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Abstract: In this article we have studied the transverse momentum distribution of the

pseudo-scalar Higgs boson at the Large Hadron Collider (LHC). The small pT region which

provides the bulk of the cross-section is not accessible to fixed order perturbation theory due

to the presence of large logarithms in the series. Using the universal infrared behaviour

of the QCD we resum these large logarithms upto next-to-next-to leading logarithmic

(NNLL) accuracy. We observe a significant reduction in theoretical uncertainties due to

the unphysical scales at NNLL level compared to the previous order. We present the

pT distribution matched to NNLOA+NNLL, valid for the whole pT region and provide a

detailed phenomenological study in the context of 14 TeV LHC using different choices of

masses, scales and parton distribution functions which will be useful for the search of such

particle at the LHC in near future.
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1 Introduction

The Standard Model (SM) of particle physics has been very successful in explaining the

properties of the fundamental particles and the interactions among them. After the dis-

covery of the Higgs boson by the ATLAS [1] and the CMS [2] at the Large Hadron Collider

(LHC), the SM has become the most accepted theory of particle physics. The measured

properties of this new boson are in full agreement with the SM predictions so far. However

SM is not the compete theory of the nature as it can not describe many things including

baryogenesis, neutrino masses, hierarchy problem to name a few. Many of these issues can

be addressed by going beyond the SM often by invoking some extended sectors. A lot of

the effort is recently being made towards the discovery of such new physics beyond the SM

(BSM). A plethora of models exist in this context; a large class of which predicts an ex-

tended scalar sector containing multiple scalar or pseudo-scalar Higgs particles. Extended

models like the Minimal Supersymmetric Standard Model (MSSM) or Next-to-Minimal

Supersymmetric Standard Model (NMSSM) etc., predict a larger variety of Higgs bosons

which differ among each other for example by their mass, charge, CP-parity and cou-

plings. A simple example contains an additional Higgs doublet along with the usual Higgs

doublet of the SM. After the symmetry breaking this gives rise to two CP-even (scalar)

Higgs bosons (h,H), one of which is identified with the SM Higgs boson (h), a CP-odd

(pseudo-scalar) Higgs boson (A) as well as a pair of charged scalars (H±). This allows

phenomenologically interesting scenarios particularly with pseudo-scalar resonances. One

of the important goal at the LHC Run-II is to search for such resonances which requires a

precise theoretical predictions for both inclusive as well as for exclusive observables.

Similar to the SM scalar Higgs production, the dominant production channel for

pseudo-scalar Higgs is through the gluon fusion. Therefore at the LHC the large gluon
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flux can boost its production cross-section to a great extent. Like the scalar Higgs boson,

the leading order (LO) prediction of the pseudo-scalar production at the hadron colliders

suffers from large theoretical uncertainties due to dependence on renormalisation scale µR
through the strong coupling constant. The next-to-leading order (NLO) correction [3–6]

is known to increase the cross-section as high as 67% compared to the born with scale

uncertainty varying about 35%. This essentially calls for higher order corrections beyond

NLO. The total inclusive cross-section at next-to-next-to leading order (NNLO) has been

known for quite a long time [7–11]. The NNLO correction increases the cross-section

further by 15% and reduces the scale uncertainties to 15%. To further reduce the scale

dependences one has to go even higher order considering full next-to-next-to-next-to lead-

ing order (N3LO) corrections. The complexity in full N3LO correction is even higher and

only recently full N3LO correction [12] has been obtained for the SM Higgs productions

with infinite top mass limit approximation which reduces the scale uncertainty to 3%. The

large top mass approximations turned out to be a good approximation for the scalar Higgs

case and the predictions are found to be within 1% [13–15] and one could expect similar

behaviour in pseudo-scalar production as well.

The first attempt towards the N3LO corrections is made through the calculation of

threshold enhanced soft-virtual (SV) corrections. For scalar Higgs productions these are

known for a long time upto N3LOSV [16–21]. Associated production [22] and bottom

annihilation [23] are also known at the same accuracy. The soft gluons effect at threshold

for pseudo-scalar Higgs has been computed in [24] at N3LOSV level on the subsequent

computation of its form factor at three loops [25]. Inclusive cross-section may however give

unreliable results in certain phase space (PSP) region due to large logarithms arising from

soft gluon emission and needs to be resummed to all orders. The soft gluon resummation for

inclusive scalar Higgs production has been known upto next-to-next-to leading logarithm

(NNLO+NNLL) [26] for a long time. The full N3LO result [12] enables to perform soft gluon

resummation at next-to-next-to-next-to leading logarithm (N3LO+N3LL) [27–29] (see also

[30] for renormalisation group improved prediction.). For pseudo-scalar Higgs production,

an approximate N3LOA result has been matched with N3LL threshold resummation in [31]

(see [32, 33] for earlier works in this direction).

Recently there have been a renewed interest in the resummed improved prediction

for exclusive observables as well. Higgs [34] and Drell-Yan [35] rapidity distributions are

predicted at NNLO+NNLL accuracy resumming large threshold logarithms using double

Mellin space formalism (see [36–38] for earlier works)1. The resummation in transverse

momentum distribution is also well studied in the past. The small pT region (defined by

pT � M , M being typical hard scale of the theory) often spoils the fixed order (FO)

predictions due to the presence of large logarithms of the type ln(M2/p2
T ). By resumming

these large logarithms [47–59], the predictivity of the QCD can be recovered in the full PSP

region for pT distribution. Such resummation of large logarithms can be obtained by ex-

ploiting the universal properties of QCD in the infrared region [48–54, 57, 60, 61]. Recently

a powerful and elegant technique is provided using soft-collinear effective theory (SCET) by

1 Also see [39–43] for a different QCD approach and [44–46] for SCET approach.
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exploiting only the soft and collinear degrees of freedom in an effective field theory set up

(see [62–66]). These approaches have been applied to obtain the scalar Higgs boson pT spec-

trum in gluon fusion upto NNLO+NNLL [67–75] and through bottom annihilation upto

NNLO+NNLL [76, 77]. Recently the pT distribution for Higgs boson has been achieved

to NNLO+N3LL accuracy [78, 79]. Another approach to resum these large logarithms is

through the parton shower (PS) simulations which has been also successful in recent times

through the implementation in monte-carlo generators like MadGraph5 aMC@NLO [80],

POWHEG [81] etc. mostly upto NLO+PS accuracy. However the accuracy of PS predic-

tion is often not clear and has remained an active topic of research these days2. In all

these approaches, there is an effective matching scale (resummation scale or shower scale)

which defines the infrared region and the hard region. Although its dependence is of higher

logarithmic order, a suitable choice is needed to properly describe the full pT spectrum in

a meaningful way.

A clear understanding of the pseudo-scalar Higgs boson properties is also based on the

precise knowledge of such differential observables like transverse momentum, rapidity etc.

For pseudo-scalar production in association with a jet, the two loop virtual amplitudes can

be found in [83], which is important to predict the differential distribution of A. The small

pT region of pseudo-scalar transverse momentum distribution renders the FO prediction

due to the large logarithms in this PSP region. These logarithms have to be resummed in

order to get a realistic distribution. This has been achieved at next-to-leading logarithm

(NLO+NLL) [84] accuracy for a long time3 using universal infrared behaviour of QCD. The

scale uncertainty in the peak region at NLO+NLL was found to be 25% when the scale

is varied simply by a factor of two. Along with the PDF uncertainty, the total theoretical

uncertainties reach as large as 35% near the peak. This necessitates the correction at the

next order. In this article we extend this accuracy to NNLL. We obtained different pieces

necessary for pT resummation of a pseudo-scalar Higgs boson upto NNLL accuracy. The

resummed contribution has to be matched with FO in order to get a realistic distribution

valid in the full pT spectrum. We use the ansatz prescribed in [31] to obtain the NNLO

piece to a very good approximation. Finally the matched prediction is presented upto

NNLOA+NNLL for the pseudo-scalar Higgs pT spectrum for phenomenological study at

14 TeV LHC.

The paper is organised as follows: in section-2 we set up the theoretical framework for

the resummation of large logarithms for small pT region relevant for pseudo-scalar Higgs

production. In section-3, we will provide a detailed phenomenological study of the pT
spectrum for different masses, scales and PDFs relevant at the LHC. Finally we draw our

conclusion in section-4.

2For a recent study see [82] and references therein.
3Through this paper we take gg → A as the LO for pT distribution even though its contribution is

∼ δ(pT ).
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2 Theoretical Framework

In this section we give the formula that carries out resummation and present the various

coefficients that enter it.

Resummation formula: If we calculate the distribution of a colorless final state of mass

M and if pT is significantly smaller than M , large logarithms of pT /M arise in the distri-

bution dσ/dpT due to an incomplete cancellation of soft and collinear contributions. At

each successive order in αs the highest power of the logarithm that appears increases which

renders the näıve perturbative expansion in αs invalid as pT → 0. However, factorization

of soft and collinear radiation from the hard process allows us to resum the logarithms

to all orders in αs. This factorization occurs in the Fourier space conjugate to pT called

impact parameter space; the variable conjugate to ~pT is denoted by ~b:

f(pT ) =
1

(2π)2

∫
d2b e−ib·pT f(b) , (2.1)

implying that the limit pT → 0 corresponds to b → ∞. The momentum conservation

relates pT to the sum of the transverse momenta kT =
∑

i ki,T of the outgoing partons

which is factorized in b space using

δ(pT + kT ) = (2π)−2

∫
db exp[−ib · pT ] exp[−ib · kT ]. (2.2)

Using rotational invariance around the beam axis the angular integration can be performed

which gives Bessel function J0. The distribution at low pT values compared to M has the

following behaviour which is obtained by resumming the large logarithms to all orders in

perturbation theory.

dσF,(res)

dp2
T

= τ

∫ ∞
0

db
b

2
J0(bpT )WF (b,M, τ) , (2.3)

with the Bessel function J0(x), τ = M2/S, and S the hadronic center-of-mass energy. The

proper inclusion of terms pT & M will be described in Section 2.1. Here and in what

follows, the superscript F is attached to final state specific quantities. It is convenient to

consider the Mellin transform with respect to the variable τ :

WF
N (b,M) =

∫ 1

0
dττN−1WF (b,M, τ) , (2.4)

which has the following form for Higgs and Pseudo-scalar Higgs production [54, 57]4

WF
N (b,M) = σ̂F,(0) exp

{
−
∫ M2

b20/b
2

dk2

k2

[
Ag(αs(k)) ln

M2

k2
+Bg(αs(k))

]}
×
∑
i,j

[
HF
g C1C2

]
gg;ij

fi,N (b0/b) fj,N (b0/b) ,
(2.5)

4Throughout this paper the parameters that are not crucial for the discussion will be suppressed in

function arguments.
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where σ̂
F,(0)
cc̄ is the Born factor which is the parton level cross section at LO. Unless indi-

cated otherwise, the renormalization and factorization scales have been set to µf = µr = M .

The sum over c, in general, runs over all relevant quark flavors c = q ∈ {u, d, s, c, b} and

their charge conjugates as well as gluons (ḡ ≡ g). It takes into account that, already at

LO, different initial states can contribute.5 In this study we will only consider contribu-

tions arising from the operator OG in the effective Lagrangian and will not include the

contributions arising from OJ operator and hence c = g only.

The function fi,N (q) in Eq. (2.5) is the Mellin transform of the density function fi(x, q)

of parton i in the proton, where x is the momentum fraction and q the momentum trans-

fer. The numerical constant b0 = 2 exp(−γE), with Euler’s constant γE = 0.5772 . . ., is

introduced for convenience.

The born cross section at the parton level including the finite top mass dependence is

given by

σA,(0)(µ2
R) =

π
√

2GF
16

a2
scot2β

∣∣τAf(τA)
∣∣2. (2.6)

Here as = αs/4π, τA = 4m2
t /m

2
A and the function f(τA) is given by

f(τA) =

arcsin2 1√
τA

τA ≥ 1 ,

−1
4

(
ln 1−

√
1−τA

1+
√

1−τA
+ iπ

)2
τA < 1 .

(2.7)

All the coefficients that appear in the resummation formula have series expansions in αs:

Cga(z;αs) = δgaδ(1− z) +

∞∑
n=1

(αs
π

)n
C(n)
ga (z) (2.8)

Gga(z;αs) =
∞∑
n=1

(αs
π

)n
G(n)
ga (z) (2.9)

HF
c (αs) = 1 +

∞∑
n=1

(αs
π

)n
HF,(n)
c (2.10)

Ag(αs) =
∞∑
n=1

(αs
π

)n
A(n)
g (2.11)

Bg(αs) =

∞∑
n=1

(αs
π

)n
B(n)
g (2.12)

The order at which these coefficients are taken into account in Eq. (2.5) determines the

logarithmic accuracy of the resummed cross section; leading logarithmic (LL) means that

all higher order coefficients except for A
(1)
c are neglected, next-to-LL (NLL) requires A

(2)
c ,

B
(1)
c , C

(1)
ci , and H

F,(1)
c , etc. The coefficients required for the pseudo-scalar Higgs boson at

next-to-NLL (NNLL) accuracy are given in Section 2.2.

5For example, the LO DY process receives contributions from all light quark flavors.

– 5 –



The coefficients Ag, Bg, and Cgi that enter the resummation formula for Higgs pro-

duction with HHiggs
g = 1 can be used for the pseudo-scalar Higgs as well. This choice of

resummation coefficients will be termed Higgs resummation scheme in this paper. See [85]

for details on resummation schemes. The information of pseudo-scalar Higgs is contained

in the hard coefficient HF
c and the Born factor σ̂

F,(0)
cc̄ .

All resummation coefficients are known in the Higgs scheme up to the order required

in this paper (see Section 2.2), with the exception of HA,1
g and HA,2

g whose evaluation

through NNLO will also be presented in Section 2.2.

Perturbative expansion of resummation formula: Evolving the parton densities

from b0/b to µf in Eq. (2.5) (see Ref.[85]), one can define the partonic resummed cross

section WF
ij,N through

WF
N (b,M) =

∑
i,j

WF
ij,N (b,M, µf ) fi,N (µf )fj,N (µf ) . (2.13)

From a perturbative point of view, WF can be cast into the form

WF
ij,N (b,M, µf ) =

∑
c

σ̂
F,(0)
cc̄

{
HFcc̄←ij,N (M,Q, µf ) +ΣF

cc̄←ij,N (L,M,Q, µf )

}
, (2.14)

where L = ln(Q2b2/b20) denotes the logarithms that are being resummed in WF , and Q is

an arbitrary resummation scale. WhileWF is formally independent of Q, truncation of the

perturbative series will introduce a dependence on this scale which is, however, of higher

order. The b dependence is contained entirely in the functions ΣF
cc̄←ij which are defined to

vanish at L = 0; for the perturbative expansions upto NNLO please refer to Ref.[85].

2.1 Matching the cross-section across the large and small pT regions

The resummed result given in the previous section is valid at small values of transverse

momentum where the logarithms of pT are summed to all orders, and to emphasize that

these results are accurate to a certain logarithmic accuracy such as NLL or NNLL we attach

a subscript to the resummed cross-section:
(
dσ(res)/dp2

T

)
l.a.

. At high values of transverse

momentum fixed order results accurately describe the distribution which we will denote

by
(
dσ/dp2

T

)
f.o.

. To match the cross-section across the entire pT region we will follow the

additive matching procedure defined below:

(
dσ

dp2
T

)
f.o.+l.a.

=

(
dσ

dp2
T

)
f.o.

+

(
dσ(res)

dp2
T

)
l.a.

−

(
dσ(res)

dp2
T

)
f.o.

. (2.15)

When at low pT the divergences in pT arising due to the fixed order result in the first term

are subtracted by the last term, which is nothing but the expansion of the resummation

formula in αs truncated to appropriate order. At large values of pT we can reduce the

effect of the last term by making the replacement [85]

L→ L̃ ≡ ln

(
Q2b2

b20
+ 1

)
. (2.16)
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2.2 Resummation coefficients and determination of HA,(2)
g

Here we list down the A,B and C coefficients that enter the computation. Whenever, a

coefficient is scheme dependent we have given it in the Higgs scheme.

A(1)
g = CA ,

A(2)
g =

1

2
CA

[(
67

18
− π2

6

)
CA −

5

9
Nf

]
,

A(3)
g = CA

[
C2
A

(
11π4

720
− 67π2

216
+

245

96
+

11

24
ζ3

)
+ CANf

(
5π2

108
− 209

432
− 7

12
ζ3

)

+ CFNf

(
−55

96
+

1

2
ζ3

)
− 1

108
N2
f + 8β0

(
CA

(
101

216
− 7

16
ζ3

)
− 7

108
Nf

)]
B(1)
g = −1

6
(11CA − 2Nf )

B(2)
g = C2

A

(
23

24
+

11

18
π2 − 3

2
ζ3

)
+

1

2
CFNf − CANf

(
1

12
+
π2

9

)
− 11

8
CFCA

C(1)
gg =

1

4

(
(5 + π2)CA − 3CF

)
δ(1− z)

C(1)
gq =

1

2
CF z

G(1)
gg = CA

1− z
z

G(1)
gq = CF

1− z
z

(2.17)

where β0 = (11CA − 2Nf )/12, CF = 4/3, CA = 3, and Nf = 5 is the number of active

quark flavors.

The coefficients A
(i)
g , B

(1)
g , off-diagonal coefficient C

(1)
gq , and G

(1)
gg and G

(1)
gq are scheme

independent. The coefficients Bi(2)g and C1
gg have been given above in Higgs scheme.

3 The results: Hard coefficients and matched distributions

In this section we will first calculate the hard coefficients HA,1
g and HA,2

g , then we will

describe how we obtain the fixed order pT distribution that we need for the matching, and

finally obtain the distributions.

3.1 Evaluation of Hard coefficient

The only coefficients that remain to be determined are the first and second order hard

coefficients. These can be extracted from the knowledge of form factors upto 2-loop for

the pseudoscalar Higgs. The unrenormalized form factor F̂A,(n)
g up to 2-loop are given

reproduced here

FAg ≡
∞∑
n=0

[
âns

(
Q2

µ2

)n ε
2

Snε F̂A,(n)
g

]
. (3.1)
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We present the unrenormalized results for the choice of the scale µ2
R = µ2

F = q2 as follows:

F̂A,(1)
g = CA

{
− 8

ε2
+ 4 + ζ2 + ε

(
− 6− 7

3
ζ3

)
+ ε2

(
7− ζ2

2
+

47

80
ζ2

2

)}
,

F̂A,(2)
g = CFnf

{
− 80

3
+ 6 ln

(
q2

m2
t

)
+ 8ζ3 + ε

(
2827

36
− 9 ln

(
q2

m2
t

)
− 19

6
ζ2 −

8

3
ζ2

2

− 64

3
ζ3

)
+ ε2

(
− 70577

432
+

21

2
ln

(
q2

m2
t

)
+

1037

72
ζ2 −

3

4
ln

(
q2

m2
t

)
ζ2 +

64

9
ζ2

2 +
455

9
ζ3

− 10

3
ζ2ζ3 + 8ζ5

)}
(3.2)

The strong coupling constant as ≡ as
(
µ2
R

)
is renormalised at the mass scale µR and

is related to the unrenormalised one, âs ≡ ĝ2
s/16π2, through

âsSε =

(
µ2

µ2
R

)ε/2
Zasas (3.3)

with Sε = exp [(γE − ln 4π)ε/2] and the scale µ is introduced to keep the unrenormalized

strong coupling constant dimensionless in d = 4 + ε space-time dimensions. The renormal-

isation constant Zas up to O(a3
s) is given by

Zas = 1 + as

[
2

ε
β0

]
+ a2

s

[
4

ε2
β2

0 +
1

ε
β1

]
+ a3

s

[
8

ε3
β3

0 +
14

3ε2
β0β1 +

2

3ε
β2

]
. (3.4)

The coefficient of the QCD β function βi are given by [86]

β0 =
11

3
CA −

2

3
nf ,

β1 =
34

3
C2
A − 2nfCF −

10

3
nfCA ,

β2 =
2857

54
C3
A −

1415

54
C2
Anf +

79

54
CAn

2
f +

11

9
CFn

2
f −

205

18
CFCAnf + C2

Fnf (3.5)

with the SU(N) QCD color factors

CA = N, CF =
N2 − 1

2N
. (3.6)

nf is the number of active light quark flavors. The operator renormalization is needed to

remove the additional UV divergences and UV finite formfactor is obtained is given by

[FAg ]R = ZAg FAg . (3.7)
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where the operator renormaliztion factor is given by

ZAg = 1 + as

[
22

3ε
CA −

4

3ε
nf

]
+ a2

s

[
1

ε2

{
484

9
C2
A −

176

9
CAnf +

16

9
n2
f

}
+

1

ε

{
34

3
C2
A

− 10

3
CAnf − 2CFnf

}]
+ a3

s

[
1

ε3

{
10648

27
C3
A −

1936

9
C2
Anf +

352

9
CAn

2
f −

64

27
n3
f

}

+
1

ε2

{
5236

27
C3
A −

2492

27
C2
Anf −

308

9
CACFnf +

280

27
CAn

2
f +

56

9
CFn

2
f

}

+
1

ε

{
2857

81
C3
A −

1415

81
C2
Anf −

205

27
CACFnf +

2

3
C2
Fnf +

79

81
CAn

2
f +

22

27
CFn

2
f

}]
.

(3.8)

Using the above form factor which is completely free of any ultraviolet divergences and

contains only infrared singularities we can obtain the the hard fuction by removing them

by multiplying the IR subtraction operators. This gives the hard function in what is called

hard scheme. We would use the same B and C functions that appear in the Higgs process

and this choice we would name as Higgs scheme. So, we need to find hard function H in

the Higgs scheme and this can be done by the following relations:

HA,(1)
g = H

A,(1)
g,hard −H

H,(1)
g,hard ,

HA,(2)
g = H

A,(2)
g,hard −H

H,(2)
g,hard +

(
H
H,(1)
g,hard

)2
−HA,(1)

g,hardH
H,(1)
g,hard (3.9)

The first and second order coefficients that appear in the expansion of the hard function

when calculated in the Higgs scheme are

HA,1
g =

3

2
CF −

1

2
CA (3.10)

HA,2
g =

1

12
CF +

5

96
CA +

41

144
CAnf +

(
−13

8
+

1

4
log

m2
A

m2
t

)
CFnf

+

(
37

24
+

11

8
log

m2
A

m2
t

)
CACF +

(
137

288
− 7

8
log

m2
A

m2
t

)
C2
A. (3.11)

3.2 Fixed order distribution at NNLO

It has been long observed that the inclusive pseudo-scalar Higgs coefficient can be obtained

from the Higgs coefficient at each order of perturbation theory by a simple rescaling (see

Eq. 13-16 of [31]) after factoring out the born cross-section. One may expect that since

the rescaling is independent of kinematics the same will hold for the pT distributions as

well. Therefore we use the same rescaling to find out fixed order NNLO piece (denoted

as NNLOA) for pseudo-scalar Higgs from the scalar one. We have performed an extensive

checks on this ansatz at the small qT region where the pseudo-scalar spectrum is known

completely accurate upto NNLL from the knowledge of exact hard function that we have

computed above. We find a very good agreement within 1%.
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3.3 Matched distributions

In this subsection we present distributions that we have obtained using our FORTRAN

code which we created by modifying the publicly available code HqT [85, 87, 88]. Our

default choices for different quantities in this study are:

1. LHC with centre-of-mass energy 14 TeV,

2. Pseudo-scalar Higgs mass mA = 200 GeV,

3. Resummation scale Q = mA,

4. MMHT 2014 parton density sets with the corresponding αs.

First and foremost we note that the divergent behaviour of the distribution at fixed order

is cured upon resummation. In Fig. 1 we note that at NLO the distribution diverges to

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 25  50  75

µR = µF = mA=200 GeV

MMHT2014

LHC  √S = 14 TeV

d
σ

/d
p

T
 (

p
b

/G
e

V
)

pT (GeV)

NLO
 Q=mA

 Q= mA/2
 Q= mA/4
 Q= mA/8

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 25  50  75

µR = µF = mA=200 GeV

MMHT2014

LHC  √S = 14 TeV

NNLOA+NNLL

d
σ

/d
p

T
 (

p
b

/G
e

V
)

pT (GeV)

NNLOA
Q=mA

Q= mA/2
Q= mA/4
Q= mA/8

(a) (b)

Figure 1. Resummation scale variation for (a) NLL and (b) NNLL.

positive infinity and at NNLO to negative infinity. Upon resummation a regular behaviour

is displayed in both the cases.

Uncertainty due to Q: In Fig. 1 we also show the sensitivity of the results to the

choice of resummation scale Q. In the left panel we see the results are quite sensitive to

the choice and, not surprisingly, upon going to the next logarithmic accuracy (right panel)

the sensitivity is significantly reduced around the peak region and the results at moderate

values of pT are almost insensitive to the choice. It is reassuring that in the right panel

at moderate and large values of pT the resummed curve is coincident with the fixed order

curve as desired. We note that the position of the peak is unchanged in going to the next

order. For Q = mA we see that the peak value changes by 25% in going from NLO+NLL

to NNLO+NNLL.
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Figure 2. Renormalization and factorization scale variation at NNLOA+NNLL and NLO+NLL

Uncertainty due to µr and µf : In Fig. 2 we show the sensitivity of our results to the

renormalization and factorization scales µr and µf on the distribution. The bands in this

figure show independent variation of µr and µf in the range [mA/2, 2mA] excluding the

regions where µr/µf > 2 or µr/µf < 1/2. This figure shows again that the sensitivity to

these arbitrary scales has reduced significantly upon carrying out the next order calculation.

More specifically, we see that at the peak the variation is 38% at NLO+NLL which gets

reduced to 19% upon going to the next level of accuracy. We have also studied individual

variation of µr and µf by varying one while fixing other at mA in Fig. 3 and Fig. 4.

Combined uncertainty due to Q,µr and µf : In Fig. 5 we show the sensitivity of our

results to the resummation (Q), renormalization (µr) and factorization (µf ) scale on the

distribution. The bands in this figure show independent variation of Q, µr and µf in the

range [mA/2, 2mA] with constraints µr/µf ∈ [1/2, 2], Q/µr ∈ [1/2, 2] and Q/µf ∈ [1/2, 2].

This figure shows the sensitivity to these arbitrary scales has reduced significantly upon

carrying out the next order calculation.

Uncertainty due to parton density sets: As there are several PDF groups in the

literature, it is necessary to estimate the uncertainty resulting from the choice of PDFs

within each set of a given PDF group. Using PDFs from different PDF groups namely

MMHT2014 [89], ABMP [90], NNPDF3.1 [91] and PDF4LHC [92] we have obtained the

differential qT distributions along with the corresponding PDF uncertainty. In Fig. 6, we

have demonstrated the uncertainty bands for various PDF sets as a function of qT in order

to demonstrate the correlation of PDF uncertainty with the qT values and in Table 1,

we have tabulated the corresponding results for few benchmark values of qT along with

percentage uncertainties.
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Figure 3. Variation of renormalization scale at NNLOA+NNLL and NLO+NLL keeping factor-

ization scale fixed at mA.
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Figure 4. Variation of factorization scale at NNLOA+NNLL and NLO+NLL keeping renormal-

ization scale fixed at mA.

Pseudo-scalar Higgs mass variation: In Fig. 7 we show how the distribution behaves

as the mass of the final state is changed, where we see that the cross-section decreases

with the increase in the mass of the final state. We have kept the renormalization and

factorizaiton scales fixed at 200 GeV and varied mA from 100 to 250 GeV.

– 12 –



0 20 40 60 80 100 120

 [GeV]
T
p

0.2

0.4

0.6

0.8

1

1.2

 [
pb

/G
eV
]

T
/d
p

σd

]
A

/2,2m
A

Q = [m

]
A

/2,2m
A

 = [mµ
 = 200 GeVAm

MMHT2014

=14 TeVS

+NNLL ANNLO

NLO+NNL 

Figure 5. Resummation, renormalization and factorization scale variation at NNLOA+NNLL and

NLO+NLL
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Figure 6. PDF variation at NNLOA+NNLL using various sets. The y-axis represents the ratio of

extremum variation over the central PDF set.

4 Conclusion

In this study we obtained the resummed pT distribution for pseudo-scalar Higgs bosons

at the LHC at a center of mass of 14 TeV at next-to-next-to-leading logarithmic accuracy

by matching the resummed curve with fixed order next-to-next-to-leading order result.

– 13 –



qT MMHT ABMP NNPDF PDF4LHC

7.0 0.802+1.00%
−1.75% 0.828+0.24%

−0.85% 0.821+4.02%
−3.05% 0.804+1.49%

−0.87%

13.0 0.941+0.96%
−1.06% 0.928+0.32%

−0.43% 0.960+3.75%
−2.60% 0.943+1.59%

−0.74%

19.0 0.882+0.91%
−1.13% 0.847+0.59%

−0.59% 0.897+3.68%
−2.56% 0.884+1.47%

−0.68%

25.0 0.772+0.91%
−1.04% 0.729+0.82%

−0.55% 0.783+3.58%
−2.43% 0.774+1.42%

−0.65%

31.0 0.660+0.91%
−0.91% 0.616+0.97%

−0.65% 0.669+3.44%
−2.39% 0.662+1.36%

−0.60%

Table 1. qT distributions at NNLOA+NNLL using different PDF sets along with percentage

uncertainties for qT = 7.0, 13.0, 19.0, 25.0, 31.0.
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Figure 7. Pseudo-scalar Higgs mass variation at NNLOA+NNLL .

We showed that we achieve a very significant reduction in sensitivity to the choices of

resummation, renormalization and factorization scales that are artefact of perturbation

theory. We also studied the uncertainty due to different choices of parton density sets.

This results provides us with precise estimates for the distribution especially in the region

around 15 GeV where the cross-section is large and the fixed order results are completely

unreliable due to the breakdown of fixed order perturbation series.
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