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Abstract

Most cosmological models of inflation are far away from providing a smoking gun at low

energies. A model of Higgs inflation in the Next-to-Minimal Supersymmetric Standard

Model, however, changes the NMSSM phenomenology drastically and may be well distin-

guished from the pure NMSSM or MSSM at a future Linear Collider. We point out certain

differences of the inflationary model to the ordinary NMSSM and discuss the Higgs and

neutralino/chargino sector in particular to identify the smoking gun of inflation at elec-

troweak energies.
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1 Introduction

Cosmological models that can be tested in the laboratory are typically very rare. A smoking

gun at low energies of a model acting at a very large scale like the Planck scale requires a

precision machine like a Linear Collider. Precise electroweak observations may then distin-

guish between an ordinary extension of the Standard Model (SM) or an extension which

simultaneously grasps cosmological problems. Early universe inflation is to be seen as a cos-

mological fact which has to be addressed. If it is addressed in a way that interrelates the

Planck-scale physics with Fermi-scale physics, such a model will most probably modify the

Higgs sector of the SM. On an economic basis, employing the SM Higgs field as the inflaton

field of cosmology, such a model can be called minimal. While Higgs inflation in the SM

tends to become “unnatural” towards the high scales, see Ref. [1], a more viable candidate is

the scale-free Supersymmetric Standard Model. The scale-free model requires compared to

the Minimal Supersymmetric Standard Model (MSSM) an additional singlet superfield and

thus is known as the Next-to-Minimal Supersymmetric Standard Model (NMSSM).

The Higgs sector of the NMSSM is characterised by the Z3-invariant superpotential

WHiggs = λ Ŝ Ĥu · Ĥd +
κ

3
Ŝ3, (1)

where Ĥu and Ĥd are the SU(2)L doublet Higgs superfields and Ŝ the singlet superfield. The

scalar components of the doublet fields decompose as

Hu =

�

H+u
H0

u

�

, Hd =

�

H0
d

H−d

�

, (2)

such that Hu ·Hd = H+u H−d −H0
u H0

d . This superpotential has an accidental Z3-invariance under

the transformation

Φ̂→ ei 2π
3 kΦ̂, k ∈ Z, for Φ̂= Ĥu, Ĥd , Ŝ,

such that only trilinear terms are allowed. Especially the µ-term of the MSSM, µ Hu · Hd , is

forbidden if the Z3 symmetry is imposed. After electroweak symmetry breaking, however, the

singlet scalar acquires a vacuum expectation value (vev) and dynamically induces a µ-term

via the λ coupling, which plays the role of an effective higgsino mass term:

µeff = λ〈S〉. (3)
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Non-minimal coupling in Canonical Superconformal Supergravity The implementation

of Higgs inflation in superconformal theories follows the non-minimal coupling of the Higgs

field content to supergravity, as suggested by Ref. [1], and comes with a single dimensionless

and holomorphic coupling X (Φ̂):

L= −6

∫

d2 θE
�

R+ X (Φ̂)R−
1
4

�

D̄2 − 8R
�

Φ̂†Φ̂+W(Φ̂)
�

+ h. c. + . . . , (4)

where E is the vierbein multiplet, R the curvature multiplet and D̄ a covariant derivative. The

chiral superfields Φ̂ shall be any of the fields Hu, Hd or S. A realization of such a non-minimal

coupling involving the doublet Higgs fields only can be found to be

X = χ Ĥu · Ĥd , (5)

with a numerical factor χ. Note that this term breaks the Z3 symmetry of the NMSSM and

the superconformal symmetry.

The addition of the superconformal symmetry breaking term changes the frame function

in Jordan frame supergravity and affects the Kähler potential in such a way that the NMSSM

superpotential gets modified [2,3]. In Planck units (MP = 1), the frame functionΩ = Φ̂∗i Φ̂i−3

gets extended by the χ-term to

Ωχ = Ω −
3
2

�

X (Φ̂) + h. c.
�

, (6)

and similarly the Kähler potential

K = −3 log(−Ω/3)→ Kχ = −3 log(−Ωχ/3). (7)

In the canonical superconformal supergravity (CSS) model, the frame function is explicitly

given by [3,4]

ΩCSS = −3+ |Ŝ|2 + |Ĥu|2 + |Ĥd |2 +
3
2
χ
�

Ĥu · Ĥd + h. c.
�

. (8)

In order to have successful inflation in the NMSSM, however, a stabilisator term ζ(Ŝ ˆ̄S)2 has to

be added [3,4], which disappears from the low-energy phenomenology (Planck-suppressed).

The χ-term breaks a continuous R symmetry and its discrete Z3 subgroup at dimension

six ∼ χ λ
2h6

M2
P

. Much below the Planck scale, the additional term induces a correction in the
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superpotential

Weff→We
3
2χHu·Hd/M

2
P ≈W +

〈Whid〉
M2

P

3
2
χHu ·Hd ≡W +

3
2
χm3/2Hu ·Hd , (9)

where the vev of the hidden sector superpotential can be related to the gravitino mass scale

m3/2 ≈
〈Whid〉

M2
P

. (10)

Effectively, the superpotential of the NMSSM gets modified by an additional µ-like term,

WiNMSSM = λ SHu ·Hd +
κ

3
S3 +µ Hu ·Hd , (11)

with µ= 3
2χm3/2. Thus, the effective higgsino mass term of the NMSSM Eq. (3) gets shifted

by the contribution from the non-minimal coupling to supergravity leading to inflation as

µ′eff = λ 〈S〉+
3
2
χm3/2 = µeff +µ. (12)

The low-energy smoking gun of Higgs inflation in the superconformal setup appears to be

the NMSSM extended with an MSSM-like µ-term and can be quite well distinguished from

either the pure MSSM or NMSSM as will be discussed in the following. We refer to this model

setup as the inflationary NMSSM, or short iNMSSM.

2 A short introduction to the iNMSSM

We consider the NMSSM extended with the additional µ-term as described above only. Its

presence can be motivated from a non-minimal coupling to supergravity and a proceeding

transformation in the Kähler potential in such a way that only the term µ Hu · Hd is present

in the superpotential with µ = 3
2χm3/2. Cosmological observations require the size of this

non-minimal coupling to be

χ ' 105λ. (13)

The size of the µ-term is then mainly given by the gravitino mass m3/2 and the λ coupling,

which we will assume to be O(0.1) in order to have sizeable NMSSM effects. Generically,

we also assume µ ∼ O(1TeV), which in combination requires rather light gravitinos of

m3/2 ∼ 10MeV. This might cause the cosmological gravitino problem, see Ref. [5]. Over-
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abundance of gravitino dark matter, however, can be constrained by constraining the reheat-

ing temperature after inflation [6]. We assume that the details of the inflationary model can

accommodate this problem as outlined in [3].

Soft SUSY breaking in the iNMSSM and the Higgs potential The additional Z3-breaking

µ-term may generate an additional soft Supersymmetry (SUSY) breaking bilinear parame-

ter in a similar manner as the Higgs Bµ-term exists in the MSSM. All further Z3-breaking

soft SUSY breaking terms that are in general allowed, see [7] and [8], are assumed to be

suppressed [9] and cannot be generated to sizeable amount by radiative corrections. There-

fore, the soft SUSY breaking potential can be summarised as the usual trilinear terms of the

NMSSM ∼ Aλ, Aκ plus the bilinear term from the non-minimal coupling to supergravity:

Vsoft = λAλ SHu ·Hd +
1
3
κAκ S3 +

3
2

Bµχm3/2 (Hu ·Hd + h. c. ) . (14)

The scalar potential for the two doublet and one singlet Higgs fields is defined according

to the rules of SUSY and consists of the F - and D-terms as well as the contribution from

SUSY breaking. In comparison to the Z3-symmetric NMSSM, we have the additional µ-term

appearing as mass term for the doublet fields and the bilinear soft breaking term ∼ Hu · Hd .

The full Higgs potential is thus given by

VHiggs =
�

m2
Hd
+ (µ+λS)2

�

|Hd |2 +
�

m2
Hu
+ (µ+λS)2

�

|Hu|2 +m2
S |S|

2

+
2
3
κAκ S3 +

�

κS2 +λHu ·Hd

�2
+ 2

�

Bµµ+λAλ S
�

Hu ·Hd

+
g2

1 + g2
2

8

�

|Hd |2 − |Hd |2
�2
+

g2
2

2
|H†

d Hu|2,

(15)

where we assume all parameters to be real.

The potential of Eq. (15) can easily provide the observed phenomenology of electroweak

symmetry breaking meaning Higgs vevs of the neutral doublet Higgs field components, 〈H0
u〉=

vu and 〈H0
d〉 = vd , with v2

u + v2
d = v2 = (174 GeV)2 and tanβ = vu/vd a free parameter; addi-

tionally, the singlet vev generates the effective µ-term of the NMSSM, µeff = λ〈S〉 = λvs. In

order to do so, the soft SUSY breaking masses m2
Hd

, m2
Hu

and m2
S are adjusted in such a way,

that the minimisation conditions

∂ VHiggs

∂ H0
d

�

�

�

�

vev

= 2m2
Hd

vd + . . . ,
∂ VHiggs

∂ H0
u

�

�

�

�

vev

= 2m2
Hu

vu + . . . ,
∂ VHiggs

∂ S

�

�

�

�

vev

= 2m2
Hd

vs + . . . (16)

4



are fulfiled. Solving for the mass parameters is trivial and we obtain

m2
Hd
= −(µ+µeff)

2 − v2λ2 sin2β −
1
2

M2
Z cos(2β) + a1 tanβ , (17a)

m2
Hu
= −(µ+µeff)

2 − v2λ2 cos2β +
1
2

M2
Z cos(2β) + a1 cotβ , (17b)

m2
S = a4 − a5 − a7 − v2λ2 − 2µ2

eff

�κ

λ

�2
, (17c)

where M2
Z =

g2
1+g2

2
2 v2 and the abbreviations ai are defined in Appendix A.

The electroweak breaking conditions have to be taken with great care, since the potential

possesses multiple minima and even if one particular minimum is selected to be the elec-

troweak (desired) vacuum by the above definition, there might be other minima deeper than

the desired vacuum and thus the true vacuum, i. e. the global minimum, is not the desired

one anymore. At tree-level, the minimisation can only be done numerically; at the loop-level,

the situation even gets worse and one has to guess suitable starting values for the numerical

routines, which have the potential to miss several of the minima. We take those constraints

at the tree-level seriously and therefore exclude parameter points leading to a non-standard

true vacuum of the theory. Typically, this global minimum appears at larger vevs for the fields

and thus gets more easily selected by the cosmological history of the universe after infla-

tion [10]. Since we start with vevs shortly below the Planck scale after inflation ends, the

universe while cooling down may get stuck in the higher scale vacuum. If it is a local min-

imum, one should consider the tunneling to the desired one. Typically, however, the larger

vev vacuum appears to be deeper than the desired vacuum.

Besides the fact that there are multiple vacua implying alternative vevs in the Higgs poten-

tial, the Higgs mass matrices (defined in Appendix A) show tachyonic states at the tree-level

depending on the input parameters. Tachyonic states have negative masses squared and sim-

ply invalidate the electroweak expansion point because the potential at that point appears

to be a local maximum (the “minimisation” conditions are rather conditions for stationary

points and may also result in maxima or saddle points) and thus pointing towards the deeper

minimum in the tachyonic direction. Actually, radiative corrections may lift up the potential

in some cases leading to rather light instead of tachyonic states. We take these constraints

nevertheless seriously and exclude tachyonic parameter configurations irrespective whether

radiative corrections lift the masses up or not.

The tachyonic constraints already confine clear portions of parameter space that remain

valid. In addition, vacuum stability considerations exclude additional parts at the borderline.
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Figure 1: Mainly tachyonic constraints (pink points) confine the allowed parameter space (light blue).
In addition, there exist other global minima than the electroweak vevs with a mostly long-lived desired
vacuum (purple) and rarely short-lived configurations (red). On the left panel, Aκ is taken to be 0 GeV,
where on the right panel Aκ = 100 GeV. The positive value of Aκ disallows the right wing for positive
µeff that was allowed for vanishing Aκ (in this case, there is a reflection symmetry). Moreover, there is
a clear correlation between the allowed signs of µ and µeff, which in most cases have to differ unless
µ appears to be small. The other sign of Aκ reversed the situation.

3 Electroweak phenomenology of the iNMSSM

The phenomenology of the iNMSSM at the electroweak scale deviates significantly from the

usual NMSSM. On the one hand, the number of states remain the same which may look like

the same phenomenology. On the other hand, the dependence on certain parameters appears

to be very different and the additional µ-term changes the interpretation of the higgsino mass

parameter as well as the functional dependence of the Higgs masses on it.

First of all, the tachyonic selection rule excludes large as well as very small (®
p

2v)

values of µeff. Moreover, both values µ and µeff appear to be correlated. This can be seen

from Figure 1. The tachyonic boundaries can be easily understood from a look at the mass

matrices, see Appendix A, where the small µeff value sets Aλ to be large, which sits on the off-

diagonal elements and thus is responsible for a large mixing which potentially drives one state

negative. Similarly, if the combination µ+ µeff appears to be large; therefore same signs of

µ and µeff are excluded in most cases. The trilinear soft SUSY breaking parameter Aκ mainly

influences the pseudoscalar singlet-like state. If this one appears to be tachyonic for small

Aκ, larger values of this parameter have the ability to lift this mass up and open up parameter

space that is excluded with a vanishing Aκ. This can be clearly seen in the comparison of the

allowed and excluded parameter space in the µ-µeff-plane shown in Figure 1.

The effect of both µ and µeff on the tachyonicity of states can be seen from the dependence
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of the Higgs spectra on these parameters. In Figure 2, we show the functional dependence

of the two lightest scalar and the lightest pseudoscalar masses on µeff for several values of µ.

The heavy states are mainly dominated by the input mH± = 800 GeV.

A precise knowledge of the Higgs sector in the NMSSM hence allows to distinguish be-

tween the pureZ3-symmetric NMSSM and the inflation-inspired iNMSSM with the additional

Z3-breaking µ-term. So far, we have not considered the additional soft SUSY breaking bi-

linear and kept it zero. In combination with a measurement of the neutralino sector, which

in contrast rather mimics the NMSSM, there is a clear smoking gun of inflation that can be

detected at an electroweak precision machine like a future Linear Collider. The Higgs spec-

trum varies severely with varying µ as we show in Figure 3. Here, we compare the light

pseudoscalar case with vanishing Aκ with the heavier scenario where Aκ = 100 GeV for illus-

trative reasons. While the light pseudoscalar mass is lifted up mainly by the amount of Aκ, the

tachyonic state for µ = 1000GeV gets non-tachyonic and the scalar spectrum only changes

marginally. The heavy states are merely fixed by the input value of the charged Higgs mass

mH± = 800 GeV.

The electroweakino sector is defined and briefly described in Appendix A, where it can be

seen from the neutralino mass matrix that the singlino mass is governed by κ
λµeff, where the

higgsino mass is determined by µ+µeff. Thus, a small higgsino mass, and therefore especially

also a small charged higgsino mass, which is preferably detectable at a Linear Collider, is

somewhat naturally selected in the iNMSSM where µ and µeff have to have opposite signs

and rather the same magnitude. Such a cancellation, however, if µ is significantly large,

tends to produce a heavy singlino in the iNMSSM in contrast to the NMSSM. This effect can

be removed by adjusting the ratio κ/λ in such a way that both singlino and higgsino masses

scale the same with µ. By this redefinition, however, if λ is kept fixed, the value of κ changes

dramatically. While the electroweakino sector may look the same as in the NMSSM even in

the presence of a large µ-term, the (pseudo)scalar sector still has a strong dependence on

the additional µ-term which is shown in Figure 4.

All the considerations and predictions presented above still depend on other, previously

suppressed parameters. For the illustrative purpose, these additional parameters have been

fixed to some values, variation of them also changes the structure of the plots shown in

this talk. Especially the top/stop sector enters the determination of the SM-like Higgs mass,

where we show mass contours in an interesting slice of parameter space in the following.

The Higgs mass predictions contain the full iNMSSM one-loop and leading two-loop contri-

butions, where the stop contribution in all cases was fixed to be sizeable and beyond the
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Figure 2: The spectra of the lightest states and how they vary with varying µeff, exemplarily for some
choice of parameters. In each plot, the µ value is fixed to a given value, where the lower right plot has
a fixed sum µ+µeff = −200 GeV. It can be clearly seen which intervals are allowed (those with all three
states appearing in the plot; where one or more are missing, these are tachyonic). In the case with
µ= 1000GeV h0

1 and h0
2 apparently change their role which is due to the fact that the absolute value of

the tachyonic state grows above the corresponding value of h0
2. The scenario with µ= 200 GeV shows

the feature that the tachyonic exclusions are exclusive in the sense that one tachyonic state (scalar
or pseudoscalar) is enough to exclude the spectrum. Here, both the lightest scalar and pseudoscalar
have some small interval for positive µeff where they are non-tachyonic but the respective other one is
and thus all the range for positive µeff is excluded (where a0

1 turns tachyonic the first time for growing
µeff) and additionally already the light scalar mass gets tachyonic at larger negative values of µeff.
This artefact can be also seen in the region plot of Figure 1.
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Figure 3: The Higgs spectra change with different choice of µ from 0, 200 to 1000 GeV, where the
black line corresponds to the SM-like state. The grey band around 125GeV shows the experimentally
favoured region with an error of ±3GeV. The effective higgsino parameter was fixed to a value of
µ + µeff = −200 GeV. On the right side, with respect to the left side, the Aκ contribution is risen
from 0 to 100 GeV which lifts the pseudoscalar singlet mass of as up and turns the tachyonic point at
Aκ = 0GeV and µ= 1000GeV non-tachyonic with a rather large as mass.
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Figure 4: While the neutralino spectrum stays invariant under change of µ, where the sum µ+µeff =
−200GeV is fixed and the ratio κ/λ rescaled in such a way to keep the singlino mass fixed as well,
the scalar and pseudoscalar Higgs spectrum still change with varying µ.

direct limits on stop searches in such a way that m t̃ = 2TeV and the mixing was chosen to

be At = 2m t̃ . This particular choice, of course, can and has to be adjusted in a precision

analysis. Moreover, the influence of the other input parameters as tanβ , λ, κ, and to some

extend Aκ, still has to be tackled down in order to clearly determine the precision needed to

distinguish two different scenarios of the NMSSM and the iNMSSM generating similar spec-

tra. In addition, the electroweak phenomenology also involves production and decay rates

of the Higgs states and thus one has an additional handle to distinguish the two models. In

any case, a precise measurement of the electroweak sector at a future collider will give clear

insights whether there is a smoking gun of inflation at the Linear Collider or not. This will

be discussed in a forthcoming publication [11].
We have discussed above that an interesting slice of parameter space is defined by the

sum of the two µ-terms, µ + µeff, and the ratio κ/λ. The couplings λ and κ are known to

run into a Landau pole below the GUT scale in the NMSSM, and the same is true for the

iNMSSM since the additional µ-term does not change the running. This non-perturbativity

can be avoided, if λ and κ are taken to be constrained by λ2+κ2 ® 0.5, which will be always

the case in the region plots shown in the following. The phenomenologically interesting

regions are those where the SM-like Higgs state can accommodate for the observed 125 GeV,
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the branching ratios are in those cases SM-like as well. There is an experimental exclusion

from direct higgsino searches which constrains the chargino mass to be® 94 GeV; this bound

approximately transfers to µ+µeff.

Parameter scans and results The parameter space of the iNMSSM gets enlarged by two

dimensions (µ and Bµ) with respect to the NMSSM. Additionally, the new parameters may

invalidate certain allowed regions of the NMSSM that become e. g. tachyonic once a suffi-

ciently large µ parameter is turned on. On the other hand, as we have seen, there might be

cancellations between µ and µeff. The surviving parameter space appears to be rather con-

strained, which allows to have some clear predictions, especially on the hierarchy of Higgs

boson masses. Unfortunately, as there are many parameters available, modification of one of

these where the others remain fixed, relax the constraints and thus diminish the predictabil-

ity. This, however, comes along with a different phenomenology and thus clearly distinguish

different scenarios.

One crucial parameter, as already discussed above, is given by Aκ which controls the

mass of the singlet pseudoscalar state. Low values of Aκ produce a rather light state, heavier

masses can be generated by lifting Aκ up and simultaneously removing tachyons from the

spectrum. There appears to be a larger fraction in the parameter space allowed, if one takes

a look at the κ/λ vs. µ + µeff slice. This is shown in the samples of Figure 5. Comparing

the cases with Aκ = 0 and 100GeV, the effect of opening up excluded tachyonic parameter

space can be clearly seen for the cost of a heavier singlet pseudoscalar (green contours). The

other parameters only have a minor effect, so tanβ is enhanced from 2.5 to 3.5 from the

second to the third row of Figure 5 and simultaneously λ reduced from 0.6 to 0.3, where

µ = 1TeV in all cases. The single plot on top of Figure 5 illustrates the “NMSSM-limit”

with vanishing µ. Here, apparently only a very constrained region is allowed (note that

Aκ = 0 GeV) and the singlet-like pseudoscalar can be rather light. The grey bands show a

rough experimental exclusion on the higgsino mass given by the LEP-limit on the chargino

mass mχ±1
> 94 GeV [12]. The chargino mass in the iNMSSM is mainly given by µ+µeff, see

Appendix A, up to small modifications from the mixing.

Figure 5 also reveals information about the vacuum structure of the scanned points: light

blue points denote an absolutely stable electroweak vacuum, where tachyonic states (at the

tree-level!) appear in the pink points. Interestingly, the allowed regions can also easily

accommodate for a 125GeV SM-like Higgs state, where we added a uniform stop contribution

as discussed above. Unstable or metastable desired vacua are coded in purple (long-lived)
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a larger µ= 1 TeV and show the effect of Aκ on the allowed space and the Higgs masses. The contour
lines give lines of equal masses for the SM-like Higgs (black), the singlet-like scalar (blue) and singlet-
like pseudoscalar (green) which can be light for small Aκ. The colour code for the points describes the
stability of the electroweak ground state: light blue points have a global electroweak vacuum, purple
ones a long-lived and red points a short-lived desired vacuum. Tachyonic points are shown in pink,
where the orange points do not fulfil the NMSSM constraint A2

κ > 9m2
S for a non-vanishing singlet vev.
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and red (short-lived). We briefly describe in Appendix B how we estimate the life-time. In

the NMSSM there exists a bound on Aκ,

A2
κ
> 9m2

S, (18)

relating the trilinear soft SUSY breaking singlet coupling with the soft SUSY breaking singlet

mass. This constraint is needed to generate a sufficiently large singlet vev and therefore

higgsino mass. In the presence of the Z3-breaking µ-term, this unequation does not have to

be necessarily fulfiled. Eq. (18) can be easily derived from the singlet-only potential with

the requirement that the minimum 〈S〉 6= 0 is the true vacuum and thus a non-vanishing

singlet vev is generated. This is needed in the Z3-invariant NMSSM to produce the correct

electroweak phenomenology. In the iNMSSM, however, the Z3-breaking MSSM-like µ-term

is generated by the non-minimal coupling to supergravity and related to the scale of SUSY

breaking and the gravitino mass. If both µ and µeff are present, there can be cancellations

since they have to have different signs and hence a small higgsino mass still can be valid even

if both µ parameters are in the TeV range.

Constraints on Bµ The iNMSSM has in addition to the superpotential parameter one more

soft SUSY breaking term, the bilinear Bµ-term, which has been ignored to far in the discussion

above. It turns out that it cannot be arbitrarily large anyway and thus there are good reasons

to keep it small. If it is non-zero, the effect is merely under control as the contribution from

Bµ grows linearly with µ (note that it appears as µBµ in the soft breaking potential). Together

with Aλ it influences the charged Higgs mass and therefore, in our approach where we treat

Aλ for mH± as input, it enters the determination of Aλ, see Eq. (24) and Appendix A.

Unfortunately, the role of Bµ is less clear than compared to the MSSM where it can easily

be replaced by the pseudoscalar mass mA. However, its impact on the Higgs boson masses is

very well-defined as it always enters in sum with µeff
κ
λ and µeffAλ. Thus, it might be absorbed

in Aλ, which nevertheless appears also at different places. Treating the charged Higgs mass

mH± as input and solving for Aλ, µBµ enters the determination of Aλ. For too large values

of Bµ, tachyonic states are generated again. There is, however, a valley that allows for non-

tachyonic states even for large but negative Bµ values as can be seen from Figure 6. It has

nevertheless the power to destabilize the desired electroweak ground state of the theory as

such large values of Bµ induce a global minimum different from the standard vacuum. The

desired but local vacuum now appears to be rather short-lived with respect to the life-time

of the universe, which is depicted by the red points of Figure 6. In the boundary region, the
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Figure 6: The color code of the points and lines is as in Figure 5. Now we show for fixed values
of κ = 0.1 and λ = 0.5 a different slice in parameter space for non-vanishing Bµ. In this region,
the influence from Aκ is apparently very mild (left Aκ = 0GeV, right Aκ = 100 GeV). For too large
negative values of Bµ, the electroweak vacuum gets severely short-lived (red points) with a broad
band of long-lived desired vacua in between (purple).

electroweak vacuum is sufficiently long-lived (purple points). The scalar singlet mass (blue

lines) appears to be rather independent of Bµ, where the pseudoscalar singlet (green) shows

a striking behaviour depending on Aκ. The mass of the SM-like Higgs boson is very much

aligned with the allowed valley and explains very well the tachyonic boundary (together with

the pseudoscalar singlet as can be already seen from Figure 2, where Bµ = 0GeV but the two

light states running tachyonic at different places).

4 Conclusions

We have presented the electroweak phenomenology of an inflation-inspired NMSSM as first

discussed in Refs. [1–3]. We briefly summarized the idea of Higgs inflation in the supercon-

formal sector and showed how the non-minimal coupling of the Higgs sector to supergravity

shows up in the effective low-energy superpotential. The remaining model can be described

by the NMSSM augmented with an MSSM-like µ-term µ Hu ·Hd , which breaks the accidental

Z3 invariance of the NMSSM. Additionally, a soft SUSY breaking term µBµ is generated and

has to be taken into account. The rules of supergravity dictate µ and together with the effec-

tive µ-term of the NMSSM arising from the singlet vev, both sum up to an effective higgsino

mass µ+ µeff. This combination plays an important role for the phenomenology, especially

since the signs of both contributions appear to be anticorrelated and thus a natural cancella-
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tion among those fundamentally different contributions to the higgsino mass appears. Thus,

scenarios with light higgsinos but heavy singlinos exist and a precise knowledge of the Higgs

and electroweakino sector as it might be achieved at a future Linear Collider helps to clearly

distinguish this model from the ordinary NMSSM. A smoking gun of the inflationary remnant

exists as a footprint in the electroweak spectrum.

We have extensively discussed the influence of the model parameters on the Higgs masses

and how tachyonic states are generated at the tree-level. Tachyonic masses invalidate the

expansion point in such a way that the electroweak point appears to be a local maximum

instead of a minimum and thus the tachyonic direction points towards the global minimum.

In addition, the iNMSSM as well as the NMSSM may reveal several vacua out of which the

desired vacuum appears to be a false vacuum. A numerical analysis minimising the scalar

potential finds the global minimum of the theory, which in some cases is the electroweak

vacuum in others not. If the desired vacuum is a local minimum, vacuum decay rates have

been estimated to compare the life-time of the false vacuum with the life-time of the universe.

Only in the case of large and negative Bµ values, reasonable amounts of short-lived vacua

have been found.

Higgs inflation embedded into a superconformal framework appears to be distinguishable

at low energies from the common SUSY models beyond the SM. The iNMSSM needs an

additional singlet as the NMSSM; the spectrum, however, appears to be different and cannot

be matched to the parameters of the NMSSM. The model is also different from the MSSM, in

which Higgs inflation cannot be accommodated.

The results presented in this talk are going to be discussed in more detail in a forthcoming

publication [11].
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A Higgs boson and neutralino/chargino mass matrices

We define the Higgs mass matrices via the second derivatives of the potential, where we

distinguish between scalar and pseudoscalar neutral states by the decomposition

Hu =

�

H+u
H0

u

�

=

�

φ+u
vu +

1p
2
(σu + iφd)

�

, Hu =

�

H0
d

H−d

�

=

�

vd +
1p
2
(σd + iφd)

φ−d

�

,

S = vs +
1p
2
(σs + iφs) .

(19)

The mass matrices for the scalar and pseudoscalar states M2
S and M2

P , respectively, are then

given by the expressions

M2
S =







M2
Z c2
β
+ a1 tβ

�

2v2λ2 −M2
Z

�

cβsβ − a1 a2cβ − a3sβ
∗ M2

Z s2
β
+ a1/tβ a2sβ − a3cβ

∗ ∗ a4 + a5






, (20a)

M2
P =







a1 tβ a1 −a6sβ
∗ a1/tβ −a6cβ
∗ ∗ a4 − 3a5 − 2a7






, (20b)

with sβ = sinβ , cβ = cosβ , tβ = tanβ and where the abbreviations ai are

a1 = Bµµ+µeff

�κ

λ
µeff + Aλ

�

, (21a)

a2 = 2vλ (µ+µeff) , (21b)

a3 = vλ
�

2
κ

λ
µeff + Aλ

�

, (21c)

a4 =
1
µeff

h

v2λ2cβsβ
�κ

λ
µeff + Aλ

�

− v2λ2µ
i

, (21d)

a5 = 4
�κ

λ

�2
µ2

eff +
κ

λ

�

µeff Aκ − v2λ2cβsβ
�

, (21e)

a6 = vλ
�

2
κ

λ
µeff − Aλ

�

, (21f)

a7 = −6
�κ

λ

�2
µ2

eff . (21g)
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Note, that the pseudoscalar mass matrix comprises one massless state, the Goldstone mode.

The charged Higgs mass matrix is given by

M2
C =

��

M2
W − v2λ2

�

cβsβ + a1

�

�

tβ 1

1 1/tβ

�

, (22)

with the W boson mass M2
W =

1
2 g2

2 v2 and the eigenvalue given by

mH± = M2
W − v2λ2 +

a1

cβsβ
, (23)

which can be used to eliminate Aλ as a free parameter for the sake of the charged Higgs boson

mass mH± as input value (for the numerical analyses presented in this talk, we used allover

the scenarios mH± = 800GeV), such that

Aλ =
cβsβ
µeff

�

m2
H± −M2

W + v2λ2
�

−
Bµµ

µeff
−µeff

κ

λ
. (24)

The mass matrices of charginos and neutralinos resemble very much the ordinary NMSSM,

where the effective higgsino parameter is replaced by µ+µeff. However, the singlino mass is

only governed by µeff, since the additional µ term couples the doublet superfields. Therefore,

the neutralino mass matrix is given by

Mχ0 =

















M1 0 −MZswcβ MZswsβ 0

∗ M2 MZ cwcβ −MZ cwsβ 0

∗ ∗ 0 −(µ+µeff) −λvsβ
∗ ∗ ∗ 0 −λvcβ
∗ ∗ ∗ ∗ 2κλµeff

















, (25)

where M1 and M2 are the gaugino masses for the U(1)Y and SU(2)L gauginos, respectively,

and the weak mixing angle θw enters via tanθw = sw/cw = g1/g2. Apparently, the neutralino

spectrum in the iNMSSM can be rescaled via the ratio κ
λ in such a way to match the NMSSM

neutralino spectrum for a given higgsino mass µ+µeff.

The chargino mass matrix is given by

Mχ± =

�

M2

p
2MW sβp

2MW cβ µ+µeff

�

. (26)
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B Vacuum tunneling

We briefly describe our estimate on the tunneling rates in the case where the desired vacuum

appears to be a false vacuum. The electroweak input parameters determine the position

and depth of the local minimum, where the global minimum and true vacuum is found by

numerical minimisation of the tree-level potential. In general, the true vacuum has vevs

〈H0
u〉 6= vu, 〈H0

d〉 6= vd and 〈S〉 6= vs. We approximate the potential barrier between the two

minima by a one-dimensional quartic potential potential

V (φ) = g φ4 − a φ3 + b φ2 + c φ + d, (27)

which allows for an exact solution of the bounce action [13]. This is given by

B =
π4

3g
(2−δ)−3

�

α1δ+α2δ
2 +α3δ

3
�

, (28)

with δ = 8g2 b/a2 and α1,2,3 numerical coefficients. By comparison of the decay rate of the

false vacuum per unit volume [14]

Γ/V = Ae−B/ħh [1+O(ħh)] , (29)

one estimates bounce actions B ¦ 400 to be sufficiently long-lived. The prefactor A is difficult

to calculate and usually approximated by the height of the potential or the electroweak scale,

A∼ (100GeV)4, where the error enters only logarithmically the decay time.

The interpolation between the two minima is done by a straight line, where the elec-

troweak point is shifted to the origin. Therefore, in the expression of the neutral Higgs

potential, we have the replacement

V (φ) = V
�

H0
u = vu + (Vu − vu)

φ
p

2
, H0

d = vd + (Vd − vd)
φ
p

2
, S = vs + (Vs − vs)

φ
p

2

�

, (30)

with the “true” vevs Vu, Vd and Vs. The factor 1/
p

2 is employed to keep theφ-field canonically

normalised. This way, the field φ interpolates between the desired, false vacuum (φ = 0)

and the true vacuum (φ =
p

2). It is, however, more convenient to keep φ dimensionful

and thus the coefficients of the potential in Eq. (27) of the same order of magnitude as the

original coefficients. Therefore, we use a normalised field in the one-field potential, V (φ),
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with

φ =
φ

p

(Vu − vu)2/2+ (Vd − vd)2/2+ (Vs − vs)2/2
. (31)
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