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Abstract

Maxwell’s equations are valid only in Lorentz frame i.e. in inertial frame where
the Einstein synchronization procedure is used to assign values of the time coor-
dinate. Einstein time order must be applied and kept in consistent way in both
dynamics and electrodynamics. However, the usual for accelerator engineering
non-covariant treatment of relativistic particle dynamics in a constant magnetic
field looks precisely the same as in non-relativistic Newtonian dynamics. Accord-
ing to both treatments, the magnetic field is only capable of altering the direction
of motion, but not the speed of an electron. However, the non-covariant trajectory
does not include relativistic kinematics effects. The covariant electron trajectory is
viewed from the Lorentz lab frame as a result of successive infinitesimal Lorentz
transformations. Like it happens with the Galilean boosts composition, collinear
Lorentz boosts also commute. Therefore, for the rectilinear motion, non-covariant
and covariant approaches produce the same trajectory. But this result was incor-
rectly extended to arbitrary trajectory. In fact, Lorentz boosts in different directions
do not commute and the composition of non-collinear boosts will result in a Wigner
rotation which has no non-covariant analogue. As one of the consequences of non-
commutativity of non-collinear Lorentz boosts, we find an unusual momentum-
velocity relation, which also has no non-covariant analogue. The theory of relativity
shows us that unusual momentum-velocity relation and Wigner rotation have to do
with the effects of acceleration in curved trajectories. We point out that both these
effects can be regarded as the two sides of the same coin: they are manifestations of
the relativity of simultaneity that is expressed as a mixture of positions and time.
One of the consequences of non-commutativity of non-collinear Lorentz boosts is
a difference between covariant and non-covariant single particle trajectories in a
constant magnetic field. One can see that this essential point has never received
attention in the physical community. As a result a correction of the conventional
radiation theory is required. In this paper we present a critical reexamination of
existing synchrotron radiation theory. The main emphasis of this paper is on spon-
taneous synchrotron radiation from bending magnets and undulators.

Preprint submitted to 23 August 2018



1 Introduction

The general approach to the determination of the motion of the particle is the
following: at any instant a particle has a well-defined velocity v⃗ as measured
in a laboratory frame of reference. How is a velocity of a particle found? The
velocity is determined once the coordinates in the lab frame are chosen, and
is then measured at appropriate time intervals along the particle’s trajectory.
But how to measure a time interval between events occurring at different
points in space? In order to do so, and hence measure the velocity of a particle
within a single inertial lab frame, one first has to synchronize distant clocks.
The concept of synchronization is a key concept in the understanding of
special relativity. It is possible to think of various methods to synchronize the
distant clocks. To quote Moeller [1]: ”All methods for the regulation of clocks
meet with the same fundamental difficulty. The concept of simultaneity
between two events in different places obviously has no exact objective
meaning at all, since we cannot specify any experimental method by which
this simultaneity could be ascertained. The same is therefore true also for
concept of velocity.” Following Einstein, the theory of relativity offers a
procedure of clock synchronization based on the constancy of the speed of
light in all inertial framers. Covariant particle tracking is based on the use
this synchronization convention.

Relativistic effects start to be important when velocities of objects get closer
to the speed of light. However, up to recently there were no man-made
macroscopic objects possessing relativistic velocities: usually, in experi-
ments, only microscopic particles can travel at velocities close to that of
light. But with the operation X-ray free electron lasers (XFELs) this situ-
ation changes. An X-ray free electron laser is the best, exciting example
of an engineering system where improvements in accelerator technology
makes it possible to develop ultrarelativistic macroscopic objects with an
internal fine structure, and the special theory of relativity plays an essential
role in their description. An ultrarelativistic electron bunch modulated at
nanometer-scale in XFELs has indeed a macroscopic finite-size of order of
10 µm. Its internal, collective structure is characterized in terms of a wave
number vector.

Let us suppose that a modulated electron beam moves along the z-axis of a
Cartesian (x, y, z) system in the lab frame. As an example, suppose that the
modulation wavefront is perpendicular to the velocity v. How to measure
this orientation? A moving electron bunch changes its position with time.
The natural way to do this is to answer the question: when does each electron
cross the x-axis of the reference system? If we have adopted a method for
timing distant events (i.e. a synchronization convention), we can also spec-
ify a method for measuring the orientation of the modulation wavefront:
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if electrons located at the position with maximum density cross the x-axis
simultaneously at certain position z, then the modulation wavefront is per-
pendicular to z-axis. In other words, the modulation wavefront is defined
as a plane of simultaneous events (the events being the arrival of particles
located at maximum density): in short, a plane of simultaneity.

It is generally believed that the modulation wavefront orientation has ob-
jective meaning. If the modulation wavefront is tilted of an angle θ with
respect to x axis, one usually just concludes that electrons move at constant
speed vp = vθ along the plane of simultaneity (i.e. along the modulation
wavefront). When the trajectories of the particles calculated in the Lorentz
reference frame (i.e. in inertial frame where Einstein synchronization proce-
dure is used to assign values to the time coordinate) they must include such
relativistic kinematics effect as relativity of simultaneity. It is very important
to point out that the relativity of simultaneity is dictated by the finiteness
of the velocity of light. In the ultrarelativistic asymptote, the orientation of
the modulation wavefront , i.e the orientation of the plane of simultaneity
is always perpendicular to the electron beam velocity when the evolution
of the modulated electron beam is treated using Lorentz coordinates.

We should remark that Maxwell’s equations are valid only in Lorentz ref-
erence frames. Einstein’s time order should obviously be applied and kept
in consistent way in both dynamics and electrodynamics. It is important at
this point to emphasize that the theory of relativity dictates that a modu-
lated electron beam in ultrarelativistic asymptote has the same kinematics
in Lorentz coordinates as a laser beam. According to Maxwell’s equations,
the wavefront of the laser beam is always orthogonal to the propagation
direction. In other words, in ultrarelativistic limit we have for modulated
electron beam massless particle limit which is the same as for instance in
the photon case.

What does this wavefront readjustment mean in terms of measurements?
In classical physics the simultaneity of a pair of events has an absolute char-
acter. The absolute character of the temporal coincidence of two events is
a consequence of the as well absolute classical concept of time. However,
according to the theory of relativity we establish a criterion for the simul-
taneity of events, which is based on the invariance of the speed of light.
It is immediately understood that, as a result of the motion of electrons
along the tilted wavefront (i.e. along the plane of simultaneity) with the
velocity vθ, the simultaneity of different events is no longer absolute, i.e.
independent of the tilt angle θ. This reasoning is in analogy with Einstein’s
train-embankment thought experiment. The time t under the Einstein syn-
chronization in the lab frame is readily obtained by introducing the time
shift ∆t = dw(vθ)/c2, where dw is the distance along the wavefront in the
plane of rotation. This time shift has the effect of rotation the plane of simul-
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taneity (that is modulation wavefront) on the angle∆θ = v∆t/dw = v(vθ/c2).
As a consequence of this, the modulation wavefront rotates in the lab frame.
In ultrarelativistic limits,∆θ = θ, and wavefront is readjusted along the new
direction of motion of the beam.

The angle of wavefront tilt has no exact objective meaning, because the con-
stancy of the speed of light in all inertial frames takes place. The statement
that the wavefront orientation has objective meaning to within a certain
accuracy can be visualized by the picture of wavefront in the proper orien-
tation with approximate angle extension (blurring) given by ∆θ ≃ v(vθ/c2).
This relation specifies the limits within which the classical (non relativistic )
theory can be applied. In fact, it follows that for a very classical electron beam
for which v2/c2 is very small, the angle ”blurring” becomes very small too.
In this case angle of wavefront tilt θ is practically sharp ∆θ/θ ≃ v2/c2 ≪ 1.
This is a limiting case of classical (i.e. non-relativistic) kinematics. Classical
kinematics holds for non-relativistic particles; the angle ”blurring” is a pe-
culiarity of relativistic beam motion. In ultrarelativistic asymptotics when
v ≃ c, the wavefront tilt has no exact objective meaning at all since due to the
finiteness of the speed of light, we cannot specify any experimental method
by which this tilt could be ascertained.

In existing literature a theoretical analysis of XFELs driven by an electron
beam with wavefront tilt was presented in [2, 3, 4, 5], based on the use the
usual Maxwell’s equations and standard simulation codes. We state that
this approach is conceptually incorrect. In the XFEL case we deal with an
ultrarelativistic electron beam and within the Lorentz lab frame (i.e. within
the validity of the Maxwell’s equations) the tilted modulation wavefront is
at odds with the special theory of relativity.

1.1 A non-covariant approach to relativistic particle dynamics

We would like to make some further remark about wavefront tilt. When
considering the conventional particle tracking universally used for particle
accelerator physics, there are several cases where a wavefront tilt can occur
in XFELs, mainly through introduction of a deliberate angular trajectory
error (or ”kick”). As well-known result of conventional particle tracking
states that after the electron beam is kicked by a weak dipole magnet there
is a change in the trajectory of the electron beam, while the orientation of
the modulated wavefront remains as before. In other words, the kick results
in a difference between the directions of the electron motion and the normal
to the modulation wavefront (i.e. in a wavefront tilt). In XFEL simulations
it is generally accepted that coherent radiation from the undulator placed
after the kicker is emitted ( in accordance with Maxwell’s electrodynamics)
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along the normal to the modulation wavefront. Therefore, when the angular
kick exceeds the divergence of the output radiation, emission in the electron
beam motion is suppressed. An angular kick is often an essential part of
many XFEL related diagnostic or experimental procedures. The standard
gain length measurement procedure in XFELs employs such kicks. Other
applications include ”beam-splitting” schemes where different polarization
components are separated by means of an angular kick to the modulated
electron beam [6, 7].

We know that, in the ultrarelativistic asymptote, the orientation of the modu-
lation wavefront is always perpendicular to the electron beam velocity when
the evolution of the modulated electron beam is treated using Lorentz coor-
dinates. So we must conclude that for the accelerated motion in a constant
magnetic field the covariant trajectory of the particle x⃗(t)cov and result from
conventional (non-covariant) particle tracking x⃗(t) differ from each other.

It is generally accepted that in order to describe the dynamics of relativistic
particles in the lab reference frame one only needs to take into account
the relativistic dependence of the particles momenta on the velocity. In
other words, the treatment of relativistic particle dynamics involves only
a corrected Newton’s second law. Note that this solution of the dynamics
problem in the lab frame makes no reference to Lorentz transformations.
Conventional particle tracking treats the space-time continuum in a non-
relativistic format, as (3+1) manifold. In other words, in this approach,
introducing as only modification the relativistic mass, time differ from space.
In fact, we have no mixture of positions and time.

For the rectilinear acceleration the non relativistic Newtonian trajectory
x(t)classic and the result of conventional particle tracking x(t) differ from each
other. In Newtonian dynamics the particle keeps picking up speed. In rela-
tivistic dynamics, the particle keeps picking up, not speed, but momentum.

Now let us discuss the accelerated motion in a constant magnetic field. Ac-
cording to both (classical and relativistic) approaches, the magnetic field is
only capable of altering the direction of motion, but not the speed (i.e. mass)
of an electron. This usual for accelerator engineering study of relativistic
particle motion in a constant magnetic field looks precisely the same as in
nonrelativistic Newtonian dynamics and kinematics. The trajectory of the
electron, which follows from the solution of the corrected Newton’s second
law, does not include relativistic effects and Galilean vectorial law of addi-
tion of velocities is actually used. What is surprising and what we should
understand is the origin of the identity between classical x⃗(t)classic and non
covariant x⃗(t) trajectories in a constant magnetic field.

A non-covariant (3+1) approach to relativistic particle dynamics has been
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used in particle tracking calculations for about seventy years. However, the
type of clock synchronization which provides the time coordinate t in the
corrected Newton’s equation has never been discussed in literature. It is
clear that without answer to the question about the method of synchroniza-
tion used, not only the concept of velocity, but also the dynamics law has
no physical meaning. A non-covariant (3+1) approach to relativistic parti-
cle dynamics is forcefully based on a definite synchronization assumption
but this is actually hidden assumption. The dynamical evolution in the lab
frame is based on the use of the lab frame time t as an independent variable,
independent in the sense that t is not related to the spatial variables. Such
approach to relativistic particle dynamics is actually based on the use of
a not standard (not Einstein) clock synchronization assumption in the lab
frame.

The trajectory of the particle x⃗(t), which follows from the solution of the cor-
rected Newton’s second law by integrating from initial conditions does not
include relativistic kinematics effects. In particular, think of the algorithm
that one actually uses while updating the velocity from one moment in time
to the next in conventional particle tracking: one just uses the Galilean law of
addition of velocities , not Einstein’s one, and this is direct result following
from the hidden assumption on non-standard clock synchronization.

In contrast to this, in the case of Einstein’s synchronization convention rela-
tivistic kinematics effects arise and the covariant trajectory x⃗cov(t) is viewed
from the lab frame as a result of successive Lorentz transformations. Un-
der the Einstein’s synchronization convention the lab frame time t in the
equation of motion cannot be independent from the space variables. This is
because Lorentz transformations lead to a mixture of positions and time.

We should underline that we claim there is a difference between x⃗(t) and
x⃗cov(t). We state that it depends on the choice of a convention, namely the
synchronization convention of clocks in the lab frame. Whenever we have a
theory containing an arbitrary convention, we should examine what parts
of the theory depend on the choice of that convention and what parts do not.
We may call the former convention-dependent, and the latter convention-
invariant parts. Clearly, physically meaningful results must be convention-
invariant.

Consider, for example, the motion of two charged particles in a given mag-
netic field which is used to produce special particle trajectories. Suppose
there are two apertures at point A and at point A′. Particle trajectories may
be found according to conventional particle tracking by integrating from
initial conditions. From this solution of the corrected Newton’s equation
of motion we conclude, for example, that simultaneously first particle gets
through the aperture at A and second particle gets through the aperture at
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A′. These two events at point A and point A′ have exact objective meaning
i.e. convention-invariant. In contrast to this, simultaneity of these two events
is convention-dependent and has no exact objective meaning. In particular,
in the case of Einstein synchronization convention relativity of simultaneity
arises and according to covariant particle tracking generally there may be
some time shift between these two events.

Consistently with the conventionality of simultaneity, also the value of the
velocity of particle is a matter of convention and has no exact objective
meaning. Even for a single particle we are able to demonstrate the difference
between conventional and covariant particle tracking results. In fact, we use
Einstein’s rule for adding velocities to track the particle motion in a covariant
way. But in the conventional particle tracking the velocity summation is
curried out differently. In accelerator physics the dynamical evolution in
the lab frame is based on the usual Galileo (vectorial) rule which is in
agreement with velocity summations of Newtonian mechanics.

1.2 Error in standard coupling fields and particles

There is a common mistake made in accelerator and plasma physics con-
nected with the difference between x⃗(t) and x⃗cov(t). Let us look at this dif-
ference from the point of view of electrodynamics of relativistically moving
charges. To evaluate fields arising from external sources we need to know
their velocity and positions as a function of the lab frame time t. Suppose
one wants to calculate properties of synchrotron radiation. Given our pre-
vious discussion the question arises, whether one should solve the usual
Maxwell’s equations in the lab frame with current and charge density cre-
ated by particle moving along non-covariant trajectories like x⃗(t). We claim
that the answer to this question is negative. In our previous publications
[8, 9, 10, 11, 12, 13, 14] we argued that this algorithm for solving usual
Maxwell’s equations in the lab frame, which is considered in all standard
treatments as relativistically correct, is at odds with the principle of relativ-
ity. This essential point has never received attention in the physical commu-
nity. Only the solution of the dynamics equations in covariant form gives
the correct coupling between the usual Maxwell’s equations and particle
trajectories in the lab frame. We conclude that previous theoretical and ex-
perimental results in accelerator and plasma physics should be reexamined
in the light of the pointed difference between conventional and covariant
particle tracking. In particular, a correction of the conventional synchrotron
radiation theory is required. One can see that the difference between con-
ventional particle trajectory and covariant particle trajectory seems to have
been entirely overlooked using the usual Maxwell’s equations and x⃗(t), in-
stead of x⃗cov(t), simply because this difference has never been considered
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before.

In this paper we present a critical reexamination of existing synchrotron
radiation theory. The main emphasis of this paper is on spontaneous syn-
chrotron radiation from bending magnets and undulators. But before the
discussion of the main topic it would be well to illustrate error in standard
coupling fields and particles in accelerator and plasma physics by consid-
ering the relatively simple example, wherein the essential physical features
are not obscured by unnecessary mathematical difficulties. This illustrative
example is mainly addressed to readers with limiting knowledge of accel-
erator and synchrotron radiation physics. Fortunately, the error in standard
coupling fields and particles can be explained in a very simple way.

1.3 An illustative example

There is a realistic configuration encountered in practice, which involves the
production of coherent undulator radiation. Perhaps the most interesting
applications of the theory of relativity concern X-ray free electron lasers
(XFELs). Let us consider an ultrarelativistic electron beam, modulated by
the FEL process in the main XFEL undulator, kicked by a weak dipole field
before entering a downstream undulator radiator. We want to study the
process of emission of coherent undulator radiation from such setup. This
problem gives, in fact, a first idea of the influence of the difference between
x⃗(t) and x⃗cov(t) on the radiation by relativistic charged particles.

It would be well to begin with a bird’s-eye view of some of the main results.
According to non-covariant particle tracking, after the beam is kicked there
is a trajectory change, while the orientation of the modulation wavefront
remains as before. In other words, the kick results in a difference between
the direction of the electron motion and the normal to the wavefront. In
standard Maxwell’s electrodynamics, coherent radiation is emitted in the
direction normal to the modulation wavefront. Therefore, according to the
conventional coupling of fields and particles 1 , which we claimed incor-
rect, when the angular kick exceeds the divergence of the output coherent
radiation, emission in the direction of the electron beam motion is strongly
suppressed. We have shown that our coupling of fields and particles pre-
dicts an effect in complete contrast to the conventional treatment. Namely,
when the evolution of the electron beam modulation is treated according
to covariant particle tracking, the orientation of the modulation wavefront
in the ultra-relativistic asymptotic is always perpendicular to the electron

1 This means: according to usual algorithm for solving Maxwell’s equations in the
lab frame with charge and current density created by particles moving along the
trajectories calculated by using non covariant particle tracking
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beam velocity. In other words, relativistic kinematics shows the surpris-
ing effect that after the kick the orientation of the modulation wavefront is
readjusted along the new direction of the electron beam. As a result, using
standard electrodynamics we predict strong emission of coherent undula-
tor radiation from the modulated electron beam in the kicked direction.
It should have been made clear that in our example even the direction of
emission of coherent undulator radiation is beyond the predictive power of
the conventional synchrotron radiation theory.

Let us now go back and consider quantitatively the problem which concerns
the kick of modulated ultrarelativistic electron beam. Let us suppose that
the ultrarelativistic modulated electron beam is kicked by a weak dipole
magnetic field before entering downstream undulator and study the process
of emission of coherent radiation with and without kick. Suppose that a
modulated electron beam moves, initially, at the ultrarelativistic velocity v
parallel to the z-axis upstream the kicker, assuming for simplicity that the
kick angle θk ≃ vx/v is small compare with 1/γ, where γ = 1/

√
1 − v2/c2 is

the relativistic factor. This means that we take the limit γ≫ 1, γvx/v≪ 1 and
that the speed v is close to the speed of light, v ≃ c. It is necessary to mention
that in XFEL engineering we deal indeed with an ultrarelativistic electron
beam ( c − v ≪ 10−8c) and with a transverse velocity after the kick, which
is much smaller than speed of light ((vx/c)2 ≪ 10−8), so that our studies of
this simplistic model nevertheless yields a correct quantitative description
in large variety of practical problems.

1.3.1 Kicker setup. Treatment according to non-covariant (3+1) approach

Let us first discuss the results from usual particle tracking. We will solve
the dynamics problem of motion of a relativistic electron in the force field
of a weak dipole magnet by working only up to the order γθk. Even under
this approximation we will be able to demonstrate the difference between
conventional and covariant particle trajectories. Suppose that the modula-
tion wavefront is perpendicular to the velocity upstream the kicker. After
the kick, the beam velocity components are (vx, 0, vz), where vz =

√
v2 − v2

x.
The velocity component along the z-axis remains unchanged in our first
order approximation i.e. vz ≃ v. Assuming further that the magnetic field in
the setup does not depend on the transverse coordinates, which is typically
justified for kicker setup in XFELs, after the beam is kicked the propagation
axis of the electron beam is deflected , while the wavefront orientation is
preserved.

We note that the configuration under study in this section is of interest
to the XFEL designers. This discrepancy between directions of the electron
motion and wavefront normal after the kick have been discussed previously
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(see, for example, Fig. 1 in [2]). One particular consequence that received
attention following the [2] is the effect of the trajectory error (single kick
error) on the XFEL amplification process. It was pointed out that coherent
radiation is emitted towards the wavefront normal of the beam modulation.
Thus, according to conventional coupling of fields and particles (which we
claimed incorrect), the discrepancy between the two directions decreases
the radiation efficiency [2].

Note that we started with the formulation of the initial conditions upstream
of the kicker in terms of wavefront orientation and particle velocities. How-
ever, in order to measure those, one first has to synchronize distant clocks
within the lab frame upstream of the kicker. We already mentioned that the
type of clock synchronization which results in time coordinate t in corrected
Newton’s equation is never discussed in accelerator and plasma physics.
The question now arises how to assign synchronization in the lab frame
upstream of the kicker. We need to give an ”operational” answer to this
question. Suppose that clocks are synchronized by light signals. The syn-
chronization procedure that follows is the usual Einstein synchronization
procedure. After this at least our initial conditions have experimental inter-
pretation.

The convention chosen for clock synchronization is nothing more than a def-
inite choice of coordinate system in an inertial frame of reference. Upstream
of the kicker in the lab inertial frame we selected a special type of coordinate
system, a Lorentz coordinate system to be precise. Within a Lorentz frame
(i.e. an inertial frame with Lorentz coordinates), Einstein’s synchronization
of distant clocks and Cartesian space coordinates are enforced.

1.3.2 Kicker setup. Treatment under Einstein’s time order

Now let us see what happens if we keep Lorentz coordinates system in
the lab frame downstream of the kicker. Using Einstein synchronization
procedure in the lab frame downstream of the kicker we automatically
assume that different Lorentz frames are related by Lorentz transformations.
Now let us try to get a better understanding of the relativistic kinematics,
which is, in fact, a comparative study between different coordinate frames.
It requires two relativistic observers and two coordinate systems. Consider
downstream of the kicker a Lorentz reference frame S′moving with uniform
motion at speed vx along the x-axis of the Lorentz lab frame S. In the inertial
frame S′, the wavefront normal and electron motion have the same direction
along z axis. A setup in the inertial frame S′ downstream of the kicker
reproduces the situation upstream of the kicker. Theory of relativity states
that in the Lorentz lab frame, after an electron beam is kicked, there is a
change in the trajectory of the beam which is viewed from the lab frame
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as a result of Lorentz transformation. It is immediately understood that the
simultaneity of events, and consequently orientation of wavefront, is no
longer absolute (i.e. independent of the kick), as a result of the invariance
of the speed of light.

Suppose, in fact, two electrons cross the x-axis simultaneously at certain
position z upstream of the kicker. Two events are simultaneous in a Lorentz
reference frame if they are coincident with the arrival of light signals previ-
ously emitted from the position at equal distance from both events. Before
the kick, light signals are emitted from a place equidistant from the positions
along x-axis where the events happened. After the kick, instead, the place
where the light signals is emitted is not equidistant to the positions where
the events happened. Light signals do not arrive simultaneously at each
electron in the Lorentz lab frame downstream of the kicker: the electrons
have time to move from their positions equidistant from the source because
the signal propagates with finite speed. This reasoning is analogy with
Einstein’s train-embankment thought experiment. Finally the time t under
standard synchronization in the lab frame is readily obtained by introduc-
ing the offset factor xvx/c2 and substituting t′ = t − xvx/c2. This expression
forms the Lorentz transformation for time in the first order approximation.
This time shift has the effect of rotation the plane of simultaneity (that is
modulation wavefront) on the angle vx/c in the first order approximation.
As a consequence of this, the modulation wavefront rotates in the lab frame.
This rotation is simply a consequence of the relativity of simultaneity be-
tween the two Lorentz frames S and S′. In ultrarelativistic limits, v ≃ c,
and the wavefront rotates exactly as the velocity vector v⃗, i.e. wavefront is
readjusted along the new direction of motion of the kicked beam.

Now we need to give an ”operational” answer to the question how to assign
Lorentz coordinates to the inertial lab frame in the case when the electron
beam is accelerated by the kicker. Upstream of the kicker one picks a Lorentz
coordinate system. Then, after the kick, the beam velocity changes of an
small value vx along the x-axis. In order to keep a Lorentz coordinate system
in the lab frame downstream of the kicker, one needs to perform a clock
resynchronization by introducing an infinitesimal time shift t′ = t − xvx/c2.
This form of the Lorentz transformation is justified by the fact that we
are dealing with first order approximation. Therefore, vx/c is so small that
v2

x/c2 can be neglected and one arrives at x′ = x − vxt, t′ = t − xvx/c2. This
infinitesimal Lorentz transformation just described differs from Galilean
transformation only by the inclusion of the relativity of simultaneity, which
is only relativistic effect that appearing in the first order in vx/c.
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1.3.3 Hidden synchronization assumption in the non-covariant (3+1) approach

Let us now return to the conventional particle tracking. In this (3+1) ap-
proach we have no mixture of positions and time. In conventional particle
tracking, the simultaneity along the x direction has an absolut character,
meaning that it is independent of the kick. When a kick is introduced, elec-
trons move at constant speed vx along the plane of simultaneity (i.e. along
the wavefront), while the orientation of the plane of simultaneity stays un-
varied. The trajectories of the particles, which follows from the solution of
the corrected Newton’s second law by integrating from initial conditions,
does not include such relativistic effects as relativity of simultaneity. There-
fore, conventional particle tracking is based on the use of a non-standard
and unusual synchronization convention within the theory of relativity.

Now we are ready to investigate how the synchronization assumption is
hidden in the non-covariant (3+1) approach to relativistic dynamics. Let us
return to kinematics and try to get an understanding of the relationship
between two inertial frames S and S′ downstream of the kicker in the case
of conventional particle tracking.

Consider downstream of the kicker a Lorentz reference frame S′ moving
with uniform motion at speed vx along the x-axis of the lab frame S. A
setup in the Lorentz frame S′ downstream of the kicker reproduces the situ-
ation upstream of the kicker i.e. the wavefront normal and electron velocity
with the same direction, along the z axis. According to conventional particle
tracking, a kick along the x direction is equivalent to a coordinate transfor-
mation as x′ = x− vxt. This transformation is completed with the invariance
of the simultaneity; in other words, if two electrons arrive simultaneously
at the certain position z upstream of the kicker, then after the transforma-
tion downstream of the kicker the same two electrons reach position z′ = z
one more simultaneously i.e. ∆t′ = ∆t. The absolute character of temporal
simultaneity between two events is a consequence of the identity t′ = t. As
a result, the hidden synchronization convention has the form of absolute
time convention. In this situation the lab observer actually sees electron
trajectories after the kick as a result of Galilean boost rather than a Lorentz
boost.

The question now arises how to operationally interpret this absolute, global
time convention i.e. how one should change the rule-clock structure of the
lab reference frame after the kick. This actually correspomds to the simplest
method of synchronization, which consists in keeping without changing
the same set of synchronized clocks used for experimental interpretation
of the initial conditions in conventional particle tracking. Such trivial syn-
chronization convention preserves simultaneity and is actually based on the
absolute time convention. This choice is usually the most convenient one
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from the viewpoint of connection to laboratory reality. When time coordi-
nate is assigned in the lab frame, non-covariant particle trajectories can be
experimentally interpreted by a laboratory observer. Due to the particular
choice of synchronization convention, relativistic kinematics effects such as
relativity of simultaneity do not exist in the lab frame. As matter of fact this
hidden synchronization convention is used, in practice, in accelerator and
plasma physics. Particle tracking calculations usually become much sim-
pler if the particle beam evolution is treated in terms of absolute time (or
simultaneity). This time synchronization convention is self-evident and this
is the reason why this subject is not discussed in relativistic engineering.

In non covariant particle tracking, time differ from space and the particle
trajectory in a constant magnetic field can be seen from the lab frame as a
result of successive Galilean boosts that track the acceleration motion.

The use of Galilean transformations within the theory of relativity requires
some special discussion. Many physicists still tend to think of Galilean trans-
formations as old, incorrect transformations between spatial coordinates
and time. It is simply not true in physics. The special theory of relativity is
the theory of four-dimensional space-time with pseudo-Euclidean geome-
try. From this viewpoint, the principle of relativity is a simple consequence
of the space-time geometry, and the space-time continuum can be described
in arbitrary coordinates. In the process of transition to arbitrary coordinates,
the geometry of the four-dimensional space-time does not change. There-
fore, contrary to the view presented in many textbooks, Galilean transfor-
mations are actually compatible with the principle of relativity although, of
course, they alter the form of Maxwell’s equations.

This illustrative example is mainly addressed to reader with limiting knowl-
edge of the theory of relativity and here we do not want to go through the
detail of this subject, which is conceptually subtle. Because of our using
Galilean transformations within the theory of relativity, we have some ap-
parent paradoxes, which we will gradually reduce one by one in the follow-
ing sections and will demonstrate that there is in fact no difficulty with the
(3+1) non covariant approach in relativistic dynamics and electrodynamics.
It is perfectly satisfactory. It does not matter which convention and hence
transformation is used to describe the same reality. What matter is that, once
fixed, such convention should be applied and kept in a consistent way in
both dynamics and electrodynamics.

1.3.4 Discussion

This is a good point to make a general remark about Lorentz coordinates.
Obviously, it is convenient to describe the dynamics in the lab frame based
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on the use of the absolute time convention. In fact, in this case things looks
precisely the same as in Newtonian kinematics. In the case of Einstein syn-
chronization convention, in contrast to the absolute time convention, we
have a mixture of positions and time. As a consequence of this, kinematics
effects are not what intuitively expected. Nevertheless, there is a reason to
prefer Lorentz coordinates within the framework of electrodynamics. We
are better off using covariant trajectories when we want to solve the elec-
trodynamics problem based on Maxwell’s equations in their usual form.
One might choose to use non-covariant trajectories, but the price to pay
would be a change in the form of Maxwell’s equations. In fact, the use of
non-covariant trajectories also implies the use of much more complicated
electromagnetic field equations.

To solve the electrodynamics problem with minimal efforts we need to pick
Lorentz coordinates. As just discussed, the problem of assigning Lorentz
coordinates to the lab frame in the case of an acceleration motion is compli-
cated even in our very idealized situation. We already found that, in order
to keep a Lorentz coordinate system in the lab frame one needs to perform a
clock resynchronization by introducing a time shift after the kick. It should
be clear that Lorentz coordinate systems are only mental construct, but ma-
nipulations with non existing clocks are an indispensable prerequisite for
the application of the usual Maxwell’s equations for moving light sources.

It is interesting to note that we can interpret manipulations with rule-clock
structure in the lab frame simply as a change of the time variable according
to the transformation t → t + xvx/c2. The overall combination of Galileo
transformation and time variable changes actually yields the infinitesimal
(in our case of interest) Lorentz transformation in the (3+1) space and time,
but in this context this transformation are only to be understood as useful
mathematical device, which allow one to solve the electrodynamics problem
in the (3+1) space and time with minimal effort. We state that this variable
change has no intrinsic meaning. One can see the connection between the
time shift and the issue of clock synchrony. The convention-independent
results of calculations are precisely the same in the new variables. As a con-
sequence, we should not care to transform the results of the electrodynamics
problem solution into the original (3+1) variables.

An idea of studying dynamics and electrodynamics in (3+1) space and time
using technique involving a change of variables is useful from a pedagogical
point of view. It is worth remarking that the absent of a dynamical explana-
tion for wavefront rotation has disturbed some physicists. It should be clear
from the preceding discussion that a good way to think of the wavefront
rotation is to regard it as a result of transformation to a new time variable.
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1.3.5 Wigner rotation

Above we demonstrated that if the velocity of our modulated electron beam
is close to velocity of light, Lorentz transformations work out in such a way
that the rotation angle of the modulation wavefront coincides with the angle
of rotation of the velocity. As known, a composition of noncollinear Lorentz
boosts does not results in a different boost but in a Lorentz transformation
involving a boost and a spatial rotation, the Wigner rotation [15, 16, 17]. The
rotation of the modulation wavefront after the beam kicking is one concrete
example of Wigner rotation.

Suppose the beam velocity is perpendicular to the wavefront of the modu-
lation upstream of the kicker. As seen from the lab frame, the wavefront of
the beam modulation rotates relative to the Cartesian axes of the lab Lorentz
frame when a modulated electron beam is accelerated in the kicker’s field.
Our calculations are performed in ultrarelativistic limit. In the case of an
arbitrary electron beam velocity, expression for the Wigner rotation is given
by [18]

δ⃗Φ =

(
1 − 1

γ

)
v⃗ × dv⃗

v2 =

(
1 − 1

γ

)
δ⃗θ . (1)

where dv⃗ is the vector of small velocity change due to acceleration, Φ is the
Wigner rotation angle of the wavefront, and θ is the orbital angle of the
particle in the lab frame. From Eq. (1) follows that in the ultra relativistic
limit γ −→ ∞, the wavefront rotates exactly as the velocity vector v⃗. Above
we demonstrated that in ultrarelativistic asymptotic the Wigner rotation
results directly from the relativity of simultaneity 2 .

Thomas precession is a particular case of Wigner rotation corresponding
to an infinitely small change in the velocity vector. Eq.(1) written in terms
of the angular velocity ΩT = dΦ/dt, where t is the time in the lab Lorentz
frame, is represented as ΩT = (1 − 1/γ)ω0, where ω0 = dθ/dt is the angular
velocity of orbiting measured in the lab frame. In deriving expressions for
the Thomas precession, the majority of authors were supposedly guided by
the incorrect expression for Thomas precession from Moeller’s monograph
[1]. The expression obtained by Moeller is given by δ⃗Φ = (1 − γ)v⃗ × dv⃗/v2 =

(1 − γ)δ⃗θ (and subsequently ΩT = (1 − γ)ω0). It should be note that, in his
monograph, Moeller stated several times that this expression valid in the

2 Above we worked out a simple case. The result involved the assumption that the
orbital angle of the particle δθ is smaller than 1/γ. this corresponds to a lag smaller
than 1/γ2, which is zero with respect to (ultrarelativistic) approximation accuracy
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lab Lorentz frame. Clearly, this expression and Eq. (1) differ both in sign and
in magnitude.

It is important at this point to emphasize that the theory of relativity dictates
that a modulated electron beam in the ultrarelativistic asymptote has the
same kinematics in Lorentz coordinates, as a laser beam. In other words,
in the limit γ −→ ∞ we have a limit where our modulated electron beam
approaches a beam of massless particles. In contrast, according to Moeller’s
expression for Wigner rotation in the lab frame the modulation wavefront
rotates in opposite direction and Φ = (1 − γθ)→ −∞ in the limit γ −→ ∞.

An analysis of the reason why Moeller obtained an incorrect expression for
the Wigner rotation in the lab frame is the focus of Ritus paper [18]. As
shown in [18], the Moeller’s mistake is not computational, but conceptual
in nature. In review [19] it is shown that the correct result was obtained in
the works of several authors, which were published more than half century
ago but remained unnoticed against the background of numerous incorrect
works.

1.3.6 Undulator radiation setup

The most elementary of the effect that represents a crucial test of the cor-
rect coupling fields and particles is a problem involves the production of
coherent undulator radiation by modulated ultrarelativistic electron beam
kicked by a weak dipole field before entering a downstream undulator. We
want to study the process of emission of coherent undulator radiation from
such setup.

The key element of a XFEL source is the udulator, which forces the elec-
trons to move along curved periodical trajectories. There are two popu-
lar undulator configurations: helical and planar. To understand the basic
principles of undulator source operation, let us consider the helical un-
dulator. The magnetic field on the axis of the helical undulator is given
by H⃗w = e⃗xHw cos(kwz) − e⃗yHw sin(kwz), where kw = 2π/λw is the undulator
wavenumber and e⃗x,y are unit vectors directed along the x and y axes. We
neglected the transverse variation of the magnetic field. It is necessary to
mention that in XFEL engineering we deal with a very high quality of the
undulator systems, which have a sufficiently wide good-field-region, so
that our studies, which refer to a simple model of undulator field never-
theless yields a correct quantitative description in large variety of practical
problems. The Lorentz force F⃗ = −ev⃗ × H⃗w/c is used to derive the equa-
tion of motion of electrons with charge −e and mass m in the presence of
magnetic field. The explicit expression for the electron velocity in the field
of the helical undulator has the form cθw[⃗ex cos(kwz) − e⃗y sin(kwz)], where
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θw = K/γ and K = eHw/(kwmc2) is the undulator parameter. This means that
the reference electron in the undulator moves along the constrained helical
trajectory parallel to the z axis. As a rule, the electron rotation angle θw is
small and the longitudinal electron velocity vz is close to the velocity of light,
vz =

√
v2 − v2

⊥ ≃ v(1 − θ2
w/2) ≃ c.

Let us consider a modulated ultrarelativistic electron beam moving alone the
z axis in the field of the helical undulator. In the present study we introduce
the following assumptions. First, without kick the electrons move along
constrained helical trajectories in parallel with the z axis. Second, electron
beam density at the undulator entrance is simply n = n0(⃗r⊥)[1+a cosω(z/vz−
t)], where a = const. In other words we consider the case in which there
are no variation in amplitude and phase of the density modulation in the
transverse plane. Under these assumptions the transverse current density
may be written in the form j⃗⊥ = −ev⃗⊥(z)n0(⃗r⊥)[1 + a cosω(z/vz − t)]. Even
through the measured quantities are real, it is generally more convenient to
use complex representation, starting with real j⃗⊥, one defines the complex
transverse current density: jx+i jy = −ecθwn0(⃗r⊥) exp(−ikwz)[1+a cosω(z/vz−
t)]. The transverse current density has an angular frequency ω and two
waves traveling in the same direction with variations exp i(ωz/vz− kwz−ωt)
and exp−i(ωz/vz + kwz −ωt) will add to give a total current proportional to
exp(−ikwz)[1+ a cosω(z/vz− t)]. The factor exp i(ωz/vz− kwz−ωt) indicates a
fast wave, while the factor exp−i(ωz/vz+kwz−ωt) indicates a slow wave. The
use of the word ”fast” (”slow”) here implies a wave with a phase velocity
faster (slower) than the beam velocity.

Having defined the sources, we now should consider the electrodynam-
ics problem. Maxwell equations can be manipulated mathematically in
many ways in order to yield derived equations more suitable for certain
applications. For example, from Maxwell equations we can obtain an equa-
tion which depends only on the electric field vector E⃗ (in Gaussian units):
c2∇2E⃗ − ∂2E⃗/∂t2 = 4πc2∇⃗ρ + 4π∂ j⃗/∂t. Once the charge and current densities
ρ and j⃗ are specified as a function of time and position, this equation allows
one to calculate the electric field E⃗ at each point of space and time. Thus, this
nonhomogeneous wave equation is the complete and correct formula for ra-
diation. However we want to apply it to still simpler circumstance in which
second term (or, the current term) in the right-hand side provides the main
contribution to the value of the radiation field. It is relevant to remember
that our case of interest is the coherent undulator radiation and the diver-
gence of this radiation is much smaller compared to the angle 1/γ. It can be
shown that when this condition is fulfilled the gradient term, 4πc2∇⃗ρ, in the
right-hand side of the nonhomoheneous wave equation can be neglected.
Thus we consider the wave equation c2∇2E⃗ − ∂2E⃗/∂t2 = 4π∂ j⃗⊥/∂t.
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We wish to examine the case when the phase velocity of the current wave is
close to the velocity of light. This requirement may be met under resonance
conditionω/c = ω/vz−kw. This is the condition for synchronism between the
transverse electromagnetic wave and the fast transverse current wave with
the propagation constant ω/vz − kw. With the current wave traveling with
the same phase speed as electromagnetic wave, we have the possibility of
obtaining a spatial resonance between electromagnetic wave and electrons.
If this the case, a cumulative interaction between modulated electron beam
and transverse electromagnetic wave in empty space takes place. We are
therefore justified in considering the contributions of all the waves except
the synchronous one to be negligible as long as the undulator is made of a
large number of periods.

Here follows an explanation of the resonance condition which is elemen-
tary in the sense that we can see what is happening physically. The field
of electromagnetic wave has only transverse components, so the energy ex-
change between the electron and electromagnetic wave is due to transverse
component of the electron velocity. For effective energy exchange between
the electron and the wave, the scalar product −ev⃗⊥ · E⃗ should be kept nearly
constant along the whole undulator length. We see that required synchro-
nism kw + ω/c − ω/vz = 0 takes place when the wave advances the electron
beam by the wavelength at one undulator period λw/vz = λ/(c − vz), where
λ = 2π/ω is the radiation wavelength. This tells us that the angle between
the transverse velocity of the particle v⃗⊥ and the vector of the electric field
E⃗ remains nearly constant. Since vz ≃ c this resonance condition may be
written as λ ≃ λw/(2γ2

z) = λw(1 + K2)/(2γ2).

We will use an adiabatic approximation that can be taken advantage of, in
all practical situations involving XFELs, where the XFEL modulation wave-
length is much shorter than the electron bunch length σb, i.e. σbω/c ≫ 1.
Since we are interested in coherent emission around the modulation wave-
length the theory of coherent undulator radiation is naturally developed in
the space-frequency domain. In fact, in this case one is usually interested
into radiation properties at fixed modulation frequency.

We first apply a temporal Fourier transformation to the inhomogeneous
wave equation to obtain the inhomogeneous Helmholtz equation c2∇2⃗̄E +
ω2⃗̄E = −4πiω⃗ j̄⊥, where ⃗̄j⊥(⃗r, ω) is the Fourier transform of the current den-
sity j⃗⊥(⃗r, t). The solution can be represented as a weighted superposition
of solutions corresponding to a unit point source located at r⃗′. The Green
function for the inhomogeneous Helmholtz equation is given by (for un-
bounded space and outgoing waves) 4πG(⃗r, r⃗′, ω) = exp

[
iω|⃗r − r⃗′|/c

]
/|⃗r− r⃗′|,

with |⃗r − r⃗′| =
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2. With the help of this Green
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function we can write a formal solution for the field equation as: ⃗̄E =∫
dr⃗′ G(⃗r, r⃗′)

[
−4πiω ⃗̄j⊥/c2

]
.

This is just a mathematical description of the concept of Huygens’ secondary
sources and waves, and is of course well-known, but we still recalled how
it follows directly from the Maxwell’s equations. We may consider the am-
plitude of the beam radiated by plane of oscillating electrons as a whole
to be the resultant of radiated spherical waves. This is because Maxwell’s
theory has no intrinsic anisotropy 3 . The electrons lying on the plane of
simultaneity gives rise to spherical radiated wavelets, and these combine
according to Huygens’ principle to form what is effectively a radiated wave.
If the plane of simultaneity is the xy-plane (i.e. beam modulation wavefront
is perpendicular to the z- axis), then the Huygens’ construction shows that
plane wavefronts will be emitted along the z-axis.

In summary: according to Maxwell’s electrodynamics, coherent radiation
is always emitted in the direction normal to the modulation wavefront.
We already stressed that Maxwell’s equations are valid only in a Lorentz
reference frame, i.e. when an inertial frame where the Einstein synchroniza-
tion procedure is used to assign values to the time coordinates. Einstein’s
time order should be applied and kept in consistent way in both dynamics
and electrodynamics. Our previous description implies quite naturally that
Maxwell’s equations in the lab frame are compatible only with covariant
trajectories x⃗cov(t), calculated by using Lorentz coordinates and, therefore,
including relativistic kinematics effects.

Let us go back to the modulated electron beam, kicked transversely with
respect to the direction of motion, that was discussed before. Conventional
particle tracking shows that while the electron beam direction changes after
the kick, the orientation of the modulation wavefront stays unvaried. In
other words, the electron motion and the wavefront normal have different
directions. Therefore, according to conventional coupling of fields and par-
ticles that we deem incorrect, the coherent undulator radiation in the kicked
direction produced in a downstream undulator is expected to be dramati-
cally suppressed as soon as the kick angle is larger than the divergence of
the output coherent radiation.

In order to estimate the loss in radiation efficiency in the kicked direction
according to the conventional coupling of fields and particles, we make
the assumption that the spatial profile of the modulation is close to that of
the electron beam and has a Gaussian shape with standard deviation σ. A
modulated electron beam in an undulator can be considered as a sequence of

3 This property of the electromagnetic field theory only holds in an inertial frame
with Lorentz coordinates
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periodically spaced oscillators. The radiation produced by these oscillators
always interferes coherently at zero angle with respect to the undulator axis.
When all the oscillators are in phase there is, therefore, strong emission in
the direction θ = 0. If we have a triangle with a small altitude r ≃ θz and
long base z, than the diagonal s is longer than the base. The difference is ∆ =
s− z ≃ zθ2/2. When ∆ is equal to one wavelength, we get a minimum in the
emission. This is because in this case the contributions of various oscillators
are uniformly distributed in phase from 0 to 2π. In the limit for a small size
of the electron beam, σ→ 0, the interference will be constructive within an
angle of about ∆θ w

√
c/(ωLw) = 1/(

√
4πNwγz)≪ 1/γ, where Lw = λwNw is

the undulator length. In the limit for a large size of the electron beam, the
angle of coherence is about ∆θ w c/(ωσ) instead. The boundary between
these two asymptotes is for sizes of about σdif w

√
cLw/ω. 4 It is worth noting

that, for XFELs, the transverse size of electron beam σ is typically much
larger than σdif (i.e electron beam Fresnel number is large). Thus, we can
conclude that the angular distribution of the radiation power in the far zone
has a Gaussian shape with standard deviationσθ w c/(

√
2ωσ). However, still

according to the conventional treatment, after the electron beam is kicked we
have the already-mentioned discrepancy between direction of the electron
motion and wavefront normal. Then, the radiation intensity along the new
direction of the electron beam can be approximated as I w I0 exp[−θ2

k/(2σ
2
θ)],

where I0 is the on-axis intensity without kick and θk is the kick angle. The
exponential suppression factor is due to the tilt of the modulation wavefront
with respect to the direction of motion of the electrons.

We presented a study of very idealized situation for illustrating the differ-
ence between conventional and covariant coupling of fields and particles.
We solved the dynamics problem of the motion of a relativistic electrons
in the prescribed force field of weak kicker magnet by working only up
to the order of γθk. This approximation is of particular theoretical inter-
est because it is relatively simple and at the same time forms the basis
for understanding relativistic kinematic effects such as Wigner rotation 5 .

4 The parameter ωσ2/(cLw) can be referred to as the electron beam Fresnel number
5 We used this restriction in order to understand all the physical principles very
clearly. We considered an ultrarelativistic electron beam, meaning that we already
have small problem parameter 1/γ2 ≪ 1. In small kick angle approximation we
also have a second small problem parameter v2

x/v2 = v2
x/c2 ≪ 1. It would have

been difficult for us in this illustrative example to discuss the interdependence of
these two small parameters, so we studied only a situation where all velocities are
non relativistic even in the initial frame where the beam was at rest upstream of
the kicker. Let the S be a lab frame of reference and S′ a comoving with velocity v⃗
relative to S. Upstream of the kicker, the modulated beam is at rest in the frame S′.
One can study what happens in S′ before the kick. Our modulated beam is at rest
and the kicker is running towards it with velocity −v⃗. The moving magnetic field
of the kicker produces an electric field orthogonal to it. When the kicker interacts
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Let us discuss the region of validity of our small kick angle approxima-
tion θkγ ≪ 1. Since in XFELs the Fresnel number is rather large, we can
always consider a kick angle which is relatively large compared to the
divergence of the output coherent radiation, and, at the same time, it is rel-
atively small compared to the angle 1/γ. In fact, from ωσ2/(cLw) ≫ 1, with
some rearranging, we obtain σ2

θ ≃ c2/(ω2σ2) ≪ c/(ωLw). Then we recall that√
c/(ωLw) = 1/(

√
4πNwγz) ≪ 1/γ. Therefore, the first order approximation

used to investigate the kicker setup in this section is of practical interest in
XFEL engineering.

1.3.7 Results of experiment

Above we have shown that our covariant coupling of fields and parti-
cles predicts an effect in complete contrast to the conventional treatment.
Namely, in the ultrarelativistic limit, the plane of simultaneity, that is wave-
front orientation of the modulation, is always perpendicular to the electron
beam velocity. As a result, we predict strong emission of coherent undulator
radiation from the modulated electron beam in the kicked direction.

From a pragmatic viewpoint, physical theories should be able to predict
experimental results in agreement with measurements, i.e. they should
”work”. The fact that our theory predicts reality in a satisfactory way is
well-illustrated by comparing the prediction we just made with the results
of an experiment involving ”X-ray beam splitting” of a circularly-polarized
XEL pulse from the linearly-polarized XFEL background pulse, a technique
used in order to maximize the degree of circular polarization at XFELs[7].
The ”X-ray beam splitting” experiment at the LCLS [7] apparently demon-
strated that after a modulated electron beam is kicked on a large angle
compared to the divergence of the XFEL radiation 6 , the modulation wave-
front is readjusted along the new direction of motion of the kicked beam,
see Fig. 14 in [7] . This is the only way to justify coherent radiation emis-
sion from the short undulator placed after the kicker and along the kicked
direction.

The authors of [7] found that coherent undulator radiation was produced

with the particle in S′ we thus deal with an electron moving in the combination
of perpendicular electric and magnetic fields. It is easy to see that the acceleration
in the crossed fields yields an electron velocity v′x = γvx parallel to the x-axis
and v′z = −v(γvx/c)2/2 parallel to the z-axis. We assumed that (γvx/c)2 ≪ 1. If
we neglect terms in (γvx/c)2, second relativistic correction does not appear in this
approximation. In other words, even in the S′ frame, the transverse motion of the
beam is non relativistic
6 The tuning limit of deflection angle was set at ∼ 5 rms of XFEL radiation diver-
gence by beamline aperture
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in the kicked direction. These results came unexpectedly, but from a prac-
tical standpoint, the ”apparent wavefront readjusting” immediately led to
the realization that the unwanted, linearly-polarized radiation background
could be fully eliminated without extra-hardware. In other words a sin-
gle corrector, already part of the baseline installations in the intersection
between undulator segments, effectively worked as the complex and ex-
pensive bending system designed according to the theory of conventional
particle tracking in [6]. The results of the ”beam splitting” experiment at the
LCLS, demonstrated that even the direction of emission of coherent undu-
lator radiation is beyond the predictive power of the conventional theory.

We showed that the authors of [7] actually witnessed an apparent wavefront
readjusting due to the phenomenon of Wigner rotation, but they never drew
this conclusion. We are actually first in considering the idea that results
of the conventional theory of radiation by relativistically moving charges
are not consistent with the principle of relativity. In previous literature,
identification of the trajectories in the source part of the usual Maxwell’s
equations with the trajectories calculated by conventional particle tracking
in the lab frame has always been considered obvious. The impact of [7] on
our studies was immediate. Now everything fits together, and our theory,
albeit shocking, shows the existence of coherent radiation in the kicked
direction.

2 What is special relativity?

The laws of physics are invariant with respect to Lorentz transformations.
This is a restrictive principle and does not determine the exact form of
the dynamics in question. Understanding the postulates of the theory of
relativity is similar to understanding energy conservation: at first we learn
this as a principle and later on we study microscopic interpretations that
must be consistent with this principle. For any system to which the energy
conservation principle can be applied, a deeper theory should exist which
yields insight into the detailed physical processes involved. Of course, this
deeper theory must lead to energy conservation.

The principle of conservation of energy is very useful in making analyses
without knowing all the formulas of the fundamental theory. A method-
ological analogy with the postulates of the special relativity emerges by
itself. Suppose we do not know why a muon disintegrates, but we know
the law of decay in the Lorentz rest frame. This law would then be a phe-
nomenological law. The relativistic generalization of this law to any Lorentz
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frame allows us to make a prediction on the average distance traveled by
a muon. In particular, when a Lorentz transformation of the decay law is
tried, one obtains the prediction that after the travel distance γvτ0, the popu-
lation in the lab frame would be reduced to 1/2 of the origin population. We
may interpret this result by saying that, in the lab frame, the characteristic
lifetime of a particle has increased from τ0 to γτ0.

However, the theory of relativity is necessary incomplete. Constructive (mi-
croscopic) theories like electrodynamics or quantum field theory provide
more insight into the nature of things than restrictive theories like special
relativity. Relativistic kinematics is only an interpretation of the behavior
of the dynamical matter fields in the view of different observers. The point
is that one can, in principle compute any relativistic quantity directly from
the underlying theories of matter without involving relativity at all. For
example, muons in motion behave relativistically because the field forces
that are responsible for the muon disintegration satisfy quantum field equa-
tions that are Lorentz covariant. Of course, in the ”microscopic” approach
to relativistic phenomena, Lorentz covariance of all the fundamental laws
of physics remains, similarly to energy conservation, an unexplained fact,
but all explanation must stop somewhere.

3 Different approaches to special relativity

In literature, three approaches to special relativity are discussed: Einstein’s
approach, the usual covariant approach, and the space-time geometric ap-
proach (see e.g. [20] and references therein).

Einstein formulation is based on postulates: the principle of relativity and
the constancy of the velocity of light. The usual covariant approach mainly
deals with the components of 4-tensors in a specific basis, i.e. when Lorentz
coordinates are chosen in an inertial frame of reference. In space-time geo-
metric approach, primary importance is attributed to the geometry of space-
time; it is supposed that the geometry of space-time is a pseudo-Euclidean
geometry in which only 4-tensors quantities do have real physical meaning.

In this most general approach the principle of relativity in contrast to Ein-
stein formulation of the special relativity is a simple consequence of the
space-time geometry. Since the space-time geometric approach deals with
all possible choices of coordinates of the chosen reference frames, the sec-
ond Einstein postulate referred to the constancy of the coordinate velocity
of light does not hold in this formulation of the theory of relativity. Only
in Lorentz coordinates, when Einstein’s synchronization of distant clocks
and Cartesian space coordinates are used, the coordinate speed of light is
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isotropic and constant. Thus the basic elements of the space-time geometric
formulation of the special relativity and the usual Einstein,s formulation,
are quite different.

3.1 The usual Einstein’s approach

Traditionally, the special theory of relativity is built on the principle of
relativity and on a second additional postulate concerning the velocity of
light:

1. Principle of relativity. The laws of nature are the same (or take the same
form) in all inertial frames

2. Constancy of the speed of light. Light propagates with constant velocity
c independently of the direction of propagation, and of the velocity of its
source.

The constancy of the light velocity in all inertial systems of reference is not
a fundamental statement of the theory of relativity. The central principle
of special relativity is the Lorentz covariance of all the fundamental laws
of physics. It it important to stress at this point that the second postulate,
contrary to the view presented in textbooks, is not a separate physical as-
sumption, but a convention that cannot be the subject of experimental tests.
In fact, in order to measure the one-way speed of light one has first to syn-
chronize the infinity of clocks assumed attached to every position in space,
which allows us to perform time measurements. Obviously, an unavoidable
deadlock appears if one synchronizes the clocks by assuming a-priori that
the one-way speed of light is c. In fact, in that case, the one-way speed of
light measured with these clocks (that is the Einstein speed of light) cannot
be anything else but c: this is because the clocks have been set assuming
that particular one-way speed in advance. Therefore, it can be said that the
value of the one-way speed of light is just a matter of convention without
physical meaning. In contrast to this, the two-way speed of light, directly
measurable along a round-trip, has physical meaning, because round-trip
experiments rely upon the observation of simultaneity or non-simultaneity
of events at a single point in space.

Assuming postulate 2 on the constancy of the speed of light in all inertial
frames we also automatically assume Lorentz coordinates, and that differ-
ent inertial frames are related by Lorentz transformations. In other words,
according to such limiting understanding of the theory of relativity it is
assumed that only Lorentz transformations must be used to map the coor-
dinates of events between inertial observers.
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3.2 The usual covariant approach

In the usual covariant approach the special of relativity is understood as
the theory of space-time with pseudo-Euclidean geometry. Quantities of
physical interest are represented by tensors in a four-dimensional space-
time, i.e. by covariant quantities, and the laws of physics are written in
manifestly covariant way as four-tensor equations.

Any event in the usual covariant approach is mathematically represented
by a point in space-time, called world-point. The evolution of a particle is,
instead, represented by a curve in space-time, called world-line. If ds is the
infinitesimal displacement along a particle world-line, then

ds2 = c2dT2 − dX2 − dY2 − dZ2 , (2)

where we have selected a special type of coordinate system (a Lorentz
coordinate system), defined by the requirement that Eq. (2) holds.

To simplify our writing we will use, instead of variables T,X,Y,Z, variables
X0 = cT, X1 = X, X2 = Y, X3 = Z. Then, by adopting the tensor notation, Eq.
(2) becomes ds2 = ηi jdXidX j, where Einstein summation is understood. Here
ηi j are the Cartesian components of the metric tensor and by definition, in
any Lorentz system, they are given by ηi j = diag[1,−1,−1,−1], which is the
metric canonical, diagonal form. As a consequence of the space-time geome-
try, Lorentz coordinates systems are connected by Lorentz transformations,
which form the Lorentz group. Since the metric is invariant under Lorentz
transformations the Lorentz group is also called the stability group of the
metric.

The usual covariant formulation of the theory of relativity deals with the
pseudo-Eucledian space-time geometry and with the invariance of ds, but it
is understood only in a limited sense when the metric is strictly diagonal. As
a matter of fact, a widespread argument used to support the incorrectness
of Galilean transformations is that they not preserve the diagonal form of
the metric. To quote L. Landau and E. Lifshitz [21]: ”This formula is called
the Galileo transformation. It is easily to verify that this transformation,
as was to be expected, does not satisfy the requirements of the theory of
relativity; it does not leave the interval between events invariant.”. This
statement is obviously incorrect, because the space-time continuum can be
described equally well from the point of view of any coordinate system,
which cannot possibly change ds. Assuming diagonality of the metric we
also automatically assume Lorentz coordinates, and that different inertial
frames are related by Lorentz transformations. In other words, according to
such limiting understanding of the covariant approach, it is assumed that
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only Lorentz transformations must be used to map the coordinates of events
between inertial observers.

Physical quantities are represented by space-time geometric (tensor) quan-
tities. When some basis is introduced, the representation of a tensor as
geometric quantity comprise both components and basis. In usual covari-
ant approach, one only deals with the basis components of tensors in the
Lorentz coordinates i.e. with the case when the basis four-vectors are or-
thogonal. As a result one deals only with four-tensor equations of physics
written out in the component form.

However, the concept of a tensor in the usual covariant approach is given
in terms of the transformation properties of its components. For example
in the usual covariant approach the electromagnetic ”tensor” Fµν is actu-
ally not a tensor since Fµν are only components implicitly taken in standard
(orthogonal) basis. The components are coordinate quantities and they do
not contain the whole information about the physical quantity, since a basis
of the space-time is not included. This is no problem only in the limiting
case when transformations from one orthogonal basis to another orthogo-
nal basis are selected i.e. only assuming that Lorentz transformations must
be used to map the coordinates of events. According to the usual covari-
ant approach, another transformations from standard to non standard (not
orthogonal) basis, like Galilean transformations, are ”incorrect”.

It should be note that usual formulation of the theory of relativity is limited
but absolutely correct if Lorentz coordinates are applied and kept in con-
sistent way in both dynamics and electrodynamics. The common mistake,
discussed above, made in accelerator and plasma physics is connected with
the incorrect algorithm for solving the electromagnetic field equations. Only
the solution of the dynamics equations in covariant form (i.e. in Lorentz co-
ordinates) gives the correct coupling between the usual Maxwell’s equations
and particle trajectories in the lab frame.

3.3 The space-time geometric approach

Common textbook presentations of the special theory of relativity use the
Einstein approach or, as generalization, the usual covariant approach which
deals, as discussed above, only with components of the 4-tensors in spe-
cific (orthogonal) Lorentz basis. The fact that in the process of transition to
arbitrary coordinates the geometry of the space-time does not change, is
not considered in textbooks. As a consequence there is a widespread belief
among experts that a Galilean transformation ( which is actually a trans-
formation from an orthogonal Lorentz basis to a non orthogonal basis) is
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incorrect, while a Lorentz transformation (which is a transformation from
an orthogonal Lorentz basis to another orthogonal Lorentz basis) is cor-
rect. This is not true. We can describe physics in any arbitrary coordinates
system. The different transformations of coordinates only correspond to a
change in the way of components of 4-tensors are written, but not influence
of 4-tensors themselves. Although the Einstein synchronization i.e. Lorentz
coordinates choice, is preferred by physicists due to its simplicity and sym-
metry, it is nothing more ”physical” than any other. A particularly very
unusual choice of coordinates, the absolute time coordinate choice, will be
considered and exploited in this paper.

The reason why in this paper the understanding of Galilean transformation
in terms of the theory of relativity is given so much attention is that our
accelerator engineering colleagues have been using the non covariant (3+1)
approach to relativistic particle dynamics in particle tracking calculations
for about seventy years. However, the type of clock synchronization which
provides the time coordinate t in the corrected Newton’s equation has never
been discussed in literature. We claim, and this claim is quite central for our
reasoning, that in conventional particle tracking in accelerator and plasma
physics the description of the dynamical evolution of charged particles in
the lab frame is based on the use of the absolute time convention. Much
unusual as this choice may seem in the theory of relativity, it is actually the
most convenient one in relativistic engineering. In this kind of non-covariant
particle tracking, time differs from space and particle’s trajectory can be seen
from the lab frame view as a result of successive Galilean boosts that track
the motion of the accelerated particle. The usual Galileo (vectorial) rule
for addition of velocities is used to fix Galileo boosts tracking a particular
particle along its motion.

3.3.1 General form of pseudo-Eucledian metric

The space-time continuum, determined by the interval Eq. (2) can be de-
scribed in arbitrary coordinates and not only in Lorentz coordinates. In the
transition to arbitrary coordinates, the geometry of four-dimensional space-
time obviously does not change, and in the special theory of relativity we
are not limited in any way in the choice of a coordinates system. The space
coordinates x1, x2, x3 can be any quantities defining the position of particles
in space, and the time coordinate x0 can be defined by an arbitrary running
clock. The components of the metric tensor in the coordinate system xi can
be determined by performing the transformation from the Lorentz coordi-
nates Xi to the arbitrary variables x j, which are fixed as Xi = f i(x j). One then
obtains
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ds2 = ηi jdXidX j = ηi j
∂Xi

∂xk

∂X j

∂xm dxkdxm = gkmdxkdxm , (3)

This expression represents the general form of the pseudo-Euclidean metric.
In textbooks and monographs, the special theory of relativity is generally
presented in relation to an interval ds in the Minkowski form Eq.(2), while
Eq.(3) is ascribed to the theory of general relativity.

However, in the space-time geometric approach, special relativity is under-
stood as a theory of four-dimensional space-time with pseudo-Euclidean
geometry. In this formulation of the theory of relativity the space-time con-
tinuum can be described equally well from the point of view of any co-
ordinate system, which cannot possibly change ds. At variance, the usual
formulation of the theory of relativity also deals with the invariance of
ds, but it is understood only in a limited sense when the metric is strictly
diagonal.

3.3.2 Pseudo-Eucledian metric and Galilean transformations

Absolute simultaneity can be introduced in special relativity without affect-
ing neither the logical structure, no the (convention-independent) predic-
tions of the theory. Actually, it is just a simple effect related with a particular
parametrization. We begin with the Minkowski metric as the true measure
of space-time intervals for an inertial observer S′ with coordinates (t′, x′).
Here we neglect the two perpendicular space components that do not enter
in our reasoning. We transform coordinates (t, x) that would be coordinates
of an inertial observer S moving with velocity −v with respect to the ob-
server S′, using a Galilean transformation: we substitute x′ = x − vt, while
leaving time unchanged t′ = t into the Minkowski metric ds2 = c2dt′2 − dx′2

to obtain

ds2 = c2(1 − v2/c2)dt2 + 2vdxdt − dx2 . (4)

Inspecting Eq. (4), or using transforming the Minkowski metric using the
Galilean transformation above we can find the components of the metric
tensor gµν in the coordinate system (ct, x) of S. We obtain g00 = 1 − v2/c2,
g01 = v/c, g11 = −1. Note that the metric in Eq. (4) is not diagonal, since,
g01 , 0, and this implies that time is not orthogonal to space.

The velocity of light in the coordinate system (t′, x′) for S′, defined above as
”at rest”, is c. In the coordinate system (t, x) 7 , however, the speed of light
cannot be equal c anymore because (t, x) is related to (t′, x′) via a Galilean

7 Transformation is interpreted in the passive sense
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transformation. As a result, the speed of light in the direction parallel to
the x axis is equal to c + v in the positive direction, and −c + v in the
negative direction. This is readily verified if one recalls that the velocity of
light in the reference system ”at rest” is equal to c. If ds is the infinitesimal
displacement along the world line of a ray of light, then ds2 = 0 and we
obtain c2 = (dx′/dt′)2. In the moving reference system, since x′ = x − vt and
t′ = t, this expression takes the form c2 = (dx/dt−v)2, which can be seen by a
trivial change of variable, or setting ds2 = 0 in Eq. (4). This means that in the
moving reference system of coordinates (ct, x) the velocity of light parallel
to the x-axis, is dx/dt = c + v in the positive direction, and dx/dt = −c + v in
the negative direction as stated above.

We conclude that the speed of light emitted by a moving source measured in
the lab frame (t, x) depends on the relative velocity of source and observer,
in our example v. In other words, the speed of light is compatible with the
Galilean law of addition of velocities. The reason why it is different from
the electrodynamics constant c is due to the fact that the clocks are synchro-
nized following the absolute time convention, which is fixed because (t, x)
is related to (t′, x′) via a Galilean transformation. Note that from what we
just discussed follows the statement that the difference between the speed
of light and the electrodynamics constant c is convention-dependent and
has no direct physical meaning.

3.3.3 Galilean transformations and wave equation for electromagnetic fields

We used the four-geometric arguments to show that, due to the absolute time
synchronization convention in the lab frame, the speed of light is compatible
with the Galilean law of addition of velocities. We are now ready to study
the same outcome in terms of the properties of the dynamical fields. In fact,
light propagation can be explained in the framework of the electromagnetic
field theory.

In the comoving frame, fields are expressed as a function of the indepen-
dent variables x′, y′, z′, and t′. Let us consider Maxwell’s equations in free
space. The electric field E⃗′ of an electromagnetic wave satisfies the equa-
tion �′2E⃗′ = ∇′2E⃗′ − ∂2E⃗′/∂(ct′)2 = 0. However, the variables x′, y′, z′, t′ can
be expressed in terms of the independent variables x, y, z, t by means of a
Galilean transformation, so that fields can be written in terms of x, y, z, t.
From the Galilean transformation x′ = x− vt, y′ = y, z′ = z, t′ = t, after par-
tial differentiation, one obtains ∂/∂t = ∂/∂t′ − v∂/∂x′, ∂/∂x = ∂/∂x′. Hence
the wave equation transforms into
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�2E⃗ =
(
1 − v2

c2

)
∂2E⃗
∂x2 − 2

(v
c

)
∂2E⃗
∂t∂x

+
∂2E⃗
∂y2 +

∂2E⃗
∂z2 −

1
c2

∂2E⃗
∂t2 = 0 , (5)

where coordinates and time are transformed according to a Galilean trans-
formation. The solution of this equation F[x− (c+v)t]+G[x+ (−c+v)t] is the
sum of two arbitrary functions, one of argument x − (c + v)t and the other
of argument x + (−c + v)t. Here we obtained the solution for waves which
move in the x direction by supposing that the field does not depend on y
and z. The first term represents a wave traveling forward in the positive x
direction, and the second term a wave traveling backwards in the negative x
direction. This result agrees with what we would have found more rapidly
using the metric Eq.(4). However, in this way we have provided a dynamical
underpinning for our previous discussion of the behavior of the speed of
light under a Galilean transformation.

We would like to make some further remarks about kinematic relativistic
effects. As discussed above, the Galilean transformation connecting the ref-
erence frame S′, moving with velocity v relative to the lab frame S, is given
by x′ = x − vt, t′ = t. This transformation implies a particular choice of
synchronization convention in the lab frame, which we called the ”absolute
time convention”, so that the motion of particles looks precisely the same as
predicted by Newtonian kinematics: relativistic effects like Wigner rotation,
time dilation, Lorentz-Fitzgerald contraction and relativistic corrections in
the law of composition of velocities do not exist in this description. In
agreement with the principle of relativity, the usual Maxwell’s equations
can be used in a moving inertial frame where a charge is instantaneously at
rest. However, the transformation connecting any co-moving frame to the
lab frame in the case of the absolute time convention is a Galilean trans-
formation, and Maxwell’s equations do not remain invariant with respect
to Galilean transformation. When a Galilean transformation of Maxwell’s
equations is tried, the new terms that have to be added into Maxwell’s
equations lead to those relativistic phenomena that were left out from the
description of dynamics in terms of Newtonian kinematics. It does not mat-
ter which convention and hence transformation is used to describe the same
reality. What matters is that, once fixed, such convention should be applied
and kept in a consistent way in both dynamics and electrodynamics.

3.3.4 Lorentz and Galilean transformations in the non-relativistic limit

It is generally believed that a Lorentz transformation reduces to a Galilean
transformation in the non-relativistic limit. We state that this is incorrect.
As discussed, kinematics is a comparative study which requires two co-
ordinate systems, and one needs to assign time coordinates to the two
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systems. Different types of clock synchronization provide different time co-
ordinates. The convention on the clock synchronization amounts to nothing
more than a definite choice of the coordinate system in an inertial frame
of reference in Minkowski space. Pragmatic arguments for choosing one
coordinate system over another may therefore lead to different choices in
different situations. Usually, in practice, we have a choice between absolute
time coordinate and Lorentz time coordinate. The space-time continuum
can be described equally well in both coordinate systems. This means that
for arbitrary particle speed, the Galilean coordinate transformations well
characterize a change in the reference frame from the lab inertial observer
to a co-moving inertial observer in the context of the theory of relativity. Let
us consider the non relativistic limit. The Lorentz transformation, for v/c so
small that v2/c2 is neglected can be written a x′ = x − vt, t′ = t − xv/c2. This
infinitesimal Lorentz transformation differs from the infinitesimal Galilean
transformation x′ = x − vt, t′ = t. The difference is in the term xv/c2 in the
Lorentz transformation for time, which is a first order term. If lab frames S
and comoving frame S′ have coordinates in a non standard (absolute time)
configuration, we need to transform Maxwell’s equations according to a
Galilean transformation, and we obtain Eq.(5). We can see that the wave
equation in the lab frame after the Galileo boost has non-diagonal form
even in the non-relativistic limit v/c ≪ 1, γ ∼ 1. The difference consists in
the crossed term ∂2/∂t∂x which arises when applying the Galileo boost.

3.3.5 Metric diagonalization

The Galilean transformation connecting Lorentz coordinates (t′, x′, y′, z′)
with diagonal metric, Eq.(2), to coordinates (t, x, y, z) with non diagonal
metric, Eq.(4), is equivalent to a rotation in the plane x′, t′ to non-orthogonal
axes t, x. In the coordinates system 8 (t, x) we therefore have, as already dis-
cussed, much more complicated field equations. To get around this difficulty
we observe that the non-diagonal metric can always be simplified. In fact,
the space-time line-element in Eq.(4) can be separated in a temporal part dtd

and a spatial part dxd as

ds2 = c2dt2
d − dx2

d , (6)

with dx2
d = dx2/(1 − v2/c2) and c2dt2

d =
[√

1 − v2/c2cdt + (v/c)dx/
√

1 − v2/c2
]2

.

In practice we are ”diagonalizing” the metric by completing the square and
collecting terms in dx. Obviously, transforming to new variables leads to the
usual Minkowski form of the metric. From Eq. (6) we find dxd/dtd = c. As

8 As before, we can neglect y and z.
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expected, in the new variables the velocity of light is constant in all direc-
tions, and equal to the electrodynamics constant c. The overall combination
of Galilean transform and variable changes specified above actually yields
to the Lorentz transformation dxd = γ(dx′ + vdt′) , dtd = γ(dt′ + vdx′/c2).

As we already discussed in Introduction (see paragraph 1.4.4), the idea of
studying dynamics and electrodynamics in (3+1) space and time using a
technique involving Galilean transformations and a change of variables is
useful from a pedagogical point of view. In the non-covariant (3+1) ap-
proach, there are no relativistic kinematics effects. One might think that the
relativistic kinematics effects like Wigner rotation, time dilation, Lorentz-
Fitzgerald contraction and relativistic corrections in the law of composition
of velocities are results of transformation Eq.(6) to new variables.

3.3.6 Way to solve the electromagnetic field equations in the (3+1) space and time

We already found that, starting from the diagonal form of the metric ten-
sor in the rest frame and applying a Galilean transformation we obtain
the non-diagonal metric Eq.(4). We observed that this non-diagonal metric
can always be simplified. In particular, we could transform it to the usual
Minkowski form by changing variables. Let us take the dynamical field
viewpoint and use it to understand this change of variables.

After properly transforming the d’Alembertian through a Galileo boost,
which changes the initial coordinates (x′, y′, z′, t′) into (x, y, z, t), we can see
that the homogeneous wave equation for the field in the lab frame has nearly
but not quite the usual, standard form that takes when there is no uniform
translation in the transverse direction with velocity v. The main difference
consists in the crossed term ∂2/∂t∂x, which complicates the solution of the
equation. To get around this difficulty, we observe that simplification is
always possible. The trick needed here is to further make a change of the
time variable according to the transformation t′ = t − xvx/c2. In the new
variables in i.e. after the Galilean coordinate transformation and the time
shift we obtain the d’Alembertian in the following form

�2 =

(
1 − v2

x

c2

)
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 −
(
1 − v2

x

c2

)
1
c2

∂2

∂t2 . (7)

A further change of a factor γ in the scale of time and of the coordinate along
the direction of uniform motion leads to the usual Maxwell’s equations.
In particular, when coordinates and time are transformed according to a
Galilean transformation followed by the variable changes specified above,
the d’Alembertian �′2 = ∇′2 − ∂2/∂(ct′)2 transforms into �2 = ∇2 − ∂2/∂(ct)2

. The overall combination of Galileo transformation and variable changes
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actually yields the Lorentz transformation in the ”3+1” space and time.
Since the Galilean transformation, completed by the introduction of the
new variables, is mathematically equivalent to a Lorentz transformation,
it obviously follows that transforming to new variables leads to the usual
Maxwell’s equations.

4 Relativistic mechanics of a particle

4.1 Usual four-dimensional covariant representation. Equation of motion

Dynamics equations can be expressed as tensor equations in Minkowski
space-time. When coordinates are chosen, one may work with compo-
nents, instead of geometric objects. Relying on the geometric structure of
Minkowski space-time, one can define the class of inertial frames and can
adopt a Lorentz frame with orthonormal basis vectors for any given iner-
tial frame. Within the chosen Lorentz frame, Einstein’s synchronization of
distant clocks and Cartesian space coordinates are then automatically en-
forced, the metric tensor components are the usual gµν = diag(1,−1,−1,−1),
and any two Lorentz frames are related by a Lorentz transformation that
preserves the metric tensor components, so that in any Lorentz coordinate
system the law of motion becomes

m
d2xµ
dτ2 = eFµν

dxν
dτ

, (8)

Here the electromagnetic field is described by the second-rank, antisymmet-
ric tensor with components Fµν. The coordinate-independent proper time
τ is a parameter describing the evolution of physical system under the
relativistic laws of motion, Eq. (8).

The covariant equation of motion for a relativistic charged particle un-
der the action of the four-force Kµ = eFµνdxν/dτ in the Lorentz lab frame,
Eq.(8), is a relativistic ”generalization” of the Newton’s second law. The
three-dimensional Newton second law mdv⃗/dt = f⃗ can always be used in
the instantaneous Lorentz comoving frame. Relativistic ”generalization”
means that the previous three independent equations expressing Newton
second law are be embedded into the four-dimensional Minkowski space.
In Lorentz coordinates there is a kinematics constraint uµuµ = c2 for the
four-velocity uµ = dxµ/dτ. Because of this constraint, the four-dimensional
dynamics law, Eq.(8), actually includes only three independent equations
of motion.
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4.2 Non-covariant particle tracking

As discussed in Introduction, it is generally accepted that in order to de-
scribe the dynamics of relativistic particles in the lab reference frame, which
we assume inertial, one can take into account the relativistic dependence of
the particle momentum on the velocity. The treatment of relativistic particle
dynamics involves a version of Newton’s second law corrected by the rela-
tivistic factor γ. In a given lab frame, there is an electric field E⃗ and magnetic
field B⃗. They push on a particle in accordance with

dp⃗
dt
= e

(
E⃗ +

v⃗
c
× B⃗

)
,

p⃗ = mv⃗
(
1 − v2

c2

)−1/2

, (9)

where here the particle’s mass, charge, and velocity are denoted by m, e,
and v⃗ respectively. In other words, aside for a straightforward correction
in the relativistic mass, these three equations looks precisely the same as
in Newtonian dynamics. The Lorentz force law, plus measurements on the
components of acceleration of test particles, can be viewed as defining the
components of the electric and magnetic fields. Once field components are
known from the acceleration of test particles, they can be used to predict
the accelerations of other particles.

Once a prescribed force field is independently specified, the particle trajec-
tory may be found by integration from initial conditions. The conventional
study a relativistic particle motion in a prescribed force field can thus be
framed, mathematically, as a well-defined initial value problem. This study
of relativistic particles motion looks precisely the same as in non relativistic
Newtonian dynamics. Conventional particle tracking treats the space-time
continuum in a non-relativistic format, as a (3+1) manifold. In other words,
in the lab frame, Minkowski space-time ”splits up” into three dimensional
space and one dimensional time. Indeed, in conventional particle tracking
in accelerator and plasma physics time and space are treated differently.
This approach does not require the introduction of Minkowski space-time
and is widely used in the study of relativistic particle motion in prescribed
force fields, since it is a well-defined initial value (Cauchy) problem.
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4.3 The common view on the relation between covariant and (3+1) approaches

Having written down the motion equation in a 4-vector form, Eq.(8), and
determined the components of the 4-force, we satisfied the principle of
relativity for one thing, and, for another, we obtained the four components
of the equation of motion. This is covariant relativistic generalization of the
usual three dimensional Newton’s equation of motion which is based on
particle proper time as the evolution parameter.

We next wish to describe the motion in the Lorentz lab frame using the lab
time t as the evolution parameter. Let us determine the first three spatial
components of the 4-force. We consider for this the spatial part of the dy-
namics equation, Eq.(8): K⃗ = (dt/dτ)d(mγv⃗)/dt = γd(mγv⃗)/dt. The prefactor
γ arises from the change of the evolution variable from the proper time τ,
which is natural since K⃗ is the space part of a four-vector, to the lab frame
time t, which is needed to introduce the usual force three-vector f⃗ : K⃗ = γ f⃗ .
Written explicitly, the relativistic form of the three-force is

d(mv⃗/
√

1 − v2/c2)
dt

= e
(
E⃗ +

v⃗
c
× B⃗

)
. (10)

The time component is obtained as follows

d(mc2/
√

1 − v2/c2)
dt

= eE⃗ · v⃗ . (11)

The evolution of the particle is subject to these four equations, but also to
the constraint

E2/c2 − |p⃗|2 = mc2 . (12)

According to non-covariant (3+1) approach we seek for the initial value so-
lution to these equations. Using explicit expression for Lorentz force we find
that the three equations Eq.(10) automatically imply the constraint Eq.(12),
once this is satisfied initially at t = 0. In the (3+1) approach, the four equa-
tions of motion ”split up” into (3+1) equations and we have no mixture
of space and time parts of the dynamics equation Eq.(8). This approach to
relativistic particle dynamics relies on the use of three independent equa-
tions of motion Eq.(10) for three independent coordinates and velocities,
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”independent” meaning that equation Eq.(11) (and constraint Eq.(12)) is
automatically satisfied.

The previous commonly accepted derivation of the equations for the particle
motion in the three dimensional space from the covariant equation Eq.(8) has
one delicate point. In Eq.(10) and Eq.(11) the restriction p⃗ = mv⃗/

√
1 − v2/c2

has already been imposed. One might well wonder why, because, equation
Eq.(8) tells us that the force is the rate of change of the momentum p⃗, but
does not tell us how momentum varies with speed. The components of
momentum four-vector pµ = (E/c, p⃗) behave under transformations from
one Lorentz frame to another, exactly in the same manner as the component
of the four-vector event x = (x0, x⃗). Surprises can surely be expected when
we return from the four-vectors language to the three-dimensional velocity
vector v⃗, which can be represented in terms of the components of four-
vector as v⃗ = dx⃗/dx0. In contrast with the pseudo-Euclidean four-velocity
space, the relativistic three-velocity space is a three-dimensional space with
constant negative curvature, i.e. three-dimensional space with Lobachevsky
geometry. It is well-known that for a rectilinear motion, the restriction p⃗ =
mv⃗/
√

1 − v2/c2 holds. We claim that this restriction does not hold when we
dealing with a particle accelerating along a curved trajectory. In this section
we will investigate in detail the reason why this is the case.

4.4 Mistake in commonly used method of covariant particle tracking

In the non-covariant (3+1) approach, the solution of the dynamics prob-
lem in the lab frame makes no reference to Lorentz transformations. This
means that, for instance, within the lab frame the motion of particles in
constant magnetic field looks precisely the same as predicted by Newtonian
kinematics: relativistic effects do not have a place in this description. In
conventional particle tracking a particle trajectory x⃗(t) can be seen from the
lab frame as the result of successive Galileo boosts that track the motion of
the accelerated (in a constant magnetic field) particle. The usual Galileo rule
for addition of velocities is used to determine the Galileo boosts tracking a
particular particle, instant after instant, along its motion along the curved
trajectory.

In order to obtain relativistic kinematics effects, and in contrast to conven-
tional particle tracking, one actually needs to solve the dynamics equation
in manifestly covariant form by using the coordinate-independent proper
time τ to parameterize the particle world-line in space-time. Relying on
the geometric structure of Minkowski space-time, one defines the class of
inertial frames and adopts a Lorentz frame with orthonormal basis vec-
tors. Within the chosen Lorentz frame, Einstein’s synchronization of distant
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clocks and Cartesian space coordinates are enforced. In the Lorentz lab
frame (i.e. the lab frame with Lorentz coordinate system) one thus has a
coordinate representation of a particle world-line as (t(τ), x1(τ), x2(τ), x3(τ)).
These four quantities basically are, at any τ, components of a four-vector
describing an event in space-time. Therefore, if one chooses the lab time t
as a parameter for the trajectory curve, after inverting the relation t = t(τ),
one obtains that the space position vector of a particle in the Lorentz lab
frame has the functional form x⃗cov(t). The trajectory x⃗cov(t) is viewed from the
lab frame as the result of successive Lorentz transformations that depend
on the proper time. In this case relativistic kinematics effects arise. In view
of the Lorentz transformation composition law, one will experience e.g. the
Einstein’s rule of addition of velocities applies.

Attempts to solve the dynamics equation Eq.(8) in manifestly covariant
form can be found in literature (see e.g. [22, 23, 24]). It is general believe
that the integration from initial conditions of the four-dimensional covariant
equation of motion Eq.(8) gives the covariant particle trajectory. However, in
such approach the four equations of motion ”split up” into (3+1) equations
and similar to non-covariant approach we have no mixture of space and
time parts of the dynamics equation Eq.(8). The trajectory which is found in
this way does not include relativistic kinematics effects. Therefore, it cannot
be identified with x⃗cov(t) even if, at first glance, it appears to be derived
following covariant prescription.

Consider, for example, the motion of a particle in a given electromagnetic
field. The simplest case, of great practical importance, is that of a uniform
electromagnetic field meaning that Fµν is constant on the whole space-time
region of interest. In particular we consider the motion of a particle in
a constant homogeneous magnetic field, specified by tensor components
Fµν = B(eµ2 eν3 − eν2eµ3 ) where eµ2 and eµ3 are orthonormal space like basis vectors
e2

2 = e2
3 = −1, e2 · e3 = 0. In the lab frame of reference where eµ0 is taken as the

time axis, and eµ2 and eµ3 are space vectors the field is indeed purely magnetic,
of magnitude B and parallel to the e1 axis. Let us set the initial four-velocity
uµ(0) = γceµ0 + γveµ2 , where v is the initial particle’s velocity relative to the
lab observer along the axis e2 at the instant τ = 0, and γ = 1/

√
1 − v2/c2. The

components of the equation of motion are then du(0)/dτ = 0, du(1)/dτ = 0,
du(2)/dτ = −eBu(3)/(mc), du(3)/dτ = eBu(2)/(mc). We seek for the initial value
solution to these equations as done in the existing literature. A distinctive
feature of the initial value problem in relativistic mechanics, is that the
dynamics is always constrained. In fact, the evolution of the particle is
subject to mduµ/dτ = eFµνuν, but also to the constraint u2 = c2. However,
such a condition can be weakened requiring its validity at certain values
of τ only, let us say initially, at τ = 0. To prove this, we calculate the scalar
product between both sides of the equation of motion and uµ. Using the fact
that Fµν is antisymmetric (i.e. Fµν = −Fνµ), we find uµduµ/dτ = eFµνuµuν = 0.
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Thus, for the quantity Y = (u2 − c2) we find dY/dτ = 0. Therefore, if Y(τ)
vanishes initially, i.e. Y(0) = 0, then Y(τ) = 0 at any τ. In other words, the
differential Lorentz-force equation implies the constraint u2 = c2 once this
is satisfied initially. Integrating with respect to the proper time we have
uµ(τ) = γeµ0 + γv[eµ2 cos(ωτ) + eµ3 sin(ωτ)] where ω = eB/(mc). We see that γ is
constant with time, meaning that the energy of a charged particle moving in
a constant magnetic field is constant. After two successive integrations we
have Xµ(τ) = Xµ(0)+γcτeµ0 +R[eµ2 sin(ωτ)− eµ3 cos(ωτ)] where R = γv/ω. This
enables us to find the time dependence [0,X(2)(t),X(3)(t)] of the particle’s
position since t/γ = τ. From this solution of the equation of motion we
conclude that the motion of a charged particle in a constant magnetic field
is a uniform circular motion [22, 23, 24].

One could expect that the particle’s trajectory in the lab frame, following
from the previous reasoning [0,X(2)(t),X(3)(t)], should be identified with
x⃗cov(t). However, paradoxical result are obtained by doing so. In particular,
the trajectory [0,X(2)(t),X(3)(t)] does not include relativistic kinematics ef-
fects. In fact, the calculation carried out above shows that t/γ = τ and one
can see the connection between this dependence and the absolute simultane-
ity convention. Here we have a situation where the temporal coincidence of
two events has the absolute character: ∆τ = 0 implies ∆t = 0.

We found that the usual integration of the four-dimensional covariant equa-
tion of motion Eq.(8) gives particle trajectory which looks precisely the same
as in Newton dynamics and kinematics. The trajectory of the electron does
not include relativistic effects and the Galilean vectorial law of addition
of velocities is actually used. The old kinematics is especially surprising,
because we are based on the use of the covariant approach. So we must
have made a mistake. We did not make a computational mistake in our
integrations, but rather a conceptual one. We must say immediately that
there is no objection to the first integration of Eq.(8) from initial conditions
over proper time τ. With this, we find the four-momentum. The momentum
has exact objective meaning i.e. it is convention-invariant. What must be
recognized is that the concept of velocity is only introduced in the second
integration step. However, in accepted covariant approach, the solution of
the dynamics problem for the momentum in the lab frame makes no ref-
erence to three-dimensional velocity. In fact, the initial condition which we
used is uµ(0) = γceµ0 + γveµ2 and includes γc and γv, which are actually nota-
tions for the time and space parts of the initial four-momentum. The three-
dimensional trajectory and respectively velocity, which are convention-
dependent, are only found after the second integration step. Then, where
does the old kinematics comes from? The second integration was performed
using the relation dτ = dt/γ. It is only after we have made those replacement
for dτ that we obtain the usual formula for conventional (non-covariant) tra-
jectory for an electron in a constant magnetic field.
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We should then expect to get results similar to those obtained in the case
of the (3+1) non-covariant particle tracking. In fact, based on the structure
of the four components of the equation of motion Eq.(8), we can arrive to
another mathematically identical formulation of the dynamical problem.
The fact that the evolution of the particle in the lab frame is subject to a
constraint has already been mentioned. This means that the mathematical
form of the dynamics law includes only three independent equations of
motion. It is easy to see from the initial set of four equations, du(0)/dτ = 0,
du(1)/dτ = 0, du(2)/dτ = −eBu(3)/(mc), du(3)/dτ = eBu(2)/(mc), that the pre-
sentation of the time component simply as the relation dτ = dt/γ between
proper time and coordinate time is just a simple parametrization that yields
the corrected Newton’s equation Eq.(9) as another equivalent form of these
four equations in terms of absolute time t instead of proper time of the
particle. This approach to integrating dynamics equations from the initial
conditions relies on the use of three independent spatial coordinates and ve-
locities without constraint and is intimately connected with old kinematics.
The presentation of the time component simply as the relation dτ = dt/γ be-
tween proper time and coordinate time is based on the hidden assumption
that the type of clock synchronization, which provides the time coordinate
t in the lab frame, is based on the use of the absolute time convention.

4.5 Covariant particle tracking

We now want to describe the machinery of the covariant particle tracking.
We will consider a relativistic particle accelerating in the lab inertial frame,
and we will analyze its evolution within the framework of special relativ-
ity. We will use the usual covariant approach. The problem of assigning
Lorentz coordinates to the lab frame in the case of accelerated motion is
complicated. The permanent rest frame of the particle is obviously not in-
ertial and any transformation of observations in the lab frame, back to the
rest frame, cannot be made by means of Lorentz transformations. To get
around that difficulty in the usual covariant approach one introduces an
infinite sequence of co-moving frames. At each instant, the rest frame is a
Lorentz frame centered on the particle and moving with it. As the particle
velocity changes to its new value at an infinitesimally later instant, a new
Lorentz frame centered on the particle and moving with it at the new veloc-
ity is used to observing the particle. All reference frames are assumed to be
orthogonal. This ensemble of comoving coordinate systems or tetrads can
be constructed by choosing, for each value of τ along the world line σ of
the particle, an inertial system whose origin coincides with σ(τ) and whose
x′0-axis is tangent to σ at σ(τ). The zeroth basis vector e′0 is therefore directed
as the 4-velocity u. In the tetrad basis e′i(τ), the particle has four velocity
u = (c, 0, 0, 0) and four acceleration a = (0, a1, a2, a3). The basis vectors of the
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tetrad e′0(τ), e′1(τ), e′2(τ), e′3(τ) at any proper time τ are then related to the basis
vectors e0, e1, e2, e3 of some given inertial lab frame by a Lorentz transforma-
tion e′µ(τ) = Λνµ(τ)eν. Therefore, the basis vectors at two successive instants
must also be related to each other by a Lorentz transformation.

In the lab frame one thus has a coordinate representation of the world-line
as σ(τ) = (t(τ), x1(τ), x2(τ), x3(τ)). The covariant particle trajectory x⃗cov(t) is
calculated by projecting world line to the lab frame basis and using the
lab time t as a parameter for the trajectory curve. In this paper we claimed
many times that there is a difference between the non-covariant particle
trajectory x⃗(t), calculated by solving the corrected Newton’s equations and
the covariant particle trajectory x⃗cov(t), calculated by projecting the world
line onto the lab frame Lorentz basis. There is a fundamental reason for this
difference. The trajectory x⃗cov(t) is viewed from the lab frame as the result of
Lorentz transformations Λνµ(τ) that depend on the proper time. Therefore,
the composition law that follows from the group properties of the Lorentz
transformations is used to express the conditions of co-moving sequence of
frames tracking a particle. In contrast to this, x⃗(t) follows from solving the
corrected Newton’s equations and does not include the composition law of
Lorentz transformations.

As is known, the composition of non-collinear Lorentz boosts does not result
in a different boost but in a Lorentz transformation involving a boost and a
spatial rotation, the Wigner rotation. Suppose that our particle moves along
an arbitrary accelerated world line. As just discussed, the basis vectors of
the tetrad defining the instantaneously co-moving frames is related to the
basis vectors of the lab frame by a Lorentz transformation depending on the
proper time e′µ(τ) = Λνµ(τ)eν. The most general Lorentz transformationΛνµ(τ)
can be uniquely separated into a pure Lorentz boost followed by spatial
rotation. As seen from the lab frame, space vectors of the tetrad (those with
indexes µ = 1, 2, 3) rotate relative to the Cartesian axes of the lab frame.

4.6 An illustrative example of covariant single particle tracking

Let us try out our algorithm for reconstructing x⃗cov(t) on some example, to
see how it works. An electron kicker setup is a practical case of study for
illustrating the difference between covariant and non-covariant trajectories.
We have already discussed the kicker setup in Introduction. We assumed
before that the kick angle was small compared to 1/γ and evaluated the
transformations up to first order θkγ. Let us see what happens if we increase
our accuracy. We consider now the small expansion parameter γvx/c ≪ 1,
neglecting terms of order (γvx/c)3, but not of order (γvx/c)2. In other words,
we use the second-order kick angle approximation.
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4.6.1 Demonstration that the equality v⃗cov = v⃗ does not hold in general

Let us start with non-covariant particle tracking calculations. The trajec-
tory of the electron, which follows from the solution of the corrected New-
ton’s second law under the absolute time convention, does not include
relativistic effects. Therefore, as usual for Newtonian kinematics, Galilean
vectorial law of addition of velocities is actually used. Non-covariant par-
ticle dynamics shows that the electron direction changes after the kick,
while the speed remains unvaried. According to non-covariant particle
tracking, the magnetic field Be⃗y is only capable of altering the direction
of motion, but not the speed of the electron. This is clearly true when
considering the equations of motion for a single electron dvx/dt = ωcvz,
dvz/dt = −ωcvx, where the characteristic ”cyclotron” frequencyωc is defined
byωc = eB/(mγ). This is a well defined initial value problem with initial con-
dition vz = v, vx = 0, vy = 0. We recognize the harmonic oscillator differential
equation, hence the solution is vx = v sinωct, vz = v cosωct. After the kick,
the beam velocity components are (vx, 0, vz), where vz =

√
v2 − v2

x. Taking
the ultrarelativistic limit v ≃ c and using the second order approximation
we get vz = v[1 − v2

x/(2v2)] = v[1 − v2
x/(2c2)] = v(1 − θ2

k/2).

In contrast, covariant particle tracking, which is based on the use of Lorentz
coordinates, yields different results for the velocity of the electron. Let us
consider a composition of Lorentz transformations that track the motion of
the relativistic electron accelerated by the kicker field. Let the S be the lab
frame of reference and S′ a comoving frame with velocity v⃗ relative to S.
Upstream of the kicker, the particle is at rest in the frame S′. In order to have
this, we impose that S′ is connected to S by the Lorentz boost L(v⃗), with
v⃗ parallel to the z axis, which transforms a given four vector event X in a
space-time into X′ = L(v⃗)X. We study what happens in S′ before the kick. Our
particle is at rest and the kicker is running towards it with velocity −v⃗. The
moving magnetic field of the kicker produces an electric field orthogonal
to it. When the kicker interacts with the particle in S′ we thus deal with an
electron moving in the combination of perpendicular electric and magnetic
fields. It is easy to see that the acceleration in the crossed fields yields an
electron velocity v′x = γvx parallel to the x-axis and v′z = −v(γvx/c)2/2 parallel
to the z-axis. If we neglect terms in (γvx/c)3, the relativistic correction in the
composition of velocities does not appear in this approximation.

Let S” be a frame fixed with respect to the particle downstream the kicker.
As is known, the composition of non collinear Lorentz boosts does not
result in a simple boost but, rather, in a Lorentz transformation involving
a boost and a rotation. In our second order approximation we can neglect
the rotation of the system S” in the plane (x′, z′) of the system S′. Therefore
we can use a sequence of two commuting non-collinear Lorentz boosts
linking X′ in S′ to X′′ in S′′ as X” = L(⃗exv′x)L(⃗ezv′z)X′ = L(⃗ezv′z)L(⃗exv′x)X′ in
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order to discuss the beam motion in the frame S′ after the kick. Here e⃗x

and e⃗z are unit vectors directed, respectively, along the x and z axis. Note
that as observed by an observer on S′, the axes of the frame S′′ are parallel
to those of S′, and the axes of S′ are parallel to those of S. The relation
X” = L(⃗exv′x)L(⃗ezv′z)L(⃗ezv)X presents a step-by-step change from S to S′ and
then to S”. For the simple case of parallel velocities, the addition law is
L(⃗ezv′z)L(⃗ezv) = L(⃗ezvz). Here vz = v(1 − θ2

k/2) and θk = vx/v = vx/c in our
(ultrarelativistic) case of interest. The resulting boost composition can be
represented as X” = L(⃗exv′x)L(⃗ezvz)X = L(⃗ezvz)L(⃗exvx)X. In the ultrarelativistic
approximation γ2

z = 1/(1−v2
z/c2)≫ 1, and one finds the simple result v = vz,

so that a Lorentz boost with non-relativistic velocity vx leads to a rotation of
the particle velocity vz of the angle vx/c.

Note that we discuss particle tracking in the limit of a small kick angle
γvx/c ≪ 1. However, even in this simple case and for a single electron we
are able to demonstrate the difference between non-covariant and covariant
particle trajectories. The electron speed decreases from v to v(1−θ2

k/2). This
result is at odds with the prediction from non-covariant particle tracking,
because we used Lorentz transforms to track the particle motion. As a result,
we track the particle in covariant way.

4.6.2 Demonstration that the equality p⃗cov = p⃗ holds

In our relativistic but non-covariant study of electron motion in a given
magnetic field, the electron has the same velocity and consequently the
same relativistic factor γ upstream and downstream of the kicker. Suppose
we now put the electron through a bending magnet (i.e. a uniform magnetic
field directed along the x-axis ). The motion in the bending magnet we
obtained is practically the same as in the case of non-relativistic dynamics,
the only difference being the appearance of the relativistic factor γ in the
determination of cyclotron frequency ωc = eB/(mγ). The curvature radius
R of the trajectory is derived from the relation v⊥/R = ωc, where v⊥ =
v(1−θ2

k/2) is the component of the velocity normal to the field of the bending
magnet B⃗ = Be⃗x. As a result, after the kick, the correction to the radius R is
only of order θ2

k .

One could naively expect that according to covariant particle tracking, since
the total speed of electron in the lab frame downstream of the kicker de-
creases from v to v(1−θ2

k/2), this would also lead to a consequent decrease of
the three-momentum |p⃗|2 from mγv to mγv(1−γ2θ2

k/2) in our approximation.
However, such a momentum change would mean a correction to the radius
R of order γ2θ2

k so that there is a glaring conflict with the calculation of the
raqdius according to non covariant tracking. Since the curvature radius of
the trajectory in the bending magnet has obviously an objective meaning,
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i.e. it is convention-invariant, this situation seems paradoxical. The para-
dox is solved taking into account the fact that in Lorentz coordinates the
three-vector of momentum p⃗ is transformed, under Lorentz boosts, as the
space part of the four vector pµ. Let us consider a composition of Lorentz
boosts that track the motion of the relativistic electron accelerated by the
kicker field. Under this composition of boosts the longitudinal momentum
component remains unchanged in our approximation.

Let us verify that this assertion is correct. We have pµ = [E/c, p⃗]. We consider
the Lorentz frame S′ fixed with respect to the electron upstream the kicker,
and in the special case when electron is at rest p′µ = [mc, 0⃗]. We turn focus on
what happens in S′. Acceleration in the crossed kicker fields gives rise to an
electron velocity v′x = γvx parallel to the x-axis and v′z = −v(γvx)2/2 parallel
to the z-axis. Downstream of the kicker the transformed four-momentum is
p′µ = [mc+mv′2x /(2c),mv′x, 0,mv′z], where we evaluate the transformation only
up to the order (γvx/c)2, as done above. We note that, due to the transverse
boost, there is a contribution to the time-like part of the four-momentum
vector i.e. to the energy of the electron. In fact, the energy increases from
mc2 to mc2 +m(γvx)2/2. We remind that S′ is connected to the lab frame S by
a Lorentz boost. Now, with a boost to a frame moving at velocity v⃗ = −ve⃗z,
the transformation of the longitudinal momentum component, normal to
the magnetic field of the bend, is pz = γ(p′z + vp′0/c) = γmv. Therefore we
can see that the momentum component along the z-axis remains unchanged
in our approximation as it must be. We also have, from the transformation
properties of four-vectors, that the time component p0 = γ(p′0 + vp′z) = γmc .

4.6.3 Momentum-velocity relation

Let us now return to our consideration on the covariant electron trajectory
calculation in the Lorentz lab frame when a constant magnetic field is ap-
plied. We analyzed a very simple (but very practical) kicker setup and we
noticed that, in fact, the three-momentum is not changed; so we have already
verified that this transformation is the same as the non covariant transfor-
mation for the three-momentum, i.e. p⃗cov = p⃗. We also found that there is a
difference between covariant and non covariant output velocities, vcov < v. In
these transformations we therefore discovered that p⃗cov , mv⃗cov/

√
1 − v2

cov/c2

for curved trajectory in ultrarelativistic asymptotic. It is interesting to dis-
cuss what it means that there are two different (covariant and non covariant)
approaches that produce the same particle three-momentum. The point is
that both approaches describe correctly the same physical reality and the
curvature radius of the trajectory in the magnetic field (and consequently the
three-momentum) has obviously an objective meaning, i.e. is convention-
invariant. In contrast to this, the velocity of the particle has objective mean-
ing only up to a certain accuracy, because the finiteness of velocity of light
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takes place.

From the theory of relativity follows that the equation p⃗cov = mv⃗cov/
√

1 − v2
cov/c2

does not hold for a curved trajectory. Many experts who learned the the-
ory of relativity using textbooks will find this statement disturbing at first
sight. First of all, it is well known that for rectilinear motion the equation
p⃗cov = mv⃗cov/

√
1 − v2

cov/c2 holds. How can it be that for motion along a curved
trajectory the usual momentum-velocity relation does not hold? This essen-
tial point has never received attention by the physical community.

The situation can be described quite naturally in the following way. The
equations of a particle’s motion in three-dimensional space Eq.(10) and
Eq.(11) are not a mathematical result, derived from the covariant equa-
tion Eq.(8). In these equations the restriction mdxµ/dτ = (E/c, p⃗) = (cγ, vγ)
has already been imposed: it is in the assumption that we are working in
three-dimensional momentum representation p⃗cov = mv⃗cov/

√
1 − v2

cov/c2. We
showed that instant after instant, the trajectory x⃗cov(t) is viewed from the
Lorentz lab frame as a result of successive infinitesimal Lorentz transfor-
mations. As we see, in Lorentz coordinates the lab time t in the equation of
motion cannot be independent from space variables. This is because resyn-
chronization of distant clocks according to the relativity of simultaneity in
the process of particle acceleration leads to a mixture of positions and time.

It is well known that for the rectilinear motion the combination of the usual
momentum-velocity relation and the covariant three-velocity transforma-
tion (according to Einstein’s addition velocity law) is consistent with the
covariant three-momentum transformation and both (non-covariant and
covariant) approaches produce the same trajectory 9 . But this result was in-
correctly extended to an arbitrary trajectory. Like it happens with the com-
position of Galilean boosts, collinear Lorentz boosts commute. This means
that the resultant of successive collinear Lorentz boosts is independent of
which transformation applies first. On the contrary, Lorentz boosts in differ-
ent directions do not commute. A comparison with the three-dimensional

9 Let us examine the transformation of the three velocity in the theory of rela-
tivity. For a rectilinear motion it is performed in accordance with the following
equation: v = (v′ + V)/(1 + v′V/c2). The ”summation” of two velocities is not just
the algebraic sum of two velocities, but it is ”corrected” by (1 + v′V/c2). The rel-
ativistic factor 1/

√
1 − v2/c2 is given by the following expression: 1/

√
1 − v2/c2 =

(1+v′V/c2)/(
√

1 − v′2/c2
√

1 − V2/c2). The new momentum is then simply mv times
the above expression. But we want to express the new momentum in terms of the
primed momentum and energy, and we note that p = (p′ + E′V/c2)/

√
1 − V2/c2.

Thus, for a rectilinear motion, the combination of Einstein addition law for par-
allel velocities and the usual momentum-velocity relation is consistent with the
covariant three momentum transformation
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Euclidean space might help here. Spatial rotations do not commute either.
However, also for spatial rotations there is a case where the result of two
successive transformations is independent of their order: that is, when we
deal with rotation around the same axis. While the successive application
of two Galilean boosts is Galilean boost and the successive application of
two rotations is a rotation, the successive application of two non-collinear
Lorentz boosts is not a Lorentz boost. The composition of non-collinear
boosts will results to be equivalent to a boost, followed by spatial rotation,
the Wigner rotation. The Wigner rotation is relativistic effect which has no
a non-covariant analogue. One of the consequences of non-commutativity
of non-collinear Lorentz boosts is the unusual momentum-velocity relation
p⃗cov , mv⃗cov/

√
1 − v2

cov/c2, which is also has no a non-covariant analogue.

This is a good point to make a general remark about the unusual momentum-
velocity relation discussed above, and Wigner rotations. The theory of rel-
ativity shows that both effects have to do with the effects of acceleration in
curved trajectories. But what we can say about relationship between rotation
and change in velocity? One could naively expect that a Wigner rotation is a
rotation in the ordinary space and that this would not lead to a change of the
three-dimensional velocity vector. In fact, the three-dimensional vector is a
geometric object, and it is invariant under rotations in ordinary space. How-
ever, it can be shown that this assertion is incorrect. Just to give a slight hint
as to how that happens, it should be note that a Wigner rotation describes
the rotation of the axes of a moving reference frame which is observed in
the lab frame. But how to measure this orientation? A moving coordinate
system changes its position in time. We can only specify a method for mea-
suring the orientation of the axes of a moving reference frame if we have
adopted a method of timing events at distance. It has already been pointed
that the Wigner rotation results directly from the relativity of simultaneity,
which is related with the time shift t → t + xvx/c2 along x-axis of the lab
frame. Once we recognize the presence of this time shift, we see that there
is also the time shift along the velocity direction after the kick and this
projection is proportional to θ2

k . It is not hard to prove that this extra time
shift is equivalent to a velocity change: ∆v/v ∼ θ2

k . We may point out that
the Wigner rotation and the unusual momentum-velocity relation can be
regarded as the two sides of the same coin: they are manifestations of the
mixture of positions and time.

4.6.4 Trajectory and path

So far we have considered the motion of a particle in three-dimensional
space using the vector-valued function x⃗(t). We have a prescribed curve
(path) along which the particle moves. The motion along the path is de-
scribed by l(t), where l is a certain parameter (in our case of interest the
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length of the arc). Note the difference between the notions of path and tra-
jectory [26]. The trajectory of a particle conveys more information about its
motion because every position is described additionally by the correspond-
ing time instant. The path is rather a purely geometrical notion. Complete
paths or their parts may consist of, e. g., line segments, arcs, circles, helical
curves. If we take the origin of the (Cartesian) coordinate system and we
connect the point to the point laying on the path and describing the motion
of the particle, then the creating vector will be a position vector x⃗(l). The
derivative of a vector is the vector tangent to the curve described by the
radius vector x⃗(l). The sense of the dx⃗(l)/dl is determined by the sense of the
curve arc l.

We want now to describe how to determine the position vector x⃗(l)cov in
covariant particle tracking. We consider the motion in an uniform magnetic
field with zero electric field. Using the Eq.(8) we obtain

dp⃗
dτ
= ep⃗ × B⃗,

dE
dτ
= 0 . (13)

From dE/dτ = 0 and constraint Eq.(12) we have dp/dτ = 0, where p =
|p⃗|. The unit vector p⃗/p can be described by the following equation p⃗/p =
dx⃗cov/|dx⃗cov| = dx⃗cov/dl, where |dx⃗cov| = dl is the differential of the path length.
From foregoing consideration it follows that

d2x⃗cov

dl2 =
dx⃗cov

dl
×

eB⃗
p

 . (14)

These three equations corresponds exactly to the equations for components
of the position vector that can be found using the non-covariant particle
tracking approach. Then x⃗(l)cov is exactly equal to x⃗(l) as it must be. The path
x⃗(l) has exact objective meaning i.e. it is convention-invariant. In contrast
to this, and consistently with the conventionality intrinsic in the velocity,
the trajectory x⃗(t) of the particle is convention dependent and has no exact
objective meaning. We should also notice that a uniform magnetic field can
be used in making a ”momentum analyzer” for high-energy charge parti-
cles. It must be recognized that this method for determining the particle’s
momentum is convention-independent.
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5 Relativity and electrodynamics

Going to the electrodynamics problem, the differential form of Maxwell’s
equations describing electromagnetic phenomena in the Lorentz lab frame
(in cgs units) is given by the following expressions:

∇⃗ · E⃗ = 4πρ ,
∇⃗ · B⃗ = 0 ,

∇⃗ × E⃗ = −1
c
∂B⃗
∂t
,

∇⃗ × B⃗ =
4π
c

j⃗ +
1
c
∂E⃗
∂t
. (15)

Here the charge density ρ and current density j⃗ are written as

ρ(x⃗, t) =
∑

n

enδ(x⃗ − x⃗n(t)) ,

j⃗(x⃗, t) =
∑

n

env⃗n(t)δ(x⃗ − x⃗n(t)) , (16)

where δ(x⃗− x⃗n(t)) is the three-dimensional delta function, while mn, en, x⃗n(t),
and v⃗n = dx⃗n(t)/dt denote respectively the rest mass, charge, position, and
the velocity of the nth particle involved in the electrodynamic process. To
evaluate radiation fields arising from an external sources in Eq. (16), we need
to know the velocity v⃗n and the position x⃗n as a function of the lab frame
time t. As discussed above, it is generally accepted that one should solve the
usual Maxwell’s equations in the lab frame with current and charge density
created by particles moving along non-covariant trajectory like x⃗n(t). The
trajectory x⃗n(t), which follow from the solution of the corrected Newton’s
second law under the absolute time convention, does not include, however,
relativistic effects.

In our previous publications [8, 9, 10, 11, 12, 13, 14] we argued that this
algorithm for solving usual Maxwell’s equations in the lab frame, which is
considered in all standard treatments as relativistically correct, is at odds
with the principle of relativity. However, the usual Maxwell’s equations in
the lab frame, Eq. (15), are compatible only with covariant trajectories cal-
culated by using Lorentz coordinates, therefore including relativistic kine-
matics effects.

The covariant particle trajectory x⃗cov(t) is calculated by projecting the cor-
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responding world line to the lab frame basis and using the lab time t as
a parameter for the trajectory curve. The charge and current densities Eq.
(16), must be written as 4-vector current by representing charge world line
in Lorentz lab frame

xµ(τ) = [t(τ), x1(τ), x2(τ), x3(τ)] , (17)

and integrating over proper time with an appropriate additional delta func-
tion. Thus

jµ(x) = ec
∫

dτuµ(τ)δ4(x − x(τ)) , (18)

where charge 4-velocity uµ(τ) = dxµ/dτ. The integration over the proper
time of τ leads to

jµ(x⃗, t) = euµ(t)δ3(x⃗ − x⃗cov(t)) , (19)

Thus we obtain

ρ(x⃗, t) = eδ(x⃗ − x⃗cov(t)) ,
j⃗(x⃗, t) = ev⃗cov(t)δ(x⃗ − x⃗cov(t)) , (20)

where v⃗cov = dx⃗cov/dt.

It is generally believed that the usual momentum-velocity relation p⃗cov =

mv⃗cov/
√

1 − v2
cov/c2 holds for any arbitrary world-line x(τ). Let us present a

typical textbook statement [27] concerning the projection of an arbitrary
world line onto the Lorentz lab frame basis: ”A charged point particle
moving along the world line x(τ), τ being proper time, within the frame-
work of Special Relativity has the velocity u(τ) = dx(τ)/dτ = (γc, γv⃗). The
four-velocity is normalized such that its invariant squared norm equals c2,
u2 = c2γ2(1− β2) = c2. While x(τ) and u(τ) are coordinate-free definitions the
decomposition u = (cγ, v⃗γ) presupposes the choice of a frame of reference
K. The particle, which is assumed to curry the charge e, creates the current
density j(x) = ec

∫
dτu(y)δ4(y − x(τ)). This is a Lorentz vector. [...] Further-

more, in any frame of reference K, one recovers the expected expressions for
the charge and current densities by integrating over τ by means of relation
dτ = dt′/γ between proper time and coordinate time and using the formula
δ(y0 − x0(τ)) = δ(ct − ct′) = δ(t − t′)/c, j0(t, y) = ceδ(3)(y − x(t)) ≡ cρ(t, y),
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ji(t, y) = evi(t)δ(3)(y − x(t)), i = 1, 2, 3.” We state that this incorrect and mis-
leading. In fact, as we have already discussed in the previous section, the
four-velocity cannot be decomposed into u = (cγ, v⃗γ) when we deal with a
particle accelerating along a curved trajectory in the Lorentz lab frame.

One of the consequences of non-commutativity of non-collinear Lorentz
boosts is the unusual momentum-velocity relation. In this case there is a
difference between covariant and non covariant particle trajectories. One
can see that this essential point has never received attention by the physical
community. As a result, a correction of the conventional radiation theory is
required.

5.1 Radiation emitted by a single electron

We will be interested in the case of an ultra-relativistic electron going
through a certain magnetic system. We will discuss of a bending magnet
and undulator in order to illustrate our reasoning, but the considerations in
this section are fully general, and apply to any magnetic system. Radiation
theory is naturally developed in the space-frequency domain, as one is usu-
ally interested in radiation properties at a given position in space and at a
certain frequency. In this paper we define the relation between temporal and
frequency domain via the following definition of Fourier transform pair:

f̄ (ω) =

∞∫
−∞

dt f (t) exp(iωt)↔ f (t) =
1

2π

∞∫
−∞

dω f̄ (ω) exp(−iωt) . (21)

Suppose we are interested in the radiation generated by an electron and
observed far away from it. In this case it is possible to find a relatively
simple expression for the electric field [31]. We indicate the electron velocity
in units of c with β⃗, the electron trajectory in three dimensions with R⃗(t) and
the observation position with R⃗0. Finally, we introduce the unit vector

n⃗ =
R⃗0 − R⃗(t)

|R⃗0 − R⃗(t)|
(22)

pointing from the retarded position of the electron to the observer. In the
far zone, by definition, the unit vector n⃗ is nearly constant in time. If the
position of the observer is far away enough from the charge, one can make
the expansion
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∣∣∣∣R⃗0 − R⃗(t)
∣∣∣∣ = R0 − n⃗ · R⃗(t) . (23)

We then obtain the following approximate expression for the the radiation
field in the space-frequency domain 10 :

⃗̄E(R⃗0, ω)=− iωe
cR0

exp
[ iω

c
n⃗ · R⃗0

] ∞∫
−∞

dt n⃗ ×
[
n⃗ × β⃗(t)

]
exp

iω t − n⃗ · R⃗(t)
c


(24)

where ω is the frequency, (−e) is the negative electron charge and we make
use of Gaussian units.

5.2 Multipole expansion

First we will limit our consideration to the case of sources moving in a non-
relativistic fashion. According to the principle of relativity, usual Maxwell’s
equations Eq. (15) can always be used in any Lorentz frame where sources
are at rest. The same considerations apply where sources are moving in
non-relativistic manner. In particular, when oscillating, charge particles emit
radiation, and in the non-relativistic case, when the velocities of oscillating
charges vn ≪ c, dipole radiation will be generated and described with the
help of the Maxwell’s equations in their usual form, Eq. (15).

Let’s examine in a more detail how the dipole radiation term comes about.
The time R⃗(t) · (n⃗/c) in the integrands of the expression for the radiation field
amplitude, Eq. (24), can be neglected in the cases where the trajectory of the
charge changes little during this time. It is easy to find the conditions for
satisfying this requirement. Let us denote by a the order of magnitude of
the dimensions of the system. Then the time R⃗(t) · (n⃗/c) ∼ a/c. In order to
ensure that the distribution of the charges in the system does not undergo
a significant change during this time, it is necessary that a ≪ λ. Thus, the
dimensions of the system must be small compared to radiation wavelength.
This condition can be written in the in still another form v ≪ c, where v is
of the order of magnitude of the velocities of the charges.

We consider the radiation associated with the first order term in the expan-
sion of the Eq. (24) in power of R⃗(t) · (n⃗/c). In doing so, we neglected all

10 For a better understanding of the physics involved one can refer to e.g. the
textbook [31]. A different constant of proportionality in Eq. (24) is to be ascribed to
the use of different units and definition of the Fourier transform.
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information about the electron trajectory R⃗(t). In this dipole approximation
the electron orbit scale is always much smaller than the radiation wave-
length and Eq. (24) gives fields very much like the instantaneous theory.

Now we consider the radiation associated with the succeeding terms in the
expansion of the field amplitude Eq. (24) in powers of R⃗(t) · (n⃗/c) i.e. in the
power of the ratio v/c. Since v/c is assumed to be small, these terms are small
compared with the first (dipole) term. Thus, the total radiation consists of
independent parts; they are called dipole, quadrupole, octupole terms etc.

Although this looks rather complicated, the result is easily interpreted. In ac-
counting only for the dipole part of the radiation we neglect all information
about the electron trajectory. Therefore, one should not be surprised to find
that there is no influence of the difference between the non-covariant and
covariant electron trajectories on the electromagnetic dipole radiation. But
that is only the first term. The other terms tell us that there are corrections
to the dipole radiation approximation. The calculation of this correction re-
quires detailed information about the electron trajectory. Obviously, in order
to calculate the correction to the dipole radiation, we will have to use the
covariant trajectory and not be satisfied with the non-covariant approach.

6 Lorentz and Galilean transformations in electrodynamics

6.1 Operational interpretation of Lorentz and absolute time coordinatizations

The fundamental laws of electrodynamics are expressed by Maxwell’s equa-
tions, according to which light propagate with the same velocity c in all
directions. This is because Maxwell’s theory has no intrinsic anisotropy. It
had been stated that in their original form, Maxwell’s equations are valid
in any inertial frame. However, Maxwell’s equations can be written down
only if the space-time coordinate system has already been specified.

We want to consider a relativistic particle, accelerating in a lab inertial
frame, and we want to analyze its radiation within the framework of special
relativity. The problem of assigning Lorentz coordinates to the lab frame in
the case of accelerated motion is complicated. We would like to start with
the simpler question of how to assign space-time coordinates to an inertial
lab frame, where a dipole source of light is at rest. The theory of relativity
offer a procedure of clocks synchronization based on the constancy of light
speed in inertial frames (Einstein synchronization).

Suppose we have a dipole radiation source. When the light source is at
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rest, the fields equations are constituted by the usual Maxwell’s equations
and Einstein synchronization is defined in terms of light signals emitted
by the (dipole) source at rest, assuming that light propagate with the same
velocity c in all directions. Using Einstein synchronization procedure in the
rest frame of the dipole, we actually select the Lorentz coordinate system.
In this coordinate system the metric has Minkowski form.

Now we consider the acceleration of the light source in the lab frame from
rest up to velocity v along the x-axis. The influence of the uniform transla-
tional motion of the source along the x-axis on the (dipole) radiation emis-
sion can be described purely kinematically. Most important in the study of
a moving emitter of light is the synchronization of the clocks at rest in the
lab frame. The simplest method of synchronization consists in keeping the
same set of uniformly scattered already synchronized clocks without any
changes.

It is clear that such synchronization preserve simultaneity and is actually
based on the absolute time (simultaneity) convention. After a boost along
the x axis, the Cartesian coordinates of emitter transform as x′ = x− vt, y′ =
y, z′ = z. This transformation completes with the invariance in simultaneity,
∆t′ = ∆t. The absolute character of the temporal coincidence between two
events is a consequence of the as well absolute concept of time t′ = t. As a
result of the boost, the transformation of the time and coordinates of any
event has the form of a Galilean transformation. That is, applying a Galilean
transformation, we obtain the not orthogonal metric Eq.(4). From the above
we conclude that the coordinate velocity of light from the moving emitter
in the lab frame is dependent of the relative velocity between emitter and
observer. The speed of light is compatible with the Galilean law of addition
of velocities. The reason why the velocity of light is different from the
electrodynamics constant c is due to the fact that the clocks are synchronized
by the absolute time convention. The coordinate velocity of a light parallel
to the x-axis dx/dt is given as follows: dx/dt = c+ v in the positive direction,
dx/dt = −c + v in the negative direction.

In agreement with the principle of relativity, usual Maxwell’s equations can
be exploited in a moving inertial frame where sources are at rest. However,
the transformation connecting two inertial frames with absolute time syn-
chronization is a Galilean transformation, and Maxwell’s equations do not
remain form-invariant with respect to Galilean transformations. As a re-
sult, without changing synchronization in the lab frame, after the boost we
have a much more complicated situation for the electrodynamics of mov-
ing sources compared to the usual one. The main difference consists in the
crossed terms ∂2/∂t∂x which arises in d’Alembertian from the non-diagonal
component of the metric tensor g01 = v/c. To get around this difficulty, we
observe that metric Eq.(4) can always be simplified. The trick needed here
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is to make a change of the time and spatial variables. In the new variables
Eq.(6) we obtain metric in the usual Minkowski form. Obviously, transform-
ing to new variables leads to the usual Maxwell’s equations and we have
standard electrodynamics of moving sources.

A coordinate system endowed with diagonal metric is called, as already
said, a Lorentz coordinate system. So, from an operational point of view,
the new coordinates in the lab frame after the clocks resynchronization are
impeccable. However, from the theory of relativity we know that if we wish
to assign Lorentz coordinates to an inertial lab frame, the synchronization
must be defined in terms of light signals. The following important detail
of such synchronization can hardly be emphasized enough. If the source of
light is in motion, we see that the procedure for distant clocks synchronizing
must be performed by using a moving light source. The constant value of c
for the speed of light emitted by the moving source destroys the simultane-
ity introduced by light signals emitted by the (dipole) source at rest. The
coordinates reflecting the constant speed of light c from a moving source
are Lorentz coordinates for that particular source.

Consider now two light sources the 1, 2 say. Suppose that in the lab frame
the velocities of 1,2 are v⃗1, v⃗2 and v⃗1 , v⃗2. The question now arise how to as-
sign a time coordinate to the lab reference frame. We have a choice between
an absolute time coordinate and a Lorentz time coordinate. The most natu-
ral choice, from the point of view of connecting to the laboratory reality, is
the absolute time synchronization. In this case simultaneity is absolute, and
for this we should prepare, for two sources, only one set of synchronized
clocks in the lab frame. On the other hand, Maxwell’s equations are not
form-invariant under Galilean transformations, that is, their form is differ-
ent on the lab frame. In fact, the use of the absolute time convention, implies
the use of much more complicated field equations, and these equations
are different for each source. Now we are in the position to assign Lorentz
coordinates. The only possibility to introduce Lorentz coordinates in this
situation consists in introducing individual coordinate systems (i.e. indi-
vidual set of clocks) for each source. It is clear that if operational methods
are at hand to fix the coordinates (clock synchronization in the lab frame)
for the first source, the same methods can be used to assign values to the
coordinates for the second source and these will be two different Lorentz
coordinate systems. It should have been made clear that Lorentz coordinate
systems exist only in our mind and manipulations with non existing clocks
are an indispensable prerequisite for the application of the usual Maxwell’s
equations for moving light sources.
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6.2 Optical phenomena and the Galilean coordinate transformations

Light is described by electromagnetic field theory, Maxwell theory. The
Maxwell theory meets all requirements of the theory of relativity and, there-
fore, must accurately describe the properties of such a relativistic object as
light. In the microscopic approach (i.e. in the approach which based on
the way the field behave dynamically) to optical phenomena, Einstein and
absolute time synchronization conventions give the same result for any
convention-invariant phenomena, and it does not matter which transfor-
mation (Galilean or Lorentz) is used.

6.2.1 The aberration of light

We are now in the position to understand a number of interesting optical
phenomena in the framework of the electromagnetic field theory, based on
the use of the absolute time convention. For example, consider the effect
of light aberration, that is a change in the direction of light propagation
ascribed to boosted light sources. We will describe the effect of aberration of
light by working only up to the first order v/c. However, even in this simple
non relativistic example we are able to demonstrate that Galilean transfor-
mations do not leave Maxwell’s equations unchanged. When a Galilean
transformation of Maxwell’s equations is tried, the new terms that have to
be put into the electromagnetic field equations lead to the effect of aberra-
tion of light. It does not matter which convention and hence transformation
is used to describe the same reality.

The explanation of the effect of aberration of light presented in well-known
textbooks is actually based on the use of a Lorentz boost (i.e. of relativistic
kinematics) to describe how the direction of a light ray depends on the
velocity of the light source relative to the lab frame. Let us discuss a special
case of the aberration of a horizontal light ray. Suppose that a light source,
studied in the comoving frame S′, radiates a plane wave along the z-axis.
Now imagine what happens in the lab frame, where the source is moving
with constant speed v along the x-axis. The transformation of observations
from the lab frame with Lorentz coordinates to the co-moving Lorentz frame
is described by a transverse Lorentz boost. On the one hand, the wave
equation remains invariant with respect to Lorentz transformations. On the
other hand, if make a Lorentz boost, we automatically introduce a time
transformation t′ = t − xv/c2 and the effect of this transformation is just a
rotation of the wavefront in the lab frame. This is because the effect of this
time transformation is just a dislocation in the timing of processes, which
has the effect of rotating the plane of simultaneity on the angle v/c in the first
order approximation. In other words, when a uniform translational motion
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of the source is treated according to Lorentz transformations, the aberration
of light effect is described in the language of relativistic kinematics. In fact,
the relativity of simultaneity is a relativistic effect that appears also in the
first order in v/c.

It should be noted, however, that there is another satisfactory way of ex-
plaining the effect of aberration of light. The explanation consists in using
a Galileo boost to describe the uniform translational motion of the light
source in the lab frame. After the Galilean transformation of the wave equa-
tion we come to the conclusion that the crossed term described above yields
an aberration angle v/c. It could be said that the crossed term generates
anisotropy in the lab frame that is responsible for the change of radiation
direction (aberration). In fact, in order to eliminate the crossed term in the
transformed wave equation, we can make a change of the time variable.
After both Galilean coordinate transformation and time shift we obtain the
wave equation in ”diagonal” form, i.e. without crossed terms. The time
shift results in a slope of the plane of simultaneity. Then, the electromag-
netic waves are radiated at the angle v/c, yielding the phenomenon of light
aberration: the two approaches, treated according to Einstein’s or absolute
time synchronization conventions give the same result. The choice between
these two different approaches is a matter of pragmatics.

6.2.2 A moving source and stationary mirror

Because of our usage of Galilean transformations within electrodynamics
we have some apparent paradoxes. An analysis of paradoxes leads to a
better understanding of the four-dimensional geometrical significance of
the concepts of space and time in the theory of relativity.

The peculiarity of the kinematic consequence of using Galilean transfor-
mations is that the speed of light emitted by a moving source depends on
the relative velocity between source and observer. A widespread theoreti-
cal argument used to support the incorrectness of Galilean transformations
is the conclusion that a Galilean transformation of the velocity of light is
not consistent with the electron-theoretical explanation of reflection and
refraction.

This idea is a part of the material in well-known books. For instance, in
his famous review [29], Pauli pointed out that if we consider a moving
source and a stationary mirror, the incident light wave with its velocity
c + v and a wave scattered by the dipoles of the mirror with their different
velocity cannot interfere as required by the electron theory of dispersion
since their velocity are different. To quote Pauli [29] ”[...] it is essential that
the spherical waves emitted by the dipoles in the body should interfere with
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the incident wave. If we now think of the body as at rest, and the light source
moving relative to it, then [...] the wave emitted by the dipoles will have
velocity different from that of the incident wave. Interference is therefore
not possible.”

This conclusion is incorrect. It is clear that an incident wave with a certain
frequency, no matter what its velocity, excites the electrons of a mirror into
oscillations of the same frequency. They then emit radiation with the same
frequency. Thus, the incident and scattered wave at any given point have
the same frequency and can interfere . The effect of the different velocities
is to produce a relative phase which varies with position in space. This,
according to well known ideas, affects the velocity and amplitude envelope
of the single wave which results from the superposition of the two separate
waves [30].

The following simple analysis confirms these ideas. Let exp i(ωt − kx) rep-
resent an incoming wave whose velocity is ω/k = c + v. Similarly, let
exp i(ωt+k′x+ϕ) represent another out-coming (scattered radiation) wave of
the same amplitude and the same frequency, a different velocityω/k′ = c−v
and different phase. The superposition of these two waves is represented
by exp i(ωt− kx)+ exp i(ωt+ k′x+ϕ) = 2[cos[(k+ k′)x/2+ϕ/2]] exp i[ωt− (k−
k′)x/2+ϕ/2]. There is the cosine factor representing an amplitude envelope
which is stationary in space and whose periodicity is inversely proportional
to the difference in the propagating constants k and k′ of the two compo-
nent waves. This can be written in a simpler form 2[cos[ωx/[c(1 − v2/c2)] +
ϕ/2]] exp i[ωt − xvω/[c2(1 − v2/c2)] + ϕ/2].

Suppose that the source at rest is emitting waves at frequency ω0. In the lab
frame after the Galilean transformation the velocity of incoming wave is
c + v. Thus if ω0 is the natural frequency, the modified frequency would be
ω = ω0/[1 − v/(c + v)]. Therefore the observed in the lab frame frequency is
ω = ω0(1+v/c). The shift in frequency observed in the above situation is the
well known Doppler effect. Our equation for superposition of two waves
now looks like 2[cos[ω0x/[c(1− v/c)]+ϕ/2]] exp i[ω0(1+ v/c)t− xvω0/[c2(1−
v/c)] + ϕ/2].

Suppose that an observer in the laboratory performs the standing wave
measurement. We should examine what parts of the measured data depends
on the choice of synchronization convention and what parts do not. Clearly,
physical meaningful results must be convention-invariant. We state that
time oscillation has no intrinsic meaning - its meaning only being assigned
by a convention. In particular, one can see the connection between the time
shift xvω0/[c2(1 − v/c)] in exp i[ω0(1 + v/c)t − xvω0/[c2(1 − v/c)] + ϕ/2] and
the issue of distant clock synchrony. Note that the scale of time (frequency)
is also unrecognizable from physical viewpoint.
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Suppose we took an ordinary atom, which had a natural frequencyω0 at rest
and we moved it toward the observer in the lab frame at speed v. In order to
measure the velocity of the atom within the lab frame, the observer first has
to specify frequency (time) standard and length standard and then has to
synchronize distant clock. Let us suppose that the same atom at rest which
has natural frequency ω0 is used as frequency standard. If we organize a
standing wave by using (dipole) radiation from atoms at rest with standard
frequency, we can use the standing wavelength as a standard of length.

Suppose that distant clocks are synchronized by light signals by using dipole
(atom) radiation source at rest. It is also assumed that light from the source
at rest propagate with the same velocity c in all direction in the lab frame.
Let us go back to our calculations of the speed of light from the moving
source when the clocks in the lab frame are synchronized according to the
procedure described above i.e. according to the absolute time convention.
When coordinates are assigned in the lab frame, the laboratory observer
can directly measure the one-way speed of light. The result he observes
is that the speed of light emitted by the moving source is consistent with
the Galilean law of addition of velocities. In particular, when the source is
moving with velocity v along the z-axis, the velocity of light in the direction
parallel to the z-axis, is equal to c + v in the positive, and −c + v in the
negative orientations. The principle of relativity assures that no physical (i.e.
convention-invariant) observable can depend on the value of v. In particular,
the principle of relativity requires that the two-way speed of light is equal to
c in any given inertial frame. Our next objective is to understand the results
of a measurement of the two-way speed of light from the moving source
described above.

Suppose that the laboratory observer performs a measurement of the wave-
length of the standing wave. Then, when the measured data is analyzed,
the laboratory observer finds that the speed of light is equal to c. We now
give derivation of this interesting and important result. If we analyze the
geometry of the situation, we find that from the standing wave measure-
ment we can only extract information about two-way speed of light. The
wavenumber observed in the above situation is ω0/[c(1 − v/c)]. So if ω0/c is
the wavenumber of light emitted by the same atom at rest in the lab frame,
the observer finds that the wavelength of radiation from moving source
(the source moves towards the observer) is decreased by the factor (1− v/c).
We see that it is the same factor that we can obtain by assuming that the
velocity of light from the moving source in the lab frame is c. Due to the
Galilean vectorial velocities addition, the laboratory observer will measure
the same two-way speed of light, irrespective of the source velocity. In other
words, the measurement of the two-way speed of light is universal and the
laboratory observer actually verifies the principle of relativity.
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7 Synchrotron radiation. Geometry and approximations

7.1 Paraxial approximation for the radiation field

We call z the observation distance along the optical axis of the system, while
r⃗ fixes the transverse position of the observer. Using the complex notation,
in this and in the following sections we assume, in agreement with Eq. (21),
that the temporal dependence of fields with a certain frequency is of the
form:

E⃗ ∼ ⃗̄E(z, r⃗, ω) exp(−iωt) . (25)

With this choice for the temporal dependence we can describe a plane wave
traveling along the positive z-axis with

E⃗ = E⃗0 exp
( iω

c
z − iωt

)
. (26)

In the following we will always assume that the ultra-relativistic approxi-
mation is satisfied, which is the case for SR setups. As a consequence, the
paraxial approximation applies too. The paraxial approximation implies a
slowly varying envelope of the field with respect to the wavelength. It is
therefore convenient to introduce the slowly varying envelope of the trans-
verse field components as

⃗̃E(z, r⃗, ω) = ⃗̄E(z, r⃗, ω) exp (−iωz/c) . (27)

Introducing angles θx = x0/z0 and θy = y0/z0, the transverse components
of the envelope of the field in Eq. (24) in the far zone and in paraxial
approximation can be written as

⃗̃E(z0, r⃗0, ω)=− iωe
c2z0

∞∫
−∞

dz′exp [iΦT]
[(

vx(z′)
c
− θx

)
e⃗x +

(
vy(z′)

c
− θy

)
e⃗y

]
(28)

where the total phase ΦT is

ΦT = ω

[
s(z′)

v
− z′

c

]
+
ω
2c

[
z0(θ2

x + θ
2
y) − 2θxx(z′) − 2θyy(z′) + z′(θ2

x + θ
2
y)
]
. (29)
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Here vx(z′) and vy(z′) are the horizontal and the vertical components of
the transverse velocity of the electron, x(z′) and y(z′) specify the transverse
position of the electron as a function of the longitudinal position, e⃗x and
e⃗y are unit vectors along the transverse coordinate axis. Finally, s(z′) is the
longitudinal coordinate along the path. The electron is moving with velocity
v⃗, whose magnitude is equal to v = ds/dt.

7.2 Approximation for the electron path

Let us now discuss the case of the radiation from a single electron with
an arbitrary angular deflection η⃗ and an arbitrary offset l⃗ with respect to
a reference orbit defined as the path through the origin of the coordinate
system, that is x(0) = y(0) = 0.

If the magnetic field in the setup does not depend on the transverse coor-
dinates, i.e. B = B(z), an initial offset x(0) = lx, y(0) = ly shifts the path of
an electron of l⃗. Similarly, an angular deflection η⃗ = (ηx, ηy) at z = 0 tilts
the path without modifying it. Cases when the magnetic field of SR sources
include focusing elements (or the natural focusing of insertion devices) are
out of the scope of this paper. Assuming further that ηx ≪ 1 and ηy ≪ 1,
which is typically justified for ultrarelativistic electron beams, one obtains
the following approximation for the electron path:

r⃗(z) = r⃗r(z) + η⃗z + l⃗ ,
v⃗(z) = v⃗r(z) + vη⃗ , (30)

where the subscript ‘r’ refers to the reference path. The pair (⃗r(z), z) gives
a parametric description of the path of a single electron with offset l⃗ and
deflection η⃗. The curvilinear abscissa on the path can then be written as

s(z) =

z∫
0

dz′
1 + (

dx
dz′

)2

+

(
dy
dz′

)21/2

≃
z∫

0

dz′
1 + 1

2

(
dxr

dz′

)2

+
1
2

(
dyr

dz′

)2

+
1
2

(
η2

x + η
2
y

)
+ ηx

dxr

dz′
+ ηy

dyr

dz′


= sr(z) +

η2z
2
+ r⃗r(z) · η⃗ , (31)

where we expanded the square root around unity in the first passage, we
made use of Eq. (30), and of the fact that the curvilinear abscissa along the
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reference path is sr(z) ≃ z +
∫ z

0
|dr⃗r/dz′|2/2.

We now substitute Eq. (30) and Eq. (31) into Eq. (28) to obtain:

⃗̃E(z0, r⃗0, ω) = − iωe
c2z0

∞∫
−∞

dz′exp [iΦT]

×
[(

vx(z′)
c
− (θx − ηx)

)
e⃗x +

(
vy(z′)

c
− (θy − ηy)

)
e⃗y

]
,

(32)

where the total phase ΦT is

ΦT = ω

[
sr(z′)

v
+
η2z′

2v
+

1
v

r⃗r(z′) · η⃗ −
z′

c

]
+
ω
2c

[
z0(θ2

x + θ
2
y) − 2θxxr(z′) − 2θxηxz′ − 2θxlx

−2θyy(z′) − 2θyηyz′ − 2θyly + z′(θ2
x + θ

2
y)
]
, (33)

which can be rearranged as

ΦT ≃ ω
[
sr(z′)

v
− z′

c

]
− ω

c
(θxlx + θyly)

+
ω
2c

[
z0(θ2

x + θ
2
y) − 2(θx − ηx)xr(z′)

−2(θy − ηy)yr(z′) + z′
(
(θx − ηx)2 + (θy − ηy)2

)]
.

(34)

8 Undulator radiation

8.1 Existing theory

8.1.1 Undulator radiation from a single electron moving along undulator axis

Eq. (28) can be used to characterize the far field from an electron moving
on any path. In this section we present a simple derivation of the frequency
representation of the radiated field produced by an electron in the planar
undulator. The magnetic field on the undulator axis has the form
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H⃗(z) = e⃗yHw cos(kwz) , (35)

The Lorentz force is used to derive the equation of motion of the electron in
the presence of a magnetic field. Integration of this equation gives

vx(z) = −cθs sin(kwz) = −cθs

2i
[
exp(ikwz) − exp(−ikwz)

]
. (36)

Here kw = 2π/λw, andλw is the undulator period. Moreover,θs = K/γ, where
K is the deflection parameter defined as

K =
eλwHw

2πmc2 , (37)

m being the electron mass at rest and Hw being the maximal magnetic field
of the undulator on axis.

In this case the electron path is given by

x(z) = rw cos(kwz) , (38)

where rw = θs/kw is the oscillation amplitude.

We write the undulator length as L = Nwλw, where Nw is the number of
undulator periods. With the help of Eq. (28) we obtain an expression, valid
in the far zone:

⃗̃E =
iωe
c2z0

L/2∫
−L/2

dz′exp [iΦT] exp
[
i
ωθ2z0

2c

] [
K
γ

sin (kwz′) e⃗x + θ⃗

]
.

(39)

Here

ΦT =

(
ω

2cγ̄2
z
+
ωθ2

2c

)
z′ − Kθx

γ
ω

kwc
cos(kwz′) − K2

8γ2

ω
kwc

sin(2kwz′) ,

(40)

where the average longitudinal Lorentz factor γ̄z is defined as

γ̄z =
γ

√
1 + K2/2

. (41)
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The choice of the integration limits in Eq. (39) implies that the reference
system has its origin in the center of the undulator.

Usually, it does not make sense to calculate the intensity distribution from
Eq. (39) alone, without extra-terms (both interfering and not) from the other
parts of the electron path. This means that one should have complete in-
formation about the electron path and calculate extra-terms to be added to
Eq. (39) in order to have the total field from a given setup. Yet, we can find
particular situations for which the contribution from Eq. (39) is dominant
with respect to others. In this case Eq. (39), alone, has independent physical
meaning.

One of these situations is when the resonance approximation is valid. This
approximation does not replace the paraxial one, based on γ2 ≫ 1, but it is
used together with it. It takes advantage of another parameter that is usually
large, i.e. the number of undulator periods Nw ≫ 1. In this case, the integral
in dz′ in Eq. (39) exhibits simplifications, independently of the frequency of
interest due to the long integration range with respect to the scale of the
undulator period.

In all generality, the field in Eq. (39) can be written as

⃗̃E = exp
[
i
ωθ2z0

2c

]
iωe
c2z0

×
L/2∫

−L/2

dz′
{

K
2iγ

[
exp (2ikwz′) − 1

]
e⃗x + θ⃗ exp (ikwz′)

}

× exp
[
i
(
C +

ωθ2

2c

)
z′ − Kθx

γ
ω

kwc
cos(kwz′) − K2

8γ2

ω
kwc

sin(2kwz′)
]
.

(42)

Here ω = ωr + ∆ω, C = kw∆ω/ωr and

ωr = 2kwcγ̄2
z , (43)

is the fundamental resonance frequency.

Using the Anger-Jacobi expansion:

exp
[
ia sin(ψ)

]
=

∞∑
p=−∞

Jp(a) exp
[
ipψ

]
, (44)

where Jp(·) indicates the Bessel function of the first kind of order p, to write
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the integral in Eq. (42) in a different way:

⃗̃E = exp
[
i
ωθ2z0

2c

]
iωe
c2z0

∞∑
m,n=−∞

Jm(u)Jn(v) exp
[ iπn

2

]

×
L/2∫

−L/2

dz′ exp
[
i
(
C +

ωθ2

2c

)
z′
]

×
{

K
2iγ

[
exp (2ikwz′) − 1

]
e⃗x + θ⃗ exp (ikwz′)

}
exp [i(n + 2m)kwz′] ,

(45)

where 11

u = − K2ω
8γ2kwc

and v = −Kθxω
γkwc

. (46)

Up to now we just re-wrote Eq. (39) in a different way. Eq. (39) and Eq. (45)
are equivalent. Of course, definition of C is suited to investigate frequencies
around the fundamental harmonic but no approximation is taken besides
the paraxial approximation.

Whenever

C +
ωθ2

2c
≪ kw , (47)

the first phase term in z′ under the integral sign in Eq. (45) is varying slowly
on the scale of the undulator period λw. As a result, simplifications arise
when Nw ≫ 1, because fast oscillating terms in powers of exp[ikwz′] ef-
fectively average to zero. When these simplifications are taken, resonance
approximation is applied, in the sense that one exploits the large parameter
Nw ≫ 1. This is possible under condition (47). Note that (47) restricts the
range of frequencies for positive values of C independently of the obser-
vation angle θ, but for any value C < 0 (i.e. for wavelengths longer than
or = c/ωr) there is always some range of θ such that Eq. (47) can be ap-
plied. Altogether, application of the resonance approximation is possible
for frequencies around ωr and lower than ωr. Once any frequency is fixed,
(47) poses constraints on the observation region where the resonance ap-
proximation applies. Similar reasonings can be done for frequencies around
higher harmonics with a more convenient definition of the detuning param-
eter C.

11 Here the parameter v should not be confused with the velocity.
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Within the resonance approximation we further select frequencies such that

|∆ω|
ωr
≪ 1 , i.e. |C| ≪ kw . (48)

Note that this condition on frequencies automatically selects observation
angles of interest θ2 ≪ 1/γ2

z . In fact, if one considers observation angles out-
side the range θ2 ≪ 1/γ2

z , condition (47) is not fulfilled, and the integrand
in Eq. (45) exhibits fast oscillations on the integration scale L. As a result,

one obtains zero transverse field, ⃗̃E = 0, with accuracy 1/Nw. Under the con-
straint imposed by (48), independently of the value of K and for observation
angles of interest θ2 ≪ 1/γ2

z , we have

|v| = K|θx|
γ

ω
kwc
=

(
1 +
∆ω
ωr

) 2
√

2K√
2 + K2

γ̄z|θx| . γ̄z|θx| ≪ 1 . (49)

This means that, independently of K, |v| ≪ 1 and we may expand Jn(v) in
Eq. (45) according to Jn(v) ≃ [2−n/Γ(1 + n)] vn, Γ(·) being the Euler gamma
function

Γ(z) =

∞∫
0

dt tz−1 exp[−t] . (50)

Similar reasonings can be done for frequencies around higher harmonics
with a different definition of the detuning parameter C. However, around
odd harmonics, the before-mentioned expansion, together with the appli-
cation of the resonance approximation for Nw ≫ 1 (fast oscillating terms in
powers of exp[ikwz′] effectively average to zero), yields extra-simplifications.

Here we are dealing specifically with the first harmonic. Therefore, these
extra-simplifications apply. We neglect both the term in cos(kwz′) in the
phase of Eq. (42) and the term in θ⃗ in Eq. (42). First, non-negligible terms in
the expansion of Jn(v) are those for small values of n, since Jn(v) ∼ vn, with
|v| ≪ 1. The value n = 0 gives a non-negligible contribution J0(v) ∼ 1. Then,
since the integration in dz′ is performed over a large number of undulator
periods Nw ≫ 1, all terms of the expansion in Eq. (45) but those for m = −1
and m = 0 average to zero due to resonance approximation. Note that
surviving contributions are proportional to K/γ, and can be traced back to
the term in e⃗x only, while the term in θ⃗ in Eq. (45) averages to zero for n = 0.
Values n = ±1 already give negligible contributions. In fact, J±1(v) ∼ v. Then,
the term in e⃗x in Eq. (45) is v times the term with n = 0 and is immediately
negligible, regardless of the values of m. The term in θ⃗ would survive
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averaging when n = 1, m = −1 and when n = −1, m = 0. However, it
scales as θ⃗v. Now, using condition (48) we see that, for observation angles
of interest θ2 ≪ 1/γ2

z , |θ⃗| |v| ∼ (
√

2 K /
√

2 + K2 ) γ̄zθ2 ≪ K/γ. Therefore, the
term in θ⃗ is negligible with respect to the term in e⃗x for n = 0, that scales as
K/γ. All terms corresponding to larger values of |n| are negligible.

Summing up, all terms of the expansion in Eq. (44) but those for n = 0 and
m = −1 or m = 0 give negligible contribution. After definition of

AJJ = J0

(
ωK2

8kwcγ2

)
− J1

(
ωK2

8kwcγ2

)
, (51)

that can be calculated at ω = ωr since |C| ≪ kw, we have

⃗̃E = − Kωe
2c2z0γ

AJJ exp
[
i
ωθ2z0

2c

] L/2∫
−L/2

dz′ exp
[
i
(
C +

ωθ2

2c

)
z′
]

e⃗x ,

(52)

yielding the well-known free-space field distribution:

⃗̃E(z0, θ⃗) = − KωeL
2c2z0γ

AJJ exp
[
i
ωθ2z0

2c

]
sinc

[
L
2

(
C +

ωθ2

2c

)]
e⃗x ,

(53)

where sinc(·) ≡ sin(·)/(·). Therefore, the field is horizontally polarized and
azimuthal symmetric.

8.1.2 An electron with arbitrary angular deflection and offset

Eq. (53) can be generalized to the case of a particle with a given offset l⃗
and deflection angle η⃗ with respect to the longitudinal axis, assuming that
the magnetic field in the undulator is independent of the transverse coordi-
nate of the particle. Although this can be done using Eq. (32) directly, it is
sometimes possible to save time by getting the answer with some trick. For
example, in the undulator case one takes advantage of the following geo-
metrical considerations, which are in agreement with rigorous mathematical
derivation. First, we consider the effect of an offset l⃗ on the transverse plane,
with respect to the longitudinal axis z. Since the magnetic field experienced
by the particle does not change, the far-zone field is simply shifted by a
quantity l⃗. Eq. (53), can be immediately generalized by systematic substitu-
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tion of the transverse coordinate of observation, r⃗0 with r⃗0 − l⃗. This means
that θ⃗ = r⃗0/z0 must be substituted by θ⃗ − l⃗/z0, thus yielding

Ẽ
(
z0, l⃗, θ⃗

)
=− KωeL

2c2z0γ
AJJ exp

iωz0

2c

∣∣∣∣∣∣θ⃗ − l⃗
z0

∣∣∣∣∣∣
2 sinc


ωL

∣∣∣∣θ⃗ − (⃗
l/z0

)∣∣∣∣2
4c

 . (54)

Let us now discuss the effect of a deflection angle η⃗. Since the magnetic field
experienced by the electron is assumed to be independent of its transverse
coordinate, the path followed is still sinusoidal, but the effective undulator
period is now given by λw/ cos(η) ≃ (1+η2/2)λw. This induces a relative red
shift in the resonant wavelength ∆λ/λ ∼ η2/2. In practical cases of interest
we may estimate η ∼ 1/γ. Then, ∆λ/λ ∼ 1/γ2 should be compared with
the relative bandwidth of the resonance, that is ∆λ/λ ∼ 1/Nw, Nw being the
number of undulator periods. For example, if γ > 103, the red shift due to
the deflection angle can be neglected in all situations of practical relevance.
As a result, the introduction of a deflection angle only amounts to a rigid
rotation of the entire system. Performing such rotation we should account
for the fact that the phase factor in Eq. (54) is indicative of a spherical
wavefront propagating outwards from position z = 0 and remains thus
invariant under rotations. The argument in the sinc(·) function in Eq. (54),
instead, is modified because the rotation maps the point (z0, 0, 0) into the
point (z0,−ηxz0,−ηyz0). As a result, after rotation, Eq. (54) transforms to

Ẽ
(
z0, η⃗, l⃗, θ⃗

)
= −

KωeLAJJ

2c2z0γ
exp

iωz0

2c

∣∣∣∣∣∣θ⃗ − l⃗
z0

∣∣∣∣∣∣
2 sinc


ωL

∣∣∣∣θ⃗ − (⃗
l/z0

)
− η⃗

∣∣∣∣2
4c


(55)

Finally, in the far-zone case, we can always work in the limit for l/z0 ≪ 1, that
allows one to neglect the term l⃗/z0 in the argument of the sinc(·) function,
as well as the quadratic term in ωl2/(2cz0) in the phase. Thus Eq. (55) can be
further simplified, giving the generalization of Eq. (53) in its final form:

Ẽ
(
z0, η⃗, l⃗, θ⃗

)
=−

KωeLAJJ

2c2z0γ
exp

[
i
ω
c

(
z0θ2

2
− θ⃗ · l⃗

)]
sinc


ωL

∣∣∣∣θ⃗ − η⃗∣∣∣∣2
4c

 . (56)

It is clear from the above that, according to conventional synchrotron radi-
ation theory, if we consider radiation from one electron at detuning C from

67



resonance, the introduction of a kick only amounts to a rigid rotation of the
angular distribution along the new direction of the electron motion. This is
plausible, if one keeps in mind that after the kick the electron has the same
velocity and emits radiation in the kicked direction owing to the Doppler
effect. After such rotation, Eq. (53) transforms into Eq. (56)

8.2 Undulator radiation and special theory of relativity

8.2.1 Angular-spectral flux radiated in the central cone

We have seen that in all generality the expression for the undulator field in
the far zone and in the ultrarelativistic (i.e. paraxial) approximation can be
written as Eq. (42). Within the resonance approximation (Nw ≫ 1) for the
frequencies around the first harmonic it can be simplified to the well-known
expression Eq. (53) where the field is horizontally polarized and azimuthal
symmetric. The divergence of this radiation is much smaller compared to
the angle 1/γ̄z. The mathematical reason stems from the fact that the factor
sin(·)/(·) represents the well-known resonance character of the undulator
radiation. If we are interested in the angular width of the peak around the
observation angle θ = 0, we can introduce an angular displacement ∆θ.
Taking the first zero of the sin(·)/(·) function at C = 0 we will be able to
determine the natural angular width of the radiation for the first harmonic
θc. The cone with aperture θc is usually called central cone. It can be found
that θ2

c = 1/(2Nwγ̄2
z)≪ 1/γ̄2

z .

Now we would like to understand what is the characteristic transverse size
of the field distribution at the exist of the undulator. The radiation from
magnetic poles always interferes coherently at zero angle with respect to
undulator axis. This interference is constructive within an angle of about√

c/(ωLw). We can estimate the interference size at the undulator exit as
about

√
cLw/ω. On the other hand, the electron oscillating amplitude is given

by rw = cθs/kw = cK/(γkw). It follows that r2
w/(cLw/ω) = K2ω/(Lwk2

wγ
2) =

K2/[πNw(1 + K2/2)] ≪ 1, where we use the fact that γ2 = (1 + K2/2)γ̄2
z . This

inequality holds independently of the value of K, because Nw ≫ 1. Thus,
the electron oscillating amplitude is always much smaller than the radiation
diffraction size at the undulator exit.

We consider the radiation associated with the first order term in the expan-
sion of the Eq. (45) in power of v = Kθxω/(γkwc). But in doing so we miss
all information about transverse electron trajectory in the phase factor Eq.
(40) since the term Kθxω cos(kwz′)/(γkwc) is neglected. In this approximation
the electron orbit scale is always much smaller than the radiation diffraction
size and Eq. (53) gives fields very much in agreement with the dipole ra-
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diation theory. So we are satisfied using the non covariant approach when
considering the transverse electron motion.

There are several points to be made about the above result. We have just
explained that in accounting only for the radiation in the central cone, we
miss all information about the transverse electron motion. To be complete
we must add an analysis of the accelerated motion along the z-direction (i.e.
along the undulator axis). We assume that the transverse velocity v⊥(z) is
small compared to the velocity of light c. We consider the small expansion
parameter v⊥/c, neglecting terms of order (v⊥/c)3, but not of order (v⊥/c)2. In
other words we use a second order relativistic approximation for transverse
motion. We should remark that the analysis of the longitudinal motion in the
ultrarelativistic approximation is much simpler than in the case of transverse
motion. It is easy to see that the acceleration in the constant magnetic field
yields an transverse electron velocity v⊥ and ∆vz = −v(v⊥/c)2/2 parallel to
the z-axis. If we evaluate the transformations up to the second order (v⊥/c)2,
the relativistic correction in the longitudinal motion does not appear. So
one should not be surprised to find that, in this approximation, there is
no influence of the difference between the non-covariant and covariant
constrained electron trajectories on the undulator radiation in the central
cone.

8.2.2 Influence of the kick

According to the correct coupling of fields and particles, there is a remark-
able prediction of undulator radiation theory concerning to the undulator
radiation from the single electron with and without kick. Namely, when a
kick is introduced, there is a red shift in the resonance wavelength of the un-
dulator radiation in the velocity direction. To show this, let us consider the
covariant treatment, which makes explicit use of Lorentz transformations.

When the kick is introduced, covariant particle tracking predicts a non-
zero red shift of the resonance frequency, which arises because in Lorentz
coordinates the electron velocity decreases from v to v−vθ2

k/2 after the kick,
while the velocity of light is unvaried and equal to the electrodynamics
constant c (see section 4.6 for a detailed derivation).

Now the formula Eq. (34) is not quite right, because we should have used not
the velocity of electron v but v− vθ2

k/2. The shift in the total phase ΦT under
the integral Eq. (32) can be expressed by the formula ∆ΦT = ωθ2

kz′/(2c),
where we account to that v ≃ c in ultrarelativistic approximation.

Suppose that without kick the electron moves along the constrained trajec-
tory parallel to the undulator axis. The field which produces this electron in
the far zone is given by Eq. (53). Referring back to the Eq. (56), we see that
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the conventional undulator radiation theory gives the following expression
for radiation field after the kick

⃗̃E = − KωeL
2c2z0γ

AJJ exp
[
i
ωθ2z0

2c

]
sinc

L
2

C +
ω

∣∣∣∣θ⃗ − θ⃗k

∣∣∣∣2
2c


 e⃗x .

(57)

The covariant equations say that, when the kick is introduced, the radiation
field in question is given by the formula

⃗̃E = − KωeL
2c2z0γ

AJJ exp
[
i
ωθ2z0

2c

]
sinc

L
2

C +
ωθ2

k

2c
+
ω

∣∣∣∣θ⃗ − θ⃗k

∣∣∣∣2
2c


 e⃗x ,

(58)

This formula has nearly, but not quite the same form as Eq. (57), the dif-
ference consisting in the term ωθ2

k/(2c) in the argument of sinc function.
Attention must be called to the difference in resonance frequency between
the undulator radiation setup with and without the kick. Remembering the
definition of the detuning parameter C = kw∆ω/ωr, we can write the red
shift in resonance frequency as ∆ω/ωr = −ωrθ2

k/(2kwc). With this we also
pointed out that the red shift can be written as ∆ω/ωr = −γ2θ2

k/(1 + K2/2).
We now see a second order correction θ2

k that is, however, multiplied by the
large factor γ2.

We are now ready to investigate, more generally, what form the field ex-
pression takes under the introduction of a kick. Suppose that, without kick,
the electron moves along the trajectory with angle η⃗ with respect to the
undulator axis. The field produced by this electron is given by Eq. (56). We
let θ⃗k be the kick angle of the electron with respect to its initial motion. The
conventional approach gives the following expression for the field after the
kick

⃗̃E = − KωeL
2c2z0γ

AJJ exp
[
i
ωθ2z0

2c

]
sinc

L
2

C +
ω

∣∣∣∣θ⃗ − η⃗ − θ⃗k

∣∣∣∣2
2c


 e⃗x .

(59)

In contrast, the covariant approach gives
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⃗̃E = − KωeL
2c2z0γ

AJJ exp
[
i
ωθ2z0

2c

]
sinc

L
2

C +
ωθ2

k

2c
+
ω

∣∣∣∣θ⃗ − η⃗ − θ⃗k

∣∣∣∣2
2c


 e⃗x ,

(60)

Now this all leads to an interesting situation. According to the conventional
theory, the resonance wavelength depends only on the observation angle
with respect to the electron velocity direction. Equation (59) says that for any
kick angle θ⃗k and for any angle η⃗ between the undulator axis and the initial
electron velocity direction, the radiation along the velocity direction has no
red shift. We would like to emphasize a very important difference between
conventional and covariant theory. The result of the covariant approach
Eq. (60) clearly depends on the absolute value of the kick angle θk and the
radiation along the velocity direction has the red shift only when the kick
angle has nonzero value.

We must conclude that when we accelerate the electron in the lab frame
upstream the undulator, the information about this acceleration is included
into the covariant trajectory. Perhaps it is not so puzzling, though, when
one remembers that, as well known, after the circular revolution the elec-
tron’s interaction with electromagnetic fields depends on the acceleration
prehistory which accumulates in the Wigner (electron spin) rotation.

8.2.3 Results of experiment

We now wish to consider an experiment whose results can only be ex-
plained on the basis of our corrected undulator radiation theory. We refer to
the ”beam splitting” experiment at the LCLS [7]. It apparently demonstrated
that after a modulated electron beam is kicked on a large angle compared
to the divergence of the XFEL radiation, the modulation wavefront is read-
justed along the new direction of the motion of the kicked beam. Therefore,
coherent radiation from the undulator placed after the kicker is emitted
along the kicked direction practically without suppression 12 .

In the framework of the conventional theory, there is also a second out-
standing puzzle concerning the beam splitting experiment at the LCLS. In
accordance with conventional undulator radiation theory, if the modulated
electron beam is at perfect (undulator) resonance without kick, then after

12 The tuning limit of the kick angle was set by the beamline aperture to ≃ 5 rms of
the XFEL radiation divergence, see Fig. 14 in [7]. According to conventional theory,
this leads to decrease the radiation efficiency in the kicked direction by more than
three orders of magnitude
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the kick the same modulated beam must be at perfect resonance in the ve-
locity direction. However, experimental results clearly show that there is
a red shift in the resonance wavelength when the kick is introduced. The
maximum power of the coherent radiation is reached when undulator is
detuned to be resonant to the lower longitudinal velocity after the kick [7].

It should be remarked that any linear superposition of a given radiation
field from single electrons conserves single-particle characteristics like para-
metric dependence on undulator parameters and polarization. Consider a
modulated electron beam kicked by a weak dipole field before entering
a downstream undulator. Radiation fields generated by this beam can be
seen as a linear superposition of fields from individual electrons. Now ex-
perimental results clearly show that there is a red shift in the resonance
wavelength for coherent undulator radiation when the kick is introduced.
It follows that the undulator radiation from the single electron has red shift
when the kick is introduced as well. This argument suggests that results
of the beam splitting experiment in reference [7] confirm our correction
for spontaneous undulator emission. In fact, one of the immediate conse-
quences of our theory is the occurrence of the non-zero red shift of the
resonance wavelength when the kick angle has nonzero value.

Our conclusion is in open contrast with the [28], that include a kinematical
mistake in the description of the undulator resonance condition for the elec-
tron beam with angular deflection between the velocity and the undulator
axis. In the reference [28] one can read: ”The FEL radiation wavelength λr

depends on the undulator period λu, and the electron beam Lorentz factor γ:
λr = λu(1+K2/2+γ2ϕ2)/(2γ2), (1) where ϕ is the observation angle from
the undulator axis. [...] The dipole corrector in front of the Delta (undulator)
is then used to give a kick to the electron beam in the desired circularly
polarized photon beam direction. The K value of the Delta (undulator) is
also decreased so that resonance condition equation (1) is still satisfied.”

Here, we give a reason why this explanation of the red shift is incorrect.
According to the conventional particle tracking, after the beam is kicked
there is a trajectory change, while the electron velocity remains as before.
The prediction of the conventional undulator radiation theory is that if an
electron beam is at perfect undulator resonance without kick, then after the
kick the same electron beam must be at perfect resonance in the velocity
direction.

The resonance condition (1) in the reference [28] corresponds to the simplest
case when the electron beam is moving along the undulator axis. When there
is an angle between the undulator axis and the electron velocity direction,
the resonance condition depends only on the observation angle with respect
to the velocity direction. This is not surprising, if one analyzes the situation
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in the conventional framework and keeps in mid that after the kick the
electron has the same velocity and emits radiation in the velocity direction
owing to the Doppler effect.

9 Synchrotron radiation from bending magnets

9.1 Existing theory

Consider a single relativistic electron moving on a circular orbit. It is worth
to underline the difference between the geometry which we use and the
geometry used in most synchrotron radiation textbooks for the treatment
of bending magnet radiation. The observer in the standard treatment is
assumed to be located in a vertical plane tangent to the circular trajectory at
the origin, at an angle θ above the level of the orbit. In other words, in this
geometry the z axis is not fixed, but depends on the observer’s position. Note
that the geometry of the electron motion has a cylindrical symmetry, with
the vertical axis going through the center of the circular orbit. Because of this
symmetry, in order to calculate spectral and angular photon distributions, it
is not necessary to consider an observer at a more general location. However,
since the wavefront is not spherical, this way of proceeding can hardly help
to obtain the phase of the field distribution on a plane perpendicular to a
fixed z axis.

9.1.1 Radiation from a single electron moving along an arc of a circle

We can use Eq. (28) to calculate the far zone field of radiation from a rela-
tivistic electron moving along an arc of a circle. Assuming a geometry with
a fixed z we can write the transverse position of the electron as a function
of the curvilinear abscissa s as

r⃗(s) = −R (1 − cos(s/R)) e⃗x (61)

and

z(s) = R sin(s/R) (62)

where R is the bending radius.

Since the integral in Eq. (28) is performed along z we should invert z(s) in
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Eq. (62) and find the explicit dependence s(z):

s(z) = R arcsin(z/R) ≃ z +
z3

6R2 (63)

so that

r⃗(z) = − z2

2R
e⃗x , (64)

where the expansion in Eq. (63) and Eq. (64) is justified, once again, in the
framework of the paraxial approximation.

With Eq. (28) we obtain the radiation field amplitude in the far zone:

⃗̃E =
iωe
c2z0

∞∫
−∞

dz′eiΦT

(z′ + Rθx

R
e⃗x + θye⃗y

)
(65)

where

ΦT = ω

θ2
x + θ

2
y

2c
z0

 +  1
2γ2c

+
θ2

x + θ
2
y

2c

 z′

+
(
θx

2Rc

)
z′2 +

( 1
6R2c

)
z′3

]
. (66)

One can easily reorganize the terms in Eq. (66) to obtain

ΦT = ω

θ2
x + θ

2
y

2c
z0

 − Rθx

2c

(
1
γ2 +

θ2
x

3
+ θ2

y

)
+

(
1
γ2 + θ

2
y

)
(z′ + Rθx)

2c
+

(z′ + Rθx)3

6R2c

]
. (67)

With redefinition of z′ as z′ + Rθx under integral we obtain the final result:

⃗̃E =
iωe
c2z0

eiΦseiΦ0

∞∫
−∞

dz′
(z′

R
e⃗x + θye⃗y

)
× exp

{
iω

[
z′

2γ2c

(
1 + γ2θ2

y

)
+

z′3

6R2c

]}
, (68)
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where

Φs =
ωz0

2c

(
θ2

x + θ
2
y

)
(69)

and

Φ0 = −
ωRθx

2c

(
1
γ2 +

θ2
x

3
+ θ2

y

)
. (70)

In standard treatments of bending magnet radiation, the phase term exp(iΦ0)
is absent. In fact, the horizontal observation angle θx is always equal to
zero. The reason for this is that most textbooks focus on the calculation of
the intensity radiated by a single electron in the far zone, which involves
the square modulus of the field amplitude but do not analyze, for instance,
situations like source imaging.

9.1.2 An electron with arbitrary angular deflection and offset

Up to this point we considered an electron moving along a circular trajectory
that lies in the (x, z)-plane and tangent to the z axis. The phase difference in
the fields will be determined by the position of the observer position and
by the electron trajectory. Let us now discuss the bending magnet radiation
from a single electron with arbitrary angular deflection and offset with
respect to the nominal orbit.

The meaning of horizontal and vertical deflection angles ηx and ηy is clear
once we specify the electron velocity

v⃗(s) = v
[
− sin

( s
R
+ ηx

)
cos(ηy)e⃗x + sin(ηy)e⃗y + cos

( s
R
+ ηx

)
cos(ηy)e⃗z

]
,

(71)

so that the trajectory can be expressed as a function of the curvilinear abscissa
s as

x(s)⃗ex + y(s)⃗ey + z(s)⃗ez =[
lx + R cos

( s
R
+ ηx

)
cos(ηy) − R cos(ηx) cos(ηy)

]
e⃗x

+
[
ly + s sin(ηy)

]
e⃗y

+
[
R sin

( s
R
+ ηx

)
cos(ηy) − R sin(ηx) sin(ηy)

]
e⃗z

(72)
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Here we have introduced, also, an arbitrary offset (lx, ly, 0) in the trajectory.
Using Eq. (72) an approximated expression for s(z) can be found:

s(z) = z +
z3

6R2 +
z2ηx

2R
+

zη2
x

2
+

zη2
y

2
(73)

so that

v⃗(z) =
(
−vz

R
+ vηx

)
e⃗x +

(
vηy

)
e⃗y (74)

and

r⃗(z) =
(
− z2

2R
+ ηxz + lx

)
e⃗x +

(
ηyz + ly

)
e⃗y . (75)

It is evident that the offsets lx and ly are always subtracted from x0 and
y0 respectively: a shift in the particle trajectory on the vertical plane is
equivalent to a shift of the observer in the opposite direction. With this in
mind we introduce angles θ̄x = θx − lx/z0 and θ̄y = θy − ly/z0 to obtain

⃗̃E =
iωe
c2z0

∞∫
−∞

dz′eiΦT

(
z′ + R(θ̄x − ηx)

R
e⃗x + (θ̄y − ηy)e⃗y

)
(76)

and

ΦT = ω
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x + θ̄

2
y

2c
z0

 + ω2c

(
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γ2 +

(
θ̄x − ηx

)2
+

(
θ̄y − ηy

)2
)
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(
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2Rc
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ω

6R2c
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z′3 . (77)

One can easily reorganize the terms in Eq. (77) to obtain

ΦT = ω

 θ̄2
x + θ̄

2
y

2c
z0

 − ωR(θ̄x − ηx)
2c

×
(

1
γ2 + (θ̄y − ηy)2 +

(θ̄x − ηx)2

3

)
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1
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)
ω

(
z′ + R(θ̄x − ηx)

)
2c
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+
ω

(
z′ + R(θ̄x − ηx)

)3

6R2c
. (78)

Redefinition of z′ as z′ + R(θ̄x − ηx) gives the result

⃗̃E =
iωe
c2z0

eiΦseiΦ0

∞∫
−∞

dz′
(z′

R
e⃗x + (θ̄y − ηy)e⃗y

)
× exp

{
iω

[
z′

2γ2c

(
1 + γ2(θ̄y − ηy)2

)
+

z′3

6R2c

]}
, (79)

where

Φs =
ωz0

2c

(
θ̄2

x + θ̄
2
y

)
(80)

and

Φ0 = −
ωR(θ̄x − ηx)

2c

(
1
γ2 + (θ̄y − ηy)2 +

(θ̄x − ηx)2

3

)
. (81)

In the far zone we can neglect terms in lx/z0 and ly/z0, which leads to

⃗̃E =
iωe
c2z0

eiΦseiΦ0

∞∫
−∞

dz′
(z′

R
e⃗x +
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)
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, (82)

where

Φs =
ωz0

2c

(
θ2

x + θ
2
y

)
(83)

and

Φo ≃ −
ωR(θx − ηx)

2c

(
1
γ2 + (θy − ηy)2 +

(θx − ηx)2

3

)
− ω

c
(lxθx + lyθy) . (84)
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9.2 Bending magnet radiation and special theory of relativity

9.2.1 Radiation field in space-frequency domain

Our case of interest is an ultrarelativistic electron accelerating in a circle.
As already remarked, in conventional (non-covariant) particle tracking the
description of the dynamical evolution in the lab frame is based on the
use of the absolute time convention. In this case simultaneity is absolute,
and we only need one set of synchronized clocks in the lab frame, to be
used for the description of the accelerated motion. However, the use of
the absolute time convention automatically implies the use of much more
complicated field equations, and these equations are different for each value
of the particle velocity i.e. for each point along its path. This is the reason to
prefer the covariant approach within the framework of both dynamics and
electrodynamics.

We want to solve the electrodynamics problem based on Maxwell’s equa-
tions in their usual form. In this case we should analyze the particle evo-
lution within the framework of special relativity, where the problem of
assigning Lorentz coordinates to the lab frame in the case of accelerating
motion is complicated. The only possibility to introduce Lorentz coordinates
in this situation consists in introducing individual coordinate systems (i.e.
individual rule-clock structure) for each point of the path.

We start by considering an electron moving along a circular trajectory that
lies in the (x, z)-plane and tangent to the z axis. Because of cylindrical sym-
metry, in order to calculate spectral and angular photon distributions, it is
not necessary to consider an observer at general location. The observer is
assumed to be located in the vertical plane tangent to the circular trajec-
tory at the origin. In ultrarelativistic (paraxial) approximation we evaluate
transformations working only up to the order of v2

x/c2. The restriction to
this order provides an essential simplicity of calculations. We can interpret
manipulation with rule-clock structure in the lab frame simply as a change
of variables according to the transformation xd = γxx, td = t/γx + γxxvx/c2.
We are dealing with a second order approximation and γx = 1 + v2

x/(2c2).
The overall combination of Galilean transformation and variable changes
actually yields to the transverse Lorentz transformation (see section 3.3.5
for more detail). Since the Galilean transformation, completed by the in-
troduction of the new variables, is mathematically equivalent to a Lorentz
transformation, it obviously follows that transforming to new variables
leads to the usual Maxwell’s equations.

In order to keep Lorentz coordinates in the lab frame, as discussed before,
we need only to perform a clock resynchronization by introducing the time
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shift ∆t = td − t = −[v2
x/(2c2)]t + xvx/c2. The relativistic correction to the par-

ticle’s offset ”x” does not appear in this expansion order, but only in order
of v3

x/c3 and xd = x in our case of interest. Although we have only shown
that time shift in one rather special case, the result is right for any offset and
(transverse) velocity direction: ∆t = td − t = −[|v⃗⊥|2/(2c2)]z′/c + r⃗⊥ · v⃗⊥/c2.
To finish our analysis we need only find a relativistic correction to the lon-
gitudinal motion. We remark again that if we evaluate the transformations
up to the second order (v⊥/c)2, the relativistic correction in the longitudinal
motion does not appear in this approximation. We have demonstrated the
covariant method that can be used for any trajectory - a general way of
funding what happens directly in space-frequency domain and in paraxial
approximation.

Let us now see how to apply this covariant method to a special situation.
Let’s use our knowledge of the relativistically correct method for calculating
synchrotron radiation emission to find the photon angular-spectral density
distributions from a bending magnet. In the ultrarelativistic approximation,
we have a uniform acceleration of the electron a = v2/R = c2/R in the
transverse direction. We can, then, write velocity and offset of the electron
as follows vx = at = az′/v = az′/c, x = at2/2 = az′2/(2c2). We have now
all quantities we wanted. Let us put them all together in relativistic time
shift: ∆t = td − t = −a2z′3/(2c5) + a2z′3/(2c5) = 0. There is no difference! We
do not need to use covariant particle tracking for derivation of the bending
magnet radiation. Why should that be? Usually, such a beautiful cancellation
is found to stem from a deep underlying principle. Nevertheless, in this
case there does not appear to be any such profound implication. This is a
coincidence. It is because we have deal with uniform acceleration in the
transverse direction using a second order (paraxial) approximation when
an electron is moving along an arc of a circle.

This cancellation is not surprising, if one analyzes the general expression
for the radiation field from bending magnet in the far zone Eq.(68). In our
previous discussion of undulator radiation, we learned that the relativistic
correction appears only when the transverse electron trajectory is included
in the total phaseΦT under the integral Eq.(28). Referring back to Eq.(29) for
the phase factor ΦT , we see that the term which depends on the transverse
position of the electron can be written as exp i(ω/c)[θxx(z′) + θyy(z′)]. We
conclude that the observation angle in the total phase factor under the
integral must be related with the contribution of the transverse electron
trajectory. Now look at Eq.(68). This equation includes only the observation
angleθy in the phase factor under the integral. This means that the transverse
constraint motion of the electron in the bending magnet does not affect
synchrotron radiation. So we are justified using a non-covariant approach
for considering the constrained electron motion along the nominal orbit in
(x, z)-plane.
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We point out that the cancellation in relativistic time shift and the indepen-
dence of the Fraunhofer propagator (to be more precise, in space-frequency
domain we are dealing with a paraxial approximation of Green’s function of
nonhomogeneous Helmholtz equation) on the observation angle θx in the
far zone can be regarded as the two sides of the same coin: they are manifes-
tation of the cylindrical symmetry when an electron is moving along an arc
of a circle. Because of cylindrical symmetry, in order to calculate spectral and
angular photon distributions in the far zone, it is not necessary to consider
an observer at a general location. The observer is assumed to be located in
the vertical plane tangent to the circular trajectory at the origin. In this case
observation angle θx = 0 and the observation angle θy is above the level
of the orbit. In other words, in this very special geometry the z-axis is not
fixed, but depends on the observer position. However, this way of proceed-
ing can hardly help to obtain radiation fields in the near zone. Indeed, in
the near zone we are dealing with the Fresnel propagator, which obviously
depends on the constrained motion of the electron. We use far-zone argu-
ments only to show that there is no influence of the difference between the
non-covariant and covariant trajectories on the synchrotron radiation from
bending magnets. The cancellation in the relativistic time shift leads to the
same outcome in the near zone as it must be.

9.2.2 Influence of the kick

We can check our relativistically correct method against something else we
know. Let us discuss the bending magnet radiation from a single electron
with a kick with respect to the nominal orbit in (x, z)-plane. In this case,
we additionally have a translation along the y-axis with constant velocity
vy = vθk. We can, then, write the offset of the electron as follows y = θkz′.
Let’s put velocity and offset in the relativistic time shift: ∆t = td − t =
−θ2

kz′/(2c) + θ2
kz′/c = θ2

kz′/(2c). So, the shift in the total phase under the
integral along the path can be expressed by the formula ∆ΦT = ωθ2

kz′/(2c).
The result agrees with our red shift calculation in the undulator case when
the kick is introduced, as it must be. Synchrotron radiation from bending
magnets is emitted in a broad spectrum and its angular-spectral density
distributions are not sensitive to red shift of the critical wavelength.

10 Synchrotron radiation in the case of particle motion on a helix

The presence of red shift in bending magnet radiation automatically im-
plies the same problem for conventional cyclotron radiation theory. In fact,
the conventional theory predicts that there should be no red shift for ra-
diation emitted by an electron with velocity directed along and across the
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magnetic lines of force. In the ultrarelativistic limit, thre are well-known
analytical formulas that describe the spectral and angular distribution of
cyclotron radiation emitted by an electron moving in a constant magnetic
field having a non-relativistic velocity component parallel to the field, and
an ultrarelativistic velocity component perpendicular to it. According to the
conventional approach, exactly as for the bending magnet case, the angular-
spectral distribution of radiation is a function of the total velocity of the
particle due, again, to the Doppler effect. At present, relativistic cyclotron
radiation results are textbook examples (see e.g. [32, 33, 34]) and do not
require a detail description. We note, however, that cyclotron-synchrotron
radiation emission is one of the most important processes in plasma physics
and astrophysics and our corrections are very important for a much wider
part of physics than that of synchrotron or XFEL sources.

10.1 Existing theory

A widely accepted expression for the angular and spectral distributions of
radiation from an ultra-relativistic electron on a helical orbit were calculated
in [35, 36]. Let us discuss in some detail the cyclotron radiation emitted
by an electron moving in constant magnetic field with a non-relativistic
component of the velocity parallel to the direction of the magnetic field,
and a ultra-relativistic component perpendicular to it. Here we shell only
give some final results and discuss their relation with the conventional
synchrotron radiation theory from bending magnet. In the case of a uniform
translation motion with non-relativistic velocity along the magnetic field
direction, the radiation field in the far zone according to [33], and using the
notation in that reference, is given by

⃗̃E(χ, α) ∼
{

e⃗x

(ξ2 + ψ2)K2/3

 ω2ωc

(
1 +

ψ2

ξ2

)3/2
−i⃗ey

(ξ2 + ψ2)1/2ψK1/3

 ω2ωc

(
1 +

ψ2

ξ2

)3/2 } , (85)

where K1/3 and K2/3 are the modified Bessel functions, ξ = 1/γ, ψ = χ − α,
(χ is the angle between v⃗ and H⃗ and α that between n⃗ and H⃗); the angle ψ is
clearly the angular distance between the direction of the electron velocity v⃗
and the direction of observation n⃗. Here the ωc is defined by 3eHγ2/(2mc).

Actually we have already discussed radiation from an ultrarelativistic elec-
tron on a helical orbit in the previous section. Equation Eq. (82) is the result
we worked out above for the bending magnet radiation from a single elec-
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tron with arbitrary angular deflection with respect to nominal orbit. Eq. (
85) does not look the same as Eq. (82). It will, however, if we now define the
small deflection angle ηy = π/2 − χ and the observation angle θy = π/2 − α
(the observer is also assumed to be located in the vertical plane tangent
to the trajectory i.e. θx, ηx = 0): we get the same result as before 13 . It is
clear from Eq. ( 85) that if we consider the radiation from an electron with
relativistic factor γ moving on circular orbit, the introduction of the kick
only amounts to a rigid rotation of the angular distribution along the new
direction of the electron motion.

10.2 Radiation for a helical motion and special theory of relativity

The angular spectral distribution in Eq. ( 85) was recovered in treatments
that make no explicit use of the theory of relativity [35, 36]. When there is
a motion along the field, that is η , 0, the calculation leading to Eq. ( 85)
is rather elaborate (we performed these calculations in section 9.1.2). It is
therefore desirable to have an independent derivation. This was carried out
in [37]. The simplest way of analyzing the radiation for an ultrarelativistic
helical motion makes use of the theory of relativity and involves practically
no calculations.

The reference frame S′ in which the electron moves in circular motion can be
transformed to a frame S in which the electron proceeds following a helical
trajectory. In [37] it was shown that Eq. ( 85) holds, indeed, in the frame S for
a particle whose velocity is (vx, vy, vz) = (v sinχ sinϕ, v cosχ, v sinχ cosϕ).
The Lorentz transformation, which leads to the value vy = v cosχ for the
y-component of the velocity yields (vx, vy, vz) = (v′ sinϕ′/γy, vy, v′ cosϕ′/γy),

where γy =
√

1 − v2
y/c2, v′ is the velocity of the electron in the frame S′ and

the phase angle ϕ′ = ϕ is invariant. This means that, in order to end up in S
with a transverse velocity v⊥ = v sinχ ( to the magnetic field direction), one
must start in S′ with v′ = γyv sinχ. In the ultrarelativistic approximation
γ2
⊥ = 1/(1 − v2

⊥/c
2) ≫ 1, and one finds the simple result v = v′, so that

a Lorentz boost with non-relativistic velocity vy leads to a rotation of the
particle velocity v⃗ of the angle η = π/2 − χ ≃ vy/c. If one transforms the
radiation field for a particle in a circular motion in the system S′ and neglects
second order terms v2

y/c2 ≪ 1 in observation angle and frequency, one
obtains the result that the effect of a boost amounts to a rigid rotation of
the angular-spectral distribution of the radiation emitted by the electron

13 The integrals in Eq. (82) can be expressed in terms of the modified Bessel func-
tions:

∫ ∞
0 x sin[(3/2)α(x + x3/3)]dx = (1/

√
3)K2/3(α),

∫ ∞
0 x cos[(3/2)α(x + x3/3)]dx =

(1/
√

3)K1/3(α). Then, making the necessary variable changes, the formula reduces
to Eq. ( 85)
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moving with velocity v on a circle that is, once more, Eq. ( 85). So the way
for computing the radiation in the case of uniform translation is simple.
One describes a complicated situation by finding a reference system where
the analysis is already done (radiation in the case of circular motion) and
transforms back to the old reference frame.

From above argument, one could naively expect that according to the theory
of relativity there should be no red shift for the radiation emitted by an
electron with velocity directed along and across the magnetic lines of force.
But when the situation is described as we have done it here, there does
not seem to be any paradox at all; it comes out quite naturally that the
covariant way of analyzing the radiation for helical motion considered in
[37] is based on the Lorentz transformation. In other words, within the lab
frame the Lorentz coordinates are automatically enforced. It assumed that
in the Lorentz lab frame the electron proceeds following a helical trajectory
with velocity v. This is employed as initial condition. In [37] it is correctly
demonstrated that in the ultrarelativistic approximation a Lorentz boost
along the field direction with non relativistic velocity vy leads to the circular
motion of the electron with the same velocity v. Thus the boost will leave
the radiation properties unchanged.

Now what about the value of the electron velocity on a helical orbit in
the Lorentz lab frame? How this velocity is defined in [37]? It is generally
believed that x⃗(t) = x⃗(t)cov and this is the reason why in [37] there is no
distinction between the two (non covariant and covariant) approaches to
describe the electron motion on a helix. If we will keep the Lorentz coor-
dinate system in the lab frame downstream of the kicker, we will find that
the covariant velocity on the helical orbit after the kick decreases from v
to v − vθ2

k/2 and the covariant way of analyzing the radiation for a helical
motion considered in [37] will leads to a red shift in the critical wavelength,
as it must be.

We may also point out that there are two different ways (from the viewpoint
of initial conditions) to organize the same uniform translation along the
magnetic field direction in the Lorentz lab frame. Suppose that an electron
moves, initially, at ultrarelativistic velocity v parallel to the z- axis upstream
a uniform magnetic field (i.e. bending magnet) directed along the y-axis. In
other words, we start by considering an electron moving along a circular
trajectory that lies in the (x, z)-plane. Then we rotate H⃗ in the (y, z)-plane by
angle η = π/2−χ. We consider a situation in which the electron is in uniform
motion with velocity vη along the magnetic field direction. It is clear that if
we consider the radiation from an electron moving on a circular orbit, the
introduction of the magnetic field vector rotation will leave the radiation
properties unchanged. Now we consider another situation in which there
is no bending magnet rotation, but there is a kicker upstream the bending
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magnet. When the kick in y direction is introduced, there is a red shift of
the critical wavelength which arise because the electron velocity decreases
from v to v − vθ2

k/2 after the kick.

The difference between these two situations, ending with a final uniform
translation along the magnetic fields direction is very interesting. It comes
about as the result of the difference between two Lorentz coordinate systems
in the lab frame. By trying to accelerate the electron upstream the bending
magnet we have changed Lorentz coordinates for that particular source. We
know that in order to keep a Lorentz coordinates system in the lab frame
after the kick we need to perform a clock resynchronization. So we should
expect the electron velocity to be changed. Now the difference between
the two setups is understandable. When we do not perturb the electron
motion upstream of the bending magnet, no clock resynchronization takes
place, while when we do perturb the motion, clock resynchronization is
introduced.

11 How to solve problems involving many trajectory kicks

We shell now discuss the situation where there are n arbitrary spaced kick-
ers, all different from one another in terms of the rotation angle introduced.
Let us consider how we may apply covariant particle tracking in this cir-
cumstance, and try to understand what is happening when we have for
example an undulator downstream of the kicker setup. One might say that
this is getting ridiculous. If one wants to calculate the radiation from the
undulator one should take into account all kicks in the electron trajectory,
from the generation of the electron. However, this situation is not surprising,
if one analyzes the general expression for the radiation field from a single
electron Eq.(24). In fact, we should note that, in general, one needs to know
the entire history of the electron from t′ = −∞ to t′ = ∞ since the integra-
tion in Eq.(24) is performed between these limits. However, this statement
should be interpreted physically, depending on the situation under study:
integration should in fact be performed from and up to times when the
electron does not contribute to the field anymore.

We should pointed out that it is the electrodynamics theory, which ultimately
decides what part of the particle trajectory is important for calculating undu-
lator radiation and what part can be neglected. The most important, general
statement concerning the relevant part of the particle trajectory, is that it
must be calculated according to the covariant method (if one wants to use
the usual Maxwell’s equations).

Let us consider the ultrarelativistic assumption 1/γ2 ≪ 1, which is verified
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for synchrotron radiation setups. In general, the introduction of a small
parameter in any theory brings simplifications. The ultrarelativistic approx-
imation implies a paraxial approximation and Eq.(24) can be simplified to
Eq.(28). Suppose that we take a situation in which the rotation angle of the
first bending magnet upstream of the undulator is much larger than 1/γ. In
other words, we now consider an electron moving along a standard syn-
chrotron radiation setup. The electron enters the setup via a bending magnet,
passes through a straight section, an undulator, and another straight sec-
tion. Finally, it leaves the setup via another bend. Note that, although the
integration in Eq.(28) is performed from −∞ to ∞, the only (edge) part of
the trajectory into the bending magnets contributing to the integral is of
order of the radiation formation length ds. Mathematically, it is reflected
in the fact that ΦT(z′) in Eq.(28) exhibits more and more rapid oscillations
as z′ becomes larger than the formation length. At the critical wavelength
the formation length is simply of order of ρ/γ, ρ being the radius of the
bend. That simply corresponds to an orbiting angular interval ∆θ ≃ 1/γ.
Typically, the critical wavelength of the radiation from a bending magnet in
synchrotron radiation source is about 0.1 nm and the formation length in
this case is only few millimeters.

Note that for ultrarelativistic systems in general, the formation length is
always much longer than the radiation wavelength. This counterintuitive
result follows from the fact that for ultrarelativistic systems one cannot
localize sources of radiation within a macroscopic part of the trajectory.
The formation length can be considered as the longitudinal size of a single
electron source. It does not make sense at all to talk about the position where
electromagnetic signals are emitted within the formation length. This means
that, as concerns the radiative process in the bending magnet, we cannot
distinguish between radiation emitted at point A and radiation emitted at
point B when the distance between these two points is shorter than the
formation length ds. Let us now consider the case of a straight section of
length L inserted between the bending magnet and the undulator. One can
still use the same reasoning considered for the bend to define a region of
the trajectory where it does not make sense to distinguish between different
points. As in bending magnet case, the observer sees a time compressed
motion of the source and in the case of straight motion the apparent time
corresponds to an apparent distance oγ2. At the critical wavelength the
bending magnet formation length ds ≃ ρ/γ is simply order of the straight
line formation length oγ2.

Intuitively, bending magnets act like switchers for the ultrarelativistic elec-
tron trajectory. We consider the case when switchers are presented in the
form of bending magnets, but other setups can be considered where switch-
ers have different physical realizations. The only feature that these different
realizations must have in common, by definition of switcher, is that the
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switching process must depends exponentially on the distance from the be-
ginning of the process. Then, a characteristic length ds can be associated to
any switcher. Consider, for example, a plasma accelerator where an electron
is accelerated with high-gradient fields. In this case it is the accelerator itself
that switches on the relativistic electron trajectory, since acceleration in the
GeV range takes place within a few millimeters only. In the X-ray range the
acceleration distance da is shorter than the formation length oγ2 for the fol-
lowing straight section. In this particular case length da plays the role of the
characteristic length of the switcher ds, which switch on the ultrarelativistic
electron trajectory.

Let us now return to our consideration of the standard synchrotron radiation
setup and let us analyze the radiation process in an insertion device (un-
dulator). We have actually the ”creation” of the relativistic electron within
a distance of order oγ2 from the very beginning of the straight section up-
stream the undulator. It is assumed that the length of the straight section
L is much longer than the formation length oγ2 that is clearly always the
case in the X-ray range. When the switching distance ds . oγ2 ≪ L, the
nature of the switcher is not important for describing the radiation from the
undulator installed within the straight section.

Downstream of the switcher we have a uniformly moving electron. The
fields associated to an electron with a constant velocity exhibit an interest-
ing behavior when the speed of the charge approaches that of light. Namely,
in the space-frequency domain there is an equivalence of the fields of a rela-
tivistic electron and those of a beam of electromagnetic radiation. In fact, for
a rapidly moving electron we have nearly equal transverse and mutually
perpendicular electric and magnetic fields. These are indistinguishable from
the fields of a beam of radiation. This virtual radiation beam has a macro-
scopic transverse size of order oγ 14 . At the exit of the switcher we have a
”naked” (or ”field-free”) electron i.e. an electron that is not accompanied by
virtual radiation fields. There is a process of formation of the ”field-dressed”
electron (i.e. the formation of the fields from a fast moving charge) within
the distance of order oγ2 from the very beginning of the straight section
downstream of the switcher.

The electron trajectory being divided into two essentially different parts:
before and after the switcher. If we accelerate the electron in the lab frame
upstream of the switcher, the information about this acceleration is included
into the first part of the covariant trajectory. But this acceleration prehistory
(together with the fields of the ultrarelativistic electron) is washed out dur-

14 An ultrarelativistic electron at synchrotron radiation facilities at nanometer-
wavelength scale (in the space-frequency domain) has indeed a macroscopic trans-
verse size of order of 1 µm
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ing the switching process and at the entrance of the straight section we have
a ”naked” electron.

We start with the description of the field formation process along the straight
section downstream of the switcher, based on the covariant approach. First
of all we have to synchronize distant clocks within the lab frame. The syn-
chronization procedure that follows is the usual Einstein synchronization
procedure. It is assumed that in the Lorentz lab frame the electron proceeds
following a rectilinear trajectory with velocity v. This assumption is used as
initial condition. Then we can analyze situation downstream the switcher
by using the usual Maxwell’s equations.

When one analyzes the process of ”field-dressed” electron formation from
the viewpoint of the non covariant approach, one assumes the same initial
conditions (rectilinear trajectory with velocity v) for the electron motion.
Then one solves the electrodynamics problem of fields formation by using
the usual Maxwell’s equations. We already mentioned that the type of clock
synchronization which results in time coordinate t in an electron trajectory
x⃗(t) is never discussed in accelerator physics. However, we know that the
usual Maxwell’s equations are only valid in the Lorentz frame. The non
covariant approach is obviously based on a definite synchronization as-
sumption, but this is actually a hidden assumption. In other words, within
the lab frame the Lorentz coordinates are then automatically enforced.

So one should not be surprised to find that in this simple case of rectilinear
motion (i.e. in the situation when we have only deal with the description
initial conditions) there is no difference between covariant and non covariant
calculations of the initial conditions at the undulator entrance.

Because of the characteristics of undulator radiation, in order to calculate
the radiation field within the central cone, we only need to account for the
longitudinal accelerated motion. So we are satisfied using a non covariant
approach for considering the constrained motion along the undulator. We
conclude that it does not matter which approach is used to describe the stan-
dard synchrotron radiation setup. The two approaches, treated according
to Einstein’s or absolute time synchronization conventions give the same
result for the radiation within the central cone.

Let us now see what happens with a weak dipole magnet (a kicker), which is
installed in the straight section upstream of the undulator and is character-
ized by a small kick angle (γθk)2 ≪ 1. What do we expect for the undulator
radiation? At first glance the situation is similar to the switcher setup and
the electron trajectory is again divided into two parts: before and after the
kicker. The most important difference, however, is that electrodynamics
now dictates that both trajectories are important for the calculation of the

87



undulator radiation. When the electron passes through the kicker there is
no synchrotron radiation (to be more precise, in this case radiation is indis-
tinguishable from the self-electromagnetic fields of the electron), washing
out the virtual radiation fields like in the switcher case. We expect that an
electron that passes through a kicker is still ”field-dressed”, but we have
an electron whose fields has been perturbed, and now include information
about the acceleration.

According to the conventional theory, as usual for Newtonian kinematics,
the Galilean vectorial law of addition of velocities is actually used. Non-
covariant particle dynamics shows that the direction of the electron trajec-
tory changes after the kick, while its speed remains unvaried. In contrast,
covariant particle tracking, which is based on the use of Lorentz coordinates,
yields different results for the trajectory of the electron. The electron speed
decreases from v to v(1 − θ2

k/2). This result is at odds with the prediction
from non-covariant particle tracking, because Einstein’s addition law for
non-parallel velocities is used to calculate the electron trajectory.

According to the conventional algorithm for solving electrodynamics field
equations, which deals with the usual Maxwell’s equations, and particle
trajectories calculated by using non-covariant particle tracking, the undu-
lator radiation along the velocity direction has no red shift of resonance
frequency for any kick angle θk.

According to the correct coupling of fields and particles, there is a remark-
able prediction of synchrotron radiation theory concerning the setup de-
scribed above. Namely, there is a red shift of the resonance frequency of the
undulator radiation in the kicked direction. To show this, let us first con-
sider the covariant treatment, which makes explicit use of Lorentz transfor-
mations. When the kick is introduced, covariant particle tracking predicts
a non-zero red shift of the resonance frequency, which arises because in
Lorentz coordinates the electron velocity decreases from v to v − vθ2

k/2,
while the velocity of light is unvaried and equal to the electrodynamics
constant c. The red shift in the resonance frequency can be expressed by the
formula ∆ωr/ωr = −γ2θ2

k/(1 + K2/2).

It should be note, however, that there is another satisfactory way of ex-
plaining the red shift. We can reinterpret this result with the help of a non-
covariant treatment, which deals with non- covariant particle trajectories,
and with Galilean transformations of the electromagnetic field equations.
According to non-covariant particle tracking the electron velocity is unvar-
ied. However, Maxwell’s equations do not remain invariant with respect
to Galilean transformation, and the velocity of light has increased from c,
without kick, to c(1 + θ2/2) with kick. The reason for the velocity of light
being different from the electrodynamics constant c is due to the fact that,

88



according to the absolute time convention, the clocks after the kick are not
resynchronized. Now everything fits together, and our calculations show
that covariant and non-covariant treatments (at the correct coupling fields
and particles) give the same result for the red shift prediction, which is
obviously convention-invariant and has direct objective meaning.

One way to demonstrate incompatibility between the standard approach
to relativistic electrodynamics, which deals with the usual Maxwell’s equa-
tions, and particle trajectories calculated by using non-covariant particle
tracking, is to make a direct laboratory test of synchrotron radiation theory.
In other words, we are stating here that, despite the many measurements
done during decades, synchrotron radiation theory is not an experimentally
well-confirmed theory.

We have already pointed out that results of the beam splitting experiment
in reference [7] confirm our correction for spontaneous undulator emission.
These measurements clearly show that there is a red shift in the resonance
wavelength when the kick is introduced [7]. The potential for exploiting syn-
chrotron radiation sources in order to confirm the predictions of corrected
synchrotron radiation theory, is analyzed in [9]. The emittance of the elec-
tron beam in new generation synchrotron radiation sources is small enough,
so that one can neglect finite electron beam size and angular divergence in
the soft X-ray wavelength range, and such synchrotron radiation source can
be examined under the approximation of a filament electron beam. This
allows us to take advantage of analytical presentations for single electron
synchrotron radiation fields. The spontaneous radiation pulse goes through
a monochromator filter and its energy is subsequently measured by a de-
tector. The proposed experimental procedure is relatively simple, because is
based on relative measurements in the velocity direction with and without
transverse kick. Such a measurement is critical, in the sense that the predic-
tion of conventional theory is the absence of red shift, and has never been
performed to our knowledge.

12 Summary

12.1 Covariant particle tracking in a constant magnetic field

The study of relativistic particle motion in a constant magnetic field accord-
ing to usual accelerator engineering, is intimately connected with the old
(Newtonian) kinematics: the Galilean vectorial law of addition of velocities
is actually used. However, Maxwell’s equations are not covariant under
Galilean transformations. We cannot take one kinematics for one part of
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physical phenomena and the other kinematics for the other part, namely
Galilean transformations for mechanics and Lorentz transformations for
electrodynamics. We must decide which part must be retained and which
must be modified. We demonstrated that there is no principle difficulty
with the non-covariant approach in mechanics and electrodynamics. It is
perfectly satisfactory. It does not matter which transformation is used to de-
scribe the same reality. Nevertheless, there is a reason to prefer the covariant
approach within the framework of both mechanics and electrodynamics. As
we have seen, in fact, the choice of the non-covariant approach also implies
the use of much more complicated (anisotropic) electromagnetic field equa-
tions.

The Lorentz transformations give rise to non-Galilean transformation rules
for velocities. According to the covariant approach, the Einstein addition
law for non-parallel velocities is used to calculate the electron trajectory
in a constant magnetic field. It is not surprising that there is a difference
between covariant and non-covariant velocities, in particular vcov < v. But
non-covariant and covariant approaches produce the same particle’s three-
momentum. The point is that both approaches describe correctly the same
physical reality and curvature radius of the trajectory in a given magnetic
field and consequently the three-momentum has an objective meaning, i.e.
it is convention-invariant. In contrast to this, the velocity of the particle has
objective meaning to within a certain accuracy because of the finiteness of
velocity of light.

Authors of textbooks are dramatically mistaken in their belief about the
usual momentum-velocity relation. The covariant equation of motion tells
us that force is the rate of change of momentum, but it does not tells us
how the momentum varies with speed. The usual equations for a parti-
cle motion in the three-dimensional space are not a mathematical result,
derived from the covariant four-dimensional dynamics equation. In these
equations the additional restriction has already been imposed: it is implicit
in the assumption that we are working in the three-dimensional momentum
representation p⃗ = mv⃗γ.

We therefore discovered that for a motion along a curved trajectory, the usual
momentum-velocity relation does not hold. Summarizing, we can state that
for a rectilinear the motion covariant velocity transformation (made ac-
cording to Einstein’s addition velocity rule) is consistent with the covariant
three-momentum transformation, and the usual momentum-velocity rela-
tion holds. But this result was incorrectly extended to curved trajectories.

We emphasize the difference between the notion of path and trajectory in
three-dimensional space. The conventional nature of trajectory in relativis-
tic dynamics should not be confused with the notion of path. The trajectory

90



of a particle conveys more information about its motion, because every
position is described additionally by the corresponding time instant. The
path is rather a purely geometrical notion. The path has an exact objec-
tive meaning i.e. it is convention-invariant. In contrast to this, consistently
with conventionality of the value of velocity, the trajectory of a particle is
convention-dependent and has no exact objective meaning.

Attempts to solve the dynamics equation in manifestly covariant form in
the case of constant magnetic field can be found in literature. The trajectory
which was found does not include relativistic kinematics effects. Therefore,
it cannot be identified with the covariant trajectory even if, at first glance,
it appears to be derived following covariant prescription. It is generally
believed that the usual momentum-velocity relation holds for the arbitrary
world-line x(τ). We state that this incorrect and that the four-velocity can not
be decomposed into u = (cγ, v⃗γ) when we dealing with a particle accelerat-
ing along the curved trajectory in the Lorentz lab frame. The presentation
of the time component as the simple relation dτ = dt′/γ between proper
time and coordinate time is based on the hidden assumption that the type
of clock synchronization, which provides the time coordinate t in the lab
frame, is based on the use of the absolute time convention.

The theory of relativity shows that the unusual momentum-velocity relation
discussed above has to do with the acceleration along curved trajectories.
It is, in fact, a relativistic effect which has no a non-covariant analogue. In
this case there is a difference between covariant and non-covariant particle
trajectories. One can see that this essential point has never received attention
by the physical community. Only the solution of the dynamics equations
in covariant form gives the correct coupling between the usual Maxwell’s
equations and particle trajectories in the lab frame. A closer analysis of
the concept of velocity, i.e. a discussion of the methods by which a time
coordinate can actually be assigned in the lab frame, opens up the possibility
of a description of such physical phenomena as radiation from a relativistic
electron accelerating along a curved trajectory in accordance with the theory
of relativity.

12.2 Relativity and XFELs

12.2.1 Relativistic kinematics effects and ultrarelativistic asymptotics

The appearance of relativistic effects in radiation phenomena does not de-
pend on a large speed of the radiation sources. Lorentz transformations
always give rise to relativistic kinematic effects and no matter how small ra-
tio v/c may be. According to the covariant approach, the various relativistic
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kinematics effects turn up in successive orders of approximation.

In lowest (first) order. - relativity of simultaneity.

In the next (second) order. - time dilation, Lorentz contraction, and Wigner
rotation.

In still higher order. - relativistic correction in the law of composition of
velocities.

These relativistic kinematics effects give rise to convention-invariant rela-
tivistic radiation effects. In particular, the relativity of simultaneity is re-
sponsible for aberrations to the first order of v/c. In the second order, one
gets the transverse Doppler effect. According to the classical theory there
should be no change in frequency. From the relativity theory, the difference
arises from the time dilation, and is of order (v/c)2.

For an arbitrary parameter v/c covariant calculations of the radiation process
is very difficult. There are, however, circumstances in which calculations can
be greatly simplified. As example of such circumstance is a synchrotron ra-
diation setup. Similar to the non-relativistic asymptote, the ultrarelativistic
asymptote also provides the essential simplicity of the covariant calcula-
tion. The reason is that the ultrarelativistic assumption implies the paraxial
approximation. Since the formation length of the radiation is much longer
than the wavelength, the radiation is emitted at small angles of order 1/γ or
even smaller, and we can therefore enforce the small angle approximation.
We assume that the transverse velocity is small compared to the velocity
of light. In other words, we use a second order relativistic approximation
for the transverse motion. Instead of small (total) velocity parameter (v/c)
in the non-relativistic case, we use a small transverse velocity parameter
(v⊥/c). The next step is to analyze the longitudinal motion, following the
same method. We should remark that the analysis of the longitudinal mo-
tion in a synchrotron radiation setup is very simple. If we evaluate the
transformations up to second order (v⊥/c)2, the relativistic correction in the
longitudinal motion does not appear in this approximation.

According to covariant approach, the various relativistic kinematics effects
concerning to the synchrotron radiation setup, turn up in successive orders
of approximation.

In the first order (v⊥/c). - relativity of simultaneity. Wigner rotation, which
in the ultrarelativistic approximation appears in the first order already, and
results directly from the relativity of simultaneity.

In the second order (v⊥/c)2. - time dilation. Relativistic correction in law of
composition of velocities, which already appears in the second order, and
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results directly from the time dilation.

12.2.2 Effect of aberration of light in XFELs

The Wigner rotation effect plays an essential role only in the description
of extended (macroscopic) relativistic objects. But up to 21 st century there
were no macroscopic objects possessing relativistic velocities, and there was
a general belief that only microscopic particles in experiments can travel at
velocities close to that of light. The 2010s saw a rapid development of new
laser light sources in the X-ray wavelength range. An X-ray free electron laser
(XFEL) is an example where improvements in accelerator technology makes
it possible to develop ultrarelativistic macroscopic objects with an internal
structure (modulated electron bunches), and the first order kinematics term
(v⊥/c) plays an essential role in their description. We demonstrated that rela-
tivistic kinematics enters XFEL physics in a most fundamental way through
the Wigner rotation of the modulation wavefront, which, in ultrarelativistic
approximation, is closely associated to the relativity of simultaneity.

There are several cases where the first order relativistic effect can occur in
XFELs, mainly through the introduction of an angular trajectory kick. It is
generally understood that a transverse kick does not change the orientation
of a modulation wavefront, and hence suppresses the radiation emitted in
the direction of the electron motion. We have shown that the covariant ap-
proach within the framework of both mechanics and electrodynamics pre-
dicts an effect in complete contrast to the conventional treatment. Namely,
in the ultrarelativistic limit, the wavefront of modulation, that is a plane of
simultaneity, is always perpendicular to the electron beam velocity. As a re-
sult, the Maxwell’s equations predict strong emission of coherent undulator
radiation from the modulated electron beam in the kicked direction.

It is possible to present intuitive arguments to explain why a modulated
electron beam after the kick radiates in the kicked direction. Consider,
downstream of the kicker, a Lorentz reference frame S′ moving with uni-
form motion at speed v⊥ relative to the lab frame S. A setup in the inertial
frame S′ downstream of the kicker reproduces the situation upstream of the
kicker. In the previous sections we transformed the source (modulated elec-
tron beam) to the lab frame and after this we calculated radiation emitted by
such a source. Now, it would be interesting to show that there is another pos-
sibility. The emitted radiation can be calculated in the moving Lorentz frame
S′. The next question is, what is the change in the radiation beam direction
which is viewed from the lab frame? The direction of the wavefront of the
light wave depends essentially on the velocity of the light source relative
to the observer, a phenomenon commonly known as aberration. Aberration
of light is a shift of the direction of an incident beam of light due to the
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motion of the source relative to the observer. An elementary explanation of
this effect is well-known. This phenomenon is fully understandable in terms
of transformation of velocities between different (inertial) reference frames
both in Einstein’s kinematics and in old (Newtonian) kinematics treatments.

The rule for computing aberration effect is simple. One takes the velocity of
light with respect to the source and adds it vectorially to the velocity of the
source with respect to observer. The direction of the resulting vector is the
apparent direction of the light source as measured at the observer position.
Application of this rule for the case when the angle of aberration is at its
maximum, i.e. when the direction of the observer’s motion is perpendicular
to the direction of the source radiation, results in an angle of aberration of
v⊥/c radians. For this result to hold, it is important that the transverse speed
of the observer v⊥ is very much smaller than the speed of light c. Since all
the velocities mentioned in the rule are relative velocities, the rule confirms
to the principle of relativity. The radiation in the kicked direction can be
quantitatively explained with the help of the rule described above for calcu-
lating the angle of aberration. We find that in ultrarelativistic approximation
v → c and the aberration angle v⊥/c coincides with the kicked angle of the
electron beam θk = v⊥/v.

12.2.3 Relativistic kinematics effects and existing XFEL theory

The usual XFEL theory based on the use of old Newtonian kinematics
for particle dynamics and the Einstein’s kinematics for the electrodynam-
ics. In fact, the usual theoretical treatment of relativistic particle dynamics
involves only a corrected Newton’s second law and is based on the use
Galilean transformations. For rectilinear motion of the modulated electron
beam, non-covariant and covariant approaches produce the same trajecto-
ries, and Maxwell’s equations are compatible with the result of conventional
particle tracking. However, one of the consequences of non-commutativity
of non-collinear Lorentz boosts is a difference between covariant and non
covariant particle trajectories in a constant magnetic field. We conclude that
previous theoretical and experimental results in XFEL physics should be
reexamined in light of the pointed difference between conventional and
covariant particle tracking.

In a typical configuration for an XFEL, the orbit of a modulated electron
beam is controlled to avoid large excursions from the undulator axis. All
existing XFEL codes are based on a model in which the modulated electron
beam moves only along the undulator axis. However, random errors in the
focusing system can cause angular trajectory errors (or ”kicks”). Analysis
of the trajectory errors on the XFEL amplification process showed that any
XFEL undulator magnetic field must satisfy stringent requirements. How-
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ever, semi-analytical studies of this critical aspect in the design of a XFEL
sources are based on an incorrect coupling of fields and particles. The pleas-
ant surprise is that the tolerances predicted are more stringent than they
need be according to the corrected XFEL theory. This can be considered as
one of the reason for the exceptional progress in XFEL developments over
last decade.

Let us now move on to consider the predictions of the existing XFEL theory
in the case of non-collinear electron beam motion. As well-known result of
conventional particle tracking states that after an electron beam is kicked
by a weak dipole magnet there is a change in the trajectory of the electron
beam, while the orientation of the modulated wavefront remains as before.
In other words, the kick results in a difference between the directions of
the electron motion and the normal to the modulation wavefront (i.e. in a
wavefront tilt). In existing XFEL theory the wavefront tilt is considered as
real. According to this belief, there are many physical effects that can be
understood in therms of wavefront tilt. Let us consider one example. One
finds some papers (see e.g. [2, 5]) which say that a wavefront tilt leads to
significant degradation of the electron beam modulation in XFELs.

First, suppose that modulation wavefront is perpendicular to the beam ve-
locity v. The effect of betatron oscillations, which can influence the operation
of the XFEL, has its origin in an additional longitudinal velocity spread. Par-
ticles with equal energies, but with different betatron angles, have different
longitudinal velocities. In other words, on top of the longitudinal velocity
spread due to the energy spread, there is an additional source of velocity
spread. To estimate the importance of the last effect, we should calculate the
dispersion of the longitudinal velocities due to both effects. The deviation
of the longitudinal velocity from nominal value is ∆vz = v∆γ/γ3 − v∆θ2/2.
The finite angular spread of the electron beam results in a difference in time
when each electron arrives at the same longitudinal position, and this spoils
the phase coherence. This is so called normal debunching effect.

From the viewpoint of the existing XFEL theory, the time difference is en-
hanced by the kick angle θk. In this case, according to conventional (non-
covariant) particle tracking, the angle of wavefront tilt is θtilt = θk. It is a
widespread belief that the wavefront tilt has physical meaning, and that the
deviation of the longitudinal velocity component (i.e. velocity component
which is perpendicular to the modulation wavefront within the framework
of Galilean kinematics) is now given by the expression∆vz = −v|∆θ⃗+ θ⃗k|2/2.
If such picture is correct, the crossed term vθ⃗k ·∆θ⃗ leads to a significant degra-
dation of the modulation amplitude. This mechanism is called smearing of
modulation and should be distinguished from the normal debunching.

Many experts would like to think that any debunching process obviously
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has objective meaning. The theory of relativity says, however, that normal
debunching has objective meaning, but smearing effects not exist at all. The
explanation of the new debunching mechanism clearly demonstrates the
essential dependence of the smearing effect on the choice of the coordinate
system in the four-dimensional space, which from the physical point of
view is meaningless. In ultrarelativistic asymptotics the wavefront tilt has
no exact objective meaning since, due to finiteness of the velocity of light,
we cannot specify any experimental method by which this tilt could be as-
certained. The angle of wavefront tilt depends on the choice of a procedure
for clock synchronization in the lab frame, as a result of which it can be
given any preassigned values within the interval (0, θk). For instance, in the
ultrarelativistic asymptote, the orientation of the modulation wavefront is
always perpendicular to the electron beam velocity (i.e. θtilt = 0) when the
evolution of the modulated electron beam is treated using Lorentz coor-
dinates. No physical effects may depends on an arbitrary constant or an
arbitrary function 15 .

The tilt of the modulation wavefront is not a real observable effect. Indeed,
if we couple particle system with electromagnetic fields in accordance with
the principle of relativity, we find that coherent undulator radiation from
the modulated electron beam is always emitted in the kicked direction,
independently of the system of coordinates. It is not difficult to see this
using a Lorentz coordinate system where Maxwell’s equations are valid
and the modulation wavefront is always perpendicular to the beam veloc-
ity. In Maxwell’s electrodynamics, coherent radiation is always emitted in
the direction of the normal to the modulation wavefront. Indeed, we may
consider the amplitude of the beam radiated as a whole to be the resul-
tant of radiated spherical waves. This is because Maxwell’s theory has no
intrinsic anisotropy. The electrons lying on the plane of simultaneity gives
rise to spherical radiated wavelets, and these combine according to Huy-
gens’principle to form what is effectively a radiated wave.

We can derive the same results for observables (the direction of radiation

15 It has been claimed in the recent paper [5] that accounting for the quadrupole
lattice in the baseline XFEL undulator it is possible to obtain a mechanism for the
modulation wavefront to tilt forward, towards the new direction of propagation.
On the basis of these claims, [5] has even concluded that the problem is solved and,
therefore, that the conventional approach requires neither revision nor replace-
ment. However, the paper [5] is incorrect and misleading. The new mechanism of
wavefront rotation depends on the choice of a coordinate system, and therefore it
has no physical meaning. This wavefront rotation effect is completely analogous
to the smearing effect. For instance, it is easy to see that when the evolution of the
modulated electron beam is treated by using Lorentz coordinates, the wavefront is
always perpendicular to the velocity and therefore new mechanism of wavefront
rotation is not a real phenomenon
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propagation has obviously an exact objective meaning) with the help of
Galilean transformations. According to this old kinematics, the orientation
of the modulation wavefront is unvaried. However, Maxwell’s equations
do not remain invariant with respect to Galilean transformations and the
choice of the old kinematics implies the use of anisotropic field equations.
In particular, the wave equation for radiated spherical wavelets transforms
into Eq.(5). The main difference consists in the anisotropic crossed term,
which is of order v⊥/c. In this case the secondary waves (wavelets) are not
spherical, but they are all equal as a consequence of homogeneity. As a
result, the wavefront remains plane but the direction of propagation is not
perpendicular to the wavefront. In other words, the radiation beam motion
and the radiation wavefront (phase front) normal have different directions.
Then, the Huygens’construction shows that the radiated wave propagates
in the kicked direction with the wavefront tilt θk.

Now let us understand physically why the new debunching mechanism
does not exist in framework of Galilean kinematics. In this old kinematics
the crossed term vθ⃗k · ∆θ⃗ leads to a degradation of modulation amplitude
in the forward direction. Our Galilean transformed electrodynamics says,
however, that by making a measurement on the coherent radiation, one
can observe only radiation in the kicked direction. But the crossed term is
absent in the expression for the deviation of the velocity component along
the kicked direction. It comes out quite naturally that the smearing effect is
not a real phenomenon.

The two (covariant and non-covariant) approaches give the same result for
real observable effects. The choice between two different approaches is a
matter of pragmatics. However, we would like to emphasize a difference
in the conceptual background between these two approaches. The non-
covariant approach gives additionally a physical insight into the particular
laws of nature it deals with. For instance, the dynamical line of arguments
explains the radiation in the kicked direction is based on the structure of
the electromagnetic field equations. In the covariant approach the dynam-
ics, based on the electromagnetic field equations, is actually hidden in the
language of relativistic kinematics (Wigner rotation).

The existing XFEL theory based on the use of the absolute time convention
(i.e. old kinematics) for particle dynamics. The understanding of Galilean
transformations in terms of the theory of relativity has always represented a
tough challenge to the physicists who meet those new concepts for the first
time. The aim of this final note about existing XFEL theory is to give a new
proof of the conflict between conventional particle tracking and Maxwell’s
electrodynamics. This new proof is perhaps simpler than the ones we have
given before. The purpose is to show how one can demonstrate in a sim-
ple way that the conventional theory is absolutely incapable of correctly
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describing the distribution of the electromagnetic fields from a fast moving
modulated electron beam downstream the kicker.

In the case of Maxwell’s electrodynamics, the fields of the modulated elec-
tron beam moving with a constant velocity exhibit an interesting behavior
when the velocity of charges approaches that of light. In the space-time do-
main there is an equivalence of the fields of a relativistic modulated electron
beam and those of a laser-like radiation beam. In fact, for a rapidly mov-
ing modulated electron beam we have nearly equal transverse and mutually
perpendicular electric and magnetic fields. These are indistinguishable from
the fields of a laser beam. According to Maxwell’s equations, the wavefront
of the laser beam is always perpendicular to the propagation direction 16 .

This is indeed the case for virtual laser-like radiation beam in the region
upstream the kicker. In the old kinematics case, the kick results in a differ-
ence between the directions of the electron motion and the normal to the
modulation wavefront, i.e. the kick results in a modulation wavefront tilt.
Now let us see what happens with a virtual radiation beam. What do we ex-
pect for radiation wavefront orientation after the kick? In existing literature
theoretical analysis is presented, of an XFEL driven by an electron beam
with wavefront tilt, and this analysis is based on the exploitation of usual
Maxwell’s equations and standard simulation codes.

At first glance Maxwell’s electrodynamics dictates that the wavefront of the
radiation beam must be always perpendicular to the propagation direction.
The most important thing, however, is that the old kinematics now says that
the wavefront of virtual radiation beam remains as before, but the direction
of propagation is not perpendicular to the radiation beam wavefront. In
other words, the radiation beam motion and the radiation wavefront nor-
mal have different directions. So one should not be surprised to find that
the virtual radiation beam (which is indistinguishable from the real radia-
tion laser-like beam in ultrarelativistic asymptote) propagates in the kicked
direction with the wavefront tilt θk. This is the prediction of conventional
XFEL theory and is obviously absurd from the viewpoint of Maxwell’s

16 Within the deep asymptotic region when the transverse size of the modulated
electron beam σ≪ oγ the Ginzburg-Frank formula can be applied. In this asymp-
totic region one has no more electron beam emittance effect, and radiation can be
considered as virtual radiation from a filament electron beam (with no transverse
dimensions). However, in XFEL practice we only deal with the deep asymptotic re-
gion where σ≫ oγ. Then, it can be seen that the field distribution in the space-time
domain is essentially a convolution in the space domain between the transverse
charge distribution of the electron beam and the field spread function described
by the Ginzburg-Frank formula. Assuming a Gaussian (azimuthally-symmetric)
transverse density distribution of the electron beam we obtain the radially polar-
ized virtual radiation beam
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electrodynamics. Therefore, something is fundamentally, powerfully, and
absolutely wrong. The difficulty above is a part of the continual problem
of XFEL physics, which started with coherent undulator radiation from an
ultrarelativistic modulated electron beam in the kicked direction, and now
has been focused on the wavefront tilt of the self-electromagnetic fields of
the modulated electron beam.

Now let us return to the virtual laser-like radiation beam with wavefront
tilt. We have already remarked that the usual study of a modulated elec-
tron beam motion in a magnetic field of weak dipole magnet is intimately
connected with the old kinematics. It does not matter which kinematics and
hence transformation is used to describe the same reality. What matter is
that, once fixed, such kinematics should be applied and kept in a consistent
way in both dynamics and electrodynamics. We can interpret the wavefront
tilt of a virtual radiation beam with the help of the non-covariant treatment,
which deals with non-covariant particle tracking, and Galilean transforma-
tions of electromagnetic field equations. The choice of the old kinematics
implies the use of anisotropic field equations. As a result, the virtual radi-
ation beam motion and virtual radiation wavefront normal have different
directions. Using only a kicker setup (i.e. without undulator radiation setup)
we demonstrated that in conventional XFEL theory the description of the
dynamical evolution in the lab frame is based on the use of the absolute time
convention. In this non-covariant particle tracking, time differ from space
and particle’s trajectories can be seen from the lab frame view as the result
of Galilean boosts that track the motion of the modulated electron beam
through the kicker setup.

12.3 Relativity and synchrotron radiation sources

The first order kinematics term (v⊥/c) plays an essential role only in the
description of the coherent radiation from the modulated electron beam. In
a storage ring the distribution of the longitudinal position of the electrons
in a bunch is essentially uncorrelated. In this case, the radiated fields due
to different electrons are also uncorrelated and the average power radiated
is a simple sum of the radiated power from individual electrons; that is we
sum intensities, not fields. A motion of the single ultrarelativistic electron
in a constant magnetic field, according to the theory of relativity, influences
the kinematics terms of the second order (v⊥/c)2 only.

The relativistic correction to the synchrotron radiation emission from a
single electron appears if and only if the transverse electron trajectory is
involved in the solution of electrodynamics equations. If we analyze the
general expression for the synchrotron radiation field in the far zone, we
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find that the term which depends on the transverse position of the electron
can be written as exp i(ω/c)[θxx(z′)+θyy(z′)]. This is simply the exponent in
the Fraunhofer propagator. We conclude that the observation angle in the
Fraunhofer phase factor under the integral must be related with the contri-
bution of the transverse electron trajectory. If we consider the limit as the
observation angles go to zero, we find that the transverse electron trajectory
x(z′), y(z′) does not affect synchrotron radiation emission.

In a bending magnet we have an electron which is moving along an arc
of a circle. Suppose that trajectory lies in the (x, z)-plane. Note that the
geometry of the electron motion has a cylindrical symmetry. Because of this
symmetry, in order to calculate spectral and angular photon distributions,
it is not necessary to consider an observer at arbitrary observation angle θx.
The observer in the standard treatment is assumed to be located in a vertical
plane tangent to the circular trajectory at the origin, at an angle θy above the
level of the orbit. In other words, in this geometry θx = 0 and the z axis is
not fixed, but depends on the observer position. This means that transverse
constrained motion of the electron in the bending magnet does not affect
the synchrotron radiation. So, all we have to do is project the motion on the
z-axis and we are satisfied using conventional approach for the description
of the bending magnet radiation. This is because we deal with cylindrical
symmetry when an electron is moving along an arc of a circle.

We now move on to consider another situation, a very practical one. To
generate specific synchrotron radiation characteristics, radiation is often
produced from special insertion devices called undulators. The resonance
approximation, that can always be applied in the case of undulator radi-
ation setups, yields simplifications of the theory. This approximation does
not replace the paraxial one, but it is used together with it. It takes advan-
tage of another parameter that is usually large, i.e. number of undulator
periods Nw ≫ 1. In this approximation, all undulator radiation is emitted
within an angle much smaller than 1/γ. This automatically selects observa-
tion angles of interest. In fact, if we consider observation angles outside the
diffraction angle, we obtain zero intensity with accuracy 1/Nw. In working
out the corresponding formula for the radiation field in the far zone using
the limitation for the observation angles described above, we find that ob-
servation angles in the Fraunhofer phase factor can be taken to be zero and
that the transverse constrained electron trajectory does not affect the un-
dulator radiation. So, we are satisfied using the conventional approach for
describing the undulator radiation into the central cone, that is the practical
situation of interest. This practically means that the relativistic kinematics
effects (similar to the bending magnet radiation) are only important in the
prediction of the initial conditions at the radiator entrance.

We would like to make a historical note. The difference between covari-
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ant and non-covariant particle trajectories was never understood. So, ac-
celerator physicists did not appreciate that there was a contribution to
the synchrotron radiation from relativistic kinematics effects. They thought
only in terms of old (Newtonian) kinematics that was not compatible with
Maxwell’s equations. At this point, a reasonable question arises: since stor-
age rings are designed without accounting for the relativistic kinematics
effects, how can they actually operate? In fact, electron dynamics in storage
ring is greatly influenced by the emission of radiation. Due to synchrotron
radiation, electron motion becomes dumped. However, dumping is coun-
terbalanced in storage ring by quantum effects. These two radiation effects
determine transverse electron beam size, energy spread and bunch length.

This example deals with a situation where electron beam kinetics is de-
termined by the emission of synchrotron radiation from bending magnets.
However, because of the cylindrical symmetry, covariant and non-covariant
solutions for the electron motion along an arc of a circle yield similar prop-
erties of synchrotron radiation except the following modifications. First, rel-
ativistic corrections are important only for bending magnet edge radiation.
But the influence of this effect on the electron beam kinetics can be roughly
estimated as the ratio of the radiation formation length (which is typically
a few millimeters) to bending magnet length. This practically means that
such difference is not important in the prediction of storage ring parameters.
Second, the covariant approach predicts a non-zero red shift of the critical
frequency, which arises when there are perturbations of the electron motion
in the vertical direction. But synchrotron radiation from bending magnets
is emitted within a wide range of frequencies, and the output intensity (in
contrast to the undulator case) is not sensitive on the red shift.

13 Conclusions

When we have discovered that during the motion along a curved trajectory,
usual momentum-velocity relation does not hold, we have suddenly con-
nected our theory to an enormous practical development. With this radically
new factor in the XFEL theory, new optimum XFEL design will have to be
created. We must, however, leave that subject to the accelerator engineers
who are interested in working out the details of particular applications. Our
paper only supplies the base for such design - the basic principles for the
description of the radiation from a relativistic electron in accordance with
the principle of relativity.
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