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Pocket Formulae for Non-Abelian Discrete Anomaly Freedom
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We show that the discrete anomaly constraints governing popular non-Abelian symmetries of use
in (e.g.) flavoured, supersymmetric, and dark matter model building typically subdivide into two
classes differentiated by the simple restrictions they impose on the number of fields transforming
under certain irreducible representations of the relevant groups. These constraints lead us both to
generic conclusions for common Beyond-the-Standard-Model constructions (including rather pow-
erful statements for Grand Unified theories) as well as to simplified formulae that can be rapidly
applied to determine whether a given field and symmetry content suffers from gauge and gravita-
tional anomalies.

I. INTRODUCTION

Discrete symmetries are ubiquitous in Beyond-the-
Standard-Model (BSM) constructions. Not only are they
utilized ad-hoc to prevent unwanted couplings, as is of-
ten required to (e.g.) stabilize a dark matter candidate,
they also have more purposeful implementations; non-
Abelian discrete symmetries can explain observed pat-
terns of fermionic mass and mixing (see e.g. [1, 2]),
control models of inflation [3], and may even be natu-
rally realized as interchange symmetries of fixed-points
in orbifold compactifications [4, 5].
Regardless of motivation, imposing a discrete symme-

try on a fixed Lagrangian practically amounts to manip-
ulating a global symmetry — no additional gauge bosons
are present. However, it has long been argued that global
discrete symmetries must be gauged in the ultra-violet
(UV) in order to respect quantum gravity (wormhole) ef-
fects [6, 7], and therefore models employing discrete sym-
metries should be anomaly free. Constraints for Abelian
discrete symmetries were first obtained in [8–10] by as-
suming that cyclic ZN groups (with N the order of the
group) originate from the breakdown of a gauged U(1).
Analogous considerations were made for non-Abelian dis-
crete symmetries in [11, 12]. These studies have since
been generalized [13–16] 1 with a path-integral approach
[17, 18], with the conclusion that a fully massless spec-
trum in the IR is only subject to mixed non-Abelian
gauge (G) and gravitational (G) anomaly constraints of
the form:

D −G−G, D − G − G (1)

where D can be either an Abelian or non-Abelian dis-
crete symmetry. Triangles like [D]

2
U(1) and [U(1)]

2
D

do not provide concrete information in the IR because
the corresponding discrete charge α of any group ele-
ment transformation is always defined modulo N . One
can always rescale the hypercharges of the U(1) symme-
try groups to satisfy this modulo constraint. Also, cu-
bic discrete anomalies ([D]

3
) can be avoided by arguing

∗ james.talbert@desy.de
1 We largely follow the notation of [16] in the equations that follow.

charge fractionalization in the massive particle spectrum
[8–10, 19],2 and indeed do not even appear in the path
integral approach [14, 20].
In this note we extend [13–16] by showing that, af-

ter reorganizing discrete anomaly constraints into com-
pact multiplicative forms, popular non-Abelian discrete
symmetries are generally subject to one of two classes of
constraints distinguished by the restriction they impose
on the number of fields transforming in certain irreps of
G and D. This leads us to a host of generic conclu-
sions that are relevant in many BSM contexts, especially
Grand Unified theories, and which at the very least yield
simplified ‘field equations’ that can be rapidly applied to
concrete models.
The paper develops as follows: in Section II we review

the path-integral formalism developed in [13–16], extend
it to obtain the new multiplicative basis, and then spec-
ify the resulting anomaly constraints to explicit discrete
symmetry groups. Then in Section III we place said con-
straints into two classes, each characterized by a ‘field
equation,’ before deriving generic conclusions and sim-
plified formulae relevant to common model building sce-
narios, examples of which we explore in Section IV. We
conclude in Section V.

II. DISCRETE ANOMALY CONSTRAINTS

Consider a set of Dirac fermions Ψ living in the irre-
ducible representations (irreps) r and d of a non-Abelian
gauge G and non-Abelian discrete group D, respectively.
Then the unitary representation of a discrete transfor-
mation associated to the element g ∈ D is given by

Ud(g) = eiαd(g) = ei 2π τd(g)/Ng (2)

in terms of a charge αd defined by Ng, the order of the
element g, and a charge matrix τd(g) which has inte-
ger eigenvalues. In general, chiral transformations of the

2 Taking the charge fractionalization approach, anomalies follow-
ing from cubic constraints can give valuable information about
the ultimate order required of the D groups for the model to be
completely consistent. I thank G.G. Ross for this comment.
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fermions Ψ under Ud(g) source a Jacobian in the path
integral measure of a quantum field theory [17, 18]:

DΨDΨ̄ −→
U

J−2(α(g))DΨDΨ̄ (3)

where, if the Jacobian is found to be non-trivial (J 6= 1),
the symmetry D is anomalous.
There are both gauge G and gravitational G contribu-

tions to the anomaly [21–23], but we focus on the former
for the moment. Consider the Jacobian for transforma-
tions on left-handed fields, ψL → ψ′

L = eiαd(g)ψL:

J−2
G = exp

(

i

∫

d4x
1

16π2
tr
[

αd(g)F
µν F̃µν

]

)

(4)

where the trace runs over all internal indices and the
field strength tensor embeds the generators t of the asso-
ciated gauge group G, Fµν = F a

µνta(r). Its dual is given

by F̃µν = 1
2 ǫ

µνρσFρσ. Recalling the index theorems of
[21, 22] and defining the Dynkin index of the gauge rep-
resentation r by

l(r)δab = tr [ta(r)tb(r)] (5)

we define the function p as

p ≡

∫

d4x
1

64π2
ǫµνρσF a

µνF
a
ρσ ∈ Z (6)

(with Z denoting ‘integers’) and then observe that (4)
reduces to

J−2
G = exp

(

i
2π

Ng
· tr [τd(g)] · 2l(r) · p

)

(7)

such that the transformation Ud(g) is free of D−G−G
anomalies if and only if [13–16]:

∑

f

tr [τd(f)(g)] · l(r(f))
!
= 0 mod

Ng

2
(8)

where the notation in (8) implies that the summation is
only over chiral fermions f living in representations that
are non-trivial with respect to both G and D. Here it is
clear that tr [τd(f)(g)] mimics a ZNg

charge that can be
written in terms of a (multi-valued) logarithm:

tr [τd(f)(g)] = Ng
ln det [Ud(f)(g)]

2πi
(9)

Were we to repeat the above analysis for D − G − G tri-
angles, we would find the following constraint [14, 15]:

∑

f

tr [τd(f)(g)]
!
= 0 mod

Ng

2
(10)

where now it is understood that the summation is over
all chiral fermions non-trivial in D, irrespective of G.3

We conclude that gauge and gravitationally anomalous
transformations correspond to those with det [Ud(f)(g)] 6=
1, a condition that must be checked for all g ∈ D.

3 Note that in both (8) and (10) additional gauge symmetry factors
are left implicit.

A. The Multiplicative Approach

As observed in [16], one can rewrite the Jacobian us-
ing (9) to find multiplicative anomaly constraints (here
written only for D −G−G):

∏

f

det [Ud(f)(g)]
2 l(r(f)) !

= 1 (11)

Like its additive equivalent (8), (11) must be checked for
every element g ∈ D. At least two simplifying approaches
exist in the literature to do so:

1. Imagine that D is generated by two elements
{h1, h2} ∈ D, and that we have found that the
Abelian transformations represented by {h1, h2}
are anomaly free. As any other element g ∈ D can
be seen as a product of h1 and/or h2, this implies
that g is itself anomaly free. Therefore, calculat-
ing (8) for each generator hi of D is sufficient to
determine anomaly freedom [13, 14].

2. Finite groups are also subdivided into conjugacy
classes Ci, such that two elements g1,2 belong to
the same Ci if and only if they are related by con-
jugation: gg1g

−1 = g2 for an element g ∈ D. Since
det(ggig

−1) = det(gi), the determinant is constant
over a conjugacy class and it is therefore sufficient
to calculate (8) for each Ci [15].

While these arguments were made in the context of
(8), they are also true for (11). That is, the constraints

∏

f

det [Ud(f)(hi)]
(2 l(r(f)), 2) !

= 1 (12)

∏

f

det [Ud(f)(Ci)]
(2 l(r(f)), 2) !

= 1 (13)

represent equivalent approaches to determining D −
(G,G)− (G,G) anomaly freedom. In either case, one re-
quires the determinants over either h or C for each irrep
of D.
We now observe that the left-hand-sides (LHS) of (12)-

(13) will always be composed of a finite number of basis
elements, generically denoted xai

i , with both x and a im-

plicitly depending on the irrep d
(f), and a also depending

on the gauge representations r(f). That is,

xa1
1 · xa2

2 ...x
aM−1

M−1 · xaM

M
!
= 1 (14)

where M represents the number of irreps of D.4 Restor-
ing the dependence on the irreps, we derive alternative

4 The determinants det
[

U
d(f) (hi)

]

and det
[

U
d(f) (Ci)

]

are one-
dimensional and hence the basis elements xi can always be
rescaled to a common multiple x, xsi

i = x, such that

x
a1
1 · x

a2
2 ...x

aM−1

M−1 · x
aM
M ≡ x

A(d,r) (15)

from which one can rederive the constraints catalogued in [15] by
identifying the order N of the basis element x and scale factors
si required to obtain A(d,r).
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∆(3N2), N/3 ∈ Z

1k,l 3[k][l]

det(b) ωk
3 1

det(a) ωl
3 1

det(a′) ωl
3 1

∆(3N2), N/3 /∈ Z

1k 3[k][l]

det(b) ωk
3 1

det(a) 1 1

det(a′) 1 1

DN , N odd

1+ 1− 2k

det(b) 1 -1 -1

det(a) 1 1 1

DN , N even

1++ 1+− 1−+ 1−− 2k

det(a) 1 1 -1 -1 -1

det(ab) 1 -1 1 -1 -1

TABLE I. TOP: The determinants over the generators and
irreps of ∆(3N2). BOTTOM: The same for DN .

anomaly constraints from (14):

B
(G,G)
(d,r) ≡

∑

d(f)

a
(G,G)

(d(f),r(f))
lnxd(f)

!
= 0 mod 2πi (16)

The functions a
(G,G)

(d(f),r(f))
depend on the number of fields

transforming in irreps of G and D as well as any addi-
tional gauge symmetry factors, and will obviously differ
between D − G/G − G/G calculations. The basis ele-
ments xd are fixed numbers that can be extracted from
any finite group. Indeed, in (16) the dependence on the
(normalized) charge of any fermion under D is fully fac-
torized, a fact we will exploit in the next section.
We now perform explicit extractions of the basis loga-

rithms lnxd from the DN and ∆(3N2) series while leav-
ing other groups to Table II.5

1. DN

The dihedral groups DN describe the symmetries
of N -sided regular polygons and are composed of ZN

cyclic rotations and Z2 reflections; they are isomorphic
to ZN ⋊ Z2. DN is order 2N and is generated by two
elements. For odd N the group has (N +3)/2 conjugacy
classes and irreps, whereas for even N there are 3+N/2.
Dihedral groups have applications in flavoured [24–27],
inflationary [3], and dark matter [28] model-building.
From Table I one observes that for even N we ob-
tain {(d, lnxd/(πi))}a = {(1−+, 1), (1−−, 1), (2k, 1)}
under transformations of the generator a and
{(d, lnxd/(πi))}ab = {(1+−, 1), (1−−, 1), (2k, 1)}
under ab. In both cases k ∈ {1, (N − 2)/2}. For odd N
we are only concerned with transformations under the
generator b, {(d, lnxd/(πi))}b = {(1−, 1), (2k, 1)} with
k ∈ {1, (N − 1)/2}.

5 In what follows we use the catalogue in [15] and maintain their
notation on irreps.

2. ∆(3N2)

The series ∆(3N2) is known (along with ∆(6N2)) to
have realistic applications in flavoured model building
[29–42]. The group is isomorphic to (ZN × Z ′

N ) ⋊ Z3

and can be generated by the three elements {a, a′, b}
associated to ZN,N ′,3 respectively. The group is order
3N2, and when N/3 /∈ Z there are three singlet and
(N2 − 1)/3 three-dimensional representations, whereas
whenN/3 ∈ Z there are nine singlet and (N2−3)/3 three-
dimensional representations. The determinants over the
generators in these irreps are given in Table I. Note that
the tetrahedral group A4, which is useful in dark matter
[43] and flavoured [44–47] model building, is isomorphic
to ∆(12).
For N/3 ∈ Z there are potentially anomalous trans-

formations under all three generators a, a′, and b when
fermions sit in the singlet representations. However,
one notices that there are only two independent pa-
rameter sets: {(d, lnxd/(πi))}a = {(1k,l, 2l/3)} and
{(d, lnxd/(πi))}b = {(1k,l, 2k/3)}. Whenever N/3 /∈ Z,
the only irrep that contributes is 1k for k 6= 0, yielding
{(d, lnxd/(πi))}b = {(1k, 2k/3)}.

III. FIELD EQUATIONS

Consider the case where a non-Abelian discrete sym-
metry is appended to a single non-Abelian gauge group,
as occurs in many SU(5) and SO(10) Grand Unified
models. Respectively denoting the number of fields si-
multaneously in the r and d irreps as φ(d,r), theD−G−G
anomaly constraint from (16) then becomes:

BG
(d,r) =

∑

d

∑

r

2 l(r) ·
[

φ(d,r)
]

· lnxd (17)

≡
∑

d

KG
1 (φd) · lnxd (18)

where we have defined the field kernel KG
1 (φd) for a sin-

gle gauge factor and left its dependence on r implicit.6

The constraint becomes more complex when two gauge
symmetries are considered. Explicitly writing the gauge
symmetry factor, r̂ ≡ dim(r), the field kernel becomes

KG
2 (φd) =

∑

i

2 l(ri) ·





∑

j

r̂j · φ(d,ri,rj)





with the subscripts on the parameters φ denoting the
relevant representations under all three symmetries. It is
understood that the anomaly constraint from i↔ j must

6 Note that sums over f are now gone, as implied by the introduc-
tion of the parameters φ(d,r) which are by definition ∈ Z

+ (the
positive integers including zero).
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Basis Logarithms

Group {(d, ln xd/(πi))}

DN∈odd ⋆ (1−, 1), (2k, 1)

DN∈even ⋆
(1−+, 1), (1−−, 1), (2k, 1)

(1+−, 1), (1−−, 1), (2k, 1)

S3 ⋆ (1′, 1), (2, 1)

S4 ⋆ (1′, 1), (2, 1), (3, 1)

A4 ⋆⋆ (1′, 2/3), (1′′,−2/3)

AN≥5 (null, 0)

QN,N/2∈even ⋆
(1−+, 1), (1−−, 1), (2ke

, 1)

(1+−, 1), (1−−, 1), (2ke
, 1)

QN,N/2∈odd ⋆
(1+−, 1/2), (1−+,−1/2), (1−−, 1), (2ke

, 1)

◦ (1+−, 1), (1−+, 1)

QD2N ⋆
(1+−, 1), (1−−, 1), (2ko

, 1), (2ke
, 1)

(1−+, 1), (1−−, 1), (2ko
, 1)

TN ⋆⋆ (11, 2/3), (12,−2/3)

T ′ ⋆⋆ (1′, 2/3), (1′′,−2/3), (2′,−2/3), (2′′, 2/3)

∆(3N2)N/3∈Z⋆⋆
(1k,l, 2k/3)

(1k,l, 2l/3)

∆(3N2)N/3/∈Z ⋆⋆ (1k, 2k/3)

∆(6N2)3N∈Z ⋆ (11, 1), (2n, 1), (31k, 1), (6[k][l], 1)

∆(6N2)3N /∈Z ⋆ (11, 1), (2, 1), (31k, 1), (6[k][l], 1)

Σ(2N2) ⋆
◦ (1−n, 1), (2p,q, 1)

(1±n, 2n/N), (2p,q, 2(p+ q)/N)

Σ(3N3) ⋆⋆
◦ (1k,l, 2k/3)

(1k,l, 2l/N), (3[l][m][n], 2(l +m+ n)/N)

TABLE II. Logarithms of basis elements to be employed in
(16) for various finite groups. For groups occupying two rows,
both anomaly constraints implied by the parameter sets must
be met simultaneously. One/two star(s) (⋆) indicates that
the group is subject to D(1)/(2) in (20)-(21). NOTES: a) The

subscript ‘e/o’ indicate ‘even/odd’ b) For ∆(3N2), (k, l) ∈
{0, 1, 2} c) For DN∈(e,o), k ∈ {1...(N/2−1, (N−1)/2)} d) For

∆(6N2), n ∈ {1...4} and k ∈ {1...N − 1}. For 3N (∈, /∈)Z,
there are (N(N − 3)/6, (N2 − 3N + 2)/6) sextets. e) For
Σ(2N2), n ∈ {0...N − 1} and there are N(N − 1)/2 doublets
f) For Σ(3N3) there are 3N singlets and N(N2−1)/3 triplets.

be satisfied simultaneously and that ri=1 6= rj=1 = 1.
Continuing, the number of subscripts on φ, sums and
symmetry factors within the square brackets, and inde-
pendent discrete anomaly constraints will increase by one
for each additional gauge symmetry considered.

On the other hand, the structure of the analogous D−

G − G field kernel is universal:

KG(φd) =
∑

{r}

2

[

m
∏

i=1

r̂i

]

φ(d,{r}) (19)

where m denotes the number of symmetries Gi in the
theory and the sum is over the set of unique gauge
symmetry assignments {r} ∼ (r1, r2, ...rm), where (e.g.)
(1,2,3, ...) 6= (2,1,3, ...) and so on.
We now make the observation that the non-Abelian

groups catalogued in Table II are generically subject to
one of two classes of constraints distinguished by the fol-
lowing ‘field equations’:

D(1) :
∑

d

K(G,G)(φd)
!
= 2n, n ∈ Z

± (20)

D(2) :
∑

d+

K(G,G)(φd+)
!
= 3n+

∑

d−

K(G,G)(φd−
) (21)

where the d± notation indicates irreps with positive or
negative lnxd, and where free parameters in these ba-
sis logarithms (like k or l for ∆(3N2)) are also implied
in the field kernels. In Table II we indicate symmetries
governed by D(1) and D(2) with one or two stars (⋆), re-
spectively. Note that satisfying (20)-(21) is necessary but
not sufficient to determine complete anomaly freedom for
some groups, as they only have one independent discrete
transformation (labeled by a (◦) in Table II) subject to
(20) or (21).

A. Simplified Constraints

We can now derive a handful of powerful consequences
from (20)-(21) relevant to realistic BSM scenarios:

1. Any model subject only to D(1) is free of gravita-

tional anomalies.7

2. Any model subject only to D(1) is free of gauge
anomalies if

l(r) ∈ Z
+ ∀ f (22)

This is the case for (e.g.) SO(10), E6, E7, E8, F4,
and G2 theories.

3. Points 1 and 2 are consistent with, and provide
concrete examples of, those drawn in [16] regarding
anomaly freedom for non-perfect finite groups, and
(12)-(13) further imply that a condition for such
groups to be generically anomaly free is, in addition
to (22) for gauge anomalies, given by

(det [hi(dj)])
2 = 1 ∀ {i, j} (23)

or equivalently for all Ci(dj).

7 This conclusion is consistent with the observation in [15] that
[G]2 D anomalies are trivially satisfied by O(2) discrete transfor-
mations.
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4. For the special case of SU(5) Grand Unified con-
structions subject to D(1), fermions in the 5 and
10 (and conjugates) are often the only exceptions
to (22). Then the sum of all such fermions in irreps
d must itself be even,8 9

∑

d

φ(d,5) + 3φ(d,10)
!
= 2n (24)

It is easy to extend this to include additional gauge
irreps.

5. For models subject to D(1) and employing multiple
gauge symmetries G, but possibly non-integer l(r),
anomaly freedom is only determined once the rep-
resentations ri under Gi are specified. As a spe-
cial but important case, consider an extension to
the SM with all chiral fields transforming under
the trivial or (anti-)fundamental irreps of the SM
gauge groups, as is often the case in BSM flavour
and dark matter models. Anomaly freedom then
requires

∑

d

[

φ(d,3,1) + 2 · φ(d,3,2)
] !
= 2n (25)

∑

d

[

φ(d,2,1) + 3 · φ(d,2,3)
] !
= 2n (26)

sourced from [SU(3)]
2
D(1) and [SU(2)]

2
D(1) tri-

angles, respectively. Note that in the former case
the restriction actually reduces to

∑

d

φ(d,3,1)
!
= 2n (27)

which normally amounts to counting the number of
singlet quarks non-trivially charged under D. Simi-
lar considerations can be made for Pati-Salam con-
structions.

6. Any model subject to D(2) and employing one G

suffers from gravitational anomalies if 10

∑

d+

∑

r

r̂ · φ(d+,r)
!
=

3

2
n+

∑

d−

∑

r

r̂ · φ(d−,r) (28)

is not satisfied, and from gauge anomalies if

∑

d+

∑

r

l(r) ·φ(d+,r)
!
=

3

2
n+

∑

d−

∑

r

l(r) ·φ(d−,r) (29)

is not satisfied. For the TN and A4 groups there is
only one d± irrep each.

8 Our convention is such that l(F) is 1
2
and 1 for fundamentals F

in SU(N) and SO(N) groups respectively [48, 49].
9 Fields in conjugate gauge irreps r̄ are counted within φ(d,r1,...)

such that, e.g., φ(d,5) ≡ φ(d,5) + φ(d,5̄).
10 Not including free parameters like k or l for ∆(3N2)...

7. Any model subject to D(2) and employing multiple
symmetries G suffers from gravitational anomalies
if

∑

d+

∑

{r}

[

m
∏

i=1

r̂i

]

· φ(d+,{r})
!
=

3

2
n

+
∑

d−

∑

{r}

[

m
∏

i=1

r̂i

]

· φ(d−,{r}) (30)

As an obvious point, it should be clear that the
sums of neither or both d± field kernels must be a
multiple of three, a fact that in some instances may
be easier to exploit.

8. For models employing multiple G and subject
to D(2) it is generally easier to determine gauge
anomaly freedom by expanding (21) for the par-
ticular discrete symmetry at hand, which normally
has (at most) a handful of relevant d. The structure
of the field kernels will mimic the LHS of (25)-(26),
with d → d±, for the special case with SM gauge
structure and fundamental or trivial irreps.

Of course, if anomalies are encountered, it may still
be possible to cancel them with the discrete version of
the Green-Schwarz Mechanism [20, 50, 51], although the
phenomenology of the model may also be altered [16]. In
the event one also wishes to preserve MSSM type gauge
coupling unification, there is the further requirement of
‘anomaly universality’ [51–53] which forces (16) to be
equal for all gauge groups Gi in the theory, e.g.

B
(Z,SU(3))
(d,r) = B

(Z,SU(2))
(d,r) = ρ mod 2πi (31)

for SM constructions (with Z representing an indepen-
dent Abelian transform of the larger non-Abelian group
D and ρ possibly non-zero). Hence anomaly universality
forces the LHS of, e.g., (25)-(26) to both be equal mod-
ulo two. Similar constraints for other simplified formulae
also hold.

IV. APPLICATIONS

We apply the constraints found in Section III A to a
host of models representative of common BSM symme-
try environments. We present only the field and sym-
metry content of the models required to calculate the
non-Abelian discrete anomalies, and in each case we only
probe the ‘easiest’ simplified constraints from Section
IIIA until we determine (if) the model is anomalous.
We do not address the possibility that effective theories
may receive anomaly contributions from additional light
states in the UV, thereby changing the low-energy con-
clusions.
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(1) Lµ Lτ lcµ lcτ

SU(2) 2 2 1 1

A4 1′ 1′′ 1′′ 1′

(2) (Dµ, Dτ )

SU(2) 2

D4 2

(3) tc

SU(3) 3̄

∆(6N2) 11

(4) F

SU(5) 5̄

S4 3

(5) H24 Λ24 X5 X6 X8 X9 X10 Z1,2 Z3 Υi Υj

SU(5) 24 24 5̄ 5 5 5̄ 5 24 24 24 24

A4 1′ 1′ 1′′ 1′ 1′′ 1′ 1′ 1′′ 1′ 1′ 1′′

TABLE III. (1): The relevant field and symmetry content
from the A4 dark matter model of [43]. (2): The same for
the D4 flavour model of [27]. (3): The same for the ∆(6N2)
quark flavour model of [37]. (4): The same for the S4 GUT
model of [54]. (5): The same for the A4 GUT model of [55].
Here i = {1, 3, 5, 7} and j = {2, 4, 6, 8}.

A. A4 Dark Matter Model of [43]

All chiral fermions in this model are in the trivial or
fundamental irreps of (at least one of) the SM gauge
groups, so (25)-(26) hold. We observe from Table III
that φ(1′,2,1) = φ(1′′,2,1) = φ(1′′,1,1) = φ(1′,1,1) = 1
and zero for all other entries. This gives field kernels
of K(G,G)(φd+) = K(G,G)(φd−

) trivially satisfying (21)
for both gauge and gravitational constraints. The model
is therefore anomaly free.

B. D4 Leptonic Flavour Model of [27]

This model also places all chiral fermions in the trivial
or fundamental irreps of (at least one of) the SM gauge
groups. From Table III we find that the SU(2)L dou-
blets provide the only anomalous contributions to the
D4 flavour model, giving φ(2,2,1) = 1. It is clear that
(26) can never be realized and thus the model suffers

from [SU(2)]
2
D(1) anomalies, a conclusion consistent

with [14].

C. ∆(6N2) Quark Flavour Model of [37]

We take the symmetry assignments of additional
flavons and driving superfields to be trivial under the SM
gauge group, as is standard. However, from Table III we
immediately see that φ(11,3,1) = 1 and that by virtue of

(27) the model suffers from [SU(3)]
2
D(1) anomalies.

D. SU(5)× S4 Grand Unified Model of [54]

We count that φ(3,5) = 1 and zero for all other param-
eters relevant to gauge constraints, so (24) can never be

realized and hence the model suffers from [SU(5)]
2
D(1)

anomalies. Note that this model is extra-dimensional,
with the field F presented in Table III living on the brane.

E. SU(5) × A4 Grand Unified Model of [55]

The relevant field content of [55] sits in both the funda-
mentals and adjoints of SU(5): φ(1′,5) = 3, φ(1′′,5) = 2,
φ(1′,24) = 7, and φ(1′′,24) = 6. The quickest Type-2 con-
straint comes from (28), which gives:

24 · 7 + 5 · 3 6=
3

2
n+ 5 · 2 + 24 · 6 (32)

implying that the model suffers from gravitational
anomalies.

V. CONCLUSION

We have shown that models employing non-Abelian
discrete symmetries are typically subject to one of two
classes of anomaly constraint, the first restricting the
sum of fields charged under G and D to be even, and
the second restricting them to be a multiple of three,
upon accounting for all relevant gauge symmetry factors.
These simple equations have powerful implications in re-
alistic BSM environments, especially Grand Unified sce-
narios. Of course, specificity is always limited by scope,
and hence it would be interesting to study the deriva-
tives of our generic formulae when additional theoretical
or phenomenological considerations are imposed on the
gauge and/or discrete symmetry structure of a theory;
it is likely that in specific model building environments
(e.g. dark matter) even more powerful constraints on
acceptable field contents arise.
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