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1. Introduction

Supersymmetric gauge theories are building blocks for many extensions of the Standard
Model that aim to describe the physics of fundamental interactions beyond the TeV
scale. In general, the non-perturbative properties of these theories play an essential role,
in particular concerning the scenarios for a dynamical supersymmetry (SUSY) breaking.
Monte-Carlo simulations on the lattice are the method of choice for non-perturbative
investigations of quantum field theories. They provide a tool to investigate if and how
the theoretical predictions about supersymmetric theories are realised, see [1] for a more
general discussion.

A specific application of numerical simulations of supersymmetric theories is the de-
termination of the spectrum of bound states and the study of the gluino condensate in
N = 1 supersymmetric Yang-Mills theory (SYM). In fact, scenarios have been proposed
for the multiplet structure of the lightest bound states of this theory [2, 3, 4], and several
analytical calculations have been presented for the chiral condensate, see [5] and refer-
ences therein. The bound state spectrum is the main focus of our current investigations.
In our previous project we have mainly considered SYM with gauge group SU(2). We
have investigated the particle spectrum of the theory and observed the expected degen-
eracy of the states in the lightest supermultiplet [6]. We have now extended our studies
to the multiplet of excited states, and first results have been reported in a contribution
to the Lattice2017 conference [7].

Our most recent efforts are the numerical simulations of N = 1 supersymmetric Yang-
Mills theory with gauge group SU(3). This theory is more appealing from a phenomen-
ological point of view, since it corresponds to the gauge part of supersymmetric QCD.
First results for this theory by our collaboration can be found in [8, 9, 10]. Another
investigation of this theory is presented in [11]. Our simulations rely on the specific
approach of using Wilson fermions and a tuning of the gluino mass to restore chiral
symmetry and supersymmetry. As has been found by Veneziano and Curci, this tuning
is enough to recover both symmetries in the continuum limit [12]. We crosscheck the
correctness of our tuning using the supersymmetric Ward identities.

Simulations of theories with dynamical fermions in the adjoint representation of SU(3),
such as SYM, require significantly more resources than QCD with quarks in the fun-
damental representation. Therefore, at present we are bound to relatively small lattice
sizes. The removal of the leading order lattice cut-off terms from the fermion action is
crucial in this case, since lattice artefacts lead to an explicit supersymmetry breaking.
From our previous investigations we have found that the clover improved fermion action
is definitively a better choice than the unimproved stout smeared Wilson fermions used
in our first simulations [9]. Further details of our lattice formulation are explained in
Section 2.

The main focus of our project are the investigations of the lightest bound states
masses in SU(3) SYM. In particular, we want to check whether the mass degeneracy
between bosonic and fermionic particles expected in a supersymmetric theory is realised
non-perturbatively in the spectrum of bound states. Analytic calculations based on low-
energy effective actions predict a supermultiplet of bound states consisting of mesonic
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gluinoballs and fermionic gluino-glue particles [2]. It was later extended by an addi-
tional multiplet containg states created by glueball operators [3, 4]. We investigate the
members of both multiplets on the lattice by means of suitable operators. The results
at one value of the lattice spacing, presented in Section 5, already indicate the expected
formation of the supermultiplets of the lowest-lying states as in the case of gauge group
SU(2).

In Section 3 the methods for the determination of the dimensionful reference scales
are explained. Issues concerning the systematic errors, like the check for an efficient
sampling of topological sectors, are discussed in Section 6. Finally, as an outlook we
provide first results at three additional lattice spacings in Section 7.

2. The improved lattice formulation of supersymmetric

Yang-Mills theory

Supersymmetric SU(3) Yang-Mills theory describes gluons, the particles associated with
the non-Abelian gauge field for gauge group SU(3), and their superpartners, the gluinos.
Gluinos are Majorana fermions transforming under the adjoint (octet) representation of
SU(3). SU(3) SYM is of a complexity comparable to QCD [13]. It is expected that in the
continuum the particles described by this theory are bound states of gluons and gluinos,
that form supermultiplets degenerate in their masses, if supersymmetry is unbroken.
Since supersymmetry is broken explicitly by the lattice discretisation, one important
task of the project is to demonstrate that the data of the numerical simulations are
consistent with restoration of supersymmetry in the continuum limit.

In the continuum the (on-shell) Lagrangian of SYM, containing the gluon fields Aµ

and the gluino field λ, reads

L = tr
[

−
1

2
FµνF µν + iλ̄γµDµλ − m0λ̄λ

]

, (1)

where Fµν is the non-Abelian field strength and Dµ denotes the gauge covariant derivative
in the adjoint representation. The gluino mass term with the bare mass parameter m0

breaks supersymmetry softly.
We employ the lattice formulation of SYM proposed by Curci and Veneziano [12].

The gauge field is represented by link variables Uµ(x). The corresponding gauge action
is the Wilson action built from the plaquette variables Up. The gluinos are described by
Wilson fermions in the adjoint representation. In its basic form the lattice action reads

SL = β
∑

p

(

1 −
1

3
Re tr Up

)

+
1

2

∑

xy

λ̄x(Dw)xyλy , (2)

with the Wilson-Dirac operator

(Dw)x,a,α;y,b,β = δxyδa,bδα,β − κ
4

∑

µ=1

[(1 − γµ)α,β(Vµ(x))abδx+µ,y

+(1 + γµ)α,β(V †
µ (x − µ))abδx−µ,y

]

, (3)
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where Vµ(x) are the link variables in the adjoint representation. The hopping parameter
κ is related to the bare gluino mass via κ = 1/(2m0 + 8).

In our current simulations we have implemented the clover term in order to reduce
the leading lattice artefacts of the Wilson fermion action. The additional term is

−
csw

4
λ̄(x)σµνF µνλ(x). (4)

where Fµν is the clover plaquette. We have used the one-loop value for the coefficient
csw [14], leading to a one-loop O(a) improved lattice action. This is a systematic and
feasible approach for setting the clover coefficient. Alternative tunings of the coefficient
are possible. In the SU(2) case we have tested a tadpole resummation [6], that leads to
a considerable improvement of the mass degeneracy for finite lattice spacings. At our
current parameter range the value of csw obtained with the proposed tadpole formula is
not much different from the one-loop prediction.

The integration of the Majorana fermions yields
∫

[dλ] e− 1

2
λ̄Dwλ = Pf(CDw) = ±

√

det Dw (5)

which is the Pfaffian of the Wilson-Dirac operator Dw multiplied with the charge conjug-
ation matrix C. The square root of the determinant is handled by the RHMC algorithm,
whereas the sign of the Pfaffian has to be considered in a reweighting of the observables.
The effect of the Pfaffian sign is discussed in Section 6.1.

3. Scale setting and simulation parameters

We have performed simulations at four different values of the inverse gauge coupling
β = 5.4, 5.5, 5.6, and 5.8. The lattice size is 163 × 32, except for β = 5.4, where we
have chosen a 123 × 24 lattice, and some additional large volume runs at β = 5.6. The
most reliable results are obtained at β = 5.5, whereas especially the results at β = 5.8
are in most cases excluded due to considerable finite size effects, as discussed in detail
in Section 6.

The scale is determined from an independent measurement of gluonic observables in
order to estimate the lattice spacing and the physical volume. We are using two different
quantities: the Sommer parameter r0 and the scale w0 from the gradient flow [15, 16].
The results in units of r0 can be converted to QCD units fm or MeV using the QCD
scale setting r0 = 0.5 fm. The methods for the determination of r0/a from a fit of the
static quark-antiquark potential are explained in our earlier work on SU(2) SYM [6]. At
each β the final values of the scales w0/a and r0/a are obtained by linearly extrapolating
them as a function of the square of the adjoint pion mass to the chiral limit.

The determination of w0/a follows the standard methods [15, 16] up to a modification
of the reference point. We have chosen a reference value of u = 0.2 (w0.2

0 ) instead of
the common value 0.3 (w0.3

0 ). This method is explained in [17] and reduces the effect of
topological freezing that we observe at our smallest lattice spacings. The scaling between
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β = 5.4 and β = 5.5 is compatible for w0.2
0 /a and w0.3

0 /a. Up to β = 5.6 the scaling of
w0.2

0 is consistent with the r0 scaling. The smaller value of u also considerably reduces
the quite large uncertainties for the chiral extrapolation of w0 at β = 5.6.

4. Signals for supersymmetry and chiral symmetry

restoration

As shown by Veneziano and Curci [12], supersymmetry and chiral symmetry are restored
in the continuum limit by the same tuning of the bare gluino mass m0. Chiral symmetry
restoration cannot be probed directly from the chiral Ward identities as in the case of
two-flavour QCD, since the U(1) axial symmetry is broken explicitly by an anomaly
and not only by the Wilson term. An alternative way is provided by the mass of the
adjoint pion (a–π). The adjoint pion is not a physical particle in SYM. It can, however,
be defined by arguments based on the OZI-approximation [2], or in the framework of
partially quenched chiral perturbation theory [18]. When SYM is considered as the
partially quenched limit of Yang-Mills theory with two Majorana flavours, the adjoint
pion can be interpreted as a pseudo-Nambu-Goldstone particle arising from spontaneous
chiral symmetry breaking. In the presence of an explicit chiral symmetry breaking by
a non-vanishing renormalised gluino mass, the square of the adjoint pion mass scales
proportional to the renormalised gluino mass. This relation is used to extrapolate our
numerical results to the chiral limit. The mass of the adjoint pion (mπ) is measured
from the exponential decay of the connected part of the a–η′ meson correlator.

The reliability of our approach for the tuning to the chiral-supersymmetric continuum
limit has to be crosschecked with different prescriptions. Supersymmetric Ward identities
provide an alternative solid signal for the remnant chiral symmetry breaking without
further assumptions about the structure of chiral effective actions. Another approach is
to determine the transition point for the discrete subgroup of chiral symmetry that is left
unbroken by the anomaly. Below we discuss in detail the theoretical expectations and
the results of these different tunings towards the chiral limit. All of these signals must
agree in the continuum limit, but we will show that already at finite lattice spacings the
discrepancies are small and even negligible compared to other systematic uncertainties.

We have investigated the supersymmetric Ward identities at many different values of
our bare mass parameter. A combination of the supercurrent renormalisation constant
(ZS) and the renormalised gluino mass (mS) can be determined from this measurement.
The techniques of the measurement and analysis can be found in [19, 20]. We developed
a generalised least squares method [21, 20] to obtain more reliable estimates of amSZ−1

S

and its statistical error. Note that the tuning of the clover coefficient in the fermion
action up to one-loop order does not ensure automatically the O(a) improvements of
the SUSY Ward identities, as explained in [19]. Further perturbative calculations of
improvement coefficients would be required to reach an O(a) scaling of the same order,
and we plan to investigate this aspect in the future.

The value of the critical parameter κc, where the renormalised gluino mass vanishes, is
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Figure 1: Linear extrapolations of the adjoint pion mass squared (m2
π) (black) and the

renormalised gluino mass (amSZ−1
S ) obtained by SUSY Ward identities (blue)

as a function of the bare parameter κ towards the chiral point (κc).

obtained from an extrapolation of m2
π to zero, and it is compared with the determination

from the supersymmetric Ward identities, as shown in Figure 1. The two values of κc

are very close to each other, but there is a small difference of around 0.00023(5). This
discrepancy is presumably due to lattice artifacts, and is expected to disappear in the
continuum limit. Results at other values of β in view of the continuum limit are discussed
in [20].
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(b) Double Gaussian fit

Figure 2: Double peak structure of the histogram of the chiral condensate at κ = 0.1665
and β = 5.6 from 1200 configurations. A single Gaussian does not fit our data,
which are instead consistent with a sum of two Gaussian functions.

A third determination of κc could be found by studying the change of the gluino
condensate at zero temperature occurring at the chiral phase transition. In fact, chiral
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symmetry is the invariance of the continuum action of SYM with respect to the U(1)
rotation of the fermion field

λ → exp {−iθγ5}λ . (6)

An anomaly breaks chiral symmetry down to Z2Nc at the quantum level, such that only
2Nc values of θ leave the partition function invariant. At zero temperature even the
discrete group Z2Nc is broken down spontaneously to Z2 by a non-vanishing expectation
value of the gluino condensate. The coexistence of Nc degenerate vacua is a signal
for a first order phase transition crossing the chiral limit as a function of the gluino
mass. We can search the transition in the chiral condensate 〈λ̄λ〉, corresponding to the
real part of the gluino condensate. The condensate on each configuration should hence
fluctuate between two distinct values at the critical point κc. However, simulations close
to the critical point are very difficult and we are limited to small volumes, like 64 and
84, to ensure the convergence of the inverter of the Dirac-Wilson operator. We have
used periodic boundary conditions to reduce the breaking of supersymmetry that would
otherwise appear at non-zero temperature due to the difference between the thermal
statistics of fermions and bosons. Running our simulations at β = 5.6, we find signals
of a double-peak structure of the chiral condensate at κ = 0.1665, see Figure 2. The
determined value of κc is consistent with the other determinations (κc(mπ) = 0.16635(4),
κc(〈λ̄λ〉) = 0.1662(4)). Taking into account the uncertainties from finite size effects, we
can conclude that there is a good agreement with the theoretical expectations concerning
the vacuum structure of the theory at zero temperature.

5. Results for the lightest supermultiplet in

supersymmetric SU(3) Yang-Mills theory

The estimation of the masses of bound states in SU(3) SYM is the main focus of the
current work. The particle spectrum is composed of bound states of gluons and gluinos.
One expects composites of gluino fields (gluinoballs), of gluon fields (glueballs), and of
both (gluino-glueballs). The physical states would be mixtures of those. The meas-
urement of these particles is quite challenging. For the mesonic gluinoballs, which are
flavour singlet mesons, and the glueballs this can be understood by comparison with the
corresponding particles in QCD. Hence a rather large statistics is required in order to
get reliable estimates for the masses. As detailed in Section 4, the adjoint pion mass is
used for the extrapolations of the masses to the chiral limit. All masses are determined
from the exponential decay of the correlators in the corresponding channels. Further
details of the different measurements are explained in the following. First we consider
the simulations at β = 5.5 on a 163 × 32 lattice, since these are our most precise and
most reliable results.
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Figure 3: Mass plateau of the gluino-glue and the 0++ glueball for β = 5.5, κ = 0.1673,
on a 163 × 32 lattice. The final value indicated by the gray line is obtained
from a fit of the correlation function.

5.1. Glueballs, gluino-glueballs and the supermultiplet formation

A reliable determination of the glueball masses is challenging. In the current work we
have focused on the 0++ glueball, since it provides the best signal-to-noise ratio. We
have applied variational methods to reduce the effects of excited states. More about
our methods is explained in our work on SU(2) SYM [6] and in [22]. An example of
an effective mass determined from the exponential decay of the correlators is shown in
Figure 3(a).

The fermionic partners of the glueballs are particles created from gluino and gluon
fields. The corresponding operator is composed of the field strength Fµν and the gluino
field,

Õgg̃ =
∑

µν

σµνTr [F µνλ] , (7)

with σµν = 1
2

[γµ, γν ]. Fµν is represented by the clover plaquette on the lattice. The
measurement of this particle from the ensemble of gauge configurations uses Jacobi and
APE smearing techniques in order to improve the signal and to suppress the excited
state contaminations. Figure 3(b) shows an example of the effective mass and of the
quality of our fits. Further details can be found in our earlier publications [6].

As in our previous investigations of SU(2) SYM, the degeneracy of the fermionic
gluino-glue and its bosonic partners is the most important signal for the supermultiplet
formation. The chiral extrapolation of the 0++ glueball and gluino-glue masses at β = 5.5
are shown in Figure 4. At large adjoint pion masses, corresponding to a large soft super-
symmetry breaking, the gluino-glue is about twice as heavy as the glueball. However, in
the chiral limit the two masses become degenerate up to our current statistical precision.

In general, supersymmetry breaking lattice artefacts, indicated by a mass gap between
the states of the lightest supermultiplet, are expected at any finite lattice spacing. In
our current simulations at β = 5.5 their influence seems to be under control since the
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Figure 4: The masses of the gluino-glue and the 0++ glueball at β = 5.5 in lattice units.
The figure shows a linear and a quadratic fit of the data. The two largest values
of the adjoint pion mass mπ are excluded in the linear fit of the gluino-glue.

mass gap is not significantly larger than other uncertainties of the measurements. At
these parameters our simulations therefore are already close enough to the continuum
limit to reproduce main features of the continuum theory.

5.2. The completion of the chiral multiplet by mesonic gluinoballs

Two chiral supermultiplets are expected to represent the degrees of freedom at low
energies. The supermultiplet of the lightest bound states should contain a scalar, a
pseudoscalar, and a fermionic particle. The scalar and pseudoscalar particles described
by the low-energy effective actions are either of glueball or of mesonic type. The actual
states would, however, be mixtures of those, and on the lattice the states created by the
corresponding glueball and mesonic operators cannot be distinguished unambiguously.

In our previous investigation of SU(2) SYM we have found that the mesonic operator
provides a better signal for the lightest pseudoscalar state, whereas the scalar meson is
degenerate with the scalar glueball. We complete the results for the masses of the lowest
multiplet with the additional data from the a–η′ meson for the pseudoscalar channel and
use the a–f0 as a cross check for the scalar glueball data.

The singlet mesonic operators are named similar to their QCD counterparts, the
pseudoscalar a–η′ (λ̄γ5λ) and the scalar a–f0 (λ̄λ). The disconnected part is an essential
contribution to the correlation functions of these particles. The signal for this part of
the correlators is rather noisy. Our methods for the measurement include truncated
eigenmode approximation and preconditioning to improve the signal, see [23] for further
details. The results contain still quite large uncertainties, see Figure 5, but we are able
to obtain the first estimates of the masses also in the mesonic channel. We have also
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Figure 5: Mass plateau for the mesons a–η′ and a–f0 for β = 5.5, κ = 0.1673, on a
163 × 32 lattice. The final value indicated by the gray line is obtained from a
fit of the correlation function.

done an alternative determination of the a–η′ mass from the topological charge density
correlator [24], which is in good agreement with the results obtained from the mesonic
correlators.

The signal in the scalar and pseudoscalar channels can be improved using a variational
approach combining different mesonic and gluonic operators. We have recently tested
this in SU(2) SYM [7], and we plan to use it also in the SU(3) case. Most likely it will
reduce the remnant excited state contamination of the ground state signal, especially in
the mesonic sector.

As shown in Figure 6, the masses of the scalar and pseudoscalar mesons are almost de-
generate with the scalar glueball mass within our current precision. Similar to the scalar
glueball, they show only a weak fermion mass dependence. There is indeed a formation
of a complete supersymmetry multiplet in the chiral limit and the a–f0 provides a signal
for the same lightest scalar state as the glueball.

The final extrapolated values of the particle masses in units of the Sommer scale r0

are

gluino-glue glueball 0++ a–η′ a–f0

2.83(44) 3.22(95) 3.70(71) 3.69(63)

6. Estimation of systematic uncertainties

Several systematic uncertainties of our current results need to be considered. The most
important limitation is the remnant supersymmetry breaking by the lattice discretisa-
tion. We are currently not able to perform a complete extrapolation to the continuum,
but as explained in Section 7, the remaining uncertainties are currently at the order of
the statistical errors. We plan more in-depth investigations to get a better signal for the
continuum extrapolation. The finest accessible lattice spacing is limited by two effects.
Since the number of lattice points is limited, the finer lattice spacing leads to a smaller
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Figure 6: The masses of the different bosonic particles (singlet scalar and pseudoscalar
mesons) in comparison to the glueball mass at β = 5.5. a–η′(top.) indicates
the pseudoscalar meson mass obtained from the topological charge density
correlator.

volume. The lattice spacing can, consequently, only be reduced until the finite volume
effects significantly affect the results. The second important effect is the topological
freezing, that leads to large autocorrelation times when the lattice spacing becomes too
small. As we will discuss below, our simulations at β = 5.6 and β = 5.8 are affected by
these effects.

6.1. The Pfaffian sign

The sign of the Pfaffian has to be taken into account in our simulations. We expect that
the Pfaffian sign is not significant at our current parameters, but this has to be confirmed
by measurements. The fluctuations of the Pfaffian sign become more significant at
smaller gluino masses and coarser lattices. It is hence possible to approach the chiral
continuum limit from simulations without a relevant contribution of the sign. However,
we have to check explicitly that we are indeed in the region without relevant negative sign
contributions. It is enough to consider the run with the smallest gluino mass to confirm
this. As explained in our earlier investigations, the sign of the Pfaffian is obtained from
the number of degenerate pairs of real negative eigenvalues of the Dirac-Wilson operator,
see also [25] for the methods of this measurement. Sign changes are hence only possible,
if there are negative real eigenvalues. As shown in Figure 7 we do not observe any of
these negative eigenvalues at least for a large subset of configurations. We conclude that
the Pfaffian sign for the current runs at β = 5.5 is not relevant.
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The green points indicate eigenvalues with a significant chirality of the eigen-
vector 〈v|γ5|v〉 > 0.001. Possible Pfaffian sign changes might occur if there are
real negative eigenvalues, i. e. green points in the shaded region.

6.2. Finite size effects

Finite size effects play an important role in the estimations of the mass spectrum. In
earlier investigations with gauge group SU(2) we have found that for small volumes the
gluino-glue gets heavier and the degeneracy of the spectrum is lost, but larger volumes
(L/r0 > 2.4) are not affected [26]. We check whether similar finite volume effects also
appear for gauge group SU(3) at a rather small lattice spacing (β = 5.6). The results
shown in Figure 8 have a considerable uncertainty for the gluino-glue data. At the lattice
size of Ns = 16, where we have performed most of the simulations, the adjoint pion mass
shows around 10% finite size effects. We conclude that on a 163 ×32 lattice the finite size
effects are negligible at β = 5.5; at β = 5.6 they are of the order of our current still quite
limited accuracy. At β = 5.8 rather large finite size effects are expected. Consequently
we have focussed here on β = 5.5 and plan to increase the lattice volume in our future
more precise simulations at β = 5.6.

6.3. The sampling of topological sectors

As known from QCD, topological sectors are not efficiently sampled at lattice spacings
smaller than roughly 0.05 fm, leading to the loss of ergodicity of Monte-Carlo lattice
simulations. Very large autocorrelation times are especially observed for topological
quantities, and the topological charge is effectively frozen towards the continuum limit.
Our simulations are already at a very fine lattice spacing, therefore we must ensure a
reasonable sampling of the topological sectors. We have measured the average topological
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charge 〈Q〉, the corresponding integrated autocorrelation time τQ, and the topological
susceptibility χQ. The topological freezing is under control for β = 5.5 (τQ is between
17 and 46), but starts to become more significant at β = 5.6 (τQ is between 58 and
185), which might also be related to the small volume, see Figure 9. The histogram of
the topological charge for β = 5.8 shows a nearly frozen topology. Hence, for this β the
values of τQ and other quantities are not reliable.

7. Outlook: continuum limit and comparison to the

SU(2) case
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Figure 10: The masses of the fermionic gluino-glue and the bosonic 0++ glueball at
β = 5.4 in lattice units. The figure includes an extrapolation of the chiral
limit based on a linear fit.

Currently our most precise results are from β = 5.5. The results from the finer
lattices are limited by finite size effects and topological freezing. In addition we have
done simulations at one coarser lattice at β = 5.4. Our first preliminary results for the
glueball and the gluino-glue at the coarse lattice spacing are shown in Figure 10. There
is a considerable gap between the constituents of the multiplet, but further investigations
are required to crosscheck the chiral extrapolations.

With the current results we are already able to make the first estimations of the
scaling towards the continuum limit. The results in units of the scales w0.2

0 and r0 for
the gluino-glue are shown in Figure 11. As expected, the results at β = 5.8 are unreliable.
From the other lattice spacings a trend towards smaller gluino-glue masses is seen in the
continuum limit.

The preliminary results of the extrapolations at different β in units of the scale w0.2
0

are
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Figure 11: A comparison of the gluino-glue mass in units of the Sommer scale r0 and of
w0.2

0 for different lattice spacings (corresponding to different β) and SU(Nc)
gauge groups as a function of the squared adjoint pion mass. The simulations
of SU(3) SYM at β = 5.4, 5.5, 5.6, and 5.8 have been done with a clover
improved fermion action and a plain Wilson gauge action; the simulations of
SU(2) SYM at β = 1.9 with a plain Wilson fermion action, one level of stout
smearing, and a tree level Symanzik improved gauge action.

β gluino-glue glueball 0++

5.4 0.90(13) 0.6240(59)
5.5 0.743(77) 0.84(20)
5.6 0.673(66) 0.60(15)

The masses in units of r0 can be compared to our previous results for SU(2) SYM as
shown in Figure 11. It is remarkable that the masses of the lightest states in physical
units are comparable for SU(2) and SU(3) SYM.

8. Conclusions

Our current results for the lightest bound states in supersymmetric SU(3) Yang-Mills
theory on the lattice already provide strong indications for a supermultiplet formation
in the chiral continuum limit. As in the case of gauge group SU(2), there is no unexpec-
ted signature for supersymmetry breaking, and the lattice artefacts can be controlled.
The non-perturbative numerical investigation of this theory with Wilson fermions is
hence possible and the theoretical suggestions of Veneziano and Curci can be applied in
practice.

The simulation parameters are quite restricted, since an SU(3) Yang-Mills theory with
fermions in the adjoint representation demands considerably more computational efforts
than in the case of the fundamental representation. The implementation of an improved
fermion action is hence quite essential, as shown by our numerical results.

Further studies at larger lattices are required to complete the continuum extrapolation
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and reduce finite volume uncertainties. Nevertheless, the present data already indicate
that the multiplet formation persists towards the continuum limit. We are currently
also exploring more advanced methods to reduce the excited state contamination from
the determination of the masses of the bound spectrum.
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A. Data

In the following we list the data of our most relevant ensembles. The main part of the
paper considers the runs on a 163 ×32 lattice at β = 5.5 with a one-loop clover coefficient
csw = 1.598. These are summarised in the following table:

κ amπ r0/a amgg amgpp amη amf0
amf0,top Nconfigs

0.1637 0.9202(49) 3.86(11) 1.185(62) 0.63(13) – – 0.900(90) 500

0.1649 0.7888(19) 4.39(16) 0.995(28) 0.619(53) 0.76(11) 0.81(22) 0.680(80) 3212

0.1667 0.5475(19) 5.56(13) 0.739(24) 0.576(78) 0.620(35) 0.68(17) 0.580(80) 4415

0.1673 0.4437(26) 6.15(16) 0.648(28) 0.429(21) 0.582(31) 0.537(67) 0.550(80) 5984

0.1678 0.3360(23) 6.88(33) 0.492(36) 0.460(49) 0.439(75) 0.544(79) – 3591

0.168 0.2651(51) 8.31(40) 0.420(21) 0.439(72) – – – 2673

0.1683 0.138(15) 8.96(50) 0.429(39) – – – – 1645

All the quantities are in units of the lattice spacing a. The summarised quantities are
the Sommer parameter r0/a and the masses of the a–π (amπ), the gluino-glue (amgg),
the 0++ glueball (amgpp), the a–η′ meson (amη), and the a–f0 meson (amf0

). In addition
there is an alternative measurement of the a–f0 meson mass from the correlator of the
topological charge density (amf0,top). Nconfigs is the number of generated thermalised
configurations. Currently not the complete statistic is used in all measurements.
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