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We observe that racetrack models for moduli stabilization are in tension with strong forms of the
Weak Gravity Conjecture (WGC). Moreover, recently, it was noted that controlled KKLT-type de
Sitter vacua seem to require a racetrack fine-tuning of the type introduced by Kallosh and Linde.
We combine these observations and conclude that the quests for realizing parametrically large axion
decay constants and controlled de Sitter vacua are intimately related. Finally, we discuss possible
approaches to curing the conflict between the racetrack scheme and the WGC.

I. INTRODUCTION

The cosmological constant problem remains as one of
the most tantalizing problems in theoretical physics. Per-
haps even more disturbing than the tiny observed value
of the cosmological constant is its positive sign which is
notoriously difficult to obtain in controlled string com-
pactifications.

Realizing de Sitter vacua in string theory is difficult,
in part because all moduli need to be stabilized. This
problem of moduli stabilization was solved long ago in the
type IIB corner of string theory via the inclusion of three
form fluxes to stabilize complex structure moduli [1, 2]
and the leading non-perturbative corrections to stabilize
also the volume modulus [3, 4]. Recently this has been
questioned [5], but we will work within the assumption
that this way of stabilizing moduli is successful.

However, given a controlled (i.e. supersymmetric)
scheme of full moduli stabilization the possibility to ‘lift’
these vacua to (non-supersymmetric) de Sitter vacua in
a controlled way is not automatic. Using reasonable
assumptions about the form of the potential of SUSY
breaking sources (e.g. anti-branes or IASD fluxes), a
successful lift of the SUSY AdS vacua of KKLT [3] to
de Sitter was claimed. While there are other classes of
proposed stringy de Sitter vacua, the existence of the
KKLT type de Sitter vacua can be considered an impor-
tant argument for the existence of a vast landscape of de
Sitter vacua in string theory.

However, recently it was shown that the simplest ex-
amples of this type do not survive once the non-trivial
interplay between the SUSY breaking source and the
non-perturbative effects is taken into account [6]. This
was shown in a 10D framework and matched with subtle
O(1) corrections to the antibrane potential in the lan-
guage of 4D EFT. These corrections are only O(1) in
magnitude but induce an exponential functional depen-
dence of the antibrane potential on the volume modulus
which is enough to prevent a successful uplift to de Sitter.
It was also realized that models of supersymmetric vol-
ume stabilization that can accommodate supersymmetric

Minkowski vacua with finite moduli masses are indiffer-
ent to these corrections and could hence generically allow
for de Sitter uplifts.
Given the remarkable robustness of such models on

the one hand and the lack of explicit realizations on the
other we find it interesting to ask whether such models
can be constrained using general expectations about the
properties of quantum gravity.

II. CONSTRAINTS ON UPLIFTING

Uplifting AdS vacua to dS vacua is argued to be
possible when an AdS vacuum sits in the minimum of
a sharply peaked potential and if there exist SUSY-
breaking terms whose moduli-dependence is slowly vary-
ing compared with the sharply peaked AdS potential. If
the two are combined, then the original AdS vacuum can
be lifted without destroying the local minimum, on the
premise that the magnitude of the SUSY-breaking term
is tunable in size. The KKLT proposal [3] suggests to use
anti-D3 branes, which have an energy that depends poly-
nomially on the Kähler modulus, T , via V ∼ Re(T )−2.
The KKLT AdS vacuum originates from exponential
terms in the superpotential, W = W0 +A exp(−aT )[36],
and is indeed sharply peaked. The combined potentials
are:

V (T ) = eK/M2
P (gT T̄ |DTW |2 − 3|W |2/M2

P ) +
α2

12Re(T )2
.

(1)
with K the tree level Kähler potential,

K = −3M2
P ln(T + T̄ ) , (2)

and α2 a positive number proportional to the warped
anti-D3 tension. As usual we have assumed that the
complex structure moduli have been integrated out in
a non-SUSY GKP vacuum with finely-tuned small tree-
level GVW superpotential W0.
The tunability of the SUSY-breaking term α2 rests on

the existence of highly warped throats inside compact
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Calabi-Yau spaces. Anti-D3 branes are dynamically at-
tracted to the bottom of such throats, such that their
tension is redshifted. It is well known that the amount
of warping can be exponentially tuned [2] such that the
string scale tension can be brought to genuine low energy
values. Despite the beautiful logic behind this reasoning,
there are potential caveats. We focus on a particularly
severe one which was only discovered recently [6].
In the uplift procedure it was assumed that the anti-D3

brane does not influence the non-perturbative corrections
such that the uplift term can simply be added to the po-
tential. The problem pointed out in [6] is that this does
not hold and that there is a non-trivial interplay between
the effects that conspire against the construction of a dS
vacuum. Reference [6] has verified this directly in 10 di-
mensions. For simplicity, we only state a possible inter-
pretation of the problem in a 4-dimensional language (a
variant of the one presented in [6]) instead of presenting
the 10D argument.
In presence of non-perturbative volume stabilization,

the anti-brane potential can receive non-perturbative cor-
rections of the form

δVD3,np ∝ e−2aReT , (3)

that can in principle compete with the (small) classical
contribution[37].
If the coefficient of such a correction is not suppressed

by warping, and the coefficient is not numerically small,
there exist no dS vacua that lie in a regime where α′ cor-
rections to the Kähler potential can be neglected: When
the classical warp factor is tuned to obtain a dS vacuum,
the (mass)2 of the T -modulus is reduced by an entire
volume factor. From a purely 4D point of view, such
corrections may seem like a conspiracy but the 10D com-
putation carried out in [6] points precisely to it. There
is no proof that this interpretation is correct and what
follows in the rest of this paper does not rest on it.
What counts in the following is the observation of [6]

that there seems to be a way to circumvent this problem.
Whenever multiple non-perturbative effects are present,
the 10D nogo theorem cannot be derived. The so called
“racetrack model” (see for instance [7, 8]):

W = W0 +A exp(−aT ) +B exp(−bT ) , (4)

is an example of this type. A possible source for two such
exponential terms as the leading order non-perturbative
effects are gaugino condensates on two stacks of D7
branes wrapping 4-cycles in the same homology class but
at sufficiently large distances such that the gauge group
induced by the 7-brane stacks factorizes. The reason that
such models are not contained in the nogo theorem is
the possible existence of a fine-tuning of the cosmolog-
ical constant in the SUSY AdS vacuum prior to uplift.
There is a tuning of the coefficients A,B, a, b that brings
the AdS vacuum energy to zero, while preserving finite
masses for the T modulus. In such a situation sufficiently
small SUSY-breaking effects necessarily lead to dS vacua.

In the rest of the paper we argue that such models can
be challenged from two independent directions:

1. Given the racetrack alignment of the dual Coxeter
numbers of the gauge groups, a ≈ b, for reasonable
values of the parameters W0, A,B, any reasonably
strong form of the weak gravity conjecture (WGC)
[9] is violated, which some believe to be a funda-
mental principle of quantum gravity: A parametri-
cally long axion direction emerges.

2. Even taking for granted that all the gauge theory
parameters assume the values required for “race-
tracking”, it is not obvious that eq. (4) is even the
correct form of the IR superpotential [10].

We will outline these points in the following.

III. THE WGC AND AXIONS

It is believed that some form of the weak gravity con-

jecture (WGC) [9] holds in all consistent effective field
theories that arise as the low energy limit of a genuine
string compactification. The (“electric”) statement in its
original form is that for a U(1) gauge theory there should
exist a particle of charge q and mass m that satisfies

q & m, (5)

in Planck units. If satisfied, extremal black holes can
decay by emitting this particle. An early strong form of
this conjecture is that this particle has to be the lightest
one in the charged spectrum. While strictly speaking
counter-examples exist [11], to the best our knowledge
there does not exist a simple and controlled example that
violates the statement parametrically [38].
In string theory, the gauge theory statement can be

extended via T-duality to p-form potentials coupled to
(p−1)-branes. For axions (0-forms) coupled to instantons
((−1)-branes), the statement is that there should exist
an instanton with “charge” q/f and euclidean instanton
action SE that satisfies

q/f & SE . (6)

Here, f is the axion decay constant.
We refer the reader to [12–17] and references therein

for a subset of the original literature on the extension of
the WGC to axions and instantons.
Since a controlled instanton expansion (i.e. in the “di-

lute instanton gas” approximation) requires SE & 1, one
concludes that the axion potential contains a harmonic,

V (φ) ∼ e−SE (1− cos(qφ/f)) + ... , (7)

that varies on sub-Planckian distances in field space. If
only the weakest form of the WGC holds, this harmonic
could be induced by an instanton that gives negligible
contributions to the potential [13, 15], and natural infla-
tion would not be very much constrained. However, if a
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sufficiently strong form holds, natural inflation is ruled
out for the case of a single axion. As explained in ref.
[15], the natural generalization of the WGC to multiple
U(1)’s [18] also forbids axion decay constant enhance-
ment using many-axions as in N-flation [11, 14, 19] or
alignment mechanisms [20, 21].

In the following we shall extrapolate the statement
of the WGC to axions that obtain a periodic potential
through any non-perturbative effects (not necessarily in-
stantons). We will work with the requirement that there
should always exist a non-perturbative effect that induces
an axion-potential that varies on sub-Planckian distances
in field space. A strong form will be that this effect is
non-negligible.

IV. THE WGC AND DE SITTER UPLIFTS

The reason why we expect the WGC to constrain de
Sitter uplifts is that the volume modulus is always accom-
panied by an axionic partner which in type IIB string
theory can be thought of as the integral of the RR 4-
form over the 4-cycle associated to the volume modu-
lus. Given a stabilization mechanism for the volume we
can hence inquire about the axion potential and whether
or not it is consistent with the WGC. For instance, for
the KKLT scenario with a single gaugino condensate
W = W0 +A exp(−aT ), one can easily verify[39] that

f/Mp ∼ (aRe(T ))−1 , (8)

up to order 1 coefficients. Hence, if higher order non-
perturbative corrections can be ignored we necessarily
have aRe(T ) > 1 such that f is sub Planckian [40].

We will focus on the racetrack stabilization [8]. The
Kähler potential is given in (2) and the superpotential is
given in (4) with

a =
2π

N1
, b =

2π

N2
. (9)

It is usually argued that this arises from gaugino conden-
sation for the product gauge group SU(N1) × SU(N2)
with gauge coupling set by the modulus T (and no mass-
less matter is assumed) [22]. W.l.o.g in the following we
take b ≥ a, i.e. N1 ≥ N2.

Splitting the real and imaginary (axionic) parts of T =
σ + iφ, the scalar potential V (σ, φ) reads [23]

V0(σ) + V1(σ) cos

(

2π

N1
φ− α

)

+ V2(σ) cos

(

2π

N2
φ− β

)

+ V1−2(σ) cos

(

2π(N2 −N1)

N1N2
φ− γ

)

, (10)

with α ≡ arg(AW0), β ≡ arg(BW0), γ ≡ arg(AB) and

coefficient functions

V0(σ) =
1

2σ2

( 2π

N1
|A|2(1 +

2πσ

3N1
)e

−
4π
N1

σ
+

2π

N2
|B|2(1 +

2πσ

3N2
)e−

4π
N2

σ
)

, (11)

V1(σ) =
|AW0|

2σ2

2π

N1
e−

2π
N1

σ , (12)

V2(σ) =
|BW0|

2σ2

2π

N2
e−

2π
N2

σ , (13)

V1−2(σ) =
|AB|

2σ2

( 2π

N1
+

2π

N2
+

8π2σ

3N2N1

)

e−( 2π
N1

+ 2π
N2

)σ .

(14)

There exist three distinct harmonics for the axion φ with
coefficient functions V1, V2 and V1−2. The last one has
periodicity N1N2

N1−N2
and if dominant leads to an effective

axion decay constant

fφ/MP ∼
N1N2

N1 −N2
·
1

σ
. (15)

This is super-Planckian when N ≡ N1 ≈ N2 and N <
σ < N2, a regime where the fractional instanton expan-
sion would naively seem to be under control. In order
for this harmonic to be sub-dominant all the way down
to the breakdown of the fractional instanton expansion

at σ ∼ a−1 (i.e. V1−2

!
≤ max(V1, V2)) we would have to

demand that

|W0| & min(|A|, |B|) . (16)

In this case, the strong form of the WGC would hold all
the way down to σ ∼ a−1. However, we would find such
a strict bound on the flux number W0 very surprising, in
particular because it seems that no such bound can be
derived for the single gauge group KKLT model. More-
over, explicit studies of the classical flux superpotential
indicate that the genericity arguments for a small W0 are
valid [24].
The virtue of this model would be that when the pa-

rameters A,B,W0 of the model are tuned to satisfy

−W0 = A

(

−
N2A

N1B

)N2/(N1−N2)

+B

(

−
N2A

N1B

)N1/(N1−N2)

,

(17)
there exists a SUSY Minkowski minimum at

2πT0 ≡ 2π(σ0 + iφ0) =
N1N2

(N1 −N2)
log

(

−
BN1

AN2

)

, (18)

and the mass of the volume modulus is finite (a corre-
sponding minimum exists also when the relation (17) is
detuned, but the vacuum will be of Anti-de-Sitter type.).
In order for this minimum to lie at positive volume it is
required that |Bb| > |Aa|.
If the tuning of eq. (17) holds, one has that |W0| ≤

|Ae−aσ0 |+ |Be−bσ0 |. It then follows that the WGC-type
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bound (16) cannot possibly be satisfied unless e−aσ0 &
O(1). In other words, the Minkowski racetrack minimum
would lie outside the (naive) validity of the controlled
fractional instanton expansion[41]. As a consequence, if
the WGC holds, the racetrack minimum cannot be used
as a controlled starting point for uplifting to de Sitter
space, i.e. there is no parametricallly controlled de Sitter
uplift within the racetrack scheme.
In the following section we will argue for ways to cure

the conflict with the WGC in a different (from eq. (16)),
and perhaps more drastic way.

V. DISCUSSION

We have explained how racetrack schemes of moduli
stabilization violate strong forms of the WGC. Let us first
comment on the implications assuming a strong form of
the WGC must always hold in string theory: Together
with the results of ref. [6], one may arrive at the suspi-
cion that the KKLT construction does not result in de
Sitter vacua even when the scheme of non-perturbative
volume stabilization is extended beyond a single non-
perturbative effect. In particular, adding anti-D3 branes
to the SUSY KKLT vacua would lead to meta-stable non-
SUSY AdS vacua at best. More speculatively, string the-
ory might not harbor parametrically controlled de Sitter
vacua in its weakly coupled corners [25, 26].
We now present an alternative line of argument that

could lead to compliance with the WGC, without having
to impose eq. (16). To this end, let us critically review
the derivation of (4). It is assumed that in the IR we
are left with an N = 1 SUSY SU(N1) × SU(N2) pure
Yang-Mills theory with (UV-)gauge coupling set by the
volume modulus T . The Lagrangian is

L =
1

32π
Im

∫

d2θ

2
∑

a=1

τaWα
a Wa α

+

∫

d4θ K(T+T )+... ,

(19)
with holomorphic gauge couplings τa = −iT , gaugino
superfield Wa,α = −iλa,α + O(θ) and Kähler potential

K(T, T ) ≡ K(T + T ) (and we have omitted higher-
derivative corrections).
Classically, this theory enjoys a U(1)R symmetry that

acts as

λ1,2 −→ eiαλ1,2 , χT −→ e−iαχT , (20)

where χT is the superpartner of the Kähler modulus T .
This U(1)R is anomalous and the action transforms

according to

τa −→ τa −Na
α

π
. (21)

This is a symmetry only if

α =
n

g
π , n = 0, ..., 2g − 1 , (22)

where g ≡ gcd(N1, N2) is the greatest common divisor
of N1 and N2. The U(1)R symmetry is thus broken to
its discrete subgroup Z2g by gauge instantons. Clearly,
unless N1 = N2 it is not possible to cancel the anomaly
through a shift in T as is possible for a single gauge group
or two (or more) gauge groups with identical dual Cox-
eter numbers (i.e. equal ranks for SU(N) groups).
As a result, it does not seem to be possible to uniquely

determine the IR superpotential using holomorphy and
demanding the correct R-charge of the superpotential.
As has been pointed out by [10] arguments for the super-
potential being the sum of two exponential terms treat
T as a background field.
In terms of the renormalization group (RG) invariant

IR scales Λ3Na

a ≡ µ3N1 exp(2πiτa(µ)), the transforma-
tion (21) amounts to assigning R-charge 2Na to the IR
scales. Specifying to N1 = N2 + 1, the most general
IR-superpotential that has the correct R-charge can be
written as

W (λ, u) = λ · c(u) , (23)

where λ ≡
Λ

3N1
1

Λ
3N2
2

, u ≡
(Λ

3N2
2 )N1

(Λ
3N1
1 )N2

, and c(u) is an arbitrary

(multivalued) holomorphic function.
By taking the limits Λ3Na

a −→ 0, and matching with
the single gauge group results, one concludes

c(u −→ 0) = N1u
1

N1 , c(u −→ ∞) = N2u
1

N2 . (24)

These are also the limits in which larger discrete sub-
goups Z2Na

⊂ U(1)R are restored. The racetrack super-
potential of eq. (4) corresponds to

crt(u) = N1u
1

N1 +N2u
1

N2 , (25)

and is by far not the unique function that satisfies (24).
In the language of the variable u, the enhancement

of the axion field range of the modulus T that occurs
with the racetrack proposal corresponds to the function
c(u) being single-valued holomorphic only in the variable

u
1

N1N2 . Determining the function c(u) (or at least its
monodromy around the origin), would be an important
step toward deciding the viability of racetrack models
and KKLT de Sitter uplift mechanisms. To us there are
the following realistic possibilities:

1. The IR superpotential of SU(N1) × SU(N2) in
the presence of a perturbatively massless dilaton
(Kähler modulus) does not reduce to the race-
track form of eq. (4). Rather, the function c is

holomorphic[42] in u
1

O(N) . In this case, all phe-
nomenological models based on it would have to be
revisited[43].

2. The field theory superpotential is as in eq. (4), but
there are gravitational corrections (such as gravi-
tational instantons) that are non-negligible. Impli-
cations for racetrack model building could be very
much model dependent.
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3. The IR superpotential is essentially given by the
racetrack proposal, but small W0 is not attainable
when the gauge sectors are arranged as required
(see eq. (16)).

4. Only the weakest forms of the weak gravity conjec-
ture hold.

Whichever holds, we observe an unexpected relation be-
tween the ability to realize parametrically large axion
decay constants and parametrically controlled de Sitter
vacua. Success or failure to achieve the former, possibly
determines the viability of the latter.
We leave a more detailed analysis of the IR superpo-

tential of the racetrack scheme for future work.
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