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Abstra
tWe 
onstru
t analyti
 solutions for marginal deformations satisfying the reality 
ondition inopen superstring �eld theory formulated by Berkovits when operator produ
ts made of themarginal operator and the asso
iated super
onformal primary �eld are regular. Our strategyis based on the re
ent observation by Erler that the problem of �nding solutions for marginaldeformations in open superstring �eld theory 
an be redu
ed to a problem in the bosoni
theory of �nding a �nite gauge parameter for a 
ertain pure-gauge 
on�guration labeled bythe parameter of the marginal deformation. We �nd a gauge transformation generated by areal gauge parameter whi
h in�nitesimally 
hanges the deformation parameter and 
onstru
ta �nite gauge parameter by its path-ordered exponential. The resulting solution satis�es thereality 
ondition by 
onstru
tion.
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1 Introdu
tionAnalyti
 methods in open bosoni
 string �eld theory [1℄1 triggered by S
hnabl's 
onstru
tionof an analyti
 solution for ta
hyon 
ondensation [6℄ and further developed in [7, 8, 9, 10, 11,12, 13, 14, 15, 16, 17, 18, 19, 20, 21℄ have re
ently been extended to open superstring �eldtheory formulated by Berkovits [22℄, and analyti
 solutions for marginal deformations were
onstru
ted in [23, 24℄.2 The solutions are surprisingly simple and very similar to those in openbosoni
 string �eld theory 
onstru
ted in [20, 21℄. However, the reality 
ondition on the opensuperstring �eld was not satis�ed. While we expe
t that the solution in [23, 24℄ is equivalentto a real one by a gauge transformation, it is desirable to �nd an analyti
 solution satisfyingthe reality 
ondition. In this paper we expli
itly 
onstru
t a real analyti
 solution.The equation of motion in open superstring �eld theory [22℄ is�0 ( e��QB e� ) = 0 ; (1.1)where � is the open superstring �eld and QB is the BRST operator. The superghost se
toris des
ribed by �, �, and � [40, 41℄, and �0 is the zero mode of �. All the string produ
ts inthis paper are de�ned by the star produ
t introdu
ed in [1℄. For any marginal deformationof the boundary 
onformal �eld theory (CFT) for the open superstring, there is an asso
iatedsuper
onformal primary �eld V1=2 of dimension 1=2, and the marginal operator V1 of dimension 1is the supersymmetry transformation of V1=2. In open superstring �eld theory [22℄, the solutionto the linearized equation of motion asso
iated with the marginal deformation is given by theGrassmann-even state X 
orresponding to the operator V (0) = 
 �e��V1=2(0) in the state-operator mapping. When the deformation is exa
tly marginal, we expe
t a solution to (1.1) ofthe following form: �� = 1Xn=1 �n�(n) (1.2)with �(1) = X, where � is the deformation parameter. The goal of the paper is to 
onstru
t�(n) satisfying the reality 
ondition when operator produ
ts made of V1 and V1=2 are regular.In [23℄ Erler proposed to solve the following equation:e��QB e� = 	� ; (1.3)where 	� is obtained from the solution for marginal deformations in open bosoni
 string �eldtheory 
onstru
ted in [20, 21℄ by repla
ing the state 
orresponding to 
Vb(0) for the bosoni
1 See [2, 3, 4, 5℄ for reviews on string �eld theory.2 For earlier study of marginal deformations in string �eld theory and related work, see [25, 26, 27, 28, 29,30, 31, 32, 33, 34, 35, 36, 37, 38, 39℄. 1



string with the state QBX for the superstring, where Vb is the marginal operator in the bosoni
theory. The state 	� satis�es the equation of motion in open bosoni
 string �eld theory,QB 	� +	2� = 0 ; (1.4)and to linear order in � it redu
es to	� = �QBX +O(�2) : (1.5)Thus 	� is a pure-gauge solution generated by QBX, and we expe
t a solution to (1.3) of theform � = �X +O(�2) : (1.6)Furthermore, 	� is annihilated by �0 be
ause the state X satis�es the linearized equation ofmotion �0QBX = 0. Therefore, the solution to (1.3) solves the equation of motion in opensuperstring �eld theory (1.1), and the problem of solving the superstring theory has beenredu
ed to a problem in the bosoni
 theory. A simple solution to (1.3) was obtained in [23℄,but the reality 
ondition on the open superstring �eld was not satis�ed. The same solution wasalso obtained in [24℄ by a di�erent approa
h.Let us now 
onsider the equation obtained from (1.3) by taking a derivative with respe
t to�. Sin
e the left-hand side of (1.3) takes the form of a pure-gauge 
on�guration with respe
tto the gauge transformation in the bosoni
 theory, its in�nitesimal 
hange must be written asan in�nitesimal gauge transformation generated by some gauge parameter whi
h we 
all G(�):QB G(�) + [	�; G(�) ℄ = 	0� ; 	0� � dd� 	� : (1.7)Then a solution to (1.3) 
an be 
onstru
ted by a path-ordered exponential of G(�) ase�� = Pexp �Z �0 d�0G(�0) � ; (1.8)or �� = lnPexp �Z �0 d�0G(�0) � : (1.9)If G(�) satis�es the reality 
ondition, the solution �� also satis�es the reality 
ondition by
onstru
tion. This is our strategy for 
onstru
ting a real solution in open superstring �eldtheory. It turns out that it is easy to �nd a real solution to (1.7).After we 
ompleted the 
onstru
tion of solutions satisfying the reality 
ondition, we learnedthat T. Erler independently 
onstru
ted analyti
 solutions satisfying the reality 
ondition by adi�erent approa
h. His solutions were presented in the se
ond version of [23℄.2



2 Pure-gauge string �eldLet us begin with des
ribing 	� in (1.3). It is obtained from the solution for marginal deforma-tions in open bosoni
 string �eld theory 
onstru
ted in [20, 21℄ by repla
ing 
Vb in the bosoni
theory with the BRST transformation of V = 
 �e��V1=2 for the superstring. This se
tionlargely overlaps with se
tion 2 of [24℄, where the solution in open bosoni
 string �eld theorywas reviewed. The string �eld 	� is de�ned by an expansion with respe
t to � as follows:	� = 1Xn=1 �n	(n) : (2.1)The BPZ inner produ
t h';	(n) i with a state ' in the Fo
k spa
e is given byh';	(n) i = Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 h f Æ '(0)U(1)B U(1 + t1)BU(1 + t1 + t2) : : :� B U(1 + t1 + t2 + : : :+ tn�1) iW1+t1+t2+:::+tn�1 ;(2.2)where U is the BRST transformation of V :U(z) = QB � V (z) ; V (z) = 
 �e��V1=2(z) : (2.3)We follow the notation used in [7, 14, 21℄. In parti
ular, see the beginning of se
tion 2 of [7℄ forthe relation to the notation used in [6℄. Here and in what follows we use ' to denote a generi
state in the Fo
k spa
e and '(0) to denote its 
orresponding operator in the state-operatormapping. We use the doubling tri
k in 
al
ulating CFT 
orrelation fun
tions. As in [14℄, wede�ne the oriented straight lines V �� byV �� = n z ���Re(z) = � 12 (1 + �)o ;orientation : � 12 (1 + �)� i1! � 12 (1 + �) + i1 ; (2.4)and the surfa
e W� 
an be represented as the region between V �0 and V +2�, where V �0 and V +2�are identi�ed by translation. The fun
tion f(z) isf(z) = 2� ar
tan z ; (2.5)and f Æ '(z) denotes the 
onformal transformation of '(z) by the map f(z). The operator Bis de�ned by B = Z dz2�i b(z) ; (2.6)3



and when B is lo
ated between two operators at t1 and t2 with 1=2 < t1 < t2, the 
ontour of theintegral 
an be taken to be �V +� with 2 t1� 1 < � < 2 t2� 1. The anti
ommutation relation ofB and 
(z) is fB; 
(z)g = 1 ; (2.7)and B2 = 0.The state 	(n) 
an be written more 
ompa
tly ash';	(n) i = Z dn�1tD f Æ '(0) n�2Yi=0hU(1 + `i)B iU(1 + `n�1)EW1+`n�1 ; (2.8)whereZ dn�1t � Z 10 dt1 Z 10 dt2 : : : Z 10 dtn�1 ; `0 = 0 ; `i � iXk=1 tk for i = 1 ; 2 ; 3 ; : : : : (2.9)The state 	� 
an be represented as	� = 11� � (QBX)P �QBX ; (2.10)where 11� � (QBX)P � 1 + 1Xn=1 [� (QBX)P ℄n : (2.11)The state X is des
ribed in the CFT language ash';X i = h f Æ '(0) V (1) iW1 = h f Æ '(0) 
 �e��V1=2(1) iW1 ; (2.12)and the state QBX ish';QBX i = h f Æ '(0) QB � V (1) iW1 = h f Æ '(0) U(1) iW1 : (2.13)The de�nition of P is a little involved.3 It is de�ned when it appears as '1 P '2 between twostates '1 and '2 in the Fo
k spa
e. The string produ
t '1 P '2 is given byh'; '1 P '2 i = Z 10 dt h f Æ '(0) f1 Æ '1(0)B f1+t Æ '2(0) iW1+t ; (2.14)where '1(0) and '2(0) are the operators 
orresponding to the states '1 and '2, respe
tively.The map fa(z) is a 
ombination of f(z) and translation:fa(z) = 2� ar
tan z + a : (2.15)3 The state P 
orresponds to Jb of [24℄ in the bosoni
 
ase and to �0J of [24℄ in the superstring 
ase.4



The string produ
t '1 P '2 is well de�ned if f1Æ'1(0)B f1+tÆ'2(0) is regular in the limit t! 0 .An important property of P is '1 (QBP )'2 = '1 '2 (2.16)when f1 Æ '1(0) f1+t Æ '2(0) vanishes in the limit t ! 0 . This relation 
an be shown in thefollowing way. Sin
e the BRST transformation of b(z) is the energy-momentum tensor T (z),the inner produ
t h'; '1 (QBP )'2 i is given byh'; '1 (QBP )'2 i = Z 10 dt h f Æ '(0) f1 Æ '1(0)L f1+t Æ '2(0) iW1+t ; (2.17)where L = Z dz2�i T (z) ; (2.18)and the 
ontour of the integral is the same as that of B. As dis
ussed in [7℄, an insertionof L is equivalent to taking a derivative with respe
t to t. It is analogous to the relationL0 e�tL0 = � �t e�tL0 in the standard strip 
oordinates, where L0 is the zero mode of theenergy-momentum tensor. We thus haveh'; '1 (QBP )'2 i = Z 10 dt �t h f Æ '(0) f1 Æ '1(0) f1+t Æ '2(0) iW1+t= h f Æ '(0) f1 Æ '1(0) f2 Æ '2(0) iW2 = h'; '1 '2 i (2.19)when f1 Æ'1(0) f1+t Æ '2(0) vanishes in the limit t! 0 . This 
ompletes the proof of (2.16). Inthe language of [21℄, '1 P '2 is'1 P '2 = Z 10 dt '1 e�(t�1)L+L (�B+L )'2 ; (2.20)and the relation (2.16) follows from fQB; B+L g = L+L .To summarize, when the regularity 
onditions we mentioned are satis�ed, 	� is well de�ned,and we 
an safely use the relation QBP = 1 (2.21)for the Grassmann-odd state P . It is then straightforward to 
al
ulate QB	�, and the result isQB	� = � 11� � (QBX)P � (QBX) 11� � (QBX)P �QBX : (2.22)We have thus shown that 	� satis�es the equation of motion for the bosoni
 string:QB 	� +	2� = 0 : (2.23)Another important property of 	� is that �0	� = 0. It is easy to see that �0 annihilates 	(n)in (2.2) be
ause � and b anti
ommute and U is annihilated by �0.5



3 SolutionLet us now solve QB G(�) + [	�; G(�) ℄ = 	0� : (3.1)The string �eld 	0� is given by	0� � dd� 	� = 11� � (QBX)P (QBX) 11� �P (QBX) ; (3.2)where 11� � (QBX)P � 1 + 1Xn=1 [� (QBX)P ℄n ; 11� �P (QBX) � 1 + 1Xn=1 [�P (QBX) ℄n : (3.3)We look for a solution made of X, P , and QB. We assume for the moment that states involvingP are well de�ned and that we 
an use the relation QBP = 1. We will dis
uss regularity
onditions ne
essary for these assumptions later. A string �eld within this ansatz satis�es thereality 
ondition if it is odd under the 
onjugation given by repla
ingX ! �X and by reversingthe order of string produ
ts. Signs from anti
ommuting Grassmann-odd string �elds have tobe taken 
are of in reversing the order of string produ
ts. For example, the state 	(n) is realbe
ause its 
onjugation is given by	(n) = [ (QBX)P ℄n�1QBX! (�1)(2n�1)(n�1) (�QBX) [P (�QBX) ℄n�1 = � [ (QBX)P ℄n�1QBX (3.4)for any positive integer n. It is easy to �nd a perturbative solution to (3.1) by expanding theequation and G(�) in powers of �. We �nd that the following state solves (3.1) to all orders in� and satis�es the reality 
ondition:G(�) = 11� � (QBX)P X 11� �P (QBX) : (3.5)It is easy to see that G(�) in (3.5) solves (3.1) from the following relations:QB 11� � (QBX)P = � 11� � (QBX)P � (QBX) 11� � (QBX)P = � 	� 11� � (QBX)P ;QB 11� �P (QBX) = 11� �P (QBX) � (QBX) 11� �P (QBX) = 11� �P (QBX) 	� : (3.6)An expli
it expression of G(�) in the CFT des
ription is given byh';G(�) i = 1Xn=0 1Xm=0 �n+m Z dn+mtD f Æ '(0) n�1Yi=0hU(1 + `i)B iV (1 + `n)� n+mYj=n+1hB U(1 + `j) i EW1+`n+m ; (3.7)6



with the understanding that�1Yi=0hU(1 + `i)B i = 1 ; nYj=n+1hB U(1 + `j) i = 1 ; Z d0t = 1 : (3.8)Following the strategy outlined in the introdu
tion, we 
onstru
t a solution to the equation ofmotion (1.1) in open superstring �eld theory as follows:e�� = Pexp �Z �0 d�0G(�0) � ; (3.9)or �� = lnPexp �Z �0 d�0G(�0) � ; (3.10)where our 
onvention for the path-ordered exponential isPexp �Z ba d�0G(�0) � = 1 + Z ba d�1G(�1) + Z ba d�1 Z �1a d�2G(�2)G(�1)+ Z ba d�1 Z �1a d�2 Z �2a d�3G(�3)G(�2)G(�1) + : : : : (3.11)It 
an also be written asPexp �Z ba d�0G(�0) � = 1 + Z ba d�1G(�1) + Z ba d�1 Z b�1 d�2G(�1)G(�2)+ Z ba d�1 Z b�1 d�2 Z b�2 d�3G(�1)G(�2)G(�3) + : : : : (3.12)The path-ordered exponential satis�es the di�erential equations given byddb Pexp �Z ba d�0G(�0) � = Pexp �Z ba d�0G(�0) �G(b) ;dda Pexp �Z ba d�0G(�0) � = �G(a) Pexp �Z ba d�0G(�0) � ; (3.13)with the initial 
ondition Pexp �Z ba d�0G(�0) � ����a=b = 1 : (3.14)The string �eld e��� is given bye��� = Pexp �Z 0� d�0G(�0) � : (3.15)It is straightforward to verify that (3.1) 
an be obtained from (1.3) with � = �� in (3.10) bytaking a derivative with respe
t to �. The equation of motion is trivially satis�ed when � = 0.7



Thus �� in (3.10) satis�es the equation of motion (1.1) to all orders in �. This is the main resultof this paper. We present the expansion of �� to O(�3) in appendix A. While it is guaranteedthat �� satis�es the reality 
ondition by 
onstru
tion, we 
an expli
itly 
on�rm this. Sin
e the
onjugate of G(�) asso
iated with the reality 
ondition is �G(�), the 
onjugate of e�� is e���,as 
an be seen using the formulas (3.11) and (3.12). Therefore, its logarithm �� satis�es thereality 
ondition.The analyti
 solution 
onstru
ted in [23, 24℄ 
an also be written using a path-ordered ex-ponential. Let us denote the solution in [23, 24℄ by e��. It is given byee�� = 11�H� ; (3.16)where H� = 11� � (QBX)P �X : (3.17)It is easy to 
al
ulate QBH� and show thate�e�� QB ee�� = (QBH�) 11�H� = 	� : (3.18)Thus e�� solves the equation of motion (1.1). Sin
edd� ee�� = 11�H� H 0� 11�H� = ee�� H 0� 11�H� ; (3.19)where H 0� � dd� H� ; (3.20)and ee�� = 1 at � = 0 , ee�� 
an be written asee�� = Pexp �Z �0 d�0 eG(�0) � with eG(�) = H 0� 11�H� : (3.21)It is easy to verify that eG(�) satis�es (3.1) using the following equation:dd� � (QB H�) 11�H� � 	� � = QB �H 0� 11�H� �+ �	� ; H 0� 11�H� �� 	0� = 0 : (3.22)We 
an think of �� in (3.10) and e�� as di�erent 
hoi
es from solutions to (3.1).We 
on
lude the se
tion by dis
ussing the regularity 
onditions mentioned in the pre
edingse
tion. When we proved that G(�) in (3.5) satis�es (3.1), we used the following relations:(QBX) (QBP ) (QBX) = (QBX) (QBX) ;(QBX) (QBP )X = (QBX)X ;X (QBP ) (QBX) = X (QBX) : (3.23)8



The �rst two relations were dis
ussed in [24℄, and they hold if V1(z)V1(w), V1(z)V1=2(w), andV1=2(z)V1=2(w) are regular in the limitw ! z. The last relation also holds if these 
onditions aresatis�ed. Let us next 
onsider if the string �eld G(�) itself is �nite and if any intermediate stepsin the proof are well de�ned. The expressions 
an be divergent when two or more operators
ollide, but if the states[ (QBX)P ℄n�1 (QBX) ; [ (QBX)P ℄n�1X [P (QBX) ℄m�1 (3.24)for any positive integers n and m are �nite, the string �eld G(�) and any intermediate steps inthe proof are well de�ned. The 
onditions for [ (QBX)P ℄n�1 (QBX) to be �nite were dis
ussedin [24℄, and it is straightforward to extend the dis
ussion to [ (QBX)P ℄n�1X[P (QBX) ℄m�1.It is easy to 
on�rm that the b
 ghost se
tor is �nite. For the superghost se
tor, there is a newterm of the form �e�(1) �e��(1 + `n�1) �e�(1 + `n+m�2), but it is regular as well. Therefore,all the expressions are well de�ned if the 
ontributions from the matter se
tor listed below are�nite: Z 10 dt V�(1)V
(1 + t) ;Z dn+mt V�(1) n�1Yi=1hV1(1 + `i) iV�(1 + `n) n+m�1Yj=n+1 hV1(1 + `j) iV
(1 + `n+m) (3.25)for any positive integers n and m, where V�, V�, and V
 
an be V1 or V1=2, and we used thenotation introdu
ed in (2.9) with the understanding that0Yi=1hV1(1 + `i) i = 1 ; nYj=n+1hV1(1 + `j) i = 1 : (3.26)The only minor di�eren
e 
ompared to the 
onditions for the solution in [24℄ is that V1=2 
anappear three times. When the string �eld G(�) is �nite, the solution �� is also �nite to any�nite order in �. We thus 
on
lude that if operator produ
ts of an arbitrary number of V1's andat most three V1=2's are regular, the solution �� in (3.10) made of G(�) in (3.5) is well de�nedand satis�es the equation of motion (1.1).4 Dis
ussionWe have 
onstru
ted analyti
 solutions for marginal deformations satisfying the reality 
ondi-tion in open superstring �eld theory when operator produ
ts made of V1 and V1=2 are regular.It is important to extend the 
onstru
tion to the 
ases where the operator produ
ts are singu-lar. Sin
e the stru
ture of G(�) is very similar to that of the solutions for the bosoni
 string9



in [20, 21℄, we hope that it will not be diÆ
ult to 
onstru
t solutions for the superstring on
ewe 
omplete the program of 
onstru
ting solutions with singular operator produ
ts developedin [21℄.4It was important for the approa
h by Erler [23℄ that the equation of motion in open su-perstring �eld theory (1.1) takes the form that �0 annihilates the pure-gauge 
on�guratione��QB e� of open bosoni
 string �eld theory. Interestingly, the equation of motion in heteroti
string �eld theory [43, 44℄ takes the form that �0 annihilates a pure-gauge 
on�guration of
losed bosoni
 string �eld theory [45, 46, 47, 48, 49, 50℄. Therefore, a similar approa
h may beuseful in 
onstru
ting solutions in heteroti
 string �eld theory on
e we �nd solutions in 
losedbosoni
 string �eld theory.The open superstring �eld theory formulated by Berkovits 
an also be used to des
ribe theN = 2 string by repla
ing QB and �0 with the generators in the N = 2 string [22℄. The reality
ondition for the N = 2 string is di�erent from that for the ordinary superstring, and it is not
lear if an approa
h similar to the one in this paper will be useful in 
onstru
ting solutionssatisfying the reality 
ondition for the N = 2 string.Open superstring �eld theory formulated by Berkovits [22℄ is more than ten years old, andits �rst analyti
 solutions have now been 
onstru
ted. We expe
t further ex
iting developmentsin the near future.Note addedThe 
onvention for the 
onjugation asso
iated with the reality 
ondition in this paper andin [24℄ is di�erent from the one used in [23, 51, 52℄. Let us explain the relation between thetwo 
onventions. The string �eld must have a de�nite parity under the 
ombination of theHermitean 
onjugation (h
) and the inverse BPZ 
onjugation (bpz�1) to guarantee that thestring �eld theory a
tion is real [53℄. If we denote the 
onjugate of a string �eld A in this paperand in [24℄ by A�, it is de�ned byA� � ( bpz�1 Æ h
 (A) when the ghost number of A is 0 or 3 mod 4 ;�bpz�1 Æ h
 (A) when the ghost number of A is 1 or 2 mod 4 :With this de�nition, the following relations hold:(QBA)� = QBA� ; (AB)� = (�1)AB B�A� ;where (�1)AB = �1 when both A and B are Grassmann odd and (�1)AB = 1 in other 
ases.If we denote the 
onjugate of a string �eld A used in [23, 51, 52℄ by Az, it is de�ned byAz � bpz�1 Æ h
 (A)4 It is not 
lear if the re
ent approa
h to the 
onstru
tion of solutions with singular operator produ
ts in [42℄
an be dire
tly extended to the superstring within our framework.10



for any ghost number. With this de�nition, the following relations hold:(QBA)z = � (�1)AQBAz ; (AB)z = BzAz ;where (�1)A = �1 when A is Grassmann odd and (�1)A = 1 when A is Grassmann even.The open superstring �eld � has ghost number 0, and thus �z = ��. The reality 
ondition issatis�ed when �z = �� = ��. The open bosoni
 string �eld 	 has ghost number 1, and thus	z = �	�. The reality 
ondition is satis�ed when 	z = �	� = 	.A
knowledgmentsI would like to thank Ted Erler for helpful 
orresponden
e.A ExpansionIn this appendix we present the expansion of the solution �� to third order in �. We �rstexpand G(�) in powers of X:G(�) = X + � [ (QBX)P X +X P (QBX) ℄+ �2 [ (QBX)P (QBX)P X + (QBX)P X P (QBX) +X P (QBX)P (QBX) ℄+O(X4) : (A.1)The expansion of e�� ise�� = Pexp �Z �0 d�0G(�0) �= 1 + Z �0 d�1G(�1) + Z �0 d�1 Z �10 d�2G(�2)G(�1)+ Z �0 d�1 Z �10 d�2 Z �20 d�3G(�3)G(�2)G(�1) +O(X4)= 1 + �X + 12 �2 [ (QBX)P X +X P (QBX) +X X ℄+ �3 � 13 (QBX)P (QBX)P X + 13 (QBX)P X P (QBX) + 13 X P (QBX)P (QBX)+ 13 X (QBX)P X + 13 X X P (QBX) + 16 (QBX)P X X + 16 X P (QBX)X+ 16 X XX �+O(X4) : (A.2)
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The expansion of the solution �� is given by�(1) = X ;�(2) = 12 [ (QBX)P X +X P (QBX) ℄ ;�(3) = 13 (QBX)P (QBX)P X + 13 (QBX)P X P (QBX) + 13 X P (QBX)P (QBX)+ 112 X (QBX)P X + 112 X X P (QBX)� 112 (QBX)P X X � 112 X P (QBX)X :(A.3)Note that �(1), �(2), and �(3) satisfy the reality 
ondition. The BRST transformation of �� toO(�3) is given byQB �(1) = QBX ;QB �(2) = (QBX)P (QBX)� 12 (QBX)X + 12 X (QBX) ;QB �(3) = (QBX)P (QBX)P (QBX)+ 12 X (QBX)P (QBX)� 12 (QBX)P (QBX)X� 14 (QBX) [ (QBX)P X +X P (QBX) ℄ + 14 [ (QBX)P X +X P (QBX) ℄ (QBX)+ 112 XX (QBX)� 16 X (QBX)X + 112 (QBX)XX : (A.4)Let us next expand the equation of motion. Sin
ee��QBe� = QB � + 12 (QB �)�� 12 � (QB �)+ 16 (QB �)�2 � 13 � (QB �)� + 16 �2 (QB �) +O(�4) ; (A.5)we have�0QB �(1) = 0 ;�0 �QB �(2) + 12 (QB �(1)) �(1) � 12 �(1) (QB �(1)) � = 0 ;�0 �QB �(3) + 12 (QB �(1)) �(2) + 12 (QB �(2)) �(1) � 12 �(1) (QB �(2))� 12 �(2) (QB �(1))+ 16 (QB �(1)) �(1) �(1) � 13 �(1) (QB �(1)) �(1) + 16 �(1) �(1) (QB �(1)) � = 0 : (A.6)
It is easy to 
on�rm that �(1), �(2), and �(3) in (A.3) satisfy these equations.12
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