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1 IntrodutionHeavy-light bound states in QCD an be desribed eÆiently by an expansion in theinverse heavy quark mass. Already in the early days of the assoiated e�etive �eldtheory, HQET [1{3℄, the mass splitting between vetor and pseudo-salar heavy-lightmesons served as a phenomenologial argument for the absene of large higher orderorretions in the expansion.Consider QCD with Nf light quark avors and a heavy avor, the b-quark, Nf = 4being the ase realized in Nature. The splitting�m2 � m2B� �m2B (1.1)then has an asymptoti behavior for large quark mass mb whih is haraterized by onerenormalization group invariant (RGI) observable,4�RGI2 = limmb!1n� 2b0�g2(mb) ��0=2b0 �m2o ; (1.2)� 0 = 3=(8�2) ; b0 = (11� 23Nf)=(16�2)�of dimension [mass℄2. Sine the limit exists, this quantity is uniquely de�ned in QCD.In the above the de�nition of mb is irrelevant as long as it is renormalized at a sale oforder mb.As a rather non-trivial statement, the e�etive �eld theory predits that �RGI2 anunambiguously be omputed in that theory, where the b-quark is treated as stati.There it is expressed as an expetation value�RGI2 = 13hBjORGIspin jBi = hBjBi ; (1.3)ORGIspin = lim�!1 � 2b0�g2(�) ��0=2b0 OSspin(�) ; (1.4)of ORGIspin in the zero-momentum B-meson state jBi. The operator OSspin is related to thebare loal operatorOspin(x) =  h(x) 12iFkl(x)�kl h(x) =  h(x)� �B(x) h(x) (1.5)by a multipliative renormalization depending on the adopted sheme S and a renor-malization sale � { but ORGIspin neither depends on a sheme nor on a sale.The matrix element of the bare operator an be omputed non-perturbatively bylattie simulations of HQET [4{6℄. As stated in these referenes, a signi�ant soure ofunertainty remained in the onnetion between the bare operator and the RGI one (orone renormalized in the MS sheme), whih has only been established perturbatively [7,8℄. This unertainty made it impossible to deide whether the splitting is signi�antlyunderestimated in the quenhed approximation (Nf = 0) or not.In this paper we develop the non-perturbative renormalization of Ospin. We followthe general strategy of the ALPHA-ollaboration [9{11℄, speialize it to the operator in1



question and perform an expliit omputation in the quenhed approximation. In parti-ular we de�ne a suitable sheme using Shr�odinger funtional (SF) boundary onditions,and ompute the 2-loop anomalous dimension in this sheme. We then evaluate the saledependene of the operator non-perturbatively for Nf = 0, between � � 0:3GeV and� � 100GeV. Using the high energy end of the results and eq. (1.4) supplementedwith the 2-loop anomalous dimension, the onnetion to the RGI operator is realized.Finally the total Z-fator between bare and RGI operator is obtained for the Wilsongauge ation and several HQET disretizations. Readers solely interested in the �nalresult for the Z-fator may �nd it in Set. 5.1.For a omparison to the experimental mass splitting at �nite mass, it is importantto inlude radiative orretions beyond the 1-loop ones inorporated in eq. (1.2). Wedo this in the form�m2 = 2mB� +mBMb Cspin(Mb=�MS)�RGI2 +O(1=mb) ; (1.6)written in terms of RGI's with a funtion Cspin known up to orretions O(�2(mb)) �4% and disussed in some detail in Set. 2. Obviously the perturbative unertaintyan be estimated more reliably and redued by a higher order ontinuum perturbativeomputation in QCD. We note that the �nal renormalization fator ZRGIspin also appliesto spin-dependent potentials omputed in lattie gauge theory (see Set. 3).The reader is not to onfuse the present approah with the one of [12, 13℄, where,through a non-perturbative mathing between QCD and HQET, also funtions suhas Cspin are determined non-perturbatively. While in general the strategy of [12, 13℄ isessential, the more traditional path is viable here beause Ospin does not mix with lowerdimensional operators.Before entering the disussion of the renormalization of Ospin, we briey address thequestion of the preision that an be expeted from eq. (1.6). For this purpose we boldlyalso treat �m2 = m2D� �m2D in HQET. So Nf = 3 in all plaes. With a Nf = 3 QCD-parameter of �(3)MS = 300(100)MeV and with M = 1:55GeV, Mb = 6:69GeV [14℄ we�nd M=Mb � 0:23 and Cspin(M=�MS)=Cspin(Mb=�MS) = 0:94 . HQET then relatesthe splittings as �m2=�m2 = 1:41(2), where the unertainty is due to the generouserror in �(3)MS. With the quenhed input values �MS = 238MeV; M = 1:65GeV; Mb =6:76GeV [11, 13, 15, 16℄ this ratio hanges only slightly, namely to �m2=�m2 � 1:44.This is to be ompared to �m2=�m2 = 1:14 from experiment.Sine the harm mass is only moderately large, suh a 25% deviation is not unex-peted. Saling this orretion to the B-system, we expet an auray of order 5-10%for the HQET predition of �m2. Earlier quenhed approximation estimates with per-turbative renormalization found values for �m2 whih were lower than the experimentalnumber by between 50% [4, 5℄ and 20% [6℄. Renormalizing the same matrix elementsnon-perturbatively we will �nd the di�erene to experiment signi�antly redued inSet. 6. 2



2 HQET and �RGI22.1 Lattie ationWe briey de�ne the e�etive theory in a lattie regularization, using the notationof [17, 18℄. The heavy quark �elds are taken to have 4 omponents with the onstraintP+ h =  h ;  hP+ =  h P+ = 12 (1 + 0) : (2.1)With the lattie bakward derivativeDW0  h(x) = 1a h h(x)�W y(x� a0̂; 0) h(x� a0̂)i ; (2.2)and the mass ounterterm ÆmW, the stati ation (i.e. lowest order HQET) is writtenas SWh = a4 11 + a ÆmW Xx  h(x)(DW0 + ÆmW) h(x) : (2.3)Di�erent gauge onnetionsW have been found to be very useful to improve the statisti-al preision in numerial simulations [18,19℄. They play a rôle only when we disuss thenon-perturbative results. Until then the reader may think of W (x; 0) as the standardtimelike link. In fat that hoie de�nes the original Eihten-Hill ation [1℄.2.2 Conversion funtionsThe operator Ospin(x) in eq. (1.5) is given in terms of the �elds entering eq. (2.3) withthe normalization spei�ed there. The lattie version F̂�� of the gauge �eld tensor isde�ned by the lover leaf term, see e.g. [20℄. Ospin appears as a �rst order orretionin 1=mb in HQET and indues the spin splitting. Usually, the splitting is written in aform di�erent from eq. (1.6). We want to briey explain why we hoose the latter.The more ommon form ism2B� �m2B = 4Cmathmag (mb)�2(mb) + O(1=mb) (2.4)�2(mb) = 13 hBjOMSspin(� = mb)jBi (2.5)where OMSspin and mb are renormalized in the MS sheme. This is arrived at by startingfrom the formal expressionmB� �mB � 23 1mb hBjOspinjBi = hBjBi : (2.6)One renormalizesOspin in the MS sheme, identi�es the massmb with the (perturbative)pole mass mQ;b and de�nes the remaining fator as a mathing oeÆient Cmathmag (mb).Finally one uses 2mQ;b = mB� +mB +O(�), dropping the O(�) orretion.The mathing oeÆient Cmathmag (mb) = 1 + C1�g2(mb) + : : : is independent of thepartiular matrix element. Sine mb � 4GeV is reasonably large and there is no mixing3



Figure 1: Conversion funtions for Nf = 0. Dashed lines for 1-loop anomalous dimension and ontin-uous line for 2-loop . In the latter ase the parametri unertainty is O(�2(mb)). The absissas of the quark and the b quark are marked by vertial dots.with lower dimensional operators, Cmathmag an be approximated by perturbation theory.It is known inluding the C1�g2(mb) term [7℄.In the above form, the matrix element and the HQET parameter �2 depend on thearbitrary renormalization sheme (MS). Suh a spurious dependene is easily removedby introduing RGIs (see e.g. [21℄ and Set.III.3.1.of [22℄), in partiular ORGIspin , eq. (1.4).It is related to the bare operator Ospin in a partiular lattie regularization viaORGIspin = ZRGIspin (g0)Ospin : (2.7)We now have m2B� �m2B = 4Cmag(Mb=�MS)�RGI2 +O(1=mb) (2.8)with a funtion Cmag(Mb=�MS) written in terms of the RGI mass of the b-quark andthe QCD �-parameter. Using existing perturbative omputations [7, 23{25℄ it is easilyevaluated by integration of the RG equations (see e.g. [21℄).The omparison of the suessive perturbative approximations for Cmag in Fig. 1indiates a relatively large perturbative error even at the 2-loop level (for the anoma-lous dimension ). At a sale of 4GeV this is somewhat unusual. However, one anunderstand this behavior by noting that the de�nition of the mathing fator Cmathmaginvolves the pole quark mass, whih is unphysial. That mass has a perturbative rela-tion to short distane masses suh as mMS whih is badly behaved (large perturbativeoeÆients). Also the relation pole mass to RGI mass has this property.Our eq. (1.6) follows from hoosing diretly the RGI mass instead of the pole massin eq. (2.6). In perturbation theory one then has the relationCspin(Mb=�MS) = MbmQ;bCmag(Mb=�MS) : (2.9)4



The funtion Cspin is reprodued from [21℄ in Fig. 1. One noties that the two availableperturbative approximations are muh loser than they are for Cmag. We expet this tohold also at higher orders of perturbation theory. Still, sine the very lose agreement ofthe two approximations for Cspin may be aidental, we will use an error of �2s(mb) �4%at the mass of the b-quark. This perturbative error is urrently being redued by anexpliit 3-loop omputation [26℄.In summary, the form eq. (1.6) is written in terms of properly de�ned RGI's andCspin appears to have a well behaved perturbative expansion. This is a good basis for aomputation of the mass splitting.3 Shr�odinger funtional renormalization sheme3.1 De�nitionWe want to formulate a renormalization ondition for Ospin in a �nite volume, whihallows us to arry out a non-perturbative omputation of the assoiated renormalizationfator ZRGIspin , following the general strategy of [11℄. We hoose Shr�odinger funtionalboundary onditions sine this allows us to perform aurate simulations and also per-turbative omputations; see [22℄ for a review. There is an additional reason for thishoie. With any kind of periodi boundary onditions, any orrelation funtion withOspin vanishes at tree-level. In order to avoid this, we hoose boundary onditions whihindue a non-trivial bakground �eld F�� 6= 0 at tree level. This ensures a good sig-nal in the MC simulations at weak oupling and means that a 1-loop omputation issuÆient to ompute the Z-fator up to and inluding O(g2). Sine the operator doesnot ontain any light fermion �elds, we avoid these altogether in the de�nition of theorrelation funtions. For Nf = 0 we then end up with a pure gauge theory de�nition(without valene quarks). Furthermore one easily sees that the possible dimension sixoperators whih are neessary for the O(a)-improvement of Ospin do not ontribute here.As is well-known, there is also no mixing with Okin =  h ~D2 h, the other dimension-5operator of HQET.1These onsiderations motivate the following hoie. We take an L0 �L1 �L2 �L3geometry and adopt Dirihlet boundary onditions induing a bakground �eld as in [27℄.But we hoose Dirihlet onditions in the 3-diretion,U(x; �)jx3=0 = exp(aC) ; U(x; �)jx3=L3 = exp(aC 0) ; � = 0; 1; 2 ; (3.1)keeping periodi boundary onditions with respet to x0; x1; x2 (remember that time is1The stati ation is invariant under the spae-dependent transformation Æ h(x) =!(x) h(x) ; Æ h(x) = �!(x) h(x) ; whih orresponds to the onservation of the loal b-quark num-ber [17℄. While Ospin is invariant under this symmetry transformation, Okin is not.
5



already distinguished in the stati quark ation). The Abelian �eldsC = iLdiag(�1; �2; �3) = iLdiag(��=3; 0; �=3) ; (3.2)C 0 = iLdiag(�01; �02; �03) = iLdiag(��; �=3; 2�=3) ;of \point A" [27℄ are hosen and we set L = L0 = L1 = L2. The lassial solution thenhas non-vanishing F�3, independent of the spae-time position. Note that the strengthof the �elds sales with L.A natural hoie of a renormalization ondition is thenZSFspin(L)L2hS1(x+ L2 0̂)Ospin(x) ihS1(x+ L2 0̂)S1(x) i = L2hS1(x+ L2 0̂)Ospin(x) ihS1(x+ L2 0̂)S1(x) i �����g0=0 ; (3.3)with x3 = L3=2 = L=2. The spin operatorSk(x) = 11 + a ÆmW h(x)�kW y(x� a0̂; 0) h(x� a0̂) (3.4)is the simplest hoie to obtain a non-vanishing trae in spin spae. It is the (loal)N�other harge of the invariane of the ation under the transformationÆ h(x) = !(x)�k h(x) ; Æ h(x) = �!(x) h(x)�k ; �k � �12�ijk�ij ; (3.5)with in�nitesimal spae-dependent parameter !(x) and [�k; �l℄ = i�klm�m. The Wardidentities derived from this invariane imply that Sk(x) is not renormalized. Thus noadditional fators are neessary in eq. (3.3).We have formulated the renormalization ondition in terms of orrelation funtionsof loal operators to make it obvious that the standard theory of renormalization in-luding O(a)-improvement applies. However, integrating out the stati quark �elds wearrive at a form whih is more natural for expliit omputations, perturbative and non-perturbative. This step also shows immediately the onnetion to the spin-dependentpotentials. With the expliit form of the stati propagator [18℄, one obtainshS1(x+ L2 0̂)Ospin(x) ihS1(x+ L2 0̂)S1(x) i = hTr(P0(x)B1(x))ihTr(P0(x)) i ; B1(x) = iF̂23(x) ; (3.6)where the Polyakov loop operatorP�(x) =W (x; �)W (x+ a�̂; �) : : : W (x+ (L� a)�̂; �) (3.7)enters. Here F̂23(x) stands for the lover leaf disretization of the �eld strength ten-sor [20℄ (an alternative disretization will also be onsidered in the non-perturbativeomputations). Now the renormalization ondition eq. (3.3) is given in terms of theexpetation values of a (traed) Polyakov loop and of a (traed) Polyakov loop with theinsertion of a B �eld. 6



At this point it is useful to digress for one paragraph in order to exhibit the relationto spin-dependent potentials [28, 29℄. In standard notation2 they an be de�ned as(periodi boundary onditions in all diretions, r2 = x21 + x22 + x23)x1x2r2 V SF3 (r; �) = [ZSFspin(1=�)℄2 limL0!1aXx0 hTr(P0(0)B1(0))Tr(P0(x)yB2(x))ihTrP0(0)TrP0(x)y iV SF4 (r; �) � V SF3 (r; �)3 = [ZSFspin(1=�)℄2 limL0!1aXx0 hTr(P0(0)B1(0))Tr(P0(x)yB1(x))ihTrP0(0)TrP0(x)y iTranslating from the potential renormalized in the SF sheme at renormalization sale �to an RGI potential works just as explained in Set. 2. In ontrast to the stati potentialwhere a diÆult to determine additive renormalization results from ÆmW , there is noadditive renormalization in the above equations; ÆmW drops out. Note that we havenothing to add to the phenomenologial relevane of suh potentials [30℄. Rather weremark that these objets, omputed reently in [31℄, have to be renormalized withZspin, whih arises in HQET.Returning to our renormalization ondition, we note that it is natural to use theequivalene of all oordinates in Eulidean spae to swith to the usual SF boundaryonditions, whereZSFspin(L)L2hTr(P3(x)E1(x))ihTrP3(x) i = L2hTr(P3(x)E1(x))ihTrP3(x) i ����g0=0 ; at x0 = L02 (3.8)E1(x) = iF̂01(x) ; Dirihlet boundary onditions in time.From now on we retain these boundary onditions and this oordinate system. Thetree-level value is L2hTr(P3(x)E1(x))ihTrP3(x) i ����g0=0 = �6 1 +p32�p3 + O((a=L)4) : (3.9)Corresponding formulae for �nite a=L, whih are used in the non-perturbative de�nitionin order to assure Zspin = 1 at tree-level, are given in eqs.(A.34, A.35).3.2 The 2-loop anomalous dimensionOur strategy for omputing the RGI renormalization is to non-perturbatively evaluateZspin(1=�) up to � = O(100GeV) and then evaluate ORGIspin=Ospin(�) in perturbationtheory. In the latter step the anomalous dimension (�g), de�ned by the renormalizationgroup equation � ���OSFspin = (�gSF)OSFspin ; (3.10)2 The spin-dependent potentials for quarks of masses m1; m2 and spin operators s1; s2 reads1 � s23m1m2 V4(r) + 1m1m2 hx � s1 x � s2r2 � s1 � s23 iV3(r) :7



is needed inluding the 2-loop term, in order to have a negligible perturbative uner-tainty. We alulated the oeÆient SF1 in the expansionSF(�gSF) = ��g2SF(0 + SF1 �g2SF + : : :) (3.11)by onversion from the MS sheme to the SF sheme. The 2-loop anomalous dimensionin the MS sheme, MS1 = (172 � 1312Nf)=(32�4) ; (3.12)is known from [7, 23{25℄.For the relation between the two shemes, we use the onnetion of the operatorsin the lattie minimal subtration sheme (\lat") and the MS sheme of dimensionalregularization on the one hand and performed a 1-loop omputation of the SF renor-malization fator in the lattie regularization on the other hand. The latter, new,omputation is detailed in App. A. Here we just quote the results and ombine themto obtain SF1 .At 1-loop order, the operator in the lattie minimal subtration sheme is given byOlatspin(�) = [1� g200 ln(�a)℄Ospin (3.13)with the bare operator Ospin de�ned earlier. It is related to the operators in the SFsheme and the MS sheme by �nite renormalizations,OSFspin(�) = �SF;lat(g2lat(�))Olatspin(�) ; OMSspin(�) = �MS;lat(g2lat(�))Olatspin(�) : (3.14)For our purposes it suÆes to know the expansions up to order g2,�a;b(g2) = 1 + �(1)a;b g2 + : : : ; (3.15)where �(1)MS;lat = 0:3824 (3.16)has been omputed3 by Flynn and Hill [8℄ and�(1)SF;lat = 0:3187016(1) � 0:027448(1)Nf (3.17)is obtained in App. A. These are ombined to�(1)SF;MS = �(1)SF;lat � �(1)MS;lat = �0:0637 � 0:0275Nf : (3.18)3Taking into aount the disussion in [32℄, the value of e should be redued from e = 24:48 in [8℄ toe = 4:53. In the notation of [8℄ we have �(1)MS;lat = 116�2 [Cf (D � e+ 4�2) +CA(Da +Db �D=2)℄. Wethank Jonathan Flynn for larifying this point. When numerial unertainties are not written expliitly,they are estimated to be at most of order 2 on the last digit.8



Note that the Nf -dependent part depends on the value � hosen for the spatial boundaryonditions of the quark �elds in eq. (3.8). The above result refers to � = ��=3, for whihthe expetation values in eq. (3.8) an be shown to be real [33℄.The last missing ingredient is the relation between the ouplings, (at the samerenormalization sale)�g2SF = �g�g2MS; �g = 1 + �(1)g �g2MS +O(�g4MS) ; (3.19)with the 1-loop oeÆient [27, 34℄�(1)g = � 14� (1;0 + 1;1Nf) ; 1;0 = 1:25563(4) ; 1;1 = 0:039863 (3.20)for the SF-oupling de�ned at � = �=5 [34℄.Analogous to [35℄, where the disussion is arried through for the anomalous di-mension of quark masses, we then obtain the desired resultSF1 = MS1 + 2b0 �(1)SF;MS � 0�(1)g = �0:00236 � 0:00352Nf + 0:00023N2f : (3.21)Our omputation used the lattie regularization but the result is regularization inde-pendent.4 Step saling funtions4.1 De�nitionThe anomalous dimension, whih we just obtained in 2-loop approximation, desribesthe hange of the operator OSFspin under an in�nitesimal hange in the renormalizationsale. For numerial, non-perturbative omputations one onsiders �nite hanges of thesale, typially by a fator of two. These de�ne the step saling funtion �spin(u) viaOSFspin(�) = �spin(�g2(1=�))OSFspin(2�) : (4.1)It is given by the ontinuum limit�spin(u) = lima=L!0�spin(u; a=L) (4.2)of the lattie step saling funtion�spin(u; a=L) = ZSFspin(2L)ZSFspin(L) ������g2(L)=u ; m=0 : (4.3)Here �g2(L) denotes the SF oupling as before and the ondition m = 0 means thatthe renormalization ondition is imposed at vanishing quark mass. In our numerialimplementation the latter does not play a rôle sine we work in the pure gauge theory.It is important to understand whether a given renormalization ondition leads to smallor large a-e�ets. This determines whether the limit in eq. (4.2) an be taken byan extrapolation from the aessible latties. A �rst understanding an be sought inperturbation theory. 9



4.2 Lattie artefats in perturbation theoryWe de�ne the relative lattie artefats asÆ(u; a=L) = �spin(u; a=L)� �spin(u)�spin(u) = Æ1(a=L)u+O(u2) : (4.4)A term Æ0(a=L) is absent sine we de�ned ZSFspin(L) suh that it is one at tree-level forany value of a=L. The 1-loop term may be expanded in Nf ,Æ1(a=L) = Æ1;0(a=L) +Nf Æ1;1(a=L) : (4.5)With all improvement terms, inluding the boundary improvement term t [27℄, set totheir proper perturbative values, the 1-loop uto� e�ets turn out to be rather small.We show them in Table 1 for the Eihten-Hill ation for the stati quarks (W (x; 0) =U(x; 0)), the plaquette gauge ation and the O(a)-improved fermion ation [20℄.L=a Æ1;0(a=L) Æ1;1(a=L)6 -0.000236 0.0137428 -0.000165 0.00579110 -0.000106 0.00302612 -0.000072 0.00187614 -0.000051 0.00129616 -0.000038 0.000956Table 1: Lattie spaing e�ets of �spin in 1-loop perturbation theory, see text.4.3 Non-perturbative results for Nf = 0We arried out pure gauge theory simulations to determine �spin for di�erent ouplingsu, resolutions 1=12 � a=L � 1=6 and also for di�erent disretizations of the HQETation and the operator F�� . Tables of the numerial results are found in App. B.In Fig. 2 we show the a-dependene for a few ouplings and hoies of disretiza-tions. Lattie artefats are moderate in general and a simple ontinuum extrapolationwith an ansatz � = �+(a=L)2 �, separately for eah value of u seems justi�ed.4 In aseswhere more than one disretization was simulated at the same value of u, a onstrainedextrapolation (ommon � but disretization-dependent �) was performed. This simpleanalysis yields the ontinuum step saling funtions in Table 2.A good agreement with perturbation theory is seen at weak ouplings, say �g2 < 2,where, however, the non-perturbative results are not aurate enough to distinguishbetween the 2-loop anomalous dimension and the 1-loop one. On the other hand, forouplings �g2 � 3 perturbation theory breaks down entirely and the inlusion of the2-loop anomalous dimension brings the perturbative urves even further away from theMC results.4We also heked other extrapolations, see e.g. [11, 36℄. They give ompatible results.10



Figure 2: Examples of ontinuum extrapolations of �spin for u =1.243, 2.77 and 3.48. Filled symbolsindiate that F�� was de�ned as F̂�� but with the link variables replaed by HYP2 links. The data atthe largest oupling has t at 2-loop preision, otherwise it is set to the 1-loop value.u �spin(u) �(u) ation F̂�� n-loop t0.8873 1.0235(68) 0.02(36)0.9944 1.025(11) -0.15(53) EH1.2430 1.0302(82) 0.24(42)1.3293 1.043(12) -0.66(55) EH1.5553 1.0418(89) 0.27(43)1.8811 1.075(11) -0.44(52)2.1000 1.052(14) 1.15(69)2.4484 1.089(14) -0.31(68)1.60(60)2.770 1.099(11) -0.01(55) HYP23.480 1.300(34) 5.2(1.6) HYP23.480 1.308(29) 3.0(1.4) HYP2 22.1(1.2) 23.480 1.306(25) 3.1(1.3) HYP2 2Table 2: Continuum step saling funtion �spin and oeÆients of (a=L)2 in the ontinuum extrapo-lations. The standard disretization is the HYP2 ation of [18℄, the lover leaf operator F̂�� and the1-loop value of t. Deviations from this rule are indiated: EH refers to the Eihten-Hill stati ationand the label HYP2 in the olumn F̂�� means that the links appearing in F̂�� are replaed by HYP2links.
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Figure 3: The step saling funtion ompared to the perturbative predition obtained by integrationof the perturbative RG equations, trunating the � funtion at 3(2)-loop order and the anomalousdimension at 2(1)-loop order.5 Non-perturbative sale dependene for Nf = 0Through an iterative appliation of the (inverse) step saling funtion we now determinethe non-perturbative sale dependene of the operator in the SF sheme. We �rstrepresent the numerial data of Table 2 as well as the data for the step saling funtionof the oupling, �(u) (Table A.2 of [11℄ and Table 4 of [27℄) by smooth interpolations�(u) = u+ 4Xi=0 si ui+2 ; (5.1)�spin(u) = 1 +m0 u+m1 u2 +m2 u3 (5.2)for u � 2:8. Here s0 = 2 ln(2) b0 ; s1 = s20 + 2 ln(2) b1 ; m0 = ln(2) 0 are �xed byperturbation theory, while the other oeÆients are free �t parameters. With theseparameterizations we then solve the reursions 5u0 = �g2(Lmax) = 3:48 ; �(uk+1) = uk ; ) �g2(2�kLmax) = uk ; (5.3)w0 = 1 ; wk+1 = wk=�spin(uk+1) ) �SF(2k=Lmax)�SF(1=Lmax) = wk :Errors are propagated through the parameterization and reursion and it is hekedthat hanging the number of �t parameters in eq. (5.1) and eq. (5.2) does not alter theresults signi�antly. Next we apply�RGI�SF(�) = � 2b0�g2(�) ��0=2b0 exp(�Z �g(�)0 dg � SF(g)�SF(g) � 0b0g �) (5.4)5 � stands for any matrix element of the operator Ospin, for example the matrix element �2.12



Figure 4: Sale dependene of Ospin in the SF sheme.for � = 2k=Lmax and the perturbative approximations to the �-funtion and anomalousdimensions and obtain �SF(1=Lmax)=�RGI. Finally we form �SF(1=(2Lmax))=�RGI =�spin(u0)�SF(1=Lmax)=�RGI with �spin(u0) from Table 2. For not too small k, the�nal result is independent of it; the use of perturbation theory is safe in that region.Taking k = 6, the 2-loop approximation for the anomalous dimension and the 3-loopapproximation for the �-funtion we arrive at�SF(�)=�RGI = 0:759(17) ; at � = 1=Lmax ; (5.5)�SF(�)=�RGI = 0:992(29) ; at � = 1=(2Lmax) : (5.6)Figure 4 ompares the non-perturbative running of Ospin to perturbation theory.5.1 The relation of bare and renormalization group invariant operatorThe universal result eq. (5.6) has to be ombined with values of ZSFspin(L) at L = 2Lmax =1:436 r0 [37℄ whih depend on the bare oupling and lattie ation, to formZRGIspin = ZSFspin(L)� �RGI�SF(1=L) (5.7)for the respetive ation. The numerial values of Table 3 are well represented byZSFspin(2Lmax) = 2:58 + 0:14 (� � 6)� 0:27 (� � 6)2 EH ation ; (5.8)ZSFspin(2Lmax) = 2:59 + 0:11 (� � 6)� 0:34 (� � 6)2 HYP2 ation : (5.9)These interpolations may be used in the interval 6:0 � � � 6:5 with an error of about1%. While this error ought to be taken into aount before the ontinuum extrapolation13



of the renormalized matrix elements, the unertainty in eq. (5.6) applies additionally inthe ontinuum limit. � L=a ation ZSFspin6.0219 8 EH 2.585(19)6.1628 10 EH 2.602(24)6.2885 12 EH 2.602(24)6.3992 14 EH 2.589(29)6.4956 16 EH 2.593(35)6.0219 8 HYP2 2.593(21)6.1628 10 HYP2 2.589(26)6.2885 12 HYP2 2.589(26)6.3992 14 HYP2 2.585(21)6.4956 16 HYP2 2.553(22)Table 3: Renormalization fator at the mathing sale. In all ases F̂�� is the standard lover operator.6 First appliationsWe illustrate the usefulness of our result with two sample appliations.6.1 Spin splittingFirst we take numbers for the bare �2 whih have been reported in the literature.Unfortunately they exist only for � = 6:0, whih orresponds to a � 0:1 fm. The morereent evaluations are (the light quark has the mass of the strange quark)Ref. [5℄: a2�bare2 = 0:0100(19) ; (6.1)Ref. [6℄: a2�bare2 = 0:0138(15) : (6.2)The authors of [5, 6℄ then estimate the mass splitting asRef. [5℄: �m2 = 0:28(6)(?)GeV2 ; (6.3)Ref. [6℄: �m2 = 0:36(4)(?)GeV2 ; (6.4)where the renormalization fator is taken from perturbation theory using a boostedoupling [4℄ and by tadpole improved perturbation theory [6℄6. With Cspin(Mb=�MS) =1:15, Mb = 6:76(9)GeV [13, 16℄ and ZRGIspin = 2:6 ; a = 1=(2GeV) we �nd from eq. (1.6)Ref. [5℄ and NP ZRGIspin : �m2 = 0:38(7)(?)GeV2 ; (6.5)Ref. [6℄ and NP ZRGIspin : �m2 = 0:53(6)(?)GeV2 : (6.6)6Also somewhat di�erent values for the lattie spaing were used by the two groups.14



In all these estimates the additional unertainty marked as (?) refers to lattie artefats,namely the fat that a ontinuum limit has not been taken, and of ourse to the missingdynamial quark determinant. The experimental mass splitting is �m2 = 0:497GeV2.6.2 Renormalization fator for spin-dependent potentialsIn phenomenologial appliations of the spin-dependent potentials, the standard renor-malization sheme is MS, as in [7, 23{25℄. We apply eq. (5.4) in the MS sheme withNf = 0, �(0)MS = 238MeV [11℄, the 4-loop �-funtion and the 2-loop anomalous dimen-sion. This yields ZMSspin(2GeV) = 0:756(18) � ZRGIspin (g0) ; (6.7)ZMSspin(4GeV) = 0:706(13) � ZRGIspin (g0) ; (6.8)where the ited error bar is half of the hange when one uses the 1-loop anomalousdimension instead. Remember from Set. 3 that the square of this renormalization fatorenters the potentials. As an illustration, for the standard Eihten-Hill ation for thestati quarks, at g0 = 1 (� = 6:0), we then have ZMS(2GeV) � 0:756�2:58�0:99 = 1:93or a somewhat smaller number at larger �. One an ompare this at g0 = 1 to therenormalization fators used in [31℄. A tree-level tadpole-improved fator is Ztad = 1:684and the Huntley-Mihael fator7 is around ZHM = 1:62. Sine a renormalization shemeand sale are not spei�ed in these proedures, there is no reason to expet a loseragreement.7 ConlusionsWe have presented yet another example that the non-perturbative renormalization pro-gramme using reursive �nite size tehniques [9, 11℄ an be arried out also in diÆultases. Four-fermion operators were renormalized suessfully in [39,40℄, and those on-taining stati quarks in [41,42℄. Here we have treated the ase of an operator with statiquarks and gluon �elds.In several ases quite signi�ant deviations from perturbation theory had alreadybeen observed at intermediate to low renormalization sales [39,43,44℄, but the presentase is the strongest example in that respet (Fig. 3, Fig. 4).Our example in the previous setion illustrates that the non-perturbative ZRGIspinhas a rather big e�et. Although the quenhed estimates for �m2 = m2B�s �m2Bs arein rough agreement with the experimental mass splitting �m2 = 0:497GeV2 afterthe non-perturbative ZRGIspin is used, it now remains to improve the preision of thebare matrix element as well as to obtain it at smaller lattie spaings in order to seewhether the quenhed approximation does indeed give a reasonable estimate of the7The presription of [38℄ yields a small r-dependene, whih is not present in the standard renormal-ization of loal operators. 15



spin splitting. We also emphasize that there is a remaining unertainty in the use of(ontinuum) perturbation theory for Cspin(Mb=�MS). This an be signi�antly reduedby a omputation of the assoiated 3-loop anomalous dimension, but also an entirelynon-perturbative mathing of HQET and QCD is promising [12, 13℄.Aknowledgements. We aknowledge useful disussions with N. Brambilla, M.Della Morte, J. Flynn, P. Marquard, J. Pilum, J. Soto, M. Steinhauser, A. Vairo,S. Takeda and U. Wol�. We thank NIC for alloating omputer time on the APEmilleomputers at DESY Zeuthen to this projet and the APE group for its help. Thiswork is supported by the Deutshe Forshungsgemeinshaft in the SFB/TR 09 , by theEuropean ommunity through EU Contrat No. MRTN-CT-2006-035482, \FLAVIAnet"and by funds provided by the U.S. Department of Energy under ooperative researhagreement DE-FC02-94ER40818.A One-loop omputationOur aim is to ompute the expetation value of a general Wilson loop at one-loop orderin the Shr�odinger funtional (SF), bearing in mind that we are �nally interested in theomputation of the expetation value of a lover operator F̂�� inserted into a Polyakovloop, enabling us to obtain the two-loop anomalous dimension of the hromo-magnetioperator in the SF sheme from its value in the lat sheme. Due to the spae-timeloality of suh an observable, it will be advantageous to ompute the gluon loops in xspae, while the ontribution of tadpoles is proportional to the zero-momentum gluonpropagator. Quite a lot of notation will be introdued, but the formulae presented hereare suitable for the automated omputation of arbitrary Wilson loops.The lattie spaing is set to one in this appendix. Spae-time indies run from 1to 4, the latter being assoiated with time. For everything else we reuse the notationof [45℄, referred to as (K) in what follows, exept that a twiddle on the olor omponentsof gluon, ghost and quark �elds is dropped. The reader is assumed to be familiar withhapters 3, 4 and 5 of (K). Up to one-loop order, the observable O has the perturbativeexpansion (K:4.39) hOi = O(0) + g20 hhO(2)i0 � hO(1)S(1)i0i+O(g40); (A.1)where h: : :i0 is the expetation value with respet to the free part S(0) of the ation andO(k) is de�ned by O = O(0) +O(1)g0 +O(2)g20 + : : : .The (onstant, Abelian) bakground �eld indued by the non-trivial boundary on-ditions takes the value V�(x). We use the basis of the su(3) Lie algebraq�(x) = 8Xa=1 qa�(x)Ia (A.2)16



de�ned in (K:App. A) as well as the Fourier representationqa4(x) = 1L3 Xp eip�x qa4(p; x4): (A.3)qak(x) = 1L3 Xp eip�x ei(pk+�a(x4))=2qak(p; x4): (A.4)The gluon propagator in mixed representation used by (K) has the formhqa�(p; x4) qb�(p0; y4)i0 = Æb�aL3Æp+p0 Da��(p;x4; y4): (A.5)Kroneker symbols suh as Æp or Æ��4 arrying a single index are shorthands for Æp;0and Æ�;4 respetively.A.1 Parameterization of the observableIn order to ompute the expetation value of an arbitrary Wilson loop at one-loop order,we parameterize the loop by a starting point x(start) and an ordered list ~̀ of length `.The entries of the list are diretions �~̀i , i = 1; : : : ; `. These diretions take non-zerointeger values between �4 and +4. An eletri plaquette in the (03) plane is thusparameterized by ~̀ = (3 4 � 3 � 4). Clearly the loop is losed if and only if eahinteger appears as many times with the + sign as it does with the � sign (modulo L forthe spae diretions). We normally drop the ~̀ in �~̀i sine we will be dealing only withone path at a time.The sequene of points the loop goes through is obtained as follows,x(1) = x(start) x(i+1) = x(i) + �̂i; i = 1; : : : ; `� 1: (A.6)�̂ = sign(�)j�j are unit vetors pointing in the four � diretions of the lattie. Weidentify 4̂ = 0̂. At tree-level, the expetation value of the Wilson loop isW~̀[V ℄ = Ỳi=1 V (x(i); �i): (A.7)In general, for any 4-vetor we introdue negative-index omponentsp�� = �p�: (A.8)Beause of the way the path is parameterized, for any link variable we introduenegative-index omponents by imposingU(x; �) = U y(x+ �̂;��); qa�(x) = �qa��(x+ �̂): (A.9)The Fourier representation is now de�ned for all � as follows,qa�(x) = 1L3 Xp eip�x ei�a(p;x4;�) qa�(p; x4) (A.10)17



where qa�(p; x4) = qaj�j(p; x4 � Æ�+4) (A.11)and ei�a(p;x4;�) = 8>><>>: 1 if � = 4ei(pk+�a(x4))=2 if � = k�ei(�pk+�a(x4))=2 if � = �k�1 if � = �4= sign(�)�Æj�j�4 + (1� Æj�j�4)ei(p�+�a(x4))=2� : (A.12)With these notations we havehqa�(p; x4)qb�(p0; y4)i = Æb�aL3Æp+p0Daj�jj�j (p;x4 � Æ�+4; y4 � Æ�+4) : (A.13)A.2 Tadpoles: hO(1)S(1)i0The terms onsidered in this subsetion owe their existene to the non-vanishing bak-ground �eld. Sine the latter is diagonal, the V matries all ommute two-by-two andwe have tr fW (1)~̀ g = X̀j=1 tr fq�j (x(j)) W~̀[V ℄g: (A.14)The three ontributions to S(1) (oming from the gauge, ghost and quark terms) aregiven by eqs. (K:5.64,5.72) and for the quarks eqs. (K:5.76,5.82). After a short alula-tion one �nds h tr fW (1)~̀ gS(1)i0 = � Xa2f3;8g 3X�=1Xu4 �a~̀;�(u4) T a� (u4) ; (A.15)with �a~̀;�(u4) = tr fI�aW~̀[V ℄gX̀j=1 sign(�j)�Æj�j j�4 + (1� Æj�j j�4)e�i�a(x(j)4 )=2�Da�j�j j �0;u4; x(j)4 � Æ�j+4� : (A.16)and T a� (u4) = T a�;gluon(u4) + T a�;ghost(u4) +NfT a�;quark(u4): (A.17)T a�;gluon; T a�;ghost; T a�;quark are de�ned respetively by eqs. (K:5.114), (K:5.115) and(K:5.116). Note that for the ghost and quark ase, the overall minus sign in eq. (A.15)arises beause of the loop (ghosts and quarks are anti-ommuting). For the gluons, theminus sign is just a onvention hosen by (K) and is ompensated by a minus sign inthe de�nition of T a�;gluon. 18



A.3 Gluon loops: hO(2)i0We separately onsider two ontributions:O(2) = O(2a) +O(2b): (A.18)Expanding the exponential of the gluon �eld to linear order, we obtaintr fW (2a)~̀ g = X̀j=1 X̀j0=j+1 tr fq(j)W~̀(j sjjj0 sj0)q(j0)W~̀(j0 sj0 jj sj)g (A.19)where we have used the yliity of the trae and the shorthand q(j) � q�j (x(j)). Thereis also a ontribution from the quadrati piee of the exponential of the gluon �eld,tr fW (2b)~̀ g = 12 X̀j=1 tr fq2�j (x(j))W~̀[V ℄g; (A.20)whih is 1=2 of the term j = j0 in (A.19).We also need the notation sj � 12(1� sign(�j)) and n = 1+mod(n�1; `) for n � 1.Now we an formulate the de�nitionW~̀(j sjjj0 sj0) = ( W~̀[V ℄ if j + sj = j0 + s0j and sj = 0W (j + sj ! j0 + s0j) otherwise (A.21)that invokes the parallel transporter along the loop from x(j) to x(j0):W~̀(j ! j0) = 8><>: 1 if j = j0Qj0�1i=j V (x(i); �i) if j < j0Qì=j V (x(i); �i)Qj0�1i=1 V (x(i); �i) if j > j0 (A.22)One then �ndsh tr fW (2a)~̀ gi0 = 1L3 X̀j=1 X̀j0=j+1 8Xa=1Xp eip(x(j)�x(j0)) ei�a(p;x(j)4 ;�j) ei��a(�p;x(j0)4 ;�j0 ) �(A.23)tr fIaW~̀(j sjjj0 sj0)I�aW~̀(j0 sj0jj sj)g Daj�j jj�j0 j �p;x(j)4 � Æ�j+4;x(j0)4 � Æ�j0+4� :We introdue the propagator ompletely in x-spae,�a��(x;x4; y4) � 1L3 Xp eipx ei�a(p;x4;�) ei��a(�p;y4;�) Daj�jj�j (p;x4 � Æ�+4; y4 � Æ�+4) ;(A.24)19



whih allows us to writeh tr fW (2a)~̀ gi0 = X̀j=1 X̀j0=j+1 8Xa=1 tr fIaW~̀(j sjjj0 sj0)I�aW~̀(j0 sj0jj sj)g (A.25)� �a�j�j0 (x(j) � x(j0);x(j)4 ; x(j0)4 ):h tr fW (2b)~̀ gi0 = 12 8Xa=1 tr fIaI�aW~̀[V ℄gX̀j=1�a�j�j �0;x(j)4 ; x(j)4 � : (A.26)A.4 ImprovementIn order to be able to reah the ontinuum limit with a rate proportional to (1=L)2 ourobservable needs to be improved. Sine there are no operators of dimension 6 with thesame symmetries of Ospin, non-vanishing at one-loop order, and with no valene quarks,the improvement amounts to ompute the additional ontributions stemming from thevolume and boundary ounter-terms in the ation. The volume term is proportional tosw, whose tree-level expression, (0)sw = 1, enters our observable at one-loop order. It istaken into aount diretly in the quark propagator. The only boundary term neededis proportional to the one-loop expression of t [27,34℄. The orresponding ounterterman be expressed as h tr fW (1)~̀ gS(1)tot;bi0 (A.27)with S(1)tot;b given in eq. (5.130) of (K). The expliit expression readsh tr fW (1)~̀ gS(1)tot;bi0 = 2p3(1)t [sin(2) + sin()℄ tr fI8W~̀[V ℄g 3Xk=1M~̀;k ; (A.28)with M~̀;k = X̀j=1 sign(�j)�Æj�j j�4 + (1� Æj�j j�4)e�i�8(x(j)4 )=2� (A.29)� �D8kj�j j(0; 1; x(j)4 � Æ�j+4)�D8kj�j j(0; T � 1; x(j)4 � Æ�j+4)� ;and  = �=3LT one the \point A" has been hosen. The ontribution (A.28) vanishesfor the Polyakov loop P3(x)jx4=T=2 without operator insertion.A.5 SummaryThe expetation value of the Wilson loop at one-loop order is given byh tr fW~̀gi =W~̀[V ℄ + g20 �h tr fW (2a)~̀ gi0 + h tr fW (2b)~̀ gi0 (A.30)� h tr fW (1)~̀ gS(1)i0 � h tr fW (1)~̀ gS(1)tot;bi0� ;20



where the one-loop terms are given by eqs. (A.25,A.26,A.15) and the improvement termby eq. (A.28).A.6 Implementation in MATLABFor our perturbative omputations we deided to use MATLAB in order to ombineomfortable programming, robustness of the libraries and aeptable speed for the in-volved observables and latties.In presene of a non-vanishing bakground �eld, a simple analytial expression forthe ghost, gluon and quark propagators is not available. They are omputed by ex-ploiting the reursive tehniques presented in [46,47℄. The gluon propagator is the mosttime onsuming omputation. Its Fourier transformed expression (A.24) is alulated bysumming only over a redued set of momenta, whih saves a fator of 6 (asymptotiallyon large latties) in omputing time.The tadpole loops are observable independent, and they are omputed and stored.We use the formulae of [48℄, where the symmetries of verties and propagators are fullyexploited. Then the ontributions (A.15) are omputable with an e�ort negligible inomparison to the loops.The improvement ounterterm involves only the zero momentum gluon propaga-tor and the trae of the produt of diagonal matries; it is omputationally heap inomparison to the rest.In order to give an idea of the omputational ost, for L = 48 the omputationof all diagrams and improvement ounter-terms for the Polyakov loop with insertionof the lover leaf operator has been arried out in 2 weeks on a PC, equipped with asingle proessor Intel Pentium 4 with 2.6 GHz. The saling an be approximated witha polynomial in L, and is asymptotially dominated by the highest power, i.e. L5.A.7 CheksOf all heks we did to on�rm the orretness of our ode, we briey report about twoof them, whih may be of interest in other appliations.As observed in [49℄, the expetation value of the gauge ation an be evaluatedeonomially by taking the logarithmi derivative of the partition funtion with respetto � = 6=g20 :13hRe tr f1� P��(x)gi = 12� � Nb. of propagating gluonsNb. of un-oriented plaquettes +O(1=�2) (A.31)= 12� � 8[L3(4T�3)�L3(T�1)℄��3L3(2T�1) +O(1=�2): (A.32)The term � arises from the gauge degrees of freedom that are onstant in spae and liveon the lower temporal boundary (there is no extra gauge degree of freedom assoiatedwith the boundary x4 = T beause global symmetries are not to be gauge-�xed):� = � dim(su(3)) = 8 with boundary links set to unityrank(su(3)) = 2 with non-trivial Abelian boundary �eld (A.33)21
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Figure 5: One-loop onnetion between the SF sheme and the lat sheme.
L �(1;0)SF;lat �(1;1)SF;lat4 0.319032402694607 -0.0713836035018626 0.319029788544510 -0.0437583424109538 0.318915972669536 -0.03459429827284610 0.318837839980287 -0.03131615810023512 0.318793467352611 -0.02989852073547414 0.318767160420896 -0.02916044024604116 0.318750540373758 -0.02872085552917618 0.318739443194014 -0.02843464363967120 0.318731691659922 -0.02823661821418322 0.318726074540605 -0.02809342750234624 0.318721879237185 -0.02798632219791526 0.318718665931215 -0.02790401371348028 0.318716151870336 -0.02783934183638130 0.318714148841999 -0.02778757335672132 0.318712527751079 -0.02774547172178834 0.318711197727617 -0.02771076007800436 0.318710093332871 -0.02768179742822838 0.318709166494586 -0.02765737600196840 0.318708381269461 -0.02763659042517842 0.318707710343347 -0.02761875092028944 0.318707132670872 -0.02760332432839746 0.318706631831595 -0.02758989318170548 0.318706194851218 -0.027578126762064Table 4: Results for the onnetion between the SF and the lattie MS shemes.22



In the �rst ase, all 8 zero momentum gluons at the lower temporal boundary obeyDirihlet boundary onditions. They are assoiated with spatially onstant modes andare therefore not propagating degrees of freedom. With a non-trivial Abelian bak-ground �eld, only two of the gluon �elds obey the Dirihlet boundary onditions at thelower boundary, and are assoiated with spatially onstant diagonal modes; the othersare propagating modes. We heked that our program reprodues this result.A further suessful hek, whih we do not report in detail, onsists in omparingthe perturbative results for the plaquette and the Polyakov loops, with and withoutinsertion of the lover leaf operator, to the orresponding non-perturbative (quenhed)omputations. The latter are performed at small bare ouplings, 0:015 � g20 � 0:06,setting all needed improvement oeÆients to their tree-level values. In all ases L =T = 4.A.8 The Polyakov loop and hromo-magneti operatorA.8.1 Tree-level omputationAs far as the gauge boundary values and the indued bakground �eld are onerned, wefollow [27℄, and work with the boundary �elds de�ned by eqs. (3.1,3.2). The numeratorand denominator on the r.h.s. of the renormalization ondition (3.8) assume the ompatform L2h tr (P3(x)E1(x))ig0=0 = L2 3Xm=1 expf iL [x4�0m + (L� x4)�m℄g (A.34)� sin � 1L2 ��0m � �m�� :h trP3(x)ig0=0 = 3Xm=1 exp� iL [x4�0m + (L� x4)�m℄	 (A.35)A.8.2 One-loop orderThe one-loop ontribution to the lattie step saling funtion �spin(u; 1=L) = 1 +�(1)spin(1=L)u + O(u2), de�ned in eq. (4.3), is omputed for Nf = 0 and Nf = 2 giv-ing the results represented in Figure 6. There the e�et of the O(a)-improvement isevident, espeially in the Nf = 0 ase. In both the unimproved and improved ases theontinuum limit is onsistent with the predition 0 ln(2).These results enter the omputation of the onnetion between the SF sheme andthe lat sheme, as shown in Figure 5. The one-loop onnetion fator �(1)SF;lat is obtainedfrom the one-loop ontribution ZSF;(1)spin to the renormalization fator (3.8) by subtratingthe logarithmi divergent part�(1)SF;lat(L) = ZSF;(1)spin (L)� 0 ln(L) : (A.36)23
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Figure 6: One-loop ontribution to the step saling funtion of the hromo-magneti operator in theNf = 0 (left) and Nf = 2 (right) ases.We deompose �(1)SF;lat aording to its Nf-dependene�(1)SF;lat = �(1;0)SF;lat +Nf�(1;1)SF;lat : (A.37)The quarks are massless, implemented at this order in perturbation theory by m0 = 0and the angle � = ��=3. The full listing of results is shown in Tab. 4, where allnumbers are given with 15 digits for readability, although the last two or three may beinsigni�ant.The ontinuum limits, inluding the estimate of the assoiated unertainties, areperformed aording to the method desribed in [47℄, with MATLAB routines providedby Ulli Wol�. We have veri�ed that the roundo� errors as well as the errors in t quotedin [27, 34℄ are negligible ompared to the systemati unertainties of the extrapolation.The �nal result of the ontinuum limit extrapolations is expressed in eq. (3.17).B Monte Carlo simulationsIn our measurements of observables we fully exploit translational and axis exhangeinvariane. The ensemble of gauge on�gurations is generated by means of the \hybridover-relaxation" algorithm with lexiographially ordered sweeps (see e.g. [50℄ for theexat implementation). The basi update onsists of 1 heat-bath update sweep [51{53℄, followed by NOR over-relaxation sweeps [54℄. The update is iterated NUP = 2times between measurements and the parameter NOR varies from a minimum of 3, forL=a = 6, to a maximum of 10, for L=a = 24. This guarantees to have short integratedautoorrelation times for our observables, while the omputing time spent for the updatedoes not exeed the one required for the measurements. Still there an be very slowmodes in the system as will be disussed at the end of the appendix.24
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Figure 7: Autoorrelation pattern of Zspin(2L) for two quenhed simulations with L=a = 16. Left:Normalized autoorrelation funtion plotted vs. the separation of measurements t. Right: Integratedautoorrelation time �int vs. the summation window W. With � = 7:6547 we have �g2(L) = 1:8811 (redasterisks), while for � = 6:4527 we have �g2(L) = 3:480 (green irles). The vertial lines orrespond tothe optimal values of W omputed aording to [57℄.In the ase of the Eihten-Hill ation, the gauge links building up the Polyakovloop, but not the inserted lover leaf operator, are evaluated by a 10-hit multi-hitproedure [55℄, where eah hit onsists of a heat-bath update of the above type. Withthis variane redution, the statistial preision is similar to the one of the HYP2 ation.On the largest lattie (L=a = 24) we ould obtain an around 1% preision in ZSFspin(L)with 30k measurements at � � 11 and with 100k measurements at � � 7:2. However,at � � 6:8, where the length of of the Polyakov loop amounts to 0:7 fm, it beame veryostly to reah even a 2% preision. We tried various ways to redue the variane, inpartiular di�erent versions of multilevel algorithms inspired by [56℄, but did not sueedin �nding signi�ant gains. We then hanged the disretization of Ospin, replaing thelinks in F̂�� by HYP2 links. (This is indiated throughout the paper as the disretizationwith HYP2 ation and HYP2 operator F̂�� .) The resulting inrease in preision allowedto obtain the last entry in Tab. 5 with 250k measurements.As a hek that the hange of disretization does not introdue unwantedly large a2e�ets, we also repeated the omputation of �(2:77) this way. Figure 2 niely on�rmsthe expeted universality and a2 e�ets atually turn out to be redued! We pointout that with the Eihten-Hill ation the uto� e�ets an be diretly ompared to theexpetations of perturbation theory. For the investigated ouplings, �g2 = 0:9944; 1:3293,the agreement is very good.The large amount of statistially independent measurements needed imposes stronglimitations to the appliation of this method to the theory with dynamial fermions.The raw simulation results are reported in Table 5.We �nally add a remark on error estimates and autoorrelations in our simulations.The autoorrelation funtion � of Zspin, de�ned as in [57℄, falls very quikly for all ourmesurements. At all but the largest oupling the integrated autoorrelation time is25



�g2(L) � L=a ation F̂�� ZSFspin(L) ZSFspin(2L) �spin0.8873(5) 10.7503 6 1.3188(46) 1.3504(50) 1.0239(52)0.8873(10) 11.0000 8 1.3218(22) 1.3532(51) 1.0238(42)0.8873(30) 11.3384 12 1.3268(30) 1.3580(69) 1.0235(57)0.9944(7) 10.0500 6 EH 1.3651(44) 1.3905(76) 1.0186(64)0.9944(13) 10.3000 8 EH 1.3514(52) 1.3924(88) 1.0303(76)0.9944(30) 10.6086 12 EH 1.3608(53) 1.384(12) 1.0171(96)1.2430(13) 8.8997 6 1.4336(44) 1.4839(65) 1.0351(55)1.2430(14) 9.1544 8 1.4278(30) 1.4803(56) 1.0367(45)1.2430(35) 9.5202 12 1.4349(27) 1.474(10) 1.0275(74)1.3293(12) 8.6129 6 EH 1.4727(57) 1.5116(77) 1.0264(66)1.3293(21) 8.8500 8 EH 1.4664(71) 1.503(12) 1.0248(95)1.3293(60) 9.1859 12 EH 1.4528(65) 1.517(13) 1.0438(99)1.5553(15) 7.9993 6 1.5302(61) 1.6036(48) 1.0480(53)1.5553(24) 8.2500 8 1.5229(46) 1.5999(78) 1.0506(60)1.5553(70) 8.5985 12 1.5191(27) 1.579(11) 1.0394(77)1.8811(22) 7.4082 6 1.6193(74) 1.7208(65) 1.0627(63)1.8811(28) 7.6547 8 1.6100(55) 1.717(13) 1.0664(91)1.8811(38) 7.9993 12 1.6015(42) 1.718(14) 1.0726(94)2.1000(39) 7.1214 6 1.6563(87) 1.792(12) 1.0819(92)2.1000(45) 7.3632 8 1.652(11) 1.773(11) 1.0732(96)2.1000(80) 7.6985 12 1.6577(91) 1.751(17) 1.056(12)2.4484(37) 6.7807 6 1.7618(88) 1.900(13) 1.0786(90)2.4484(45) 7.0197 8 1.7371(86) 1.898(17) 1.092(11)2.4484(80) 7.3551 12 1.7141(89) 1.855(17) 1.082(12)2.770(7) 6.5512 6 1.8317(75) 2.085(19) 1.138(11)2.770(7) 6.7860 8 1.8067(94) 2.044(17) 1.131(11)2.770(11) 7.1190 12 1.7975(90) 2.000(23) 1.113(14)2.770(7) 6.5512 6 HYP2 1.3659(36) 1.501(12) 1.0986(91)2.770(7) 6.7860 8 HYP2 1.3643(24) 1.505(15) 1.103(11)2.770(11) 7.1190 12 HYP2 1.3668(63) 1.490(14) 1.090(11)3.480(8) 6.2204 6 HYP2 1.4329(53) 2.070(29) 1.444(21)3.480(14) 6.4527 8 HYP2 1.4350(89) 1.975(31) 1.376(23)3.480(39) 6.7750 12 HYP2 1.4465(61) 1.937(41) 1.339(29)3.480(8) 6.257 6 1.9864(75) 2.714(32) 1.366(17)3.480(8) 6.476 8 1.9492(75) 2.608(33) 1.338(18)3.480(8) 6.257 6 HYP2 1.4297(47) 1.979(26) 1.384(19)3.480(8) 6.476 8 HYP2 1.4262(29) 1.961(25) 1.375(17)3.480(9) 6.799 12 HYP2 1.4280(33) 1.864(37) 1.305(26)Table 5: Raw simulation results. The standard disretization is the HYP2 ation of[18℄ and the lover leaf operator F̂�� . Deviations from this rule are indiated. Theimprovement oeÆient t is set to its 1-loop value, exept for the last �ve lines, where2-loop preision is used. The renormalized oupling is reprodued from [11℄.
26
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