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Abstract

The axion is a hypothetical elementary particle postulated by the Peccei-Quinn theory

to resolve the strong CP problem in QCD. If axions exist and have low mass, they are a

candidate for dark matter as well. So far our knowledge of the properties of the QCD axion

rests on semi-classical arguments and effective theory. In this Letter we perform a fully

dynamical investigation of the Peccei-Quinn theory, focussing on the impact of QCD on key

axion parameters, by simulating the Peccei-Quinn-Weinberg-Wilczek action on the lattice.

The results of the simulation, including the axion mass and effective potential, are found to

be in contradiction with current axion phenomenology and question the validity and use of

the Peccei-Quinn theory.
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1 The strong CP problem and axion

Quantum chromodynamics (QCD) decribes the strong interactions remarkably well down to the

smallest scales probed so far. Yet it faces a problem. The theory allows for a CP-violating term

S θ in the action,

S = S QCD + S θ , (1)

the so-called θ term. In Euclidean space-time S θ reads

S θ = i θQ , Q =

∫

d4x q(x) ∈ Z , (2)

where Q is the topological charge with charge density

q(x) = −
1

64π2
ǫµνρσ Fa

µν(x) Fa
ρσ(x) . (3)

In this formulation θ enters as an arbitrary phase with values θ ∈ [0, 2π). The problem is that no

CP violation has been observed in the strong interactions. A nonvanishing value of θ would result

in an electric dipole moment dn of the neutron. Current experimental limits on |dn| [1], paired

with lattice calculations [2], lead to the upper bound |θ| . 7.4 × 10−7. This anomalously small

number is referred to as the strong CP problem, which is one of the most intriguing problems in

particle physics.

In the Peccei-Quinn theory [3] the CP violating action S θ is augmented by the axion interac-

tion

S θ → S θ + S Axion =

∫

d4x

[

1

2

(

∂µφa(x)
)2
+ i

(

θ +
φa(x)

fa

)

q(x)

]

, (4)

where φa(x) is the axion field, and fa is the axion decay constant setting the scale at which the

UPQ(1) Peccei-Quinn symmetry is broken. The action is invariant under

φa(x) → φa(x) + δ fa , (5)

called shift symmetry. Replacing φa(x) by φa(x)−θ fa cancels the CP violating term in the action.

A necessary condition though is that QCD allows all values of φa/ fa to exist. This leaves us with

the action

S = S QCD + S Axion , S Axion =

∫

d4x

[

1

2

(

∂µφa(x)
)2
+ i
φa(x)

fa

q(x)

]

. (6)

It is expected that QCD induces an effective potential for φa, Ueff(φa), whose minimum is at

φa = 0, thus restoring CP symmetry. In the following we will treat the axion field as a dynamical

degree of freedom with the purpose to solve the strong CP problem, whether it arises from the

spontaneously broken UPQ(1) Peccei-Quinn symmetry or from a more fundamental theory, and

focus on QCD interactions.

The key observable is the mass ma of the axion. No such particle has been observed to

date. In phenomenological applications of the Peccei-Quinn theory so far the axion is treated

as an external source, φa(x) → φ̄a =
1
V

∫

d4x φa(x), where V is the space-time volume. The
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generating functional Z(φ̄a) is read off from the θ dependence of the vacuum energy density. In

semi-classical approximation [4] Z(φ̄a) may be written

Z(φ̄a) = e−V Ueff(φ̄a) , Ueff(φ̄a) = χt

[

1 − cos

(

φ̄a

fa

)]

≈ 1

2

χt

f 2
a

φ̄
2

a , (7)

where χt is the topological susceptibility, χt =
〈Q2〉

V
. Expanding Ueff(φ̄a) at the minimum gives

the axion a mass [5],

m2
a =
∂2

∂φ̄
2
a

Ueff(φ̄a)
∣

∣

∣

φ̄a=0
=
χt

f 2
a

. (8)

If correct, the axion can be made practically invisible by appropriate choice of fa. Interactions

at the quantum level between the axion and quarks and gluons are neglected in this approach. It

needs to be seen whether (6) averages successfully over the physics at shorter length scales to be

used as an effective action.

In Euclidean quantum field theory the mass ma is given by the large time t decay of the axion

correlation function,
∫

d3~x
〈

φa(~x, t) π(0)
〉

≃ A e−mat , (9)

where π is a pseudoscalar source. The value of the underlying path integral does not change under

the shift of integration variables φa(x) → φa(x) + ǫa(x), nor does the shift alter the integration

measure. Expanding the path integral to first order in ǫa(x), we obtain the equation of motion

∂2

∂t2

∫

d3~x
〈

φa(~x, t) π(0)
〉

=
i

fa

∫

d3~x
〈

q(~x, t) π(0)
〉

, t > 0 . (10)

A special feature of the action S Axion is that the coupling 1/ fa can be factored out by the change

of variable φa(x) → φ̃a(x)/ fa,

S Axion ≡
1

f 2
a

S̃ Axion , S̃ Axion =

∫

d4x

[

1

2

(

∂µφ̃a(x)
)2
+ i φ̃a(x) q(x)

]

, (11)

similar to the gauge coupling β = 6/g2 in the pure Yang-Mills theory. In terms of the new

variable φ̃a(x) the equation of motion (10) reads

∂2

∂t2

∫

d3~x
〈

φ̃a(~x, t) π(0)
〉

= i

∫

d3~x
〈

q(~x, t) π(0)
〉

, t > 0 . (12)

The axion mass ma thus depends on 1/ fa only through the topological charge density q(x). This

suggests that ma stays finite at small couplings 1/ fa, with values in between the pion and the η′

mass, in contrast to common lore (8).

The interaction between the axion and QCD is mediated by a dimension-five operator. As a

result, fluctuations of both axion and gluons are expected to lead to significant renormalization

effects, which demands a nonperturbative, ‘bottom-up’ [6] evaluation of the theory. In this Letter

we shall subject the Peccei-Quinn theory to a first quantitative test on the lattice.
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2 The QCD axion on the lattice

At finite lattice spacing a the topological charge gets multiplicatively and additively renormal-

ized [7]. As a result, the periodicity of the action S θ in θ is lost. To circumvent this problem,

we may chirally rotate the θ term into the fermionic part of the action, making use of the ax-

ial anomaly [8]. Assuming three quark flavors, substituting φa/ fa for θ in the chirally rotated

action [2] and replacing the integral by a sum over x, we arrive at

S Axion = a4
∑

x

[

1

2

(

∂µφa(x)
)2
− i m̂ sin

(

φa(x)

3 fa

)

(

ū(x)γ5u(x) + d̄(x)γ5d(x) + s̄(x)γ5s(x)
)

]

, (13)

where m̂−1 =
(

m−1
u + m−1

d + m−1
s

)

/3, plus a factor cos(φa(x)/3 fa) in the mass term of S QCD. It

makes a difference whether θ is replaced before or after the chiral rotation. The difference is a

term involving the derivative of φa(x), which is not expected to change the static properties of the

theory. Our choice (13) corresponds to the Peccei-Quinn-Weinberg-Wilczek parameterization of

the action [9].

The action (13) is complex and still does not lend itself to numerical simulation on the Eu-

clidean lattice. It has been shown that the finite volume partition function of the action (1) is

analytic in θ for |θ| < π [10]. Assuming that this holds for the action (6) and parameter 1/ fa as

well, and that φa/ fa remains small, we may resort to simulations at imaginary values of fa,

f ∗a = i fa , (14)

being followed by analytic continuation to physical numbers. The range of φa values can be es-

timated from the effective theory with Gaussian distributed topological charge Q [11], described

by the partition function

Z =

∫

dQ dφ̄a e−
[

Q2/2〈Q2〉+i (φ̄a/ fa) Q+(m2
a/2) φ̄

2
a V

]

, (15)

including a hypothetical mass term. This predicts

〈φ̄2
a〉 ∝

1

(χt/ f 2
a + m2

a) V
, (16)

stating that φa can be kept small for sufficiently large volumes. On that assumption contributions

of higher order in φa can be neglected in (13), and in S QCD as well. This leaves us with the action

S Axion = a4
∑

x

[

1

2

(

∂µφa(x)
)2
+

m̂

3

φa(x)

f ∗a

(

ū(x)γ5u(x) + d̄(x)γ5d(x) + s̄(x)γ5s(x)
)

]

. (17)

The action satisfies the shift symmetry (5) with fa → fa + O(φa) = fa + O(1/
√

V).

We use the SLiNC action with Symanzik improved glue for QCD [12]. The kinetic part of

the axion action is discretized as

1

2
a4

∑

x,µ

(

φa(x + aµ̂) − φa(x)

a

)2

= a2
∑

x,µ

(

φa(x) − φa(x + aµ̂
)

φa(x) . (18)
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# a−4V κ0 1/a f ∗a
1 123 × 24 0.12090 0.01825

2 123 × 24 0.12090 0.1825

3 123 × 24 0.12090 1.825

4 243 × 48 0.12090 0.01825

5 243 × 48 0.12090 0.1825

6 243 × 48 0.12090 1.825

Table 1: The parameters of our present QCD + axion ensembles, generated at the SU(3) flavor

symmetric point, for a wide range of bare axion decay constants, 2κ0m̄/3a f ∗a = 0.00001, 0.0001

and 0.001, respectively. The parameters match previous pure QCD runs [14].

We assume periodic boundary conditions for axion and gauge fields. The gauge fields are updated

using BQCD [13]. As a first step, we focus on the SU(3) flavor symmetric point, defined by

mu = md = ms ≡ m̄ and m2
π = m2

K
=

(

m
2 phys
π + 2m

2 phys

K

)

/3 ≈ [420 MeV]2, where we can hope for

a strong signal, and which is a good starting point for simulations at smaller pion masses [14].

The simulations are done at β = 10/g2 = 5.50 and restricted to 123 × 24 and 243 × 48 lattices,

owing to the high computational cost. The quark mass m̄ is given by am̄ = 1/2κ0−1/2κ0,c, where

the hopping parameter κ0 marks the symmetric point, and κ0,c is the critical hopping parameter at

which m̄ vanishes on the SU(3) symmetric line. To a good approximation κ0 = 0.12090, while

κ0,c = 0.12110. We use the center of mass of the nucleon octet to set the scale. This results in

the lattice spacing a = 0.074(2) fm [15]. The simulation parameters are listed in Table 1. Each

ensemble consist of O(10, 000) configurations on the 123×24 lattice and O(1, 500) configurations

on the 243 × 48 lattice.
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Figure 1: The topological charge Q plotted against the average axion field φ̄a =
a4

V

∑

x φa(x),

configuration by configuration, for 1/a f ∗a = 0.01825 on the 123 × 24 (left) and 243 × 48 lattice

(right).

5



A unique feature of SLiNC fermions is that the sum of Wilson term, mass (amB = 1/2κ0,c−4)

and nonperturbative clover term are invariant under chiral rotations [16], thus preserving all chiral

symmetries.

We monitor the topological charge Q and average axion field φ̄a. In Fig. 1 we show Q as

a function of φ̄a on the 123 × 24 and the 243 × 48 lattice for 1/a f ∗a = 0.01825. The most

striking feature is that the range of φ̄a values shrinks drastically with increasing volume. We find

〈a2φ̄
2
a〉 ≈ 0.14 × 10−1 on the 123 × 24 lattice and 〈a2φ̄

2
a〉 ≈ 0.18 × 10−3 on the 243 × 48 lattice. No

significant dependence of 〈φ̄2
a〉 on fa was observed. Equation (16) proves roughly correct if the

difference in axion masses (Table 2) is taken into account. To solve the strong CP problem, the

axion field would have to cover the full range 0 < |φa/ fa| < π. Beyond that, we do not see any

correlation between the global charge Q and axion field φ̄a. A measure for linear relationship is

Pearson’s correlation coefficient

r =

∑N
1 φ̄aQ −

∑N
1 φ̄a

∑N
1 Q/N

√

(

∑N
1 φ̄

2

a −
(

∑N
1 φ̄a

)2
/N

) (

∑N
1 Q2 −

(

∑N
1 Q

)2
/N

)

, (19)

where
∑N

1 is the ensemble sum. On the 243 × 48 lattice we obtain r = 0.016(113), 0.016(113)

and −0.108(80) for 1/a fa = 1.825, 0.1825 and 0.01825, respectively, which is compatible with

zero. Cross correlations with −5 ≤ ∆ at ≤ 5 give similar results. In contrast, the effective theory

(15) predicts r = −1. The topological susceptiblity χt will be given later (Table 2) together

with the axion masses. From the probability distribution of φ̄a, P(φ̄a), we obtain the effective

potential [17, 18]

V Ueff(φ̄a) = − log P(φ̄a) + c . (20)

Both P(φ̄a) and Ueff(φ̄a) are shown in Fig. 2. From the potential we can read off the axion mass,

m2
a = ∂

2Ueff(φ̄a)/∂φ̄
2

a | φ̄=0. A first estimate gives ma = 190 − 250 MeV on the 243 × 48 lattice for

1/a f ∗a = 0.01825.
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Figure 2: The probability distribution P(φ̄a) (left) and the effective potential Ueff(φ̄a) (right) on

the 243×48 lattice for 1/a f ∗a = 0.01825. The potential is normalized to zero at φ̄a = 0. The solid

curve represents the effective potential (22) suggested by the lattice, Ueff(φ̄a) = (m2
a/2) φ̄

2

a, with

ma = 230 MeV.
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Figure 3: The correlation function C(t) (left) and the effective axion mass meff
a (right) on the

243×48 lattice for 1/a f ∗a = 0.01825. The upper dashed curve shows the contribution of the axion,

A cosh
(

− maτ
)

, while the lower dashed curve shows the contribution of the η′, B cosh
(

− mη′τ
)

.

3 The axion mass

To obtain the axion mass ma we compute the correlation function C(t) = a2
∑

~x 〈φa(~x, t) φa(0)〉,
which we parameterize as

C(t) = A cosh
(

− maτ
)

+ B cosh
(

− mη′τ
)

, τ = t − T/2 , (21)

where T is the temporal extent of the lattice. We expect the operator φa to couple to the axion

and a flavor singlet quark-antiquark bound state, which we call the η′ meson. In Fig. 3 we show

the correlation function C(t) on the 243 × 48 lattice together with a two-exponential fit, eq. (21),

to the data. The individual contributions of the axion and the η′ are shown by the dashed curves.

As expected, the contribution of the η′ is negative. Also shown is the effective mass of the axion,

ameff
a = arcosh

[(

C(t − a) + C(t + a)
)

/2C(t)
]

, which dominates the correlation function at times

8 << t/a << 40. In Table 2 we collect our results for the axion and η′ masses. The 123 × 24

lattice was too small to determine the η′ mass reliably. The axion mass shows significant finite

size corrections. We expect the corrections to be dominated by discretization effects of the axion

propagator [19]. This suggests ma(L) = ma (1 − c/L2), where L is the spatial extent of the lattice.

# a−4V 1/ f ∗a [GeV−1] χ1/4
t [MeV] ma [MeV] mη′ [MeV]

1 123 × 24 0.0068 119 ± 4 62 ± 2

2 123 × 24 0.068 121 ± 6 73 ± 8

3 123 × 24 0.68 108 ± 8 66 ± 4

4 243 × 48 0.0068 153 ±11 230 ±13 700 ± 110

5 243 × 48 0.068 148 ± 9 221 ±13 660 + 50
− 350

6 243 × 48 0.68 151 ± 8 238 ±11 670 ± 120

Table 2: The axion and η′ masses, as well as the topological susceptibility, according to volume

and bare axion decay constant f ∗a , in physical units using a = 0.074(2) fm.
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Figure 4: The axion mass ma for 1/ f ∗a = 0.0068 GeV−1 extrapolated to the infinite volume.

In Fig. 4 we attempt an extrapolation to the infinite volume, which lifts the axion masses to

approximately 300 MeV. The η′ masses lie within the expected range [20]. We expect the axion

to mix with the π0, η and η′ mesons. The topological susceptibility χt turns out to be in agreement

with pure QCD at the given mass, but shows no dependence on 1/ f ∗a .

The most remarkable result is that the axion mass is independent of 1/ f 2
a over a wide range

of decay constants fa, covering two orders of magnitude. In Fig. 5 we contrast the lattice result

with the semi-classical prediction (8). While the lattice axion mass stays constant in the limit

1/ f 2
a → 0, the semi-classical result (8) rapidly drops to zero in that limit. Our results come

not completely unexpected. They are consistent with the conclusion drawn from the equation

of motion (12), assuming that the topological charge density q(x) receives no or little feedback

from the axion, which seems to be the case. Further support comes from the path integral.

As a consequence of (16), the action will be dominated by the term linear in φa at sufficiently

large volumes. The result is that the axion decay constant can be absorbed into the integration
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Figure 5: The axion mass ma as a function of 1/ f 2
a on the 243 × 48 lattice (left), compared with

the prediction (8) of the semi-classical approximation (right).
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variable, which makes the path integral independent of fa. This suggests that the axion mass in

Fig. 5 continues linearly across 1/ f 2
a = 0 to positive values of 1/ f 2

a .

A key element in phenomenological applications of the Peccei-Quinn theory, notably the

estimate of the dark matter axion mass, has been the effective potential (7) and resulting mass

formula (8). Our simulations suggest however

Ueff(φ̄a) =
m2

a

2
φ̄

2

a (22)

with ma ≈ 230 MeV, up to finite size corrections. For (22) to be true, it must match the con-

strained effective potential (20) derived earlier. This is indeed the case. In Fig. 2 (right figure)

we compare (22) with (20) on one of our 243×48 lattices. Both (20) and (22) produce consistent

results. Possible contributions of higher order to (22) appear to be small. Similar matches are

found for the other lattices.

4 Conclusion and outlook

In this Letter we have performed a fully dynamical simulation of the Peccei-Quinn theory on the

lattice for three flavors of quarks. Our results, above all the axion mass, are found to be in conflict

with current axion phenomenology and experiment. In particular, we can exclude a very light

axion which would qualify as dark matter candidate. To account for the quantum fluctuations

consistently in the framework of effective field theory, a mass term for the axion will have to be

added to the action,

S Axion =

∫

d4x

[

1

2

(

∂µφa(x)
)2
+ i
φa(x)

fa

q(x) +
1

2
m2

a φ
2
a(x)

]

, (23)

and possibly operators of higher powers of φa as well. The axion mass term does not affect the

transformation properties of the action under UPQ(1). It appears though that QCD allows only

small values of φa/ fa to exist, which thwarts the Peccei-Quinn solution of the strong CP problem.

So far the calculations have been done at a single value of the lattice spacing, a = 0.074 fm.

It is an open question what happens at larger momentum cut-offs and whether the QCD axion

can be a self-consistent, fundamental quantum field theory with a well defined continuum limit.

Simulations at varying lattice spacings, together with analytical investigations [21], will have to

show.
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