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 operator inHeavy Quark E�e
tive Theory. At order 1=m of the expansion, the operator is respon-sible for the mass splitting between the pseudos
alar and ve
tor B mesons. We obtainits two-loop anomalous dimension in a S
hr�odinger fun
tional s
heme by su

essive one-loop 
onversions to the latti
e MS s
heme and the MS s
heme. We then 
ompute thes
ale evolution of the operator non-perturbatively in the Nf = 0 theory between � � 0:3GeV and � � 100 GeV, where 
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e operator to its renormalizationgroup invariant form is given for the Wilson gauge a
tion and two standard dis
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tion. As an appli
ation, we �nd that this fa
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1 Introdu
tionHeavy-light bound states in QCD 
an be des
ribed eÆ
iently by an expansion in theinverse heavy quark mass. Already in the early days of the asso
iated e�e
tive �eldtheory, HQET [1{3℄, the mass splitting between ve
tor and pseudo-s
alar heavy-lightmesons served as a phenomenologi
al argument for the absen
e of large higher order
orre
tions in the expansion.Consider QCD with Nf light quark 
avors and a heavy 
avor, the b-quark, Nf = 4being the 
ase realized in Nature. The splitting�m2 � m2B� �m2B (1.1)then has an asymptoti
 behavior for large quark mass mb whi
h is 
hara
terized by onerenormalization group invariant (RGI) observable,4�RGI2 = limmb!1n� 2b0�g2(mb) ��
0=2b0 �m2o ; (1.2)� 
0 = 3=(8�2) ; b0 = (11� 23Nf)=(16�2)�of dimension [mass℄2. Sin
e the limit exists, this quantity is uniquely de�ned in QCD.In the above the de�nition of mb is irrelevant as long as it is renormalized at a s
ale oforder mb.As a rather non-trivial statement, the e�e
tive �eld theory predi
ts that �RGI2 
anunambiguously be 
omputed in that theory, where the b-quark is treated as stati
.There it is expressed as an expe
tation value�RGI2 = 13hBjORGIspin jBi = hBjBi ; (1.3)ORGIspin = lim�!1 � 2b0�g2(�) ��
0=2b0 OSspin(�) ; (1.4)of ORGIspin in the zero-momentum B-meson state jBi. The operator OSspin is related to thebare lo
al operatorOspin(x) =  h(x) 12iFkl(x)�kl h(x) =  h(x)� �B(x) h(x) (1.5)by a multipli
ative renormalization depending on the adopted s
heme S and a renor-malization s
ale � { but ORGIspin neither depends on a s
heme nor on a s
ale.The matrix element of the bare operator 
an be 
omputed non-perturbatively bylatti
e simulations of HQET [4{6℄. As stated in these referen
es, a signi�
ant sour
e ofun
ertainty remained in the 
onne
tion between the bare operator and the RGI one (orone renormalized in the MS s
heme), whi
h has only been established perturbatively [7,8℄. This un
ertainty made it impossible to de
ide whether the splitting is signi�
antlyunderestimated in the quen
hed approximation (Nf = 0) or not.In this paper we develop the non-perturbative renormalization of Ospin. We followthe general strategy of the ALPHA-
ollaboration [9{11℄, spe
ialize it to the operator in1



question and perform an expli
it 
omputation in the quen
hed approximation. In parti
-ular we de�ne a suitable s
heme using S
hr�odinger fun
tional (SF) boundary 
onditions,and 
ompute the 2-loop anomalous dimension in this s
heme. We then evaluate the s
aledependen
e of the operator non-perturbatively for Nf = 0, between � � 0:3GeV and� � 100GeV. Using the high energy end of the results and eq. (1.4) supplementedwith the 2-loop anomalous dimension, the 
onne
tion to the RGI operator is realized.Finally the total Z-fa
tor between bare and RGI operator is obtained for the Wilsongauge a
tion and several HQET dis
retizations. Readers solely interested in the �nalresult for the Z-fa
tor may �nd it in Se
t. 5.1.For a 
omparison to the experimental mass splitting at �nite mass, it is importantto in
lude radiative 
orre
tions beyond the 1-loop ones in
orporated in eq. (1.2). Wedo this in the form�m2 = 2mB� +mBMb Cspin(Mb=�MS)�RGI2 +O(1=mb) ; (1.6)written in terms of RGI's with a fun
tion Cspin known up to 
orre
tions O(�2(mb)) �4% and dis
ussed in some detail in Se
t. 2. Obviously the perturbative un
ertainty
an be estimated more reliably and redu
ed by a higher order 
ontinuum perturbative
omputation in QCD. We note that the �nal renormalization fa
tor ZRGIspin also appliesto spin-dependent potentials 
omputed in latti
e gauge theory (see Se
t. 3).The reader is not to 
onfuse the present approa
h with the one of [12, 13℄, where,through a non-perturbative mat
hing between QCD and HQET, also fun
tions su
has Cspin are determined non-perturbatively. While in general the strategy of [12, 13℄ isessential, the more traditional path is viable here be
ause Ospin does not mix with lowerdimensional operators.Before entering the dis
ussion of the renormalization of Ospin, we brie
y address thequestion of the pre
ision that 
an be expe
ted from eq. (1.6). For this purpose we boldlyalso treat �m2
 = m2D� �m2D in HQET. So Nf = 3 in all pla
es. With a Nf = 3 QCD-parameter of �(3)MS = 300(100)MeV and with M
 = 1:55GeV, Mb = 6:69GeV [14℄ we�nd M
=Mb � 0:23 and Cspin(M
=�MS)=Cspin(Mb=�MS) = 0:94 . HQET then relatesthe splittings as �m2
=�m2 = 1:41(2), where the un
ertainty is due to the generouserror in �(3)MS. With the quen
hed input values �MS = 238MeV; M
 = 1:65GeV; Mb =6:76GeV [11, 13, 15, 16℄ this ratio 
hanges only slightly, namely to �m2
=�m2 � 1:44.This is to be 
ompared to �m2
=�m2 = 1:14 from experiment.Sin
e the 
harm mass is only moderately large, su
h a 25% deviation is not unex-pe
ted. S
aling this 
orre
tion to the B-system, we expe
t an a

ura
y of order 5-10%for the HQET predi
tion of �m2. Earlier quen
hed approximation estimates with per-turbative renormalization found values for �m2 whi
h were lower than the experimentalnumber by between 50% [4, 5℄ and 20% [6℄. Renormalizing the same matrix elementsnon-perturbatively we will �nd the di�eren
e to experiment signi�
antly redu
ed inSe
t. 6. 2



2 HQET and �RGI22.1 Latti
e a
tionWe brie
y de�ne the e�e
tive theory in a latti
e regularization, using the notationof [17, 18℄. The heavy quark �elds are taken to have 4 
omponents with the 
onstraintP+ h =  h ;  hP+ =  h P+ = 12 (1 + 
0) : (2.1)With the latti
e ba
kward derivativeDW0  h(x) = 1a h h(x)�W y(x� a0̂; 0) h(x� a0̂)i ; (2.2)and the mass 
ounterterm ÆmW, the stati
 a
tion (i.e. lowest order HQET) is writtenas SWh = a4 11 + a ÆmW Xx  h(x)(DW0 + ÆmW) h(x) : (2.3)Di�erent gauge 
onne
tionsW have been found to be very useful to improve the statisti-
al pre
ision in numeri
al simulations [18,19℄. They play a rôle only when we dis
uss thenon-perturbative results. Until then the reader may think of W (x; 0) as the standardtimelike link. In fa
t that 
hoi
e de�nes the original Ei
hten-Hill a
tion [1℄.2.2 Conversion fun
tionsThe operator Ospin(x) in eq. (1.5) is given in terms of the �elds entering eq. (2.3) withthe normalization spe
i�ed there. The latti
e version F̂�� of the gauge �eld tensor isde�ned by the 
lover leaf term, see e.g. [20℄. Ospin appears as a �rst order 
orre
tionin 1=mb in HQET and indu
es the spin splitting. Usually, the splitting is written in aform di�erent from eq. (1.6). We want to brie
y explain why we 
hoose the latter.The more 
ommon form ism2B� �m2B = 4Cmat
hmag (mb)�2(mb) + O(1=mb) (2.4)�2(mb) = 13 hBjOMSspin(� = mb)jBi (2.5)where OMSspin and mb are renormalized in the MS s
heme. This is arrived at by startingfrom the formal expressionmB� �mB � 23 1mb hBjOspinjBi = hBjBi : (2.6)One renormalizesOspin in the MS s
heme, identi�es the massmb with the (perturbative)pole mass mQ;b and de�nes the remaining fa
tor as a mat
hing 
oeÆ
ient Cmat
hmag (mb).Finally one uses 2mQ;b = mB� +mB +O(�), dropping the O(�) 
orre
tion.The mat
hing 
oeÆ
ient Cmat
hmag (mb) = 1 + C1�g2(mb) + : : : is independent of theparti
ular matrix element. Sin
e mb � 4GeV is reasonably large and there is no mixing3



Figure 1: Conversion fun
tions for Nf = 0. Dashed lines for 1-loop anomalous dimension and 
ontin-uous line for 2-loop 
. In the latter 
ase the parametri
 un
ertainty is O(�2(mb)). The abs
issas of the
 quark and the b quark are marked by verti
al dots.with lower dimensional operators, Cmat
hmag 
an be approximated by perturbation theory.It is known in
luding the C1�g2(mb) term [7℄.In the above form, the matrix element and the HQET parameter �2 depend on thearbitrary renormalization s
heme (MS). Su
h a spurious dependen
e is easily removedby introdu
ing RGIs (see e.g. [21℄ and Se
t.III.3.1.of [22℄), in parti
ular ORGIspin , eq. (1.4).It is related to the bare operator Ospin in a parti
ular latti
e regularization viaORGIspin = ZRGIspin (g0)Ospin : (2.7)We now have m2B� �m2B = 4Cmag(Mb=�MS)�RGI2 +O(1=mb) (2.8)with a fun
tion Cmag(Mb=�MS) written in terms of the RGI mass of the b-quark andthe QCD �-parameter. Using existing perturbative 
omputations [7, 23{25℄ it is easilyevaluated by integration of the RG equations (see e.g. [21℄).The 
omparison of the su

essive perturbative approximations for Cmag in Fig. 1indi
ates a relatively large perturbative error even at the 2-loop level (for the anoma-lous dimension 
). At a s
ale of 4GeV this is somewhat unusual. However, one 
anunderstand this behavior by noting that the de�nition of the mat
hing fa
tor Cmat
hmaginvolves the pole quark mass, whi
h is unphysi
al. That mass has a perturbative rela-tion to short distan
e masses su
h as mMS whi
h is badly behaved (large perturbative
oeÆ
ients). Also the relation pole mass to RGI mass has this property.Our eq. (1.6) follows from 
hoosing dire
tly the RGI mass instead of the pole massin eq. (2.6). In perturbation theory one then has the relationCspin(Mb=�MS) = MbmQ;bCmag(Mb=�MS) : (2.9)4



The fun
tion Cspin is reprodu
ed from [21℄ in Fig. 1. One noti
es that the two availableperturbative approximations are mu
h 
loser than they are for Cmag. We expe
t this tohold also at higher orders of perturbation theory. Still, sin
e the very 
lose agreement ofthe two approximations for Cspin may be a

idental, we will use an error of �2s(mb) �4%at the mass of the b-quark. This perturbative error is 
urrently being redu
ed by anexpli
it 3-loop 
omputation [26℄.In summary, the form eq. (1.6) is written in terms of properly de�ned RGI's andCspin appears to have a well behaved perturbative expansion. This is a good basis for a
omputation of the mass splitting.3 S
hr�odinger fun
tional renormalization s
heme3.1 De�nitionWe want to formulate a renormalization 
ondition for Ospin in a �nite volume, whi
hallows us to 
arry out a non-perturbative 
omputation of the asso
iated renormalizationfa
tor ZRGIspin , following the general strategy of [11℄. We 
hoose S
hr�odinger fun
tionalboundary 
onditions sin
e this allows us to perform a

urate simulations and also per-turbative 
omputations; see [22℄ for a review. There is an additional reason for this
hoi
e. With any kind of periodi
 boundary 
onditions, any 
orrelation fun
tion withOspin vanishes at tree-level. In order to avoid this, we 
hoose boundary 
onditions whi
hindu
e a non-trivial ba
kground �eld F�� 6= 0 at tree level. This ensures a good sig-nal in the MC simulations at weak 
oupling and means that a 1-loop 
omputation issuÆ
ient to 
ompute the Z-fa
tor up to and in
luding O(g2). Sin
e the operator doesnot 
ontain any light fermion �elds, we avoid these altogether in the de�nition of the
orrelation fun
tions. For Nf = 0 we then end up with a pure gauge theory de�nition(without valen
e quarks). Furthermore one easily sees that the possible dimension sixoperators whi
h are ne
essary for the O(a)-improvement of Ospin do not 
ontribute here.As is well-known, there is also no mixing with Okin =  h ~D2 h, the other dimension-5operator of HQET.1These 
onsiderations motivate the following 
hoi
e. We take an L0 �L1 �L2 �L3geometry and adopt Diri
hlet boundary 
onditions indu
ing a ba
kground �eld as in [27℄.But we 
hoose Diri
hlet 
onditions in the 3-dire
tion,U(x; �)jx3=0 = exp(aC) ; U(x; �)jx3=L3 = exp(aC 0) ; � = 0; 1; 2 ; (3.1)keeping periodi
 boundary 
onditions with respe
t to x0; x1; x2 (remember that time is1The stati
 a
tion is invariant under the spa
e-dependent transformation Æ h(x) =!(x) h(x) ; Æ h(x) = �!(x) h(x) ; whi
h 
orresponds to the 
onservation of the lo
al b-quark num-ber [17℄. While Ospin is invariant under this symmetry transformation, Okin is not.
5



already distinguished in the stati
 quark a
tion). The Abelian �eldsC = iLdiag(�1; �2; �3) = iLdiag(��=3; 0; �=3) ; (3.2)C 0 = iLdiag(�01; �02; �03) = iLdiag(��; �=3; 2�=3) ;of \point A" [27℄ are 
hosen and we set L = L0 = L1 = L2. The 
lassi
al solution thenhas non-vanishing F�3, independent of the spa
e-time position. Note that the strengthof the �elds s
ales with L.A natural 
hoi
e of a renormalization 
ondition is thenZSFspin(L)L2hS1(x+ L2 0̂)Ospin(x) ihS1(x+ L2 0̂)S1(x) i = L2hS1(x+ L2 0̂)Ospin(x) ihS1(x+ L2 0̂)S1(x) i �����g0=0 ; (3.3)with x3 = L3=2 = L=2. The spin operatorSk(x) = 11 + a ÆmW h(x)�kW y(x� a0̂; 0) h(x� a0̂) (3.4)is the simplest 
hoi
e to obtain a non-vanishing tra
e in spin spa
e. It is the (lo
al)N�other 
harge of the invarian
e of the a
tion under the transformationÆ h(x) = !(x)�k h(x) ; Æ h(x) = �!(x) h(x)�k ; �k � �12�ijk�ij ; (3.5)with in�nitesimal spa
e-dependent parameter !(x) and [�k; �l℄ = i�klm�m. The Wardidentities derived from this invarian
e imply that Sk(x) is not renormalized. Thus noadditional fa
tors are ne
essary in eq. (3.3).We have formulated the renormalization 
ondition in terms of 
orrelation fun
tionsof lo
al operators to make it obvious that the standard theory of renormalization in-
luding O(a)-improvement applies. However, integrating out the stati
 quark �elds wearrive at a form whi
h is more natural for expli
it 
omputations, perturbative and non-perturbative. This step also shows immediately the 
onne
tion to the spin-dependentpotentials. With the expli
it form of the stati
 propagator [18℄, one obtainshS1(x+ L2 0̂)Ospin(x) ihS1(x+ L2 0̂)S1(x) i = hTr(P0(x)B1(x))ihTr(P0(x)) i ; B1(x) = iF̂23(x) ; (3.6)where the Polyakov loop operatorP�(x) =W (x; �)W (x+ a�̂; �) : : : W (x+ (L� a)�̂; �) (3.7)enters. Here F̂23(x) stands for the 
lover leaf dis
retization of the �eld strength ten-sor [20℄ (an alternative dis
retization will also be 
onsidered in the non-perturbative
omputations). Now the renormalization 
ondition eq. (3.3) is given in terms of theexpe
tation values of a (tra
ed) Polyakov loop and of a (tra
ed) Polyakov loop with theinsertion of a B �eld. 6



At this point it is useful to digress for one paragraph in order to exhibit the relationto spin-dependent potentials [28, 29℄. In standard notation2 they 
an be de�ned as(periodi
 boundary 
onditions in all dire
tions, r2 = x21 + x22 + x23)x1x2r2 V SF3 (r; �) = [ZSFspin(1=�)℄2 limL0!1aXx0 hTr(P0(0)B1(0))Tr(P0(x)yB2(x))ihTrP0(0)TrP0(x)y iV SF4 (r; �) � V SF3 (r; �)3 = [ZSFspin(1=�)℄2 limL0!1aXx0 hTr(P0(0)B1(0))Tr(P0(x)yB1(x))ihTrP0(0)TrP0(x)y iTranslating from the potential renormalized in the SF s
heme at renormalization s
ale �to an RGI potential works just as explained in Se
t. 2. In 
ontrast to the stati
 potentialwhere a diÆ
ult to determine additive renormalization results from ÆmW , there is noadditive renormalization in the above equations; ÆmW drops out. Note that we havenothing to add to the phenomenologi
al relevan
e of su
h potentials [30℄. Rather weremark that these obje
ts, 
omputed re
ently in [31℄, have to be renormalized withZspin, whi
h arises in HQET.Returning to our renormalization 
ondition, we note that it is natural to use theequivalen
e of all 
oordinates in Eu
lidean spa
e to swit
h to the usual SF boundary
onditions, whereZSFspin(L)L2hTr(P3(x)E1(x))ihTrP3(x) i = L2hTr(P3(x)E1(x))ihTrP3(x) i ����g0=0 ; at x0 = L02 (3.8)E1(x) = iF̂01(x) ; Diri
hlet boundary 
onditions in time.From now on we retain these boundary 
onditions and this 
oordinate system. Thetree-level value is L2hTr(P3(x)E1(x))ihTrP3(x) i ����g0=0 = �6 1 +p32�p3 + O((a=L)4) : (3.9)Corresponding formulae for �nite a=L, whi
h are used in the non-perturbative de�nitionin order to assure Zspin = 1 at tree-level, are given in eqs.(A.34, A.35).3.2 The 2-loop anomalous dimensionOur strategy for 
omputing the RGI renormalization is to non-perturbatively evaluateZspin(1=�) up to � = O(100GeV) and then evaluate ORGIspin=Ospin(�) in perturbationtheory. In the latter step the anomalous dimension 
(�g), de�ned by the renormalizationgroup equation � ���OSFspin = 
(�gSF)OSFspin ; (3.10)2 The spin-dependent potentials for quarks of masses m1; m2 and spin operators s1; s2 reads1 � s23m1m2 V4(r) + 1m1m2 hx � s1 x � s2r2 � s1 � s23 iV3(r) :7



is needed in
luding the 2-loop term, in order to have a negligible perturbative un
er-tainty. We 
al
ulated the 
oeÆ
ient 
SF1 in the expansion
SF(�gSF) = ��g2SF(
0 + 
SF1 �g2SF + : : :) (3.11)by 
onversion from the MS s
heme to the SF s
heme. The 2-loop anomalous dimensionin the MS s
heme, 
MS1 = (172 � 1312Nf)=(32�4) ; (3.12)is known from [7, 23{25℄.For the relation between the two s
hemes, we use the 
onne
tion of the operatorsin the latti
e minimal subtra
tion s
heme (\lat") and the MS s
heme of dimensionalregularization on the one hand and performed a 1-loop 
omputation of the SF renor-malization fa
tor in the latti
e regularization on the other hand. The latter, new,
omputation is detailed in App. A. Here we just quote the results and 
ombine themto obtain 
SF1 .At 1-loop order, the operator in the latti
e minimal subtra
tion s
heme is given byOlatspin(�) = [1� g20
0 ln(�a)℄Ospin (3.13)with the bare operator Ospin de�ned earlier. It is related to the operators in the SFs
heme and the MS s
heme by �nite renormalizations,OSFspin(�) = �SF;lat(g2lat(�))Olatspin(�) ; OMSspin(�) = �MS;lat(g2lat(�))Olatspin(�) : (3.14)For our purposes it suÆ
es to know the expansions up to order g2,�a;b(g2) = 1 + �(1)a;b g2 + : : : ; (3.15)where �(1)MS;lat = 0:3824 (3.16)has been 
omputed3 by Flynn and Hill [8℄ and�(1)SF;lat = 0:3187016(1) � 0:027448(1)Nf (3.17)is obtained in App. A. These are 
ombined to�(1)SF;MS = �(1)SF;lat � �(1)MS;lat = �0:0637 � 0:0275Nf : (3.18)3Taking into a

ount the dis
ussion in [32℄, the value of e should be redu
ed from e = 24:48 in [8℄ toe = 4:53. In the notation of [8℄ we have �(1)MS;lat = 116�2 [Cf (D
 � e+ 4�2) +CA(Da +Db �D
=2)℄. Wethank Jonathan Flynn for 
larifying this point. When numeri
al un
ertainties are not written expli
itly,they are estimated to be at most of order 2 on the last digit.8



Note that the Nf -dependent part depends on the value � 
hosen for the spatial boundary
onditions of the quark �elds in eq. (3.8). The above result refers to � = ��=3, for whi
hthe expe
tation values in eq. (3.8) 
an be shown to be real [33℄.The last missing ingredient is the relation between the 
ouplings, (at the samerenormalization s
ale)�g2SF = �g�g2MS; �g = 1 + �(1)g �g2MS +O(�g4MS) ; (3.19)with the 1-loop 
oeÆ
ient [27, 34℄�(1)g = � 14� (
1;0 + 
1;1Nf) ; 
1;0 = 1:25563(4) ; 
1;1 = 0:039863 (3.20)for the SF-
oupling de�ned at � = �=5 [34℄.Analogous to [35℄, where the dis
ussion is 
arried through for the anomalous di-mension of quark masses, we then obtain the desired result
SF1 = 
MS1 + 2b0 �(1)SF;MS � 
0�(1)g = �0:00236 � 0:00352Nf + 0:00023N2f : (3.21)Our 
omputation used the latti
e regularization but the result is regularization inde-pendent.4 Step s
aling fun
tions4.1 De�nitionThe anomalous dimension, whi
h we just obtained in 2-loop approximation, des
ribesthe 
hange of the operator OSFspin under an in�nitesimal 
hange in the renormalizations
ale. For numeri
al, non-perturbative 
omputations one 
onsiders �nite 
hanges of thes
ale, typi
ally by a fa
tor of two. These de�ne the step s
aling fun
tion �spin(u) viaOSFspin(�) = �spin(�g2(1=�))OSFspin(2�) : (4.1)It is given by the 
ontinuum limit�spin(u) = lima=L!0�spin(u; a=L) (4.2)of the latti
e step s
aling fun
tion�spin(u; a=L) = ZSFspin(2L)ZSFspin(L) ������g2(L)=u ; m=0 : (4.3)Here �g2(L) denotes the SF 
oupling as before and the 
ondition m = 0 means thatthe renormalization 
ondition is imposed at vanishing quark mass. In our numeri
alimplementation the latter does not play a rôle sin
e we work in the pure gauge theory.It is important to understand whether a given renormalization 
ondition leads to smallor large a-e�e
ts. This determines whether the limit in eq. (4.2) 
an be taken byan extrapolation from the a

essible latti
es. A �rst understanding 
an be sought inperturbation theory. 9



4.2 Latti
e artefa
ts in perturbation theoryWe de�ne the relative latti
e artefa
ts asÆ(u; a=L) = �spin(u; a=L)� �spin(u)�spin(u) = Æ1(a=L)u+O(u2) : (4.4)A term Æ0(a=L) is absent sin
e we de�ned ZSFspin(L) su
h that it is one at tree-level forany value of a=L. The 1-loop term may be expanded in Nf ,Æ1(a=L) = Æ1;0(a=L) +Nf Æ1;1(a=L) : (4.5)With all improvement terms, in
luding the boundary improvement term 
t [27℄, set totheir proper perturbative values, the 1-loop 
uto� e�e
ts turn out to be rather small.We show them in Table 1 for the Ei
hten-Hill a
tion for the stati
 quarks (W (x; 0) =U(x; 0)), the plaquette gauge a
tion and the O(a)-improved fermion a
tion [20℄.L=a Æ1;0(a=L) Æ1;1(a=L)6 -0.000236 0.0137428 -0.000165 0.00579110 -0.000106 0.00302612 -0.000072 0.00187614 -0.000051 0.00129616 -0.000038 0.000956Table 1: Latti
e spa
ing e�e
ts of �spin in 1-loop perturbation theory, see text.4.3 Non-perturbative results for Nf = 0We 
arried out pure gauge theory simulations to determine �spin for di�erent 
ouplingsu, resolutions 1=12 � a=L � 1=6 and also for di�erent dis
retizations of the HQETa
tion and the operator F�� . Tables of the numeri
al results are found in App. B.In Fig. 2 we show the a-dependen
e for a few 
ouplings and 
hoi
es of dis
retiza-tions. Latti
e artefa
ts are moderate in general and a simple 
ontinuum extrapolationwith an ansatz � = �+(a=L)2 �, separately for ea
h value of u seems justi�ed.4 In 
aseswhere more than one dis
retization was simulated at the same value of u, a 
onstrainedextrapolation (
ommon � but dis
retization-dependent �) was performed. This simpleanalysis yields the 
ontinuum step s
aling fun
tions in Table 2.A good agreement with perturbation theory is seen at weak 
ouplings, say �g2 < 2,where, however, the non-perturbative results are not a

urate enough to distinguishbetween the 2-loop anomalous dimension and the 1-loop one. On the other hand, for
ouplings �g2 � 3 perturbation theory breaks down entirely and the in
lusion of the2-loop anomalous dimension brings the perturbative 
urves even further away from theMC results.4We also 
he
ked other extrapolations, see e.g. [11, 36℄. They give 
ompatible results.10



Figure 2: Examples of 
ontinuum extrapolations of �spin for u =1.243, 2.77 and 3.48. Filled symbolsindi
ate that F�� was de�ned as F̂�� but with the link variables repla
ed by HYP2 links. The data atthe largest 
oupling has 
t at 2-loop pre
ision, otherwise it is set to the 1-loop value.u �spin(u) �(u) a
tion F̂�� n-loop 
t0.8873 1.0235(68) 0.02(36)0.9944 1.025(11) -0.15(53) EH1.2430 1.0302(82) 0.24(42)1.3293 1.043(12) -0.66(55) EH1.5553 1.0418(89) 0.27(43)1.8811 1.075(11) -0.44(52)2.1000 1.052(14) 1.15(69)2.4484 1.089(14) -0.31(68)1.60(60)2.770 1.099(11) -0.01(55) HYP23.480 1.300(34) 5.2(1.6) HYP23.480 1.308(29) 3.0(1.4) HYP2 22.1(1.2) 23.480 1.306(25) 3.1(1.3) HYP2 2Table 2: Continuum step s
aling fun
tion �spin and 
oeÆ
ients of (a=L)2 in the 
ontinuum extrapo-lations. The standard dis
retization is the HYP2 a
tion of [18℄, the 
lover leaf operator F̂�� and the1-loop value of 
t. Deviations from this rule are indi
ated: EH refers to the Ei
hten-Hill stati
 a
tionand the label HYP2 in the 
olumn F̂�� means that the links appearing in F̂�� are repla
ed by HYP2links.
11



Figure 3: The step s
aling fun
tion 
ompared to the perturbative predi
tion obtained by integrationof the perturbative RG equations, trun
ating the � fun
tion at 3(2)-loop order and the anomalousdimension at 2(1)-loop order.5 Non-perturbative s
ale dependen
e for Nf = 0Through an iterative appli
ation of the (inverse) step s
aling fun
tion we now determinethe non-perturbative s
ale dependen
e of the operator in the SF s
heme. We �rstrepresent the numeri
al data of Table 2 as well as the data for the step s
aling fun
tionof the 
oupling, �(u) (Table A.2 of [11℄ and Table 4 of [27℄) by smooth interpolations�(u) = u+ 4Xi=0 si ui+2 ; (5.1)�spin(u) = 1 +m0 u+m1 u2 +m2 u3 (5.2)for u � 2:8. Here s0 = 2 ln(2) b0 ; s1 = s20 + 2 ln(2) b1 ; m0 = ln(2) 
0 are �xed byperturbation theory, while the other 
oeÆ
ients are free �t parameters. With theseparameterizations we then solve the re
ursions 5u0 = �g2(Lmax) = 3:48 ; �(uk+1) = uk ; ) �g2(2�kLmax) = uk ; (5.3)w0 = 1 ; wk+1 = wk=�spin(uk+1) ) �SF(2k=Lmax)�SF(1=Lmax) = wk :Errors are propagated through the parameterization and re
ursion and it is 
he
kedthat 
hanging the number of �t parameters in eq. (5.1) and eq. (5.2) does not alter theresults signi�
antly. Next we apply�RGI�SF(�) = � 2b0�g2(�) ��
0=2b0 exp(�Z �g(�)0 dg � 
SF(g)�SF(g) � 
0b0g �) (5.4)5 � stands for any matrix element of the operator Ospin, for example the matrix element �2.12



Figure 4: S
ale dependen
e of Ospin in the SF s
heme.for � = 2k=Lmax and the perturbative approximations to the �-fun
tion and anomalousdimensions and obtain �SF(1=Lmax)=�RGI. Finally we form �SF(1=(2Lmax))=�RGI =�spin(u0)�SF(1=Lmax)=�RGI with �spin(u0) from Table 2. For not too small k, the�nal result is independent of it; the use of perturbation theory is safe in that region.Taking k = 6, the 2-loop approximation for the anomalous dimension and the 3-loopapproximation for the �-fun
tion we arrive at�SF(�)=�RGI = 0:759(17) ; at � = 1=Lmax ; (5.5)�SF(�)=�RGI = 0:992(29) ; at � = 1=(2Lmax) : (5.6)Figure 4 
ompares the non-perturbative running of Ospin to perturbation theory.5.1 The relation of bare and renormalization group invariant operatorThe universal result eq. (5.6) has to be 
ombined with values of ZSFspin(L) at L = 2Lmax =1:436 r0 [37℄ whi
h depend on the bare 
oupling and latti
e a
tion, to formZRGIspin = ZSFspin(L)� �RGI�SF(1=L) (5.7)for the respe
tive a
tion. The numeri
al values of Table 3 are well represented byZSFspin(2Lmax) = 2:58 + 0:14 (� � 6)� 0:27 (� � 6)2 EH a
tion ; (5.8)ZSFspin(2Lmax) = 2:59 + 0:11 (� � 6)� 0:34 (� � 6)2 HYP2 a
tion : (5.9)These interpolations may be used in the interval 6:0 � � � 6:5 with an error of about1%. While this error ought to be taken into a

ount before the 
ontinuum extrapolation13



of the renormalized matrix elements, the un
ertainty in eq. (5.6) applies additionally inthe 
ontinuum limit. � L=a a
tion ZSFspin6.0219 8 EH 2.585(19)6.1628 10 EH 2.602(24)6.2885 12 EH 2.602(24)6.3992 14 EH 2.589(29)6.4956 16 EH 2.593(35)6.0219 8 HYP2 2.593(21)6.1628 10 HYP2 2.589(26)6.2885 12 HYP2 2.589(26)6.3992 14 HYP2 2.585(21)6.4956 16 HYP2 2.553(22)Table 3: Renormalization fa
tor at the mat
hing s
ale. In all 
ases F̂�� is the standard 
lover operator.6 First appli
ationsWe illustrate the usefulness of our result with two sample appli
ations.6.1 Spin splittingFirst we take numbers for the bare �2 whi
h have been reported in the literature.Unfortunately they exist only for � = 6:0, whi
h 
orresponds to a � 0:1 fm. The morere
ent evaluations are (the light quark has the mass of the strange quark)Ref. [5℄: a2�bare2 = 0:0100(19) ; (6.1)Ref. [6℄: a2�bare2 = 0:0138(15) : (6.2)The authors of [5, 6℄ then estimate the mass splitting asRef. [5℄: �m2 = 0:28(6)(?)GeV2 ; (6.3)Ref. [6℄: �m2 = 0:36(4)(?)GeV2 ; (6.4)where the renormalization fa
tor is taken from perturbation theory using a boosted
oupling [4℄ and by tadpole improved perturbation theory [6℄6. With Cspin(Mb=�MS) =1:15, Mb = 6:76(9)GeV [13, 16℄ and ZRGIspin = 2:6 ; a = 1=(2GeV) we �nd from eq. (1.6)Ref. [5℄ and NP ZRGIspin : �m2 = 0:38(7)(?)GeV2 ; (6.5)Ref. [6℄ and NP ZRGIspin : �m2 = 0:53(6)(?)GeV2 : (6.6)6Also somewhat di�erent values for the latti
e spa
ing were used by the two groups.14



In all these estimates the additional un
ertainty marked as (?) refers to latti
e artefa
ts,namely the fa
t that a 
ontinuum limit has not been taken, and of 
ourse to the missingdynami
al quark determinant. The experimental mass splitting is �m2 = 0:497GeV2.6.2 Renormalization fa
tor for spin-dependent potentialsIn phenomenologi
al appli
ations of the spin-dependent potentials, the standard renor-malization s
heme is MS, as in [7, 23{25℄. We apply eq. (5.4) in the MS s
heme withNf = 0, �(0)MS = 238MeV [11℄, the 4-loop �-fun
tion and the 2-loop anomalous dimen-sion. This yields ZMSspin(2GeV) = 0:756(18) � ZRGIspin (g0) ; (6.7)ZMSspin(4GeV) = 0:706(13) � ZRGIspin (g0) ; (6.8)where the 
ited error bar is half of the 
hange when one uses the 1-loop anomalousdimension instead. Remember from Se
t. 3 that the square of this renormalization fa
torenters the potentials. As an illustration, for the standard Ei
hten-Hill a
tion for thestati
 quarks, at g0 = 1 (� = 6:0), we then have ZMS(2GeV) � 0:756�2:58�0:99 = 1:93or a somewhat smaller number at larger �. One 
an 
ompare this at g0 = 1 to therenormalization fa
tors used in [31℄. A tree-level tadpole-improved fa
tor is Ztad = 1:684and the Huntley-Mi
hael fa
tor7 is around ZHM = 1:62. Sin
e a renormalization s
hemeand s
ale are not spe
i�ed in these pro
edures, there is no reason to expe
t a 
loseragreement.7 Con
lusionsWe have presented yet another example that the non-perturbative renormalization pro-gramme using re
ursive �nite size te
hniques [9, 11℄ 
an be 
arried out also in diÆ
ult
ases. Four-fermion operators were renormalized su

essfully in [39,40℄, and those 
on-taining stati
 quarks in [41,42℄. Here we have treated the 
ase of an operator with stati
quarks and gluon �elds.In several 
ases quite signi�
ant deviations from perturbation theory had alreadybeen observed at intermediate to low renormalization s
ales [39,43,44℄, but the present
ase is the strongest example in that respe
t (Fig. 3, Fig. 4).Our example in the previous se
tion illustrates that the non-perturbative ZRGIspinhas a rather big e�e
t. Although the quen
hed estimates for �m2 = m2B�s �m2Bs arein rough agreement with the experimental mass splitting �m2 = 0:497GeV2 afterthe non-perturbative ZRGIspin is used, it now remains to improve the pre
ision of thebare matrix element as well as to obtain it at smaller latti
e spa
ings in order to seewhether the quen
hed approximation does indeed give a reasonable estimate of the7The pres
ription of [38℄ yields a small r-dependen
e, whi
h is not present in the standard renormal-ization of lo
al operators. 15



spin splitting. We also emphasize that there is a remaining un
ertainty in the use of(
ontinuum) perturbation theory for Cspin(Mb=�MS). This 
an be signi�
antly redu
edby a 
omputation of the asso
iated 3-loop anomalous dimension, but also an entirelynon-perturbative mat
hing of HQET and QCD is promising [12, 13℄.A
knowledgements. We a
knowledge useful dis
ussions with N. Brambilla, M.Della Morte, J. Flynn, P. Marquard, J. Pil
um, J. Soto, M. Steinhauser, A. Vairo,S. Takeda and U. Wol�. We thank NIC for allo
ating 
omputer time on the APEmille
omputers at DESY Zeuthen to this proje
t and the APE group for its help. Thiswork is supported by the Deuts
he Fors
hungsgemeins
haft in the SFB/TR 09 , by theEuropean 
ommunity through EU Contra
t No. MRTN-CT-2006-035482, \FLAVIAnet"and by funds provided by the U.S. Department of Energy under 
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hagreement DE-FC02-94ER40818.A One-loop 
omputationOur aim is to 
ompute the expe
tation value of a general Wilson loop at one-loop orderin the S
hr�odinger fun
tional (SF), bearing in mind that we are �nally interested in the
omputation of the expe
tation value of a 
lover operator F̂�� inserted into a Polyakovloop, enabling us to obtain the two-loop anomalous dimension of the 
hromo-magneti
operator in the SF s
heme from its value in the lat s
heme. Due to the spa
e-timelo
ality of su
h an observable, it will be advantageous to 
ompute the gluon loops in xspa
e, while the 
ontribution of tadpoles is proportional to the zero-momentum gluonpropagator. Quite a lot of notation will be introdu
ed, but the formulae presented hereare suitable for the automated 
omputation of arbitrary Wilson loops.The latti
e spa
ing is set to one in this appendix. Spa
e-time indi
es run from 1to 4, the latter being asso
iated with time. For everything else we reuse the notationof [45℄, referred to as (K) in what follows, ex
ept that a twiddle on the 
olor 
omponentsof gluon, ghost and quark �elds is dropped. The reader is assumed to be familiar with
hapters 3, 4 and 5 of (K). Up to one-loop order, the observable O has the perturbativeexpansion (K:4.39) hOi = O(0) + g20 hhO(2)i0 � hO(1)S(1)i0i+O(g40); (A.1)where h: : :i0 is the expe
tation value with respe
t to the free part S(0) of the a
tion andO(k) is de�ned by O = O(0) +O(1)g0 +O(2)g20 + : : : .The (
onstant, Abelian) ba
kground �eld indu
ed by the non-trivial boundary 
on-ditions takes the value V�(x). We use the basis of the su(3) Lie algebraq�(x) = 8Xa=1 qa�(x)Ia (A.2)16



de�ned in (K:App. A) as well as the Fourier representationqa4(x) = 1L3 Xp eip�x qa4(p; x4): (A.3)qak(x) = 1L3 Xp eip�x ei(pk+�a(x4))=2qak(p; x4): (A.4)The gluon propagator in mixed representation used by (K) has the formhqa�(p; x4) qb�(p0; y4)i0 = Æb�aL3Æp+p0 Da��(p;x4; y4): (A.5)Krone
ker symbols su
h as Æp or Æ��4 
arrying a single index are shorthands for Æp;0and Æ�;4 respe
tively.A.1 Parameterization of the observableIn order to 
ompute the expe
tation value of an arbitrary Wilson loop at one-loop order,we parameterize the loop by a starting point x(start) and an ordered list ~̀ of length `.The entries of the list are dire
tions �~̀i , i = 1; : : : ; `. These dire
tions take non-zerointeger values between �4 and +4. An ele
tri
 plaquette in the (03) plane is thusparameterized by ~̀ = (3 4 � 3 � 4). Clearly the loop is 
losed if and only if ea
hinteger appears as many times with the + sign as it does with the � sign (modulo L forthe spa
e dire
tions). We normally drop the ~̀ in �~̀i sin
e we will be dealing only withone path at a time.The sequen
e of points the loop goes through is obtained as follows,x(1) = x(start) x(i+1) = x(i) + �̂i; i = 1; : : : ; `� 1: (A.6)�̂ = sign(�)
j�j are unit ve
tors pointing in the four � dire
tions of the latti
e. Weidentify 4̂ = 0̂. At tree-level, the expe
tation value of the Wilson loop isW~̀[V ℄ = Ỳi=1 V (x(i); �i): (A.7)In general, for any 4-ve
tor we introdu
e negative-index 
omponentsp�� = �p�: (A.8)Be
ause of the way the path is parameterized, for any link variable we introdu
enegative-index 
omponents by imposingU(x; �) = U y(x+ �̂;��); qa�(x) = �qa��(x+ �̂): (A.9)The Fourier representation is now de�ned for all � as follows,qa�(x) = 1L3 Xp eip�x ei�a(p;x4;�) qa�(p; x4) (A.10)17



where qa�(p; x4) = qaj�j(p; x4 � Æ�+4) (A.11)and ei�a(p;x4;�) = 8>><>>: 1 if � = 4ei(pk+�a(x4))=2 if � = k�ei(�pk+�a(x4))=2 if � = �k�1 if � = �4= sign(�)�Æj�j�4 + (1� Æj�j�4)ei(p�+�a(x4))=2� : (A.12)With these notations we havehqa�(p; x4)qb�(p0; y4)i = Æb�aL3Æp+p0Daj�jj�j (p;x4 � Æ�+4; y4 � Æ�+4) : (A.13)A.2 Tadpoles: hO(1)S(1)i0The terms 
onsidered in this subse
tion owe their existen
e to the non-vanishing ba
k-ground �eld. Sin
e the latter is diagonal, the V matri
es all 
ommute two-by-two andwe have tr fW (1)~̀ g = X̀j=1 tr fq�j (x(j)) W~̀[V ℄g: (A.14)The three 
ontributions to S(1) (
oming from the gauge, ghost and quark terms) aregiven by eqs. (K:5.64,5.72) and for the quarks eqs. (K:5.76,5.82). After a short 
al
ula-tion one �nds h tr fW (1)~̀ gS(1)i0 = � Xa2f3;8g 3X�=1Xu4 �a~̀;�(u4) T a� (u4) ; (A.15)with �a~̀;�(u4) = tr fI�aW~̀[V ℄gX̀j=1 sign(�j)�Æj�j j�4 + (1� Æj�j j�4)e�i�a(x(j)4 )=2�Da�j�j j �0;u4; x(j)4 � Æ�j+4� : (A.16)and T a� (u4) = T a�;gluon(u4) + T a�;ghost(u4) +NfT a�;quark(u4): (A.17)T a�;gluon; T a�;ghost; T a�;quark are de�ned respe
tively by eqs. (K:5.114), (K:5.115) and(K:5.116). Note that for the ghost and quark 
ase, the overall minus sign in eq. (A.15)arises be
ause of the loop (ghosts and quarks are anti-
ommuting). For the gluons, theminus sign is just a 
onvention 
hosen by (K) and is 
ompensated by a minus sign inthe de�nition of T a�;gluon. 18



A.3 Gluon loops: hO(2)i0We separately 
onsider two 
ontributions:O(2) = O(2a) +O(2b): (A.18)Expanding the exponential of the gluon �eld to linear order, we obtaintr fW (2a)~̀ g = X̀j=1 X̀j0=j+1 tr fq(j)W~̀(j sjjj0 sj0)q(j0)W~̀(j0 sj0 jj sj)g (A.19)where we have used the 
y
li
ity of the tra
e and the shorthand q(j) � q�j (x(j)). Thereis also a 
ontribution from the quadrati
 pie
e of the exponential of the gluon �eld,tr fW (2b)~̀ g = 12 X̀j=1 tr fq2�j (x(j))W~̀[V ℄g; (A.20)whi
h is 1=2 of the term j = j0 in (A.19).We also need the notation sj � 12(1� sign(�j)) and n = 1+mod(n�1; `) for n � 1.Now we 
an formulate the de�nitionW~̀(j sjjj0 sj0) = ( W~̀[V ℄ if j + sj = j0 + s0j and sj = 0W (j + sj ! j0 + s0j) otherwise (A.21)that invokes the parallel transporter along the loop from x(j) to x(j0):W~̀(j ! j0) = 8><>: 1 if j = j0Qj0�1i=j V (x(i); �i) if j < j0Qì=j V (x(i); �i)Qj0�1i=1 V (x(i); �i) if j > j0 (A.22)One then �ndsh tr fW (2a)~̀ gi0 = 1L3 X̀j=1 X̀j0=j+1 8Xa=1Xp eip(x(j)�x(j0)) ei�a(p;x(j)4 ;�j) ei��a(�p;x(j0)4 ;�j0 ) �(A.23)tr fIaW~̀(j sjjj0 sj0)I�aW~̀(j0 sj0jj sj)g Daj�j jj�j0 j �p;x(j)4 � Æ�j+4;x(j0)4 � Æ�j0+4� :We introdu
e the propagator 
ompletely in x-spa
e,�a��(x;x4; y4) � 1L3 Xp eipx ei�a(p;x4;�) ei��a(�p;y4;�) Daj�jj�j (p;x4 � Æ�+4; y4 � Æ�+4) ;(A.24)19



whi
h allows us to writeh tr fW (2a)~̀ gi0 = X̀j=1 X̀j0=j+1 8Xa=1 tr fIaW~̀(j sjjj0 sj0)I�aW~̀(j0 sj0jj sj)g (A.25)� �a�j�j0 (x(j) � x(j0);x(j)4 ; x(j0)4 ):h tr fW (2b)~̀ gi0 = 12 8Xa=1 tr fIaI�aW~̀[V ℄gX̀j=1�a�j�j �0;x(j)4 ; x(j)4 � : (A.26)A.4 ImprovementIn order to be able to rea
h the 
ontinuum limit with a rate proportional to (1=L)2 ourobservable needs to be improved. Sin
e there are no operators of dimension 6 with thesame symmetries of Ospin, non-vanishing at one-loop order, and with no valen
e quarks,the improvement amounts to 
ompute the additional 
ontributions stemming from thevolume and boundary 
ounter-terms in the a
tion. The volume term is proportional to
sw, whose tree-level expression, 
(0)sw = 1, enters our observable at one-loop order. It istaken into a

ount dire
tly in the quark propagator. The only boundary term neededis proportional to the one-loop expression of 
t [27,34℄. The 
orresponding 
ounterterm
an be expressed as h tr fW (1)~̀ gS(1)tot;bi0 (A.27)with S(1)tot;b given in eq. (5.130) of (K). The expli
it expression readsh tr fW (1)~̀ gS(1)tot;bi0 = 2p3
(1)t [sin(2
) + sin(
)℄ tr fI8W~̀[V ℄g 3Xk=1M~̀;k ; (A.28)with M~̀;k = X̀j=1 sign(�j)�Æj�j j�4 + (1� Æj�j j�4)e�i�8(x(j)4 )=2� (A.29)� �D8kj�j j(0; 1; x(j)4 � Æ�j+4)�D8kj�j j(0; T � 1; x(j)4 � Æ�j+4)� ;and 
 = �=3LT on
e the \point A" has been 
hosen. The 
ontribution (A.28) vanishesfor the Polyakov loop P3(x)jx4=T=2 without operator insertion.A.5 SummaryThe expe
tation value of the Wilson loop at one-loop order is given byh tr fW~̀gi =W~̀[V ℄ + g20 �h tr fW (2a)~̀ gi0 + h tr fW (2b)~̀ gi0 (A.30)� h tr fW (1)~̀ gS(1)i0 � h tr fW (1)~̀ gS(1)tot;bi0� ;20



where the one-loop terms are given by eqs. (A.25,A.26,A.15) and the improvement termby eq. (A.28).A.6 Implementation in MATLABFor our perturbative 
omputations we de
ided to use MATLAB in order to 
ombine
omfortable programming, robustness of the libraries and a

eptable speed for the in-volved observables and latti
es.In presen
e of a non-vanishing ba
kground �eld, a simple analyti
al expression forthe ghost, gluon and quark propagators is not available. They are 
omputed by ex-ploiting the re
ursive te
hniques presented in [46,47℄. The gluon propagator is the mosttime 
onsuming 
omputation. Its Fourier transformed expression (A.24) is 
al
ulated bysumming only over a redu
ed set of momenta, whi
h saves a fa
tor of 6 (asymptoti
allyon large latti
es) in 
omputing time.The tadpole loops are observable independent, and they are 
omputed and stored.We use the formulae of [48℄, where the symmetries of verti
es and propagators are fullyexploited. Then the 
ontributions (A.15) are 
omputable with an e�ort negligible in
omparison to the loops.The improvement 
ounterterm involves only the zero momentum gluon propaga-tor and the tra
e of the produ
t of diagonal matri
es; it is 
omputationally 
heap in
omparison to the rest.In order to give an idea of the 
omputational 
ost, for L = 48 the 
omputationof all diagrams and improvement 
ounter-terms for the Polyakov loop with insertionof the 
lover leaf operator has been 
arried out in 2 weeks on a PC, equipped with asingle pro
essor Intel Pentium 4 with 2.6 GHz. The s
aling 
an be approximated witha polynomial in L, and is asymptoti
ally dominated by the highest power, i.e. L5.A.7 Che
ksOf all 
he
ks we did to 
on�rm the 
orre
tness of our 
ode, we brie
y report about twoof them, whi
h may be of interest in other appli
ations.As observed in [49℄, the expe
tation value of the gauge a
tion 
an be evaluatede
onomi
ally by taking the logarithmi
 derivative of the partition fun
tion with respe
tto � = 6=g20 :13hRe tr f1� P��(x)gi = 12� � Nb. of propagating gluonsNb. of un-oriented plaquettes +O(1=�2) (A.31)= 12� � 8[L3(4T�3)�L3(T�1)℄��3L3(2T�1) +O(1=�2): (A.32)The term � arises from the gauge degrees of freedom that are 
onstant in spa
e and liveon the lower temporal boundary (there is no extra gauge degree of freedom asso
iatedwith the boundary x4 = T be
ause global symmetries are not to be gauge-�xed):� = � dim(su(3)) = 8 with boundary links set to unityrank(su(3)) = 2 with non-trivial Abelian boundary �eld (A.33)21
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Figure 5: One-loop 
onne
tion between the SF s
heme and the lat s
heme.
L �(1;0)SF;lat �(1;1)SF;lat4 0.319032402694607 -0.0713836035018626 0.319029788544510 -0.0437583424109538 0.318915972669536 -0.03459429827284610 0.318837839980287 -0.03131615810023512 0.318793467352611 -0.02989852073547414 0.318767160420896 -0.02916044024604116 0.318750540373758 -0.02872085552917618 0.318739443194014 -0.02843464363967120 0.318731691659922 -0.02823661821418322 0.318726074540605 -0.02809342750234624 0.318721879237185 -0.02798632219791526 0.318718665931215 -0.02790401371348028 0.318716151870336 -0.02783934183638130 0.318714148841999 -0.02778757335672132 0.318712527751079 -0.02774547172178834 0.318711197727617 -0.02771076007800436 0.318710093332871 -0.02768179742822838 0.318709166494586 -0.02765737600196840 0.318708381269461 -0.02763659042517842 0.318707710343347 -0.02761875092028944 0.318707132670872 -0.02760332432839746 0.318706631831595 -0.02758989318170548 0.318706194851218 -0.027578126762064Table 4: Results for the 
onne
tion between the SF and the latti
e MS s
hemes.22



In the �rst 
ase, all 8 zero momentum gluons at the lower temporal boundary obeyDiri
hlet boundary 
onditions. They are asso
iated with spatially 
onstant modes andare therefore not propagating degrees of freedom. With a non-trivial Abelian ba
k-ground �eld, only two of the gluon �elds obey the Diri
hlet boundary 
onditions at thelower boundary, and are asso
iated with spatially 
onstant diagonal modes; the othersare propagating modes. We 
he
ked that our program reprodu
es this result.A further su

essful 
he
k, whi
h we do not report in detail, 
onsists in 
omparingthe perturbative results for the plaquette and the Polyakov loops, with and withoutinsertion of the 
lover leaf operator, to the 
orresponding non-perturbative (quen
hed)
omputations. The latter are performed at small bare 
ouplings, 0:015 � g20 � 0:06,setting all needed improvement 
oeÆ
ients to their tree-level values. In all 
ases L =T = 4.A.8 The Polyakov loop and 
hromo-magneti
 operatorA.8.1 Tree-level 
omputationAs far as the gauge boundary values and the indu
ed ba
kground �eld are 
on
erned, wefollow [27℄, and work with the boundary �elds de�ned by eqs. (3.1,3.2). The numeratorand denominator on the r.h.s. of the renormalization 
ondition (3.8) assume the 
ompa
tform L2h tr (P3(x)E1(x))ig0=0 = L2 3Xm=1 expf iL [x4�0m + (L� x4)�m℄g (A.34)� sin � 1L2 ��0m � �m�� :h trP3(x)ig0=0 = 3Xm=1 exp� iL [x4�0m + (L� x4)�m℄	 (A.35)A.8.2 One-loop orderThe one-loop 
ontribution to the latti
e step s
aling fun
tion �spin(u; 1=L) = 1 +�(1)spin(1=L)u + O(u2), de�ned in eq. (4.3), is 
omputed for Nf = 0 and Nf = 2 giv-ing the results represented in Figure 6. There the e�e
t of the O(a)-improvement isevident, espe
ially in the Nf = 0 
ase. In both the unimproved and improved 
ases the
ontinuum limit is 
onsistent with the predi
tion 
0 ln(2).These results enter the 
omputation of the 
onne
tion between the SF s
heme andthe lat s
heme, as shown in Figure 5. The one-loop 
onne
tion fa
tor �(1)SF;lat is obtainedfrom the one-loop 
ontribution ZSF;(1)spin to the renormalization fa
tor (3.8) by subtra
tingthe logarithmi
 divergent part�(1)SF;lat(L) = ZSF;(1)spin (L)� 
0 ln(L) : (A.36)23
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Figure 6: One-loop 
ontribution to the step s
aling fun
tion of the 
hromo-magneti
 operator in theNf = 0 (left) and Nf = 2 (right) 
ases.We de
ompose �(1)SF;lat a

ording to its Nf-dependen
e�(1)SF;lat = �(1;0)SF;lat +Nf�(1;1)SF;lat : (A.37)The quarks are massless, implemented at this order in perturbation theory by m0 = 0and the angle � = ��=3. The full listing of results is shown in Tab. 4, where allnumbers are given with 15 digits for readability, although the last two or three may beinsigni�
ant.The 
ontinuum limits, in
luding the estimate of the asso
iated un
ertainties, areperformed a

ording to the method des
ribed in [47℄, with MATLAB routines providedby Ulli Wol�. We have veri�ed that the roundo� errors as well as the errors in 
t quotedin [27, 34℄ are negligible 
ompared to the systemati
 un
ertainties of the extrapolation.The �nal result of the 
ontinuum limit extrapolations is expressed in eq. (3.17).B Monte Carlo simulationsIn our measurements of observables we fully exploit translational and axis ex
hangeinvarian
e. The ensemble of gauge 
on�gurations is generated by means of the \hybridover-relaxation" algorithm with lexi
ographi
ally ordered sweeps (see e.g. [50℄ for theexa
t implementation). The basi
 update 
onsists of 1 heat-bath update sweep [51{53℄, followed by NOR over-relaxation sweeps [54℄. The update is iterated NUP = 2times between measurements and the parameter NOR varies from a minimum of 3, forL=a = 6, to a maximum of 10, for L=a = 24. This guarantees to have short integratedauto
orrelation times for our observables, while the 
omputing time spent for the updatedoes not ex
eed the one required for the measurements. Still there 
an be very slowmodes in the system as will be dis
ussed at the end of the appendix.24
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Figure 7: Auto
orrelation pattern of Zspin(2L) for two quen
hed simulations with L=a = 16. Left:Normalized auto
orrelation fun
tion plotted vs. the separation of measurements t. Right: Integratedauto
orrelation time �int vs. the summation window W. With � = 7:6547 we have �g2(L) = 1:8811 (redasterisks), while for � = 6:4527 we have �g2(L) = 3:480 (green 
ir
les). The verti
al lines 
orrespond tothe optimal values of W 
omputed a

ording to [57℄.In the 
ase of the Ei
hten-Hill a
tion, the gauge links building up the Polyakovloop, but not the inserted 
lover leaf operator, are evaluated by a 10-hit multi-hitpro
edure [55℄, where ea
h hit 
onsists of a heat-bath update of the above type. Withthis varian
e redu
tion, the statisti
al pre
ision is similar to the one of the HYP2 a
tion.On the largest latti
e (L=a = 24) we 
ould obtain an around 1% pre
ision in ZSFspin(L)with 30k measurements at � � 11 and with 100k measurements at � � 7:2. However,at � � 6:8, where the length of of the Polyakov loop amounts to 0:7 fm, it be
ame very
ostly to rea
h even a 2% pre
ision. We tried various ways to redu
e the varian
e, inparti
ular di�erent versions of multilevel algorithms inspired by [56℄, but did not su

eedin �nding signi�
ant gains. We then 
hanged the dis
retization of Ospin, repla
ing thelinks in F̂�� by HYP2 links. (This is indi
ated throughout the paper as the dis
retizationwith HYP2 a
tion and HYP2 operator F̂�� .) The resulting in
rease in pre
ision allowedto obtain the last entry in Tab. 5 with 250k measurements.As a 
he
k that the 
hange of dis
retization does not introdu
e unwantedly large a2e�e
ts, we also repeated the 
omputation of �(2:77) this way. Figure 2 ni
ely 
on�rmsthe expe
ted universality and a2 e�e
ts a
tually turn out to be redu
ed! We pointout that with the Ei
hten-Hill a
tion the 
uto� e�e
ts 
an be dire
tly 
ompared to theexpe
tations of perturbation theory. For the investigated 
ouplings, �g2 = 0:9944; 1:3293,the agreement is very good.The large amount of statisti
ally independent measurements needed imposes stronglimitations to the appli
ation of this method to the theory with dynami
al fermions.The raw simulation results are reported in Table 5.We �nally add a remark on error estimates and auto
orrelations in our simulations.The auto
orrelation fun
tion � of Zspin, de�ned as in [57℄, falls very qui
kly for all ourmesurements. At all but the largest 
oupling the integrated auto
orrelation time is25



�g2(L) � L=a a
tion F̂�� ZSFspin(L) ZSFspin(2L) �spin0.8873(5) 10.7503 6 1.3188(46) 1.3504(50) 1.0239(52)0.8873(10) 11.0000 8 1.3218(22) 1.3532(51) 1.0238(42)0.8873(30) 11.3384 12 1.3268(30) 1.3580(69) 1.0235(57)0.9944(7) 10.0500 6 EH 1.3651(44) 1.3905(76) 1.0186(64)0.9944(13) 10.3000 8 EH 1.3514(52) 1.3924(88) 1.0303(76)0.9944(30) 10.6086 12 EH 1.3608(53) 1.384(12) 1.0171(96)1.2430(13) 8.8997 6 1.4336(44) 1.4839(65) 1.0351(55)1.2430(14) 9.1544 8 1.4278(30) 1.4803(56) 1.0367(45)1.2430(35) 9.5202 12 1.4349(27) 1.474(10) 1.0275(74)1.3293(12) 8.6129 6 EH 1.4727(57) 1.5116(77) 1.0264(66)1.3293(21) 8.8500 8 EH 1.4664(71) 1.503(12) 1.0248(95)1.3293(60) 9.1859 12 EH 1.4528(65) 1.517(13) 1.0438(99)1.5553(15) 7.9993 6 1.5302(61) 1.6036(48) 1.0480(53)1.5553(24) 8.2500 8 1.5229(46) 1.5999(78) 1.0506(60)1.5553(70) 8.5985 12 1.5191(27) 1.579(11) 1.0394(77)1.8811(22) 7.4082 6 1.6193(74) 1.7208(65) 1.0627(63)1.8811(28) 7.6547 8 1.6100(55) 1.717(13) 1.0664(91)1.8811(38) 7.9993 12 1.6015(42) 1.718(14) 1.0726(94)2.1000(39) 7.1214 6 1.6563(87) 1.792(12) 1.0819(92)2.1000(45) 7.3632 8 1.652(11) 1.773(11) 1.0732(96)2.1000(80) 7.6985 12 1.6577(91) 1.751(17) 1.056(12)2.4484(37) 6.7807 6 1.7618(88) 1.900(13) 1.0786(90)2.4484(45) 7.0197 8 1.7371(86) 1.898(17) 1.092(11)2.4484(80) 7.3551 12 1.7141(89) 1.855(17) 1.082(12)2.770(7) 6.5512 6 1.8317(75) 2.085(19) 1.138(11)2.770(7) 6.7860 8 1.8067(94) 2.044(17) 1.131(11)2.770(11) 7.1190 12 1.7975(90) 2.000(23) 1.113(14)2.770(7) 6.5512 6 HYP2 1.3659(36) 1.501(12) 1.0986(91)2.770(7) 6.7860 8 HYP2 1.3643(24) 1.505(15) 1.103(11)2.770(11) 7.1190 12 HYP2 1.3668(63) 1.490(14) 1.090(11)3.480(8) 6.2204 6 HYP2 1.4329(53) 2.070(29) 1.444(21)3.480(14) 6.4527 8 HYP2 1.4350(89) 1.975(31) 1.376(23)3.480(39) 6.7750 12 HYP2 1.4465(61) 1.937(41) 1.339(29)3.480(8) 6.257 6 1.9864(75) 2.714(32) 1.366(17)3.480(8) 6.476 8 1.9492(75) 2.608(33) 1.338(18)3.480(8) 6.257 6 HYP2 1.4297(47) 1.979(26) 1.384(19)3.480(8) 6.476 8 HYP2 1.4262(29) 1.961(25) 1.375(17)3.480(9) 6.799 12 HYP2 1.4280(33) 1.864(37) 1.305(26)Table 5: Raw simulation results. The standard dis
retization is the HYP2 a
tion of[18℄ and the 
lover leaf operator F̂�� . Deviations from this rule are indi
ated. Theimprovement 
oeÆ
ient 
t is set to its 1-loop value, ex
ept for the last �ve lines, where2-loop pre
ision is used. The renormalized 
oupling is reprodu
ed from [11℄.
26



then easily estimated. However for L � 0:7 fm, we observe that � shows a long tailbefore approa
hing zero. This pattern is absent in the smaller volumes, and shows littlesensitivity to 
hanges of NOR. Figure 7 (left) plots the �-fun
tion obtained from runswith (L=a;NUP; NOR) = (16; 2; 4), for two di�erent physi
al volumes. Figure 7 (right)shows that for � = 7:6547 the integrated auto
orrelation time is quite short, i.e. �int =0:86(9), whereas for � = 6:4527 the tail mentioned above leads to �int = 2:15(13). Thelatter translates into an in
rease of the error by a fa
tor of two, in 
omparison to the
ase where no 
orrelation is present (i.e. �int = 0:5).Referen
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