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Fundamental characteristics of transverse deflecting fields
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The Panofsky-Wenzel theorem connects the transverse deflecting force in an rf structure with
the existence of a longitudinal electric field component. In this paper it is shown that a transverse
deflecting force is always accompanied by an additional longitudinal magnetic field component which
leads to an emittance growth in the direction perpendicular to the transverse force. Transverse
deflecting waves can thus not be described by pure TM or TE modes, but require a linear combination
of basis modes for their representation. The mode description is preferably performed in the HM–HE
basis to avoid converge problems, which are fundamental for the TM–TE basis.

PACS numbers: 29.27.-a, 41.85-p, 07.78.+s

I. INTRODUCTION

Transverse deflecting rf fields find numerous applica-
tions in modern particle accelerators for example as par-
ticle separators [1] or fast rf deflectors [2], as streaking
device for diagnostics purposes [3], in emittance exchange
beam lines [4] or as crab cavities in circular colliders as
the LHC [5]. It is well known, that a beam passing
through a transverse deflecting field will not only receive
the desired phase dependent transverse momentum, but
it will also change its energy spread due to a longitudi-
nal electric field component which varies over the trans-
verse size of the beam. The fundamental relation of the
transverse gradient of the longitudinal electric field com-
ponent and the transverse momentum was formulated by
Panofsky and Wenzel in their seminal paper in 1956 [6].
Originally derived in the context of transverse deflect-
ing rf structures, which is also the focus of this paper,
the Panofsky-Wenzel theorem became a fundamental re-
lation also for the discussion of wake potentials [7] and
devices as pickups and kickers [8].
Complementary to the longitudinal electric field compo-
nent a longitudinal magnetic field component exists in
transverse deflecting rf fields which has been widely ig-
nored so far. The existence of the longitudinal magnetic
component requires to revisit the general mode descrip-
tion of transverse deflecting rf structures. Due to the cou-
pling of the transverse motion to the longitudinal mag-
netic field it leads to a small, but fundamental contribu-
tion to the transverse beam emittance in the direction
perpendicular to the transverse force.

∗Electronic address: paramono@inr.ru,

II. SUPPORTING STRUCTURE

To provide an effective interaction between a particle,
moving with the velocity vz = βzc, and an electromag-
netic rf field it is necessary to match the phase velocity
vph of a harmonic field component to the velocity of the
particle. Since the phase velocity in a simple waveguide
is higher than the speed of light c, while βz ≤ 1.0 it is
necessary to slow down the wave in an appropriate struc-
ture.
Commonly periodically iris loaded structures as the ex-

FIG. 1: Supporting structures for slow deflecting waves: peri-
odical iris loaded circular waveguide, left, and dielectric lined
waveguide, right.

ample shown in Fig. 1, left, are employed to achieve this.
The field distribution in a periodical structure represents
a sum of spatial harmonics and by proper selection of
the period length d = βzλθ

2π , 0 ≤ θ ≤ π a synchronous
harmonic can be generated. θ is the phase advance per
period and the wavelength λ for this kind of structures
is typically in the range of 20-3 cm (L– to X–band). A
fundamental property of periodical structures is the ap-
pearance of spatial harmonics which lead to nonlineari-
ties in the field distribution. The nonlinearities can not
be completely eliminated but they can be minimized in
the region occupied by the beam by a proper design of
the structure [9, 10].

http://arxiv.org/abs/1806.11023v2
mailto:paramono@inr.ru,


2

Spatial harmonics do not appear in structures which are
uniform in the longitudinal z direction. To slow down
the wave the structure can be partially filled with a di-
electric medium (see Fig. 1, right) but also thin metallic
layers [11] or even a rough surface [12] can lead to slow
waves.
Dielectric lined waveguides have been discussed already
in the 1960s [13, 14] as candidates for beam separators
operating at typical rf frequencies (3 GHz). They gain
now interest again as streaking device for diagnostics pur-
poses operating in the sub-THz to THz range [15], where
the dimensions are so small that the production of peri-
odical structures reaches technical limits. The demand
to resolve ever shorter bunch length and also the progress
in the generation of THz pulses of sufficient power and
pulse length [16] are driving forces of these developments.
Moreover, the absence of spatial harmonics makes di-
electric lined waveguides also attractive from the beam
dynamics point of view, because undesired side effects,
like undesired emittance contributions, are minimized to
their fundamental limits.

III. GENERAL RELATIONS AND MODE

DESCRIPTION

The transverse deflecting force ~F⊥ acting on a particle
moving along the longitudinal axis z with the velocity
~V =~izvz is defined by the transverse components of the
Lorentz force

~F⊥ = e(Ex − vzBy)~ix + e(Ey + vzBx)~iy,

~F⊥ = e(Er − vzBϑ)~ir + e(Eϑ + vzBr)~iϑ,
(1)

where ~ix,~iy,~iz and ~iϑ,~ir,~iz are the basis vectors of
the Cartesian and cylindrical coordinate system, respec-
tively.
The fundamental relations of deflecting field components
and the corresponding longitudinal electric and magnetic
field components follow directly from Maxwell’s equa-

tions curl ~E = − ∂
∂t

~B and curl ~B = ∂
∂t

~E
c2

as:

∂

∂x
Ez =

∂

∂z
Ex +

∂

∂t
By,

∂

∂y
cBz =

∂

∂t

Ex

c
+

∂

∂z
cBy.

(2)

For a wave oscillating with frequency ω and wavenumber
kz = ω/vph as ∝ ei(ωt−kzz) the relation 1

∂t
= −

vph
∂z

holds,
thus

∂

∂x
Ez =

∂

∂z
(Ex − vphBy) ,

−
∂

∂y
cBz =

∂

∂z

(vph
c

Ex − cBy

)

.
(3)

Equivalent transformations can be applied to the Ey and
Bx components, resulting in

∂

∂y
Ez =

∂

∂z
(Ey + vphBx) ,

∂

∂x
cBz =

∂

∂z

(vph
c

Ey + cBx

)

.

(4)

For a particle, traveling with longitudinal velocity com-
ponent vz = vph synchronously with the wave, the first
equations in Eqs 3 and 4 mean:

1

e

∂

∂z
~F⊥ = −

1

evph

∂

∂t
~F⊥ = −i

kz
e
~F⊥ = ~∇⊥Ez, (5)

where ~∇⊥ =~ix
∂
∂x

+~iy
∂
∂y

, see [17] and references therein.

A synchronous transverse force ~Ft 6= 0 can thus only ex-
ist together with a longitudinal component of the electric
field Ez in a deflecting rf field. The second equations in
Eqs 3 and 4 necessarily require the simultaneous exis-
tence of a longitudinal magnetic field component and for
the particular case vz = vph = c the relation

c
[

~iz × ~∇Bz

]

⊥

= −i
kz
e
~F⊥ = ~∇⊥Ez , (6)

holds.
A transverse force ~F⊥ is thus accompanied by both, a
longitudinal electric, as well as a longitudinal magnetic
field component.
A general cylindrical symmetric representation of the
electro-magnetic fields in vacuum in a finite domain in-
cluding the symmetry axis can be based on Hertzian ba-
sis vectors, see reference [18] and references therein for a
general discussion. Table I summarizes the transverse
TM–TE and the hybrid HM–HE basis vectors, as in-

troduced in [18], with a modified notation (e.g. ~H has

been replaced by ~B). Here k0 = ω/c, kz = ω/vph and
k2r = k20 − k2z is used, while n ∈ N defines the azimuthal
dependence.
The expressions of the basis vectors in Table I are pre-
sented for vph > c and k2r > 0. For waves with vph < c,
kr becomes imaginary and the modified Bessel functions
should be used to describe the radial dependencies of the
field components.
In the domain under consideration any field component
G can be described by a linear combination of the basis
vectors as:

G = A×TM+B×TE or G = P×HM+Q×HE (7)

The coefficients A, B, P and Q are determined by the
boundary conditions and the energy balance of the prob-
lem under consideration.
The traditional nomenclature of modes builds up on the
TM–TE basis of transverse waves, which is well suited
and usually applied for the field description in rf engi-
neering and for modes with n = 0 symmetry, as e.g.
accelerating modes. TM (Transverse Magnetic) and TE
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TABLE I: TM–TE and HM–HE basis vectors

(

Jn = Jn(rkr), J
′

n =
∂Jn(krr)

∂(krr)
=

nJn(krr)

krr
− Jn+1(krr)

)

.

TM TE HM HE azimuthal spatio-temporal
dependence dependence

Er −kz
J ′

n

kn−1
r

−

nk0

r

Jn

kn
r

k0kz
Jn+1

kn+1
r

k
2
z

Jn+1

kn+1
r

+
n

r

Jn

kn
r

cos(−nϑ) iei(ωt−kzz)

Eϑ

nkz

r

Jn

kn
r

k0
J ′

n

kn−1
r

k0kz
Jn+1

kn+1
r

k
2
0
Jn+1

kn+1
r

−

n

r

Jn

kn
r

sin(nϑ) iei(ωt−kzz)

Ez k
2
r

Jn

kn
r

0 k0
Jn

kn
r

kz
Jn

kn
r

cos(−nϑ) ei(ωt−kzz)

cBr −

nk0

r

Jn

kn
r

−kz
J ′

n

kn−1
r

−k
2
z

Jn+1

kn+1
r

−

n

r

Jn

kn
r

−k0kz
Jn+1

kn+1
r

sin(nϑ) iei(ωt−kzz)

cBϑ −k0
J ′

n

kn−1
r

−

nkz

r

Jn

kn
r

k
2
0
Jn+1

kn+1
r

−

n

r

Jn

kn
r

k0kz
Jn+1

kn+1
r

cos(−nϑ) iei(ωt−kzz)

cBz 0 k
2
r

Jn

kn
r

−kz
Jn

kn
r

−k0
Jn

kn
r

sin(nϑ) ei(ωt−kzz)

(Transverse Electric) waves have each only one longitu-
dinal field component; for TM waves Ez 6= 0, Bz = 0 and
for TE waves Ez = 0, Bz 6= 0. It is common practice to
assume that the longitudinal field components and thus
the coefficients A and B are independent; the discussion
above shows however that this is not the general case for
n ≥ 1.
The general solution of the boundary conditions has thus
six field components and requires the linear combination
of two basis vectors, either TM and TE or HM and HE.
Only for n = 0 two separate solutions with three field
components each can be formulated.
The TM-TE basis exhibits a methodical convergence
problem when the phase velocity approaches c. For
vph → c, kz → k0, kr → 0 the longitudinal components
Ez and cBz vanish as k2r . In addition all transverse field
components vanish for n = 0 but remain finite for n ≥ 1,
cf. Table I.
Comparing the longitudinal field components by means
of Eq. 7 yields the following relations of the coefficients
of the two basis:

A = −
Pk0 +Qkz

k2r
, B =

Pkz +Qk0
k2r

. (8)

A and B are thus divergent ∝ k−2
r when kr approaches

zero. Thus, while the basis vectors converge to zero, the
product of basis vectors with the vector coefficients does
not converge to zero and the field description is possible
also in the limit vph = c.
By means of the relations Eq. 8 and the identity J ′

n =
nJn

rkr
− Jn+1 the complete equivalence of the two basis

can be shown. The deflecting field representation for
the transverse modes in a dielectric lined waveguide by
Chang and Dawson [14] in the TM–TE basis is hence
essentially the same as the earlier result of Vagin and
Kotov [13] in the HM–HE basis.

The HM–HE basis has no convergence problem, i.e. no
component of the basis converges to zero in the limit
kr → 0 irrespective of n. Since each basis vector contains
simultaneously electric and magnetic longitudinal vector
components both, linear combinations and also pure HM
or HE modes can satisfy the boundary conditions as well
as Eq. 5 and 6 for n ≥ 1.
The description of pure TM or TE modes in the HM–HE
basis leads to fixed relations of the vector coefficients as
B = 0, kzP = −k0Q, A = − P

k0

for TM modes and A = 0,

k0P = kzQ, B = Q
k0

for TE modes. Still A or B need
to be divergent in the limit kr → 0 thus also P and Q
get divergent while the vector components of the hybrid
basis don’t converge to zero. Thus only the sum of HM
and HE remains finite in this case.
The TM–TE basis is therefore preferable for the field de-
scription in the case n = 0, while the HM–HE basis is
advantageous for n ≥ 1.

IV. DEFLECTING FIELD FOR THE

RELATIVISTIC CASE

For the relativistic case βz = 1, vph = c, k0 = kz, kr = 0
the Helmholtz wave equation reduces to the Laplace
equation. In the HM–HE representation all basis vec-
tors remain 6= 0 and continuous with respect to kr. Ex-
pressions for the field components are found as limits for
kr → 0 from the general form in Table I by expanding
the Bessel function as:

lim
kr→0

Jn(krr)

knr
=

rn

2nn!
. (9)

The results of these transformations are summarized in
Table II. Similar expressions can be found in [17], [18]
and [13].
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Following Table II the field distribution of the syn-
chronous deflecting wave, n = 1, vph = c in the region
of the interaction with the beam is:

Ez = [P +Q]
k0r

2
cos(ϑ)ei(ωt−k0z),

Er = i

[

P
k20r

2

8
+Q

(

k20r
2

8
+

1

2

)]

cos(ϑ)ei(ωt−k0z),

Eϑ = i

[

P
k20r

2

8
+Q

(

k20r
2

8
−

1

2

)]

sin(ϑ)ei(ωt−k0z),

cBz = − [P +Q]
k0r

2
sin(ϑ)ei(ωt−k0z),

cBr = −i

[

P

(

k20r
2

8
+

1

2

)

+Q
k20r

2

8

]

sin(ϑ)ei(ωt−k0z),

cBϑ = i

[

P

(

k20r
2

8
−

1

2

)

+Q
k20r

2

8

]

cos(ϑ)ei(ωt−k0z),

(10)
Eq. 10 describes for example the field in a dielectric lined
waveguide [13].
For periodically iris loaded structures approximated ex-
pressions for the field components of the fundamental
spatial harmonics inside the aperture 0 ≤ r ≤ a were
obtained by means of the so-called small pitch approxi-
mation as (cf. [17]):

Ez = Ê
k0r

2
cos(ϑ)ei(ωt−k0z),

Er = iÊ

[

k20r
2 + k20a

2

8

]

cos(ϑ)ei(ωt−k0z),

Eϑ = iÊ

[

k20r
2 − k20a

2

8

]

sin(ϑ)ei(ωt−k0z),

cBz = −Ê
k0r

2
sin(ϑ)ei(ωt−k0z),

cBr = −iÊ

[

4 + k20r
2 − k20a

2

8

]

sin(ϑ)ei(ωt−k0z),

cBϑ = iÊ

[

4− k20r
2 − k20a

2

8

]

cos(ϑ)ei(ωt−k0z),

(11)

The small pitch approximation requires that vph = c,
that the cell length d is shorter than the wavelength,
d ≪ λ, and that the iris thickness t is smaller than the
cell length, t ≪ d, see Fig. 1, left. Furthermore it de-
mands that the boundary condition Eϑ = 0 is met at the
aperture radius of the iris r = a.
A comparison of Eq. 10 and 11 yields

P +Q = Ê, P/Q =
4

k20a
2
− 1,

Q = Ê
k20a

2

4
, P = Ê

(

1−
k20a

2

4

)

.

(12)

The expression of the field components in Eq. 11 are thus
a particular case of the more general relations in Eq. 10,
i.e. the expression for the deflecting field components in
Eq. 10 is valid for both, the wave in the longitudinally

homogeneous dielectric lined waveguide and for the syn-
chronous spatial harmonics in the periodically iris loaded
structure.
The transverse force, Eq. 1, follows from Eq. 10 for vz = c
as:

Fr = ie
P +Q

2
cos(ϑ)ei(ωt−k0z) = ie

Ê

2
cos(ϑ)ei(ωt−k0z),

Fϑ = −ie
P +Q

2
sin(ϑ)ei(ωt−k0z) = −ie

Ê

2
sin(ϑ)ei(ωt−k0z),

(13)
or, transferring to Cartesian coordinates, as:

Fx = ie
Ê

2
ei(ωt−k0z),

Fy = 0,

Ez =
Ê

2
k0xe

i(ωt−k0z),

cBz = −
Ê

2
k0ye

i(ωt−k0z).

(14)

For the synchronous relativistic case vph = vz = c the
deflecting force, or equivalently the deflecting field, is in
the region of of the interaction 0 ≤ r ≤ a constant. The
longitudinal field components are shifted by π/2 in the
spatio-temporal phase and rise linearly with the distance
from the axis.
According to Eq. 12 is the deflecting field distributions in
axially symmetric iris loaded structures for typical values
of wave number k0 and aperture radius a dominated by
the HM mode, because P/Q > 1. The ratio P/Q de-
pends on the design of the supporting structure and de-
fines also other structure parameters, such as frequency,
group velocity, effective shunt impedance and, in case of
periodically loaded structures, the level of higher spatial
harmonics. Periodical structures with complexer geome-
try than the simple iris loaded structure give additional
freedom for optimizations and allows to reach an overall
more attractive set of parameters [9].

V. INFLUENCE OF THE LONGITUDINAL

FIELD COMPONENTS ON THE PARTICLE

DYNAMICS

From Eq. 5 follows that the integrated transverse mo-
mentum transfered to a particle moving on a straight line
(rigid beam approximation) through a region with an ar-
bitrary electromagnetic field is related to the integrated
longitudinal field by

p⊥ = −i
e

k0c

L
∫

0

∇⊥Ezdz. (15)

Eq. 15 is referred to as Panofsky-Wenzel theorem. It
is valid in this strict form only for synchronous motion
with vz = vph = c. (Asynchronous field components av-
erage to zero when the integration length is long enough.)
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TABLE II: Hybrid HM–HE solutions for vph = c.

HM HE azimuthal spatio-temporal
dependence dependence

Er

k2
0r

n+1

2n+1(n+ 1)!

k2
0r

n+1

2n+1(n+ 1)!
+

rn−1

2n(n− 1)!
cos(−nϑ) iei(ωt−kzz)

Eϑ

k2
0r

n+1

2n+1(n+ 1)!

k2
0r

n+1

2n+1(n+ 1)!
−

rn−1

2n(n− 1)!
sin(nϑ) iei(ωt−kzz)

Ez

k0r
n

2nn!

k0r
n

2nn!
cos(−nϑ) ei(ωt−kzz)

cBr −

k2
0r

n+1

2n+1(n+ 1)!
−

rn−1

2n(n− 1)!
−

k2
0r

n+1

2n+1(n+ 1)!
sin(nϑ) iei(ωt−kzz)

cBϑ

k2
0r

n+1

2n+1(n+ 1)!
−

rn−1

2n(n− 1)!

k2
0r

n+1

2n+1(n+ 1)!
cos(−nϑ) iei(ωt−kzz)

cBz −

k0r
n

2nn!
−

k0r
n

2nn!
sin(nϑ) ei(ωt−kzz)

The rigid beam approximation excludes ponderomotive
forces, however, for a force like derived in Eq. 14 (funda-
mental spatial harmonics, n = 1, vph = c) ponderomotive
forces are anyhow zero, because Fy is everywhere zero –
not only one average – and Fx does not depend on x.
In accordance to Eq. 15 the transverse momentum p⊥ =
px and energy change of a bunch of particles pass-
ing through a deflecting structure of length L following
Eq. 14 read as:

px =
eV

c
(sin(ϕ) + cos(ϕ)∆ϕ)

E = ek0V x (cos(ϕ)− sin(ϕ)∆ϕ) ,
(16)

where V = ÊL
2 is the integrated deflecting voltage and a

first order Taylor expansion of the phase ϕ = ωt − k0z
has been made. ∆ϕ denotes the position of a particle
relative to the bunch center; ∆ϕ = −k0∆z.
While the first term in the momentum equation describes
the average momentum gained by the bunch, the second
term describes the spread due to the differences experi-
enced by particles in the head and the tail of the bunch.
In the fully deflecting mode, ϕ = π/2, the momentum
spread is to first order zero, while it is maximal at ϕ = 0,
the standard operation phase for cavity applications as
diagnostics, crabbing and emittance exchange.
Due to the dependence of the longitudinal field on the
transverse coordinate the induced energy spread is on all
phases uncorrelated:

σE =







ek0V σx for ϕ = 0,

ek20V σxσz for ϕ =
π

2
,

(17)

with the transverse rms beam size in the streaking direc-
tion σx and the longitudinal rms bunch length σz . The
Panofsky-Wenzel theorem, Eq. 15, as well as Eq. 16 and

Eq. 17 describe the beam dynamics to first order. In sec-
ond order the induced transverse momentum couples to
the longitudinal magnetic field and the transverse parti-
cle position changes, which leads to an additional corre-
lated energy spread of [4]

∆Ecor

∆z
=

(ek0V )
2

cpz

L

6
, (18)

where pz denotes the longitudinal momentum of the par-
ticle.
The second order effects combine the cosine-like trans-
verse momentum with the sine-like longitudinal field
components, the Taylor expansion of the product is thus
of the form 1

2 sin(2ϕ)+cos(2ϕ)∆ϕ and Eq. 18 is therefore
valid for ϕ = 0 and for ϕ = π/2.
The momentum in the streaking direction leads in com-
bination with the longitudinal magnetic field also to a
force in direction perpendicular to the streaking plane:

F̂y = e
px
γm0

Bz, (19)

with the rest mass of the particle m0 and the relativistic
Lorentz factor γ. Thus

py =
1

c

∫

F̂y dz =
(ek0V )

2

2c2pz
y∆z. (20)

The transverse momentum py is linear in the transverse
position y, i.e. it is a focusing force, which depends how-
ever on the longitudinal position ∆z in the bunch. It
leads thus to a projected emittance contribution of

εy =
(ek0V )

2

2m0c2pz
σ2
yσz , (21)

with the transverse rms beam size perpendicular to the
streaking direction σy . Eq. 20 and 21 are again valid for
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ϕ = 0 and for ϕ = π/2.
The emittance growth Eq. 21 in the direction perpendic-
ular to the streaking force is a fundamental property of
the deflecting field which doesn’t depend on the design
of the supporting structure or the operating mode of the
cavity.
For present day beam and cavity parameters the emit-
tance growth is very small, but it can not be eliminated.
Additional transverse forces can still appear due the spa-
tial harmonics especially in the end cells of rf structures
and due to the backward traveling component in standing
wave cavities. These forces average out in a first order
approximation of the particle motion, but are relevant
for second order effects [19, 20] and often dominate the
beam dynamics in the plane perpendicular to the streak-
ing direction.

VI. SUMMARY

Transverse deflecting rf structures find nowaday nu-
merous applications in particle accelerators. Regardless
of the design and operating mode of the supporting struc-
ture, a synchronous transverse force, generated by the

common interaction of the transverse electric and mag-
netic field components, is always accompanied by both,
electric as well as magnetic, longitudinal field compo-
nents. The complete deflecting rf field has necessarily
six field components and requires the representation by
a linear combination of two basis vectors. The descrip-
tion in the HM–HE basis avoids convergence problems
which are characteristic for the usual TM–TE basis for
waves matched to the velocity of light.
Both, the longitudinal electric and the longitudinal mag-
netic field component lead to undesired and fundamental
beam dynamics effects.
The longitudinal magnetic field, which has been ignored
so far, in combination with the induced transverse mo-
mentum in the direction of the deflecting force, results in
a small, but fundamental, emittance contribution in the
direction perpendicular to the deflecting force.
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