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Abstract

The stochastic gravitational wave background (SGWB) contains a wealth of information on as-
trophysical and cosmological processes. A major challenge of upcoming years will be to extract the
information contained in this background and to disentangle the contributions of different sources.
In this paper we provide the formalism to extract, from the correlation of three signals in the Laser
Interferometer Space Antenna (LISA), information about the tensor three-point function, which
characterizes the non-Gaussian properties of the SGWB. Compared to the two-point function, the
SGWB three-point function has a richer dependence on the gravitational wave momenta and chi-
ralities, and a larger number of signal channels. It can be used therefore as a powerful discriminator
between different models. We provide LISA’s response functions to a general SGWB three-point
function. As examples, we study in full detail the cases of an equilateral and squeezed SGWB
bispectra, and provide the explicit form of the response functions, ready to be convoluted with
any theoretical prediction of the bispectrum to obtain the observable signal. We further derive
the optimal estimator to compute the signal-to-noise ratio. Our formalism covers general shapes
of non-Gaussianity, and can be extended straightaway to other detector geometries. Finally, we
provide a short overview of models of the early universe that can give rise to non-Gaussian SGWB.
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1 Introduction

Many cosmological and astrophysical scenarios predict the existence of stochastic gravitational wave

backgrounds (SGWBs) with a sufficiently large amplitude to be detectable at interferometer scales:

see e.g. [1–3] for reviews. A detection of a SGWB signal would provide important information about

its origin, hence it is essential to characterize its properties in detail, and to devise observables that

will enable us to distinguish among different possible sources of gravitational waves (GWs).

The statistical features of a SGWB can offer various observables that can be measured with in-

terferometers. While so far the attention has been mainly focussed on the two-point function (power

spectrum) of the GW signal (see e.g. the recent review [4]), in this work we study for the first time how

LISA [5] (and for this matter any other interferometer) can probe the three-point function (bispec-

trum) of the SGWB. A non-vanishing GW three-point function is associated with the non-Gaussian

features of the SGWB. Some of the key ingredients of early universe models (in particular inflation and

topological defects) predict that the primordial SGWB can have large non-Gaussianity, whose features

can be calculated from first principles, and can be used to discriminate among different models. On

the other hand, a SGWB due to a combination of a large number of uncorrelated astrophysical sources,

or due to sub-horizon cosmological processes such as phase transitions or preheating, is Gaussian to a

high degree, due to the central limit theorem. Thus a detection of a non-Gaussian SGWB would be a

distinctive indication of a signal of cosmological origin, and the study of its properties would provide

crucial information on the physics of the very early universe.

The Fourier transform of a GW three-point function defines the non-Gaussian tensor bispectrum,

which depends on the frequencies of the three GWs involved, as well as on their polarization. Its

scale and chirality dependence can be very rich, in contrast with the GW two-point function, whose

features are very constrained by the symmetries of the underlying background geometry. This implies

that a study of the GW bispectrum can lead to a large number of new observables that can be used to

differentiate among different models of cosmology. So far, the physics of primordial tensor fluctuations

has been mainly investigated at Cosmic Microwave Background (CMB) scales, and indeed the non-

Gaussianity of primordial GWs produced in certain models of inflation have been observationally

constrained by the Planck satellite [6].

In this work, we investigate for the first time the capabilities of LISA to test the non-Gaussian

features of a SGWB via its three-point functions 1. We do so by developing a formalism to compute

the interferometer cubic response function to a non-Gaussian SGWB, connecting the GW bispectrum

to the statistics of the actual signal outputs obtained from LISA (see Sections 2 and 3). We show that

cubic correlators of the interferometer signal are sensitive to the properties of the GW bispectrum –

its dependence on the GW wavenumber and chirality indexes – and also depends on specific features

of the interferometer, like its arm configurations. Measurements of the cubic interferometer signal can

distinguish among different cosmological models for a SGWB, and we show how different examples

of primordial bispectra, with distinctive dependence on the momenta of the incoming GWs, lead to

qualitatively distinguishable features in the interferometer cubic correlators. We also demonstrate that

any measurement of the GW bispectrum at LISA is invariant under parity. Nonetheless, the analysis of

LISA data can allow to extract nontrivial dependence on the correlators of the left- and right-handed

1Here we are interested in probing the intrinsic non-Gaussian statistics of the SGWB, and not in describing ‘pop-corn-

like’ non-Gaussian bursts sometimes present in the unresolved stochastic background due to combining many individual

sources. See [4] for a detailed review on searches for this kind of non-Gaussian signatures using the SGWB two-point

function.
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gravitational waves, such as the relative amplitudes of the (〈RRR〉 + 〈LLL〉) and (〈RRL〉 + 〈LLR〉)
correlation functions.

These results allow us to build the optimal estimator for the GW bispectrum observed at LISA,

generalizing to the three-point function results previously developed for studying the GW two-point

function [7], see Section 4. Our final expression for the Signal-to-Noise-Ratio (SNR) is physically

transparent, and we apply it to a specific scenario of primordial GW non-Gaussian signal – whose

bispectrum is amplified at a specific scale – to quantitatively demonstrate the ability of LISA to

measure tensor non-Gaussianity, depending on the amplitude of the GW bispectrum.

Our results demonstrate that the statistics of the GW signal measured at interferometer is sensitive

to various distinctive properties of the bispectrum of primordial GWs from the early universe: Section

5 surveys existing cosmological models capable of producing large non-Gaussianity of the SGWB,

analyzing the features of the corresponding bispectra, and briefly discussing prospects of detection

with the LISA interferometer and with CMB experiments, in light of our findings.

Section 6 contains our conclusions, with a summary of our results and suggestions for future studies,

while five appendices contain technical results used in the main text.

2 A formalism for tensor non-Gaussianity

In this section we build a formalism for describing tensor non-Gaussianity, which can be used to con-

veniently analyze how to probe this observable with interferometers. We consider a stochastic back-

ground of gravitational waves associated with the transverse-traceless metric perturbation hab (t, ~x) of

the background metric (where a, b correspond to spatial indexes, while λ denotes tensor polarization).

We decompose the tensor modes as

hab (t, ~x) =

∫
d3k e−2πi~k·~x

∑
λ

eab,λ(k̂)
[
e2πi kt hλ(~k) + e−2πi kt h∗λ(−~k)

]
≡

∫
d3k e−2πi~k·~x

∑
λ

eab,λ(k̂)hλ(t, ~k) , (1)

where k ≡ |~k|, k̂ denotes a unit vector in the direction of the vector ~k. In this expression, we sum

over the two transverse polarizations λ of a GW, with eab,λ(k̂) being the polarization operator for

the polarization λ. For a more detailed discussion on the definition and construction of different

polarization basis, and the properties they satisfy, we refer the reader to Appendix A.

As we require that hab(t, ~x) is real, it must follow that∑
λ

e∗ab,λ(k̂)h∗λ(t, ~k) =
∑
λ

eab,λ(−k̂)hλ(t,−~k) (2)

holds. This condition, however, does not fix completely the choice of the polarization tensors eab,λ(k̂).

Two basis for the GW polarizations are commonly employed in the literature, the {+, ×} basis, and

the {R, L} chiral basis. In the explicit computations performed in this paper, the chiral basis is used.

Furthermore, we choose chiral polarization operators that specifically satisfy e∗ab,λ(k̂) = eab,λ(−k̂) [for

chiral polarization operators that do not satisfy this property, see Appendix A]. This implies that the

same property is also satisfied by the momentum space variable hλ(t,~k), so that the reality of hab(t, ~x)

is ensured. Given our choice, we have

e∗ab,λ

(
k̂
)

= eab,λ

(
−k̂
)

= eab,−λ

(
k̂
)

, e∗ab,λ

(
k̂
)
eab,λ′

(
k̂
)

= δλλ′ . (3)
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In particular, the second equality in the first expression states that eab,R ↔ eab,L under a parity

transformation.

The statistical properties of the GW background are controlled by its correlation functions in

Fourier space. In this work we consider the 2−point correlator
〈
h2
〉
, and, more in detail, the 3−point

correlator
〈
h3
〉
, which is non-vanishing for a non-Gaussian SGWB. Assuming statistical isotropy, the

equal-time momentum-space correlator is given by〈
hλ

(
t, ~k
)
hλ′
(
t, ~k′

)〉
=
Pλ (k)

4πk3
δλλ′ δ

(3)
(
~k + ~k′

)
, (4)

where Pλ (k) is the power spectrum of the helicity λ, and the numerical factor at the right-hand side

has been fixed imposing that the combination of eqs. (1) and (4) leads to the real space correlator

〈hab (t, ~x) hab (t, ~y)〉 =

∫ ∞
0

dk

k

∑
λ

Pλ (k)
sin (2πkr)

2πkr
, r ≡ |~x− ~y| . (5)

For studying the 3−point function, we use an ansatz analogous to the one used for describing the

statistics of primordial scalar perturbations [8–13], see for example [14–16]. Specifically, we assume a

small departure from Gaussianity, so that a tensor mode is the sum of a dominant Gaussian component,

and its quadratic convolution

hλ

(
t, ~k
)

= hλ,g

(
t, ~k
)

+
∑
λ′,λ′′

fλ,λ
′,λ′′

NL

∫
d3p d3qhλ′,g (t, ~p) hλ′′,g (t, ~q)

× δ(3)
(
~k − ~p− ~q

)
Kλλ′λ′′ (−~p, −~q) . (6)

This ansatz is characterized by a kernel Kλλ′λ′′ , which depends on the GW momenta and polarizations.

We shall see that the kernel defines the properties of the non-Gaussian tensor bispectrum. We assume

that, in general, the two different polarizations can be coupled in the convolution. Due to statistical

isotropy, the kernel function depends on the magnitude of the three vectors ~k, ~p, ~q involved in the

convolution,

δ(3)
(
~k − ~p− ~q

)
Kλλ′λ′′ (−~p, −~q) = δ(3)

(
~k − ~p− ~q

)
Kλλ′λ′′ (k; p, q) , (7)

and it is symmetric in the last two arguments, but not in the first one, fλ,λ
′,λ′′

NL Kλλ′λ′′ (k; p, q) =

fλ,λ
′,λ′′

NL Kλλ′′λ′ (k; q, p). The momentum dependence of the kernel controls the so-called shape of the

non-Gaussianity [11], namely how the bispectrum changes according to different triangular configura-

tions in Fourier space. The simplest form of non-Gaussianity is the so called local shape, enhanced in

the squeezed limit of the bispectrum, for which (assuming also that the different helicities are not mixed

in the convolution) Kλλ′λ′′ (k; p, q) = δλλ′δλλ′′ . More in general, we normalize Kλλ′λ′′ (kp; kp, kp) = 1

at some given pivot scale kp, so that the size of non-Gaussianity is controlled by the nonlinear param-

eter fλ,λ
′,λ′′

NL . In the concrete example of non scale-invariant Non-Gaussianity that we study in this

paper, the pivot scale is chosen to be the scale at which the bispectrum is maximum, see eq. (66).

It is important to note that the mode functions appearing in the relation (6) are evaluated today.

If the GW has a cosmological origin, we need to account for its evolution. It is conventional to encode

this in a cosmological transfer function

hλ (t0, k) = T (t0, k) hpr
λ (k) , (8)
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where t0 indicates the present time, and hpr is the primordial value of the GW mode. For an adiabatic

tensor mode produced during inflation, hpr
λ is constant (time independent) at super-horizon scales.

For GW produced inside the horizon after inflation, we take the value of the mode at the end of GW

production. Correspondingly, eq. (6) is changed into

T (t0, k) hpr
λ (~k) = T (t0, k) hpr

λ,g(
~k)

+
∑
λ′,λ′′

fλ,λ
′,λ′′

NL

∫
d3pd3qT (t0, p) h

pr
λ′,g (~p) T (t0, q) h

pr
λ′′,g (~q) δ(3)

(
~k − ~p− ~q

)
Kλλ′λ′′ (−~p, −~q) .

(9)

This leads to the relation

fλ,λ
′,λ′′,pr

NL Kλλ′λ′′,pr (k; p, q) ≡ T (t0, p) T (t0, q)

T (t0, k)
fλ,λ

′,λ′′

NL Kλλ′λ′′ (k; p, q) , (10)

between the parametrization of non-Gaussianity in terms of the primordial vs. the present day GW

mode functions. 2 While the product of the last two factors at the rhs is more directly related to

what we measure, the lhs is more immediately connected to the theory that provides the origin of the

non-Gaussianity.

From the ansatz (6) we obtain the equal-time three-point function, to linear order in the nonlinear

parameters, as〈
hλ1

(
t, ~k1

)
hλ2

(
t, ~k2

)
hλ3

(
t, ~k3

)〉
= δ(3)

(
~k + ~k2 + ~k3

)
Bλ1,λ2,λ3 (k1, k2, k3) , (11)

with

Bλ1,λ2,λ3 (k1, k2, k3) =
fλ1,λ2,λ3NL

8π2
Kλ1;λ2,λ3 (k1; k2, k3)

Pλ2 (k2)

k3
2

Pλ3 (k3)

k3
3

+
fλ2,λ1,λ3NL

8π2
Kλ2;λ1,λ3 (k2; k1, k3)

Pλ1 (k1)

k3
1

Pλ3 (k3)

k3
3

+
fλ3,λ1,λ2NL

8π2
Kλ3;λ1,λ2 (k3; k1, k2)

Pλ1 (k1)

k3
1

Pλ2 (k2)

k3
2

. (12)

This expression for the bispectrum can describe the different shapes of non-Gaussianity, and the

dependence on chirality. The expression for the tensor three-point function (11) evaluated at non-

equal times, which will be used in Section 4, is discussed in Appendix B.

3 LISA signal and response functions

Our aim in this Section is to build the tools to study the primordial tensor three-point functions

with LISA: we connect the theoretical results of the previous section with the actual LISA design. We

analyze how the signal cubic correlator can be used to probe the tensor bispectrum described in Section

2, deriving for the first time the interferometer cubic response function to tensor non-Gaussianity. As

2To be precise, both sides in this relation are multiplied by δ(3)(~k+ ~p+ ~q). Eq. (10) indicates in an unambiguous way

how the nonlinear parameter fNL and the kernel function K should be independently rescaled, once we demand that both

the present day and the primordial kernel function are normalized to Kλλ′λ′′ (kp; kp, kp) = Kλλ′λ′′,pr (kp; kp, kp) = 1.
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we shall see, the interferometer response function is sensitive to the shape and polarization dependence

of the primordial tensor bispectrum.

We first analyze how a SGWB influences the time a photon takes for traveling along a single arm

of an interferometer. We then study the signal measured at LISA. We follow the derivation done

in [4,17] based on the frequency basis (C1) that we introduce in the appendix C, but reformulated in

the basis (1).

3.1 Single arm of an interferometer

We consider an interferometer arm at rest, with mass 1 and mass 2 at the two ends. Mass 1 and mass

2 are located, respectively, at ~x1 and at ~x2 = ~x1 +L l̂12, where L is the length of the arm, and l̂12 the

unit vector in the direction from mass 1 to mass 2. The change in the light-travel time for a photon

emitted at mass 1 at the time t1 and arriving at mass 2, due to a passing gravitational wave hab is

given by

∆T (t1) =
1

2
l̂a12 l̂

b
12

∫ L

0
ds hab

(
t1 + s, ~x1 + s l̂12

)
. (13)

Inserting the decomposition (1) and performing the integral, we find

∆T (t1) = L

∫
d3k e−2πi~k·~x1

∑
λ

eab,λ

(
k̂
) l̂a12 l̂

b
12

2

[
e2πikt1 ĥλ

(
~k
)
M
(
l̂12 · k̂, k

)
+e−2πikt1 ĥ∗λ

(
−~k
)
M∗

(
−l̂12 · k̂, k

)]
, (14)

with

M
(
l̂12 · n̂, k

)
≡ eπikL[1−n̂·l̂12]

sin
(
πkL

[
1− n̂ · l̂12

])
πk
[
1− n̂ · l̂12

] , (15)

where n̂ is the direction of propagation of the wave. Let us consider now the signal s12 (t, ~x1), measured

at time t by a detector of mass 1 located at ~x1, as the sum of the change in the light-travel time for

a photon emitted at mass 1 (at the time t − 2L), arriving to mass 2 (at the time t − L), and then

coming back to mass 1, i.e.,

s12 (t) = ∆T12 (t− 2L) + ∆T21 (t− L) + n1 (t) , (16)

where n1 (t) = n1 (t, ~x1) is the noise measured by the detector. Using eq. (14) we obtain

s12 (t, ~x1)− n1 (t, ~x1) = L

∫
d3k e−2πi~k·~x1

∑
λ

Gλ
(
k̂, l̂12

)
hλ

(
t− L, ~k

)
T
(
kL, k̂ · l̂12

)
, (17)

where the detector transfer function3 is

T
(
kL, k̂ · l̂12

)
≡ e−πikL[1+k̂·l̂12]

sin
(
πkL

[
1− k̂ · l̂12

])
πkL

[
1− k̂ · l̂12

] + eπikL[1−k̂·l̂12]
sin
(
πkL

[
1 + k̂ · l̂12

])
πkL

[
1 + k̂ · l̂12

] , (18)

3The detector transfer function T encodes the response of the detector to a gravitational wave, and should not be

confused with the cosmological transfer function introduced in eq. (8).

6



and we have also introduced the combination

Gλ
(
k̂, l̂12

)
≡ eab,λ

(
k̂
) l̂a12 l̂

b
12

2
. (19)

Using (4), we obtain the 2−point correlation function of the signal

〈
s2

12 (t, ~x1)
〉
−
〈
n2

1 (t, ~x1)
〉

=
L2

4π

∫
d3k

k3

∑
λ

Pλ (k)
∣∣∣Gλ (k̂, l̂12

)∣∣∣2 ∣∣∣T (kL, k̂ · l̂12

)∣∣∣2 , (20)

as well as the 3−point correlation function〈
s3

12 (t, ~x1)
〉
−
〈
n3

1 (t, ~x1)
〉

= L3

∫
d3k1

∫
d3k2

∫
d3k3 δ

(3)
(
~k1 + ~k2 + ~k3

)
Bλ1λ2λ3 (k1, k2, k3)

×
∑

λ1,λ2,λ3

Gλ1
(
k̂1, l̂12

)
Gλ2

(
k̂2, l̂12

)
Gλ3

(
k̂3, l̂12

)
× T

(
k1L, k̂1 · l̂12

)
T
(
k2L, k̂2 · l̂12

)
T
(
k3L, k̂3 · l̂12

)
, (21)

where we have assumed that signal and noise are uncorrelated (i.e., 〈s n〉 =
〈
s n2

〉
=
〈
s2n
〉

= 0).

3.2 Quadratic and cubic signal correlation functions at LISA

Equation (17) describes the signal generated in a single arm of an interferometer. From this result

we can construct the response functions of the full instrument, where the phase measurements in

the individual arms are combined to minimize the instrumental noise (see e.g. [18]). Combining two

arms of the equilateral triangular LISA configuration with a common mass at ~x1 yields a Michelson

interferometer:

sX(t, ~x1)− nX(t, ~x1) = ∆T12(t− 2L) + ∆T21(t− L)−∆T13(t− 2L)−∆T31(t− L) . (22)

Cyclic permutation of the endpoints ~x1, ~x2, ~x3 results in a total of three Michelson interferometers,

which we label X, Y and Z. From these, the standard LISA output channels A, E and T are

constructed as [18]

sA(t) =
1

3
(2sX(t)− sY (t)− sZ(t)) , (23)

sE(t) =
1√
3

(sZ(t)− sY (t)) , (24)

sT (t) =
1

3
(sX(t) + sY (t) + sZ(t)) (null channel) . (25)

These signals can then be expressed as a linear combination of the single arm signals,

sO(t) =
∑
i,j

cOij sij(t) , O ∈ {A,E, T} , (26)

where i, j = 1, 2, 3 label the test masses and cOij are constant coefficients which can be read from

eqs. (22)-(25). Introducing

Iijλ (~k) ≡ e−2πi~k · ~xi Gλ(k̂, l̂ij) T
(
kL, k̂ · l̂ij

)
, (27)

7



the arm signal eq. (17) can be compactly written as

s12(t, ~x1)− n(t, ~x1) = L

∫
d3k

∑
λ

I12
λ (~k) hλ(t− L,~k) . (28)

Correspondingly,

sO(t)− nO(t) = L

∫
d3k

∑
i,j

cOij I
ij
λ (~k) hλ(t− L,~k) , (29)

with cOij the same coefficients as in eq. (26).

We now have the tools to study the two-point and three-point correlation functions for the signal,

and analyze how they depend on the statistical properties of the SGWB, namely its power spectrum

and bispectrum as described in Section 2. We derive the quadratic and cubic interferometer response

functions, and discuss how the interferometer measurements allow to probe properties of the primordial

tensor non-Gaussianity.

3.2.1 The quadratic interferometer response function

The quadratic auto-correlation of the interferometer signal reads

〈s2
O(t)〉 − 〈n2

O(t)〉 =
L2

4π

∫
dk

k

∑
λ

Pλ(k)

∫
dk̂
(
cOij I

ij
λ (~k)

)(
cOlm I lmλ (−~k)

)
(30)

= L2

∫
dk

k

∑
λ

Pλ(k)
1

4π
2

∫
θ<π

2

dk̂
∣∣∣cOij Iijλ (~k)

∣∣∣2︸ ︷︷ ︸
≡ROOλ (k)

, (31)

where we have inserted eq. (4) and used the fact that Iijλ (−~k) = (Iijλ (~k))∗ [recall that this property

is specific to our choice of polarization operators eq. (3)] to halve the domain of the momentum

integration.

The quantity ROOλ (k) gives the (scale-dependent) detector response function to the GW of polar-

ization hλ for the 2-point correlation function of the channel O. This is obtained after integrating∣∣∣cOij Iijλ (~k)
∣∣∣2 over all the directions k̂ of the incoming GW.

The angular-dependent integrand is shown in Fig. 1, for the specific choice k = 0.1/L of the GW

wavenumber and for the two channels A (left panel) and E (right panel), respectively. We disregard the

T channel, as its sensitivity to the GW background is well below that of the A and E channels [18] (we

have verified that this is the case also for the 3−point functions that we study below). We use standard

spherical coordinates, where θ ∈ [0, π] is the polar angle, and φ ∈ [0, 2π] is the azimuthal angle. For

definiteness, we set the detector in the xz-plane, with the three masses, respectively at the {x, z}
locations given by {0, 0} , {0, L}, and

{√
3

2 L, L2

}
. As expected GWs arriving from the perpendicular

direction to the detector (the y axis, characterized by θ = π
2 and φ = π

2 ,
3π
2 ) are those that provide

the largest contribution to the detector two-point function. For equal length interferometer arms the

cross response function RAE vanishes [18].

In Fig. 2 we show the detector response function (after integrating over the GW directions). The

same result is obtained for both polarizations (we discuss this below) and in the two channels A and

8
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E. The response function is nearly constant up to k ∼ 0.2/L, and it then strongly decreases with k.

By Taylor expanding the relations (27) in the limit of small k, we have the analytic result

RAAλ (k) = REEλ (k) =
3

10
− 169

1680

(
k

k∗

)2

+ O

(
k4

k4
∗

)
, k∗ ≡

1

2πL
. (32)

This agrees with the first of eqs. (18) in [19].

3.2.2 The cubic interferometer response function

We now derive for the first time the interferometer cubic response function, starting from the expression

〈sO1(t)sO2(t)sO3(t)〉 − 〈nO1(t)nO2(t)nO3(t)〉

=

∫
d3k1

∫
d3k2

∫
d3k3

∑
λ1,λ2,λ3

Bλ1λ2λ3(k1, k2, k3) δ(3)(~k1 + ~k2 + ~k3) Π3
l=1

(
cOlij I

ij
λl

(~kl)
)
.

(33)

The computation is conceptually similar to the one done for the two-point response function, with the

complication of various angular integrations: the task is to find the most convenient way to perform the

integrals and obtain an expression for the response function in terms of the momenta of the incoming

GW waves.

We use the Dirac δ−function to perform three of the angular integrations. We are left with six

integrations to do: three over the magnitudes of the momenta, and three over angles. The angles

parameterize respectively the direction of k̂1, and the rotation of k̂2 about k̂1, keeping fixed the angle

θ12 between the two vectors. The latter angle can be expressed using the δ−function, since

~k3 = −~k1 − ~k2 ⇒ cos θ12 =
k2

3 − k2
1 − k2

2

2k1k2
. (34)

The specific algorithm that we employ to compute these integrals is the following. We consider an

auxiliary coordinate system in which k̂1 is oriented along the z− axis, and k̂2 is initially in the xz

plane, at an angle θ12 with the z−axis (and with positive x−component), and it is then rotated by

the angle φ2 about the z−axis. In this auxiliary system, k̂1 and k̂2 coincide, respectively, with the

unit vectors

v̂1 =

 0

0

1

 , v̂2 =



√
1−

(
k23−k21−k22

2k1k2

)2
cosφ2√

1−
(
k23−k21−k22

2k1k2

)2
sinφ2

k23−k21−k22
2k1k2

 . (35)

We then move to the actual coordinate system by rotating k̂1 and k̂2 through the same rotation matrix

R1 =

 cos θ1 cosφ1 − sinφ1 sin θ1 cosφ1

cos θ1 sinφ1 cosφ1 sin θ1 sinφ1

− sin θ1 0 cos θ1

 , (36)

and finally the third vector is given by ~k3 = −~k1 − ~k2. By working out the Jacobian of the transfor-

mation, we obtain

〈sO1sO2sO3〉 = L3

∫
dk1

k1

∫
dk2

k2

∫
dk3

k3

∑
λ1λ2λ3

k2
1 k

2
2 k

2
3 Bλ1λ2λ3 (k1, k2, k3) RO1O2O3

λ1λ2λ3
(k1, k2, k3) ,

10



(37)

with

RO1O2O3
λ1λ2λ3

(k1, k2, k3) =

∫ π

0
dθ1

∫ 2π

0
dφ1

∫ 2π

0
dφ2 sin θ1 Π3

l=1c
Ol
ij I

ij
λl

(
~kl

) ∣∣∣
~k1=k1R1 v̂1, ~k2=k2R1 v̂2 , ~k3=−~k1−~k2

.

(38)

Also in this case, a parity transformation (~ki → −~ki, corresponding to θ1 → π − θ1, φ1 → π + φ1,

φ2 → π − φ2) sends the integral into its complex conjugate, ensuring that the response function is a

real number [again, this is a consequence of our choice of polarization operators eq. (3)]. Interestingly,

we find that the different A and E channels have non-vanishing cross-correlations in the three-point

functions. Moreover, the response function differs for different GW polarizations. We can therefore

(at least in principle) perform several independent measurement of the GW bispectrum with LISA.

Let us emphasize that the fact that our 3-pt response function is real applies because of the choice

of polarization operators in eq. (3), which are built from the canonical basis given e.g. in eq. (A3),

presented in Appendix A. In such appendix we actually derive the transformation rule of the polariza-

tion operators when they are rotated by an angle α around each vector ~k. We conclude that in general

the 3-pt response functions are complex, depending on the choice of α (the 2-pt response function,

however, is always real). For instance, for α = 0 or α = π, we have that all 3-pt response functions

are real, whereas for α = π/6 the response functions RRRR,RLLL are still real, whereas RLRR,RRLL
become complex. The condition to be purely real, purely imaginary, or simply complex, depends on

the choice of the basis depending on α, see Appendix A and in particular eqs. (A16)-(A19). Of course,

the final signal in the GW detector does not depend on the arbitrary choice of the vector basis. The

left hand side of eq. (37) is the same no matter what the choice of the angle α. However, depending on

α, one must modify our expressions for the response functions by the phases indicated in eqs. (A16)-

(A19), and at the same time correct the tensor bispectra Bλλ′λ′′ by exactly the opposite phases, so

that at the end the physical signal eq. (37) remains invariant. In order to use our formalism, special

care must be put into what vector basis is being used in the computation of the tensor bispectrum,

and hence what properties of the polarization operators and response functions hold. See Appendix A

for further details.

We evaluate now the response function for two cases:

– An equilateral configuration. Let us start from the case for which k1 = k2 = k3 ≡ k, which

is defined as equilateral configuration. In the left panel of Fig. 3 we show the response functions

ROO′O′′RRR (k) for the various combinations of channels O,O′, O′′. The right panel of Fig. 3 shows instead

the response functions ROO′O′′RRL (k). As we discuss in the next subsection, the response functions are

invariant under parity, and we find that ROO′O′′RRR = ROO′O′′LLL , and that ROO′O′′RRL = ROO′O′′RLL . Therefore,

the response functions shown in Fig. 3 show all the possible independent combinations of the A and

E channels.

– A squeezed isosceles configuration. Let us now study the response functions for the isosceles

squeezed case, k3 � k1 = k2. In this case, eqs. (35) and (36) give

v̂2 = −v̂1 −
k3

k1
v̂3 +O

(
k2

3

k2
1

)
, v̂3 ≡ −

 cosφ2

sinφ2

0

 ⇒ k̂3 = R1 v̂3

[
1 +O

(
k3

k1

)]
, (39)
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Figure 3: Integrated response function ROO′O′′RRR = ROO′O′′LLL (left panel) and ROO′O′′RRL = ROO′O′′RLL (right

panel) for the A and E channels (both self- and cross-correlations) for the case of an exact equi-

lateral bispectrum (of wavenumber k). The label next to each curve indicates the choice of OO′O′′

corresponding to that curve.

and therefore

Iijλ
(
~k3

)
= eab,λ

(
k̂3

)
l̂aij l̂

b
ij +O

(
k3

k1

)
. (40)

To leading order, the response function becomes

RO1O2O3
λ1λ2λ3

(k1, k1, k3 � k1)

'
∫ π

0
dθ1 sin θ1

∫ 2π

0
dφ1 F

O3 (θ1, φ1)
[
cO1
ij I

ij
λ1

(k1R1v̂1)
] [
cO2
ij I

ij
λ2

(−k1R1v̂1)
]
, (41)

where we have introduced the quantities

FO (θ1, φ1) ≡ cOij l̂
a
ij l̂
b
ij

∫ 2π

0
dφ2 eab,λ (R1v̂3) . (42)

Namely, the isosceles squeezed three-point response function reduces to an integration over angles of

the same quantities characterizing a two-point response function, modulated by the angular function

FO (θ1, φ1), depending on the orientation of the long mode with respect to the signal trajectory.

This fact resembles the consistency relation for the squeezed limit of the bispectrum of adiabatic

inflationary fluctuations, first discussed in [12]. Long wavelength adiabatic modes do not directly

affect short wavelength ones, but instead can be thought as contributing to the background geometry:

hence the squeezed limit of three-point functions quantifies how two-point functions get modulated by

a background which includes the long mode.

Due to our choice eab,λ

(
k̂
)

= eab,−λ

(
−k̂
)

= e∗ab,λ

(
−k̂
)

, and since R1v̂3 changes sign when

φ2 → φ2 + π, the functions FO (θ1, φ1) are real, and λ−independent. The integral (42) can be

performed analytically, leading to

FAλ3 (θ1, φ1) = − 3π

128

{
12 [3 + cos (2θ1)] +

cos (2φ1)

sin2 θ1
[45 + 20 cos (2θ1)− cos (4θ1)− 64 |cos θ1|]

}
12
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Figure 4: Directional dependence of the integrand (41) for the response functions FAλ3 (left panel) and

FEλ3 (right panel).

+

√
3π

8
sin (2θ1) cos (φ1) ,

FEλ3 (θ1, φ1) = −
√

3π

128

{
12 [3 + cos (2θ1)] +

cos (2φ1)

sin2 θ1
[45 + 20 cos (2θ1)− cos (4θ1)− 64 |cos θ1|]

}
+

3π

8
sin (2θ1) cos (φ1) ,

F Tλ3 (θ1, φ1) = 0 . (43)

We have plotted in Fig. 4 the directional dependence of the integrand (41) for the two channels A and

E.

Since the functions FO (θ1, φ1) are λ−independent, both GW helicities give the same response

function in the isosceles squeezed limit. Using also the mirror symmetry discussed in the next subsec-

tion (namely, the response function is invariant when we change the helicities of all modes), we can see

that 12 independent configuration exists, 6 having the squeezed mode measured from the A channel,

and 6 from the E channel. The various independent combinations are shown in Fig. 5.

3.2.3 Three-point response function physical properties under parity

The properties of the interferometer cubic response function can be used to characterized the non-

Gaussian SGWB. Tensor non-Gaussianity is described by the tensor bispectrum discussed in Section

2, and different models predict different shapes and polarization dependencies for the amplitude of the

bispectrum (see Section 5 for a detailed discussion). Since we find different expressions for three-point

response function depending on the momenta and on the polarization indexes, three-point functions

of inteferometer signals can distinguish among different possible sources of SGWBs.

On the other hand, an additional feature that can characterize the tensor bispectrum is its be-

haviour under a parity transformation. Certain models of early Universe cosmology (see Section 5),

predict that tensor bispectra violate parity, and the value of the bispectrum components are not in-

variant under a parity transformation. We now show that LISA – and any planar interferometer –
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Figure 5: Integrated response function ROO′O′′λλ′λ′′ (k1, k2, k3) for an isosceles squeezed bispectrum, k3 �
k1 = k2, with the long mode measured from the A (left panel) and E (right panel) channel. To leading

order in k3/k1, identical response functions are obtained for both helicities of the long mode.

cannot distinguish among components of the bispectrum that differ only by a parity transformation,

and consequently cannot detect parity breaking effects. Reference [7] noted that the LISA response

function for the two-point function is the same for the left and right polarizations of the GW, namely

ROOλ = ROO−λ , due to a mirror symmetry across the plane of the interferometer. As we show now, this

result can be readily extended also to the three-point function, implying the equalities RRRR = RLLL
and RRRL = RLLR. To understand this, consider a triangular configuration of satellites on the xz

plane. The mirror symmetry then corresponds to changing the y component of a vector. We would

like to understand what this implies for the factor I, defined in eq. (27), that controls the response

function. Denoting by V‖ and by V⊥ the component of a vector V , respectively, inside and perpen-

dicular to xz plane, we note that the GW momentum, and the basis vectors û and v̂ introduced in

Section 2, change as

k̂‖ ⇒ k̂‖ , k̂⊥ ⇒ −k̂⊥ ,
û‖ ⇒ −û‖ , û⊥ ⇒ û⊥ ,

v̂‖ ⇒ v̂‖ , v̂⊥ ⇒ −v̂⊥ . (44)

As the vectors ~lij (expressing the displacements between the test masses) lie in the plane of the instru-

ment, only the parallel components contribute to the contractions Gλ
(
k̂, l̂
)

[defined in eq. (19)]. Due

to this, and thanks to the properties of (44), we see that Gλ → G−λ under this mirror transformation.

On the other hand, the transfer function T and the phase entering in eq. (27) are invariant under

this transformation. This implies that Iijλ
(
k‖, k⊥

)
= Iij−λ

(
k‖, −k⊥

)
. The same property holds for

the linear combinations c0
ij I

ij
λ . These combinations form the response functions, which, therefore,

14



satisfy 4

ROO′λ

(
k‖, k⊥

)
= ROO′−λ

(
k‖, −k⊥

)
, ROO′O′′λλ′λ′′

(
ki,‖, ki,⊥

)
= ROO′O′′−λ−λ′−λ′′

(
ki,‖, −ki,⊥

)
. (45)

After integrating over the angles, this implies the equalities RRR = RLL for the two-point function

found in [7], as well as the equalities RRRR = RLLL and RRRL = RRLL for the three-point func-

tion. This implies that parity violation in the tensor bispectrum can not be detected using a planar

interferometer, like LISA.

4 The optimal signal-to-noise ratio

In this section we construct a frequency-dependent estimator of the stochastic gravitational wave bis-

pectrum. Our procedure extends to the case of a signal three-point function the arguments developed

in [7] to estimate the optimal signal-to-noise ratio in the gravitational wave power spectrum.

4.1 The signal in frequency space

Since our goal is to generate a frequency-dependent estimator, our first task is to compute the three-

point function of the signal s̃O(t) in frequency space, defined as

s̃O (f) ≡
∫
dt e−2πift sO (t)

= L

∫
d3k e−2πi~k·~x1

∑
λ

Gλ
(
k̂, l̂12

)∫
dt e−2πift hλ

(
t− L, ~k

)
T
(
kL, k̂ · l̂12

)
+ ñO (f) , (46)

where ñO (f) denotes the corresponding noise in frequency space. Defining

σ̃O(f) = s̃O (f)− ñO (f) , (47)

we obtain the following three-point function

〈σ̃O1(f1) σ̃O2(f2) σ̃O3(f3)〉 =

∫ ( 3∏
i=1

dti e
−2πi fiti d3ki

∑
cOiab I

λi
ab (
~ki)

)
× 〈hλ1(t1 − L, ~k1)hλ2(t2 − L, ~k2)hλ3(t3 − L, ~k3)〉 , (48)

whose calculation requires the knowledge of the time correlator for the gravitational waves at unequal

times. The expression for the latter quantity is given in Appendix B.

Using eq. (B6) we obtain∫
dt1 dt2 dt3 e

−2πi(f1t1+f2t2+f3t3)
〈
hλ1

(
t1 − L, ~k1

)
hλ2

(
t2 − L, ~k2

)
hλ3

(
t3 − L, ~k3

)〉
=
δ(f1 + f2 + f3)

32π2
δ(3)

(
~k1 + ~k2 + ~k3

)
×

{
fλ1,λ2,λ3NL Kλ1;λ2,λ3 (k1; k2, k3)

Pλ2 (k2)

k3
2

Pλ3 (k3)

k3
3

δ(k2 − |f2|) δ(k3 − |f3|)

4In terms of the parametrization of eqs. (35) and (36) the mirror transformation corresponds to {θ1, φ1, φ2} →
{θ1, −φ1, −φ2}.
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+ fλ2,λ1,λ3NL Kλ2;λ1,λ3 (k2; k1, k3)
Pλ1 (k1)

k3
1

Pλ3 (k3)

k3
3

δ(k1 − |f1|) δ(k3 − |f3|)

+ fλ3,λ1,λ2NL Kλ3;λ1,λ2 (k3; k1, k2)
Pλ1 (k1)

k3
1

Pλ2 (k2)

k3
2

δ(k1 − |f1|) δ(k2 − |f2|)

}
≡ δ(f1 + f2 + f3) δ(3)

(
~k1 + ~k2 + ~k3

)
B̃λ1λ2λ3(k1, k2, k3; f1, f2, f3) , (49)

so that

〈σ̃O1(f1) σ̃O2(f2) σ̃O3(f3)〉 = δ(f1 + f2 + f3)

∫ ( 3∏
i=1

d3ki
∑

cOiab I
λi
ab (
~ki)

)
× δ(3)

(
~k1 + ~k2 + ~k3

)
B̃λ1λ2λ3(k1, k2, k3; f1, f2, f3)

= δ(f1 + f2 + f3)L3

∫
k1 dk1 k2 dk2 k3 dk3 B̃λ1λ2λ3(k1, k2, k3; f1, f2, f3)RO1O2O3

λ1λ2λ3
(k1, k2, k3) , (50)

where RO1O2O3
λ1λ2λ3

(k1, k2, k3) is the signal three-point response function computed in Section 3.

4.2 The estimator and the optimal SNR

Following [7] we define a frequency-dependent estimator for the three-point function as

F̂(f1, f2, f3) ≡
∑
ijk

W ijk(f1, f2, f3) s̃i(f1) s̃j(f2) s̃k(f3) , (51)

where the filter function W ijk(f1, f2, f3) is totally symmetric, W ijk(f1, f2, f3) = W jik(f2, f1, f3) =

..., and satisfies the reality condition W ijk(f1, f2, f3)∗ = W ijk(−f1, −f2, −f3). Since only the signals

O = {A, E} are relevant for our analysis, only 4 filter functions are independent: WAAA, WAAE ,

WAEE and WEEE . The frequency integrated estimator F̂ reads

F̂ ≡
∑
ijk

∫
df1 df2 df3W

ijk(f1, f2, f3) s̃i(f1) s̃j(f2) s̃k(f3) , (52)

with expectation value

〈F̂〉 =
∑
ijk

∫
df1 df2 df3W

ijk(f1, f2, f3) 〈s̃i(f1) s̃j(f2) s̃k(f3)〉 . (53)

Under the assumptions that the noise is Gaussian5 (so that its three-point function vanishes) and

uncorrelated with the signal, one has 〈s̃i(f1) s̃j(f2) s̃k(f3)〉 = 〈σ̃i(f1) σ̃j(f2) σ̃k(f3)〉, where σ̃i(f) is

defined in eq. (47). This implies that the expectation value of the estimator is

〈F̂〉 =
∑
ijk

∫
df1 df2 df3W

ijk(f1, f2, f3) 〈σ̃i(f1) σ̃j(f2) σ̃k(f3)〉

=
∑
ijk

∫
df1 df2 df3W

ijk(f1, f2, f3) δ(f1 + f2 + f3)Sijks (f1, f2, f3) , (54)

5This turned out to be the case, for a broad range of frequencies around 1 mHz, in LISA Pathfinder, and is being

considered as a working assumption in the LISA Data Challenge (Carlos Fernández Sopuerta, private communication).
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where we have defined the real quantity

Sijks (f1, f2, f3) ≡ L3
∑

λ1λ2λ3

∫
k1 dk1 k2 dk2 k3 dk3 B̃λ1λ2λ3(k1, k2, k3; f1, f2, f3)Rijkλ1λ2λ3(k1, k2, k3) .

(55)

We next compute the variance of F̂ assuming that the signal is noise dominated, with

〈ni (f1) nj (f2)〉 = δij P
i
n (|f1|) δ (f1 + f2) , (no sum on i) , (56)

(for brevity, from now on we omit the absolute value in the frequency dependence of the noise) so that

〈F̂2〉 =
∑
ijk

∫
df1 df2 df3

[
6W ijk(f1, f2, f3)W ijk(f1, f2, f3)∗ + 9W ijj(f1, f2, −f2)W ikk(f1, f3, −f3)∗

]
× P in(f1)P jn(f2)P kn (f3) , (57)

where the factors of 6 and 9 originate from the symmetry properties of W ijk. The signal-to-noise ratio

(SNR) is given by 〈F̂〉/
√
〈F̂2〉.

We note that for any given pair of objects Aijk(f1, f2, f3) and Bijk(f1, f2, f3) with the properties

of our filter function W ijk we can define a scalar product(
Aijk, Bijk

)
=
∑
ijk

∫
df1 df2 df3

[
6Aijk(f1, f2, f3)Bijk(f1, f2, f3)∗ + 9Aijj(f1, f2, −f2)Bikk(f1, f3, −f3)∗

]
× P in(f1)P jn(f2)P kn (f3) , (58)

so that we can write the SNR as

SNR =
1

6

(
W ijk, δ(f1 + f2 + f3) Sijks (f1, f2, f3)

P in(f1)P jn(f2)Pkn (f3)

)
√

(W ijk, W ijk)
. (59)

In writing this formula we make the hypothesis that W ijk(0, f2, f3) = 0, whose validity will be checked

in short, which implies that
∑

ijk

∫
df1 df2 df3W

ijj(f1, f2, −f2) δ(f1 + f2 − f2)Sikks (f1, f2, −f2) = 0,

i.e., the second term in the scalar product (58) does not contribute to the numerator in eq. (59). The

SNR is thus maximized for

W ijk(f1, f2, f3) ∝ δ(f1 + f2 + f3)
Sijks (f1, f2, f3)

P in(f1)P jn(f2)P kn (f3)
, (60)

up to a multiplicative constant that cancels out from the expression of SNR. This last equation shows

that our hypothesis W ijk(0, f2, f3) = 0 is valid, since the noise diverges at low frequencies.

The conclusion of this section is that, for this optimal estimator, the SNR is given by

SNR =

T
6

∑
ijk

∫
df1 df2 df3 δ(f1 + f2 + f3)

∑
ijk

Sijks (f1, f2, f3)2

P in(f1)P jn(f2)P kn (f3)

1/2

, (61)

where T is the duration of the experiment, the indices i, j and k can take only the values A and E

and the sum will contain 8 terms.
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This relation simplifies in the case in which the channels involved in the correlation have the same

noise. The noises of the measurement (22) at the vertex X and at the two other vertices Y and Z of

the instrument satisfy

〈ni (f1)nj (f2)〉 = P ijn (f1) δ (f1 + f2) , {i, j} = {X,Y, Z} . (62)

where, due to symmetry6,

PXXn (f) = P Y Yn (f) = PZZn (f) ≡ Pn,self (f) ,

PXYn (f) = PXZn (f) = P Y Zn (f) ≡ Pn,cross (f) . (63)

The linear combinations (25) have diagonal noise (56), with spectral dependence

PAn (f) = PEn (f) =
2

3
[Pn,self (f)− Pn,cross (f)] ≡ (2L)2 Pn (f) ,

P Tn (f) =
1

3
[Pn,self (f) + 2Pn,cross (f)] , (64)

which shows that the A and E channels have indeed identical noise. The factor (2L)2 has been

inserted in the definition of Pn (f) so to convert from time displacement to strain, by dividing ∆T by

the round-trip light travel distance 2L [20]. In this way, Pn (f) has the dimension of time.

Using these two channels, the relation (61) can be explicitly written as

SNR =

{
T

6

∑
ijk

∫
df1 df2 df3

(4L2)3 Pn (f1)Pn (f2)Pn (f3)
δ (f1 + f2 + f3)

[
SAAAs (f1, f2, f3)2

+3SAAEs (f1, f2, f3)2 + 3SAEEs (f1, f2, f3)2 + SEEEs (f1, f2, f3)2

]}1/2

, (65)

where the factors of 3 in front of SAAEs and SAEEs originate from equalities such as SAAEs = SAEAs =

SEAAs .

4.3 SNR for a non-Gaussian signal enhanced at a fixed scale

As an explicit example of application of these results, in this subsection we evaluate the SNR (65)

for a specific shape of non-Gaussian bispectrum. We make the following choice of kernel entering in

eq. (6):

Kλ1;λ2,λ3 (k1; k2, k3) = e−
1

2σ2
[(k1−k∗)2+(k2−k∗)2+(k3−k∗)2]δλ1L δλ2L δλ3L . (66)

where we assume that σ � k∗, and normalize the shape function to one at its maximum. This localized,

chiral bump in non-Gaussianity well approximates the predictions of certain models of Early Universe

cosmology, for instance the signal obtained in the model of [21] that we will review in the subsection

5.2.

We can use this kernel in the expressions for the SNR we developed in Section 4. We relegate

technical steps of the calculations to Appendix D, and write here the final expression for the SNR:

6The cross-correlation arises because the different interferometers share one common arm.
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SNR '
fLLLNL

256π2

√
2π σ2

k3
∗

P 2
L (k∗)

√
T

P 2
n (k∗) Pn (2k∗)

×
√
RAAALLL (k∗, k∗, k∗)

2 + 3RAAELLL (k∗, k∗, k∗)
2 + 3RAEELLL (k∗, k∗, k∗)

2 +REEELLL (k∗, k∗, k∗)
2 .

(67)

The equilateral transfer functions are plotted in the left panel of Fig. 3. We assume that k∗ is

sufficiently small, so that we can use the low-frequency asymptotically constant values that can be

observed from the figure. This is the case for, approximately, k∗L ∼< 0.05, or, taking L = 2.5 ×
106 km ' 1

0.12 Hz , for k∗ ∼< 0.006 Hz. In the following we assume that k∗ satisfies this inequality. Then,{(
RAAALLL

)2
+ 3

(
RAAELLL

)2
+ 3

(
RAEELLL

)2
+
(
REEELLL

)2}1/2
' 4.3, and we can write

SNR ' 0.0076 fLLLNL

σ2

k3
∗
P 2
L (k∗)

{
T

Pn (k∗)Pn (k∗)Pn (2k∗)

}1/2

' 7.9× 105 fLLLNL

σ2

k2
∗

(
10−3 Hz

k∗

)5 (
ΩGW (k∗)h

2
)2 10−40 Hz−1

Pn (k∗)

√
T

3 yrs

10−40 Hz−1

Pn (2k∗)
. (68)

where in the second line we normalize the various quantities to useful reference values, to be able

to more easily appreciate the relevance of the result. For definiteness, we normalize k∗ to 10−3 Hz,

where (parametrically) the sensitivity of LISA is greatest; we then normalize the noise function to

10−40 Hz−1, which is (parametrically) the value obtained in this frequency range (see for instance

Fig. 3 of [20], where the square root of Pn is shown; we note that the noise power spectrum Pn is

related to the sensitivity Sn by Pn = R2 Sn, where R2 is the two-point response function shown in

Fig. 2.). We normalize the time to the nominal LISA mission time of 4 years times a 75% duty factor.

In the above relation, we also traded the GW power spectrum for the fractional GW contribution

to the energy density of the universe per logarithmic wavenumber interval. Using the expression

ρGW =
M2
p

4

〈
ḣij ḣij

〉
for the energy density in GW, one finds

ΩGW (k) ≡ 1

3H2
0M

2
p

∂ρGW

∂ ln k
=
π2

3

k2

H2
0

∑
λ

Pλ (k) . (69)

where H0 ' 3.24 × 10−18 hHz is the present value of the Hubble rate. This expression was used to

obtain the second line of (68).

As discussed in Section 2, the value of the non-linear parameter entering in this relation is the

present one, related to the primordial one by eq. (10). A detailed discussion of the transfer functions

entering in this relation can be found for instance in [22]. The precise behavior is not needed for the

present estimate. When they are well outside the horizon, the GW have constant amplitude; instead

the amplitude decreases as the inverse power of the scale factor while it is well inside the horizon. For

the present estimate can simply take T (t0, k) = ak, leading to

SNR ' 7.9× 105 f
LLL,primordial
NL

ak∗

σ2

k2
∗

(
10−3 Hz

k∗

)5 (
ΩGW (k∗)h

2
)2 10−40 Hz−1

Pn (k∗)

√
T

3 yrs

10−40 Hz−1

Pn (2k∗)
.

(70)
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We recall that, in the case of GWs produced during inflation, ak∗ is the value of the scale factor

when the mode of frequency k∗ re-entered the horizon in the Friedmann-Lemâıtre-Robertson-Walker

(FLRW) stage after inflation (we normalize the scale factor to one today). The same relation applies

for GW modes that are produced when their size is comparable to the horizon side during radiation

domination. Assuming that the universe is radiation dominated at that moment, and that radiation

domination continues until the recent stage matter-radiation equality (at zeq ∼ 3, 400) we find (see

Appendix E)

SNR
∣∣∣
from inflation

' 1.6× 10−3 fLLL,primordial
NL

σ2

k2
∗

(
10−3 Hz

k∗

)4 (
ΩGW (k∗)h

2

10−13

)2

×10−40 Hz−1

Pn (k∗)

√
T

3 yrs

10−40 Hz−1

Pn (2k∗)
.

(71)

As we discuss in Appendix E, modes that have presently the frequency k = 10−3 Hz re-entered the

horizon at the temperature of ∼ 50 TeV. A different value for a∗ can be obtained if we make instead the

unconventional hypothesis that the universe had a different equation of state than radiation, before,

but close, to Big-Bang Nucleosynthesis.

A different value for a∗ is instead obtained if we assume that GW are produced inside the horizon

by a sudden episode that took place during radiation domination at the temperature T∗. In this case

we find (see Appendix E)

SNR
∣∣∣
production inside horizon

' 3× 10−6 fLLL,primordial
NL

T∗
100 GeV

σ2

k2
∗

(
10−3 Hz

k∗

)5 (
ΩGW (k∗)h

2

10−13

)2

×10−40 Hz−1

Pn (k∗)

√
T

3 yrs

10−40 Hz−1

Pn (2k∗)
.

(72)

The previous result is recovered if we take T∗ = 50 TeV.

In both these relations, ΩGW (k∗)h
2 has been normalized to the threshold level that can be detected

in the 2-point correlation function at LISA. Finally, we recall that these results assume k∗ ∼< 0.006 Hz,

as we have taken the low-frequency asymptotic value for the transfer functions. However, they can

be immediately generalized for higher frequencies, by using the appropriate value for the combination{(
RAAALLL

)2
+ 3

(
RAAELLL

)2
+ 3

(
RAEELLL

)2
+
(
REEELLL

)2}1/2
.

5 Tensor non-Gaussianity and Early Universe Cosmology

In the previous sections, we developed techniques for investigating the non-Gaussianity of a SGWB

by studying the three-point correlation function of signals detectable with LISA. We have shown that

LISA is in principle able to measure specific properties of the SGWB bispectra, as the dependence on

the amplitude of the momentum and polarization of the GW signal.

In this section we review and discuss the current theoretical understanding of non-Gaussian fea-

tures of a primordial SGWB sourced by Early Universe physics, in particular inflation and cosmological

defects. Our aim is to provide theoretical motivations for the results derived in the previous Sections,
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showing that they can be used to distinguish different sources for primordial SGWBs. Besides ana-

lyzing models, we also briefly review current and perspective constraints on tensor non-Gaussianity

from the physics of CMB, that is able to probe primordial SGWBs at frequency scales much smaller

than interferometers.

5.1 Primordial tensor non-Gaussianity and inflationary physics

Cosmological inflation predicts the existence of a stochastic background of tensor modes, produced by

quantum fluctuations of the metric spin-2 degrees freedom during the phase of inflationary expansion.

CMB experiments constrain the amplitude of the primordial SGWB power spectrum at large CMB

scales in terms of the tensor-to-scalar ratio r: the current upper bound from BICEP2/Keck and Planck

is r < 0.07 at 95% confidence level [23,24] (assuming the consistency relation r = −8nT ), and future

CMB polarization experiments [25–27] can lower this bound down to around 10−3 in absence of a

detection.

Tensor self-interactions are expected to make the non-Gaussianity of the primordial SGWB rela-

tively large, already within Einstein gravity. Moreover, as we shall review next, there are models of

inflation which exploit specific couplings between fields present during the inflationary era, in order

to enhance the amplitude of the tensor power spectrum at scales that can be probed by the future

generation of gravitational interferometers. This gives the opportunity to probe inflation at scales

much smaller than CMB scales: in these scenarios, the large couplings among the fields involved can

enhance tensor non-Gaussianity, making it a very useful observable for distinguishing among different

scenarios. We briefly survey the topic of inflationary tensor non-Gaussianity, considering in succession

models of increasing complexity.

General Relativity in pure de Sitter space

The simplest situation to investigate – as a toy model for inflation – is pure General Relativity (GR)

in de Sitter space. The metric for de Sitter space can be expressed as ds2 = −dt2 + e2Htd~x2, with

H the constant Hubble parameter. As we have seen in Section 2, the transverse-traceless spin-2

tensor fluctuations can be decomposed in two helicity modes, λ = L (left) and λ = R (right). The

Einstein-Hilbert action

SEH =

∫
dτ d3x

√
−g

[
M2
Pl

2
R− Λ

]
, (73)

can be straightforwardly expanded around the de Sitter background up to third order in fluctuations

[12,28]. From the second order action one can compute the two-point function for the Fourier transform

of the tensor fluctuations, which defines the primordial tensor power spectrum〈
hλ

(
t, ~k
)
hλ′
(
t, ~k′

)〉
=

Pλ (k)

4πk3
δλλ′ δ

(3)
(
~k + ~k′

)
, (74)

Pλ(k) =
1

π2

(
H

MPl

)2

. (75)

From the third order action one obtains the three-point function for the fluctuations [12, 28], which

defines the primordial tensor bispectrum〈
ĥλ1

(
t, ~k1

)
ĥλ2

(
t, ~k2

)
ĥλ3

(
t, ~k3

)〉
= δ(3)

(
~k + ~k2 + ~k3

)
Bλ1,λ2,λ3 (k1, k2, k3) , (76)
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and can be obtained using for example the in-in formalism. The tensor bispectrum is the lowest order

statistics providing information on non-Gaussianity of tensor fluctuations. Its dependence on the three

wave-vectors characterizes the shape of tensor non-Gaussianity, one of the properties that allows one

to distinguish among different models. We list here some properties of the tensor bispectrum and the

corresponding tensor non-Gaussianities for GR in de Sitter space:

1. The amplitude of tensor non-Gaussianity – parameterized by the ratio between the tensor bis-

pectrum and the square of the tensor power spectrum – are of order one in pure GR (but not

larger). For example, one finds [29]

BRRR(k, k, k)

P 2
R(k)

' 3.6 . (77)

This is a difference with respect to scalar curvature fluctuations in single field vanilla models of

inflation, where scalar non-Gaussianities are suppressed by slow-roll parameters, and are then

at most of order a few percent [8, 9, 12, 13]. This is due to the fact that Einstein gravity is a

non-linear theory, and cubic interactions are not suppressed with respect to quadratic ones by

small (e.g. slow-roll) parameters. In Einstein gravity the shape of tensor bispectra is peaked in

squeezed configurations.

2. The amplitude of tensor bispectra depends on chirality, that is on the polarization indexes

L,R, and in general bispectra characterized by different indexes have different amplitudes. For

example, in the case of GR in de Sitter space one finds [29,30]

BRRL(k, k, k) =
BRRR(k, k, k)

81
. (78)

This is different with respect to the power spectrum, where L and R modes have the same

amplitude (see eq. (75)) and the cross correlation vanishes, 〈hL hR〉 = 0. This has interesting

phenomenological consequences since we have many independent bispectrum components we

can use to build observables for distinguishing among different models of inflation. As we have

learned in Section 3, LISA can in principle probe different chiral components of primordial

bispectra.

3. Pure Einstein gravity around de Sitter space preserves parity, in the sense that the amplitudes of

power spectrum and bispectrum components obtained interchanging all the L,R indexes is the

same. For example, PL(~k) = PR(−~k), BLLL(~ki) = BRRR(−~ki), BLLR(~ki) = BRRL(−~ki) etc.

This is potentially not true in more complex inflationary scenarios, as we are going to discuss in

the following subsection.

We can go beyond a pure Einstein-Hilbert action, and investigate non-Gaussian tensor fluctuations

around de Sitter space in theories of gravity including higher order curvature invariants [28, 31, 32],

schematically denoted as
∫
W 3 and

∫
W̃W 2 (Wµνρσ being the Weyl tensor). Such perturbative contri-

butions modify the third-order tensor action, and lead to new, parity preserving shapes for the tensor

bispectra. However, their amplitudes can not be (much) larger than the ones one finds within General

Relativity, due to unitarity constraints.
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Single field slow-roll inflation

An enhanced amplitude of tensor bispectra can be obtained in single field inflation, with the time

variable controlled by a scalar field, the inflaton. The power spectrum of tensor modes in single-field

slow-roll models of inflation is straightforward to compute, and one finds the same result as in de

Sitter space, but with an additional scale dependence. In the simplest models of inflation the tensor

spectrum is red, with a spectral tilt given by

nT = −r/8 , (79)

with r the tensor-to-scalar ratio 7. The analysis of the tensor bispectrum is instead less straightforward:

the scalar can have non-minimal derivative couplings with the metric – see e.g. the model [34] built

in terms of the Horndeski theory – which can complicate the analysis. The complete classification of

tensor non-Gaussianity in single field models of inflation based on Horndeski scalar-tensor theories of

gravity has been done in [30], finding that besides the Einstein-Hilbert part [12], the third order action

for tensor modes acquires a parity-preserving contribution proportional to the cube of time derivatives

of tensor fluctuations:

Snew(3) =

∫
dt d3xG(a, φ) ḣikḣklḣli , (80)

where G is a function of the scale factor and of the homogeneous profile of the scalar field and its

first time derivatives (it is related with the function G5 controlling the quintic Horndeski action).

Interestingly, there are no obvious unitarity constraints on the size of this correction to the Einstein-

Hilbert action, hence – depending on the inflationary model and the profile for the scalar field – this

contribution can lead to a tensor bispectrum whose amplitude is parametrically larger than the GR

result (although it might be hard to find an explicit model satisfying all the CMB constraints in

the scalar sector). The shape of the tensor bispectrum has been investigated in [30], finding that it

is maximized for equilateral configurations, hence it is different from the GR one, maximized in the

squeezed limit. In the equilateral limit, the bispectrum components associated with action (80) satisfy

the relation

B
(new)
RRL (k, k, k) =

B
(new)
RRR (k, k, k)

9
. (81)

This is different from the GR result of eq (78): we learn that the chiral structure of the tensor bispectra

– i.e. a distinctive hierarchy for the amplitudes of the tensor bispectra depending on the polarization

indexes L, R – might be used to build observables to distinguish among different models.

Tensor non-Gaussianity in single field models of inflation based on generalization of Horndeski

actions [35–40] is a topic still under investigation, see e.g. [41], and also [42] for an analysis carried on

using techniques based on effective field theory for inflation. Also, tensor non-Gaussianity in parity-

violating scalar-tensor theories [43,44] that spontaneously break Lorentz invariance [45] is particularly

interesting to motivate a search of parity violating effects in the tensor bispectrum: an analysis of the

tensor bispectrum in parity violating gravitational theories can be found in [31,32,46], although their

generalization to the extended set-up introduced in [45] is still an open question.

Beyond single field inflation

Since the simplest single field models of inflation predict a red tensor tilt, the amplitude of the

primordial SGWB is too small to be detected with interferometers. On the other hand, there are more

7Equation (79) holds at leading order in slow-roll for inflationary models with unit tensor sound speed. See [33] for

a systematic discussion of more general scenarios that can change this relation.
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complex inflationary scenarios that might allow one to enhance the tensor spectrum at interferometer

scales [33,47], and that may lead to large tensor non-Gaussianity with distinctive features. We briefly

discuss here two frameworks, whose predictions for the tensor bispectrum have been studied so far:

Coupling the inflaton with additional scalars and vector fields

If other sources of GWs are present during inflation, the primordial SGWB can have richer features.

A possibility to source primordial GWs is to couple fields driving inflation with additional scalars

[48–53], U(1) gauge vectors [54–57], non-Abelian vector fields [58–68], or Standard Model fields [69].

These mechanisms usually exploit instabilities for the additional source fields during inflation. Such

instabilities feed in the evolution of tensor modes through higher order contributions to the anisotropic

stress, and affect both power spectra and bispectra of fluctuations: see e.g. [21, 70–72]. Given the

nature of the couplings, the resulting tensor power spectrum and bispectra can be parity violating,

and the bispectra are usually enhanced in equilateral configurations. The tensor power spectrum

profile can acquire a feature (a ‘bump’ profile) and can also get sufficiently enhanced at small scales

to be detected with interferometers [47]. Models involving couplings between (pseudo)scalars and

gauge fields are theoretically well understood, and their observational prospects in CMB polarization

and interferometer experiments are being developed in great detail, in particular for what respect

the parity violating features of power spectra and bispectra, see e.g. the recent papers [65, 73] and

references therein.

Breaking space-time symmetries during inflation

Another possibility for enhancing the bispectrum of tensor modes is to break space-time symmetries

during inflation. One way to do so are scenarios of (super)solid inflation: see e.g. [74–83], where

the vacuum expectation value of additional scalar fields spontaneously breaks space diffeomorphisms

during inflation, or more in general in models where spatial diffeomorphisms are broken spontaneously

during inflation. Tensor bispectra are maximized in squeezed configurations, and their amplitude can

be parametrically larger than in Einstein gravity. In the scenarios explored so far in the literature,

power spectrum and bispectrum components are all parity preserving.

Alternatively, space-time symmetries can be broken explicitly as for example a violation of Lorentz

symmetry in Hořava-Lifshitz gravity: in this case inflationary tensor fluctuations are automatically

chiral [84] and the tensor bispectra can be chiral and enhanced with respect to GR results [85,86].

For these systems, some additional mechanisms (as growth of perturbations due to instabilities)

might be necessary to amplify the tensor spectrum at interferometer scales.

5.2 An explicit example: tensor non-Gaussianity and axion inflation

After the general survey of the previous subsection, we describe in detail the predictions of a concrete

model able to produce a signal detectable at interferometers with large tensor non-Gaussianity. We

assume that during inflation, which is driven by a scalar φ, an auxiliary axion field χ interacts with a

gauge field Aµ: the Lagrangian density for the system is

L = −1

2
(∂φ)2 − V (φ)− 1

4
FµνF

µν − χ

f
Fµν F̃

µν , (82)

where 1/f is a coupling constant with the dimension of a length, and Fµν (F̃µν) is the field (dual)

strength tensor. GW non-Gaussianities in different helicity channels become larger than those of

24



the scalar perturbations by different orders of magnitudes. This can be understood easily noticing

that both scalar and tensors are sourced with similar efficiency (and source) but the scalars are

suppressed by the helicity conservation, while the tensors can be large and also chiral, meaning that

the contribution of the different correlator are different for different combinations of the helicity.

In such a model the gauge field Aµ acts as a source for both scalar and tensor metric perturbations,

and, for the latter, this translates into a source term in the equation of motion of hij

h′′ij + 2
a′

a
h′ij −∆hij =

2

M2
P

Πij
lm TEMlm , (83)

where Πij
lm = Πi

l Πj
m − 1

2Πij Πlm is the transverse traceless projector, with Πij = δij − ∂i ∂j/∆ and

where TEMlm represents the spatial part of the stress-energy tensor of the gauge field. The source term

arises not from the FF̃ term but from the FF term in eq. (82). Parity-violating information of the

gauge field is transmitted through this source term to the tensors that acquire a chiral component.

The GW solution for such equation can be found using the Green function method, see [87,88].

Using the same procedure as described in [54, 87] we can compute both the two-point function

and the three-point function at super-horizon scales (kτ → 0) for the tensor modes. The GW two-

point function receives contributions from the parity conserving amplification of vacuum fluctuations

and from the excited electromagnetic modes which source the parity violating parts. These two

contributions are uncorrelated and the overall right- and left-handed power spectra are

PR =
H2

π2M2
Pl

(
1 + 8.6× 10−7 H

2

M2
Pl

e4πξ

ξ6

)
,

PL =
H2

π2M2
Pl

(
1 + 8.6× 10−9 H

2

M2
Pl

e4πξ

ξ6

)
, (84)

where the parameter ξ encodes the velocity of the field χ, ξ = χ̇/(2fH). For the three-point function,

at late times (kτ → 0), we have

〈hλ1(k1)hλ2(k2)hλ3(k3)〉 = 4 δ(k1 + k2 + k3)

∫
d3qFλ1(k1, q)Fλ2(k2, −q)Fλ3(k3, q− k1)

+(k2 ↔ k3) , (85)

where the function F lmλ (k, q) is the same as in [87]. The largest contribution to the three-point

function of the GW, given by the 〈hRhRhR〉 correlator, was already computed in [87, 89], where was

also shown that the shape of such a bispectrum peaks in the equilateral limit (|k1| = |k2| = |k3| = k).

Here we extend such computations to estimate the amplitude of the other mixed contributions to the

GW bispectrum, which are

〈hR(k1)hR(k2)hR(k3)〉equil ' −5.7× 10−10 H
6

M6
P

e6πξ

ξ9

δ(k1 + k2 + k3)

k6
,

〈hL(k1)hR(k2)hR(k3)〉equil ' −9.0× 10−12 H
6

M6
P

e6πξ

ξ9

δ(k1 + k2 + k3)

k6
,

〈hL(k1)hL(k2)hR(k3)〉equil ' 1.9× 10−15 H
6

M6
P

e6πξ

ξ9

δ(k1 + k2 + k3)

k6
,

〈hL(k1)hL(k2)hL(k3)〉equil ' −1.2× 10−14 H
6

M6
P

e6πξ

ξ9

δ(k1 + k2 + k3)

k6
. (86)

25



Note that the signs and reality condition are specific to our choice of chiral polarization operators

varying the properties in eq. (3).

We find that the mixed helicity components are non-zero and in Section 4 we have seen how LISA

is sensitive to such components. The shape of the GW three-point functions is close to equilateral

and this can be explained by the fact that the mechanism of generation of perturbations happens at

sub-horizon scales.

5.3 Primordial tensor non-Gaussianity at CMB scales

To put our investigation in a wider context, we discuss in this subsection the current and perspective

constraints on tensor non-Gaussianity from CMB physics. CMB observations at large scales impose

stringent constraints on the non-Gaussianity of scalar curvature (density) perturbations, and have the

potential to constrain tensor non-Gaussianity as well, but at frequencies much smaller than interfer-

ometer scales. The tightest constraints come from the Planck collaboration [6], setting strong limits on

scalar non-Gaussianity for a variety of well-motivated models. For example, for the “standard” local,

equilateral and orthogonal shapes the analysis of Planck temperature (T) and E-mode polarization

data constrain the level of these types of non-Gaussianity to f localNL = 0.8 ± 5.0, fequilNL = −4 ± 43 and

forthoNL = −26±21 (68% CL, statistical) from the measurements of the angular CMB bispectrum. These

values point into the direction of consistency with the predictions of the standard cosmological model

based on single-field models of slow-roll inflation, meaning that the structure that we observe today

have been sourced by (almost) Gaussian seed perturbations. However there are also much less studied

observables that could open up a new window into the physics of the early universe in the near future.

Among these there are non-Gaussian signatures coming from tensor (gravitational waves) 3-point cor-

relations, and also non-Gaussianity coming from mixed (tensor-scalar) 3-point correlators. Interesting

bounds on these kind of signals already exist. A first observational limit on the tensor non-linearity

parameter f tensNL has been obtained by Planck (from temperature data): f tensorNL /102 = 4±15 (68%CL),

which is consistent with a previous WMAP data analysis [90]. The tensor bispectra analyzed derive

from some models of inflation predicting a specific parity violation in the tensor sector. However,

future observations of CMB will try to improve constraints on tensor fluctuations focusing on B-mode

polarization. The reason is that in this case primordial tensor modes are not hidden by scalar per-

turbations. The main contamination to the B mode polarization signal is polarized dust [91] and

lensing of the E-modes to B-modes [92]. However, precise B-mode measurements have just started

and the prospects of improvement are large. For example the constraints on the 〈BTT 〉 CMB bis-

pectrum arising from mixed correlators tensor-scalar-scalar can improve by an order of magnitude

with a CMB-Stage IV mission w.r.t the ones achievable from temperatura data alone (see, e.g., [93]).

Observational constraints on such a primordial tensor-scalar-scalar bispectrum already exist and have

been obtained recently in [94] using WMAP temperature data finding a constraint gtss = −48 ± 28

(68%CL) on the amplitude of such interactions. The inclusion of polarization information will cer-

tainly improve such a constraint. On the other hand it might be crucial to have the possibility to

probe such signals on different scales, like the ones which are probed by direct measurements from

interferometers. This might serve not only as a possible consistency check, but also to test models of

inflation that eventually produce a relevant bispectrum signature only at interferometric scales.
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5.4 Other early Universe mechanisms sourcing gravitational waves

So far in Section 5, we have considered GW backgrounds from inflation which can lead to a significant

deviation from Gaussian statistics. Inflation, however, is not the only source of GWs from the early

Universe. Various post-inflationary mechanisms can be also responsible for the generation of GW

backgrounds having today a large amplitude. Non-linear field dynamical processes after inflation

can generate non-trivial quadrupolar field distributions, resulting in an active and efficient source of

GWs. The most representative processes are non-perturbative particle production [95–102], strong

first order phase transitions [103–109] and cosmic defect networks [110–116]. For a recent review on

early Universe GW sources see [3].

The stochastic background of GWs from strong first order phase transitions is expected to exhibit

a single “bump” spectrum, with a rather large amplitude, depending on the efficiency of the dynam-

ical processes involved in the emission of GWs. In particular, if the electroweak phase transition is

sufficiently strong due to the presence of beyond the Standard Model (SM) particle physics, the peak

frequency of the associated GW background lies naturally within the LISA frequency window. For a

discussion on the ability of LISA to measure a GW background from first order phase transitions (and

in particular from the electroweak phase transition) see [3, 108]. The stochastic background of GWs

from non-perturbative phenomena like periodic [101, 117], tachyonic [99, 100] or other [102, 118, 119]

excitation of fields (typically expected in preheating), is also characterized by a single “bump” spec-

trum, with an amplitude that can be typically large but peaked at very high frequencies (unless

extreme fine tuned couplings are considered). In both cases, phase transitions and preheating, the

production of GWs is due to a causal process. This implies that today’s background is formed by the

superposition of billions of independent signals (corresponding to the GWs emitted from the many

uncorrelated regions at the time of the background generation), and hence it must have necessarily a

Gaussian distribution, due to the central limit theorem. The angular resolution needed to probe any

of the individual signals, beyond their effective stochastic Gaussian nature, is far beyond the reach of

any reasonable GW detector. GW backgrounds from preheating and phase transitions are therefore

expected to be highly Gaussian, and hence their 3-point function is expected to vanish at the data of

any interferometer. For a discussion on this aspect, see Section 3.1 of Ref. [3].

The case of GW emission from cosmic defect networks is however very different. The GW signal

expected from cosmic defects can be the sum of two components. The first component is the emission

of GWs produced around the horizon at each time t, by the anisotropic stress of the network [115,

120–123]. This first component is expected to be emitted by any network of cosmic defects in scaling,

independently of the topology and origin of the defects [115]. The second contribution is only expected

for a network of cosmic strings – local gauge one-dimensional topological defects – and is given by the

superposition of GWs emitted from sub-horizon strings chopped off from the string network all along

cosmic history, as well as from super-horizon strings with superimposed small-scale structure [111]

due to string interconnections leading to kink formation. For a cosmic string network, this second

contribution is expected to be the dominant one. However, the argument of causality discussed above,

remains valid, even if the GWs are continuously emitted during several Hubble times. Thus, this

background cannot be resolved beyond its stochastic nature, and is expected to be Gaussian8. We

8In reality, on top of the continuous stochastic Gaussian background from cosmic strings, there can be individual

bursts emitted by nearby strings or a “popcorn” discontinuous noise. The former results from the fact that at small

redshifts there are not many sources and events do not overlap, thus the time interval between events is longer than the

duration of a single event. The latter is a noise generated by rare bursts at high redshifts leading to unresolved GW

sources. Considering the number of sources at a given frequency as a Poisson process, one may thus expect either to get
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therefore expect that any non-Gaussianity in the continuous stochastic background sourced by a defect

network, can only be due to the first contribution (even if this is sub-dominant in the case of cosmic

strings, in terms of the power spectrum).

Let us thus focus on the first contribution mentioned above, produced by the anisotropic stress

of a defect network. This contribution represents an irreducible emission of GWs sourced by any

type of viable defect network that reached scaling, meaning that the energy density in the defect

network is constant fraction of the overall energy density of the Universe. Such defects can be either

one-dimensional topological defects — global, Abelian, non-Abelian, semi-local strings — or (viable)

global defects — domain walls, monopoles or non-topological textures [115]. Indeed, in the case of

local strings, scaling is reached by the emission of gravitational waves. Global defects reach scaling

mainly through long-range interactions and emission of Goldstone bosons [125]. A defect network in

scaling produces an irreducible background of GWs emitted continuously around the horizon scale

at every moment of the cosmic history. Its spectrum is predicted to be exactly scale-invariant for

the modes that are emitted during radiation domination [115]. At the level of the power spectrum,

this background mimics therefore the shape of the inflationary background due to quantum fluctu-

ations. The irreducible emission of GWs from a defect network is however expected to be highly

non-Gaussian. This is simply due to the fact that the source of the GWs is the (transverse-traceless

part of the) energy-momentum of the network, and this is a function bilinear in the amplitude (mod-

ulo derivatives) of the fields that the cosmic defects are made of. Since the GW source is bilinear in

field amplitudes, this implies automatically that any correlator of an odd number of tensor pertur-

bations will be characterized by the correlation of an even product of fields. This is non-vanishing

even if the fields were Gaussian. Thus, odd tensor correlation functions are non-vanishing, i.e. the

GW background is not Gaussian. As the GWs are continuously emitted around the horizon scale

at every moment, we cannot apply now the previous causal argument based on the superposition of

many domains from the past.

Even though the shape of the power spectrum of the irreducible GW background from defects is well

understood theoretically, its ultimate amplitude depends on the fine details of the so called unequal-

time-correlator of the network’s energy-momentum tensor. Unfortunately, this correlator that can

only be obtained accurately from sufficiently fine lattice simulations of defect networks. It is therefore

difficult to assess at this point whether this background can be detectable with LISA, much less

whether its 3-point function can be measured. The GW signal can be however estimated analytically

in a simplified case, known as the large N limit of a global phase transition due to the spontaneous

symmetry breaking of O(N) into O(N − 1). This kind of phase transition leads to the formation

of so called “self-ordering scalar field” configurations, which correspond to non-topological defects

(textures). The scale-invariant GW power spectrum due to the dynamics of such global defects has

been estimated, in the limit N � 1, by Refs. [121,122], whereas the 3-point function (in the equilateral

configuration) has been presented in Ref. [123]. Order of magnitude calculations in the large N limit,

has lead to a GW bispectrum peaked in the equilateral configuration as [123]

k6B(k, k, k) ∼ CNL(k3/2Ph(k))2 , with CNL ∼
3.6√
N
, (87)

where Ph is the total power spectrum (summing over the two polarizations) andN � 1 is the number of

a signal or to get a superposition of signals, leading to what is called a popcorn-like noise [124]. These signals due to

bursts represent therefore, in a sense, a temporal deviation from Gaussianity, that can be measured from the two-point

function. However they do not correspond to the type of non-Gaussianity that we discuss in this paper, as they do not

form a continuous stochastic background.
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components of the symmetry-breaking field. Even though this is a rough estimate, it clearly indicates

that we should expect a large departure from Gaussianity for the irreducible GW background from

any defect network. A proper assessment of the ability of LISA to detect the power spectrum and

bispectrum of this stochastic background, requires however further work; namely lattice simulations

of defect networks with a large dynamical range.

Let us finally comment on string gas cosmology [126,127] a string theory motivated early universe

scenario, which does not involve a period of cosmological inflation. The model is based upon T-duality,

making use of (fundamental) string oscillatory modes and winding modes. In this scenario, the universe

may have started in a a quasi-static Hagedorn phase, during which thermal fluctuations of closed

(fundamental) strings generate the density perturbations. The obtained spectrum of cosmological

perturbations [128], and of GWs [129] are nearly scale invariant. The power spectrum of scalar metric

fluctuations has a slight red tilt, while the spectrum of gravitational waves has a slight blue tilt.

The string gas model has one free parameter and one free function, the former being the ratio of

the string to the Planck length, and the latter the wavenumber dependence of the temperature. In

this scenario, the spectrum of cosmological fluctuations may have large non-Gaussianities due to the

thermal origin of the initial perturbations leading to strong three-point correlations [130]. Such thermal

effects have been shown to be important for some inflationary models, such as chain inflation [131] or

warm inflation [132]. In string gas cosmology, the non-Gaussianities of the spectrum of cosmological

fluctuations depend linearly on the wavenumber, while the amplitude depends sensitively on the

string scale. In slow-roll inflation, to leading order in perturbation theory, matter fluctuations do not

couple to tensor ones, whereas in string gas cosmology matter fluctuations induce both scalar and

tensor fluctuations. Hence, one may expect also non-Gaussianities in the tensor modes, for which the

formalism discussed in the previous sections may be applicable.

6 Conclusions

In this work we studied the three-point correlation function of the SGWB expected to be measured

by LISA, and we developed the formalism required for this analysis. The 3−point correlation function

is a key observable to gain information on the statistics of this background and crucial in order to

study its departure from Gaussianity. This can be a crucial discriminant for a signal of cosmological

origin, since the stochastic background due to a large number of uncorrelated astrophysical sources

is Gaussian to a very high degree, due to the central limit theorem. The 3−point correlator (also

known as bispectrum), if present in the data, is a much richer observable than the standard 2−point

correlator (the power spectrum), due to several reasons. Firstly, this is due to the frequency of the

three modes present in the correlator. The wave-vectors of the modes entering in the correlator must

add up to zero, namely ~k + ~k′ = 0 for the power spectrum, and ~k + ~k′ + ~k′′ = 0 for the bispectrum.

For a statistically isotropic SGWB, the correlators depend only on the magnitude of the wave-vectors,

the wavenumbers, and not on the orientation. Therefore the power spectrum only depends on the

signal wavenumber (i.e. |~k| = |~k′|), while the bispectrum depends on an overall scaling, and on two

relative sizes. This last dependence is known as the “shape” of the bispectrum. Secondly, a larger

number of combinations of LISA channels can be measured in the three-point signal (as opposed to

the response functions for the power spectrum, which are identical for the two noise-orthogonal A

and E LISA channels [18] and vanish for their cross-correlation). Thirdly, the planar nature of the

instrument (together with the assumption of statistical isotropy) results in the insensitivity of the

two-point function to the polarization of the two GW modes. This situation is ameliorated for the
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three-point function, since more combinations of GW polarizations can be considered (see below).

In eq. (6) we provided a very general parametrization for the case of a mildly non-Gaussian

SGWB. This ansatz is borrowed from the wide literature on the non-Gaussianity of the primordial

density perturbations probed through the fluctuations of the CMB radiation. This gives rise to a

bispectrum of rather general shape (namely, the dependence on the wavenumbers of the three GW

involved in the correlation, and, ultimately, on the frequencies of the three measured signals), see

eq. (12). Different cosmological mechanisms produce non-Gaussianity of different shapes, so that this

study can potentially be a powerful discriminant between them. In Section 5 we provided a survey of

several possibilities present in the literature.

In Section 3 we computed the various 3−point LISA response functions ROO′O′′λλ;λ′′ (k, k′, k′′) that,

together with the GW correlation function 〈hλ (k)hλ′ (k
′)hλ′′ (k

′′)〉, provide the signal 〈sOsO′sO′′〉
measured by the different LISA channels (we study the response for all possible combinations of the A

and E channels). We provided the formulae to compute the response functions for generic wavenum-

bers, and we then provided the explicit results for two cases of particular relevance (as they probe

distinct physical mechanisms for the generation of non-Gaussianity): the equilateral configuration

k = k′ = k′′ and the isosceles squeezed configuration k � k′ = k′′. As we already mentioned, the

planarity of the instrument results in identities between different response functions, in the case of an

isotropic SGWB. It is most immediate to discuss this in terms of circular polarizations, as they change

into each other under a parity transformation. In the 2−point functions we have ROO′LL = ROO′RR (where

L and R stand, respectively, for the left handed and the right handed circular polarization), resulting

effectively in an inability to probe a chiral GW signal. On the other hand, for the three-point function

we have ROO′O′′LLL = ROO′O′′RRR , and ROO′O′′LLR = ROO′O′′RRL , but these two objects are different from each

other. They also contribute differently to the A and E channels, so that by combining different
〈
s3
〉

signals, one can hope to discriminate between a chiral and a non-chiral SGWB.

Moreover, in Section 4 we constructed the frequency-dependent estimator for the SGWB bispec-

trum that maximizes the signal-to-noise ratio in the measurement. As an example, we evaluated the

general formula for the estimator for the specific case of a non-Gaussian signal narrowly localized at

one given scale, k = k′ = k′′ = k∗.

To summarize, we have provided the complete formalism to compute the 3−point correlation

function of the signal measured at LISA for any given theoretical SGWB 3−point correlator. This

formalism can be readily extended to any other combination of GW interferometers, such as LIGO.

Moreover, if the primordial bispectrum is amplified on a squeezed shape – hence coupling modes of dif-

ferent frequencies – we can use the three-point function to correlate signals from different experiments

probing distinct frequency ranges, as LISA, LIGO, or PTA. This can allow us to ‘break’ the planarity

condition of a single interferometer, and measure effects of parity violation also in small frequency

ranges that cannot be probed by other means (see also the discussion in Ref. [7]). If non-vanishing,

measurements of 3−point correlation functions can provide a wealth of information on different cos-

mological mechanisms, due to its dependence on the scale, the shape, and, possibly, the polarization

of the SGWB. Even a null measurement can set limits on specific models that would be otherwise be

unconstrained. We leave this study to future work.
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A Construction and properties of polarization operators

Let us first of all reproduce for clarity the tensor decomposition given in Eq. (1),

hab(t, ~x) =

∫
d3k e−2πi~k·~x

∑
λ

eab,λ(k̂)hλ(t,~k) , (A1)

expressed in terms of an arbitrary polarization basis eab,λ(k̂). A basis for the polarization operators

often considered in the literature is the {+, ×} basis. To define it, we express each k̂ in the {ê1, ê2, ê3}
basis9 in standard polar coordinates

k̂ = (sin θ cosφ, sin θ sinφ, cos θ) , (A2)

and then introduce the vectors

û = (sinφ, − cosφ, 0) , v̂ = k̂ × û = (cos θ cosφ, cos θ sinφ,− sin θ) . (A3)

The set {k̂, û, v̂} forms an orthonormal basis. We note that k̂ and û are odd under parity, while v̂ is

even. Out of these vectors, we define

e
(+)
ab =

ûaûb − v̂av̂b√
2

, e
(×)
ab =

ûav̂b + v̂aûb√
2

. (A4)

They are real, and they satisfy e
(+)
ab e

(+)
ab = e

(×)
ab e

(×)
ab = 1 , e

(+)
ab e

(×)
ab = 0. We also note that e

(+)
ab is even

under parity, while e
(×)
ab is odd.

The chiral polarization operators are then defined as

e
(R)
ab =

e
(+)
ab + i e

(×)
ab√

2
≡ eab,+1 , e

(L)
ab =

e
(+)
ab − i e

(×)
ab√

2
≡ eab,−1 , (A5)

and they satisfy the properties (3) given in the main text.

Let us now note that in eq. (A1) [c.f. eq. (1)], after choosing a polarization tensor basis (either

the +,× or L,R basis), the decomposition still depends, for each k̂, on the choice of the vectors

9This is the basis where we first placed a single interferometric arm in the ‘z-direction’ ê3.
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{û, v̂}. For a given GW mode propagating in the direction k̂ = (sin θ cosφ, sin θ sinφ, cos θ), our

choice of the orthonormal basis {û, v̂} in eq. (A3) was actually arbitrary (though as we will see soon,

very convenient). Even though the conditions k̂ · û = k̂ · v̂ = 0 and v̂ = k̂ × û (or equivalently

û = v̂ × k̂) must always be satisfied by construction (in order for {û, v̂, k̂} to form an orthonormal

triad), the orientation of the {û, v̂} vectors within the plane transverse to k̂ is arbitrary. In particular,

our canonical choice of {û, v̂} can be arbitrarily rotated by an angle α around their ‘z-axis’ k̂, into

a new system {û(α), v̂(α), k̂}, where û(0) ≡ û, v̂(0) ≡ v̂, with {û, v̂} given by eq. (A3). This can be

implemented explicitly by a rotation matrix around the axis k̂ as(
û(α)

v̂(α)

)
= R[α] ·

(
û

v̂

)
, R[α] ≡

(
cosα sinα

− sinα cosα

)
. (A6)

In the {ê1, ê2, ê3} basis, the new vectors read, by components,

û(α) = (cosα sinφ+ sinα cos θ cosφ,− cosα cosφ+ sinα cos θ sinφ,− sinα sin θ) (A7)

v̂(α) = (− sinα sinφ+ cosα cos θ cosφ, sinα cosφ+ cosα cos θ sinφ,− cosα sin θ) , (A8)

from where it can be verified, using basic trigonometric identities, that |û(α)|2 = |v̂(α)|2 = 1 and

û(α) × v̂(α) = (sin θ cosφ, sin θ sinφ, cos θ) ≡ k̂, as it should. The rotated triad {û(α), v̂(α), k̂} form

therefore an equally valid orthonormal basis from which to build up new +,× polarizations tensors as

e
(+)
ij (α) =

ûi(α)ûj(α)− v̂i(α)v̂j(α)√
2

, e
(×)
ij (α) =

ûi(α)v̂j(α) + v̂i(α)ûj(α)√
2

, (A9)

The expressions (A7), (A8) are however not particularly illuminating. Using rather the new com-

ponents expressed as ûi(α) = cosα ûi + sinα v̂i, v̂i(α) = − sinα ûi + cosα v̂i, for i = 1, 2, 3, we

realize (again using basic trigonometric relations) that e
(+)
ij (α) = cosα e

(+)
ij + sinα e

(×)
ij and e

(×)
ij (α) =

− sinα e
(×)
ij + cosα e

(+)
ij , i.e.  e

(+)
ij (α)

e
(×)
ij (α)

 = R[α] ·

 e
(+)
ij

e
(×)
ij

 . (A10)

Thus, we see that the +,× polarization tensors in the new rotated basis {û(α), v̂(α)}, transform

identically – through a rotation matrix – as the new rotated basis , c.f. eq. (A6). This implies that

if we were to express the GW in eq. (1) in terms of the new
{
e

(+)
ij (α), e

(×)
ij (α)

}
tensors, the tensor

modes should be equally rotated as(
h+(α)

h×(α)

)
= R[α] ·

(
h+

h×

)
. (A11)

Defining now a set of chiral polarization tensors in the rotated basis,

e
(R)
ij (α) =

e
(+)
ab (α) + i e

(×)
ab (α)√

2
≡ eab,+1(α) , e

(L)
ij (α) =

e
(+)
ab (α)− i e(×)

ab (α)√
2

≡ eab,−1(α) , (A12)

leads immediately to realize that the new chiral polarization tensors, relate to the “old” ones expressed

in terms of the canonical ‘unrotated’ basis {û, v̂}, as

eij,±1(α) = e∓i2α eij,±1 , (A13)
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where the chiral polarization tensors on the right hand side are those from eq. (A5), and on the left

hand side those from eq. (A12). This implies that if we were to express the GW in eq. (1) in terms

of the new
{
e

(R)
ij (α), e

(L)
ij (α)

}
tensors, the tensor modes should equally be re-scaled by an opposite

phase as in eq. (A13), i.e.

h±1[α] = e±i2αh±1 , (A14)

where +1 represents R polarization and −1 represents L polarization.

These transformation rules are actually not surprising, as they simply reflect the spin-2 nature

of the tensor field hij representing the GWs. Equations (A13), (A14) are actually quite relevant for

our calculations, as they determine the complex phase of the response function we have calculated in

Section 3. Let us first of all, recall that in the canonical basis [c.f. eq. (A3)] in which we have presented

our results, a crucial property we used was the transformation rule presented in eq. (3) [see also the

dicussion about the odd/even behaviour of û, v̂, and hence about e+,×
ab , above and below eq. (A4)].

The bispectra B(k1, k2, k3) presented along the main text were always computed for a tensor basis

obeying the property expressed in eq. (3), namely that under a “parity” tranformation ~k −→ −~k, the

chirality polarization tensors transform as eab,λ(−~k) = e∗ab,λ(~k). That property is certainly true when

the polarization tensors are computed in the canonical basis {û, v̂} of eq. (A3). However, in light of

eq. (A13), we now see that such relations are not universal: on the contrary, they are only verified by

a very small subset of orthonormal basis {û(α), v̂(α)}. In particular, from eq. (A13), and using eq. (3),

we deduce immediately that, in general, under a flip of momentum, the rotated basis of polarization

tensors transform as

eab,±[α](−~k) = e∓i2αe∗ab,±(~k) . (A15)

Of course, for α = 0 we recover the result expressed in eq. (3) that that used in the main text, i.e.

eab,λ(−~k) = e∗ab,λ(~k). We see that this result also holds for α = π, which is nothing else but the

flip of the canonical vectors as û −→ −û, v̂ −→ −v̂. For any angle α for which α mod(π) 6= 0, the

property eab,λ(−~k) = e∗ab,λ(~k) will not hold. For instance for α = π/2, this is equivalent to û −→ v̂

and v̂ −→ −û, and hence it holds that eab,λ(−~k) = −e∗ab,λ(~k). In general, the result of flipping the

momentum will introduce a phase, as indicated in eq. (A15).

It is clear then that the choice of a ‘rotated’ vector basis other than the canonical one(s), will deter-

mine the complex phase of the polarization tensor via eq. (A13), and hence this will have necessarily

an impact on the final expression of the 3-point response function eq. (38) that we have derived in

Section 3. The reason is that Rλλ′λ′′ is always proportional to three polarization tensors, schematically

∼ eλ∗∗e
λ′
∗∗e

λ′′
∗∗ . Denoting as Rλλ′λ′′ [α] the response functions calculated in a orthonormal vector basis

rotated an angle α (around each ~k) with respect the canonical basis {û, v̂} defined in eq. (A3), we

deduce immediately that the following relations must be true

RRRR[α] = e−i6αRRRR[0] , (A16)

RLLL[α] = e+i6αRLLL[0] , (A17)

RLRR[α] = e−i2αRLRR[0] , (A18)

RRLL[α] = e+i2αRRLL[0] , (A19)

where the response functions Rλλ′λ′′ [0] on the right hand side should be identified with the response

functions we presented in the main text. Actually, we see now that the discussion below eq. (38),
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about the reality condition of our three-point response function, only applies to the case we presented

in the main part of text, based on using the canonical base. In light of eqs. (A16)-(A19) we see that

we can rather have pure imaginary or simply complex response functions, simply depending on the

choice of the phase α.

In summary, we emphasize that the response functions presented in the main part of the text (see

Figs. 3 and 5) were computed in the canonical basis (A3). If these results are to be applied to a

bispectrum of any given model (see eq. (12)), special care must be taken to use the same basis or to

apply the phase rotations as indicated in eqs. (A16)-(A19).

B Tensor three-point function at non-equal times

To provide the expressions for the 2-point and 3-point correlators, we introduce a standard Fourier

space decomposition

hij (t, ~x) =

∫
d3ke−2πi~k·~x

∑
λ

eij,λ

(
k̂
)
hλ

(
t, ~k
)

=

∫
d3ke−2πi~k·~x

∑
λ

eij,λ

(
k̂
) [

e2πikthλ

(
~k
)

+ e−2πikth∗λ

(
−~k
)]

, (B1)

assuming that hλ

(
~k
)

is a stochastic variable that satisfies

〈
hλ1

(
~k1

)
h∗λ2

(
~k
)〉

=
Pλ1(k1)

8π k3
1

δ(~k1 − ~k2) δλ1λ2 , (B2)

where statistical isotropy has been assumed, and where we allow for the possibility of a chiral GW

background, PR (k) 6= PL (k). Then the two-point function at non-equal times reads〈
hλ1

(
t1, ~k1

)
hλ2

(
t2, ~k2

)〉
=
Pλ1 (k1)

4πk3
1

δλ1λ2 δ
(3)
(
~k1 + ~k2

)
cos [2πk1 (t1 − t2)] . (B3)

To compute the three-point function at non-equal times, recall our ansatz (6) for small departures

from a Gaussian stochastic background,

hλ

(
t, ~k
)

= hλ,g

(
t, ~k
)

+
∑
λ′,λ′′

fλ,λ
′,λ′′

NL

∫
d3p d3q hλ′,g (t, ~p) hλ′′,g (t, ~q)

× δ(3)
(
~k − ~p− ~q

)
Kλλ′λ′′ (−~p, −~q) , (B4)

with the properties of kernel function given in Eq. (7),

Kλλ′λ′′

(
−~k1, −~k2

)
= Kλλ′λ′′

(
k1, k2, k̂2 · k̂3

)
≡ Kλλ′λ′′ (k1, k2; k3) , (B5)

where ~k3 = −~k1 − ~k2, and with a symmetry in the first two arguments, Kλλ′λ′′ (k1, k2; k3) =

Kλλ′λ′′ (k1, k2; k3). From the ansatz (B4), and the 2-point correlator (B3), one then obtains the

unequal time 3−point correlation function

〈
hλ1

(
t1, ~k1

)
hλ2

(
t2, ~k2

)
hλ3

(
t3, ~k3

)〉
=
δ(3)

(
~k1 + ~k2 + ~k3

)
8π2
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×

{
fλ1,λ2,λ3NL Kλ1;λ2,λ3 (k1; k2, k3)

Pλ2 (k2)

k3
2

Pλ3 (k3)

k3
3

cos [2πk2 (t2 − t1)] cos [2πk3 (t3 − t1)]

+ fλ2,λ1,λ3NL Kλ2;λ1,λ3 (k2; k1, k3)
Pλ1 (k1)

k3
1

Pλ3 (k3)

k3
3

cos [2πk1 (t1 − t2)] cos [2πk3 (t3 − t2)]

+ fλ3,λ1,λ2NL Kλ3;λ1,λ2 (k3; k1, k2)
Pλ1 (k1)

k3
1

Pλ2 (k2)

k3
2

cos [2πk1 (t1 − t3)] cos [2πk2 (t2 − t3)]

}
.

(B6)

C Comparison with GW decomposition in the frequency basis

It is instructive to compare the GW decomposition (1) used in this paper with the decomposition in

terms of positive and negative frequencies that is often encountered in the literature of the stochastic

GW background [133]

hab (t, ~x) =

∫ +∞

−∞
df

∫
d2n̂

∑
λ

eab,λ (n̂) e2πif(t−n̂·~x) hλ (f, n̂) , (C1)

where we are considering left and right polarizations, and where the requirement of a real GW back-

ground is used to define the negative frequency field, hλ (−f, n̂) = h∗−λ (f, n̂) (in the {+, ×} basis,

one has instead hσ (−f, n̂) = h∗σ (f, n̂)). Using this property, the decomposition (C1) can be rewritten

as

hab (t, ~x) =

∫ +∞

0
df

∫
d2n̂

∑
λ

eab,λ (n̂)
[
e2πif(t−n̂·~x)hλ (f, n̂) + e−2πif(t−n̂·~x)hλ (−f, n̂)

]
=

∫ +∞

0
df

∫
d2n̂ e−2πifn̂·~x

∑
λ

eab,λ (n̂)
[
e2πift hλ (f, n̂) + e−2πift h∗λ (f, −n̂)

]
, (C2)

where we note that we also sent {n̂, λ} → {−n̂, −λ} in the second term of the second line. Comparing

this with the first line of (1) allows to relate the operators in the two decompositions as

hλ (f, n̂) = k2
[
hλ

(
~k = f n̂

)
θ (f) + h∗−λ

(
~k = −f n̂

)
θ (−f)

]
. (C3)

Using the relation between the two lines of (1) we can also relate the operator in (C1) to the full

GW Fourier transform as

hλ (f, n̂) =
e−2πift

2
f2

[
hsign f×λ

(
t, ~k = fn̂

)
− i

2πf
ḣsign f×λ

(
t, ~k = fn̂

)]
, (C4)

where dot denotes time differentiation.

We can use this relation to also relate correlators between modes in the two basis. For instance,

for the 2−point correlator we have

〈
hλ (f, n̂)hλ′

(
f ′, n̂′

)〉
=

e−2πi(ft+f ′t′)

4
f2 f

′2

[
1− i

2πf

∂

∂t

] [
1− i

2πf ′
∂

∂t′

]
×
〈
hsign f×λ (t, f n̂) hsign f ′×λ′

(
t′, f ′n̂′

)〉
. (C5)
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Eq. (4) in the main text provides the equal time correlator in the Fourier basis. This is obtained

from 〈
hλ

(
~k
)
hλ′
(
~k′
)〉

= 0 ,
〈
hλ

(
~k
)
h∗λ′
(
~k′
)〉

=
Pλ (k)

8πk3
δλλ′ δ

(3)
(
~k − ~k′

)
. (C6)

These relations lead to the unequal time correlator〈
hλ

(
t, ~k
)
hλ′
(
t′, ~k′

)〉
= cos

[
2πk

(
t− t′

)] Pλ (k)

4πk3
δλλ′ δ

(3)
(
~k + ~k′

)
, (C7)

(which immediately reduces to (4) at equal times). Inserting this relation in (C5) leads to〈
hL (f, n̂)hL

(
f ′, n̂′

)〉
=
〈
hR (f, n̂)hR

(
f ′, n̂′

)〉
= 0 ,〈

hL (f, n̂)hR
(
f ′, n̂′

)〉
=
PL (f) θ (f) + PR (f ′) θ (f ′)

8π|f |
δ
(
f + f ′

)
δ(2)

(
n̂− n̂′

)
. (C8)

As a check on our algebra, we verified that combining this result with the decomposition (C1)

leads again to the equal-time real-space correlator (5).

D Technical calculations of Section 4.3

In this Appendix we provide some technical steps that were omitted in the computation of Section

4.3. Inserting the kernel of eq (66) relation into eqs. (49) and (55), we obtain

Sijks (f1, f2f3) =
L3 fLLLNL

32π2

∫
dk1

k1

dk2

k2

dk3

k3
k2

1k
2
2k

2
3R

ijk
LLL (k1, k2, k3) e−

1
2σ2

[(k1−k∗)2+(k2−k∗)2+(k3−k∗)2]

×
{
PL (k2)

k3
2

PL (k3)

k3
3

δ (k2 − |f2|) δ (k3 − |f3|) + 2 permutations

}
. (D1)

The curly bracket has three terms. In each term, two dki integrals are immediately performed

thanks to the δ−functions. The third integral is performed in the limit of narrow width of the bump,

in which the functions multiplying the exponential term are evaluated at k∗. For instance, in the first

term k1RinkLLL (k1, |f2|, |f3|) e−
(k1−k∗)

2

2σ2 ' k∗RinkLLL (k∗, |f2|, |f3|) e−
(k1−k∗)

2

2σ2 . The third integral is then

also immediately done by extending it from −∞ to ∞ (which is also appropriate in the narrow width

approximation). We obtain

Sijks (f1, f2, f3) '
L3 fLLLNL

32π2

√
2π σ k∗

{
PL (|f2|)

f2
2

PL (|f3|)
f2

3

e−
1

2σ2
[(|f2|−k∗)2+(|f3|−k∗)2] RijkLLL (k∗, |f2|, |f3|)

+2 permutations

}
. (D2)

We need to square this quantity, and insert it in (61). The mixed products between the three

different terms in the curly bracket provide a negligible contribution to this result. Let us for instance

discuss the product between the first and the second term. In the narrow peak approximation, the

first term is mostly supported at |f2| = |f3| = k∗, while the second term at |f1| = |f3| = k∗. So the

mixed product is supported only around the points where the magnitude of all the frequencies is equal

to k∗. But this is incompatible with the δ−function δ (f1 + f2 + f3) present in (61).
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Therefore, for the purpose of computing the signal to noise ratio, only the sum of the square of the

three terms in the curly bracket is relevant. In this sum we also approximate all functions multiplying

the exponential terms by their value at the center of the bump. This leads to

Sijks (f1, f2, f3)2 ∼=
[
L3 fLLLNL

32π2

√
2π σ

P 2
L (k∗)

k3
∗

]2

RijkLLL (k∗, k∗, k∗)
2

×

{
e−

1
σ2

[(|f2|−k∗)2+(|f3|−k∗)2] + e−
1
σ2

[(|f1|−k∗)2+(|f3|−k∗)2] + e−
1
σ2

[(|f1|−k∗)2+(|f2|−k∗)2]

}
.

(D3)

The three terms in the curly bracket provide the same contribution to the signal to noise ratio

SNR '
L3 fLLLNL

32π2

√
2π σ

P 2
L (k∗)

k3
∗

[
T

6

1

(4L2)3

∑
ijk

RijkLLL (k∗, k∗, k∗)
2

×3

∫ +∞

−∞

df1

Pn (|f1|)

∫ +∞

−∞

df2

Pn (|f2|)
e−

(|f2|−k∗)
2

σ2

∫ +∞

−∞

df3

Pn (|f3|)
e−

(|f3|−k∗)
2

σ2 δ (f1 + f2 + f3)

]1/2

.

(D4)

We perform the df2 and the df3 integrals in the narrow width limit. The second line of this

expression then becomes

3
πσ2

P 2
n (k∗)

∫ +∞

−∞

df1

Pn (|f1|)
[δ (f1 − 2k∗) + δ (f1) + δ (f1) + δ (f1 + 2k∗)] . (D5)

The contribution proportional to δ (f1) can be disregarded, since the noise diverges in that limit.

This leads to eq. (67) written in the main text.

E Cosmological scaling of the non-linear parameter

The parameterization (6) of non-Gaussianity in terms of a nonlinear parameter is subject to the

cosmological evolution, giving rise to the relation (10). When the momenta in the convolution have

equal magnitude, we have a single rescaling, that can be roughly approximated as

fNL '
fprimordial

NL

ak∗
, (E1)

where k∗ is the magnitude of the momentum and ak∗ denotes the value of the scale factor when the

modes re-entered the horizon. For GW generated after inflation inside the horizon, ak∗ denotes instead

the value of the scale factor at the moment of the GW production. In this relation, the scale factor is

normalized to one at the present time. In this appendix we estimate the value of ak∗ for both cases.

We start from GW generated during inflation. In this case, the modes re-enter the horizon during

radiation domination. We can write

1

ak∗
=

1

aeq

aeq

ak∗
=

1

aeq

√
teq

t∗
=

1

aeq

a∗H∗
aeqHeq

, (E2)
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where we have used the fact that a ∝ t1/2 and H ∝ 1
t during radiation domination. In this relation,

the suffix ‘eq’ refers to the moment of matter-radiation equality, while the star denotes the moment

at which the mode k∗ re-enters the horizon.

At horizon re-entry, a∗H∗ = 2πk∗, where the 2π is a consequence of the Fourier transform con-

vention adopted in this work (see for instance eq. (1)). The Hubble rate scales as the square root of

the energy density. At equality, the energy density was twice that of radiation, ρeq = 2 × ρrad,eq =

2× a−4
eq ρrad,0 = 2× a−4

eq Ωrad,0 ρ0, where ρ0 is the present value of the energy density. Therefore,

1

ak∗
=

2πk∗
a2

eq

1

H0

1√
2 a−4

eq Ωrad,0

. (E3)

In scaling the energy density of radiation as a−4 we have disregarded the fact that massive neutrinos

become non-relativistic, so we consistently evaluate the present fractional density in radiation as if

neutrinos were massless, leading to Ωrad,0 ' 4.18× 10−5h−2. This leads to

1

ak∗
' 2× 1017 k∗

10−3 Hz
, production from inflation . (E4)

This corresponds to a temperature of T ' T0
a∗
∼ 50 TeV (disregarding the variation of relativistic

degrees of freedom).

Let us instead assume that the GW are produced inside the horizon, when the temperature of

the universe was T∗. For convenience, we normalize the temperature at 100 GeV. We then have

(disregarding the variation of relativistic degrees of freedom for the purpose of our estimate)

1

ak∗
∼ T∗
T0
' 4× 1014 T∗

100 GeV
, production inside horizon at temperature T∗ . (E5)
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