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Dark matter in the cosmological concordance model is parameterised by a single number, describ-
ing the covariantly conserved energy density of a non-relativistic fluid. Here we test this assumption
in a model-independent and conservative way by considering the possibility that, at any point during
the cosmological evolution, dark matter may be converted into a non-interacting form of radiation.
This scenario encompasses, but is more general than, the cases where dark matter decays or anni-
hilates into these states. We show that observations of the cosmic microwave background allow to
strongly constrain this scenario for any conversion time after big bang nucleosynthesis. We discuss
in detail, both from a Bayesian and frequentist point of view, in which sense adding large-scale struc-
ture observations may even provide a certain preference for a conversion of dark matter to radiation
at late times. Finally we apply our general results to a specific particle physics realisation of such a
scenario, featuring late kinetic decoupling and Sommerfeld-enhanced dark matter annihilation. We
identify a small part of parameter space that both mitigates the tension between cosmic microwave
and large-scale structure data and allows for velocity-dependent dark matter self-interactions strong
enough to address the small-scale problems of structure formation.
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I. INTRODUCTION

There is overwhelming evidence for the existence of
dark matter (DM) in our Universe from various astro-
physical and cosmological observations. While many of
its particle physics properties are completely unknown,
the amount of DM at the time of recombination has been
precisely determined through observations of the Cosmic
Microwave Background (CMB) [1]. The corresponding
DM relic abundance is typically assumed to have been set
early on, at temperatures comparable to the DM mass in
the most commonly considered scenario of thermally pro-
duced DM particles [2, 3], such that the comoving DM
density is constant throughout the subsequent cosmolog-
ical evolution.

In this work we analyse how cosmological observations
constrain deviations from the simple picture of a comov-
ingly constant DM density. An interesting example for
a possible underlying mechanism is if all or a part of
the DM is unstable. If the decay products are Standard
Model (SM) states such as electrons or photons, a sce-
nario of this type will be strongly constrained by a variety
of cosmological and astrophysical probes (see e.g. [4–6]).
It is however an interesting possibility that the decay
products are new massless or very light states in the dark
sector, such that effectively a fraction of DM is converted
into relativistic ‘dark’ radiation (DR) [7–15]. Such a con-
version has received some interest lately as it has been

argued to alleviate a possible tension between measure-
ments of the CMB and large scale structure (LSS) ob-
servables [15–21].

A second example in which the comoving dark matter
density can change is if the DM annihilation rate becomes
relevant at late times, which may happen if the annihi-
lations experience a sufficiently strong Sommerfeld en-
hancement [22–27]. Yet another case where DM may be
converted into DR is given by merging primordial black
holes emitting gravitational waves [28, 29], a scenario cur-
rently receiving a lot of interest due to the observations
by advanced LIGO [30]. We note that also ordinary as-
trophysical processes can convert matter into radiation,
but only at rates below the sensitivity of (near) future
observation [31].

In this work we employ data from the CMB as well
as LSS observables to constrain the possibility of DM
being converted into DR in a model-independent way.
Clearly the amount of DM which is allowed to be con-
verted into DR will depend on the time of this conversion,
given that the relative contributions of matter and radia-
tion to the overall energy density change as the Universe
evolves. Also the rate of this conversion is expected to
have an impact on the constraints. We will concentrate
on conversion times well after the end of primordial nu-
cleosynthesis, as sufficiently early transitions can always
be mapped onto a cosmology with a constant additional
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FIG. 1. Left panel. Evolution of comoving DM density for the step-like transition described by Eq. (1), for a transition redshift
of at = 10−3, a conversion factor of 1 + ζ = 1.1 and, as indicated, four values of the parameter κ characterising the steepness of
the transition. For comparison, we also show the case of decaying DM (dotted line), assuming that a fraction ζ/(1 + ζ) of the
initial DM abundance decays with a rate Γ = 0.15Heq. Right panel. Resulting evolution of the comoving DR density as given
in Eq. (5). This assumes that there is no additional (e.g. constant) source of DR and, for the translation to ∆Ñeff as defined
in Eq. (6), we have here chosen ρ0

χ to agree with the value of Ω0
χh

2 = 0.1198 measured by Planck.

radiation component, ∆Neff > 0.1

This article is structured as follows: In the next section
we will discuss how we implement the DM-DR transition.
In Sec. III we will discuss the effects on the CMB as well
as the resulting constraints, while Sec. IV is devoted to
the discussion of low redshift observables. In Sec. V we
will map our general constraints to the case of Sommer-
feld enhanced annihilation, before we conclude in Sec. VI.

II. CONVERTING DARK MATTER TO DARK
RADIATION

As motivated in the introduction, our aim is to quan-
tify in rather general terms i) how much DM can be
converted to DR, as well as how this depends on the
ii) time and iii) rate of this conversion. Phenomeno-
logically we are thus interested in a step-like transition
in the comoving DM density as shown in the left panel
of Fig. 1 where, at least for the moment, we choose to
remain completely agnostic about the underlying mech-
anism that causes such a transition. Nevertheless, we
emphasise that the parametrisation is sufficiently gen-
eral to capture a range of interesting scenarios, such as
the case of a decaying DM sub-component (indicated by
a black dotted line in Fig. 1) and Sommerfeld-enhanced
DM annihilations. The latter case will be the subject of
Sec. V, where we will discuss in detail how to map the
underlying particle physics parameters onto the effective
parametrisation discussed in this section.

1 BBN constraints of a possible DM-DR conversion have recently
been studied in Ref. [32].

A. Evolution of background densities

In the following, we will adopt a simple parametric
form for the DM density ρχ(a) as shown in Fig. 1, namely

ρχ(a) =
ρ0
χ

a3

[
1 + ζ

1− aκ

1 + (a/at)κ

]
. (1)

Here a denotes the scale factor of the Friedman-
Robertson-Walker (FRW) metric, ρ0

χ ≡ ρχ(1) the DM
density today, and the three parameters (ζ, at, κ) directly
relate to the points i) – iii) raised above. Specifically,
the comoving DM density decreases in total by a factor
of 1 + ζ, the transition is centred at a = at, and the
parameter κ determines how fast the transition occurs.

This parametrisation enables us in particular to un-
derstand which properties of DM-DR conversion are con-
strained observationally. For example, we will see below
that for a conversion after recombination constraints are
largely independent on when and how quickly the transi-
tion occurs, but mostly depend only on the total amount
of DM converted to DR. A similar observation was pre-
viously made for the case of a sub-dominant component
of DM decaying into DR [15], and our findings generalise
this result. Conversely, for a very early transition, we
find constraints to depend only on the total amount of
DR produced, which can be described by the effective
number of neutrino species Neff. For transitions around
matter-equality, on the other hand, the constraints can
no longer be understood in terms of these simple limit-
ing behaviours, and depend in a more complicated way
on when and how quickly the conversion takes place.

As already stressed, the phenomenological parametri-
sation suggested above allows to capture a significant
range of cosmologically interesting scenarios. For ex-
ample, we find that the case of a decaying DM sub-
component can be accurately described by setting κ =
2 and choosing at such that the Hubble expansion
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rate at the transition is comparable to the decay rate.
Sommerfeld-enhanced annihilations, on the other hand,
can be accurately matched by setting κ = 1 (see Sec. V).

By assumption, we demand that this transition occurs
because DM is being converted to radiation. The rates of
change of the comoving DM and DR densities must thus
be of equal size, and opposite in sign:

1

a3

d

dt

(
a3ρχ

)
= − 1

a4

d

dt

(
a4ρφ

)
. (2)

Alternatively, we can write this statement in terms of
coupled Boltzmann equations for the two fluid compo-
nents:

dρχ
dt

+ 3Hρχ ≡ −Q (3)

dρφ
dt

+ 4Hρφ = Q , (4)

where H = ȧ/a is the Hubble rate and Q > 0 describes
the (momentum-integrated) collision term. In this for-
mulation, being agnostic about the underlying mecha-
nism of the DM to DR transition simply means, as in-
dicated, that we start from Eq. (1) and view Eq. (3) as
a definition for Q – rather than determining ρχ from a
given collision term.

We can now obtain the DR energy density by integrat-
ing Eq. (2), with the boundary condition ρφ(a→ 0) = 0.
This leads to

ρφ(a) = ζ
ρ0
χ

a3

(1 + aκt )

(aκ + aκt )
(5)

×
(

(aκ + aκt ) 2F1

[
1,

1

κ
; 1 +

1

κ
;−
(
a

at

)κ]
− aκt

)
,

where 2F1 denotes the ordinary Hypergeometric func-
tions. Let us stress that the above solution for the DR en-
ergy density ρφ(a) does not explicitly depend on the form
of H, which is one of the advantages of our parametri-
sation for ρχ(a). This implies that also the transition
from radiation to matter domination is fully and consis-
tently covered in this approach (at least at the level of
the evolution of background densities). In the right panel
of Fig. 1, we show how the DR density evolves, accord-
ing to Eq. (5), for the ρχ(a) scenarios plotted in the left
panel. To facilitate comparison with the literature, we
also indicate the amount of DR in terms of an effective
number of additional neutrino species, by defining

∆Ñeff(a) ≡ ρφ(a)

ρ1ν(a)
=

8

7

(
11

4

)4/3
ρφ(a)

ργ(a)
, (6)

where the last equality is only valid for sufficiently late
times (after e± annihilation). For ρφ ∝ a−4, this re-
duces to the standard definition of the effective number
of additional neutrino species, ∆Ñeff → ∆Neff, typically
used to describe a (comovingly) constant contribution of
DR. In the scenarios that we describe here, the comoving
DR density is not constant (but saturates for a � at if
κ > 1).

We note that the large range of transition histories
that we consider here essentially also includes the case of
decaying DM, which much of the literature has focused on
so far. To illustrate this, we include in the same figure the
case of a 2-component DM model, where one component
is stable and the other decays (dotted lines). To make
the comparison more straight-forward for the purpose of
this figure, we have adjusted the decaying component to
make up a fraction ζ/(1+ζ) of the initial DM density and
tuned the decay rate Γ such that the total DM density
intersects with the other curves at a = at.

Let us conclude the discussion of how the DM and DR
densities evolve in our transition scenarios by showing in
Fig. 2 the induced effect on the expansion rate of the
Universe. For the purpose of this figure, we compute
the Hubble rate H2 = 8πGρ/3 by fixing the density pa-
rameters for the various components to the mean ΛCDM
values resulting from the Planck TTTEEE+lowP analy-
sis [1], taking Ω0

χh
2 = 0.1198 to correspond to the DM

density today, and compare it to the Hubble rate in the
ΛCDM case that is obtained for ζ → 0. During radi-
ation domination, as seen in the left panel, the Hubble
rate starts to be visibly affected as soon as the additional
comoving DM density compared to its value today, ζρ0

χ,
contributes sufficiently to the total energy density; for the
small values of ζ shown here, this happens not much ear-
lier than the transition at a = at. The largest deviation
of the Hubble rate occurs at a ∼ at during matter domi-
nation, or somewhat earlier during radiation domination
(right panel). As indicated by the thin orange lines, fur-
thermore, the DR density always starts to change the
Hubble rate only at later times; as expected, its relative
impact (compared to that of DM), is largest if the transi-
tion takes place during radiation domination (and then,
for κ = 2 and κ = 4, mimics the impact of a constant
∆Neff after equality, cf. the black dotted line).

B. Perturbations

In order to study the impact of our modified cosmolog-
ical scenario on CMB and LSS observables, we must not
only account for the modified evolution of the background
densities, but also include the effect of perturbations. In
synchronous gauge [33], the perturbed line element of the
FRW metric is given by

ds2 = gµνdxµdxν = a2
[
−dτ2 + (δij + hij)dx

idxj
]
,

(7)

where τ is the conformal time and hij are the metric
perturbations (we will denote its trace as h ≡ hii).

The above form of the line element leaves a residual
gauge freedom, which we remove by working in comoving
synchronous gauge (as also used, e.g., in CAMB [34, 35]).
In this gauge, the DM fluid remains at rest and its four-
velocity is thus given by uχµ = a (1,0) just as in the un-
perturbed case. The full DM and DR energy momentum
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FIG. 2. Left panel. Evolution of Hubble rate for the same scenarios as shown in Fig. 1, compared to the ΛCDM Hubble rate
Hζ=0 (which in our scenarios is obtained for ζ = 0), Right panel. Impact of changing at on the Hubble rate, for κ = 2. Orange
(thinner) lines indicate the impact of the produced DR alone. For the at = 5 · 10−6 case we show, for comparison, also how the
Hubble rate is affected by a constant DR contribution, characterised by a constant ∆Neff (black dotted line).

tensors are then of the form

Tχµν = ρχu
χ
µu

χ
ν , (8)

Tφµν =
4

3
ρφu

φ
µu

φ
ν +

ρφ
3
gµν + Πφ

µν , (9)

where uφµ = a (1,vφ) denotes the DR four-velocity, and
ρχ and ρφ now refer to the full (perturbed) energy den-
sities. Πφ

µν describes the anisotropic stress of the DR
component, i.e. perturbations away from the perfect fluid
form (as, e.g., caused by free-streaming).

As before, we demand that any decrease in DM is fully
compensated by an increase in DR. Covariant conserva-
tion of energy thus implies ∇ν

(
Tχµν + Tφµν

)
= 0, which

we can formally split and rewrite as

∇νTχµν = −∇νTφµν ≡ −Quχµ , (10)

where∇µ denotes the covariant derivative with respect to
the full (perturbed) metric gµν given in Eq. (7). To lead-
ing order, as expected, this simply reproduces Eqs. (2–4).
Demanding the DM density to evolve as in Eq. (1) thus
provides the same definition of Q ∝ ζ at leading order.

At next order in the perturbed quantities, the DM part
of Eq. (10) becomes

δ′χ +
1

2
h′ =

a

ρχ
(Qδχ − δQ) . (11)

Here, the prime ′ denotes a derivative with respect to
conformal time and δχ = δρχ/ρχ is the usual dimension-
less perturbation in the DM density. The perturbation
δQ to Q would, in analogy to the leading order result,
be defined by an extension of our ansatz in Eq. (1) to
include perturbations. The minimal option for such an
extension, in some sense, is that the perturbations only
affect the volume expansion (and hence not the comoving
DM density). In other words, one would have to replace

only the leading factor in Eq. (1),2

ρχ =
ρ0
χ

(a+ ah/6)3

[
1 + ζ

1− aκ

1 + (a/at)κ

]
. (12)

Such an ansatz for the DM density implies δ′χ = − 1
2h
′, as

can easily be verified, and is hence equivalent to setting

δQ ≡ Qδχ . (13)

While we will adopt this choice in the following, for sim-
plicity, we stress that it is model-dependent and a full
discussion is beyond the scope of this work. We will,
however, get explicitly back to this issue in Section V
when we try to motivate Q from the collision term in the
Boltzmann equation for a specific scenario (rather than
by directly postulating the evolution of the DM density).
In general, it is worth noting that any deviation from
Eq. (13) must be proportional to Q which, as we will see,
is strongly constrained already from the evolution of the
background densities (unless at is very small – in which
case the scale of the horizon, and hence of any perturba-
tion that can be affected, is much smaller than what can
be probed by the CMB). For the case of decaying DM,
furthermore, Eq. (13) is exactly satisfied [15].

To first order in the perturbed quantities related to
DR, on the other hand, Eq. (10) takes the form

δ′φ +
2

3
h′ +

4

3
θφ = − a

ρφ
(Qδφ − δQ) , (14)

θ′φ +
1

4
∇2δφ +

1

2ρφ
∇4Πφ = − a

ρφ
Qθφ . (15)

2 A simple heuristic way of seeing this is to consider the determi-
nant of the spatial part of the metric, det gij = a6 exp Tr ln(δij+
hij). Expanding to first order, the ‘perturbed’ scale factor is

thus given by (det gij)
1/6 = a(1 + h/6).
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Here, ∇2 is the Laplacian operator, δφ ≡ δρφ/ρφ is de-
fined in analogy to the DM case, and θφ ≡ ∂iv

i
φ is the

scalar part of the DR velocity. In the second equation, we

have as usual only considered the scalar part of ∇νTφiν ,
by taking its divergence, because the vector part of the
perturbations only have decaying modes. This is the rea-
son why only the scalar part of the anisotropic stress en-

ters, defined as Πφ,scalar
ij ≡

(
∂i∂j − 1

3δij∇
2
)

Πφ. We im-
plement this part as for an additional neutrino species,
where Πφ arises due to the effect of free-streaming [36].

Let us point out that for Q = 0 Eqs. (14,15) simply
describe the standard way of including non-interacting
relativistic degrees of freedom, e.g. in the form of (sterile)
neutrinos, and for the choice of δQ made in Eq. (13) we
recover exactly the case of decaying dark matter (assum-
ing an appropriate choice of Q, cf. Fig. 1). We re-iterate
that we expect a small effect from including perturba-
tions because Q (and hence δQ) is already strongly con-
strained from the evolution of the background densities.

III. GENERIC EFFECTS ON THE COSMIC
MICROWAVE BACKGROUND

A. Changes in the temperature anisotropy
spectrum

The spectrum of the CMB is sensitive to the amount of
matter and radiation from time-scales starting at around
recombination until late times (e.g. through lensing ef-
fects). In addition, even earlier epochs may be con-
strained if they leave an imprint at later times such as an
extra DR component. Let us start the discussion of CMB
constraints by an evaluation of the possible imprints of
the scenario described in Sec. II on the CMB spectrum.

The ΛCDM model is described by only six parame-
ters, which may be chosen as i) the amount of baryons
Ωbh

2 and ii) dark matter Ωχh
2, the iii) approximate an-

gular size of the sound horizon θMC,3 the iv) re-ionisation
optical depth τ , the v) amplitude of scalar perturbations
ln(1010As) and the vi) scalar spectral index ns. Given
that the ΛCDM cosmology provides an excellent fit to
the CMB data, any deviations should be very tightly con-
strained.

To calculate CMB as well as LSS observables, we use a
modified version of the publicly available Boltzmann code
CAMB4 [34, 35]. In particular we have implemented the
non-standard time evolution of energy densities of DM
and DR according to Eqs. (1) and (5) to investigate and
constrain the imprints of our scenario on the CMB. As

3 The parameter, θMC is used in CosmoMC [37, 38] and is an ap-
proximate measure of the angular size of the sound horizon at
the surface of last scattering. See http://cosmologist.info/

cosmomc/ or Ref. [39] for details.
4 http://camb.info

described in Section II B, furthermore, we treat DR as an
extra neutrino species.

As discussed in the last section, the qualitative features
of the DM to DR conversion depend on the time at as
well as the rate κ of the conversion. To capture the rel-
evant effects for the different regimes, we consider three
different transition times at = 5·10−6, 5·10−4 and 5·10−2

as well as two different conversion rates κ = 2 and 1/2.
The transition times are chosen such that we cover ra-
diation domination as well as matter domination before
and after recombination, while the choices of κ describe,
respectively, a fast and a slow conversion scenario.

To illustrate the effect on the CMB spectrum we fix
five of the six ΛCDM parameters to their Planck 2015
TTTEEE +low-P [1] mean values, i.e., Ωbh

2 = 0.02225,
100θMC = 1.04077 , τ = 0.0790, ln(1010As) = 3.094
and ns = 0.9645. The DM density is naturally evolving
within our scenario and we fix Ωχh

2 such that for any
κ, ζ and at we have Ωχh

2 = Ωχh
2|ΛCDM at zrec ≡ 1100,

i.e. we require the same amount of DM as inferred for the
ΛCDM model around recombination. This choice essen-
tially ensures that the first peak of the CMB spectrum
resembles that of the ΛCDM model and therefore agrees
well with observations. We show the TT spectra of our
scenario as well as the fractional difference from the usual
ΛCDM paradigm, with parameters fixed in the way just
described, in the left panel of Fig. 3. In the right panel of
Fig. 3, for comparison, we show the spectra for the same
values of our model parameters (κ, at, ζ), but with the
ΛCDM parameters fixed to the respective best-fit values
in these scenarios.

Let us begin our discussion with a couple of simple ob-
servations: For a rather quick transition (κ = 2) which
happens rather early (at = 5 · 10−6), the transition will
be complete before the onset of matter domination and
thus the only significant change compared to the ΛCDM
case is due to a remaining extra component of DR from
the conversion. Given that the conversion takes place
during radiation domination where the DM energy den-
sity is sub-leading, rather large values of ζ are consistent
with data (for the chosen value of ζ = 2.5 we obtain

∆Ñeff(1) ' 0.42). Once the conversion is complete the
comoving energy density of DR will remain constant. We
thus expect this model to have a spectrum which is very
similar to the ΛCDM case with a constant additional
∆Neff = 0.42. We illustrate this case with a dashed black
line in the plot. As expected the spectrum is almost iden-
tical, and only very small differences are visible for high
values of `, which are most sensitive to early times. We
have confirmed that for even earlier transition times the
two cases are indistinguishable. For a very slow transi-
tion (κ = 0.5) on the other hand, a significant part of
the matter density will be converted to radiation much
later, implying that a larger fraction of the initial mat-
ter density will end up in radiation such that the effect
on the CMB will be significantly larger, which can also
clearly be seen in Fig. 3. We therefore expect this case to
be much more strongly constrained. For very late tran-

http://cosmologist.info/cosmomc/
http://cosmologist.info/cosmomc/
http://camb.info
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FIG. 3. Lensed TT spectra for transition rates of κ = 2 (green) and κ = 1/2 (orange) for three different transition times
at = 5 · 10−6, 5 · 10−4, 5 · 10−2 for fixed ΛCDM parameters (left) and for the respective best-fit points (right). For comparison
we show the ΛCDM spectrum (solid black line) as well as ΛCDM +∆Neff (dashed black line) for comparison with the early
transition case. In the bottom panels we show the fractional difference between the different scenarios and the ΛCDM case.
See text for the remaining parameter values of the models used to obtain these spectra.

sitions, (at = 5 · 10−2), the cosmic history is the same as
for the ΛCDM case until recombination. We accordingly
observe that the spectrum resembles the ΛCDM case for
high multipoles as expected.

A more detailed understanding of the different effects
on the power spectra requires knowledge about the evo-
lution of the different energy densities Ωi. Given that
we fix the value of Ωχh

2 = Ωχh
2|ΛCDM at z = zrec (for

the left panel in Fig. 3) while having at the same time a
somewhat increased value of h due to the extra radiation
component, Ωχ will be correspondingly smaller. Requir-
ing the Universe to remain flat,

∑
Ωi = 1, the energy

density within some other components needs to be in-
creased to compensate the decrease in Ωχ. The way in
which the different components change depends on which
parameters we keep fixed in the analysis. For instance
fixing θMC as we have done in the left panel of Fig. 3 will
lead to an enhancement in ΩΛ, because the enhancement
of the Hubble rate prior to recombination decreases the
size of the sound horizon at the surface of last scattering
rs, which implies a simultaneous decrease of the angu-
lar distance to the last scattering surface DA in order to
keep θMC fixed. The required decrease in DA in turn is
achieved by increasing the vacuum energy ΩΛ. Overall
this will lead to an enhanced Late time Integrated Sachs
Wolfe (LISW) effect, that is (relatively speaking) more
power on very large scales (small values of `).

As these types of effects strongly depend on what we
keep fixed, we will refrain from describing the changes
of the temperature anisotropies compared to the ΛCDM
case in more detail. To construct the bounds on the
model parameters in the next section, all ΛCDM param-
eters will be varied, allowing for a partial compensation
of the effects of the matter to radiation transition. This
partial compensation can already be anticipated by com-
paring the left and right panels of Fig. 3.

B. CMB constraints

In this section, we will constrain our model with CMB
observations. The concrete data set that we use for this
purpose, with likelihoods as implemented in the publicly
available Markov Chain Monte-Carlo (MCMC) code Cos-
moMC [37, 38], we will denote as follows:

• CMB: Planck TTTEEE + lowTEB [40]

At this stage, in particular, we do not add informa-
tion from the Planck lensing power spectrum reconstruc-
tion [41] because this effectively adds a measurement im-
plicitly related to the matter power spectrum (which we
will discuss in more detail in the next section).

In order to explore the parameter space of our model,
we modify CosmoMC to communicate our additional
model parameters to the modified CAMB version de-
scribed above. We run chains using the fast/slow sam-
pling method [38, 42], as recommended for a large param-
eter space. We assume the chains to be converged if the
Gelman-Rubin criterion (R) [43] satisfies R − 1 < 0.01.
Along with a large number of Planck nuisance parame-
ters, we scan over the six ΛCDM parameters with flat
priors as follows:

Ωbh
2 ∈ (0.01, 0.1), Ω0

χh
2 ∈ (0.01, 0.5)

100θMC ∈ (0.8, 2), τ ∈ (0.01, 0.2)

ln(1010As) ∈ (2, 4), ns ∈ (0.8, 1.2) . (16)

Let us first have a look at very early transitions. In this
case, as discussed above, CMB constraints on our model
should be equivalent to those for a model with constant
∆Neff (at least for large values of κ, since for κ ≤ 1 the co-
moving DR energy density does not saturate, cf. Fig. 1).
To check this expectation, we fix at = 10−7 and scan over



7

κ = 4

κ = 2

κ = 1

κ = 0.5

const.ΔNeff

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

10-1

100

ΔNeff
rec

95% C.L.:

FIG. 4. Marginalised 1D posterior pdfs for ∆Ñeff(arec), nor-
malised such that the maximum value is 1, using the CMB
dataset only. The solid lines are for κ = 0.5, 1, 2, 4 with fixed
at = 10−7. Note that for κ = 2, 4, but not for smaller val-
ues of κ, we have ∆Ñeff(arec) = ∆Ñ today

eff , cf. Fig. 1. For
comparison, we also include the standard case of a constant
∆Neff ≥ 0 (dashed black line). The vertical lines indicate
the corresponding 95% C.L. limits. For a constant ∆Neff, our
limit is in good agreement with the Planck limit of 0.35 [1]
(obtained with a flat prior on ∆Neff that, unlike in our case,
also allows ∆Neff < 0).

the six ΛCDM parameters and ζ ≥ 0 (with a flat prior).
For comparison with the constant ∆Neff case, we use the
default CosmoMC/CAMB implementation with Neff as a
free parameter in addition to the ΛCDM parameters. For
this scan we have set the (flat) prior for Neff to be greater
than 3.046, in order to be comparable to the prior choice
for our model parameter ζ.

In Fig. 4, we show the marginalised 1D posterior prob-
ability density functions (pdfs) for ∆Ñeff(arec) that re-
sult from the CMB likelihood, for κ = 0.5, 1, 2, 4. For
κ = 2, 4, the posteriors are indeed similar to the case
of a constant ∆Neff (shown as a black dashed line).

The discrepancy at larger values of ∆Ñeff(arec) can be
traced back to how the Helium abundance YHe enters in
the CMB code. Concretely, YHe is a derived parameter
that depends not only on the baryon density but also
on the DR density at the time of big bang nucleosyn-
thesis (BBN), because a non-zero value of the latter af-
fects the Hubble expansion rate during that time [44, 45].
In our case, unlike for a constant ∆Neff, there is no
DR present during BBN because we always assume that
the DM to DR transition occurs only much later. We
checked explicitly that we get exact agreement between
our κ = 2, 4 limits and constant ∆Neff, up to 99 % C.L.,
if we use a numerical value of YHe as calculated from
∆Ñeff(BBN) = ∆Ñeff(today). Lastly, let us mention that
these limits also agree to a good approximation with the
Planck limits on a constant Neff [1] – though such a com-
parison should be taken with a grain of salt given that
those limits are based on a slightly different prior choice
(allowing for ∆Neff < 0) than what we have adopted
here.

We now turn to the CMB constraints when scan-
ning freely over our model parameters. For this, we
choose a flat prior on log at, constraining the scan to
−7 ≤ log10 at ≤ −1 in order to focus on the case where
BBN constraints are negligible (lower bound) and to en-
sure that we can neglect the effect of structure formation
and still treat the perturbations at the linear level (up-
per bound). We note that the upper bound here is some-
what optimistic in this respect, so results presented for
at & 10−2 should be interpreted with care (what actu-
ally matters is of course not the value of at, but whether
the transition is largely completed while perturbations
still are at the linear level, cf. Fig. 1). For ζ we choose
a more complicated prior to optimise the sampling effi-
ciency of the Metropolis-Hastings algorithm implemented
in CosmoMC. Concretely, in anticipation of our results,
we choose a prior for ζ that corresponds to a flat prior

on ∆N today
eff for at < 10−4 and a prior that is flat in ζ

itself for at > 10−4. Since for fixed at and fixed cosmo-
logical parameters ∆N today

eff is directly proportional to ζ,
the two regions are expected to smoothly connect to each
other at at = 10−4.5

We show our results in Fig. 5, as a function of at,
both expressed in terms of limits on log10 ζ (left panel)

and in terms of limits on log10 ∆Ñeff today (right panel).
For the sake of our later discussion, let us stress that
these are Bayesian limits constructed in the standard
way, i.e. curves of constant 2D (marginalised) posterior
probabilities chosen such that the integral over the en-
closed area (which includes the point of maximum pdf)
results in 0.95 and 0.99, respectively. For very small val-
ues of at, as discussed above, we expect that the CMB
cannot distinguish between our model and the case of a
constant ∆Neff . This implies that the bound on ζ, as a
function of at, must simply be inversely proportional to
the total amount of DR that is created prior to recom-
bination. For a fast transition (κ = 2 and κ = 4) the
latter is roughly proportional to the ratio of the amount
of converted DM to the total amount of radiation, which
in turn is proportional to ζ at. This explains the approx-
imate ζ ∝ a−1

t slope visible in the figure.
Closer inspection reveals that the simple requirement

of a fixed total amount of DR just before recombination
indeed gives a qualitatively very good description of the
limits for at . 10−3. We note that the limits in this
range can also be reproduced, within reasonable accu-
racy, just by using the fact that the CMB peak positions
are tightly constrained observationally.6 For large val-

5 The normalisation of the posterior pdfs are independent in the
two regions, so one needs to apply an appropriate rescaling be-
fore the two regions can be connected. To minimise the impact
of numerical inaccuracies, we require that the maxima of the
respective posterior pdfs agree at the transition.

6 Technically we checked that we can roughly reproduce these lim-
its by allowing the angular size of the sound horizon close to
recombination, θ∗, to vary within observational bounds [39], in
analogy to what was done in Ref. [27].
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FIG. 5. 95% C.L. (dotted lines) and 99% C.L. (solid lines) Bayesian limits from CMB only; the coloured region above each line
is excluded. Left panel. Constraints on the amount of converted DM, cf. Eq. (1). Right panel. Constraints on the amount of

DR today, expressed in terms of ∆Ñeff as given in Eq. (6). For both cases, we adopted a flat prior on ∆N today
eff for at < 10−4,

and a flat prior on ζ for at > 10−4.

ues of at, on the other hand, the constraints are less and
less affected by the additional radiation component and
rather driven by the reduced CDM component – which
explains why the maximally allowed value of ζ becomes
almost independent of at at very late times. Physically,
it is a combination of various mechanisms that sets the
constraints in this case, with the ISW effect becoming
more and more relevant with increasing at. While we
refrain from attempting a detailed discussion here, we
therefore expect that simple prescriptions for estimating
these constraints are likely to fail. For example, demand-
ing the peak positions not to change (which gave a very
good estimate of the full results for at . 10−3) would
result in constraints that are too strong and feature a
qualitatively wrong dependence on at.

The discussion in the preceding paragraph has focussed
on a qualitative understanding of the constraints on ζ
shown in the left panel of Fig. 5. With the additional
input from Fig. 1, it is straightforward to achieve a simi-
lar understanding concerning the qualitative shape of the
constraints on ∆Neff as presented in the right panel of
Fig. 5. In particular, the fact that these constraints are
flat for small values of at should not come as a surprise
given that in this limits our model is expected to be in-
distinguishable from the case of a constant ∆Neff . Quan-
titatively, however, the situation is less clear at first sight.
In particular we infer from the right panel of Fig. 5 that

for κ = 2, 4 and small at values of ∆N today
eff & 0.7 − 0.8

are excluded at 95% C.L. The reason for the difference

between this value and the bound ∆N today
eff . 0.4 in-

ferred from Fig. 4 is that here we consider the posterior

pdf as a function of log10 ∆N today
eff rather than ∆N today

eff ,

which disfavours small values of log10 ∆N today
eff and hence

introduces an overall bias towards larger values.

The prior dependence of the bounds shown in Fig. 5
makes it difficult to interpret them in a model-
independent way. After all, at and ζ are only effec-
tive parameters introduced to describe the evolution of
the DM density, and the appropriate priors may depend
sensitively on how this effect is realised in a more fun-
damental theory. A way to avoid this ambiguity is to
consider frequentist rather than Bayesian exclusion lim-
its. This is possible in a rather straight-forward manner
thanks to the following two observations: First, since
we consider flat priors on log10 at and ζ (or equivalently

∆N today
eff for small at), the marginalised posterior as a

function of these two parameters is directly proportional
to the marginalised likelihood. Second, since all param-

eters apart from at and ζ (or ∆N today
eff ) are very well

constrained by the CMB, the marginalised likelihood is
expected to be similar to the profile likelihood (where

for each value of at and ζ, or ∆N today
eff , all other param-

eters have been fixed to their best-fit value) [46]. We
can therefore use the posterior probability to construct
approximate profile likelihood ratios.

To construct frequentist upper bounds on the amount
of DM that can be converted into DR, we determine the
values of at and ζ that give the best fit to the data, i.e.
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FIG. 6. 95% C.L. (dotted lines) and 99% C.L. (solid lines) approximate frequentist constraints from CMB only; the coloured
region above each line is excluded. Left panel. Constraints on the amount of converted DM. Right panel. Constraints on
the amount of DR today, expressed in terms of ∆Ñeff . For comparison we indicate the frequentist 95% C.L. bound on ∆Ñeff

obtained from a scan with flat prior on ∆Neff and at = 10−7 (derived from the 1D posterior shown in Fig. 4).

that maximise the posterior probability. For the data
sets that we study in this section there is at most a very
mild preference for non-zero ζ, so that we typically find
ζbest ≈ 0. We then consider the test statistic

t = −2 ∆ logL ≈ −2 log

[
p(ζ, at)

p(ζbest, at,best)

]
, (17)

where p denotes the posterior probability. We expect that
for random fluctuations in the data, t will approximately
follow a χ2 distribution with two degrees of freedom. We
thus can exclude parameter points with t > 5.99 (t >
9.21) at 95% (99%) C.L.

We show the resulting estimate of frequentist exclu-
sion limits on ζ in the left panel of Fig. 6. By construc-
tion, the frequentist exclusion limits follow lines of con-
stant posterior probability and therefore have the same
shape as the Bayesian exclusion limits shown in Fig. 5. In
other words, the difference between the frequentist and
the Bayesian exclusion limits is the confidence level asso-
ciated to a specific posterior probability, i.e. frequentist
exclusion limits correspond to Bayesian exclusion limits
at a different confidence level. More specifically, we find
the frequentist exclusion limits to be somewhat stronger.

The advantage of using frequentist exclusion limits is
illustrated in the right panel of Fig. 6, which shows the
bounds on ∆Neff calculated from the frequentist exclu-
sion limits on ζ for κ = 2 and κ = 4. The only cos-
mological parameter required to perform this translation
is Ωχh

2. Ideally, ∆Neff should be calculated using the

respective best-fit value of Ω0
χh

2 for each value of at
and ζ. However, given the precision of CMB constraints
on this combination of DM density and expansion rate
during recombination, it is sufficient to simply require
Ωχh

2 = Ωχh
2|ΛCDM at zrec ≡ 1100.

In contrast to the bounds on ∆Neff shown in the right
panel of Fig. 5, the bounds derived from the frequentist
exclusion limits on ζ do not depend on the choice of priors
for ζ and at.

7 As a result, the bounds on ∆Neff obtained
for small at are much closer to the frequentist bounds
derived from the 1D posterior shown in Fig. 4 (based
on at = 10−7 and a flat prior on ∆Neff), which gives
∆Neff < 0.29 for both κ = 2 and κ = 4 (indicated by
the black dashed line). We will therefore from now on
focus on frequentist exclusion limits. The corresponding
Bayesian exclusion limits can be found in Appendix A.

IV. GENERIC IMPRINTS ON LOW-REDSHIFT
OBSERVABLES

Let us now turn to the implications of converting DM
to DR for low-redshift observables. We will focus here
on the two most important late-time effects, namely a

7 We observe some residual prior dependence due to the way in
which the parameter space is sampled, which leads to a less effi-
cient exploration of the tails for the case of logarithmic priors.
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modified expansion rate and a change of the linear mat-
ter power spectrum P (k). The former is something we
briefly discussed already in Section II A, cf. Fig. 2. Such
a late-time enhancement of the Hubble rate may in prin-
ciple help to reconcile a known discrepancy between low-
and high-redshift observables [39, 47–49]. In terms of
possible physics realisations, such an option has so far
mostly been discussed in terms of a constant DR (or sub-
dominant hot DM) contribution [45, 50–54] or decaying
DM scenarios [15–18, 20, 21]. By making the connection
to our more general conversion scenario from DM to DR,
we will revisit this question in a broader context.

Before doing so, however, let us briefly discuss the ex-
pected imprint on P (k). To this end, we show in the
left panel of Fig. 7 how the linear matter power spec-
trum changes, with respect to the ΛCDM case, for the
same set of benchmark models (and ΛCDM parameters)
that we considered in the left panel of Fig. 3. Note that
the full non-linear power spectrum would be needed to
make a meaningful comparison to data for large values
of the wave-number k. For the present study we will
therefore mostly limit ourselves to discussing the param-
eter combination σ8Ω0.3

m , for which direct measurements
exist [55] and to which mainly intermediate values of k
contribute, which are largely unaffected by non-linear dy-
namics.8 Specifically, σ8 can be expressed as

σ2
8 =

1

2π2

∫ ∞
0

dk k2P (k)W 2 (kR8) , (18)

where W (x) = 3j1(x)/x is the Fourier transform of the
top-hat window function, j1 is the first spherical Bessel
function and R8 ≡ 8h−1Mpc. Requiring the integra-
tion range to contribute 99% to the value of σ8, we find
0.025hMpc−1 . k . 0.5hMpc−1, which we indicate by
the non-shaded region in Fig 7.

We first observe that on large scales, the spectrum is
enhanced for our models. This is due to a larger value
of ΩΛ, which enhances and shifts the spectrum towards
larger scales [15, 56]. Secondly, for the range relevant for
σ8, we observe the spectrum to be suppressed. This is
partially explained by a pure free streaming effect of the
additional DR component (see the dotted line indicating
the case of a constant ∆Neff), and partially by the fact
that perturbations evolve slightly different in our model
than in ΛCDM, see Section II B).

So far, we have included only CMB data in our discus-
sion. In this section we extend our analysis to post-CMB
cosmology by including the following data sets:

• CMB + Lensing: Same as CMB, with Planck
lensing power spectrum reconstruction [41], using
likelihoods as implemented in CosmoMC

8 Note that the procedure used to infer the observational value of
σ8Ω0.3

m assumes a ΛCDM cosmology, and properly accounting
for the different cosmology considered here may lead to some
deviations. To fully address this issue is beyond the scope of our
analysis.

• HST: Direct measurements of the Hubble rate
H0 = 73.24±1.74 km/sec/Mpc by the Hubble space
telescope [49]

• PC: Measurement of the power spectrum normal-
isation, σ8(Ωm/0.27)0.30 = 0.782± 0.010, from the
Planck Clusters [55].

In the right panel of Fig 7, we show how the matter power
spectrum changes when using best-fit values of ΛCDM
parameters from a simultaneous fit to all these datasets
rather than CMB alone. On scales relevant for σ8, this
mostly has the effect of slightly increasing the power with
respect to what is shown in the left panel of the same
figure. This is due to the fact that for fitting the CMB
spectrum of the model to the data, a smaller DM density
of our model needs to be compensated by a larger As.
Overall we thus typically expect a slightly larger value
of σ8 in our scenario, as compared to the ΛCDM case.
While this seemingly further increases the discrepancy
between CMB and low-redshift observables, we will see
that the simultaneous decrease in Ωm overcompensates
this effect, allowing for a slight alleviation of the observed
tension.

In Fig. 8, we provide a first illustration of the tension
in low- and high-redshift observables mentioned above.
The left panel, in particular, contrasts the ΛCDM best-fit
region in the H0 versus σ8(Ωm/0.27)0.30 plane obtained
from CMB data only (red contours) with the direct mea-
surements of these quantities by HST (cyan band) and
PC (orange band). The blue contours show the preferred
region in this plane when combining all these datasets.
(the green contours result when also adding the Planck
lensing power spectrum reconstruction [41]). The incom-
patibility between the different data sets is clearly visible
and is in particular reflected in the fact that the red and
blue ellipses do not overlap.

The right panel of Fig. 8 demonstrates how our con-
version scenario may help to mitigate this discrepancy.
For this purpose we show how the best-fit regions shift
for specific values of our model parameters (κ = 1,
at = 10−1.5, ζ = 0.06). We note that such an effi-
cient DM conversion would appear firmly excluded by the
CMB limits shown in Fig. 5, but we will discuss below
how adding large-scale structure data strongly relaxes
those constraints (and, depending on the choice of pri-
ors, even prefers such large values of ζ, see Appendix A.
For this model point, we find that the red ellipse, corre-
sponding to the parameter region preferred by the CMB
alone, moves downward and to the right, such that it
overlaps with the blue ellipse obtained from combining
all data sets at 95% C.L.

We can qualitatively understand this effect by recall-
ing that Ωχh

2 is tightly constrained at recombination.
The decreasing DM component of our model at later
times thus implies that we have to simultaneously in-
crease the Hubble rate in order to remain compatible
with CMB data. At the same time, the total mat-
ter density Ωm = Ωχ + Ωb also decreases, which shifts
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FIG. 7. Linear matter power spectrum for the same set of benchmark models that we considered in Fig. 3. The range
of wavenumbers that is not shaded gives the dominant contribution to σ8. Left panel. ΛCDM parameters fixed to best-
fit values from CMB only (as in left panel of Fig. 3). Right panel. ΛCDM parameters fixed to best-fit values from
CMB+Lensing+HST+PC. Here the difference plot is still normalised to the ΛCDM power spectrum shown in the left
panel.
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and cyan bands indicate the direct measurements of σ8(Ωm/0.27)0.3 = 0.78± 0.01 [55] and H0 = 73.24± 1.74 [49] respectively.

σ8(Ωm/0.27)0.30 downwards, even though σ8 increases
slightly with respect to the ΛCDM case (see Fig. 7). In-
cluding Lensing (green contours) slightly enhances the
tension with the σ8 measurement again, but does not
change the picture qualitatively. We finally checked that
adding Baryon Acoustic Oscillations measurements from
the galaxy surveys in Refs. [57–59] would not affect the
left panel of Fig. 8, but shift the blue contour in the right
panel slightly to the left (to the point where the 1σ con-
tour does not quite overlap any more with the 1σ band
of the H0 measurement).

Since our model of DM conversion clearly has the po-
tential to reduce the tension between CMB and LSS data,
we can expect that the inclusion of the latter will also
significantly modify the constraints discussed in Sec. III.
In the left panel of Fig. 9 we demonstrate this for the
case of κ = 1. The most prominent change compared to
the bounds obtained from CMB data only is that con-
straints for large at are substantially weaker. This is a

direct consequence of the fact that in this region (and for
ζ ∼ 10−2) our model actually gives a better fit to data
than ΛCDM (mostly by increasing the Hubble rate, as
already indicated in Fig. 8). At the same time, the lim-
its for small values of at strengthen because CMB and
LSS independently constrain a constant ∆Neff . In the
right panel of Fig. 9 we show the limits from CMB +
Lensing + HST + PC for different choices of κ. In
each case we observe a substantial weakening of the con-
straints for large at compared to the limits obtained from
CMB data only (see Figs. 5 and 6).

At this stage the obvious question arises whether our
model of DM conversion only reduces the tension between
CMB and LSS data, or whether one may even claim pos-
itive evidence for this model based on LSS data. From
the frequentist perspective the preference is at the ∼ 2σ
level and hence not very significant. We indicate in the
right panel of Fig. 9 the parameter region preferred by
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FIG. 9. Left panel: Approximate frequentist constraints for our conversion scenario with κ = 1, resulting from
CMB+Lensing+HST+PC compared to the constraints obtained from CMB only (identical to the corresponding line
in Fig. 5). The regions above the solid lines are excluded at 99% C.L. For CMB only we also show the 95% C.L. exclusion
limit (dotted), while for CMB+Lensing+HST+PC we find a ∼ 2σ ‘signal’ preference and show the preferred parameter
region at 68% C.L. (dashed). Right panel: Frequentist exclusion limits at 99% C.L. on the amount of converted DM from
CMB+Lensing+HST+PC for different choices of κ.

the combination of CMB and LSS data at 68% C.L.9

From a Bayesian perspective, as discussed in more detail
in Appendix A, the signal preference depends strongly
on the adopted prior.

V. SOMMERFELD-ENHANCED DARK
MATTER ANNIHILATION

In this section we discuss DM with Sommerfeld en-
hancement as an interesting scenario in which a fraction
of DM is converted into DR over a well-defined period of
time. The basic idea is that DM particles interact with
each other via a mediator particle with mass small com-
pared to the DM mass, mmed � mχ. The exchange of
light mediators then generates a potential that modifies
the wave function of DM particles, leading to an enhance-
ment of the DM self-annihilation cross section (σv)0 at

9 To construct this parameter region, we again use the test statistic
defined in Eq. (17). The preferred parameter region at 68% C.L.
is then given by the requirement t < 2.28. We refrain from at-
tempting an exact reconstruction of the 2σ contour, which would
require a higher sampling efficiency. This parameter region is
similar also in the other cases shown in the right panel of Fig. 9,
except for κ = 1/2, where the preference is slightly less than 2σ
and hence the 1σ region is somewhat larger.

small velocities [60, 61]:

σv = S(v)(σv)0 . (19)

As long as the Sommerfeld factor is small, S(v) ≈ 1,
the annihilation rate of a given DM particle decreases
rapidly with decreasing redshift as the number density of
DM particles decreases: Γann = σv ρχ/mχ ∝ a−3. Since
the Hubble rate decreases more slowly (proportional to
a−2 or a−3/2 during radiation domination and matter
domination, respectively), DM annihilations become less
and less important in the late Universe.

This situation can be reversed in the presence of a
large Sommerfeld enhancement. As we will discuss in
more detail below, in certain regions of parameter space
one finds S(v) ∝ v−2 for small velocities. As long as
DM particles are in local thermal equilibrium, their ve-

locity is v ∝ T
1/2
χ ∝ a−1/2. After the DM particles

have kinetically decoupled from the heat bath, however,
their momenta simply redshift as v ∝ a−1, such that
Γann ∝ a−1. In this case, the annihilation rate decreases
more slowly than the Hubble rate and DM annihilations
become increasingly important. This leads to a second
period of DM annihilation after the classical chemical
freeze-out [24, 25]. As a result, the comoving DM density
may change appreciably at late times. For even smaller
velocities, the Sommerfeld factor saturates and the DM
annihilation rate reverts to its usual scaling proportional
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to a−3, so that the comoving DM density again becomes
constant.

A. Model set-up

To be more specific, we consider the case of a Dirac
fermion DM particle χ coupled to a vector mediator V µ:

L ⊃ gχ χ̄γµχVµ . (20)

The dominant DM annihilation channel in this set-up is
the s-wave process χχ̄→ V V , for which one finds, in the
limit of vanishing relative velocity and mediator mass,
(σv)0 = πα2/m2

χ with α = g2
χ/(4π).10 Although the me-

diators produced in DM annihilations could themselves
act as DR, we assume that they subsequently decay into
even lighter particles, such as sterile neutrinos. The ad-
vantage of such a set-up is that the resulting interactions
between DM and DR can significantly delay the kinetic
decoupling of DM [62] (while at the same time avoiding
strong CMB constraints on visible decays [63]). Rather
than specifying the coupling between the mediator and
DR, however, we introduce here the kinetic decoupling
temperature Tkd as an additional free parameter to keep
the discussion more model-independent. In Sec. V E we
will briefly get back to the range of decoupling temper-
atures that would be expected in the simplest extension
to the model specified in Eq. (20), and otherwise refer
to Ref. [64] for a detailed discussion of how late kinetic
decoupling can be achieved in general.

The exchange of vector mediators generates the
Yukawa potential

V (r) =
α e−rmmed

r
. (21)

The Sommerfeld factor can be calculated analytically by
approximating the Yukawa potential with a Hulthén po-
tential, giving [60, 61, 65]

S =
2π α sinh

(
6mχv
πmmed

)
v

[
− cos

(
2π

√
6mχα
π2mmed

− 9m2
χv

2

π4m2
med

)
+ cosh

(
6mχv
πmmed

)] .
(22)

We display this Sommerfeld enhancement factor in
Fig. 10 as a function of mmed for fixed values of mχ,
α and v.

In the limit of vanishing velocities, one finds that the
denominator becomes very small if

mmed ≈
6mχα

π2n2
(23)

10 Similar results are found for the case of scalar DM. The case of
a scalar mediator, on the other hand, is qualitatively different,
as the annihilation into a pair of mediators is a p-wave process.
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FIG. 10. Sommerfeld enhancement factor S as a function
of mmed for fixed values of mχ, α and v. If the mediator
mass satisfies Eq. (23) for some integer n the enhancement
can be very large. In the inset we zoom into one specific
resonance (n = 2) by replacing mmed with δ as defined in
Eq. (24). For comparison we also show the approximation of
the Sommerfeld enhancement factor given in Eq. (25), which
is valid for δ � 1/(nπ) and v � α/(n2π).

for some integer n. To quantify how close a specific pa-
rameter point is to such a resonance, we define

δ ≡

∣∣∣∣∣mmed −m(n)
med

m
(n)
med

∣∣∣∣∣ ≡
∣∣∣∣1− π2n2mmed

6mχα

∣∣∣∣ , (24)

where m
(n)
med is the value of mmed at the nth resonance

and n is chosen to minimise δ. The inset in Fig. 10 shows
the Sommerfeld factor as a function of δ for n = 2.

If δ is sufficiently small, δ � 1/(nπ), one finds that the
Sommerfeld factor for small velocities, v � α/(n2π), can
be written as

S(v) =
4α2

n2v2 + α2δ2
. (25)

The quality of this approximation can be inferred from
the black dashed line in the inset of Fig. 10. We conclude
that the Sommerfeld factor begins to grow as 1/v2 until
v . vsat ≡ αδ/n, at which point the Sommerfeld factor
saturates at S ≈ 4/δ2.

An additional subtlety is that the Sommerfeld factor
obtained from the naive solution of the Hulthén potential
can become so large that the annihilation cross section
violates unitarity at very small velocities. To avoid this
unitarity violation for very small δ, we follow the pre-
scription from Ref. [66] and consider the modified Som-
merfeld factor

S(v) =
4α2

n2 (v + vc)
2

+ α2δ2
(26)

with vc = α4/(4n2).
We emphasise that while Eq. (26) provides a very good

approximation to the Sommerfeld factor close to reso-
nance at small velocities, it does not yield the correct
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FIG. 11. Left panel. Hubble expansion rate (solid line) compared to the annihilation rate of a given DM particle (dashed line)
with mχ = 250 GeV, α = 10−2, n = 10, δ = 10−5 (corresponding to a mediator mass mmed ≈ 13 MeV) and kinetic decoupling
temperature Tkd = 1 keV. Right panel. Resulting DM density evolution for the same parameter point as in the left panel
(dashed line), compared to the phenomenological transition scenarios introduced in Section II for at = 7.2 · 10−4 and ζ = 0.075
(solid lines; see also Fig. 1).

description for large velocities or far away from a reso-
nance. However, as argued above, DM annihilations will
not be important in these regimes anyways, so that a
more detailed modelling of the Sommerfeld factor is un-
necessary for our purposes. We also note that the way
in which we implement the restoration of unitarity for
small δ is only approximate. While it ensures that the
Sommerfeld factor does not exhibit unphysical behaviour
for v → 0, we expect a more detailed calculation to yield
slightly different results for finite velocities.

B. Evolution of dark matter density

For the purpose of calculating DM annihilation rates,
we are interested in the thermally averaged annihilation
cross section

〈σvrel〉 = 〈S(σvrel)0〉 = 〈S〉(σvrel)0 , (27)

where we have made use of the fact that (σv)0 is inde-
pendent of velocity. To calculate the thermal average,
we assume that the DM velocity distribution is given by
a Maxwell-Boltzmann distribution with an effective tem-
perature Teff:

f(vrel) =

√
x3

eff

4π
v2

rel exp

(
−v

2
rel xeff

4

)
, (28)

where we have introduced the dimensionless temperature
xeff = mχ/Teff. We note that the above ansatz is auto-
matically satisfied for parameter combinations close to a
resonance because the same light mediator that causes
the Sommerfeld enhancement also guarantees very effi-
cient DM self-interactions [25].

In order to proceed, we need to express xeff as a func-
tion of the scale factor a. For this purpose, we assume
that DM particles are no longer in kinetic equilibrium

with the thermal bath. Denoting the temperature and
scale factor of kinetic decoupling by Tkd and akd, respec-
tively, we find

Teff = Tkd
a2

kd

a2
=

T 2
0

Tkd
a−2 , (29)

where T0 is the present-day photon temperature.11 We
conclude that the thermally averaged Sommerfeld factor
is proportional to a2 for a . asat ≡ T0/(vsat

√
Tkdmχ)

and becomes constant for larger scale factors.

We show the corresponding DM annihilation rate Γann

in comparison to the Hubble rate in the left panel of
Fig. 11 for mχ = 250 GeV, α = 10−2, n = 10, δ = 10−5

and Tkd = 1 keV, corresponding to a mediator mass of
mmed ≈ 13 MeV (the value of α was chosen such as to
roughly result in the correct relic density from standard
thermal freeze-out). For this choice of parameters the
Sommerfeld factor saturates around a ∼ 10−3, staying
significantly below the Hubble rate.

To calculate the change of DM density resulting from
this annihilation rate, we need to solve the Boltzmann

11 Here we have made two additional assumptions. First we as-
sume for simplicity that the temperature of the dark sector is
the same as the temperature of the visible sector. Relaxing this
assumption and introducing the temperature ratio of the two sec-
tors as an additional free parameter does not change our results
qualitatively. Second we assume that DM annihilations do not
change the temperature of the dark sector. This is not neces-
sarily a good approximation, since in the presence of Sommer-
feld enhancement, DM particles with small velocities have higher
probability to annihilate, leading effectively to an increase of the
DM velocity dispersion. In principle, this effect can be included
by solving a set of coupled differential equations [25]. However,
as long as the relative change of the DM density is small, we can
neglect the resulting change in the dark sector temperature.
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equation

dρχ
dz

(1 + z)H(z)− 3ρχH(z)− 1

2
〈σvrel〉

ρ2
χ

mχ
= 0 (30)

with the boundary condition

ρχ(zCMB) = Ωχρc(1 + zCMB)3 , (31)

where zCMB = 1100 is the redshift at recombination and
Ωχ = 0.1198/h2 and ρc = 1.054 · 10−5h2GeV/cm3 are
the present-day DM abundance and critical density in-
ferred from CMB observations under the assumption of
ΛCDM.12 The factor of 1/2 in front of the last term in
Eq. (30) accounts for the fact that DM consists of Dirac
particles; in other words, ρχ refers here to the total den-
sity of both χ and χ̄ and thus has the same meaning as
in the previous sections. The solution of this equation is
shown in the right panel of Fig. 11 for the same choice
of parameters as on the left (black dashed line). We also
show for comparison the DM density as a function of
redshift for the phenomenological parametrisation intro-
duced in Section II. We find that for κ = 1 (orange line)
the model is very similar to the numerical solution of the
Boltzmann equation, while for the other values of κ the
transition looks quite different.

C. CMB and LSS constraints

We just concluded that late-time DM annihilations
with resonant Sommerfeld enhancement provide a good
example for the model discussed in the previous sections
with κ = 1. We can therefore use the constraints ob-
tained for that phenomenological model to place bounds
on models with resonant Sommerfeld enhancement. In
order to determine whether a specific parameter point is
allowed or excluded by cosmological data, we thus need
to determine the values of at and ζ that provide the best
fit to the numerical solution of the Boltzmann equation
and then compare these values to the frequentist bounds
shown in Fig. 9 (concretely, we determine at as the scale
factor where half of the conversion has happened). Using
frequentist bounds has the crucial advantage that we do
not need to specify priors for the particle physics param-
eters of the model we consider. Moreover, even if priors
for the particle physics parameters could be motivated,
these would likely translate to non-trivial priors on at
and ζ, meaning that the Bayesian limits derived in the
previous section could not be directly applied.

From the discussion in the previous subsection, this
translation to at and ζ can be done for arbitrary combi-
nations of mχ, α, n, δ and Tkd that satisfy the following
conditions:

12 There is some arbitrariness in the choice of zCMB, but since we
focus on the case where the DM density changes only slightly,
the precise choice of zCMB does not affect our results.

i) The parameter point lies in the resonant regime:
δ � 1/(nπ).

ii) Kinetic decoupling happens before the Sommerfeld
factor saturates: Tkd � mχ v

2
sat.

iii) The DM annihilation rate stays significantly below
the Hubble rate even for a ≈ asat, so that the total
relative change of the DM density remains small:
ζ . 1.

While the last requirement is not strictly necessary, it
becomes computationally very challenging to accurately
calculate the evolution of the DM density for ζ > 1 due to
the need to account for changes in the temperature of the
dark sector. As we will see below, parameter regions with
ζ > 1 are either robustly excluded or phenomenologically
uninteresting, so that we do not consider these regions in
more detail.

In the following, we will impose one additional require-
ment, namely that α is chosen in such a way that the
DM abundance predicted from thermal freeze-out coin-
cides with the solution of Eq. (30) for very early times,
i.e. a� asat. This requires solving the Boltzmann equa-
tion iteratively until a self-consistent solution is found.13

We note that such an iterative procedure is particu-
larly important for the parameter region where unitarity
restoration plays a role, because in this case the saturated
Sommerfeld factor is proportional to α−6.

A final complication arises from the onset of non-linear
structure formation around znl ≈ 50. At this point the
DM particles decouple from the Hubble flow, and their
relative velocities start to increase. As a result the Som-
merfeld enhancement factor drops and the comoving DM
density very quickly becomes constant for z . znl, even if
the Sommerfeld factor has not yet saturated. In this case,
the functional form introduced in Eq. (1) no longer pro-
vides a good description of the redshift dependence of the
DM density for a & at (when choosing at as the scale fac-
tor where half of the conversion has happened). However,
as seen in Fig. 9, if the conversion of DM to DR happens
sufficiently after recombination, constraints are largely
insensitive to the precise redshift dependence and only
limit the total amount of DM converted. We can there-
fore continue to use the phenomenological parametrisa-
tion from above even in this regime. The cut-off of DM
annihilations by non-linear structure formation can be
shown to impose at & 7 · 10−3 in our model.

Our results are summarised in Fig. 12 for n = 2 (top
row), n = 10 (middle) and n = 50 (bottom row). In
the left column we fix Tkd = 0.2 keV and vary δ, in the
right column we fix δ = 10−6 and vary Tkd. The solid
(dashed) lines in each panel indicate combinations of mχ

13 Following Ref. [67] we approximate the Sommerfeld enhancement
factor during freeze-out by calculating the Sommerfeld factor
for v =

√
πTfo/mχ, where the freeze-out temperature Tfo as a

function of DM mass is taken from Ref. [68].
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FIG. 12. Constraints on DM with Sommerfeld enhancement as a function of mχ and δ (left) and as a function of mχ and
Tkd (right). The different rows correspond to different resonances, i.e. different choices of n. The second y-axis in each panel
indicates the mediator mass mmed corresponding to mχ for the specific resonance, cf. Eq. (23).
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and δ corresponding to constant ζ (constant at). The
yellow shaded region in each panel indicates the region
of parameter space excluded by the constraints derived
in this work, while the green shaded regions indicate the
region favoured by combining CMB and LSS data (as also
shown in Fig. 9). The parameter regions that violate one
or more of our basic conditions i) – iii) are shaded in
grey.

As expected, and as directly visible in the left panel of
the figure, CMB and LSS data can only probe our model
in the case of very small values of δ, i.e. for parame-
ter regions rather close to a resonance. Interestingly, for
each value of n, and a given kinetic decoupling temper-
ature, only a finite range of DM masses is excluded and
preferred, respectively; these mass ranges move to larger
values with increasing n. We note that the upper value of
the excluded DM mass range is driven by the saturation
of the Sommerfeld enhancement for very small velocities
and δ, so this is where the improvement of Eq. (25) to
Eq. (26) is most relevant. Increasing Tkd, as in the right
column, has the effect of lowering the DM mass preferred
by the data; the range of excluded DM mass is increased.
We will soon see, however, that too small DM masses in-
evitably lead to an unacceptably large DM self-scattering
rate, so in practice it is not very interesting to consider
kinetic decoupling temperatures much larger than 1 keV
in this model.

D. Discussion

Let us briefly return to the treatment of perturbations
in our conversion scenario. In Sec. II B we argued that
this is necessarily model-dependent, i.e. not uniquely de-
termined by the choice of parameters (κ, ζ, at) that de-
scribe the evolution of the background densities. Con-
cretely we have so far always adopted the minimal option
stated in Eq. (13), i.e.

δQ/Q = δχ . (32)

For the case studied in this section the situation is dif-
ferent, because the conversion rate Q is associated to
a concrete microphysics process, so that the Boltzmann
equation directly determines the form of δQ. The case
of off-resonance Sommerfeld enhancement was discussed
e.g. in Ref. [26], but the fully general case is rather in-
volved. We will therefore estimate the impact of pertur-
bations using a simplified treatment based on heuristic
arguments.

For annihilation processes with two DM particles in
the initial state, we have Q ∝ 〈σv〉ρ2

χ, and thus

δQ =
∂Q
∂〈σv〉

δ〈σv〉+
∂Q
∂ρχ

δρχ =
δ〈σv〉
〈σv〉

Q+ 2Q δχ . (33)

For σv ∝ v−1, the perturbation δ〈σv〉 at large scales is
given by δ〈σv〉 = 〈σv〉 h6 [26]. Following the heuristic ar-
guments given in that reference, this can be generalised

δQ/Q = δχ

δQ/Q = 2δχ+h/3
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FIG. 13. Solid lines show the 99% C.L. approximate frequen-
tist limits and dotted lines the 68% C.L. preferred parameter
region for our conversion scenario with κ = 1, resulting from
CMB+Lensing+HST+PC. The orange and green areas
result from our standard treatment of perturbations and are
identical to those shown in the right panel of Fig. 9. The
blue lines and area result when changing this prescription as
stated in Eq. (34).

to δ〈σv〉 = β〈σv〉 h6 for a cross section scaling with ve-

locity as σv ∝ v−β . Since we are mostly interested in
parameter combinations very close to a resonance, where
σv ∝ v−2 this motivates us to change the prescription for
perturbations to

δQ/Q = δχ →
1

3
h+ 2δχ . (34)

This enters in both the evolution equation for DM pertur-
bations, Eq. (11), and in those for the DR perturbations,
Eqs. (14,15).

In Fig. 13 we demonstrate that this change hardly
affects the frequentist limits and preferred region for
the κ = 1 model. This confirms our expectation from
Sec. II B that the impact of perturbations should typi-
cally be small, implying that one generally can directly
adopt the results shown in the previous sections (in par-
ticular Figs. 5 and 9). We stress, however, that this re-
mains a model-dependent statement, which in principle
has to be checked on a case-by-case basis (as we have
done here).

Let us finally briefly discuss the case that the dark
sector (i.e. DM and DR) is colder than the visible sector
during thermal freeze-out, ξ ≡ Tdark/Tvis < 1. Such a
situation occurs naturally if the two sectors only inter-
act with each other at very high temperatures but then
evolve independently. In fact, it is probably necessary to
have ξ < 1 in order to avoid an unacceptably large con-
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tribution to Neff from DR (see, e.g., Ref. [64]). A non-
trivial temperature ratio has three effects: it reduces the
value of α required to reproduce the observed DM relic
abundance, it reduces the velocity of DM particles for a
given temperature of the visible sector, and it leads to
earlier kinetic decoupling (see below). In combination,
these three effects result in a larger Sommerfeld factor
at early times but smaller saturation value, implying in
particular that the saturation happens earlier [27]. A
quantitative discussion of the resulting changes requires
more specific assumptions and is thus beyond the scope
of this work.

E. Impact on small scales

The model that we have studied in this section has a
number of further interesting properties, which allow us
to extend the discussion of Fig. 12 to additional cosmo-
logical and astrophysical observables. First of all, an in-
teraction as given in Eq. (20) inevitably mediates a strong
DM self-interaction for the light mediators that we con-
sider here. In the resonant regime, the self-interaction
cross section can again be calculated by approximating
the Yukawa potential by a Hulthén potential. Close to
a resonance (i.e. for δ � 1), the phase shift from the
scattering process is very close to π/2 and one therefore
obtains the simple expression

σT =
16π

m2
χ v

2
rel

. (35)

For mχv/mmed & 1, corresponding to n2v/α & 1, the
Hulthén approximation becomes inaccurate and a better
solution is obtained by fitting to numerical solutions of
the Schroedinger equation. We adopt the parametrisa-
tion for this classical regime from Ref. [69], noting that
in this case the momentum transfer cross section scales
approximately as σT ∝ (n/mχ)3–4.

In all panels of Fig. 12 we indicate the parameter
regions 〈σT〉/mχ > 10 cm2/g, where 〈σT〉 denotes the
velocity-averaged momentum transfer cross section for
a typical relative velocity of 30 km/s. This parame-
ter region is robustly excluded by bounds from dwarf
spheroidal galaxies and low-surface-brightness galax-
ies [70–72] and simply corresponds to an upper bound
on the DM mass that only depends on n. It is worth
noting that DM self-interactions with somewhat smaller
cross sections, and correspondingly larger DM masses,
have been independently invoked [62, 73–79] to mitigate
a number of long-standing small-scale problems of struc-
ture formation, namely the cusp-versus-core [80–82] and
the too-big-to-fail problem [83, 84] (as well as, more re-
cently, the diversity problem [79, 85, 86]). As can be seen
in the figure, such self-interaction rates can relatively eas-
ily be accommodated in our model for parameter values
that also are favoured by the CMB+LSS data – in par-
ticular for large values of n.

As already mentioned, these strong constraints from
DM self-interactions imply rather small kinetic decou-
pling temperatures when compared to standard WIMP
candidates. Such a late kinetic decoupling introduces a
small-scale cut-off in the matter power spectrum similar
to warm DM [87]. Thus, Tkd cannot be too small without
being in conflict with Lyman-α forest observations. In
the right column of Fig. 12 we therefore also show a rough
estimate of this bound, Tkd & 0.1 keV [64, 88]. Kinetic
decoupling temperatures close to this bound may lead
to the suppression of small-scale structure and thereby
alleviate yet another long-standing small-scale issue of
ΛCDM cosmology, namely the missing satellites problem
[89–91] (see however [88, 92, 93] for recent discussions of
this issue). Fig. 12 thus suggests that this is possible in
the same parameter region that is favoured by large-scale
data and DM self-interactions at dwarf galaxy scales –
(almost) independent of which resonance, n, is consid-
ered.

At this point, however, we should recall that Tkd is
not really a free parameter but is in principle uniquely
determined by the DM particle model. The simplest pos-
sibility would be to couple the mediator Vµ not only to
DM but also to DR, with a coupling gφ = ηgχ. This
results in [64]

T simp
kd ∼ 0.3 keV × η−1/2ξ−3/2

( mχ

TeV

)−1/4 (mmed

MeV

)
∼ 0.7 keV

( n

100

)2

× η−1/2ξ−3/2
( mχ

TeV

)7/4

,

(36)

where ξ denotes the temperature ratio of dark to visible
sector. This clearly shows that it is in practice difficult to
achieve late kinetic decoupling for mediator masses above
the MeV scale. Combining this insight with the self-
interaction bounds shown in the right column of Fig. 12,
we conclude that this affects resonant annihilation for
small n.

On the other hand, we make the interesting observa-
tion that for TeV-scale DM and ’high’ resonances, with
n & 50, it is in fact rather straightforward to simultane-
ously alleviate the missing satellites and other small-scale
problems, and at the same time reduce the H0 and σ8

tensions. Given that we adopted a rather minimal model
set-up, this is an intriguing result. The fact that (vari-
ous combinations of) these tensions between observations
and the cosmological concordance model can be simulta-
neously addressed for similar models has been pointed
out before [27, 62, 73, 74, 88, 94, 95]; here we confirmed
those claims, adding the first full combined analysis of
CMB and LSS data in this context.

VI. CONCLUSIONS

The cosmological concordance model rests on the
somewhat bold assumption that the comoving DM den-
sity remains exactly constant while the Universe expands
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in volume by more than 20 orders of magnitude. In this
article we have quantified how strongly deviations from
this scenario are constrained observationally. In order to
do so in as model-independent and conservative a way as
possible, we have assumed a range of phenomenological
transition scenarios (see Fig. 1) where DM is converted
into a non-interacting form of radiation.

We find that all scenarios where the DM density is re-
duced by more than a few percent after matter-radiation
equality are in strong tension with CMB observations
(see Fig. 5). For earlier transitions, on the other hand, a
much larger fraction of DM can be converted; this is ex-
pected given that the relative contribution of DM to the
total energy budget is correspondingly smaller. Adding
low-redshift observables to the analysis relaxes the late-
time constraints, cf. Fig. 9, allowing up to around 10
percent of DM to be converted during matter domina-
tion.

The reason for the weakening of the CMB constraints
is that a late conversion from DM to DR reduces the
well-known tension between these essentially incompati-
ble datasets. We discussed in detail in what sense this
implies positive evidence for such a transition scenario,
concluding that, from a frequentist perspective, the pref-
erence is rather mild. We stressed, however, that a
Bayesian analysis would come to a very different con-
clusion for a prior choice that puts special emphasis on
late-time conversions (see Appendix A).

We argued that our parametrisation of possible transi-
tion scenarios from DM to DR is very general and encom-
passes those previously discussed in the literature, in par-
ticular the case of decaying DM (see again Fig. 1). An-
other interesting application would be primordial black
hole DM, where merger events inevitably transform part
of the black hole mass to DR in the form of gravita-
tional waves. In the last part of this work, Section V,
we have discussed in detail yet another scenario that can
be mapped to our general parametrisation, namely DM
coupled to DR via light mediator particles. For specific
values of the mediator mass, cf. Fig. 12, this implies a
strongly enhanced DM annihilation rate at late times
that can mitigate the above-mentioned tension between
CMB and large-scale structure data. Remarkably, as we
have also discussed, such a simple scenario could simul-
taneously alleviate the most pressing ΛCDM problems at
small scales.

Turning this around, there is a surprising variety of
astrophysical and cosmological observations that allow
to test such a simple particle model even though it is
almost fully confined to a dark sector, with negligible
couplings to the Standard Model. The constraints de-
rived in this work are thus not only of general interest,
in the sense that they quantify how well one of the ba-
sic assumptions of the cosmological concordance model
is tested observationally, but can very concretely help to
test and discriminate a variety of (particle) DM models.
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FIG. 14. Left panel: 95% C.L. (dotted lines) and 99% C.L. (solid lines) Bayesian limits for our conversion scenario with
κ = 1, resulting from CMB+Lensing+HST+PC. For comparison we also show the constraints obtained from CMB
only (identical to the corresponding line in Fig. 5). Right panel: Bayesian limits on the amount of converted DM from
CMB+Lensing+HST+PC for different choices of κ; the coloured region above each line is excluded.

Appendix A: Bayesian exclusion limits

In this Appendix we complement the discussion in Sec-
tion IV with a Bayesian perspective on our general con-
version scenario. We start by showing in Fig. 14 the
Bayesian exclusion limits corresponding to the approxi-
mate frequentist exclusion limits shown in Fig. 9. These
limits are obtained using flat priors on log at and ζ (for

at > 10−4) or ∆N today
eff (for at < 10−4). In contrast to the

∼ 2σ preference for our model found in the frequentist
approach, a Bayesian model comparison actually favours
ΛCDM, as the parameter region in which the extended
model is preferred over ΛCDM is much smaller than the
parameter region in which the model is strongly dis-
favoured. This conclusion nevertheless depends strongly
on the priors assumed for our effective description and
could be modified in a set-up where favourable values of
at and ζ occur naturally.

In Fig. 15 we provide a supplementary perspective on
our discussion so far, which also illustrates the point just
made. We show the marginalised 1D and 2D posteriors
for our model parameters as well as the ΛCDM param-
eters most relevant in our context, namely H0, σ8 and
Ωm. We do so both for CMB only (grey lines and white
contours) and CMB + Lensing + HST + PC (black
lines and coloured contours), respectively. Here, we have
fixed κ = 1 and chosen a flat prior for ζ; for log10 at
we have chosen a flat prior between −3 and −1, thus

zooming in on the most relevant parameter region. For
such a prior choice we see a clear signal preference in the
ζ vs. log10 at plane, once we add LSS data, which can
directly be compared to Fig. 9.

It is also illuminating to see the correlation of our
model parameters with the cosmological observables con-
sidered here. For example, it becomes obvious that the
degeneracy between matter density and Hubble rate is
not broken when adding LSS data. This motivates pre-
vious statements that Ωχh

2 is very well constrained both
in ΛCDM and in our scenario, and confirms our qual-
itative discussion of Fig. 8. There we argued that a
larger Hubble rate at late times not only helps to recon-
cile direct measurements of H0 but automatically, due to
this degeneracy, the direct measurement of the parame-
ter combination σ8Ω0.3

m as well. As a result of combining
essentially incompatible data sets, the parameters that
have been marginalised out are thus pushed towards val-
ues that reduce the tension between CMB and LSS data.
In our case, as can explicitly be seen in the correspond-
ing 2D posteriors in Fig. 15, this independently results in
large values for at and ζ. Let us stress again that these
conclusions are prior dependent; allowing log10 at to ex-
tend to much smaller values, for example, fully erases the
preference for a signal around at ∼ 10−2.5 and ζ ∼ 0.03.
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FIG. 15. Marginalised 2D and 1D posteriors resulting from CMB+Lensing+HST+PC for our conversion scenario with
κ = 1, with closed contours indicating 68%, 95% and 99% C.L., respectively. The white contours (in the 2D plots) and grey
lines (in the 1D plots) are for CMB only.
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