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Abstract

The (spectral) brightness for partially transverse coherent sources as Synchrotron

Radiation (SR) and Free-Electron Laser (FEL) sources can be defined as the maxi-

mum of the Wigner distribution. Then, the brightness includes information on both

coherence and wavefront characteristics of the radiation field. For undulator sources,

it is customary to approximate the single-electron electric field at resonance with a

Gaussian beam, leading to great simplifications. Attempts to account for the modi-

fied spatial and angular profile of the undulator radiation in the presence of detuning

due to energy spread currently build on the simplified brightness expression derived

under the assumption of Gaussian beams. The influence of energy spread on undu-

lator radiation properties is becoming important in view of diffraction-limited rings

with ultralow emittance coming on-line. Here we discuss the effects of energy spread

on the brightness of undulator radiation at resonance, as well as relevant relations

with coherence properties.
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1. Introduction

The concept of (spectral) brightness, which is used as a figure of merit for synchrotron

radiation (SR) and FEL sources, is historically rooted in radiometry (Born & Wolf,

1999). Radiometry treats radiation within the framework of geometrical optics and

characterizes sources in terms of radiance, that is the maximum photon flux density

in phase space, measured as a spectral photon flux per unit area per unit projection

solid angle. Other quantities of interest can be derived by computing the marginals of

the photon phase space distribution. A particularly attractive feature of the radiance

is that for non-dissipative systems where the Liouville theorem holds, this quantity

is an invariant along the beamline. Therefore, it is strictly related to the maximum

spectral photon flux that can be obtained at the sample position, assuming an ideal

optical system.

Starting from the pioneering works (Coisson & Walker, 1986; Kim, 1986; Kim, 1987a;

Kim, 1987b), a lot of literature is available, which deals with the generalization of the

concept of radiance to the case of partially transverse coherent sources as Synchrotron

Radiation (SR) and Free-Electron Laser (FEL) sources (Coisson & Walker, 1986; Kim,

1986; Kim, 1987a; Kim, 1987b; Hulbert & Weber, 1992; Howells & Kincaid, 1994; Bahrdt,

1997; Hulbert & Williams, 1992; Hulbert & Williams, 1998; Bosch, 1999; Attwood, 1999;

Bosch, 2000; Ciocci et al., 2000; Duke, 2000; Thomson & Vaugham, 2001; Wiedemann,

2002; Onuki & Elleaume, 2003; Hofmann, 2004; Clarke, 2004; Talman, 2006; Williams,

2006; Tanaka & Kitamura, 2009; Bazarov, 2012; Huang, 2013; Tanaka, 2014; Geloni

et al., 2015; Vartanyants & Singer, 2018). This generalization process required changing

the working framework from pure geometrical optics to wave optics, backed up by

statistical optics. This led to the substitution of the phase space of optical rays in

geometrical optics with a Wigner distribution that, as is well-known, is a quasi-

probability distribution, not everywhere positive definite.

IUCr macros version 2.1.6: 2014/01/16



3

As underlined in (Bazarov, 2012), this generalization process naturally includes

a strong analogy with quantum mechanics in position representation, where wave

functions are analogous to spatial field distributions and the classical concept of

phase space is substituted by a Wigner distribution, which can assume negative

values related to the ability of wave functions (and electric fields) to interfere. In

quantum mechanics (or in wave optics) one often deals with random processes so

that it becomes necessary to describe the state of the system (or the electric field) in

terms of a density matrix, which assumes the form of a correlation function in position

representation. In the case for SR and FEL sources the underlying, fundamental

stochastic process is the shot-noise in the electron beam. As is well-known, in statistical

optics the spatial field correlation function at a given frequency takes the name of

cross-spectral density. The overall degree of transverse coherence is just analogous

to the trace of the squared of the density matrix representing the statistical operator

for a quantum mixture, and can therefore be expressed in terms of integrals of the

cross-spectral density. It is interesting to remark here that the trace of a matrix is

invariant with respect to a basis transformation. This fact is well-known in statistical

quantum mechanics, where a mixed state can be thought as a mixture of pure states

that diagonalize the statistical operator with weights given by its eigenvalues. The

same fact is similarly well-known in statistical optics, where the coherent mode

decomposition theorem allows to write a cross-spectral density as a sum of uniquely

defined statistically independent contributions, obviously leaving the overall degree

of coherence unvaried.

The relation between cross-spectral density (or density matrix) and Wigner dis-

tribution is a simple Fourier transformation. In other words, they carry the same

identical amount of information. The brightness can be seen as a figure of merit that

is extracted from the Wigner distribution. There are several recipes for doing so. One

IUCr macros version 2.1.6: 2014/01/16



4

defines the brightness in terms of integrals of the Wigner function and of its square.

Another defines it as the Wigner function on axis. See, for example, (Bazarov, 2012)

for a review.

However, as noted in (Geloni et al., 2015), there is a correspondence principle

between wave and geometrical optics, exactly as there is a correspondence princi-

ple between quantum and classical mechanics. In particular, there is a special class

of sources, called quasi-homogeneous sources, for which the Wigner distribution

function factorizes as

W(r,θ) = I(r)I(θ) , (1)

where I(r) and I(θ) can be respectively identified with the source intensity distribu-

tion and with the angular distribution of radiation intensity. Then, W is the product

of two positive quantities, and, being positive-definite everywhere, can be identified

with a phase space. In this limit, the brightness must strictly correspond to the radi-

ance, and is the maximum of the Wigner distribution function. It is therefore natural

to define the brightness for any source as the maximum of the Wigner distribution.

With this last definition, the brightness includes information on both coherence

and wavefront characteristics of the electric field, in contrast to the case where it is

defined in terms of integrals of the Wigner function, and only information on the

degree of coherence is present.

The previous discussion is meant to be a quick summary of the strict relations

between coherence properties and brightness, which are important to keep in mind

when discussing about radiation properties from FELs and storage ring sources, and

is becoming more important for storage-ring based sources, in view of the coming

on-line of many state-of-the-art diffraction-limited rings.

For the case of storage rings, one can approximate the transverse electron phase
IUCr macros version 2.1.6: 2014/01/16
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space with a Gaussian function. Moreover, for undulator sources, it is customary to

approximate the single-electron electric field at resonance with a Gaussian beam. In

contrast to the real undulator field, Gaussian functions are separable, and a simplified

expression for the brightness results in this case (Kim, 1986)

B =
F

4π2ΣxΣyΣx′Σy′
, (2)

where F indicates the total flux per unit spectral bandwidth, while Σx,y, Σx′,y′ are

effective source size and divergences, calculated by summing in quadrature the sizes

and divergences of the electron beam and of the single-electron radiation.

Eq. (2), derived under the Gaussian beam approximation, does not include detuning

or energy spread effects on the radiation beam. However, for diffraction-limited rings,

studying the influence of energy spread of undulator radiation properties is becoming

more and more important, because of the ultra-low electron emittance.

In (Tanaka & Kitamura, 2009) an attempt is reported where the authors account for

the modified spatial and angular profile of the undulator radiation in the presence of

detuning. However, the approximate formula for the brigthness that they obtain still

builds on Eq. (2), that is based on the Gaussian beam approximation in the first place.

It is therefore interesting to study energy spread effects on the brightness of undula-

tor radiation by avoiding to rely on the Gaussian beam approximation from the very

beginning, and defining the brightness as the maximum of the Wigner distribution.

Moreover, given the strict relation between coherence and brightness, highlighted

above, one should complement a study on the effects on the brightness with a study

on the effects on coherence.

Here we will discuss the effects of energy spread on both brightness and coher-

ence of undulator radiation at resonance. We will first introduce basic quantities

and notations. Then, using a simple model we will show a very counter intuitive
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fact. In the limit for a vanishing small emittance the brightness from an undulator

is not influenced by the electron beam energy spread, in the case of a symmetrical

distribution around the nominal energy. Further on, with the help of semi-analytical

calculations, we will discuss the impact of energy spread on coherence properties of

undulator radiation. We will illustrate our results with examples compatible to mod-

ern diffraction-limited sources, discussing similarities and differences with respect to

the approach in (Tanaka & Kitamura, 2009).

2. Basic quantities and notations

We follow notations similar to (Geloni et al., 2008) and (Geloni et al., 2015). We write

the fundamental wavelength of a planar undulator with Nu � 1 periods as λ1 =

λu(1 + K2/2)/(2γ2
1), where λu is the undulator period, Lu = Nuλu, ku = 2π/λu and

K the maximum undulator parameter. Likewise, the fundamental frequency is ω1 =

2πc/λ1. Ē(ω) denotes the Fourier transform of the electric field, and we define with

Ẽ(ω) = Ē(ω) exp(−iωz/c) the slowly varying envelope of the field in the frequency

domain, which we will refer to simply as ”the field”.

Consider an electron that enters the undulator at a small angle η and offset l with

energy fixed by γ that can be different from the nominal value γ1. The far field

angular distribution seen at a distance z � Lu from the middle of the undulator and

at frequencyω such that |ω−ω1|/ω1 � 1 (where the resonance approximation applies)

depends on the parameters z, γ,η and l, and is given by1

Ẽ (θ) = −
KωeLuAJJ

2c2zγ
exp

[
i
ω
c

(
zθ2

2
− θ · l

)]
sinc

−2πNu(γ − γ1)
γ1

+
ωLu

∣∣∣θ − η∣∣∣2
4c

 . (3)

1 Note the minus sign in the first term under the sinc function. If, for example, we fix ω = ω1 but
our electron has γ > γ1, then the resonance frequency for that electron is higher than ω1, effectively
corresponding to a negative detuning −2πNu(γ − γ1)/γ1.
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Here AJJ = J0[K2/(4 + 2K2)]− J1[K2/(4 + 2K2)] is the coupling strength for the first har-

monic under the resonance approximation. Our considerations can be easily extended

to odd harmonics. For even harmonics one should consider, instead, a different posi-

tion of the maximum of the Wigner function. Note that under the resonance approx-

imation the field is linearly polarized, hence Ẽ is a scalar quantity. An expression for

the field at the virtual position z = 0 i.e. in the middle of the undulator and for any

position after the undulator exit at perfect resonance can be found in Eq. (34) and

Eq. (35) of reference (Geloni et al., 2007). However, to the authors’ knowledge there

is no analytical expression for the field at z = 0 at finite detuning, which should be

calculated propagating Eq. (3).

Following the references above we use normalized units defined as

η̂ =
η

√
o/Lu

, θ̂ =
θ
√
o/Lu

,

r̂ =
r
√
oLu

, l̂ =
l
√
oLu

,

φ̂ =
ct
o
, ξ̂E = −4πNu

γ − γ1

γ1
(4)

so that it is natural to define

Nx,y =
σ2

x,y

oLu
, Dx,y =

σ2
x′,y′

o/Lu
,

∆φ =
(cσt

o

)2
, ∆E =

(
4πNuσ∆γ/γ

)2
. (5)

Roughly speaking, this amounts to normalizing angles to the diffraction angle of

single-electron emission, sizes to the diffraction size, fractional energy deviation to the

undulator resonant bandwidth, and times to inverse radiation frequency. Moreover,

here σx,y,t,∆γ/γ are the rms of the electron beam dimensions in phase space, and we

assume for simplicity that at z = 0, i.e. in the middle of the undulator, the electron

beam phase space can be factorized as
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f̂6D = fηx(η̂x) fηy(η̂y) flx(l̂y) flx(l̂y) fφ(φ̂) fξE(ξ̂E) , (6)

with

fηx(η̂x) =
1

√
2πDx

exp
(
−
η̂2

x

2Dx

)
, fηy(η̂y) =

1√
2πDy

exp

− η̂2
y

2Dy

 ,
flx( l̂x) =

1
√

2πNx
exp

(
−

l̂2x
2Nx

)
, fly( l̂y) =

1√
2πNy

exp

− l̂2y
2Ny

 ,
fφ(φ̂) =

1√
2π∆φ

exp

− φ̂2

2∆φ

 , fξE(ξ̂E) =
1

√
2π∆E

exp
(
−
ξ̂2

2∆E

)
, (7)

where we defined the various Gaussian distributions in terms of the variances Nx,y,

Dx,y, ∆E and ∆φ and we introduced fφ(φ̂) and ∆φ only for completeness, because in

this paper we deal with spontaneous radiation and therefore these quantities are not

used. The far-zone field in normalized units can be written as

Ê(θ̂) =
1
ẑ

exp
[
i
θ̂2ẑ
2
− iθ̂ · l̂

]
sinc

(
ξ̂E

2
+
|θ̂ − η̂|2

4

)
, (8)

where ẑ = z/Lu. As discussed above, one may calculate the analogous field at the

virtual source as

Ê(r̂) = −i exp
[
iη̂ ·

(
r̂ − l̂

)] ∫ ∞

0
dθ̂ θ̂J0

(
θ̂
∣∣∣r̂ − l̂

∣∣∣) sinc
(
ξ̂E

2
+
θ̂2

4

)
(9)
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Fig. 1. Top panel: the function ẑÊ(θ̂)/ exp(iθ̂2ẑ/2) is plot for different values of ξ̂E.
Bottom panel: the field at the virtual source located in the middle of the undulator,
−iÊ(r̂) is plot for different values of ξ̂E. Both functions are axis-symmetric, i.e. a 3D
picture can be obtained by a rotation around the vertical axis. Here l̂ = 0 and η̂ = 0.

IUCr macros version 2.1.6: 2014/01/16



10

Fig. 2. Top panel: the function ẑ2
|Ê(θ̂)|2 is plot for different values of ξ̂E. Bottom

panel: the function |Ê(r̂)|2 is plot for different values of ξ̂E. Both functions are axis-
symmetric, i.e. a 3D picture can be obtained by a rotation around the vertical axis.
Here l̂ = 0 and η̂ = 0.

In the top panel of Fig. 1 we plot ẑÊ(θ̂)/ exp(iθ̂2ẑ/2), i.e. the well-known far-field

profile for l̂ = 0 and η̂ = 0 (which is azimuthal-symmetric) as a function of θ̂ for

different values of the detuning ξ̂E, while on the bottom panel we plot the field at

the virtual source (which has a plane wavefront) for the same choices of the detuning

parameter. For comparison, in the top and bottom panels of Fig. 2 we plot, respectively,

ẑ2
|Ê(θ̂)|2 and |Ê(r̂)|2 that are the corresponding intensity distributions.

It can be shown that for negative values of ξ̂E the maximum intensity at the source

increases and tends to ”saturate” for large negative values, while it remains constant
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in the far zone. We will discuss the consequences of this fact later on.

Also, even at ξ̂E = 0, the intensity distribution at the virtual source and in the

far zone are not Gaussian. Therefore, any Gaussian approximation relies on a fitting

procedure. In this regard it is important to remark that the intensity distribution in

the far zone and at the virtual source are related by the laws of field propagation

in free-space, basically a Fourier transformation. One may fit the intensity at the

virtual source with a Gaussian, but in that case the real intensity in the far-zone does

not match the propagated Gaussian beam. One may fit the intensity in the far zone

with the Gaussian, but in that case the intensity at the virtual source does not match

the back-propagated Gaussian beam. In other words, there is some freedom when

it comes to apply the Gaussian approximation. Many different choices can be found

in literature, see for example (Kim, 1986; Kim, 1987a; Lindberg & Kim, 2015). One of

the possible choices (Kim, 1987a; Tanaka & Kitamura, 2009) is to fix, for the single-

electron intensity distribution,σr =
√

2λLu/(4π) andσr′ =
√
λ/(2Lu), corresponding to

the photon emittance (strictly speaking we cannot define a photon emittance, except

in those cases when the Wigner distribution is positive definite, and the Gaussian

approximation is one of those cases) εr = σrσr′ = λ/(4π). In our normalized units,

they amount to σ̂r = 1/(2
√
π) and σ̂r′ =

√
π. The corresponding FWHM values are

obtained multiplying by 2
√

ln 2 ' 2.35 and read δr̂Gauss = 0.664 and δr̂′Gauss = 4.17,

to be compared with the corresponding FWHM values for the actual intensities at

ξ̂E = 0, which are found to be δr̂real = 1.36 and δr̂′real = 4.72.

Having discussed the single-electron field and intensity profiles, we now introduce

the cross-spectral density in normalized units:

Ĝ(θ̂,∆θ) =
〈
Ê(θ̂ + ∆θ̂/2)Ê∗(θ̂ − ∆θ̂/2)

〉
(10)

where the brackets 〈..〉 indicate averaging over an ensemble realizations, θ̂ is the
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12

vector position at which a two-pinholes system is introduced to probe coherence,

and ∆θ̂ is the vector describing the separation between the two pinholes, see Eq. (4).

Clearly, θ̂ and ∆θ̂ may have different directions. We remind that the spectral degree

of coherence is defined as

g(θ̂,∆θ̂) =
Ĝ(θ̂,∆θ̂)[

Ĝ(θ̂ + ∆θ̂/2)Ĝ(θ̂ − ∆θ̂/2)
]1/2

, (11)

and the fringe visibility of an interference experiment is given by

V =
2|Ĝ(θ̂,∆θ̂)|

Ĝ(θ̂ + ∆θ̂/2, 0) + Ĝ(θ̂ − ∆θ̂/2, 0)
. (12)

Finally, the Wigner distribution in normalized units is

Ŵ(r̂, θ̂) =

∫
d2(∆θ̂) exp

(
ir̂ · ∆θ̂

)
Ĝ(θ̂,∆θ̂) . (13)

Following the same formalism as in (Geloni et al., 2015), the corresponding result in

dimensional units is found to be linked to Eq. (13) by the constant

C =
z2IK2ω3αA2

JJ

64π4ec3γ2Lu
(14)

with α = e2/(~c) the fine structure constant. This result follows from the correspon-

dence principle for quasi-homogeneous sources discussed in the introduction, for

which Eq.(1) is valid. The brightness, defined by us as the maximum of the Wigner

distribution, is therefore given by

B = Cmax(Ŵ) . (15)
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Here we underline the fact that, while this is often the case, in the most general case

the maximum of the Wigner function may not be on-axis, i.e. may not be at r̂ = 0

and θ̂ = 0. Choosing the maximum of the Wigner function for defining the brightness

assures that the correspondence principle discussed in the introduction is consistently

applied.

Substitution of Eq. (8) into Eq. (10) gives the following explicit expression for the

cross-spectral density in the case of undulator radiation around the fundamental

harmonic (or, with simple changes, for odd harmonics)

Ĝ(θ̂,∆θ̂) =
1

(2π)3/2
√

DxDy∆Eẑ2
exp

(
−iẑθ̂ · ∆θ̂

)
exp

(
−

Nx∆θ̂2
x

2

)
exp

−Ny∆θ̂2
y

2


×

∫
∞

−∞

dη̂x

∫
∞

−∞

dη̂y

∫
∞

−∞

dξ̂E exp
(
−
η̂2

x

2Dx

)
exp

− η̂2
y

2Dy


× exp

− ξ̂2
E

2∆E

 sinc
(
ξ̂E

2
+
|θ̂ − η̂ + ∆θ̂/2|2

4

)
sinc

(
ξ̂E

2
+
|θ̂ − η̂ − ∆θ̂/2|2

4

)
. (16)

Note that the single-electron spectral-angular intensity distribution has, in our case,

its maximum at resonance on axis. Then, for a Gaussian distribution of energy spread,

divergence and size of the electron beam, the maximum of the Wigner distribution

must be at r̂ = 0 and θ̂ = 0, and therefore

B = C · Ŵ(0, 0) = C

∫
d2(∆θ̂)Ĝ(0,∆θ̂) , (17)

the integral extending over all the plane spanned by the vector ∆θ̂.

3. Effects of energy spread on the brightness

Let us first consider the simplest case of a beam with vanishing emittance. Eq. (16)

simplifies accordingly, and substitution into Eq. (17) gives the following expression

for the brightness2

2 Mathematically speaking, here we take limit for Nx,y −→ 0 and Dx,y −→ 0 .
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B =

√
2πC
√

∆Eẑ2

∫
∞

0
d(∆θ̂)∆θ̂

∫
∞

−∞

dξ̂E exp

− ξ̂2
E

2∆E

 sinc2
(
ξ̂E

2
+

(∆θ̂/2)2

4

)
, (18)

where we used the fact that in the limit for zero emittance Ĝ(0,∆θ̂) is azimuthal

symmetric. Now we note that

B =

√
2πC
√

∆Eẑ2

∫
∞

−∞

dξ̂E exp

− ξ̂2
E

2∆E

 F(ξ̂E) , (19)

where

F(ξ̂E) =

∫
∞

0
d(∆θ̂)∆θ̂sinc2

(
ξ̂E

2
+

(∆θ̂/2)2

4

)
=

4

ξ̂E

[
2 + πξ̂E − 2 cos(ξ̂E) − 2ξ̂ESi(ξ̂E)

]
(20)

with Si(ξ̂E) =
∫ ξ̂E

0 dt sinc(t) is the sine integral function.

By definition, the function F(ξ̂E) is proportional to the angle-integrated spectral

flux from a single electron, and therefore the brightness is proportional to the single-

electron angle-integrated spectral flux, averaged over the energy spread distribution.

Moreover, the function F(ξ̂E) has the property that F(ξ̂E) + F(−ξ̂E) = 8π indepen-

dently of the value of the real number ξ̂E. We conclude that for zero emittance and

symmetric energy spread distribution we cannot have any effect of the energy spread

on the brightness that can in fact be written as

B =
IK2ω3αA2

JJLu

8π2ec3γ2 . (21)

In order to make our argument clearer, we calculated the brightness for two specific

cases using the code SPECTRA (Tanaka & Kitamura, 2001). Both cases refer to param-

eter compatible with the PETRA IV project, with an energy of 6 GeV, and a planar

undulator with periodλu = 65.6 mm and a length of 5 m, corresponding to 76 periods.
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We set zero emittance and discuss two single-electron cases with resonant energies at

580 eV and 4000 eV. The results are plot in the left panel of Fig. 3 as a function of the

detuning ξ̂E = −4πNu(γ − γ1)/γ1, where we show the brightness divided by the value

at zero detuning. In the right panel of the same figure we plot the function F(ξ̂E). By

comparing the two plots one can see, as expected, a very similar behaviour. The only

difference is that the brightness computed with SPECTRA (which is not based on the

resonant approximation used for the analytical calculations) has its maximum around

ξ̂E ' −4, while the analytical calculation shows that the function F(ξ̂E) continues to

grow for values of ξ̂E below that. This last fact can be seen as a consequence of the

fact that at the source, the maximum of the intensity profile is increasing for negative

detuning values, see Fig. 1, right panel, as previously discussed. Note that, in any

case, the brightness is roughly anti-symmetrical with respect to the point ξ̂E = 0 also

for large detuning values, and this reinforces our conclusion that for zero emittance

and symmetric energy spread distribution we cannot have any effect of the energy

spread on the brightness, in agreement with the analysis of Eq. (18) and Eq. (20).

Fig. 3. Single electron. Left panel: calculated brightness as a function of ξ̂E for param-
eters specified in the text. Right panel: the function F(ξ̂E).

It is interesting to compare our results with those in (Tanaka & Kitamura, 2009). As

discussed in the introduction, in (Tanaka & Kitamura, 2009) an approximated formula
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for the brightness is proposed, which is derived starting from Eq. (2) that is the usual

expression for the brightness based on Gaussian approximation, but includes the

impact of a modified spatial and angular profile of the undulator radiation in the

presence of detuning. In our notations, setting for simplicity N ≡ Nx = Ny and

D ≡ Dx = Dy, this formula reads

BA = B
[
D
π

+ Q2
a

( √
∆E

2

)]−1 [
4πN + 4Q4/3

a

( √
∆E

8

)]−1

(22)

where

Qa(x) =

 2x2

−1 + exp(−2x2) +
√

2π x erf(21/2x)

1/2

(23)

and the subscript ”A” stands for ”Approximated”.
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Fig. 4. A comparison of the brightness as a function of the energy spread for zero
and non-zero emittance at two different resonant photon energies (580 eV and 4000
eV, see text) and using different methods: Eq. (18) (blue circles), Eq. (17) (green
diamonds), SPECTRA calculations (orange squares and red upwards triangles)
and Eq. (22) (violet downwards triangles and brown empty circles).

We considered the previously discussed parameters compatible with the PETRA

IV project and we analysed the case of zero emittance as well as the case for a finite

emittance εx,y = 10 pm, equal betatron functions βx,y = 1 m, and no dispersion. A

comparison of the brightness as a function of the energy spread for zero and non-zero

emittance at the two different resonance photon energies of 580 eV and 4000 eV is

shown in Fig. 4, as calculated using our formulas, SPECTRA, and Eq. (22). The cases

of nonzero emittance correspond to Nx,y = 0.0059 and Dx,y = 0.15 for the case of 580

eV, and Nx,y = 0.04 and Dx,y = 1.01 for the case of 4000 eV. The main parameters are

summarized in table 1. Note that the detuning parameter depends linearly on the

harmonic number. If we consider Nu ' 100 and σ∆γ/γ = 10−3, one immediately sees
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that the normalized rms energy spread parameter is about 1.3 for the first harmonic,

but since it scales linearly with the harmonic number, for the 5th it would be already

about 6.3. Therefore, we chose to present plots up to values of
√

∆E = 5.

Table 1. Main parameters corresponding to the simulations in this paper
Parameter Value Unit

εx,y 10 pm
βx,y 1 m
E 6 GeV
λu 65.6 mm
Nu 76 -

Looking at Fig. 4 we see that there is a factor 4 difference between Eq. (22) in the limit

for no emittance and energy spread and Eq. (21). In (Tanaka & Kitamura, 2009) this

seems to be explained as due to the fact that while the Gaussian approximation was

used ”to determine the angular divergence and source size, the spatial profile” was

”derived by the spatial Fourier transform of the angular distribution of the complex

amplitude”, leading to a factor two in the source size. We argue that this procedure

should not lead to any difference in the brightness in the case of zero emittance and

energy spread, because in that limit one must have, (Kim, 1987a):

B = 4F/λ2 (24)

as is confirmed by Eq. (21) and (see Fig. 4) by direct calculations with the code

SPECTRA.

Aside for the factor four discrepancy, we note that Eq. (22) approximates the influ-

ence of energy spread by summing emittance-related parameters (N and D) with

powers of the function Qa that depend on the energy-spread. Therefore, in the limit

for zero emittance, energy spread effects dominate the brightness. In contrast to this,

Eq. (18) is completely independent of the energy spread. This behaviour is exemplified

in Fig. 4.
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Our conclusion is that while Eq. (22) may constitute a good approximation in

some region of the parameter space, when it comes to the limit for a diffraction-

limited beam with non-negligible energy spread, a more detailed study is needed. In

particular, when one is well within the diffraction limit, there is no region where the

brightness is dominated by energy-spread effects.

Clearly, the above considerations are valid only for a vanishing emittance of the

electron beam, i.e. in the limit for Dx,y � 1 and Nx,y � 1. In fact, even for vanishing

offsets Nx,y � 1, if we cannot assume Dx,y � 1 the expression for the brightness

includes the integrated spectral flux for electrons with different angles, and the sum

of contributions with positive an negative detuning is now depending on the detuning

value, at difference with the case above where F(ξ̂E) + F(−ξ̂E) = 8π , independently of

ξ̂E.

4. Effects of energy spread on coherence

It is interesting to discuss possible effects of the energy spread on the coherence

properties of undulator radiation. As before, we will first consider the case for zero

emittance.

Clearly, the phase of the field in Eq. (8) only depends on the electron offset, and is

fully independent of ξ̂E, i.e. of γ. However, we note that the magnitude and, most

importantly, the sign of the field depend on ξ̂E. Let us discuss the impact of this sign

on the spectral degree of coherence. We write explicitly a simplified expression in the

case of zero emittance as

g(θ̂,∆θ̂) = exp
(
−iẑθ̂∆θ̂

)
G(θ̂,∆θ̂) = exp

(
−iẑθ̂∆θ̂

)∫
∞

−∞

dξ̂E sinc
(
ξ̂E

2
+

(θ̂ + ∆θ̂/2)2

4

)
sinc

(
ξ̂E

2
+

(θ̂ − ∆θ̂/2)2

4

)
exp

− ξ̂2
E

2∆E


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20/ 
∫ ∞

−∞

dξ̂E sinc2
(
ξ̂E

2
+

(θ̂ + ∆θ̂/2)2

4

)
exp

− ξ̂2
E

2∆E

1/2

×

∫ ∞

−∞

dξ̂E sinc2
(
ξ̂E

2
+

(θ̂ − ∆θ̂/2)2

4

)
exp

− ξ̂2
E

2∆E

1/2


(25)

This equation has been found on the basis of Eq. (16), where we took the limit for

zero emittance and we assumed, for simplicity, that the two vectors θ̂ and ∆θ̂ are

directed along the same direction. This simplification does not deprive our model of

any useful physics, but it makes all arguments scalars, and hence easier to consider.

Further on, since, as remarked above, the phase of the field in Eq. (8) only depends

on the electron offset, we factorize g in the product of G and of the phase factor

exp(iθ̂∆θ̂). Note that G is still allowed to assume negative values.

It is easy to see by inspection of Eq. (25) that when σE → 0, G is different from unity,

but |g| = |G| −→ 1 everywhere. Moreover, on axis, i.e. for θ̂ = 0, one has g = G = 1,

while off-axis, i.e. for θ̂ , 0, one has jumps of G from +1 to −1 at all those values of

∆θ̂ where (θ̂ + ∆θ̂/2)2/4 and (θ̂ − ∆θ̂/2)2/4 differ by an odd multiple of π.

Let us consider the case of nonzero energy spread. If we look on-axis at θ̂ = 0, from

Eq. (25) we see directly that g = G = 1. However, off-axis, an interesting phenomenon

takes place. The field from different electrons with different detuning ξ̂E experience a

change in sign at different values of ∆θ̂. This means that different electrons generate

radiation with different wavefronts, and coherence is therefore decreased. This effect

is encoded in the function G, while the phase factor exp(iθ̂∆θ̂) cannot change. To our

understanding, this mechanism was not discussed before and is at the basis of any

possible coherence deterioration related to energy spread effects. It is important to

underline that it is present only off-axis, while energy spread alone cannot influence

coherence properties on-axis. In the presence of a finite emittance, one must include

the effect of different angles η̂ in Eq. (16). Then, even on-axis, different electrons
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generate radiation with different wavefronts, and coherence deteriorates.

In order to illustrate our statements and to estimate the importance of the effects of

energy spread on coherence we performed semi-analytical calculations for the case of

zero emittance. We fixed different values of θ̂ and plot the cross-spectral density (a real

function, in our case), the spectral degree of coherence, and the visibility calculated

above in the far-zone as a function of ∆θ̂ for different values of the energy spread.

Fig. 5. Far zone, zero emittance. Left panel: Modulus of the cross-spectral density,
|g| (top plot), the function G (middle plot) and the fringe visibility V (lower plot)
as a function of ∆θ̂ for different values of the energy spread (see legend) and for
θ̂ = 0.5. Right panel: the same as in the left panel, for θ̂ = 1.0. The symbols indicate
actually simulated data. The solid lines are only a guide to the eye.

Fig. 5 presents results for θ̂ = 0.5 and θ̂ = 1. We remind the reader that the definition

of our dimensionless units is given in Eq. (4). The normalization factor
√
o/Lu is of

IUCr macros version 2.1.6: 2014/01/16



22

order of the angular size of the central cone. Therefore, it does not make too much

sense to consider values of θ̂ larger than unity. As one immediately sees from the plots,

even at θ̂ = 1 the effects of energy spread on coherence deterioration is very small.

This is because the first change in sign for G happens at ∆θ̂ = 2π (and the second

would be at ∆θ̂ = 4π). Obviously there is little interest in going at such distance from

the axis, and our conclusion is that the effect of energy spread on the deterioration of

coherence is usually negligible in the far zone.

However, the situation changes if the optics images, at the sample position, the

virtual source in the middle of the undulator. In this case the previous analysis must

be repeated using the quantities defined as before, but considering Eq. (9) instead of

Eq. (8).
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Fig. 6. Virtual source, zero emittance. Left panel: Modulus of the cross-spectral density,
|g| (top plot), the function G (middle plot) and the fringe visibility V (lower plot)
as a function of ∆r̂ for different values of the energy spread (see legend) and for
r̂ = 0.5. Right panel: the same as in the left panel, for r̂ = 1.0. The symbols indicate
actually simulated data. The solid lines are only a guide to the eye.

Fig. 6 presents results for r̂ = 0.5 and r̂ = 1. This time, the normalization factor
√
oLu in Eq. (4) is of the order of the transverse size of the central cone at the virtual

source and, analogously as in the far zone, we limit ourselves to values of r̂ up to

unity. The same remarks made for the far zone hold for the values of the energy

spread parameter. Inspection of Fig. 6 shows an important effect of the energy spread

on coherence properties at the virtual source position. While we do not possess a

simple expression as Eq. (8) at the virtual source position, the mechanism that leads

to coherence degradation is the same: namely, there is a change in the sign of the field,
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see Fig. 1. This happens, however, for smaller values of r̂, which leads to degradation

already for small values of ∆r̂, as seen from Fig. 6.

It should be noted that, although the shape of the spectral degree of coherence

is different when we compare the source with the far zone, the overall degree of

coherence ζ remains unchanged. As discussed in the introduction, the overall degree

of coherence is analogous to the trace of the square of the density matrix representing

the statistical operator for a quantum mixture, the statistical operator being just, in

our case, the cross-spectral density. The same degree of coherence can be expressed

in terms of the Wigner distribution, because it is related to the cross spectral density

by a simple Fourier transform:

ζ =

∫
d2θd2r W2(r,θ)[∫
d2θd2r W(r,θ)

]2 (26)

Since the free-space propagation of the Wigner function is given by

W(r,θ; z) = W(r − zθ,θ; 0) (27)

a simple change of integration variables r −→ R = r− zθ shows that ζ is invariant for

free-space propagation.3

We now complicate the situation by introducing finite emittance effects, corre-

sponding to the two previously discussed cases respectively for 580 eV and 4000 eV.

In particular we consider again the two settings Nx = Ny = 0.0059, Dx = Dy = 0.15,

corresponding to a resonant energy of 580 eV, and Nx = Ny = 0.04, Dx = Dy = 1.01,

corresponding to a resonant energy of 4000 eV. We set θ̂ = 0.5 in the far zone and

3 In principle one may directly show this fact in terms of integrals involving the spectral degree of
coherence. However, carrying our the calculation explicitly would require extending the tabulation of
Fig. 5 and Fig. 6 to very large values of ∆θ̂ and ∆r̂. We therefore prefer to give a synthetic, and more
general demonstration of the invariance of ζ.
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r̂ = 0.5 at the virtual source position, and we plot the three functions |g|,G and V at the

virtual source and in the far zone. Results are shown in Fig. 7 and Fig. 8. Comparing

Fig. 6 with Fig. 7 and Fig. 8 we see how the effects of emittance become more and more

important and finally dominate over energy spread effects. One can see coherence

degradation already at zero energy spread, both at the virtual source and in the far

zone. As is to be expected from the previous discussion, energy spread effects are

more visible at the virtual source, while in the far zone they are much less important.

It should be underlined once more that none of the degradation effects on coherence

has an impact on the brightness when the beam has zero emittance. We checked this

fact by using the expression for Ĝ to evaluate the brightness according to Eq. (17). No

degradation was found in the case for zero emittance. However, as is obvious, in the

case of non-zero emittance brightness degrades. Eq. (17) can, once more, be used to

investigate the brightness degradation.

The fact that the brightness cannot be affected by the energy spread alone, whereas

the energy spread alone has an impact on the coherence properties of the radiation

seems paradoxical. However, one should remember that in our case the brightness,

according to our definition, is the Wigner distribution on-axis, i.e. at r̂ = 0 and θ̂ = 0.

As one can see from the previous analysis, at r̂ = 0 and θ̂ = 0 there is no coherence

degradation, whatever the energy spread parameter chosen. Intuitively speaking, the

brightness is strictly related with the ability to focus a radiation beam on a sample.

It can be spoiled by a decrease in spectral photon flux, by degradation of coherence

or by wavefront distortions. In the previous parts of this paper we showed that for a

vanishing emittance and in the case of a symmetric energy spread distribution, one

has a constant spectral photon flux over a large region of the energy spread parameter.

However, we have seen here that there is an off-axis decrease of coherence. It is difficult

to imagine that this has no effect on the ability to focus radiation. The dependence on
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the brightness on the on-axis Wigner function (where no coherence degradation takes

place) seems, in this case, in contradiction with intuition. However, the decrease of

off-axis coherence is only given by changes in sign of the field, happening at different

transverse positions for particles with different energies. The ability to focus the field

cannot depend of a change in sign, because it only introduces a trivial wavefront

distortion: only trivial phase changes of π are introduced by changing the energy,

as in Fig. 1. As a result, the brightness remains unvaried even though the coherence

properties off-axis are degraded.

Fig. 7. Non-zero emittance case with Nx = Ny = 0.0059 and Dx = Dy = 0.15 cor-
responding to the previously defined case for 580 eV. Left side: Modulus of the
cross-spectral density, |g| (top plot), the function G (middle plot) and the fringe
visibility V (lower plot) as a function of ∆r̂ for different values of the energy spread
(see legend) and for r̂ = 0.5 at the virtual source position. Right panel: the same as
in the left panel, for θ̂ = 0.5 in the far zone. The symbols indicate actually simulated
data. The solid lines are only a guide to the eye.
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Fig. 8. Non-zero emittance case with Nx = Ny = 0.04 and Dx = Dy = 1.01 corre-
sponding to the previously defined case for 4000 eV. Left side: Modulus of the
cross-spectral density, |g| (top plot), the function G (middle plot) and the fringe
visibility V (lower plot) as a function of ∆r̂ for different values of the energy spread
(see legend) and for r̂ = 0.5 at the virtual source position. Right panel: the same as
in the left panel, for θ̂ = 0.5 in the far zone. The symbols indicate actually simulated
data. The solid lines are only a guide to the eye.

5. Conclusions

In this article we noted that changes in the brightness can be determined, roughly

speaking, by influences related to the spectral photon flux, to the coherence, or to the

wavefront. These three quantities can influence the brightness, because they influence

the ability of focusing radiation onto the sample. Consider vanishing emittance and a

symmetrical energy spread distribution. We have discussed a mechanism for degra-
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dation of coherence off-axis, while we have seen that, on-axis, coherence is preserved.

Moreover, the field wavefront is not influenced (aside for a π phase-difference) by

the presence of energy spread, meaning that there cannot be any detrimental effect to

the brightness, related with wavefront distortions. Finally, Eq. (20) shows no effects

on the flux, so we concluded that the brightness cannot be affected, in this case, by

the energy spread. The same conclusion was reached by a direct calculation of the

brightness, Eq. (21). We studied the situation by means of semi-analytical calculations

in Section 2.

In section 3 we extended our considerations to the case of a finite emittance. First,

we confirmed our previous semi-analytical results. Then we increased the emittance

and we studied its impact on coherence and brightness, showing how it degrades for

parameters compatible with diffraction-limited storage rings of the next generation.

We conclude that there is no ”energy-spread dominated” regime: when the emit-

tance decreases, so does also the influence of the energy spread on coherence proper-

ties and brightness.

The spectral degree of coherence is seen, instead, to decrease off-axis: this result

is in agreement with our conclusion concerning the brightness. We illustrated our

statements with simulation results, complementing them with remarks for the case

of finite emittance.
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Synopsis

The advent of ”diffraction-limited” storage rings with ultra-low emittance poses a question
on possible limitations to the (spectral) brightness and coherence due to the electron beam
energy spread. We study this question using semi-analytical techniques.
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