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ABSTRACT: We continue the study of power corrections for N-jettiness subtractions by
analytically computing the complete next-to-leading power corrections at O(as) for color-
singlet production. This includes all nonlogarithmic terms and all partonic channels for Drell-
Yan and gluon-fusion Higgs production. These terms are important to further improve the
numerical performance of the subtractions, and to better understand the structure of power
corrections beyond their leading logarithms, in particular their universality. We emphasize
the importance of computing the power corrections differential in both the invariant mass,
@, and rapidity, Y, of the color-singlet system, which is necessary to account for the rapidity
dependence in the subtractions. This also clarifies apparent disagreements in the literature.
Performing a detailed numerical study, we find excellent agreement of our analytic results
with a previous numerical extraction.
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1 Introduction

The precision study of the Standard Model at the LHC, as well as increasingly sophisticated
searches for physics beyond the Standard Model, require precision predictions for processes in
a complicated hadron collider environment. When calculating higher-order QCD corrections,
the presence of infrared divergences require techniques to isolate and cancel all divergences.
Completely analytic calculations are only possible for some of the simplest cases, e.g. [1-3],
while for more complicated processes, in particular those involving jets in the final state,
numerical techniques are typically required.

At next-to-leading order (NLO) the FKS [4, 5] and CS [6-8] subtraction schemes provide
generic subtractions for arbitrary processes, and have been used to great success. At next-to-
next-to-leading order (NNLO), due to the more complicated structure of infrared singularities,
the development of general subtraction schemes has proven more difficult. While subtraction
schemes have been demonstrated both for color-singlet production [9-15], as well as for several
processes involving jets in the final state [16-22], significant work is still required before
efficient NNLO subtractions can be achieved for arbitrary colored final states.

N-jettiness subtractions [20, 22] are based on the N-jettiness resolution variable Ty [23,
24], and are applicable to generic N-jet final states. They have successfully been applied to
NNLO calculations for a variety of color-singlet final states [25-29], as well as final states
involving a single jet [20, 21, 30-33]. They are also a key ingredient in one of the first
methods for combining NNLO calculations with parton showers [34, 35]. The leading-power
subtraction terms are given by an all-orders factorization formula derived in refs. [23, 24] using
soft-collinear effective theory (SCET) [36-40]. Required ingredients are explicitly known to
NNLO with up to a single jet in the final state [41-55].

An important feature of IN-jettiness subtractions is that power corrections in the resolu-
tion variable can be calculated in an expansion about the soft and collinear limits, allowing the
numerical performance of the subtractions to be systematically improved. Recently there has
been significant interest in understanding subleading power corrections to collider cross sec-
tions [56-71]. Advances in the understanding of subleading power limits using SCET [65, 66]
have allowed the leading logarithmic (LL) next-to-leading power (NLP) corrections to be
computed at NLO and NNLO [62, 64], with independent calculations of the same terms done
by a second group in refs. [63, 70]. The leading logarithms have also been resummed to all
orders for pure glue QCD for 2-jettiness in H — gg [72].



The inclusion of the leading logarithms was found to improve the numerical accuracy, and
thereby the computational efficiency, of N-jettiness subtractions for color-singlet production
by up to an order of magnitude [62, 64]. The analytic calculation of the next-to-leading
logarithmic (NLL) power corrections is important for several reasons. Theoretically, it greatly
furthers our understanding of the power corrections, since the perturbative structure becomes
significantly more nontrivial at NLL as compared to at LL. From a practical perspective, they
provide further substantial improvements in the numerical performance of the subtractions. In
particular, they make the subtractions much more robust in cases where there are accidental
cancellations between different channels or where the NLL terms are numerically enhanced
relative to the LL terms.

In this paper, we compute the full NLP corrections at O(as) for both Drell-Yan and
gluon-fusion Higgs production in all partonic channels, including the nonlogarithmic terms
(which are the NLL terms at O(cas)). One focus of this paper is to derive a master formula
for the NLP corrections to 0-jettiness at O(as) and to discuss in detail the subleading-power
calculation, in particular the treatment of measurements at subleading power, which in our
case are the invariant mass () and rapidity Y of the color-singlet system. More generally, one
can consider measuring any observable that does not vanish for the partonic process at lowest
order in perturbation theory, which we refer to as Born measurements. Our analysis lays the
ground for extending the calculation of the NLP corrections to higher powers, higher orders
in ag, and to more complicated processes.

We also perform a detailed numerical study comparing our analytic results with the full
nonsingular result extracted numerically from MCFMS [27, 73-75], which allows us both to
verify our analytic calculation and to probe the typical size of the higher-power corrections
in various different partonic channels. We find that the NLL power corrections can exhibit
a much more pronounced Y dependence from PDF effects than is the case at LL, which
demonstrates the importance of calculating the power corrections fully differential in the
Born phase space.

Our discussion of the Born measurements also allows us to clarify an apparent disagree-
ment in the recent literature regarding the LL power corrections. As we discuss in more
detail in sec. 6, since the calculations in refs. [63, 70] are not differential in the color-singlet
rapidity Y, their results can only be used fully integrated over Y.' In contrast, the results
computed here, which agree with those previously derived by a subset of the present authors
in refs. [62, 64|, are differential in Y. When integrating over all Y, integration by parts is
used to explicitly show that these LL results are equivalent to those of refs. [63, 70]. In sec. 6
we also compare our new differential NLL results with the integrated results of ref. [70].

The outline of this paper is as follows: In sec. 2, we briefly review N-jettiness subtractions
for color-singlet production and define our notation. In sec. 3, we discuss in some detail the
treatment of Born measurements at subleading power. In sec. 4, we derive a formula to NLP
for the soft and collinear power corrections for O-jettiness. Although our primary focus is on

!We thank the authors of refs. [63, 70] for discussions and confirmation of this point.



NLO, the general strategy is valid to higher orders as well. In sec. 5, we use our master formula
to derive explicit results for the NLP power corrections at NLO for both Drell-Yan and gluon-
fusion Higgs production. In sec. 6, we provide a detailed comparison with the literature for
those partonic channels where results are available. In sec. 7, we present a detailed numerical
study, and compare our analytic results with a previous numerical extraction. We conclude
in sec. 8.

2 N-Jettiness Subtractions, Definitions and Notation

In this section we briefly review N-jettiness subtractions [20, 22] in the context of color-singlet
production, and discuss the structure of the power corrections to the subtraction scheme. This
also allows us to define the notation that will be used in the rest of this paper. For a detailed
discussion, we refer the reader to ref. [22].

To compute a cross section for color-singlet production o(X), where X denotes some set
of cuts on the Born phase space, we write the cross section as an integral over the differential
cross section in the resolution variable 7y

U(X):U(X,'Eut)-i-/ a7, d"(X), (2.1)
7::ut d76
where
7?:11': d X
(X, Tou) = / 4T Z(TO) (2.2)

For a general measure, the 0-jettiness Ty can be defined as [45, 76]

2qq - ki 2qp - ks
%:Zmln{ 4 ; L }a (23)

Qa Qb

where the sum runs over all hadronic momenta k£; in the final state. Here, ¢, are projected
Born momenta (referred to as label momenta in SCET), which are given in terms of the total
leptonic invariant mass ) and rapidity Y as

nk nH nH R
qff = xaEcm? = Q€Y7 ) QI/; = JUbEcm? = Qe Y? ) (2'4)
where
n* =(1,0,0,1), #a*=(1,0,0,—1) (2.5)

are lightlike vectors along the beam directions. The choice in eq. (2.4) corresponds to param-
eterizing the Born phase space in terms of () and Y, and this choice already enters in the
leading-power factorization theorem, where the beam functions are evaluated at x4, = QetY .

The @, measures in eq. (2.3) determine the different definitions of 0-jettiness. Two
different definitions, originally introduced in refs. [23, 44] as beam thrust, are the leptonic



and hadronic definitions given by

. e . TaEem TpBem _
leptonic: Q.=Qp=0Q, Tl — mln{ ik, - kz}
’ 0 Z Q Q
= Zmin{eyn ki, e Vi k:l}
hadronic: Qap = TapLem T = Z min{n ki, - k:z} . (2.6)

It has been shown [62] that the power corrections for the hadronic definition are poorly
behaved, and grow exponentially with rapidity, while the e*Y factor in the measure for the
leptonic definition exactly avoids this effect.

For later convenience, we write the dimensionful and dimensionless 0-jettiness resolution
variables in terms of a Y-dependent parameter p(Y') as

TE = Zmin{px ki, it k;} N 75 , (2.7)
i
with
leptonic: Plep = e’ , TieP — 721;) )
hadronic: Pem = 1, T = Tgn (2.8)

In the following, we will mostly drop the subscript 0 on 7y, since there should be no cause
for confusion that our results are for 0-jettiness. For generic results that apply to both the
leptonic and hadronic definitions we also drop the superscript and simply use 7 and 7, keeping
a generic parameter p when necessary.

To implement the N-jettiness subtractions, we now add and subtract a subtraction term
to the cross section (suppressing the dependence on the Born measurements X for simplicity)

d
o= asub('Tcut) + / d7o 7 + [U(%ut) - Usub(%ut)]

’Tcut d76
d
= (T + / 470 97 &+ Ao(Tows) (2.9)
7::ut d76

Since Ty is a zero jet resolution variable, for 7 = T5/Q — 0 we can expand the differential
cross section do/dr and its cumulative o(7¢yt) about the soft and collinear limits from 7 — 0
and 7oyt — 0 as

do do@ do®  do@

dr ~ dr * dr + dr to (2.10)

U(Tcut) = U(O) (Tcut) + 0(2) (Tcut) + 0(4) (Tcut) + -




Here do© /dr and ¢(%)(7.y;) contain all leading-power terms,

do© Y .
Z ~ 5(7') + |: I 7_:| 5 U(O) (Tcut) ~ In’ Tcut - (211)
T T +

These terms must be included in the subtraction term to obtain a finite result, namely
USUb(’]::ut) = U(O) (Tcut = %ut/@) [1 + O(Tcut)] . (212)

The further terms in the series expansion in eq. (2.10) are suppressed by powers of 7

dU(Qk)

ar O i 7), o (7)) ~ O 107 o) - (2.13)
T

cut

T

While these terms with k& > 1 do not need to be included in the subtraction term, the size of
the neglected term, Ao (7cyt) is determined by the leading-power corrections that are left out

of 0%, Therefore, including additional power corrections in o'

can significantly improve
the performance of the subtraction. Indeed, general scaling arguments imply that up to an
order of magnitude in performance can be gained for each subleading power logarithm that
is included in the subtractions [22]. For the leading logarithms, this was explicitly confirmed
for most partonic channels in the numerical studies in refs. [62, 64]. Here, we extend the
calculation to the NLL terms at O(as), which yields the nonlogarithmic terms, hence giving
the complete NLP result. The remaining NLO power corrections then scale at worst as

asTfut log 7eut, and will be very small, as we will see in our numerical studies.

3 Born Measurements at Subleading Power

We begin by discussing in some detail the treatment of the Born measurements, Q? and
Y, which plays an important role at subleading powers. We will use the soft and collinear
expansions from SCET, which provide a convenient language when discussing the power
expansion of QCD amplitudes at fixed order. We will not need to employ any of the field
theory technology from SCET for our analysis here.

3.1 General Setup and Notation

Consider the production of a color-singlet final state L of fixed invariant mass ) and rapidity
Y, together with an arbitrary measurement 7 that only acts on hadronic radiation and gives
T = 0 at Born level. Since the observable T resolves soft and collinear emissions it will induce
large logarithms In(7/Q). Our goal is to expand the cross section in 7 (or 7 = 7/Q) in order
to systematically understand its logarithmic structure.

Consider proton-proton scattering with the underlying partonic process

a(pa) + b(py) = L(p1,---) + X(k1,---), (3.1)



where L is the leptonic (color-singlet) final state and X denotes additional QCD radiation.
Its cross section reads

do ! a\Ga ddkz 44
gy = 6t T (] 0ma.02)) [t 1Mo )

1 - .
x (2m) 45D (po +pp — k — q) 5(Q% — ¢°) 5<Y ~5hn Z+> S[T = T({k:})] -
(3.2)
Here, the incoming momenta are given by
n* n*
pg = gaEcm? s pff = CbEcm? > (33)

k =", k; is the total outgoing hadronic momentum, and ¢ is the total leptonic momentum.
Since our measurements are not sensitive to the details of the leptonic final state, we have
absorbed the leptonic phase space integral into the matrix element,

M (pa, py; (i} @) = / A% 1,(g) | M (par s i} i DI

dp; ds(d

a21() = [T Gom@mse 0 = m) 206 (s =3 p) . (34)
J J

The matrix element M contains the renormalization scale p2¢, which as always is associated

with the renormalized coupling as(p), and may also contain virtual corrections. For now the

measurement function 7 ({k;}) is kept arbitrary.

We can now solve the Q% and Y measurements to fix the incoming momenta as

Calk) = El (k_ +etY /Q2 + /{:%) ,
(k) = El <k+ +eV/Q2 + k:%) ) (3.5)

Taking the Jacobian factors from solving the ¢ functions into account, eq. (3.2) becomes

g di a\Ga A
dQ?((iiW: / <H éf)d(2ﬂ)5+<k?)) MA(Q,Y; {k})S[T = T({k})], (3.6)

where we defined

AQ, Y {k:}) = | M(pa, po, {ki}s @ = pa + b — K)|? (3.7)

to stress that the squared matrix element only depends on the Born measurements () and
Y, which fix the incoming momenta through egs. (3.3) and (3.5), and the emission momenta
k;. Note that we have left implicit in our notation in eq. (3.6) the dependence of (,; on k
through eq. (3.5). They are restricted to (45 € [0,1], which is implicit in the support of the
proton PDFs.



3.2 Power Expansion in Soft and Collinear Limits

Instead of solving the 7 measurement function to express (some of the) k; in terms of T, we
find that a convenient strategy to organize the expansion in 7 is to multipole expand the
final state momenta. At this stage we need only assume that 7 is a SCET7 observable, which
is true for many definitions of N-jettiness. For such observables, it is known from SCET}
that we can organize the cross section in terms of a power counting parameter A ~ /7. All
momenta k; can then be categorized as either collinear or soft modes (since we work in SCET}
these are often called ultrasoft, although we will not make this distinction), whose momenta

scale as
n—collinear :  k, ~ Q (A%, 1,1, (3.8)
fi—collinear :  kn ~ Q (1,\%, ),
soft : ks ~ Q (AN 02%)0?),

where we decomposed each momentum into lightcone coordinates
n n*
kﬂ:k—7+k+7+kﬁz(ktk—,m). (3.9)

Here n and 7 are lightlike vectors satisfying n - n = 2. The components of the momenta
that scale like A\? are referred to as residual momenta. The soft momenta are homogeneous,
and have purely residual scaling. Overlap between the soft and collinear modes occurring in
integrals over final state momenta is removed by the zero-bin subtraction procedure [77].

The benefit of this decomposition is that it allows one to expand eq. (3.6) in A, agnostic
of the actual measurement 7. The LP result is then simply obtained by expanding the cross
section through A%, the NLP result by expanding through A2, etc. Note that when performing
this expansion, all other factors, such as @Q, Eep ~ 0.

While the expansion of the matrix element is of course process dependent, we can give
general expressions for the incoming momentum fractions eq. (3.5), independent of the process
and observable 7. If k is a soft momentum, then the expansion required at NLP is given by

— Y
Ca(k) —xa(l—l- 0 )+(’)()\4),
k.+€+Y A
Cb(/{) =X <1 + Q > + 0()\ ) , (3.10)
where we factored out the Born momentum fractions
_ QeJrY _ Qefy
Tgq = o xTp = o (3.11)

In the n-collinear limit, we obtain




(k) = [1 n (HSY n ;c;ﬂ + oM. (3.12)

For clarity, we have grouped terms of the same power counting in round brackets. Similarly,
one can obtain the n-collinear limit, or any combination as might appear when combining
multiple emissions.

4 Master Formula for Power Corrections to Next-to-Leading Power

In this section we derive a master formula for the NLP corrections. This formula applies to
any SCET} observable in color-singlet production. In sec. 5, we will apply it to derive explicit
results for Drell-Yan and gluon-fusion Higgs production.

4.1 General Setup for Color-Singlet SCET; Observables

For reference, we start with the LO cross section for the production of a color-singlet final state
L of invariant mass Q? and rapidity Y, together with an (up to now arbitrary) measurement
T acting only on hadronic radiation,

dLO

dQ2dYdT fcéfaaagbjz(xbum@ Y)o(T), (4.1)

@ %Y and AMO
cm

where z,p, = 3 is the squared matrix element in the Born kinematics, see

eq. (3.7). For future reference, we also define the LO partonic cross section, 67C(Q,Y), by

dO'LO

_ AM0(Q,Y)
dQ2dydT

2w,y B

510(Q,Y) falza) fo(x) 8(T),  6°(Q,Y) = (4.2)

Next, consider an additional real emission to the Born process. Eq. (3.6) yields

/ fa(Ca) fb(Cb)
dQQdeT 2C,GE,

where we remind the reader that the incoming momenta p,; are given by eq. (3.5),

nt _ / nH
= ga(k)ECm? = (k + €+Y Q2 + k%) 7 5
n* v [ o\t
pg = Cb(k)ECm7 = <k+ +e Y Q2 + k‘%—v) 7 . (44)

From these solutions, we see the interesting feature that at subleading power, regardless of

ddk

2m)0, (k?) AQ.Y5{k}) [T — T({k})] . (4.3)

the type of final-state emission, the momenta entering both PDFs are modified.
Since we do not measure the azimuthal angle of k, it can be integrated over,

Ak oo Qoo [OdkTdET  (4m)ZH [ dkTdk-
[ 00400 = i || Gy~ Ty Gy 69




Eq. (4.3) simplifies to

dk*dk* fa(Ca)fb(Cb) (4m)

Q?deT (kT k)< (4m)22.CEL. T(1 — €) AQYi{kD)S[T = T(RD].  (46)

So far, this expression is still exact. In the next step, we wish to expand the NLO cross
section in A ~ 7 /Q. When T is a SCET]| observable, we can use the EFT knowledge from
SCET] to expand the momentum k in both collinear and soft limits, as discussed in sec. 3.

At NLP, we need to expand eq. (4.6) consistently through O(\?). The O(\?) power
corrections arise from the following sources:

e The incoming momenta (,;: While collinear and soft limits yield quite different power
expansions, both give a well-defined expansion in A. We thus simply define the expansion

Cad = Tap| — + AL+ OO (4.7)

a,b

where zgp ~ A0 and A[(fg ~ A2. We have pulled out the Born momentum fractions
Zqp and written 1/z, as a fraction for later convenience. Explicit expressions can be

obtained from egs. (3.10) and (3.12), and will be given below.

e PDFs: Since the momenta (, 5 enter the PDF's, these also have to be power expanded,

Fan(Cas) = fab(%b> abAabfab(”“"“”) oMY

Za,b Za,b
= fab"’xabA( zf b+0()‘4) (48)

e Flux factor: Similar to the PDFs, we have to expand the flux factor

1 zazm [1
gaCb Lalp

— 2eA®) — ZbAl(;2)] . (4.9)

e Matrix element: The expansion of the matrix element depends both on the process and
the considered limit. Here, we define the LP and NLP expansions by

AQ,Y; {k}) = ADQ,Y; {k}) + AP (Q,Y; {k}) + - . (4.10)

In the soft limit A© ~ A\=* and A® ~ A~2, while in the collinear limit A©®) ~ A~2 and
A@) ~ X0, In both cases we have the scaling fdk*dk‘A@j) ~ A% which is why the
soft and collinear corrections enter at the same order.

For example, for a 2 — 2 process, the matrix element can be written in terms of the
Mandelstam variables

2

Sab = 2pa Py = |:1 + ZaA( ) + ZbA( ) + O(A4)

a



Sak = —2pa - k = —ktQetY (1 + A2 4 O(A‘*)) ,

Za
1

spk = —2pp k= —k Qe <z + Aéz) + O(Xl)) . (4.11)
b

Since these terms now have a definite power counting, one can simply insert eq. (4.11)
into A(Q,Y;{k}) and expand to the required order in A.

e Measurement: Depending on the observable, the measurement function T may also
receive power corrections. Since 0-jettiness is defined in terms of n, nn, @ and Y, none
of which receive power corrections in our approach, we do not have such corrections,
and will therefore not write them explicitly in the following formulae. More generally,
these could be obtained from expanding J[7 — T ({k})].

Inserting all these expansions into eq. (4.6) and expanding consistently to O()\2?), we obtain
the LP result
do@  rodktdkT zaz fafe (4m)€
dQ2dYdT — Jy (kTk™)c (47)222,2p B4, T(1 —€)
and the NLP master formula
do® o dktdkT ZaZb (4m)€
d2dydT  Jy (kTk)e (47)2z,0, B4, T(1 —€)
x {AOQ Y5 (k) |fufo (~2aP = 287 ) + 2aAD f1fy + 20D fuf
+1h APQ Y {kh ], (4.13)

where zq, = 2q(k) and A((fg = A(zg(k:) are defined by eq. (4.7). Note that the LP limits of

a,
the matrix elements are universal, and hence eq. (4.12) holds independently of the process,

AOQ.Y: (k) 6[T - T({k})]  (412)

O[T = T({k})]

i.e. it only depends on the observable 7. Although the focus of this paper is on the power
corrections, in appendix A we provide a brief derivation of the leading-power terms. Likewise,
the A term together with the square bracketed factor on the second line of eq. (4.13) is
universal, such that all the process dependence arises from the last A term. We will discuss
this in more detail in sec. 4.4.

In the following, we will evaluate eq. (4.13) in both the soft and collinear limit for 0-
jettiness, eq. (2.7), whose measurement function for one emission is given by

S[T—Tk)] =0(pk™ —p ' k)o(T —p k™) +0(p k™ — pk")S(T — pk™).  (4.14)
The value of p depends on the specific definition of 7, as given in eq. (2.8).

4.2 Collinear Master Formula for 0-Jettiness

The expansion of the incoming momenta ¢, for an n-collinear emission k ~ (A?,1,\) has
been given in eq. (3.12),

Calk) = 2 K1 4 k_;_y> 4 2%2] oMY,

,10,



Y 2
wg - ;&ﬂ + 0\, (4.15)

so the explicit expressions for the expansion eq. (4.7) are
kmem Y\ ! N
e (105G7) e og

9 k—i—e-‘rY ]{72
=1, A}ﬂ:( o +2T§2 . (4.16)

Since an n-collinear emission satisfies k= > k™, the 0-jettiness measurement eq. (4.14)

(k) = mp [1 + (

simplifies to

§[T —T (k)] =6(T — pk™). (4.17)

Note that the integration in eq. (4.13) also includes the region k=~ — 0, where the assumption
k= > kT is invalid. Indeed, this region corresponds to the soft expansion. It is guaranteed
by the zero-bin subtraction procedure that this overlap regime between the soft and collinear
limits is not double counted [77]. An important benefit of 0-jettiness and our setup here
is that the zero-bin contribution that removes the overlap is scaleless and vanishes in pure
dimensional regularization, such that we do not need to consider it further.

Eq. 4.17 fixes the k™ integral in eq. (4.13). It is also useful to write the remaining &k~
integration in terms of z, using eq. (4.16), giving

1— 2z, > Ldz,
k= QeY %o / dk~ = / ;2 QeY . (4.18)
0

Zq Tq a

Here the lower bound on the integration follows from the physical support of the PDF
fa(za/zq). Plugging back into eq. (4.13), we obtain the n-collinear master formula

dO‘£L2) B 1 % 1 QeY QT@Y —€ ZZ (47‘1’)6
dQ2dYdT  J,, 24 2zempEL, p p (1 —2z4)¢ (4m)2I(1 —¢)
TGY (0) (1 —Za)2 -2 1— 2z, ’ 1+ 2, y
A A D | £ U g ok L
+ fa h AP(@Q,Y, {k}>} : (4.19)

where k is given by

1— 12 2 Yl_
kM — Qey Fa TV + I& + Q’Ti Zanli . (4.20)
Zq 2 p 2 P Za

It only remains to plug in the expansions of the matrix element A and A® and to expand in
€. Note that even in the n-collinear case considered here, both the n and n-collinear incoming
momenta receive power corrections, see eq. (4.4), leading to derivatives of both PDFs in
eq. (4.19).
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The analogous results for the n-collinear limit are obtained in the same manner, giving

dol?  [ldm 1 Qp<QTp)‘6 2 (47)°
(

dQ2dYdT /), 2 2zampEl, e¥ \ e¥ 1—zp)€ (4m)2T(1 —¢)
Tr 40 (1-2)—2  1+z — 2 /
{Q Y (Q, Y, {k}) | fafo 22 + 22 afa % Ty fy
LR ADQY ) (1:21)
where k is given by
n* Q1—znt p1—2z
e — 4 = - L K
kt="Tp 5 + v 2 + QTeY Zb n . (4.22)

4.3 Soft Master Formula for 0-Jettiness

The expansion of the incoming momenta (,p for a soft emission k ~ (A%, A%, A\%) has been
given in eq. (3.10),

Galh) = a1+ k_;_y) FoY,

k+ +Y

(k) = :cb< (4.23)
so the explicit expressions for the expansion eq. (4.7) are
k™
2q =1, AR =
Q
) LktetY
zp =1, A = 4.24
b Q ( )
Plugging back into eq. (4.13), we get
dot? o qk+dk~ 1 (47)°

WQPVAT ~ ), FR) @m0 g LT~ TR {QA(O) (Q.Y, {k})

X [fa fo (k= ¥ — k+e+y) + ke Y Tofh fo+ ktetY f, :):bf{,}

+ LA ADQY. (D). (1.25)
Here, the measurement is given by eq. (4.14),
S[T =T(k)] = Okt —p 'k )S(T — p k™) +O(p~ "k~ — pk")S(T — pk™).  (4.26)

We can further simplify eq. (4.25) by utilizing the fact that A(®) and A®) have a well defined
dependence on k* or k= because of power counting and mass dimension,

(2) 5(2)
2(Q,Y,{k}) = +](€?’Y)+A— ]Ef’y). (4.27)

A%Q,y
Qv (k) = 2T
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Here the A’s are process-dependent expressions that depend on the Born measurements @ and
Y, but are independent of both k% and k~. This implies that the k* integrals in eq. (4.25)
have the generic structure

© dktdk™ S[T = T(k)] o gt oo 1 1
/0 ey gy 0T <e+a—1 + e+ﬂ—1>' (4.28)

We then find the soft NLP master formula

dot? 1 (4m)e 17721 —2¢ (—(0)
dQ2AYdT ~ (4m)22z.2,E: T(1—e)e Q l—e {A (@)
< [faten) sten) (7 - Y) L g o) + e fala i)
a\ta eY p €Y aJag\ta P a a b
T fula) Foles) [pQA @)+ 24%a Y)}} (4.20)

4.4 Universality of Power Corrections for 0-Jettiness

Having derived our master formulas, in this section we comment on the universality of the
power corrections. In both the collinear and soft limits the power corrections arising from
the derivatives of the PDFs and from the expansion of the flux factor are proportional to the
LP matrix element A®)(Q,Y), see eqs. (4.19) and (4.29). Since the factorization properties
of A©(Q,Y) are universal, most of the NLP corrections are universal as well, in the sense
that they essentially reduce to the LO cross section times a universal factor, as we will make
explicit below. The only process-dependent piece arises from the NLP expansion A(Z)(Q, Y)
of the matrix element. We stress that this limit is defined in our particular choice of Born
measurements Q2 and Y. Using different observables, e.g. ¢&, the NLP corrections to Cab In
eq. (3.5) would change, inducing also a change of the NLP matrix element.

4.4.1 Universality of Collinear Limit

We begin by considering the n-collinear limit of a real emission amplitude in detail. We
consider the Born process
ta(qa) + Ko(qp) = L(da + @) , (4.30)

where k; denotes all quantum numbers, including flavor, of the incoming partons, and L is the
leptonic final state of momentum ¢ = ¢, + g5 The incoming momenta for the hard collision

are given by

Ynﬂ " Ynﬂ

¢4 = 2B — = = Qe" @ = TpBem— = Qe (4.31)

Now consider that parton a arises from an n-collinear splitting of a parton with flavor o/,

Ko (o) + F(qs) = L(q, +qp — k) + k1 (k) . (4.32)

,13,



To describe this at leading power, we only need the O(\Y) relations for the momenta of the
incoming partons, which can be read off from egs. (4.15) and (4.16),

I Y ou
=2 002 = 900, (4.33)
Zq Zq
The n-collinear emission is given by eq. (4.20),
1 — zq 0t Tﬁ“ e¥ 11—
k= QeY — 22— 4 = — h 4.34
@e Zq 2 * p 2 QT Zq nJ‘ ( )

It follows that the leptonic momentum ¢’ = ¢, + g, — k = ¢ + O()\?) is equal to the Born
momentum ¢ = ¢, + g, and hence the collinear splitting does not affect the leptonic phase
space at LP.

The LP limit only exists if the splitting x/, — k4 + &} is allowed, in which case it is given
by the O(A~2) piece of the squared amplitude,

8ma
Aws1r(Q. Y, {k}) = Q%*QFP (20 O A2,1(Q.Y) + O, (4.35)
where the 1/k* gives rise to the A~2 behavior of the amplitude. Here the P,, are the
e-dimensional splitting functions which are summarized in appendix A.
Recall that in our case, the measurement fixes k™ = 7 /p. In the notation of eq. (4.10),
we hence have for the LP matrix element

e P
A 14(Q. Y (k) = Smaupls oy Paor (o VAL 1(Q.Y). (436)

These results enable us to explicitly give the universal part of the NLP result in the collinear
limit. Inserting into the collinear master formula eq. (4.19) and converting to the MS scheme,
we find

C@‘;Z&T (4.37)
“@nig (55) r<1—> [ e
(22 ) o S22 e (20 )+ 2 (22 o)
[ SR () g e,

Here, we factored out the LO partonic cross section eq. (4.2), which is only possible because
the collinear splitting leaves the leptonic momentum invariant at LP. We have made explicit
the universal piece and nonuniversal components. As already discussed, the full nonuniversal
structure arises from the NLP matrix element A (Q,Y,{k}) in the last line.
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It would also be interesting to understand if there is a universal structure to A (Q,Y).
This has recently been studied in ref. [78] for pure n gluon scattering amplitudes at the
level of the Cachazo-He-Yuan scattering equations [79, 80], where it was proven that in the
subleading power collinear limits the tree-level amplitude factorizes into a convolution of the
n — 1 gluon integrand and a universal collinear kernel. It would be interesting to understand
this at the level of the amplitude itself, as well as for fermions. Unlike at leading power, we
do not expect that there are universal subleading power splitting functions that are simply
functions of z, but there may exist splitting functions that involve differential or integral
operators, as occurs in the soft limit at subleading power [81, 82]. Understanding this will
be particularly important for generalizing the calculation of the power corrections to more
complicated processes.

4.4.2 Universality of Soft Limit
As for the collinear case, the LP soft limit of the matrix element is universal. Following

similar steps as in sec. 4.4.1, one can express the LP soft limit by

0 16mas 2 C
AR QY {kY) = = MSE s AR L (Q.Y), (4.38)

which only exists for ab = gg, q¢ and where C = C4, CF is the appropriate Casimir constant.
We thus obtain

d0§2) 50 a,C 1 T? p e¥
dQ2dydT ~ Q = [ —ine - 1] [f“(x“)fb(xb) (_eY N p>

P / e’ /
+ i) o) + - L) i)

fa(wa) fo(xp) —(4m)° 1 9 1 —2e[ —(2) 91— 2
(4m)22z,2,EL T(1 —€) € T—¢ [,OIA+ Q,Y)|* + ;]A_ (Q,Y))| ] ,
(4.39)

+

As for the collinear case, this emphasizes that the terms arising from the expansion of the
PDFs and flux factor are universal, in the sense that they only depend on the universal LP soft
limit of the amplitude. The only nonuniversal contributions are |Zf |2. However, these terms
can in fact be derived from universal formulae [81-83] involving differential operators. This
has been recently studied in the threshold limit, where one only requires soft contributions
[67]. However, when one is away from the threshold limit as considered here, one in general
requires collinear contributions, which as discussed above, are not (yet) known to be universal.

5 Power Corrections at NLO for Color Singlet Production

In this section we give explicit results for the full NLP correction for O-jettiness at NLO for
Higgs and Drell-Yan production in all partonic channels. Since we only consider cases that

,15,



are s-channel processes at Born level, the LO matrix element only depends on () and one can
factor out the LO partonic cross section 69 (Q). We write the NLP cross section as

doZm) F10( dz, dzp Zq Tp\ (2 n)
dQ2dydT Q / / [-ﬂ( >f3< > (2a>26,T) (5.1)

+ f2< )fj< )C(2n)(2a,zb, )+fz< > fj( >f2f7>(za,zb,7)],

where as always

Qe” Qe "

y Ty = .
Eem Eem

We will always express the real emission amplitudes in terms of the Mandelstam variables

(5.2)

Tgq —

Sab = 2Da Db, Sak = —2pa-k, Spp=—2py-k. (5.3)

This allows us to straightforwardly obtain the LP and NLP expansion using eq. (4.11). We
will give an explicit example of the derivation of the soft and collinear master formulas for
the gg — Hg channel, and only summarize the results in the other channels.

5.1 Gluon-Fusion Higgs Production

We begin by considering Higgs production in gluon fusion in the m; — oo limit. At NLP,
there are three different partonic channels, gg — Hg, q¢ — Hg and qg — Hgq, which we
consider separately. The calculation for gg — Hg is shown in full detail as an illustration
of our master formulae. The LL power corrections were computed in [63, 64]. Ref. [64] also
computed the ¢q¢ — Hg NLL power corrections. The NLL power corrections for all partonic
channels for gluon fusion Higgs were computed in [70]. We will compare with these results in
sec. 6.

Throughout this section we consider on-shell Higgs production, for which the partonic
cross section is given by

ALO(Q,Y) 5 IMED H(Q)|2
~LO ) 2 gg—>
Y) = =27l — 5.4
The LO matrix element in d = 4 — 2¢ dimensions is given by [84, 85]
204 2 2e 2
s aZQ drpgis T T (1 +e€)
M (@ = e (M) (5.5)

5.1.1 gg — Hg

The spin- and color-averaged squared amplitude for g(p,) + g(py) — H(q) + g(k) is given by
[84]

8mausC gy
Agg—)Hg(Q7Y7 {k}) = AI;;;LH(Q) X 4871\/18
QY1 —¢)
SabSakSbk 2 SabSakSbk
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n-Collinear Limit Expanding eq. (5.6) using eqs. (4.11) and (4.16), the LP and NLP limits
of the matrix element are obtained as

(1= 24 +22) pe”

(0)

A g (Q, Y3 {k}) = 16masCapiis Agsrs 1 (Q) A= 2)mn QT (5.7)
1 1

AgﬁHg(Q Yi{k}) = 16masCaris Aty 1 (Q) 022 [1 + 522 — 23 4220 — 20 — 222 —

Since our scaling variable is A ~ /7T /Q, we clearly see that A~ X=2 and A®) ~ X0, as
required at LP and NLP.
Inserting these expansions into eq. (4.19) and converting to the MS scheme yields

do? _ 510 () aSC’A/ dz, 1 e TQ{ I e
dQdydr — "9H T Jow 2a Qp \p2 p) (1- za>6 I(1—e)
1—za+z22 1—2,)%2—-2 1-— 1—|—za
« {1 Plrap Iz =2 2 oy
(1 —24)2q 224 2z, Zq
1 1
+ fa fo— [1 + 522 — 23 4220 — 20— 222 } } . (5.8)
z4 1—ce¢

To expand this in €, we collect all powers of (1 — z,) and then use the distributional identity

S S k) B N B TR (5.9)

€

where Lo(1—2) = 1/(1— %)+ is the usual plus distribution. We also combine the two separate
fafp pieces, as at this level there is no use to further distinguish the universal and process
dependent pieces. This yields

(2) 1

do; o / dz,
_— — —4 _—
agzavar ~ Jeen(Q) > o Cag Q0 )o. 2

A () na [(2 - DT 50 =)
1 (52) wion| (¢ -,

L 1= 22+ 822 14,222?; 1264~ 1055 +325 , ( Za)]
2 (5 e B
+ fy (Z) p fg () [(— +In QZ; > o(1 = za)
. (1+za)(12;%za+z2)2 Lol _Za)]}. (5.10)

Comparing to eq. (5.1), we can read off the n-collinear kernels,

Y Y
S TIECTEEI | (SN:.CO P

Qp 12p
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+1—22a—|—8z —142 —|—122 —102 —i—3z

L Lo(1 —24) [0(1 — 2p),

222
Y 2)2
(2,1) _ e’ (1— 2z, +27)
Ch, (Zas 2, T) = 4Cy o 2 51— 2),
Y %
(2.1 a0, (2 9T _
C'fgfé,n(za,zb,T) =4Cy o [( ; +1In 2, 0(1 — z4)
_ 212
(1+Z“)(12222“+Z“) Lo(1 —za)}a(l — ). (5.11)

Soft Limit To expand the matrix element in the soft limit, we use eqs. (4.11) and (4.24)
to obtain

2e

Aggot1g(Q. Y ARY) = ALY, 1(Q) x 1670, Cas S + O(X). (5.12)

Note that the first term scales as (kTk~)~1 ~ A%, while there is no O(A\~2) component. The
NLP term in the expansion of the amplitude thus vanishes, and in the notation of eq. (4.27)
we have

0 c —(2
A0 Q) = AL (Q) x 1670, Caplis, A1, (Q) =0. (5.13)

Inserting into eq. (4.29) and converting to the MS scheme yields

dot? 510 Qs 1/1 | T2
dQravar ~ emn(@g x40 ( —Inr - 1) (514)
p e\ o e’ ,
X [fg(ifa)fg(ﬂ?b) <—ey - p) + g fUafg(xa) fg(xb) + 7 fg(il?a) ZEbfg(fEb) .

Since there is no NLP matrix element, one can also obtain this from the universal expression
for the soft limit in eq. (4.39). Comparing to eq. (5.1), we can read off the soft kernel,

Y
(21) e L e N (LT _ _
Crl $(Zas 25, T) = 4Cx Q< 5 €Y> <€ In 2 1> 0(1—24)0(1 — 2p) ,
1 1
C}?fﬂs(za,zb,’r) =4C, Oe @ (6 — 1nZ; — 1> 61— 24)6(1 — 2) ,
1e¥ /1 2
C}j}}é)’s(za,zb,T) =40y — a7 (E In ZZ - 1> S(1 = 24) 0(1 — 2). (5.15)

Final Result Adding the n-collinear kernel eq. (5.11), the n-collinear kernel which follows
from symmetry, and the soft kernel eq. (5.15), all poles in € cancel as expected, and we obtain

eV T,
C](cj}i)(za,zb,T) _4CAQ [< Q[; +1>5(1—za)

1—2za+8,z —14z —|—122 —102 + 325
+ 2
222

g ,C()(l — Za) (5(1 — Zb)
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~|—<a<—>b,€,—>e>

p
o> T) = 4C —1)8(1 -
1 fq (Z(I?Zba ) A ( Zb)
1 + 2)(1 — zp + 22)?
b><2 SRELI.
b
1— 2, +
+ 4CAQp(22zZ)5(1 — %),
Y T
CP) (20,2, T) = 4Cs ;7 [< Qe’; 1) (1 — z,)
(14 24)(1 — 24 + 22)2
+ 22 Lo(1—2a)|6(1 — 2p)
(1—2z,+ 22)2

+ 404 =22 5(1 = 2,) (5.16)

Qe
Substituting these results into eq. (5.1) yields the NLP cross section for gg — Hg at NLO.

2z

5.1.2 gq — Hgq

The gg — Hgq channel has power corrections at both LL and NLL. The spin- and color-
averaged squared amplitude for g(p,) + q(ps) — H(q) + q(k) is given by [84]

1
Aggrmg(Q, Y, {k}) = A 1 (Q) x SWQSCFﬂﬁsm Sy S — €(5ab + Sak)Q] - (5.17)

Soft Limit The LP soft limit vanishes, since a leading-power soft interaction (which is
eikonal) cannot change a n-collinear quark into a n-collinear gluon and soft quark. However
this does occur at NLP in the soft expansion and yields

. l—e
A 1g(Q.Y () = A52,4(Q) x 870, Crifis = (5.18)
and the soft kernel is given by
Y
(1,2) B e’ (1 ﬁ B B B
Cl fas(Zar 20, T) = 2CF o (e In 2 2> (1 —2q)0(1 — 2p) . (5.19)

n-Collinear Limit The n-collinear limit has both a LP and NLP contribution, given by

eV 1+ (1—2)% —e2?
gq%Hq(Q Y, {k}) gg%H(Q) X 8masCp— P 0T % b ,

4—23 + 2z —e22(4— 2+ 22)

2,2
sz

gq%Hq(Q Y {k}) ggHH(Q) X 477@80}7:“’%28 (520)

The n-collinear kernel is obtained as

9 0 2 — 22+ 522 — 523 4 222
C} f) (Za,Zb,T) = CF W (5(1 - Za) Zl:g b b 5
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1 1 1— 2
C}zjfi)’ﬁ(zap Zln T) = CF L 5(1 _ ZQ) ( + Zb)[ + ( Zb) ] ’

QeY zg
(1,2) B p =)+ (1~ 2)?]
Cfgfé7ﬁ(za7zb77d) = CFW(s(l za) P . (5.21)

n-Collinear Limit The n-collinear limit vanishes at LP. The NLP expansion of the matrix
element gives

8masCrudig(l — €)

Agali(@: Y 1)) = AL (@) x = 55 T

(5.22)

The only nonvanishing kernel is

y y
o —ocp (9T oy Loz
Cfgfq’n(zan Zb, T) - 2CF Qp |:< + In l,L P + 1) (5(1 Za) —+ P (5(1 zb) .

(5.23)

Final Result Combining the n-collinear, n-collinear, and soft kernels, the 1/e pole vanishes,
and we obtain the final results,

O (20,2, T) = 20 e K Tp 1) 5(1 — zq) + [’0(1_2)} 5(1 — z)

QP Qey Za
2—22+ 525 — 52;?’ + 22;)1
+Cp —= (1 Za) ,
o 7
(1,2) e Py )+ (1= 2)Y
Cff;f (Zay Zb, T) =CF QGY 5(1 Za) ZZ ,

1,2 P (1= 2z)[1+ (1 — 2)°
i (a2, T) = Cr o 00— 0) - .

Substituting these results into eq. (5.1) yields the NLP cross section for g¢ — Hgq at NLO.

(5.24)

5.1.3 qg — Hgq

The final results needed in eq. (5.1) for qg — Hq follow from eq. (5.24) by flipping a > b,
e¥/p < ple¥ and f, < f,,

D (20,2, T) = 205 L a oo 81—z (~1n - 1) o(1 - z) + =2
+CF Qp Yoo 2za+5zzg— 52 +22a 51— 2).

CJ(chQ)(Zm 2, T) =Cr Qﬁ i Za)[lz—: (= z)7 6(1—2z),

O (202, T) = Cr ;— (1+ Z“)[lzg (=2 50y (5.25)
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5.1.4 qq — Hg

The q@ — H g channel first contributes at NLL. It was first given in [64] and then in [70], which
agreed, but we reproduce it here for completeness. The squared matrix element, including
the average on the initial state spin and colors, is given by [84]

647 1—ce¢

Aggmig(Q, Y, {k}) = A5, 1 (Q) x ?asCFﬂﬁsm (s + s — €(sak + s06)%], (5.26)
With our choice of Born measurements, the soft limit vanishes both at LP and NLP, leaving
only the collinear NLP correction. The LP collinear limit also vanishes, leaving only the NLP

n-collinear limit

64m .
AL 1y (Q Y ARY) = AR, (@) x 5 Criis(1 - )2

(1 —2,)?

Q%2
and the n-collinear result is obtained by replacing z, <> z. Combining both, we obtain the
kernel for eq. (5.1)

(5.27)

~16CF 1 [e¥ (1—24)? p

5.2 Drell-Yan Production

(1 — z)?
2

CPD (20, T) (5.28)

We now consider the Drell-Yan process pp — Z/v* — [*1~ , and for brevity denote it as
pp — V. At NLO we have the partonic channels ¢q¢ — Vg and q¢9 — V¢q. The LL power
corrections for these channels were calculated to NNLO in [62, 63].

For Drell-Yan, it is important to be able to include off-shell effects. The LO partonic
cross section as a function of the leptonic invariant mass @ is given by

(03 + a) (0} + o) = 2Qvu(1l — m /Q?)
(I = m3/@P + miT3/Q"

Here, v; 4, and a; 4 are the standard vector and axial couplings of the leptons and quarks to

2
dras,,

" 3N.Q2EZ

Q) Q2+ (5.29)

the Z boson, and we have integrated over the [T/~ phase space.

5.2.1 qq@— Vg
We first consider the partonic channel g§ — V¢g. The squared amplitude is given by [86]
Sma CF 2¢ Sak Sbk 2s b 2
’MQQHVgP = ‘quav|2 X 872/% [(1 — 6) (a + — ] + aiQ — 2e| . (5.30)
Q Stk Sak SakSbk

Soft Limit With our setup, the soft limit of the matrix element has no NLP correction,

16masCppis
Aggovg( QY (k) = 452, (Q) x = LB L o(\0), (5.31)

and the soft kernels are given by

Y T2
(2,1) 7o (A | S R P i 1—
Cr e s(Zay 2, T) CF< o QeY) (e n e (1 —24)0(1 — 2),
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(2.1) _ p (1 T2
Crrtys(Zar 20, T) = 4CF Q¥ <6 - IHF - 1)5(1 — 2a) 6(1 = 2),

Y
(2.1) _ e (1T B -

Collinear Limit The n-collinear expansion of the matrix element yields (at NLP, we only
need € — 0)

0 P 1422 —e(l—2,)?
Ao (@. Y {kY) = 452, (Q) x 8masCrutis o7l (_ - T, (5.33)
Aoy @Y (KD = AG2,0 (@) x dma,Cp—" ===t (534)
The n-collinear kernel is
Y Y
(2,1) . e 1 QTe
Cf T, n(Zas 20, T) = 4CF Q7p [(6 —1In 2 (1 — z4)
1
+ i(za - 2)(1+ 2 )Eg(l — Za):| 0(1—z),
eY 1+ zg
Ol . T) = 40k G =258~ )
Y Y
(2,1) _ e (1 QTe B
qufé’n(za,zb,'r) =4CF Op [( c +In 25 5(1 Zaq)
14 24)(1+ 22

Final Result Adding the n, n and s kernel, we get

Y
CPD (20,2, T) = ACp [<1T+1>6( za)+%( )(1+z)£o(1—za)]5(1—2b)

Qp QeY
+ <e: — eﬁY ,a > b) ,
Cfygy (ar 20, T) = ACr o5 01— 20) [(— In 75; - 1) 51— z) + Zil)ibl £3) - zb)]
+4C Qyp ! zz 5(1— ),
C}f’,};(za, 2,T) = 4CFE;; [(— In QTPY - 1) 5(1 — 2q) + UF Zz)z(j + 23) Lo(l - Za)] 51— )
+4CFQ (1 - )1223. (5.36)

Substituting these results into eq. (5.1) yields the NLP cross section for ¢qg — Vg at NLO.
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5.2.2 qg — Vg
Next we consider the partonic channel gg — V¢. The squared amplitude is given by [86]

8mas T3S Saq s 251 Q?
AngVq(Qv Y, {k}) = _A;JQOHV(Q) X S0 i |:(1 — 6) (b + bk) + i — 2€:| .

Q*(1—¢) Sbk  Sab SabSbk
(5.37)
Soft Limit The LP soft limit vanishes, and the NLP soft expansion is given by
2) Lo 2 €
Aggsvg(@ Y Ak} = A, v (Q) x 87T%TFM1\/TS%- (5.38)
The soft kernel is given by
Y
2,1 (& 1 T2
Py = ey (6 “Ing - 1) §(1— 24) 6(1 — 2). (5.39)

n-Collinear Limit The n-collinear limit does not contribute at LP, since the LP interaction
can not change the n-collinear gluon into a n-collinear antiquark. The NLP matrix element

is given by
(2) e 1+ (1 —z2)° — €2}
Al v (@Y {k}) = A v (Q) x 8ma T 0-00- )0 (5.40)
and the collinear kernel is
V-1, QTe
D (24,2, T) = 2T e[(—i—ln >51—za
qug7n( b ) F Qp € M2p ( )
+ 14 (1= 24)% Lo(1 — za)] 5(1— zp). (5.41)
n-Collinear Limit The n-collinear limit is IR finite, so we work in d = 4,
(0) LO eV 1 — 2z, + 227
A v (@Q, Y {k}) = AL (Q) X 877045TF7T : (5.42)
2 14 2z + 422 — 823 + 42}
Agglova(@ Y (B) = AL2.1/(Q) x dmasTr S ()
The n-collinear kernel is given by
2,1 p
C2 (20,2, T) =T Qo 01 —2) (1= 2)(1+82 - 627),
(2,1) P (1+ 2p)(1 — 2z + 227)
Cf{lfg,ﬁ(za’ 25, T) =TF Qc¥ (1 — z,) - ,
2,1 p
Clapin (a0, T) = T 0oy O~ 2a) (1= 2)(1 = 22 + 2z) . (5.44)
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Final Result Adding the s,n,n kernels, the pole in € cancels and we get

Y
c}})@a,zb,ﬂ:mgp[( ;f; 1)5(1—za>+[1+(1—za>2]£o<1—za> 01— 2z)

+TFQY §(1— 24) (1 — 2)(1 + 82 — 627)
2,1) (14 2)(1 — 22 + 227)
Cféfg (Za, Zb, T) Q Y 6( ) % 5
(2,1) _ 2
quf{; (zay 20, T) =TF w (1 — zq) (1 — 2p)(1 — 22 + 22;) . (5.45)

Substituting these results into eq. (5.1) yields the NLP cross section for gqg — V¢ at NLO.

5.2.3 gq — Vgq

For completeness, we also give the explicit results for the gg — V¢ channel, which can easily
be obtained from eq. (5.45) by flipping a <> b, €Y' /p <+ p/e¥ and f, < f,,

(2,1) Te" 2
Crlil(za, 2, T) = 2Tp Q —5 (1 — za)[<—ln on 1) 01 —zp) + [T+ (1 —2)°] Lo(1 — 2p)
oY
+ Tp Q—p (1= 24)(1 4+ 82, — 622)6(1 — z),

Y
€
C} ;)(Zaa Zb) T) = TF Q7p (]. - Za)(l — 22{1 + 222) 6(1 — Zb) ,

Yo (1+ 20)(1 — 224 + 222)

o
Qp Zq

28 (2 2, T) = T

5(1—2). (5.46)

6 Comparison with Integrated Results in the Literature

In this section, we compare our NLO results to previous results in the literature. The LL
results presented by a subset of the present authors in refs. [62, 64] fully agree with the results
obtained in this paper.

The results in refs. [63, 70] are given only integrated over the color-singlet rapidity Y, and
hence take quite a different form at the integrand level. To compare to them, we integrate our
results over Y, which allows us to use integration by parts to bring our results into the same
integrated form as those in refs. [63, 70]. For leptonic 7, whose definition involves Y, we find
that ref. [70] uses a different definition, and hence we cannot make a meaningful comparison.
For hadronic T, whose definition is independent of Y, we find explicit agreement for the LL
results after integrating over Y.

At NLL, the results obtained here for the power corrections differential in Y, for both the
leptonic and hadronic definitions and all partonic channels, are new. After integrating over
Y we find almost complete agreement with the hadronic results of ref. [70], up to a relatively

simple term.?

2This missing term has been confirmed by the authors of ref. [70] and was corrected in their version 2.
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Since there are a number of differences in our treatment compared to refs. [63, 70], we
provide a detailed comparison in this section. In sec. 6.1 we discuss our different treatments of
the NLO phase space and of the Born measurements, and show that the rapidity dependence
cannot be easily reconstructed from the results in refs. [63, 70]. In sec. 6.2 we provide an
explicit comparison of the results for the gg — Hg channel integrated over rapidity at LL
and NLL, both analytically and numerically.

6.1 Treatment of the NLO Phase Space

The derivation in ref. [70] differs from ours here (and that in refs. [62, 64]) in that it is not

differential in the rapidity Y. To explore the differences arising from this, we give a brief

derivation of the NLO phase space following the same steps as ref. [70]. Note that in the

following we always work with an on-shell process, in contrast to our more general setup in

sec. 4. We also only consider the case k™ < k™, since the case k™ > k™ follows by symmetry.
We start with the expression for the NLO phase space as given in ref. [70],

dPSnro _ T “(4mpiys) / ac,de, 19 fo(S) (Qaﬁa)l_e

A7 8rl(1—¢) 26,6 F2, \ 14
X /dza(l - za)_ed(faszaEfm —my — Q;fa T) , (6.1)

— B2
where s = EZ,,,

We can derive a similar expression in our notation, including in addition the rapidity

Q. is defined in eq. (2.6) and z, arises from the 7 measurement.

measurement as done in our main derivation. Denoting the incoming momenta at NLO by
q, ,» we have from eq. (3.2)

dpsNLo - ! fa(€a) fo(&p) o d’k 2 d’q 2 2
avar ) df“dgb%aébEEmMMS/ (27T)d(277)5+(k )/ (27T)d(27T)5+(q - Q)

x (2m)%(q, +q, —q — k:)é(Y - %ln q_)é[T — T (k)]

q+
1 Umeg)S [T fa(€a) fo(&s) [ dkTdk™ .
_&rm_e)/o d&qdg, TN /0 (ka)eé[T—T(k)]
T L = BT

As in eq. (6.1), we assume that kt < k= to set T(k) = pk™, which gives

dPSNYO 1 (i) (! fal&a) (&) [ dE™( p \°
dvdT — 8 I(1—¢) /0 deadsy 28,6 E2, /0 p <7'k—> (6:3)
1 EaBom — k ) .

1
0(Eabp B2 — Q% — EuEemT /p — EpEemk™ 5(Y— e e
X (5 fb cm Q g /p fb ) 92 becm_T/p
Following ref. [70], we now change variables via k= = {, Eem (1 — 24),

dPSNO T (dmpdig) [ Fa(€) Fo(&) (EaBem ' ° .
dYdT ~ 81 I(1—¢) /0 Ul oc 6 52, ( P ) / dza (1 = 20)
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X 5(Za§a£bE2m - éaEcmT/p - QQ) 0 <Y - 1 In zachT> . (6'4)
2 & - pEcm

Up to the rapidity measurement from the final § function, we find complete agreement with
eq. (6.1) if we identify

TaFem
Qa(l'a) )

At this step, our treatment differs from the one in ref. [70]. Since we explicitly implement

p=pY)= (6.5)

measurement ¢ functions for both ) and Y, we can uniquely solve for &, and &, in terms of
Q@ and Y or equivalently z, and x,

2
€a et {Tey(l —2q) + \/<T§Y> (1—24)%2+ 4@%3] ,

- 222 Eem

p
-Y Y v 2
éb = Q;Ecm |:7-;(1 + Za) + \/(T; > (1 — Za)2 + 4@223] . (66)

This holds for both p = 1 and p = €. This is equivalent to eq. (3.5) (where we used the
notation ¢, p instead of &, ; here). The reason this expression looks different is just because in
eq. (3.5) we performed this step before fixing kT in terms of 7 and before changing variables
from k™ to 2z, via k7 = {uFem (1 — 24).

Following a similar strategy as in sec. 4, one can now replace &, in eq. (6.4) by the
solution eq. (6.6), take the Jacobian from solving the § functions into account, and then
simply expand in 7. The main difference to the derivation in sec. 4 is that here, one directly
expands the phase space in T, while in sec. 4 we expanded in terms of the generic power-
counting parameter A.

In ref. [70], there is only the Q? measurement but no rapidity measurement, i.e. Y is
implicitly integrated over. Hence, there is only one constraint for the two variables &, &,
whose solution is not unique. They choose to perform the variable transformation from &g
to new variables Z,; defined by

~2~ 12
ToThEL,

Sa = ZajajbECZm - Qa(ja)T ’

& = Tp - (6.7)

We write Z, here to distinguish these from the Born variables x,; = QetY /Eqn that appear
in the Born-projected momenta in eq. (2.4). While they satisfy 7,3, = Q?/EZ2, due to the Q?
measurement constraint, (1/2)In(Z,/Z;p) is not equal to the rapidity Y, which would require
the solution in eq. (6.6).

In ref. [70], the Z,; defined by eq. (6.7) also enter in the definition of the O-jettiness
measure in eq. (2.3) in place of x,p. As a result, the nonhadronic 7 definition in ref. [70]
is not the same as the usual leptonic 7 with p = ¢¥ that we use. Their hadronic definition
is the same as ours, as it has no z,; dependence. Therefore in the following we restrict our
comparison to the hadronic definition.
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We also note that one cannot easily recover the rapidity dependence from the integrands of
the final results in ref. [70]. To see this explicitly, consider inserting the rapidity measurement
by comparing eqs. (6.1) and (6.4), which gives

(0)
1 za€a ) < 1. z&a )
lY—=In——"A— | =6lY —=In 6.8
< A pg;m 2 §§D) (68)
1(0) /
+ 7-5/ <Y B 71 za(fo) > <§(bo) f(0) (0) 1 ) +O(T).
‘Sb gb gb pEem

On the right-hand side we have carried out the power expansion about 7 — 0 and the super-
script (O denotes the results for these variables at LP, while 5,(0) =d&,/ dT‘T o> etc. This
accounts for the fact that in general the &, ; can depend on 7 themselves. Equation (6.8) shows
that one cannot use the LP expression 6[Y — (1/2) ln(zagéo)/géo))] =0[Y —(1/2)In(Z,/%p)] to
recover the Y dependence from the Z,; dependence of the results in ref. [70], as this does not
account for the additional power corrections induced by the Y measurement in the second
line of eq. (6.8). This implies that the results in ref. [70] and also those in ref. [63] cannot be
used when being differential in rapidity or integrated over bins of rapidity, but only integrated
over all Y. This was also confirmed to us by the authors.

6.2 Explicit Comparison to Results in the Literature for gg — Hg

Our final results take a quite different form than those in refs. [63, 70]. For us, both £, and
&, receive power corrections resulting in derivatives for both PDFs. In contrast, the variable
transformation in eq. (6.7) for the case of kT < k™ does not yield power corrections for &, and
hence no derivatives of f,, while the expansion of &, yields derivatives of f, (and vice versa
for k* > k7). Due to this different form, one cannot directly compare the integrands of the
two results, but one needs to use integration by parts to bring the results into the same form,
as we will now show explicitly. In particular, we will show that the results of refs. [62, 64],
obtained also here, do agree with the results of refs. [63, 70] at LL when integrating over all
Y.

Integrating our result over Y, and transforming the integration variables to x4, =
Qe ) Eem, we obtain from eq. (5.1)

do@®V) a1 Mg (mu)l* 1 dz, dzb
T —47T dzodazy 2m8 (zexy, B2 — m%) 291:% /

) 22 (B
+ Z’f <Z )fj( ) }2f1,’(za,zb,7)] (6.9)

We will show the integration by parts explicitly for the f; fj’ piece. Let us denote the
piece we wish to integrate by parts by D31 which can be chosen freely. To integrate over
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Y1 <Y < Ya, we switch the integration variables x4, z; back to Q% and Y, use that

Tp Tp Qe Y Qe Y Qe Y
fJ’,() _ f]’( 4, , (6.10)
Zb <b Eemzp Eemzp dY Eemzp
and integrate by parts with respect to Y. Combining the resulting pieces with those in
eq. (6.9), we find

de@D) o IMED b (m)]? dz de
= d odxy 270 (xqzy B2 — m2 7 / a
AT ~ 4rn Taday 2m0 (o mir) 2z,2p B2, -

) i o]
+ ﬁf < )f]( > |:C(2 1)(Za,2b,T) +D(271)(Za,25b,7-):|

Za

Ly La Ly 2,1 ,
#2522 15 (22) [0 oo T) = DD a2, 7]}
Qg

IMED (m)|? dz dzy
_ 2 2 _ g—> a
47T/dQ 216(Q% — m%) /e /e v

((QeT N (QeTT e v
x fz (EcmZa) f] (EcmZb> b (Za’ b T)

The dependence on D) exactly cancels in this expression. We can choose D@1 freely to

(6.11)

Y=Y

obtain different forms of the Y-integrated result. The last term in eq. (6.11) is the boundary
contribution, which vanishes as Y72 — $00, i.e. only if one is fully inclusive in Y. They do
in general contribute when placing acceptance cuts on Y.

We now work out explicitly the required integration by parts both at LL and NLL to
bring our results into the integrated form as given in refs. [63, 70]. For concreteness, we focus
on the gg — Hg channel. For the reasons mentioned earlier, we can only compare the results
for the hadronic T definition.

6.2.1 Comparison at LL
At LL, our results in eq. (5.16) simplify to

Y Y
(2,1),LL e Tp p Te
Cfgfg (za, 26, T) = 4Cy Q—an v QeY o 51— 20)0(1 — 2p)
(2,1),LL _ p . Te¥
Cféfg (Zav Zb)T) — _4CAQ Y In Q 5(1 — Za)5(1 — Zb) s
Y
(2,1),LL _ e Tp B
Cfgf; (20526, T) = _4CAQp1 Qe 5 0(1 = 24)0(1 — z) . (6.12)

These agree with the earlier results obtained by a subset of the current authors in refs. [62, 64].
Note that for strict LL accuracy, one can also write the logarithms as In(7/Q) £1n(p/e) and
only keep the In(7/Q) at LL, while including the +1In(p/e’) pieces in the NLL contributions.
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(This is the convention used in refs. [62, 64] and in sec. 7.) Here, we keep them as part of the
LL result, as they are relevant for the comparison with ref. [70].
Up to a trivial change in notation, the LL result given in ref. [70] for hadronic 7 is

da}lj%P[?O] a CA 1 ) ) ‘MLO%H(mH)P
== dZ,dTy 276 (T B2, — 99 1
d7em T /0 LqATp 4T (.CL‘ TpLiem mH) 2i'aa~7()Ec2m (6 3)
~ ~ ~ i'aEcm Tcm ~ ~ ~ fibEcm Tcm
|ty ) ) T D ) ) T L

As discussed before, the T, ; here are not equal to the Born variables x, .
Inserting our LL result in eq. (6.12) with p =1 into eq. (6.9), we have

(2,1) 1 LO 2
dULL CYSCA 2 2 |Mgg—>H(mH)|
= a 2 alpBo  —
ITom - /0 dzoday 270 (zexp EL, — miy) 2ruy 2
eY TcmefY efY Tcmey
X [fg(%)fg(%)(ml{ln p— + — In - >
efY TcmeY eY TcmefY
— xaf;(xa)fg(wb)m—H In e xbfg(xa)f;(mb)mH In o } ,  (6.14)

where ¥ = \/z, /xp. At the integrand level, the two results clearly have a different form, as
was also remarked in refs. [64, 70].

To show explicitly that egs. (6.13) and (6.14) do agree, we integrate by parts to move the
fqfq contribution in eq. (6.14) into the fgf; and f, fy terms. Using eq. (6.11), we can achieve
this by choosing

Y cm ,—Y -Y cm Y
DD (20 2, T) = 404 (_ ¢ TMe I Te
myg myg mpyg my

)5(1 —24)0(1 —2). (6.15)

Integrating over Y < Y < Y, and using that e¥ = \/z,/1, and my = \/TaZpFem, eq. (6.14)
becomes

do7"(M,Y2)  aCa [ sy MBS ()P
= dzodaxy 276 E? — 99 6.16
chm T /0 LadTy 2T (Z‘aIL‘b cm mH) 2xa$bE3m ( )
E Tcm .Z'bE Tcm
X | —zof (z T Ta = In —x o) (x T 1n
|: afg( a)fg( b) m%{ maEcm bfg( a)fg( b) m%{ $bEcm
+ asCa 27r|MIg_‘gO—>H(mH)|2 mpe’ f mpe”Y
m 2m3 B2, I\ Eem )"\ Eem
eV TcmefY e~ Y TcmeY Yo
X In — In
mg mpgy mgyg mg v
asCa [* |-/\/lLO—>11r(mH)|2 e¥ +e ¥
4 o€ /0 oty 20y By = i) 3 fy ) faon) =

The first two lines exactly reproduce eq. (6.13). The following two lines are the boundary term
from integration by parts, which vanishes as Y7 2 — +oo. The last line is a NLL effect and can
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Figure 1. Comparison of the Y-integrated LL power correction for hadronic 7 for gg — Hg. The
solid red and blue dashed curves show the LL results keeping only In(7 /myg). In the long-dashed
orange and dotted light blue curves we keep all In(Te*Y /my) or In[T/(Z4,pEem)] terms. In both
cases, our result in eq. (6.14) and the result of ref. [70] in eq. (6.13) agree. The small difference in the
second case arises due to the fact that eiy/mH is not exactly the same as Z4 pFem.

be neglected for the LL comparison. (It is induced by the integration by parts acting on the
Y dependence kept inside the argument of the logarithms.) Therefore, the two expressions
in egs. (6.13) and (6.14) agree at LL and at integrated level if and only if one integrates over
all rapidity.

To illustrate this numerically, the Y-integrated results are compared in fig. 1. First note
that the hadronic LL results in eq. (6.14) do not exactly correspond to those previously given
in refs. [62, 64]. This is due to the formally NLL terms proportional to In(p/e¥), discussed
below eq. (6.12), which are dropped in the strict LL results in refs. [62, 64], but are kept in
eq. (6.14). The analogous NLL terms proportional to In(Z, , Fem) are also kept in refs. [63, 70]
and eq. (6.13). Dropping these NLL terms in eqs. (6.13) and (6.14), our and their LL results
defined in terms of the same In(7/mpy) agree exactly, as shown by the solid red and blue
dashed curves in fig. 1.> The long-dashed orange and dotted blue curves in fig. 1 show the
results when using instead In(7e*Y /mpy) or In[T /(%4 pFem)] to multiply the LL coefficients.
The observed difference to the solid red/dashed blue strict LL result has the size of a typical
NLL contribution. There is also a very small difference between the long-dashed orange and
dotted blue results due to the fact that e*¥ /my is not exactly the same as ZapLem. This
difference is exactly accounted for by the last line in eq. (6.16).

3In the first version of ref. [70] an analogous numerical comparison showed a disagreement between their
integrated LL results and our corresponding result from ref. [64]. This was only due to an incorrect comparison.
We thank the authors of ref. [70] for confirming this.
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6.2.2 Comparison at NLL

We now extend our comparison of the Y-integrated results to NLL, focusing again only on the
g9 — Hg channel, which contains all possible complications. The full NLL result of ref. [70]
can be written as

doNLP[0] o oy

1
= A7, diy 276 (Zo 3y B2, — m3
d7em T /(; LadTp 2T (xllxb cm mH)  Za m%’

X {fg <'§:>fg(jb> |:((1_22;_22>2 _ 1>£0(1 _ Za) + 32’3 +1 - Za +Z§:|

2
a Za

7 7 cm _ 2\2
#2222 ) ot | -0 - st ST+ B Rt gy )

TaLem a
~1o(22) s - 20}

+ (a4 D). (6.17)

|MIQJQO—>H(mH)|2 /1 dza 'CEGLECHI
25,2, E2,, i

To bring our result into this same form, we need to integrate by parts twice, first with respect
to Y as shown in eq. (6.11), and then with respect to z,. The details of this calculation are
given in appendix B. The final result is shown in eq. (B.5) and is given by the result of ref. [70]
in eq. (6.17) plus an extra contribution,

dO.(Q,l) do.NLP[?O}

p— .1

d7em d7em (6 8)
asCa [* IMEO L (mr)|? e +e Y

+2 - /0 dx,dzy 2775(:Ea:EbE§m — m%{) giz:chzm fo(xa) fo(xp) E—

The two results should agree exactly upon integration, and we have not been able to find a
source for this discrepancy. As discussed in more detail in sec. 7, the numerical comparison
with MCFM provides a strong confirmation of our result. The numerical extraction of the
integrated NLL coefficient yields —0.460+0.026, which agrees well with our analytic predicted
value of —0.466 (see table 2 below). Dropping the term in the final line of eq. (6.18) would
instead predict the value —1.669.%

7 Numerical Results

In this section we study our results numerically, including the size of the power corrections
and the rapidity dependence. We also compare our analytic results for the O(a) NLP power
corrections with the full nonsingular spectrum obtained numerically from the LO V-+jet
and H-+jet calculations in MCFMS8 [27, 73-75]. In refs. [62, 64], the NLP corrections were
extracted numerically by using a fit of the known form of their logarithmic structure to
the nonsingular spectrum from MCFMS8. In refs. [62, 64], these fits were carried out for

4 We recently received confirmation from the authors of ref. [70] that after rechecking their calculation they
identified a missing term, and now agree with our result for do®" /AT,
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the leptonic definition. Here, we have in addition performed the fits also for the hadronic
definition. We find excellent agreement between the analytically predicted values and the
numerically extracted values for all coefficients, i.e., for the LL and NLL coefficients in all
partonic channels for both the leptonic and hadronic definition. This provides a strong and
independent cross check for the correctness of the analytic NLL results obtained here. By
comparing the complete nonsingular spectrum with our NLP result, we can also assess the
importance of power corrections beyond NLP.

The NLO power corrections for each partonic channel are extracted from the nonsingular
spectrum by using the fit function

Fxro(T)

= d]nT{T[(al +b17+6172)1nT+CL0 +b07’+607’2]}, (7.1)

with 7 = To/my for Z production and 7 = Ty/mp for Higgs production. Details of the fitting
procedure have been described already in refs. [62, 64], so we do not repeat them here. A key
point is that in order to obtain a precise and unbiased fit result for the to-be extracted a; co-
efficients, it is crucial to include the higher-power b; and ¢; terms in eq. (7.1), and to carefully
choose the fit range and verify the stability of the fit, as was done in refs. [62, 64]. At the
level of precision the a; are extracted, this is essential since the full nonsingular cross section
includes the complete set of power corrections and if the b; and ¢; terms were neglected, these
higher-power corrections would be absorbed by the a; terms in the fit, rendering their numer-
ically extracted values meaningless. To obtain a precise extraction of the NLL coefficient ay,
we fix the LL coefficient a1 in the fit to its analytic result.

The relevant coefficients for our NLP comparison at NLO are the LL coefficient a; and
the NLL coefficient ag. For leptonic 7 they were extracted for Drell-Yan in ref. [62] and for
gluon-fusion Higgs in ref. [64] and for the hadronic 7 we have obtained them here. Depending
on the partonic channel, the uncertainties on the fitted coefficients range from 0.08% to 2.3%
for leptonic 7 and from 0.6% to 5.7% for hadronic 7. The latter has larger uncertainties
because its power corrections are larger, requiring the fit to be restricted to smaller T values
where the uncertainties in the nonsingular data are larger.

7.1 Drell-Yan Production

We first consider Drell-Yan production, taking pp — Z/v* at Ec.n = 13TeV. We use the
MMHT2014 NNLO PDFs [87] with fixed scales p, = pif = mz, and as(mz) = 0.118. We
fix Q = my, integrate over the vector-boson rapidity, and work in the narrow-width approxi-
mation for the Z-boson. The NLP corrections for the leptonic 7 definition were numerically
extracted in ref. [62]. The results for both the leptonic and hadronic definitions for all par-
tonic channels are collected and compared to our analytic predictions in table 1. We find
excellent agreement within the fit uncertainties in all cases.

In fig. 2 we show the complete NLO nonsingular contributions as black dots, as well as
a fit to their form with the solid red curve. Given the agreement in table 1 between our
analytic ag and the earlier fit result for ag, we have fixed ag to the analytic result, and redone
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NLO 7E)Iep qq — Zg ap agp
fitted [62] +0.25366 £ 0.00131 +0.13738 £ 0.00057
analytic +0.25509 +0.13708
NLO 7alep q9+ 99 — Zq | aq ag
fitted [62] —0.27697 £+ 0.00113 —0.40062 4+ 0.00052
analytic —0.27720 —0.40105
NLO T5™ qq — Zg a1 ao
fitted +1.4188 4+ 0.0614 —2.4808 £ 0.0176
analytic +1.3935 —2.4806
NLO T75™ a9+ 99 = Zq | a1 ag
fitted —2.2981 £ 0.0442 +4.0991 4+ 0.0132
analytic —2.3224 +4.0965

Table 1. Comparison between our analytic predictions and the fitted results for the LL a; and NLL
ag coefficients in Drell-Yan production. These fitted values for a; and ag with the leptonic definition
and the analytic results for a; were already given in ref. [62].

the fit using eq. (7.1) to obtain this red curve. The red curve from this fit is fully consistent
with the earlier fit result from ref. [62]. The dashed orange curve in fig. 2 is the extension of
the fit function beyond its fit range. In dotted green and dashed blue we show our analytic
predictions. We see that with the inclusion of the NLL power corrections, we obtain an
excellent description of the full nonsingular cross section up to nearly 7o ~ 1 GeV. This is
quite remarkable, and shows that additional higher-order power correction terms are truly
suppressed.

In fig. 3 we show a plot of the corresponding residual power corrections for the cumulant,
Ao (Teut), on both a linear scale (left) and logarithm scale (right). The solid red curve shows
the full power corrections, the solid green curves show the remaining power corrections after
including a; in the subtractions, and the solid blue curve those after including a; and ag
in the subtractions. We see that with the inclusion of the full NLL power corrections, we
achieve more than a factor of 100 reduction in the residual power corrections as compared
with the leading-power result at NLO. Both partonic channels have similarly sized power
corrections and show a fast convergence of the power expansion. The fact that the blue curve
in the logarithmic plot exhibits a steeper slope than the red and green curves is due to its
O(72,,) scaling corresponding to a next-to-next-to-leading power correction. This provides a
nice visualization that our results correctly capture the complete NLP contribution.

The analogous results for the fitted nonsingular spectrum and the residual power cor-

rections Ao (7550

) for the hadronic 7 definition are shown in figs. 4 and 5. As expected, the
power corrections are substantially larger for 7" than for the leptonic definition. To obtain
similarly sized power corrections, one has to go to about an order of magnitude smaller values
of 7°™. Apart from the overall enhancement, the qualitative behavior of the LL and NLL
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Figure 2. The O(a;) nonsingular corrections for Z production for the ¢g channel (top row) and the
qg + gq channel (bottom row). A fit to the nonsingular data is shown by the solid red curve. The
LL and NLL results are shown by green dotted and blue dashed curves, respectively. In all cases, the
NLL approximation provides an excellent approximation to the complete nonsingular cross section.

contributions and the different partonic channels is the same. This is expected from our an-
alytic results, which show that the coefficients for both definitions have essentially the same
structure and primarily differ in the overall factors of e leading to the rapidity enhancement
for the hadronic definition already observed in refs. [62, 64].

In fig. 6 we show the rapidity dependence of the NLP corrections at fixed 7oy = 1073 for
both leptonic and hadronic 7 normalized to the LO rapidity spectrum. We can clearly see
the exponential enhancement for the hadronic definition at large |Y|. For the gg channel, the
asymmetric behavior in rapidity is expected from its analytic result. The result for the gq
channel corresponds to taking ¥ — —Y, such that their sum is symmetric in rapidity. While
the leptonic definition does not suffer from the exponential enhancement of the hadronic
definition, it still exhibits a substantial increase at large positive Y in the ¢g channel, as well
as a suppression at large negative Y. This is due to the substantially different z-dependence of
the quark-gluon luminosity (and its derivative) compared to the ¢g luminosity in the LO result
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Figure 3. The power corrections for the cumulative Ao (7eut) at O(as) for Z production in the ¢g
channel (top row) and ¢g + ggq channel (bottom row). In both cases, after the inclusion of the NLL
power corrections, Ao (7eys) is reduced by a factor of 100 or more for e, < 1072,

to which we normalize. Knowing the NLL contribution to the power corrections differential
in rapidity enables one to explicitly account for this effect in the subtractions.
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Figure 4. Same as fig. 2 for the hadronic T definition.
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Figure 6. The NLO NLP corrections as a function of rapidity at fixed 7., = 10~2 for Z production
for the ¢g channel (top row) and the gg channel (bottom row). The LL and NLL coefficients for
leptonic 7 are shown by the green dotted and blue dashed curves and for hadronic 7 by the dotted
and dashed gray curves.

— 38 —



7.2 Gluon-Fusion Higgs Production

Next, we consider gluon-fusion Higgs production. We take pp — H at E.n = 13TeV with
an on-shell, stable Higgs boson with mpy = 125 GeV, integrated over all Y. We use the
MMHT2014 NNLO PDFs [87], with fixed scales p, = puf = mpy, and os(mpy) = 0.1126428.
The NLP power corrections for this configuration for the leptonic 7 definition were extracted
numerically in ref. [64]. The results for both leptonic and hadronic definitions for all partonic
channels are collected and compared to our analytic predictions in table 2. In all cases,
excellent agreement is observed within the fit uncertainties.

NLO 761610 g9 — Hg | a agp
fitted [64] +0.60936 £ 0.00600 +0.18241 £ 0.00425
analytic +0.60400 +0.18627
NLO 7BIep 9q+qg — Hq | aq ao
fitted [64] —0.03733 + 0.00066 —0.42552 + 0.00032
analytic —0.03807 —0.42576
NLO 7, qg — Hg | 103 ag
fitted [64] - +4.90060 + 0.00013
analytic - +4.90047
NLO Ty™ g9 — Hg ax ao
fitted +1.5436 + 0.0585 —0.45954 + 0.02606
analytic +1.5225 —0.46646
NLO 7¢™ gq+qg9 — Hq | aq ao
fitted —0.06606 + 0.00161 —0.33932 + 0.00194
analytic —0.06498 —0.34068
NLO T74™ qq — Hyg ai 103 ag
fitted - +6.13445 + 0.00015
analytic - +6.13448

Table 2. Comparison between our analytic predictions and the fitted results for the LL a; and NLL
ao coeflicients in Higgs production. These fitted values for a; and ag with the leptonic definition and
the analytic results for a; were already given in ref. [64].

In fig. 7 we show as the solid red curve a fit to the full nonsingular result at NLO (black
points), which is compared with the LL and NLL predictions in dashed green and dashed blue,
respectively. Once again this solid red fit curve is obtained using the form in eq. (7.1) with
a1 and ag fixed by the analytic result in table 2, and agrees very well with the corresponding
result obtained in ref. [64] where ay was a parameter in the fit. In all cases, we find that the
NLL result provides a good description of the full nonsingular cross section. This is expected
since the NLL results includes all NLP terms in the NLO cross section. We see, however,
that particularly for the gq + qg channel, the NLL result for ag is required to get a good
description, and the LL power correction a; alone is not sufficient. Thus the gg + ¢g channel
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Figure 7. The O(a;) nonsingular corrections for Higgs production for the gg channel (top row),
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Figure 8. The power corrections for the cumulant Ao (7eyt) at O(as) for Higgs production in the gg
channel (top row), gq + qg channel (middle row), ¢¢ channel (bottom row).

provides an example where simply looking at the size of the residual nonsingular result after
subtracting the a; term does not suffice to validate the value of this coefficient.

In fig. 8, we show a plot of the corresponding power corrections for the cumulant, Ao (7cyt ),
on both a linear scale (left) and logarithm scale (right). Here we more easily see that the
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Figure 9. Same as fig. 7 for the hadronic T definition.

inclusion of the NLL power corrections significantly reduces the residual power corrections
for the subtractions. For the dominant gg — Hg channel at a typical value of 7ey ~ 1073
approximately one order of magnitude is gained at each logarithmic order that the power
corrections are computed. From table 2, we see that for the gq + q¢9 — Hgq channel, the
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Figure 10. Same as fig. 8 for the hadronic 7 definition.

LL coeflicient is numerically suppressed, while in contrast its NLL coefficient is quite larger.
Due to this unusual behavior, the NLL result is required to consistently reduce the power
corrections as compared with the leading-power result. In the ¢q channel there is no a; term,
and significant improvement is apparent from including ag.

The analogous results for the fitted nonsingular spectrum and the residual power correc-
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Figure 11. The NLO NLP corrections as a function of rapidity at fixed 7., = 1072 for Higgs
production for the gg channel (top row) and the gq channel (bottom row). The LL and NLL coefficients
for leptonic 7 are shown by the green dotted and blue dashed curves and for hadronic 7 by the dotted
and dashed gray curves.

tions Ao (75%) for the hadronic 7 definition are shown in figs. 9 and 10. The power corrections
are noticeably larger, though the effect of the rapidity enhancement is not as pronounced as
for Drell-Yan, since here the PDFs suppress the cross section contributions at larger rapidi-
ties. For the dominant gg — Hg channel there are also numerical cancellations in the NLL
coefficient. More precisely the value for aq in table 2 arises as ag = 2.356+ (—2.822) = —0.466,
where the first term corresponds to the rapidity-enhanced version of the leptonic ag while the
second term is the NLL contribution arising from the additional rapidity dependence in the
argument of the leading logarithm discussed below eq. (6.12). As a result of this cancella-
tion, including only a; in the subtractions leads to slightly smaller power correction above
Tewt > 1073 than subtracting both a; and ag (compare the green and blue solid lines in the
top row of fig. 10). If the second NLL contribution were included as part of the LL result,
the latter would provide a much poorer approximation and including the remaining NLL

contribution would provide a substantial improvement. Either way, the remaining power cor-
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rections after subtracting the full NLL result shows a much steeper slope, which is as expected
from its O(72,) scaling. This provides another example where considering only the overall
size of the improvement can be potentially misleading. The gq + qg — Hq channel shows a
similarly unusual behavior as for the leptonic definition.

In fig. 11 we show the rapidity dependence of the NLP corrections at fixed 7yt = 1073
for both leptonic and hadronic 7 normalized to the LO rapidity spectrum. The exponential
enhancement for the hadronic definition at large |Y'| is again apparent in the LL results. The
NLL coefficients again exhibit an enhancement already for the leptonic definition at large Y.
This is again due to the different x dependence of the quark PDF and the PDF derivatives
compared to the LO gg luminosity to which we normalize. The quark PDF contributions are
also the main reason why the NLL term for the gq channel (a¢ in table 2) is much larger
than the LL contribution. For the hadronic definition, the e*Y factors from the observable
definition turn out to partially compensate these PDF effects. This is best visible in the ggq
channel, where the PDF enhanced terms at negative (LL) or positive (NLL) Y get reduced by
a eTY factor from the observable definition. The same effect is also present in the gg channel
at NLL. This is the reason why the ag term for the hadronic definition in the gq channel turns
out to be even slightly smaller than for the leptonic definition.

8 Conclusions

In this paper, we have computed the next-to-leading power corrections in the IN-jettiness
resolution variable for Drell-Yan and gluon-fusion Higgs production at NLO. This builds
on our previous work by computing the non-logarithmically enhanced terms at this order.
These results enable the performance of the N-jettiness subtraction method to be improved,
and provide important information on the structure of subleading power corrections beyond
the leading logarithms. Our calculation is based on a master formula applicable to SCET}
observables, and highlights a large degree of universality of these power corrections.

We explained in detail the issue of the treatment of Born measurements at subleading
power. We have shown that an apparent disagreement in the literature arises due to the fact
that the representation used to obtain the power corrections in refs. [63, 70] is only valid when
integrated over all rapidities, and therefore cannot be directly compared with the results of
refs. [62, 64] and those in the present paper, which are differential in rapidity. We show that
after integration over rapidity the LL results agree. Further details can be found in sec. 6.

We find that the rapidity dependence of the NLL terms is quite sizeable and is therefore
important to know to be able to improve the subtractions. One reason for this effect is the
different x-dependence of parton luminosities or derivatives of PDFs appearing in the power
corrections as compared to the Born-level parton luminosity. Hence, one can expect this to
be a generic feature of subleading power corrections.

We also compared our analytic NLL results for gluon fusion Higgs production and Drell-
Yan to numerical predictions for these NLO power corrections obtained from a fit to data
from MCFM. In all cases, excellent agreement was found. In addition we studied the extent
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to which the inclusion of the NLL power corrections improves the subtraction. At NLO,
the inclusion of the NLL power corrections completely captures the O(7) terms. Numerically,
summing over production channels, the inclusion of these results reduces the size of the power
corrections by two orders of magnitude in Higgs production and three orders of magnitude in
Drell-Yan production.

There are a number of directions for future work. It will be interesting to extend the
calculation of the NLL power corrections to NNLO. Generically we expect up to an order of
magnitude improvement could also be obtained by extending the known LI power corrections
at this order to NLL. Beyond fixed order, the derivation of subleading power renormaliza-
tion group evolution equations at NLL would allow for the all-orders prediction of the NLL
terms. Finally, while we have focused here on color-singlet production, our results provide an
important step toward the calculation of the NLP corrections at higher orders and for more
complicated processes.
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A Derivation of NLO Leading Power Results

At leading power the singular terms for N-jettiness are most easily obtained from known
factorization formulas [23, 24], which describe the singular behavior of the observable to all
orders. The fixed order approach of this paper is therefore most useful when such factorization
formula are not available, or well understood, such as at subleading power. However, it can
also be applied to reproduce the LP results. In this appendix we illustrate this at NLO, by
reproducing the one-loop beam and soft functions for beam thrust.

To relate the beam and soft functions as defined in SCET to our calculation in this work,
recall the LP factorization formula for beam thrust [23],

do(©®

~ ta tb
m = ULO(Qv Y) Hab(Qa :u) /dtadtb Ba(t(la Zq, M)Bb(tln Ty, M)S<T - A A > )

0 Q?/"L
(A1)

where the superscript ©) refers to LP, and as before x4, = E%eiy. The hard function H,

describes virtual corrections to the hard process ab — L, B, are the two beam functions
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and S is the soft function. The beam functions can be further matched onto normal PDFs,

Bl =3 [ Ernzmn (L), (A2)

All of these functions have definitions as field theory matrix elements in the EFT. Their
fixed order definitions give rise to UV divergences, which are as usual removed by a renor-
malization procedure, which in turn gives rise to RGEs that can be used to resum large
logarithms of 7. In the approach presented in this paper, the same divergences appear as 1/¢
IR divergences in the soft and collinear limits of QCD amplitudes.

At LO, we have

HiLjO(Q27 p) =1, IiLjO(t? T, 1) = 5%]5(t) ) SLO(T7 ) =06(T). (A-3)

At one loop, the convolution structure thus becomes trivial. Working with hard, beam, soft,
and PDFs in the bare factorization theorem we have

dO.(O 1)

Wf 5LO HNLO(Q LT falza, €) fo(xp, €)

1
+ &LO Z / dZZa QIGIL\E,JO(QT, Zay E)fa/ (wa/za, 6)fb<xb7 6)

LOZ/ dzb Ilj\II}O(QT 2, €) fa(Ta, €) for () 21, €)

YO fo(xa, €) fo(ap, €)SNEO(T €) . (A.4)

Note the extra factor of @) in the beam contributions, arising from t,; and 7 having different
mass dimensions. We have written eq. (A.4) in a form similar to our master formulas, such
that we can easily read off the one-loop beam function kernels and soft function. The €
arguments in eq. (A.4) all refer to ultraviolet divergences and can be removed by SCET
counterterms to obtain the renormalized factorization theorem. To obtain this it is important
to include virtual graphs in the various sectors as well as zero-bin subtractions for the beam
functions.

A.1 Leading-Power Expansion of Matrix Elements

The leading-power behavior of real emission matrix elements in the soft and collinear limits
is universal, see e.g. [7], and has already been used in sec. 4.4. Here, we briefly review the
relevant formulas, and give the relevant one-loop expressions.

Given the Born process

ka(qa) + Ko(q) = L(qa + @) , (A.5)

where the incoming momenta are given by

nH nH
¢ = Qeyg, a = Qe” Y* (A.6)
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and we write the one-emission process as
Ka(da) + rp(ay) — L(gq + qp — k) + w1(k) . (A7)
In the soft limit k* < ¢4, g, the squared matrix element obeys the LP relation

16masp2¢e C
AR (@Y {RY) = =S G G AR, L(QY), (A8)

where we made explicit that a soft emission can not change the incoming flavors. C = Cr,Cy
is the Casimir constant for ab = qq, gg.

In the LP n-collinear limit, the particle k arises from the splitting &), — K, + 1. If this
splitting is allowed, at LP we have (in the notation of sec. 4) ¢}, = ¢a/2, and g, = g, and the
LP limit of the matrix element is given by

(0) 8avsifig LO
Apyrn(@Q, Y, {k}) = WPM’ (2a,€) X Gppy Agy—,1(Q,Y). (A.9)

Similarly, in the f-collinear limit arising from kj — kp + k1, at LP we get ¢, = qa, g} = @b/ 2,

(0 8ras i3 LO
Aa’b’%Lk(Q7 Y, {]{7}) = prb/(Zb, E) X 5aa/ Aab—)L(Q’ Y) . (AlO)

The one-loop splitting functions in d = 4 — 2¢ dimensions are given by [7]

Pyy(z,€) = Cp htzj —e(1— z)] ,
Pyo(z,¢) = Cr [1 i (12_ 2 ez] ,

z 1—=z2

1—=z2 z

Pyy(z,€) = 2CA{ +2z(1— z)] : (A.11)
Note that we flipped the notation of gg and gq relative to [7], following the standard conven-
tion.

A.2 NLO Soft Function

The NLO LP soft function follows from combining eq. (4.12) with eq. (A.8) using the same
steps as in sec. 4.3,
(0,1) 00 + 17— €
dos dkTdk fa(xa)fb(-rb) (47‘-) T
_dos” A0Q. Y [k)) 6T — T({k
dQ?dydT o (ktk=)e (4m)22x,xp EL, T(1 —¢€) (@Y {k) O[T = T({k})]

— ALO(Q7 Y) OésC eG'YEMQG /OO dk+dk,
0

RN fa(@a) fo(zp) X Ti—o (el )t

O[T = T({k})]

— 48 —



a,C e7E 21

=69(Q,Y) - fa(%)fb(%)ﬁEZ(T/M)_I_QE
= 50(QY) S fulan) flan) |~ 58T + ¢ (T )
_ f,cl(T/m + 7;26(7) +0(e)| - (A.12)

The L, (z) are the standard one-dimensional plus distributions, see e.g. [88] for details. Note
that there, the precise definition of the MS scheme is important. We use

2 2_47T2

P = PNs = gy PMs - (A.13)

If one were to use p%¢ = %M%\ES, one would miss the 72/3 term. For the NLP results

presented in the main text, both definitions yield identical results.

Taking eq. (A.12) and adding the virtual soft diagram, and then comparing to eq. (A.4),
the one-loop bare soft function can be read off as
asC[ 4 81 16 2

@)+ L LolT ) = La(T /) + " 0(T) (A-14)

SNLO(T’ €)= 4 € + E; 3

The finite terms precisely yield the renormalized one-loop soft function [23].

A.3 NLO Beam Function

Applying the LP master formula eq. (4.12) to the n-collinear case and following the same
steps as in sec. 4.2 gives

don' M dea fu@a/za) folw) Q¥ (QT N\ = (4m)°
dQ2dYdT  J,, za 2xqap B4 p ( p ) (1 —24)¢ (4m)2T(1 —€)
x A(Q,Y; {k}). (A.15)

Using the universal n-collinear limit eq. (A.9), we obtain

da7(10’1) LO Ldz, Tq as €1 QT ¥\ 2P, (24, €)
s =0 Y = Zs_ - S (XL Z ) Zatad\FarE)
agravar ~ 7@ )/xa T (za)fb(””b) 27rI‘(1—6)7’</J2 p) (1= z0)¢

(A.16)

where P,./(z) is the standard e-dependent splitting kernel at NLO. Comparing to eq. (A.4),
we can read off a result that will enable us to obtain the real radiation bare NLO beam
function kernel,

Yo 1t e\ T TPy (2 )
(1)real Qs | € € € & 155\ %,
T t =— | =— — ], A7
u (B3 2W[pF(1—6)u2<u2p) (1—2)6] (A1
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The splitting function Pj;(z) may contain divergences as z — 1, which are regulated by the
overall (1 — z)7¢. All divergences thus arise from the two expansions

—e—1
5 () =M S ale/id) - e ae/i) + OGP (A19)
p \Hp P p
(1— )1 = —%5(1 — )4 Lol = 2) — eLa(1— 2) + O()?, (A.19)

where we defined ufj = /ﬂeiy for ease of notation. As written eq. (A.17) does not yet contain
the corresponding collinear virtual and zero-bin contributions.

Example: qq Kernel From eq. (A.11), we obtain

2°Pyq(2,€) _ € 1+ 22
(1—2z) Fa—2<|1-=

—e(1- z)} (A.20)

— P(z) + C’F{—ié(l _ ) 35(1 )

+ e[(z —1) = (14+22)L1(1 —2) 4+ (14 2%) In(2)Lo(1 — z)} } + O(?),
where the LO quark splitting function is given by

22
Pyyl2) = Cr [@(1 gt

} — (14 22)Lo(1—2) + 25(1 _ ). (A.21)
.

—z
Adding the corresponding virtual collinear and zero-bin contributions, eq. (A.17) yields

(XSCF{Q

o | €2

IOt 2,€) = 5151 — 2y + L= [35@) - 2:250(2%/%)] 6() Pgl2)
p

€ 2 TCF

#2001 = 2) - £1(0/12) + 1y Calt/)| Pals) — 5501 =)
P P

1 2 2
+5(t) [(1 +22)Li(1—z) — 1*_'2 In(z) + (1 — 2) — %5(1 - z)] } .
(A.22)
Note that all divergences are proportional to §(1 — z), such that they cancel after adding the

soft, n collinear and the virtual hard contribution from H};LLO(QQ, €), as the latter also has
the universal structure (for Drell-Yan)

o0V a,Cr [_ 1 1<3 N

GO = P QY fulaa) Fa)B(T) ™ ; nﬁﬂ)w(e)]. (A.23)

e«
The cancellation of the 1/e? and the remaining 3/(2¢) pieces is obvious from comparing to
egs. (A.22) and (A.14). The Py(z)/e term cancels with the ultraviolet divergence from the
bare quark PDF. The remaining In(Q?/u?) /e term cancels when combining the Lo(7 /p) /€ and
Lo(t/p?) /e distribution terms. The remaining O(€”) piece in eq. (A.22) gives the renormalized
beam function and agrees with the result in ref. [42].
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Example: gqg Kernel For the full LP correction to Drell-Yan production, ¢qG — Z, we also
require the quark-gluon kernel. Here we only need

FPylze) = [ 2:(1-2) }

(1—2)¢  (1—2) 1—e
= Pyy(2) [1 + e(ln — + 1)] — eTr + O(€2), (A.24)
where the finite quark-gluon splitting function is defined as
Py(z) = Tr[(1 — 2)* + 2%. (A.25)

Equation (A.17) thus yields

asTr {_6@) Pyg(2)

1
Itgg) (ta 2 :u) =

o T :?)Lo(t/ui)qu(z) +5(t) {qu(z) (m L 2 1) N 1] } ,

(A.26)

Again the Py4(z)/e divergence cancels against the same mixing term from the bare gluon
PDF. The remaining O(€?) terms give the mixing term in the one-loop quark beam function,
agreeing with the result in [42].

B Comparison of NLP Contributions for gg — Hg at NLO

Here, we give the explicit calculation to obtain our full NLP result for hadronic 7 in the
g9 — Hg channel in the form of eq. (6.18). Our result prior to integration by parts is
obtained by inserting eq. (5.16) with p = 1 into eq. (6.9),

do®D a0y [ : ;
d7em — 1 /0 dzaday 276 (zatp By — mir) 2x,2p B3,

() s | (15 +1) 0

Mg (ma)l® /1 dzq €
zq “a TH

a

 Lo(1— 2) + 1 — z, + 922 ;jgi%—?zﬁ—?;zé]
#2222 gy S 2
+ fq <Z> p fo () {(— In mZ:Y — 1) 8(1 — 24)
Ch: za>(12z—2za ) o ZQ)} }
+(asrb, e we™). ' (B.1)

Here, we also separated the pure Lo(1 — z,) term from terms regular as z, — 1.
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We now apply integration by parts to the f;f; piece, except for its —d(1 — z,) term. In
the notation of eq. (6.11), this is achieved by choosing

1) eY Jem
DY (zay 2, T ):4CAmH[—laneY5(1—za)
142, 1—Za+222
4 )(222 ) Eg(l—za)]é(l—zb). (B.2)

Here, we only consider being inclusive in Y, so we do not write down the boundary term. Eq.

(B.1) becomes

de@D a0y [T |M a(m H)|2 Ldz, €Y
= dzoday 276 (wap By, — 95> / 2 ——
J7en - /o Tadxy 216 (2o, B2, — m3;) 2y B2 . e ma

_ 2)2
{fg< >fg(x,,) [25(1 —za) + <(1 ha z“)(lwz“ ) 1>£0(1 — )
1— 24 + 922 —522—#723—322}

222
Lq Tq T (1 — Za + 22)2
+ ;af; (Za> fq(xp) [—5(1 — 24)In — + 22 Lo(1— 2z,)
B (1 — 24)(1 — 24 + 22)?
222

— 1 (Z) 2o () 6(1 — za>}

+(aerb, e we),
where as usual, ¥ = /x4 /1p. Next, we apply the following integration by parts:
dz, x 1—20)(1 = 24 + 22)?
/ a afl( >fg( )|: ( (1)(22!1 a):|
Tq z

Za Za

1
dz, — 3z + 5z — Gz + 3z
= / > fg< )fg(l‘b) 222 (B'4)

(B.3)

Putting this back into eq. (B.3), we can rewrite it in a form close to eq. (6.17),

de@D) asCh 1 \M g(m H)\2 Ldz, €Y
=2 dzaday 276 (wazy B2, — m%) 99~ / a €
d7em T /0 LqdTp &4T (.’E Lo Loem mH) 237a33bE3m e Za TUH

{fg< >fg(3:b) {25(1 )+ <(1_22+22)2 - 1) Lo(1 = 24)
+3z§+1—za+22} ’

2
Za

cm _ 2\2
+ fg< >fg(3:b)[ 0(1 — 2zg) In mCIeY 4 (1 zzg—l- %) Lo(1— Za)]

—Jq <ZZ> ap fo(@p) 6(1 — Za)}

+ (a b, eV eiY) . (B.5)
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To compare this result to eq. (6.17), use the relations

Y cm cm
e 2o E T T
=2 In v=In—: (B.6)
mgy my mpge TaFem
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