left) andQ = 1 TeV

and pcutT = 25 GeV (right) as a function of ηcut. The same observable (σ0) is calculated in three

different ways, shown by the different bands, as described in the text. For better readability, all

results are normalized to the resummed central value at ηcut =∞.

uncertainty estimate. This is mainly due to the resummation uncertainty, which is reason-

able: ∆resum probes the unknown higher-order finite terms (the RGE boundary condition)

and is therefore sensitive to a change of the beam function boundary condition by the

ηcut correction ∆I
(1)
ij (see section 2.3). On the other hand, ∆I

(1)
ij must be large enough to

accommodate — up to power corrections — the fixed-order difference to ηcut =∞ (roughly

2 pb at ηcut = 2.5, as can be read off from the gray line), so we expect an impact on ∆resum

of similar size. Hence, the conclusion is not that the NLL′(∞)+NLO(ηcut) result is more

precise, but rather that its uncertainty is potentially underestimated because it cannot

capture the ηcut dependence.

In the right panel of figure 10, we show the same results for a hypothetical color-

singlet scalar resonance gg → X at mX = 1 TeV using pcut
T = 50 GeV. [The dimension-five

operator mediating the production of X is given in eq. (2.33).] The NLO(ηcut) result (gray)

is now off by a large amount already at ηcut =∞, where it is not covered by the resummed

predictions. This is expected because the high production energy of 1 TeV implies we

are deep in the resummation region, even for the larger value of pcut
T = 50 GeV. The

central values of the two resummed treatments start to differ below ηcut = 3 or above

Qe−ηcut ' 50 GeV, where we are now fully in regime 2. However, the main difference is

again the larger and likely more reliable uncertainty estimate in the NLL′(ηcut) prediction.

In figure 11 we show the analogous results for Drell-Yan production at Q = mZ us-

ing pcut
T = 20 GeV (left panel) and Q = 1 TeV using pcut

T = 25 GeV (right panel). For

better readability, these results are normalized to the resummed 0-jet cross section at

ηcut =∞. While all predictions agree in the slope of the cross section with respect to ηcut,

the NLO(ηcut) result has a constant offset and an unrealistically small uncertainty esti-

mate. At the lower Q ∼ 100 GeV, we find practically no difference between the NLL′(ηcut)

and NLL′(∞) calculations, so here the effects of the jet rapidity cut can safely be included
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Figure 12. 0-jet cross section σ0(pcutT , ηcut) for gg → H for mH = 125 GeV at NLL′+NLO for

different values of ηcut. The bands indicate the total uncertainty ∆µ0 ⊕∆ϕ ⊕∆res. The absolute

cross section is shown on the left. On the right, the same results are shown as the percent difference

relative to the 0-jet cross section at ηcut =∞.

σ0(pcut
T , ηcut) [pb], gg → H (13 TeV), rEFT, mH = 125 GeV

ηcut pcut
T = 25 GeV pcut

T = 30 GeV

2.5 25.9±3.8µ0±1.5ϕ±5.0res (25.0%) 28.5±4.0µ0±1.6ϕ±4.6res (22.0%)

4.5 22.0±2.0µ0±1.0ϕ±2.8res (16.2%) 25.2±2.2µ0±1.2ϕ±2.8res (15.0%)

∞ 21.8±1.9µ0±1.0ϕ±2.7res (15.6%) 25.0±2.2µ0±1.2ϕ±2.7res (14.7%)

Table 1. 0-jet cross section for gg → H for mH = 125 GeV at NLL′+NLO for different values of

pcutT and ηcut with a breakdown of the uncertainties.

via the fixed-order matching corrections to the regime 1 resummation. At higher produc-

tion energies, the intrinsic NLL′(ηcut) ingredients become more relevant, similar to gluon-

fusion, as shown by the increasing uncertainty estimates as ηcut decreases. Note that below

ηcut = 2.5, Qe−ηcut & 80 GeV becomes large compared to this choice of pcut
T = 25 GeV, so

resumming logarithms of pcut
T /(Qe−ηcut) using the regime 3 factorization given in section 2.4

might help reduce the uncertainties.

4.3 Resummed predictions with a sharp rapidity cut

Here, we compare predictions for different values of ηcut as a function of pcut
T . Our working

order is NLL′(ηcut)+NLO(ηcut) in the notation of the previous section, which from now

on we simply refer to as NLL′+NLO, i.e., the ηcut dependence is always included in the

resummation. We stress that the differences we observe between predictions in this subsec-

tion are physical differences due to the different jet rapidity cuts, and not due to different

theoretical treatments as in the previous subsection.

In figure 12 and table 1 we present results for gg → H. Going from ηcut = ∞ to

ηcut = 4.5 we find a 1% increase of the cross section for the typical values of pcut
T = 25 GeV

and 30 GeV. At ηcut = 2.5 the increase becomes more sizable, 14% (19%) for pcut
T = 30 GeV

(25 GeV). The differences vanish as the cross section saturates around pcut
T ∼ 100 GeV.
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Figure 13. 0-jet cross section σ0(pcutT , ηcut) for gg → X for mX = 1 TeV at NLL′+NLO for different

values of ηcut. The bands indicate the total uncertainty ∆µ0⊕∆ϕ⊕∆res. The absolute cross section

is shown on the left. On the right, the same results are shown as the percent difference relative to

the 0-jet cross section at ηcut =∞.

σ0(pcut
T , ηcut)/|CX |2 [pb], gg → X (13 TeV), Λ = mX = 1 TeV

ηcut pcut
T = 50 GeV pcut

T = 100 GeV

2.5 4.9±0.7µ0±0.1ϕ±1.2res (28.3%) 7.8±0.8µ0±0.1ϕ±1.3res (19.4%)

4.5 4.1±0.3µ0±0.1ϕ±0.7res (19.6%) 7.4±0.6µ0±0.1ϕ±1.1res (16.4%)

∞ 4.1±0.3µ0±0.1ϕ±0.7res (19.5%) 7.4±0.6µ0±0.1ϕ±1.1res (16.4%)

Table 2. 0-jet cross section for gg → X for mX = 1 TeV at NLL′+NLO for different values of

pcutT and ηcut with a breakdown of the uncertainties.

The analogous results for gg → X for mX = 1 TeV are shown in figure 13 and table 2.

At such a high hard scale, the uncertainties for ηcut = 2.5 become essentially beyond control

for very tight vetoes pcut
T . 25 GeV, which would make an additional resummation of

ln pcut
T /(Qe−ηcut) as outlined in section 2.4 necessary. As we will see in the next subsection,

this effect can be tamed by replacing the sharp rapidity cut by a step in the jet veto.

However, for any choice of ηcut the cross section is very strongly Sudakov suppressed for such

small values of pcut
T . At more realistic values of the veto, the jet rapidity cut for ηcut = 2.5

compared to ηcut = ∞ still leads to a sizable increase of 20% (5%) for pcut
T = 50 GeV

(pcut
T = 100 GeV). In contrast, the effect for ηcut = 4.5 is very small.

The results for Drell-Yan production are given in figure 14 and table 3. For Q = mZ

(top rows), we find a 5−7% increase in the cross section at ηcut = 2.5 for pcut
T = 20−25 GeV.

Here the uncertainty for ηcut = 2.5 is under good control even down to pcut
T ∼ 10 GeV.

For Q = 1 TeV (bottom rows), the cross section for ηcut = 2.5 increases by 14% (4%)

for pcut
T = 25 GeV (50 GeV) compared to ηcut = ∞. The Sudakov suppression and the

accompanying increase in relative uncertainty at small pcut
T are weaker than for gg → X

due to the smaller color factor (CF vs. CA) in the Sudakov exponent, but are still substantial

for a quark-induced process. The effect of the rapidity cut at ηcut = 4.5 is negligible.
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Figure 14. The 0-jet cross section dσ0(pcutT , ηcut)/dQ for Drell-Yan production at the Z pole

Q = mZ (top row) and at Q = 1 TeV (bottom row) at NLL′+NLO for different values of ηcut. The

bands indicate the total uncertainty ∆µ0 ⊕∆res. The absolute cross section is shown on the left.

On the right, the same results are shown as the percent difference relative to the 0-jet cross section

at ηcut =∞.

dσ0(pcut
T , ηcut)/dQ [pb/GeV], pp→ Z/γ∗ → `+`− (13 TeV), Q = mZ

ηcut pcut
T = 20 GeV pcut

T = 25 GeV

2.5 362±22µ0±21res (8.5%) 393±22µ0±14res (6.6%)

4.5 340±24µ0±22res (9.4%) 377±24µ0±15res (7.4%)

∞ 339±24µ0±22res (9.5%) 376±24µ0±15res (7.4%)

dσ0(pcut
T , ηcut)/dQ [ab/GeV], pp→ Z/γ∗ → `+`− (13 TeV), Q = 1 TeV

ηcut pcut
T = 25 GeV pcut

T = 50 GeV

2.5 14.1±0.8µ±1.7res (13.6%) 19.7±0.6µ±1.7res (9.0%)

4.5 12.4±0.4µ±1.1res (9.2%) 18.9±0.4µ±1.4res (7.6%)

∞ 12.4±0.4µ±1.1res (9.1%) 18.9±0.4µ±1.4res (7.6%)

Table 3. The 0-jet cross section for Drell-Yan production at the Z pole Q = mZ (top) and at

Q = 1 TeV (bottom) at NLL′+NLO for different values of pcutT and ηcut with a breakdown of the

uncertainties.
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Figure 15. 0-jet cross section σ0(pcutT , p̃cutT , ηcut) with a step at ηcut = 2.5 for gg → H (left

panel) and gg → X (right panel) at NLL′+NLO. The results are shown for a fixed central veto

at pcutT = 25 GeV as a function of the jet veto p̃cutT that is applied beyond ηcut. We show the

percent differences relative to the result for a uniform veto p̃cutT = pcutT . The bands indicate the

total uncertainty ∆µ0 ⊕∆ϕ ⊕∆res.

4.4 Resummed predictions with a step in the jet veto

In the previous subsection we have seen that a sharp rapidity cut at ηcut = 2.5 can lead

to a substantial loss of precision in the theory predictions, especially for gluon-induced

processes and at high production energies.

In figure 15 we show the resummed 0-jet cross section for gg → H and gg → X with

a step in the jet veto at ηcut = 2.5 as a function of the second jet veto parameter p̃cut
T that

is applied beyond ηcut. The central jet veto below ηcut is fixed to pcut
T = 25 GeV. On the

left of the plot p̃cut
T = pcut

T , which is equivalent to having no rapidity cut, in which case the

uncertainties are well under control. In the limit p̃cut
T → ∞ (towards the right) the step

becomes a sharp cut, corresponding to the results of the previous subsection. While the

step in the jet veto still leads to an increase in the uncertainties, this can now be controlled

by the choice of p̃cut
T . At this order, a small step from pcut

T = 25 GeV to p̃cut
T = 30 GeV only

leads to a small increase in uncertainty. For a larger step to p̃cut
T = 50 GeV = 2pcut

T , the

uncertainties already increase substantially but are still much smaller than for a sharp cut.

5 Conclusion

We have developed a systematic framework to seamlessly incorporate a cut on the rapidity

of reconstructed jets, |ηjet| < ηcut, into the theoretical description of jet-vetoed processes at

the LHC. We have shown that the standard jet-veto resummation, which neglects the rapid-

ity cut, is correct up to power corrections of O(Qe−ηcut/pcut
T ), with Q the hard-interaction

scale and pcut
T the jet veto cut.

We calculated the necessary ηcut-dependent corrections at one loop as well as all loga-

rithmic contributions to them at two loops (including both small-R clustering logarithms

and all jet-veto logarithms predicted by the RGE; see section 2.3). The remaining ingredi-

ents required for a full NNLL′ analysis with ηcut effects are finite nonlogarithmic pieces that
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could be either calculated explicitly or extracted numerically from the full-QCD results,

which we leave to future work. In addition, we considered for the first time the case of a

step in the jet veto, i.e., an increase in the veto parameter to p̃cut
T > pcut

T beyond ηcut, and

showed how to similarly incorporate it into the jet-veto resummation (see section 3.2).

We also considered the jet veto cross section in the limit pcut
T � Qe−ηcut , corresponding

to either very tight vetoes or very central rapidity cuts (see section 2.4). In this regime, the

jet-veto resummation becomes impaired by the presence of nonglobal logarithms, requiring

a refactorization of the cross section. However, we have argued that this parametric region

will most likely not play a role for typical jet binning analyses at the LHC. If experimentally

necessary, it can be avoided by replacing the sharp rapidity cut by a moderate step in the

jet veto, which is free of nonglobal logarithms (see section 3.4).

There are several important outcomes of our analysis. First, a jet rapidity cut at very

forward rapidities due to the finite detector acceptance, ηcut ' 4.5, is theoretically safe and

unproblematic. In contrast, restricting the jet veto to the more central region, with a sharp

rapidity cut at the end of the tracking detectors, ηcut ' 2.5, leads to an increase in the

perturbative uncertainties (which may not be captured if the jet rapidity cut is not included

in the resummation). This loss in theoretical precision can become particularly severe for

gluon-induced processes and for processes at high scales. It can however be mitigated

by replacing the sharp rapidity cut by a moderate step in the jet veto. We expect this

to be a generic feature that also holds at higher orders. It will be interesting to extend

our resummed predictions to the next order (NNLL′) to confirm this as well as to reduce

the overall size of the theoretical uncertainties. We encourage our experimental colleagues

to take full advantage of such step-like jet vetoes in order to benefit from suitably tight

jet vetoes at central rapidities, while avoiding the increased pile-up contamination in the

forward region.
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A Perturbative ingredients

We collect known results for required anomalous dimensions in appendix A.1 and for the

standard pcut
T beam function without a jet rapidity cut in appendix A.2. In appendix A.3

we provide some details on the computation of the one-loop beam function matching coef-

ficients in eqs. (2.25) and (2.38). In appendix A.4 we compute the soft-collinear functions

given in eqs. (2.40) and (3.15). In appendix A.5 we compare to the one-loop results of

ref. [34]. In appendix A.6 we discuss the Mellin convolutions required in the two-loop ηcut

dependent beam function in eq. (2.24).

– 35 –



A.1 Anomalous dimensions

We expand the β function of QCD as

µ
dαs(µ)

dµ
= β[αs(µ)] , β(αs) = −2αs

∞∑
n=0

βn

(αs
4π

)n+1
, (A.1)

with the one-loop and two-loop coefficients in the MS scheme given by

β0 =
11

3
CA −

4

3
TF nf , β1 =

34

3
C2
A −

(20

3
CA + 4CF

)
TF nf . (A.2)

The cusp and all noncusp anomalous dimensions γ(αs) are expanded as

Γicusp(αs) =

∞∑
n=0

Γin

(αs
4π

)n+1
, γ(αs) =

∞∑
n=0

γn

(αs
4π

)n+1
. (A.3)

The coefficients of the MS cusp anomalous dimension through two loops are

Γqn = CFΓn , Γgn = CAΓn , (for n = 0, 1, 2) ,

Γ0 = 4 ,

Γ1 = 4
[
CA

(67

9
− π2

3

)
− 20

9
TF nf

]
=

4

3

[
(4− π2)CA + 5β0

]
. (A.4)

The PDF anomalous dimension in eq. (2.23) is expanded as

Pij(αs, z) =
∞∑
n=0

P
(n)
ij (z)

(αs
4π

)n+1
. (A.5)

Note that we expand the PDF anomalous dimension in αs/(4π) and not αs/(2π) as is often

done. The one-loop coefficients of the PDF anomalous dimension read

P (0)
qiqj (z) = P

(0)
q̄iq̄j (z) = 2CF δij θ(z)Pqq(z) , P (0)

gg (z) = 2CA θ(z)Pgg(z) + β0 δ(1− z) ,
P (0)
qig (z) = P

(0)
q̄ig (z) = 2TF θ(z)Pqg(z) , P (0)

gqi (z) = P
(0)
gq̄i (z) = 2CF θ(z)Pgq(z) , (A.6)

in terms of the standard color-stripped one-loop QCD splitting functions

Pqq(z) = 2L0(1− z)− θ(1− z)(1 + z) +
3

2
δ(1− z) =

[
θ(1− z)1 + z2

1− z
]

+
,

Pgg(z) = 2L0(1− z) + θ(1− z)
[
2z(1− z) +

2(1− z)
z

− 2
]

= 2L0(1− z)(1− z + z2)2

z
,

Pqg(z) = θ(1− z)
[
1− 2z(1− z)

]
,

Pgq(z) = θ(1− z)1 + (1− z)2

z
. (A.7)

The two-loop coefficients were calculated in refs. [67–69]. They can be decomposed as

P (1)
qiqj (z) = P

(1)
q̄iq̄j (z) = 4CF θ(z)

[
δijP

1
qqV (z) + P 1

qqS(z)
]
,

P (1)
qig (z) = P

(1)
q̄ig (z) = 4TF θ(z)P

1
qg ,

P
(1)
qiq̄j (z) = P

(1)
q̄iqj (z) = 4CF θ(z)

[
δijP

1
qq̄V (z) + P 1

qqS(z)
]
,

P (1)
gg (z) = 4θ(z)

[
CAP

1
ggA + TFnf P

1
ggF

]
,

P (1)
gqi (z) = P

(1)
gq̄i (z) = 4CF θ(z)P

1
gq , (A.8)
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where explicit expressions for the P 1 functions on the right-hand side can be found in

appendices A of refs. [70, 71]. [Note that in refs. [70, 71] the superscript “1” here is written

as “(1)” there, and the PDF anomalous dimension is expanded there in αs/(2π), which

is already accounted for by the overall factors of 4 on the right-hand side of eq. (A.8).]

Explicit results for the Mellin convolutions of two color-stripped leading-order splitting

functions can also be found there.

The coefficients of the noncusp beam anomalous dimension are [13, 24]

γqB 0 = 6CF ,

γqB 1 = CF

[
(3− 4π2 + 48ζ3)CF +

(
−14 + 16(1 + π2) ln 2− 96ζ3

)
CA

+
(19

3
− 4

3
π2 +

80

3
ln 2
)
β0

]
,

γgB 0 = 2β0 ,

γgB 1 = 2β1 + 8CA

[(
−5

4
+ 2(1 + π2) ln 2− 6ζ3

)
CA +

( 5

24
− π2

3
+

10

3
ln 2
)
β0

]
(A.9)

The coefficients of the rapidity noncusp anomalous dimension depend on the jet radius R.

They read [13]

γiν 0(R) = 0 , (A.10)

γiν 1(R) = −16Ci

[(17

9
− (1 + π2) ln 2 + ζ3

)
CA +

(4

9
+
π2

12
− 5

3
ln 2
)
β0

]
+ Ci2(R) .

Here Ci = CF (CA) for i = q (g) and Ci2(R) is the clustering correction due to the jet

algorithm relative to a global ET veto, as computed in refs. [8, 13],

Ci2(R) = 16Cic
R
ii lnR+ 15.62CiCA − 9.17Ciβ0 +O(R2) . (A.11)

The small-R clustering coefficient cii = cgg = cqq is given in eq. (2.31).

A.2 Beam function master formula for ηcut →∞

In analogy to eq. (2.21) the matching coefficient Iij(pcut
T , R, ω, z, µ, ν) of the ηcut → ∞

beam functions satisfies (suppressing all other arguments of Iij)

µ
d

dµ
Iij(z) = γiB(ω, µ, ν) Iij(z)−

∑
k

Iik(z)⊗z 2Pkj [αs(µ), z] ,

ν
d

dν
Iij(z) = γiν,B(pcut

T , R, µ) Iij(z) . (A.12)
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Solving this order by order in αs yields the beam function master formula,

Iij(z) = δijδ(1− z) +
αs(µ)

4π
I(1)
ij (z) +

α2
s(µ)

(4π)2
I(2)
ij (z) +O(α3

s) ,

I(1)
ij (z) = δijδ(1− z)LµB(2Γi0L

ν
B + γiB 0)− 2LµBP

(0)
ij (z) + I

(1)
ij (z) ,

I(2)
ij (z) = δijδ(1− z)

{
(LµB)2

[
2(Γi0)2(LνB)2 + LνB(2β0Γi0 + 2Γi0γ

i
B 0) + β0γ

i
B 0 +

(γiB 0)2

2

]
+ LµB

[
2Γi1L

ν
B + γiB 1

]
− 1

2
γiν 1(R)LνB

}
+ P

(0)
ij (z) (LµB)2

[
−4Γi0L

ν
B − 2β0 − 2γiB 0

]
+ I

(1)
ij (z)LµB

[
2Γi0L

ν
B + 2β0 + γiB 0

]
− 2LµB

∑
k

I
(1)
ik (z)⊗z P (0)

kj (z)− 2LµBP
(1)
ij (z) + 2(LµB)2

∑
k

P
(0)
ik (z)⊗z P (0)

kj (z)

+ I
(2)
ij (R, z) . (A.13)

where we abbreviated

LµB = ln
µ

pcut
T

, LνB = ln
ν

ω
. (A.14)

The one-loop finite terms I
(1)
ij using the η regulator [58, 59] are given by (see e.g. refs. [13,

19, 24])

I(1)
qiqj (z) = I

(1)
q̄iq̄j (z) = CF δij θ(z)θ(1− z) 2(1− z) ,

I(1)
qig(z) = I

(1)
q̄ig(z) = TF θ(z)θ(1− z) 4z(1− z) ,
I(1)
gg (z) = 0 ,

I(1)
gqi (z) = I

(1)
gq̄i (z) = CF θ(z)θ(1− z) 2z . (A.15)

Their convolutions with leading-order splitting functions always appear in the form[
I(1) ⊗ P (0)

]
ij

(z) ≡
∑
k

I
(1)
ik (z)⊗z P (0)

kj (z) . (A.16)

For quark-to-(anti)quark transitions we decompose the above flavor structure as[
I(1) ⊗ P (0)

]
qiqj

=
[
I(1) ⊗ P (0)

]
q̄iq̄j
≡ δij

[
I(1) ⊗ P (0)

]
qqV

+
[
I(1) ⊗ P (0)

]
qqS

,[
I(1) ⊗ P (0)

]
qiq̄j

=
[
I(1) ⊗ P (0)

]
qiq̄j

=
[
I(1) ⊗ P (0)

]
qqS

. (A.17)

The building blocks on the right, together with the gluon-to-quark case, are given by[
I(1) ⊗ P (0)

]
qqV

= 4C2
F θ(z)θ(1− z) (1− z)

[
2 ln(1− z)− ln z − 1

2

]
,[

I(1) ⊗ P (0)
]
qqS

= 4TFCF θ(z)θ(1− z)
(4

3
z2 +

2

3z
− 2z ln z − 2

)
,

[
I(1) ⊗ P (0)

]
qig

=
[
I(1) ⊗ P (0)

]
q̄ig

= θ(z)θ(1− z)
{

4CFTF
[
z2 + z − (2z + 1) ln z − 2

]
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pµpµ pµ kµ
pµ

ω = zp−

(d) (e) (f)

Figure 16. Nonvanishing diagrams for the computation of the one-loop beam function in pure

dimensional regularization and Feynman gauge. Symmetric configurations are implicit. The mea-

surement acts on particles crossing the on-shell cut indicated by the vertical dashed line.

+ 4TFCA

[
34

3
z2 − 10z +

2

3z
− 8z ln z − 2 + 4z(1− z) ln(1− z)

]
+ 4TFβ0 z(1− z)

}
. (A.18)

The convolutions required for the gluon beam function read[
I(1) ⊗ P (0)

]
gg

= 4CF (2nf )TF θ(z)θ(1− z)
(
1 + z − 2z2 + 2z ln z

)
, (A.19)[

I(1) ⊗ P (0)
]
gqi

=
[
I(1) ⊗ P (0)

]
gq̄i

= 4C2
F θ(z)θ(1− z)

[
1 +

z

2
− z ln z + 2z ln(1− z)

]
.

These expressions agree with the color-stripped convolutions given in refs. [13, 19], account-

ing for different conventions for splitting functions. The two-loop finite terms in eq. (A.13)

depend on R. Expanding them as

I
(2)
ij (R, z) = lnRI

(2,lnR)
ij (z) + I

(2,c)
ij (z) +O(R2) , (A.20)

the coefficient of lnR can be written as

I
(2,lnR)
ij (z) = cRij

[
2P

(0)
ij (z)− γiB 0 δijδ(1− z)

]
. (A.21)

We explicitly recomputed the coefficients cRij , for which we found some discrepancies in the

literature. [See eq. (2.31) in the main text.] Note that the terms proportional to δ(1− z)
cancel in eq. (A.21) when the distributional structure of the splitting function is written

purely in terms of δ(1− z), Ln(1− z), and regular terms in 1− z.

A.3 Rapidity cut dependent beam functions

Here we provide some details on the computation of the one-loop beam function matching

coefficients in eqs. (2.25) and (2.38). We use dimensional regularization for both UV and
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IR divergences and the η regulator [58, 59] for rapidity divergences. This ensures that

all virtual diagrams, PDF diagrams, and zero-bin subtractions are scaleless. We work in

Feynman gauge.

The relevant real-radiation diagrams are displayed in figure 16, and the associated

expressions for the spin-contracted amplitudes can be read off e.g. from refs. [2, 72] with a

proper replacement of the measurement function. For the beam function in eq. (2.12), the

measurement on a single n-collinear emission with momentum kµ and rapidity

η =
1

2
ln
k−

k+
(A.22)

reads, including label momentum conservation for ω = zp−, k− = (1− z)p−,

MB(kµ, pcut
T , ηcut, ω, z)

=

[
θ
(
e2ηcut − k−

k+

)
θ(pcut

T − |~kT |) + θ
(k−
k+
− e2ηcut

)]
δ
(
k− − ω(1− z)

z

)
≡M(η<ηcut)

B (kµ, pcut
T , ηcut, ω, z) +M(η>ηcut)

B (kµ, ηcut, ω, z) . (A.23)

Here we will separately display the result for each diagram with M(η<ηcut)
B and M(η>ηcut)

B

inserted, respectively. This also allows one to read off the one-loop result for theB
(cut)
i beam

function in eq. (2.38), for which the measurement on a single emission is just M(η>ηcut)
B .

On the other hand, for a direct computation of the finite correction due to the rapidity cut

in eq. (2.25) it is more convenient to decompose the measurement function as

MB(kµ, pcut
T , ηcut, ω, z)

=

[
θ(pcut

T − |~kT |) + θ(|~kT | − pcut
T ) θ

(k−
k+
− e2ηcut

)]
δ
(
k− − ω(1− z)

z

)
=MB(kµ, pcut

T , ω, z) + ∆MB(kµ, pcut
T , ηcut, ω, z) . (A.24)

Inserting the first term into matrix elements yields the known results for the matching

coefficients without any rapidity cut, while the second term yields the correction.

The relevant diagrams for the computation of the matching coefficient Iqq are (a) and

(b). The on-shell condition and label momentum constraint lead to a trivial k+ integral,

which gives for diagram (a), after expanding in ε,

〈qn|θ(ω)Obare
q (pcut

T , ω)|qn〉(a,η<ηcut)

=
αsCF
π

θ
(
z − ωe−ηcut

pcut
T + ωe−ηcut

)
θ(1− z) (1− z) ln

pcut
T z

ωe−ηcut(1− z) +O(ε) ,

〈qn|θ(ω)Obare
q (pcut

T , ω)|qn〉(a,η>ηcut)

=
αsCF
π

θ(z) θ(1− z) (1− z)
[
− 1

2ε
+ ln

ωe−ηcut(1− z)
µ z

+
1

2
+O(ε)

]
. (A.25)
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Diagram (b) together with its mirror diagram gives, after expanding in η and ε,5

〈qn|θ(ω)Obare
q (pcut

T , ω)|qn〉(b,η<ηcut) (A.26)

=
αsCF
π

θ
(
z − ωe−ηcut

pcut
T + ωe−ηcut

)
θ(1− z)

{
δ(1− z)

[
1

η

(
1

ε
− 2 ln

pcut
T

µ
+O(ε)

)
− 1

2ε2

+
1

ε
ln
νe−ηcut

µ
− ln2 ωe

−ηcut

µ
+ 2 ln

pcut
T

µ
ln
ω

ν
+
π2

24

]
+ 2L0(1− z) ln

pcut
T z

ωe−ηcut

− 2L1(1− z)− 2 ln
pcut
T z

ωe−ηcut(1− z) +O(η, ε)

}
,

〈qn|θ(ω)Obare
q (pcut

T , ω)|qn〉(b,η>ηcut)

=
αsCF
π

θ(z) θ(1− z)
{
δ(1− z)

[
1

2ε2
− 1

ε
ln
ωe−ηcut

µ
+ ln2 ωe

−ηcut

µ
− π2

24

]
+ L0(1− z)

[
−1

ε
+ 2 ln

ωe−ηcut

µ z

]
+ 2L1(1− z) +

1

ε
− 2 ln

ωe−ηcut(1− z)
µ z

+O(ε)

}
.

The matching coefficient Iqg is computed from diagram (c) giving

〈gn|θ(ω)Obare
q (pcut

T , ω)|gn〉(c,η<ηcut) (A.27)

=
αsTF
π

θ
(
z − ωe−ηcut

pcut
T + ωe−ηcut

)
θ(1− z) (1− 2z + 2z2) ln

pcut
T z

ωe−ηcut(1− z) +O(ε) ,

〈gn|θ(ω)Obare
q (pcut

T , ω)|gn〉(c,η>ηcut)

=
αsTF
π

θ(z) θ(1− z)
{

(1− 2z + 2z2)

[
− 1

2ε
+ ln

ωe−ηcut(1− z)
µ z

]
+ z(1− z) +O(ε)

}
.

The relevant diagrams for the computation of the matching coefficient Igg are (d) and (e),

which yield

〈gn|θ(ω)Obare
g (pcut

T , ω)|gn〉(d,η<ηcut)

=
αsCA
π

θ
(
z − ωe−ηcut

pcut
T + ωe−ηcut

)
θ(1− z) 2− 2z + 3z2 − 2z3

z
ln

pcut
T z

ωe−ηcut(1− z) +O(ε) ,

〈gn|θ(ω)Obare
g (pcut

T , ω)|gn〉(d,η>ηcut)

=
αsCA
π

θ(z) θ(1− z) 2− 2z + 3z2 − 2z3

z

[
− 1

2ε
+ ln

ωe−ηcut(1− z)
µ z

+O(ε)

]
, (A.28)

and, including the symmetric contribution of (e),

〈gn|θ(ω)Obare
g (pcut

T , ω)|gn〉(e,η<ηcut)

=
αsCA
π

θ
(
z − ωe−ηcut

pcut
T + ωe−ηcut

)
θ(1− z)

{
δ(1− z)

[
1

η

(
1

ε
− 2 ln

pcut
T

µ
+O(ε)

)
− 1

2ε2

+
1

ε
ln
νe−ηcut

µ
− ln2 ωe

−ηcut

µ
+ 2 ln

pcut
T

µ
ln
ω

ν
+
π2

24

]
+ 2L0(1− z) ln

pcut
T z

ωe−ηcut

− 2L1(1− z)− (2 + z) ln
pcut
T z

ωe−ηcut(1− z) +O(η, ε)

}
,

5For the renormalization one needs to account for the full d dimensional coefficient of the 1/η divergence,

which we do not display here for simplicity.
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〈gn|θ(ω)Obare
g (pcut

T , ω)|gn〉(e,η>ηcut)

=
αsCA
π

θ(z) θ(1− z)
{
δ(1− z)

[
1

2ε2
− 1

ε
ln
ωe−ηcut

µ
+ ln2 ωe

−ηcut

µ
− π2

24

]
+ L0(1− z)

[
−1

ε
+ 2 ln

ωe−ηcut

µ z

]
+ 2L1(1− z) + (2 + z)

[
1

2ε
− ln

ωe−ηcut(1− z)
µ z

]
+O(ε)

}
. (A.29)

The matching coefficient Igq is computed from diagram (f), giving

〈qn|θ(ω)Obare
g (pcut

T , ω)|qn〉(f,η<ηcut)

=
αsCF
π

θ
(
z − ωe−ηcut

pcut
T + ωe−ηcut

)
θ(1− z) 2− 2z + z2

z
ln

pcut
T z

ωe−ηcut(1− z) +O(ε) ,

〈qn|θ(ω)Obare
g (pcut

T , ω)|qn〉(f,η>ηcut)

=
αsCF
π

θ(z) θ(1− z)
{

2− 2z + z2

z

[
− 1

2ε
+ ln

ωe−ηcut(1− z)
µ z

]
+
z

2
+O(ε)

}
. (A.30)

Since PDF diagrams are scaleless in pure dimensional regularization, the renormalized

beam function matching coefficients are given by the O(ε0η0) terms in these expressions.

From the results for M(η>ηcut)
B we get I(cut,1)

ij in eq. (2.38), while adding M(η<ηcut)
B gives

the sum of eq. (2.25) and the second line of eq. (A.13).

A.4 Soft-collinear functions

We again use pure dimensional regularization and the η regulator, so virtual diagrams and

soft zero-bin subtractions are scaleless. Note that we expand the η regulator to leading

power using the soft-collinear scaling, i.e., for a single emission we insert |k−/ν|−η rather

than |2k3/ν|−η. This choice leads to a scaleless soft zero bin. In Feynman gauge the bare

one-loop real contribution to the n-soft-collinear function S(cut)
i in eq. (2.37) is given by

S(cut,1)
i bare (pcut

T , ηcut) = 4g2Ci

(eγEµ2

4π

)ε ∫ ddk

(2π)d

∣∣∣ ν
k−

∣∣∣η 2πδ+(kµ)

k−k+
M(cut)
S (kµ, pcut

T , ηcut) ,

(A.31)

where δ+(kµ) = δ(k2) θ(k0), and the measurement function reads

M(cut)
S (kµ, pcut

T , ηcut) = θ(pcut
T − |~kT |) θ

(
e2ηcut − k−

k+

)
+ θ
(k−
k+
− e2ηcut

)
. (A.32)

The second term yields a scaleless contribution, while the first term corresponds to a

boosted hemisphere and leads to the result

S(cut,1)
i bare (pcut

T , ηcut) =
αsCi
π

{
1

η

[
1

ε
− 2 ln

pcut
T

µ
+O(ε)

]
− 1

2ε2
+

1

ε
ln
νe−ηcut

µ

+ ln2 p
cut
T

µ
− 2 ln

pcut
T

µ
ln
νe−ηcut

µ
+
π2

24
+O(η, ε)

}
. (A.33)
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Absorbing the divergent terms (including contributions of the form εn/η, which are not

shown) into counterterms yields the renormalized one-loop result in eq. (2.40).

The bare one-loop contribution to the soft-collinear function resolving the step in

eq. (3.13) is again given by eq. (A.31), but this time the measurement reads

M(step)
S (kµ, pcut

T , ηcut) = θ(pcut
T −|~kT |) θ

(
e2ηcut−k

−

k+

)
+θ(p̃cut

T −|~kT |) θ
(k−
k+
−e2ηcut

)
. (A.34)

Successively dropping terms that yield scaleless integrals we can replace ( 7→)

M(step)
S (kµ, pcut

T , ηcut) 7→ θ
(k−
k+
− e2ηcut

)[
θ(p̃cut

T − |~kT |)− θ(pcut
T − |~kT |)

]
7→ θ

(
e2ηcut − k−

k+

)[
θ(pcut

T − |~kT |)− θ(p̃cut
T − |~kT |)

]
=M(cut)

S (kµ, pcut
T , ηcut)−M(cut)

S (kµ, p̃cut
T , ηcut) , (A.35)

so at one loop we find a simple relation between bare results,

S(1)
ibare(p

cut
T , p̃cut

T , ηcut) = S(cut,1)
ibare (pcut

T , ηcut)− S(cut,1)
i bare (p̃cut

T , ηcut) . (A.36)

Remapping the measurement on the primary emission as in eq. (A.35) yields the analogous

relation for the small-R clustering contributions.

A.5 Comparison to quark beam function results in the literature

In ref. [34] the regime pcut
T ∼ Qe−ηcut was accounted for by adding a finite contribution

∆B
(1)
i/j from so-called out-of-jet radiation to the unmeasured beam function in eq. (2.37) as

I(cut,1)
ij (ηcut, ω, z, µ) 7→ I(cut,1)

ij (ηcut, ω, z, µ) + ∆B
(1)
i/j (p

cut
T , z, ω, e−ηcut) . (A.37)

One-loop consistency with our eq. (2.12) reads, at the level of bare ingredients,

I(1)
ij bare(p

cut
T , ηcut, ω, z) (A.38)

= I(cut,1)
ij bare (ηcut, ω, z) + ∆B

(1)
i/j (p

cut
T , z, ω, e−ηcut) + δijδ(1− z)S(cut,1)

ibare (pcut
T , ηcut) ,

where S(cut,1)
i is the bare soft-collinear function at one loop, see eq. (A.33). By eq. (A.23)

we have, in terms of bare collinear matrix elements up to scaleless PDF diagrams,

I(1)
qq bare(p

cut
T , ηcut, ω, z) = I(cut,1)

qq bare(ηcut, ω, z) + 〈qn|θ(ω)Obare
q (pcut

T , ω)|qn〉(η<ηcut) , (A.39)

and similarly for Iqg. With this, eq. (A.38) simplifies to

〈qn|θ(ω)Obare
q (pcut

T , ω)|qn〉(η<ηcut) = ∆B
(1)
q/q(p

cut
T , z, ω, e−ηcut) + δ(1− z)S(cut,1)

q bare (pcut
T , ηcut) ,

〈gn|θ(ω)Obare
q (pcut

T , ω)|gn〉(η<ηcut) = ∆B
(1)
q/g(p

cut
T , z, ω, e−ηcut) . (A.40)

Both relations are readily checked after summing over all contributing diagrams.
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A.6 Mellin convolutions in the two-loop rapidity dependent beam function

The PDF and beam function RGEs together predict Mellin convolutions of the following

form in the two-loop matching kernels eq. (2.24) for the rapidity dependent beam function:∑
k

∆I
(1)
ik (ζcut, z)⊗z P (0)

kj (z) ≡ [∆I(1) ⊗ P (0)]ij(ζcut, z) . (A.41)

The relevant partonic channels read, leaving all arguments implicit,

[∆I(1) ⊗ P (0)]qiqj = δij 8C2
F P

w
qq ⊗z Pqq + 8TFCF P

w
qg ⊗z Pgq = [∆I(1) ⊗ P (0)]q̄iq̄j ,

[∆I(1) ⊗ P (0)]qiq̄j = 8TFCF P
w
qg ⊗z Pgq = [∆I(1) ⊗ P (0)]q̄iqj ,

[∆I(1) ⊗ P (0)]qig = 8CFTF P
w
qq ⊗z Pqg + 8TF

[
CA P

w
qg ⊗z Pgg +

β0

2
Pwqg

]
= [∆I(1) ⊗ P (0)]q̄ig ,

[∆I(1) ⊗ P (0)]gg = 8CA

[
CA P

w
gg ⊗z Pgg +

β0

2
Pwgg

]
+ 8CFTF (2nf )Pwgq ⊗z Pqg ,

[∆I(1) ⊗ P (0)]gqi = 8CACFP
w
gg ⊗z Pgq + 8C2

FP
w
gq ⊗z Pqq = [∆I(1) ⊗ P (0)]gq̄i , (A.42)

where nf is the number of light quark flavors. Here we introduced a shorthand for weighted

color-stripped splitting functions that depend on ζcut in addition to z,

Pwij (ζcut, z) = θ
( ζcut

1 + ζcut
− z
)

ln
ζcut(1− z)

z
Pij(z) . (A.43)

The Mellin convolutions Pwik ⊗z Pkj are straightforward to evaluate analytically, but the

resulting expressions are lengthy. They are available from the authors upon request.

B Jet rapidity cuts in TB and TC vetoes

Here we comment on how the factorization setup for the smoothly rapidity dependent

jet vetoes introduced in ref. [16] is modified when an additional sharp jet rapidity cut is

introduced. The restriction on reconstructed jets reads in this case

max
k∈jets: |ηk|<ηcut

{
|~pT,k| f(ηk)

}
< Tcut , (B.1)

where f(η)e|η| → 1 for η → ±∞. Examples are the beam thrust veto with f(η) = e−|η|

and the C-parameter veto with f(η) = 1/(2 cosh η). The discussion of an additional sharp

rapidity cut largely parallels the case of the pcut
T veto in section 2. We again distinguish

three hierarchies between
√
Tcut/Q and e−ηcut , where now

√
Tcut/Q replaces pcut

T /Q as the

characteristic angular size of collinear radiation constrained by the jet veto. The hierarchy√
Tcut/Q � e−ηcut (regime 1) reduces to the factorization for ηcut → ∞ [8, 16, 28], up to

power corrections of O(e−ηcut
√
Q/Tcut).

For
√
Tcut/Q ∼ e−ηcut (regime 2) the relevant EFT modes scale as

soft: pµ ∼ (Tcut, Tcut, Tcut) ,

na-collinear: pµ ∼
(
Tcut, Q,

√
TcutQ

)
∼
(
Qe−2ηcut , Q,Qe−ηcut

)
,

nb-collinear: pµ ∼
(
Q, Tcut,

√
TcutQ

)
∼
(
Q,Qe−2ηcut , Qe−ηcut

)
. (B.2)
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The factorized 0-jet cross section reads

σ0(Tcut, ηcut, R,Φ) = Hκ(Φ, µ)Ba(Tcut, ηcut, R, ωa, µ)Bb(Tcut, ηcut, R, ωb, µ)Sκ(Tcut, R, µ)

×
[
1 +O

(Tcut

Q
, e−ηcut , R2

)]
. (B.3)

The beam and soft function are different from the pcut
T veto. The rapidity cut again affects

only the beam functions without changing their RG structure or anomalous dimension. In

analogy to eq. (2.16) we can write the matching coefficients as

Iij(Tcut, ηcut, R, ω, z, µ) = Iij(ωTcut, R, z, µ) + ∆Iij(Tcut, ηcut, R, ω, z, µ) , (B.4)

where the first term on the right-hand side is the ηcut →∞ matching coefficient as calcu-

lated to two loops in ref. [28], which only depends on the boost-invariant product ωTcut.

The correction ∆Iij vanishes for ωe−2ηcut � Tcut and at one loop is given by

∆Iij(Tcut, ηcut, R, ω, z, µ) =
αs(µ)

4π
θ
( ωe−2ηcut

ωe−2ηcut + Tcut
− z
)
P

(0)
ij (z) ln

ωe−2ηcut(1− z)
zTcut

+O(α2
s) . (B.5)

For
√
Tcut/Q� e−ηcut (regime 3) we again distinguish two types of collinear modes,

na-collinear: pµ ∼
(
Qe−2ηcut , Q,Qe−ηcut

)
,

na-soft-collinear: pµ ∼
(
Tcut, Tcute

2ηcut , Tcute
ηcut
)
. (B.6)

The contributions from these modes can be encoded in a function Bi which can be refac-

torized in analogy to eq. (2.37) to resum Sudakov logarithms of Tcute
2ηcut/Q,

Bi(Tcut, ηcut, R, ω, z, µ) = B
(cut)
i (ηcut, ω, µ)S(cut)

i

(
Tcute

ηcut , R, µ
)

×
[
1 + B(NG)

i

(Tcute
2ηcut

ω
, ω,R

)]
. (B.7)

Here, the ηcut dependent and Tcut independent piece B
(cut)
i is identical to the one in

eq. (2.37), while the soft-collinear function S(cut)
i is different and reads

S(cut)
i

(
Tcute

ηcut , µ
)

= 1 +
αsCi
4π

(
4 ln2 Tcute

ηcut

µ
− π2

6

)
+O(α2

s) . (B.8)

The B(NG)
i piece, which contains nonglobal logarithms starting at O(α2

s), is again different

from the one in eq. (2.37). We verified that, up to power corrections, the explicit one-

loop expressions in eqs. (2.38) and (B.8) reproduce the sum of eq. (B.5) and the matching

coefficients without a rapidity cut given in app. B of ref. [16].
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