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AbstratWe onstrut analyti solutions for marginal deformations satisfying the reality ondition inopen superstring �eld theory formulated by Berkovits when operator produts made of themarginal operator and the assoiated superonformal primary �eld are regular. Our strategyis based on the reent observation by Erler that the problem of �nding solutions for marginaldeformations in open superstring �eld theory an be redued to a problem in the bosonitheory of �nding a �nite gauge parameter for a ertain pure-gauge on�guration labeled bythe parameter of the marginal deformation. We �nd a gauge transformation generated by areal gauge parameter whih in�nitesimally hanges the deformation parameter and onstruta �nite gauge parameter by its path-ordered exponential. The resulting solution satis�es thereality ondition by onstrution.
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1 IntrodutionAnalyti methods in open bosoni string �eld theory [1℄1 triggered by Shnabl's onstrutionof an analyti solution for tahyon ondensation [6℄ and further developed in [7, 8, 9, 10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21℄ have reently been extended to open superstring �eldtheory formulated by Berkovits [22℄, and analyti solutions for marginal deformations wereonstruted in [23, 24℄.2 The solutions are surprisingly simple and very similar to those in openbosoni string �eld theory onstruted in [20, 21℄. However, the reality ondition on the opensuperstring �eld was not satis�ed. While we expet that the solution in [23, 24℄ is equivalentto a real one by a gauge transformation, it is desirable to �nd an analyti solution satisfyingthe reality ondition. In this paper we expliitly onstrut a real analyti solution.The equation of motion in open superstring �eld theory [22℄ is�0 ( e��QB e� ) = 0 ; (1.1)where � is the open superstring �eld and QB is the BRST operator. The superghost setoris desribed by �, �, and � [40, 41℄, and �0 is the zero mode of �. All the string produts inthis paper are de�ned by the star produt introdued in [1℄. For any marginal deformationof the boundary onformal �eld theory (CFT) for the open superstring, there is an assoiatedsuperonformal primary �eld V1=2 of dimension 1=2, and the marginal operator V1 of dimension 1is the supersymmetry transformation of V1=2. In open superstring �eld theory [22℄, the solutionto the linearized equation of motion assoiated with the marginal deformation is given by theGrassmann-even state X orresponding to the operator V (0) =  �e��V1=2(0) in the state-operator mapping. When the deformation is exatly marginal, we expet a solution to (1.1) ofthe following form: �� = 1Xn=1 �n�(n) (1.2)with �(1) = X, where � is the deformation parameter. The goal of the paper is to onstrut�(n) satisfying the reality ondition when operator produts made of V1 and V1=2 are regular.In [23℄ Erler proposed to solve the following equation:e��QB e� = 	� ; (1.3)where 	� is obtained from the solution for marginal deformations in open bosoni string �eldtheory onstruted in [20, 21℄ by replaing the state orresponding to Vb(0) for the bosoni1 See [2, 3, 4, 5℄ for reviews on string �eld theory.2 For earlier study of marginal deformations in string �eld theory and related work, see [25, 26, 27, 28, 29,30, 31, 32, 33, 34, 35, 36, 37, 38, 39℄. 1



string with the state QBX for the superstring, where Vb is the marginal operator in the bosonitheory. The state 	� satis�es the equation of motion in open bosoni string �eld theory,QB 	� +	2� = 0 ; (1.4)and to linear order in � it redues to	� = �QBX +O(�2) : (1.5)Thus 	� is a pure-gauge solution generated by QBX, and we expet a solution to (1.3) of theform � = �X +O(�2) : (1.6)Furthermore, 	� is annihilated by �0 beause the state X satis�es the linearized equation ofmotion �0QBX = 0. Therefore, the solution to (1.3) solves the equation of motion in opensuperstring �eld theory (1.1), and the problem of solving the superstring theory has beenredued to a problem in the bosoni theory. A simple solution to (1.3) was obtained in [23℄,but the reality ondition on the open superstring �eld was not satis�ed. The same solution wasalso obtained in [24℄ by a di�erent approah.Let us now onsider the equation obtained from (1.3) by taking a derivative with respet to�. Sine the left-hand side of (1.3) takes the form of a pure-gauge on�guration with respetto the gauge transformation in the bosoni theory, its in�nitesimal hange must be written asan in�nitesimal gauge transformation generated by some gauge parameter whih we all G(�):QB G(�) + [	�; G(�) ℄ = 	0� ; 	0� � dd� 	� : (1.7)Then a solution to (1.3) an be onstruted by a path-ordered exponential of G(�) ase�� = Pexp �Z �0 d�0G(�0) � ; (1.8)or �� = lnPexp �Z �0 d�0G(�0) � : (1.9)If G(�) satis�es the reality ondition, the solution �� also satis�es the reality ondition byonstrution. This is our strategy for onstruting a real solution in open superstring �eldtheory. It turns out that it is easy to �nd a real solution to (1.7).After we ompleted the onstrution of solutions satisfying the reality ondition, we learnedthat T. Erler independently onstruted analyti solutions satisfying the reality ondition by adi�erent approah. His solutions were presented in the seond version of [23℄.2



2 Pure-gauge string �eldLet us begin with desribing 	� in (1.3). It is obtained from the solution for marginal deforma-tions in open bosoni string �eld theory onstruted in [20, 21℄ by replaing Vb in the bosonitheory with the BRST transformation of V =  �e��V1=2 for the superstring. This setionlargely overlaps with setion 2 of [24℄, where the solution in open bosoni string �eld theorywas reviewed. The string �eld 	� is de�ned by an expansion with respet to � as follows:	� = 1Xn=1 �n	(n) : (2.1)The BPZ inner produt h';	(n) i with a state ' in the Fok spae is given byh';	(n) i = Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 h f Æ '(0)U(1)B U(1 + t1)BU(1 + t1 + t2) : : :� B U(1 + t1 + t2 + : : :+ tn�1) iW1+t1+t2+:::+tn�1 ;(2.2)where U is the BRST transformation of V :U(z) = QB � V (z) ; V (z) =  �e��V1=2(z) : (2.3)We follow the notation used in [7, 14, 21℄. In partiular, see the beginning of setion 2 of [7℄ forthe relation to the notation used in [6℄. Here and in what follows we use ' to denote a generistate in the Fok spae and '(0) to denote its orresponding operator in the state-operatormapping. We use the doubling trik in alulating CFT orrelation funtions. As in [14℄, wede�ne the oriented straight lines V �� byV �� = n z ���Re(z) = � 12 (1 + �)o ;orientation : � 12 (1 + �)� i1! � 12 (1 + �) + i1 ; (2.4)and the surfae W� an be represented as the region between V �0 and V +2�, where V �0 and V +2�are identi�ed by translation. The funtion f(z) isf(z) = 2� artan z ; (2.5)and f Æ '(z) denotes the onformal transformation of '(z) by the map f(z). The operator Bis de�ned by B = Z dz2�i b(z) ; (2.6)3



and when B is loated between two operators at t1 and t2 with 1=2 < t1 < t2, the ontour of theintegral an be taken to be �V +� with 2 t1� 1 < � < 2 t2� 1. The antiommutation relation ofB and (z) is fB; (z)g = 1 ; (2.7)and B2 = 0.The state 	(n) an be written more ompatly ash';	(n) i = Z dn�1tD f Æ '(0) n�2Yi=0hU(1 + `i)B iU(1 + `n�1)EW1+`n�1 ; (2.8)whereZ dn�1t � Z 10 dt1 Z 10 dt2 : : : Z 10 dtn�1 ; `0 = 0 ; `i � iXk=1 tk for i = 1 ; 2 ; 3 ; : : : : (2.9)The state 	� an be represented as	� = 11� � (QBX)P �QBX ; (2.10)where 11� � (QBX)P � 1 + 1Xn=1 [� (QBX)P ℄n : (2.11)The state X is desribed in the CFT language ash';X i = h f Æ '(0) V (1) iW1 = h f Æ '(0)  �e��V1=2(1) iW1 ; (2.12)and the state QBX ish';QBX i = h f Æ '(0) QB � V (1) iW1 = h f Æ '(0) U(1) iW1 : (2.13)The de�nition of P is a little involved.3 It is de�ned when it appears as '1 P '2 between twostates '1 and '2 in the Fok spae. The string produt '1 P '2 is given byh'; '1 P '2 i = Z 10 dt h f Æ '(0) f1 Æ '1(0)B f1+t Æ '2(0) iW1+t ; (2.14)where '1(0) and '2(0) are the operators orresponding to the states '1 and '2, respetively.The map fa(z) is a ombination of f(z) and translation:fa(z) = 2� artan z + a : (2.15)3 The state P orresponds to Jb of [24℄ in the bosoni ase and to �0J of [24℄ in the superstring ase.4



The string produt '1 P '2 is well de�ned if f1Æ'1(0)B f1+tÆ'2(0) is regular in the limit t! 0 .An important property of P is '1 (QBP )'2 = '1 '2 (2.16)when f1 Æ '1(0) f1+t Æ '2(0) vanishes in the limit t ! 0 . This relation an be shown in thefollowing way. Sine the BRST transformation of b(z) is the energy-momentum tensor T (z),the inner produt h'; '1 (QBP )'2 i is given byh'; '1 (QBP )'2 i = Z 10 dt h f Æ '(0) f1 Æ '1(0)L f1+t Æ '2(0) iW1+t ; (2.17)where L = Z dz2�i T (z) ; (2.18)and the ontour of the integral is the same as that of B. As disussed in [7℄, an insertionof L is equivalent to taking a derivative with respet to t. It is analogous to the relationL0 e�tL0 = � �t e�tL0 in the standard strip oordinates, where L0 is the zero mode of theenergy-momentum tensor. We thus haveh'; '1 (QBP )'2 i = Z 10 dt �t h f Æ '(0) f1 Æ '1(0) f1+t Æ '2(0) iW1+t= h f Æ '(0) f1 Æ '1(0) f2 Æ '2(0) iW2 = h'; '1 '2 i (2.19)when f1 Æ'1(0) f1+t Æ '2(0) vanishes in the limit t! 0 . This ompletes the proof of (2.16). Inthe language of [21℄, '1 P '2 is'1 P '2 = Z 10 dt '1 e�(t�1)L+L (�B+L )'2 ; (2.20)and the relation (2.16) follows from fQB; B+L g = L+L .To summarize, when the regularity onditions we mentioned are satis�ed, 	� is well de�ned,and we an safely use the relation QBP = 1 (2.21)for the Grassmann-odd state P . It is then straightforward to alulate QB	�, and the result isQB	� = � 11� � (QBX)P � (QBX) 11� � (QBX)P �QBX : (2.22)We have thus shown that 	� satis�es the equation of motion for the bosoni string:QB 	� +	2� = 0 : (2.23)Another important property of 	� is that �0	� = 0. It is easy to see that �0 annihilates 	(n)in (2.2) beause � and b antiommute and U is annihilated by �0.5



3 SolutionLet us now solve QB G(�) + [	�; G(�) ℄ = 	0� : (3.1)The string �eld 	0� is given by	0� � dd� 	� = 11� � (QBX)P (QBX) 11� �P (QBX) ; (3.2)where 11� � (QBX)P � 1 + 1Xn=1 [� (QBX)P ℄n ; 11� �P (QBX) � 1 + 1Xn=1 [�P (QBX) ℄n : (3.3)We look for a solution made of X, P , and QB. We assume for the moment that states involvingP are well de�ned and that we an use the relation QBP = 1. We will disuss regularityonditions neessary for these assumptions later. A string �eld within this ansatz satis�es thereality ondition if it is odd under the onjugation given by replaingX ! �X and by reversingthe order of string produts. Signs from antiommuting Grassmann-odd string �elds have tobe taken are of in reversing the order of string produts. For example, the state 	(n) is realbeause its onjugation is given by	(n) = [ (QBX)P ℄n�1QBX! (�1)(2n�1)(n�1) (�QBX) [P (�QBX) ℄n�1 = � [ (QBX)P ℄n�1QBX (3.4)for any positive integer n. It is easy to �nd a perturbative solution to (3.1) by expanding theequation and G(�) in powers of �. We �nd that the following state solves (3.1) to all orders in� and satis�es the reality ondition:G(�) = 11� � (QBX)P X 11� �P (QBX) : (3.5)It is easy to see that G(�) in (3.5) solves (3.1) from the following relations:QB 11� � (QBX)P = � 11� � (QBX)P � (QBX) 11� � (QBX)P = � 	� 11� � (QBX)P ;QB 11� �P (QBX) = 11� �P (QBX) � (QBX) 11� �P (QBX) = 11� �P (QBX) 	� : (3.6)An expliit expression of G(�) in the CFT desription is given byh';G(�) i = 1Xn=0 1Xm=0 �n+m Z dn+mtD f Æ '(0) n�1Yi=0hU(1 + `i)B iV (1 + `n)� n+mYj=n+1hB U(1 + `j) i EW1+`n+m ; (3.7)6



with the understanding that�1Yi=0hU(1 + `i)B i = 1 ; nYj=n+1hB U(1 + `j) i = 1 ; Z d0t = 1 : (3.8)Following the strategy outlined in the introdution, we onstrut a solution to the equation ofmotion (1.1) in open superstring �eld theory as follows:e�� = Pexp �Z �0 d�0G(�0) � ; (3.9)or �� = lnPexp �Z �0 d�0G(�0) � ; (3.10)where our onvention for the path-ordered exponential isPexp �Z ba d�0G(�0) � = 1 + Z ba d�1G(�1) + Z ba d�1 Z �1a d�2G(�2)G(�1)+ Z ba d�1 Z �1a d�2 Z �2a d�3G(�3)G(�2)G(�1) + : : : : (3.11)It an also be written asPexp �Z ba d�0G(�0) � = 1 + Z ba d�1G(�1) + Z ba d�1 Z b�1 d�2G(�1)G(�2)+ Z ba d�1 Z b�1 d�2 Z b�2 d�3G(�1)G(�2)G(�3) + : : : : (3.12)The path-ordered exponential satis�es the di�erential equations given byddb Pexp �Z ba d�0G(�0) � = Pexp �Z ba d�0G(�0) �G(b) ;dda Pexp �Z ba d�0G(�0) � = �G(a) Pexp �Z ba d�0G(�0) � ; (3.13)with the initial ondition Pexp �Z ba d�0G(�0) � ����a=b = 1 : (3.14)The string �eld e��� is given bye��� = Pexp �Z 0� d�0G(�0) � : (3.15)It is straightforward to verify that (3.1) an be obtained from (1.3) with � = �� in (3.10) bytaking a derivative with respet to �. The equation of motion is trivially satis�ed when � = 0.7



Thus �� in (3.10) satis�es the equation of motion (1.1) to all orders in �. This is the main resultof this paper. We present the expansion of �� to O(�3) in appendix A. While it is guaranteedthat �� satis�es the reality ondition by onstrution, we an expliitly on�rm this. Sine theonjugate of G(�) assoiated with the reality ondition is �G(�), the onjugate of e�� is e���,as an be seen using the formulas (3.11) and (3.12). Therefore, its logarithm �� satis�es thereality ondition.The analyti solution onstruted in [23, 24℄ an also be written using a path-ordered ex-ponential. Let us denote the solution in [23, 24℄ by e��. It is given byee�� = 11�H� ; (3.16)where H� = 11� � (QBX)P �X : (3.17)It is easy to alulate QBH� and show thate�e�� QB ee�� = (QBH�) 11�H� = 	� : (3.18)Thus e�� solves the equation of motion (1.1). Sinedd� ee�� = 11�H� H 0� 11�H� = ee�� H 0� 11�H� ; (3.19)where H 0� � dd� H� ; (3.20)and ee�� = 1 at � = 0 , ee�� an be written asee�� = Pexp �Z �0 d�0 eG(�0) � with eG(�) = H 0� 11�H� : (3.21)It is easy to verify that eG(�) satis�es (3.1) using the following equation:dd� � (QB H�) 11�H� � 	� � = QB �H 0� 11�H� �+ �	� ; H 0� 11�H� �� 	0� = 0 : (3.22)We an think of �� in (3.10) and e�� as di�erent hoies from solutions to (3.1).We onlude the setion by disussing the regularity onditions mentioned in the preedingsetion. When we proved that G(�) in (3.5) satis�es (3.1), we used the following relations:(QBX) (QBP ) (QBX) = (QBX) (QBX) ;(QBX) (QBP )X = (QBX)X ;X (QBP ) (QBX) = X (QBX) : (3.23)8



The �rst two relations were disussed in [24℄, and they hold if V1(z)V1(w), V1(z)V1=2(w), andV1=2(z)V1=2(w) are regular in the limitw ! z. The last relation also holds if these onditions aresatis�ed. Let us next onsider if the string �eld G(�) itself is �nite and if any intermediate stepsin the proof are well de�ned. The expressions an be divergent when two or more operatorsollide, but if the states[ (QBX)P ℄n�1 (QBX) ; [ (QBX)P ℄n�1X [P (QBX) ℄m�1 (3.24)for any positive integers n and m are �nite, the string �eld G(�) and any intermediate steps inthe proof are well de�ned. The onditions for [ (QBX)P ℄n�1 (QBX) to be �nite were disussedin [24℄, and it is straightforward to extend the disussion to [ (QBX)P ℄n�1X[P (QBX) ℄m�1.It is easy to on�rm that the b ghost setor is �nite. For the superghost setor, there is a newterm of the form �e�(1) �e��(1 + `n�1) �e�(1 + `n+m�2), but it is regular as well. Therefore,all the expressions are well de�ned if the ontributions from the matter setor listed below are�nite: Z 10 dt V�(1)V(1 + t) ;Z dn+mt V�(1) n�1Yi=1hV1(1 + `i) iV�(1 + `n) n+m�1Yj=n+1 hV1(1 + `j) iV(1 + `n+m) (3.25)for any positive integers n and m, where V�, V�, and V an be V1 or V1=2, and we used thenotation introdued in (2.9) with the understanding that0Yi=1hV1(1 + `i) i = 1 ; nYj=n+1hV1(1 + `j) i = 1 : (3.26)The only minor di�erene ompared to the onditions for the solution in [24℄ is that V1=2 anappear three times. When the string �eld G(�) is �nite, the solution �� is also �nite to any�nite order in �. We thus onlude that if operator produts of an arbitrary number of V1's andat most three V1=2's are regular, the solution �� in (3.10) made of G(�) in (3.5) is well de�nedand satis�es the equation of motion (1.1).4 DisussionWe have onstruted analyti solutions for marginal deformations satisfying the reality ondi-tion in open superstring �eld theory when operator produts made of V1 and V1=2 are regular.It is important to extend the onstrution to the ases where the operator produts are singu-lar. Sine the struture of G(�) is very similar to that of the solutions for the bosoni string9



in [20, 21℄, we hope that it will not be diÆult to onstrut solutions for the superstring onewe omplete the program of onstruting solutions with singular operator produts developedin [21℄.4It was important for the approah by Erler [23℄ that the equation of motion in open su-perstring �eld theory (1.1) takes the form that �0 annihilates the pure-gauge on�guratione��QB e� of open bosoni string �eld theory. Interestingly, the equation of motion in heterotistring �eld theory [43, 44℄ takes the form that �0 annihilates a pure-gauge on�guration oflosed bosoni string �eld theory [45, 46, 47, 48, 49, 50℄. Therefore, a similar approah may beuseful in onstruting solutions in heteroti string �eld theory one we �nd solutions in losedbosoni string �eld theory.The open superstring �eld theory formulated by Berkovits an also be used to desribe theN = 2 string by replaing QB and �0 with the generators in the N = 2 string [22℄. The realityondition for the N = 2 string is di�erent from that for the ordinary superstring, and it is notlear if an approah similar to the one in this paper will be useful in onstruting solutionssatisfying the reality ondition for the N = 2 string.Open superstring �eld theory formulated by Berkovits [22℄ is more than ten years old, andits �rst analyti solutions have now been onstruted. We expet further exiting developmentsin the near future.Note addedThe onvention for the onjugation assoiated with the reality ondition in this paper andin [24℄ is di�erent from the one used in [23, 51, 52℄. Let us explain the relation between thetwo onventions. The string �eld must have a de�nite parity under the ombination of theHermitean onjugation (h) and the inverse BPZ onjugation (bpz�1) to guarantee that thestring �eld theory ation is real [53℄. If we denote the onjugate of a string �eld A in this paperand in [24℄ by A�, it is de�ned byA� � ( bpz�1 Æ h (A) when the ghost number of A is 0 or 3 mod 4 ;�bpz�1 Æ h (A) when the ghost number of A is 1 or 2 mod 4 :With this de�nition, the following relations hold:(QBA)� = QBA� ; (AB)� = (�1)AB B�A� ;where (�1)AB = �1 when both A and B are Grassmann odd and (�1)AB = 1 in other ases.If we denote the onjugate of a string �eld A used in [23, 51, 52℄ by Az, it is de�ned byAz � bpz�1 Æ h (A)4 It is not lear if the reent approah to the onstrution of solutions with singular operator produts in [42℄an be diretly extended to the superstring within our framework.10



for any ghost number. With this de�nition, the following relations hold:(QBA)z = � (�1)AQBAz ; (AB)z = BzAz ;where (�1)A = �1 when A is Grassmann odd and (�1)A = 1 when A is Grassmann even.The open superstring �eld � has ghost number 0, and thus �z = ��. The reality ondition issatis�ed when �z = �� = ��. The open bosoni string �eld 	 has ghost number 1, and thus	z = �	�. The reality ondition is satis�ed when 	z = �	� = 	.AknowledgmentsI would like to thank Ted Erler for helpful orrespondene.A ExpansionIn this appendix we present the expansion of the solution �� to third order in �. We �rstexpand G(�) in powers of X:G(�) = X + � [ (QBX)P X +X P (QBX) ℄+ �2 [ (QBX)P (QBX)P X + (QBX)P X P (QBX) +X P (QBX)P (QBX) ℄+O(X4) : (A.1)The expansion of e�� ise�� = Pexp �Z �0 d�0G(�0) �= 1 + Z �0 d�1G(�1) + Z �0 d�1 Z �10 d�2G(�2)G(�1)+ Z �0 d�1 Z �10 d�2 Z �20 d�3G(�3)G(�2)G(�1) +O(X4)= 1 + �X + 12 �2 [ (QBX)P X +X P (QBX) +X X ℄+ �3 � 13 (QBX)P (QBX)P X + 13 (QBX)P X P (QBX) + 13 X P (QBX)P (QBX)+ 13 X (QBX)P X + 13 X X P (QBX) + 16 (QBX)P X X + 16 X P (QBX)X+ 16 X XX �+O(X4) : (A.2)
11



The expansion of the solution �� is given by�(1) = X ;�(2) = 12 [ (QBX)P X +X P (QBX) ℄ ;�(3) = 13 (QBX)P (QBX)P X + 13 (QBX)P X P (QBX) + 13 X P (QBX)P (QBX)+ 112 X (QBX)P X + 112 X X P (QBX)� 112 (QBX)P X X � 112 X P (QBX)X :(A.3)Note that �(1), �(2), and �(3) satisfy the reality ondition. The BRST transformation of �� toO(�3) is given byQB �(1) = QBX ;QB �(2) = (QBX)P (QBX)� 12 (QBX)X + 12 X (QBX) ;QB �(3) = (QBX)P (QBX)P (QBX)+ 12 X (QBX)P (QBX)� 12 (QBX)P (QBX)X� 14 (QBX) [ (QBX)P X +X P (QBX) ℄ + 14 [ (QBX)P X +X P (QBX) ℄ (QBX)+ 112 XX (QBX)� 16 X (QBX)X + 112 (QBX)XX : (A.4)Let us next expand the equation of motion. Sinee��QBe� = QB � + 12 (QB �)�� 12 � (QB �)+ 16 (QB �)�2 � 13 � (QB �)� + 16 �2 (QB �) +O(�4) ; (A.5)we have�0QB �(1) = 0 ;�0 �QB �(2) + 12 (QB �(1)) �(1) � 12 �(1) (QB �(1)) � = 0 ;�0 �QB �(3) + 12 (QB �(1)) �(2) + 12 (QB �(2)) �(1) � 12 �(1) (QB �(2))� 12 �(2) (QB �(1))+ 16 (QB �(1)) �(1) �(1) � 13 �(1) (QB �(1)) �(1) + 16 �(1) �(1) (QB �(1)) � = 0 : (A.6)
It is easy to on�rm that �(1), �(2), and �(3) in (A.3) satisfy these equations.12
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