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Abstract

We evaluate the two-loop corrections to Bhabha scattering from fermion loops in the context
of pure Quantum Electrodynamics. The differential cross section is expressed by a small number
of Master Integrals with exact dependence on the fermion masses m., my and the Mandelstam
invariants s,t,u. We determine the limit of fixed scattering angle and high energy, assuming
the hierarchy of scales m2 < mfc < s,t,u. The numerical result is combined with the available
non-fermionic contributions. As a by-product, we provide an independent check of the known
electron-loop contributions.
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1 Introduction

Bhabha scattering is one of the processes at ete™ colliders with the highest experimental precision
and represents an important monitoring process. A notable example is its expected role for the
luminosity determination at the future International Linear Collider ILC by measuring small-angle
Bhabha-scattering events at center-of-mass energies ranging from about 100 GeV (Giga-Z collider
option) to several TeV. Moreover, the large-angle region is relevant at colliders operating at 1-10
GeV. For some applications a full two-loop calculation of the QED contributions is mandator.

A large class of QED two-loop corrections was determined in the seminal work of [2]. Later,
the complete two-loop corrections in the limit of zero electron mass were obtained in [3] thanks
to the fundamental results of [4,5]. However, this result cannot be immediately applied, since the
available Monte-Carlo programs (see e.g. [6-13]) employ a small, but non-vanishing electron mass.
The o In(s/m?) terms due to double boxes were derived from [3] by the authors of [14], and the
close-to-complete two-loop result in the ultra-relativistic limit was finally obtained in [15,16]. Note
that the diagrams with fermion loops have not been covered by this approach. The virtual and
real components involving electron loops could be added exactly in [17,18]. The non-approximated
analytical expressions for all two-loop corrections, except for double-box diagrams and for those with
loops from heavier-fermion generations, can be found in [19]. For a comprehensive investigation of the
full set of the massive two-loop QED corrections, including double-box diagrams, we refer to [20-22].
The evaluation of the contributions from massive non-planar double box diagrams remains open so
far.

In order to add another piece to the complete two-loop prediction for the Bhabha-scattering cross
section in QED, we evaluate here the so-far lacking diagrams containing heavy-fermion loops. The
cross section correction is expressed by a small number of scalar Master Integrals, where the ezact
dependence on the masses of the fermions and the Mandelstam variables s, ¢ and u is retained. In
a next step, we assume a hierarchy of scales, m? < m? < s,t,u, where m, is the electron mass
and my is the mass of a heavier fermion. We derive explicit results neglecting terms suppressed
by positive powers of m?/m%, m?/x and m%/x, where # = s,¢,u. This high-energy approximation
describes the influence of muons and 7 leptons and proves well-suited for practical applications. In
addition, we provide an independent cross-check of the exact analytical results of [17] (we used the
files provided at [23] for comparison) for m; = m..

The article is organized as follows. In Section 2] we introduce our notations and outline the
calculation and in Section [ we discuss the solution for each class of diagrams. In Section M we
reproduce the complete result for the corrections from heavier fermions in analytic form and perform
the numerical analysis. Section [l contains the summary, and additional material on the Master
Integrals is collected in the Appendix.

2 Expansion of the Cross Section
We consider the Bhabha-scattering process,

e (p1) + e (p2) — e (p3) + et (pa), (2.1)

and introduce the Mandelstam invariants s, ¢ and u,

s = (p; +P2)2 =4F>, (2.2)
b= () = A (B - m?) s’ (2.3
u = (1131—104)2:—4(192 —m?) cos2g, (2.4)

I Note that leading two-loop effects in the electroweak Standard Model were already incorporated in [1].
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Figure 1: Classes of Bhabha-scattering one-loop diagrams. A thin fermion line represents an
electron, a thick one can be any fermion. The full set of graphs can be obtained through proper
permutations. We refer to [24] for the reproduction of the full set of graphs.

where m, is the electron mass, E is the incoming-particle energy in the center-of-mass frame and 6
is the scattering angle. In addition, s + ¢t + u = 4m?2.
In the kinematical region m? < s,t,u the leading-order (LO) differential cross section with

respect to the solid angle (2 reads as

aQ s

do*© a?71 /s 1ot 1 2
[S—2(§+t+st)+t—2(5+s +st)+§(8+t) ; (2.5)

where « is the fine-structure constant. At higher orders in perturbation theory we write an expansion
in a,

do do"° ay\ do™v° a\2 do™~t°
o~ dQ (_) dQ (_) dQ
Here do™© and do™-° summarize the next-to-leading order (NLO) and next-to-next-to-leading
order (NNLO) corrections to the differential cross section. In the following it will be understood
that we consider only components generated by diagrams containing one or two fermion loops.

+ 0(a®). (2.6)

™ ™

2.1 NLO Differential Cross Section

The NLO term follows from the interference of the one-loop vacuum-polarization diagrams of class
la (see Figure[I]) with the tree-level amplitude,

do~Nto do.laxtree 2

o C @ s { s%(g+t2+3t)2ZQf‘Re[H5})(s)]
f

+ t%(g + 52 + st 22@? Re[chl)(t)]
f

+ LG DGR [P s 1Y) @)
f

Here chl)(a:) is the renormalized one-loop vacuum-polarization function and the sum over f runs
over the massive fermions, e.g. the electron (f = e), the muon (f = p), the 7 lepton (f = 7). Qg is
the electric-charge quantum number, @y = —1 for leptons.

In this paper we will focus on asymptotic expansions in the high-energy limit. In order to fix our
normalizations explicitly, we reproduce here the exact result for chl)(a:) in dimensional regulariza-

tion. Adding H;I)Ct (z), the counterterm contribution in the on-mass-shell scheme (see the following

discussion in Subsection 23)), to chl)"n(a:), the unrenormalized one-loop vacuum polarization func-



tion, we get

nW (@) = 1" (2) + 0 ), (2.8)
1 (m2\ /1 G
H(l)Ct = ZF|—¢ Z 4 2= 2.10
r @) 3 m3 c T 2e) (2.10)
where € = (4 — D)/2 and D is the number of space-time dimensions. The normalization factor is
2 e\ €
F. = (%) : (2.11)

1 is the ’t Hooft mass unit and ~yg is the Euler-Mascheroni constant. Standard one-loop integrals
appearing in Eq. (2.8)) are defined by

/J/47D D 1
2 pt P D 1
B = . 2.1
o = o [ 219

Note that Master Integrals with 1 lines and an internal scale m were derived in [20,24] setting m = 1.
For the present computation we introduce a scaling by a factor m? 2l and we get

9 €
Ag(my) = F. (%) m} Tilim, (2.14)
f
m2\"
By(z,my) = F, (m—§> SE212m[x]. (2.15)
f

In the small-mass limit, Ay vanishes (the result for T111m can be read in Eq.(4) of [20]), and the
one-loop self—energy@ reads as
1 1
SE212m[x] = — +2+4+ Ly(x) + € [4 - %2 +2Ls(z) + 3 Li(z)] , (2.16)
€
where we introduced the short-hand notation for logarithmic functions (in our conventions the
logarithm has a cut along the negative real axis),

L 1 mj 50 2.17
sy =m( -] s (217)
Finally, neglecting O(m3/z) terms, chl)(a:) reads as
Wy = Fo (m2) f5 8,0 Ly
I/ (z) = 3 (m?) {3 + Ly(z) + € 9 G+ 3Lf(a:) + 2Lf(3:) . (2.18)

Note that the O(e) term in Eq. (2.I8) is not required for the NLO computation, but it will become
relevant at NNLO. Here chl)(a:) will be combined with infrared-divergent graphs showing single

poles in the € plane for e = 0. The exact result for H;l)(a:) is available at [24].

2Here, the argument x of SE212m[x] is one of the relativistic invariants s, ¢, u. This deviates from earlier conventions,
where we denoted by z the dimensionless conformal transform of s,¢,u. This remark applies also to Master Integrals
in the Appendix.
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Figure 2: Classes of Bhabha-scattering two-loop diagrams containing at least one fermion loop. We
use the conventions of Figure[ll Note that class 2a contains three topologically different subclasses.
We refer to [24] for the reproduction of the full set of graphs.

2.2 Outline of the NNLO Computation
At NNLO we have to consider:

e The interference of the two-loop diagrams of classes 2a-2e (see Figure [2) with the tree-level
amplitude;

e The interference of the one-loop vacuum-polarization diagrams of class la with the full set of
graphs of classes la-1c (see Figure [I)).

The complete result can be organized as

doNNLO da.Qixtree do.lax 1i
= E A E . 2.19
749] . dQ . 749] ( )
i=a,...,e i=a,...,c
2—loop xtree 1—loopx1—loop

In order to compute the NNLO differential cross section we use the following reduction strategy:

e The generation of all the diagrams is simple and has been made with the computer-algebra
systems GraphShot [25] and ggraf/DIANA [26-28]. We spin-sum the squared matrix elements
and take the traces over Dirac indices in D dimensions using the computer-algebra system
FORM [29]. The resulting expressions are combinations of algebraic coefficients depending on
s,t,u, me, my and € and two-loop integrals with scalar products containing the loop momenta
in the numerators. An example showing the complexity of the result (two-loop box diagram
of class 2e, see Figure [2) can be found at [24].

e We reduce the loop integrals to a set of Master Integrals by means of the IdSolver implemen-
tation [30] of the Laporta algorithm [31,32]. The complete list of massive Bhabha-scattering
Master Integrals can be found in [20].

Next, we evaluate the Master Integrals:
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Figure 3: Counterterm-dependent Feynman rules relevant for Bhabha scattering for i = 1 (one loop)
and i = 2 (two loops). Note that in the on-mass-shell scheme e?> = 47 at all orders in perturbation
theory.

e Integrals arising from graphs of classes la-1c (Figure[ll), 2a-2c (Figure[2) and 2d-2e (Figure 2]
with electron loops) have been computed exactly through the method of differential equations
in the external kinematic variables and expressed through Harmonic Polylogarithms [33] or
Generalized Harmonic Polylogarithms [34,35]. Here we agree perfectly with the work of [17,
23]. Non-approximated results for the various components of the differential cross section are
collected in a Mathematica [36] file at [24].

e Integrals generated by the diagrams of classes 2d-2e (Figure 2] with heavy-fermion loops) are
computed through a method based on asymptotic expansions of Mellin-Barnes representations.
We derived appropriate Mellin-Barnes representations [37,38] for each Master Integral and
performed an analytic continuation in e from a range where the integral is regular to the origin
of the € plane [4,5]. This is done by an automatic procedure implemented in the package
MB.m [39]. To proceed further, we assume a hierarchy of scales, m? <« m?c < s,t,u, where
f # e. After identifying the leading contributions in the fermion masses (in the same spirit as
in [40]), we express the integrals by series over residua, and the latter are sumed up analytically
in terms of polylogs by means of the package XSUMMER [41]. Asymptotic expansions for the
master integrals with two different masses were given in [42]. They, and also few lacking
expansions of simpler masters needed here have been collected in Appendix [Al We refer for a
detailed discussion to [22], where the technique was employed to derive approximated results
for the massive Bhabha-scattering planar box master integrals. All the mass-expanded masters
may also be found in a Mathematica file at [24].

2.3 Renormalization

In the following we will always deal with ultraviolet-renormalized quantities. After regularizing the
theory using dimensional regularization [43,44], we perform renormalization in the on-mass-shell
scheme. Here we relate all free parameters to physical observables:

— The electric charge coincides with the value of the electromagnetic coupling, as measured in
Thomson scattering, at all orders in perturbation theory;

— The squared fermion masses are identified with the real parts of the poles of the Dyson-
resummed propagators;



— Finally, field-renormalization constants are chosen in order to cancel external wave-function
corrections.

Counterterm-dependent Feynman rules are shown in Figure Bl Note that the presence of infrared
divergencies at NNLO requires to compute one-loop counterterms including O(e) terms.
One-Loop Counterterms

The one-loop counterterms read as

2
m
iz, = e LG () (G 56), 20
Lo s Fe g mey 3 3
57} = 67} = 16W2Qf(mf) " rate(8+356) ], (2.21)
6ZY;; = 06Zjy, (2.22)

where the last equation follows from the U(1) QED Ward identity. In the ultrarelativistic limit, the
one-loop fermion-mass counterterm is not needed, since it is always multiplied by the fermion mass.
Note however that the same counterterm is relevant for the exact computation.

Two-Loop Counterterms

At the two-loop level we get

572, = _% Zf: 0! (%;)2(% + %) (2.23)
0% = 12%14 [i + % — 166 + ;Q?(%Y(i - % )] (2.24)

yee
: 2
terms for f # e. The expression for 627 (as well as the one-loop counterterms of Eqs. (Z.20)-

[222))), instead, is exact, since it follows from the single-scale diagrams of classes 2a-2b of Figure 2
Finally, we observe that the two-loop counterterm with two fermion lines is not required, since the
use of an on-mass-shell renormalization removes external wave-function factors.

The result for §Z3,, is obtained including just fermion-loop diagrams and neglecting O(m /m7)

3 Two-Loop Corrections

In this Section we show our approzrimated results for all the components of the NNLO differen-
tial cross section of Eq. (Z.6). Our short-hand notation for logarithmic functions can be found in
Eq. ZI7). In addition, we define two combinations of the Mandelstam invariants:

vi(z,y;e) = 2* +2y° + 22y — e’ (3.1)
v(z,yie) = (z+y) —e(a® +y° +ay), (3:2)

where z(y) = s,t,u. Note that for e = 0 these functions are proportional to the kinematical factors
appearing in the Born cross section of Eq. (Z3) and the NLO corrections of Eq. (Z7). Moreover, we
introduce a compact notation which will prove useful in discussing box corrections in Subsection [3.3]
and the complete NNLO differential cross section in Section [,

L(Rs) = In (m—§> . (3.3)
my



3.1 Vacuum-Polarization Corrections

The interference of the vacuum-polarization diagrams of classes 2a and 2b with the tree-level am-
plitude can be written as

d0.2i><tree a2 1 ; 1 ;
g = 5 { = vi(s,t;0) A%(s) + o) v1(t,5;0) A% (1)
1 . 2% 2i .
+ = u(s0) [A (s) + A (t)] } i =a,b. (3.4)

Here we introduced the auxiliary functions A%*(x) and A2P(z), which are expressed through the
renormalized one- and two-loop vacuum-polarization functions chl) (z) (see Eq. (ZI8) ) and Hgf) (z),

A%(z) = ZQ‘}Re[H?)(m)], (3.5)
f

@) = Y QL@ Re[r[;?(x) H}?(x)], (3.6)
fi,f2

where the result for Hgf) (z) in the small fermion-mass limit reads as

5 1
() = - 5+t G- 7 Li@). (3.7)

Note that O(e) terms in Eq. (84) coming from the kinematical coefficients of Eq. (8] can be safely

neglected, since both H}l)(a:) and Hgf) (z) are infrared-finite quantities.

3.2 Vertex Corrections

The contribution of reducible (irreducible) vertex corrections to the NNLO differential cross section
can be readily derived from diagrams of classes 2c¢ (2d) in Figure 2]

% = 2%2 { S[n6t0486) + 24856 + 5 w50 480 + ¢ a40]
+ o= [0 (A6) + 430) + 3 (24306 + £ 430
+ 2st (A%}[(s) + A%}[(t))] }, i=c,d. (3.8)

Reducible diagrams

The auxiliary functions A%°(z) and A%(z) are given by the product of the renormalized one-loop
vacuum-polarization function H}l)(m) (expanded in Eq. (218) including O(e) terms) and the renor-

malized one-loop vector and magnetic vertex form factors F\(,l)(:v) and F1\(/11 )(a:),

ar@) = 3 @GRe[FV@P @],  1=V,M, (3.9)
f
The asymptotic expansion of F\(,l)(a:) is given by
F. 1 3 1
1 _te _ i, 9 1o
Ry(w) = - 5 [1 + Le(a:)] L+ 56— T L@) - L@, (3.10)

whereas Fl\(,[1 )(a:) vanishes when we neglect the electron mass, Fl\(,[1 )(a:) = 0. The renormalized one-
loop vertex develops an infrared divergency, which shows up as a single pole in the € plane for € = 0.
Therefore, when computing the cross section, we sum over the spins the squared matrix element
and we evaluate the traces over Dirac indices in D = 4 — 2¢ dimensions. The needed kinematical
structures include O(e) terms (see Eq. (B1)).



Irreducible Diagrams

The renormalized two-loop vertex diagrams of class 2d are free of infrared divergencies. Therefore,
we can neglect O(e) terms in the kinematical coefficients of Eq. (81) appearing in Eq. (8.8), setting
Vo (7, y,5€) = va(z,y;0), for @ = 1,2. The auxiliary functions A3 (z) and A}l(z) contain the
renormalized two-loop vector and magnetic vertex form factors (see [45-47] for a detailed discussion),

A2 (g ZQf [F(2) )], I =V,M. (3.11)

For the case with an electron loop, FI(,? (z), the exact results in terms of Harmonic Polylogarithms,
can be readily expanded in the high-energy limit. For the vector term we get

@ = (3 - 6) 5 (56 + ) b+ B+ i@ e

For F\(,22(:U), f # e, we perform an asymptotic expansion of the Master Integrals arising in the
computation (see Table V in [20]) and we fully agree with the result of [48],

@), 3355 19 1 /265 19
Fyy(r) = 6( 516+ €C2 - 2<3) + 5 <% + <2> L¢(z) + = Li(z) + 36L3( z). (3.13)

Since collinear logarithms are absent, the logarithmic structure of Eqs. (8.12) and (3.I3) is obviously
the same.

3.3 Box Corrections

The contribution of the renormalized two-loop box diagrams of class 2e is given by

do.2e Xtree a2

dQ ~ 2

Here the auxiliary functions can be conveniently expressed through three independent form factors
B{Y (z,y), where i = A, B, C,

1
[ AR5, 1) 4 2 AR5, 1) |. (3.14)

Azee(s gy = 2 Q3Re [Bffff(s,t) + BYy(t,s) + BE)y(u,t) — Bff,)f(u,S)], (3.15)
!

azxe(s ) = F2Y Q3Re [Bg)f(s t) + BO4(t,s) — BYh(u,t) + B (u, s)]. (3.16)
!

Electron Loops

For the case with an electron loop, BI(2e) (z,y), we get exact results in terms of Harmonic Polyloga-
rithms and Generalized Harmonic Polylogarithms. An asymptotic expansion in the limit m? < s,¢,u
leads to

B (x,y) = %;(%2+2m+y)[g+Le(y)]Le(m)+é%{—§(g+20C2)
b 2(F - G) Lo) —2(5 +8G) Lely) — 2 L2(9) + 8Le(x) Lely)
- ng(y)Jr 4L.(x) L2(y) — [6@ + In? (%)] In (1+%) —9 ln(x) L12( i’:)
v (O 22 (e 76) + 2@ -4 (S 4+ 66) L)



% [13L2() = 1612(y) + 34 Lo(2) L(v) | + 2|
1

+ 3Le(w)L§(y)] -2 [6(;2 + In? (%)] ln( +%) —41n (E) Lis (_%)

+ 4Lig (—%)}+%{—2(£ + 114‘2) + B ) - 6(1 +2C2)Le(y)

3\ 3 9
b2 [B@) - 200) + 1@ L)] + 5 @) + 3L@) L) - L)
- [642 + In? (%)] In (1+ %) _2 ln(%) Lis (—%) + 2Lis (—%) } (3.17)
B (x,y) = %% 2—2+2x+y)[g+L(y)]L(m)+%%2{§(—%7—2OC2)
b 4(D 6 ) - 4 (3 +86) L) - [Z L2 - 20 L) Lw)]
— 2[2I3y) - 4L x)Lg(y)]—2[6C2+ln2(%)]1n(1+%)

— 6 (1426) L) + 2 [12@) - 2 B20) +4L@Lw)] + 3 L@

— I3(y) + 3Le(x) L2(y) — [642 + In? (%)] In (1+%

~ 2In (%) Lis (—%) +2Li; (—g) } (3.18)
B = ~23 2 [3 4 L] L@+ 2 (s 40) [3+ L) L)

F DB (Fr06) - 2(F - ) Lo +2(5 +86) Lo

+ 2R - SL) L) + 3 LX) — AL@) LX)

+ [6(2 + In? (g)] In (1+ %) 42 ln(%) Lis (—%) — 2Lis (—%) } (3.19)

Heavy-Fermion Loops

The list of Master Integrals here is given in Table V of [20]). At variance with the electron-loop case,
it is not possible to compute them exactly by means of a basis containing Harmonic Polylogarithms
and Generalized Harmonic Polylogarithms. Therefore, we use the high-energy asymptotic expansion
discussed in Subsection The results, expressed by the logarithms of the fermion masses L(R)

(see Eq. (33)), are:

B[(i)f(g;,y) = %% (%2 + 22 + y) [g — L(Ry) + Le(y)] Le(z)



2
BY)

(z,y)

K

mut

L*(Ry) + [@ —2¢, — %L(Rf)] Le(z) — 2 [— 4 8C — %L(Rf)]Le(y)
(

— 2L(Ry)

+2
13

- — 2L(Ry)

~106 - 26) —2( 2 ~66) LRy + L L2(Ry)

1
3

]Lz(y) +4 [2 - L Rf)] Le(z) Le(y) — 4 [%Li(y)

o+ ()]n(142) 20 (21 (-2)

T 262 25

+3{2(F —9e-46) —4(F - 3G) L&) + T r2(ry)

3 27
121 10

3
10

= - EL(Rf)] Le(z) — 2 [3 + 126 — 2L(Rf)] Le(y)

|22 - [ 5 - 208 ] B20) +2[ 5~ 2L(Rp) | Le(0) Lely)

ng(;ﬂ) + 6 Lo(z) L2 (y) — 2L3(y) _2[6@ + In? (%)] In (1+%)

i () L (=) + 4t (=) + 5 {2(57 -7 - 20)

4

2

25

(3 - 3(2)L(Rf) +

7
6

L*(Ry) — %LB(Rf) + [% - ?L(R,«)]Le(ar)

25

(64126 3L(RN)| L) + [2 - LR E20) - [ 2 - L(Bp)| 22(0)

23~ LR L @)L ) + 513() — L) + BLo(n) 12 (0)

(66 + I’ (%)] In (1+ %) —2In (%) Lis (—g) +2Li (—g) } (3.20)

%; (2?2 + 2z + y) [— — L(Ry) + L (y)]L (z)

;%2{% —20( — 45— (59—0 - IQCQ)L(Rf) + gLQ(Rf) - éLS(Rf)

[% —2( — ?L(Rf)] Le(z) + [—§ - 16¢ + L(Rf)] Le(y)

(2 —2nr)| 226) + 2[5 — 20(R) ] Lelo) Lely) — 4] o5 1)

Le(e) 2 | = [66 + n® (%)]m (1+ %) —2n (%) Lis (—%) + 2Li; (—%)}
136 13 10

2 [64126 30BN L) + 5 |

- DLR)| L) - |7 + 126 - 2L(R) | L)

3

2@ - [5 - L@ 82+ [ 3 - 20R) ] L) L)

(@ I2) - 1) - [66 41 (L) ] m (14 L)

() 5 () =2 ()} 2 { (-

7 65 5

) = (2 - 30) LRy + IRy~ SL2(Ry) + [~ SL(Rp)] L)

6 9
- L)) - 3 [B - 1)) B

213 216

10



D LR)| L@ L) + £ L) ~ 3 I0) + SLe@ ()

e iw(O]n ) w@)un(D n (D) e

BE (xy) = -

)

+

;%2 [g — L(Ry) + Le(y)] Le(z) + ; (m+y) [g — L(Ry) + Le(y)] Le(z)

2 ¢ 131 25 7 s L g
_{_WHOCﬁQCH (3 —6C2)L(Rf) — 3L (By) + 5L (Ry)
1

~G - SL(R)) L@) + (5 + 86— 5L(Ry)) L(y)
23

0
(2~ LBY) L) Lew) + (53~ LR) L2(w) + S L3) — 2L (@) E2()

2
+ [342 + % In? (%)] In (1+ %) +1n (%) Lis (—%) ~ Li (—%) } (3.22)

In order to study the numerical effects of massive leptons in two-loop box diagrams we consider the
interference of the box diagram of class 2e (see Figure[2)) with the s-channel tree-level amplitude,

2
(0]
Buej = 5Re [Bff}(s, t)], (3.23)

where B4 s can be found in Eq. (BI7) for electron loops, and in Eq. (820) for f # e loops. In
Table I (Table ) we show numerical values for the finite part of Bae, s at values of /s typical for
meson factories, Giga-Z, ILC, and at two selected small and wide scattering angles, 8 = 3° (6 = 90°).

| Boey [nb] / /5 [GeV] | 10 |91 500 |
e [see Eq. B17)] 188758 | 5200.08 | 284.711
1 [see Bq. B20)] 1635.62 | 1686.88 | 130.579
T« 39.5554

Table 1: Numerical values for the finite part of Bae  of Eq. (8.23) in nanobarns at a scattering angle
0 = 3°. The first two entries for the 7 lepton are not shown since here the high-energy approximation
in not justified (the same consideration applies to the top quark).

| Boey [nb] / V5 [GeV]| 10 |01 | 500
e [see Eq. BI7)] 143.162 | 3.23102 | 0.160582
1t [see Bq. G20)] 61.3875 | 1.79381 | 0.0995184
R 10.0105 | 0.935319 | 0.0639576
t -0.00256757

Table 2: Numerical values for the finite part of By s of Eq. (8:23) in nanobarns at a scattering
angle # = 90°. The first two entries for the top quark are not shown since here the high-energy
approximation in not justified.

For comparison we show in Figure [ the real part of the vertex function, see Eq. (313)).
We see that the contributions from the box diagrams with heavier fermions are not strongly
suppressed, but are instead of about the same size as the boxes with electron loop. This is different
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| Vs[GeV]| 10 o1 500

e -124.237 | -254.293 | -400.574
Iz -4.8036 | -29.1057 | -70.1032
T -2.08719 | -13.4901

Table 3: The real part for the vertex form factor, see Eqs. (B.12) and (313).

to the self-energy and vertex corrections and may be traced back to the logarithmic structure of the
contributions Eqs. [320)-B.22), where terms of the order L3(z) appear. Further, in Eq. (A7) we
may see that this Master Integral has a dependence on L3(x), in contrast to the vertex and self-energy
masters with heavy fermion loops. That originates in an additional collinear mass singularity from
the external legs of this diagram diagram. One may control this easily by evaluating the singularity
structure of the corresponding massless box diagram where only a scale M due to the internal loop
exists, and see there some 1/e? terms which are absent in the corresponding SE and vertex diagrams.
This leads finally to the fact that the two-loop corrections from heavier fermions are not numerically
suppressed compared to the electron loop contributions.

3.4 Products of One-Loop Corrections

Finally, we consider the simpler components generated by the interference of one-loop diagrams
among themselves. We start with the interference of diagrams of class 1a,

do.lax la a2

1 1
= S Sl B0 AT s, 8) 4w (t,50) A1 )

+$ va (s, t;0) [Ala“a(s,t) + AlaX1a(t,s)] } (3.24)

Here the auxiliary function A2*!2(z, y) contains the product of the renormalized one-loop vacuum-
polarization function H;l)(a:) (see Eq. (2.I])) with its complex conjugate,

Alaxla(l,,y) = Z Q?ﬁ Qi chll)(l.) [Hgé)(y)]* (325)
fi,f2

The interference of diagrams of class la with those of class 1b gives

da;‘;:lb = 2%2 { s%[m(s,t;e) A{/a“b(s,s) + 52 Allv?“b(s,s)]
+ %2 [vl(t,g;e) A{/axlb(t,t) + 2 Allv?“b(t,t)]
+ é [vg(s,t;e) (A{}"le(s,t) + A{,a“b(t,s))
+ g (52 A b (s 1) + 12 Allv?“b(t’s))
+ 25t (A1) + AP | ] (3.26)

The auxiliary function A'2*®(z y) is given by the product of F\(,l) (z) and F1\(/11 ) (x), the renormalized
one-loop vector (see Eq. (BI0)) and magnetic (vanishing in the high-energy limit) form factors for
the QED vertex, and the complex-conjugate renormalized one-loop vacuum-polarization function

Iy (x) (sce Eq. @IR)),

Ay = Y @re{ V@) [MPw)] ), 1=v,M (3.27)
f

12



Finally, the interference of diagrams of class 1la with those of class 1c gives

do.laxlc B a2
aQ E[

Here the auxiliary functions AJ**!¢(s,#) and A3**!¢(s,t) take the form

1 1
— AP (s, 1) + T AP, ) | (3.28)

AlaXie(q 1y — F, Z Q% Re {[Bg)(S,t) + B (t,s) + BV (u,t) — B]gl)(u,S)] [H?)(S)]*},
f

A(s0) =Y @ Re {[ B (s.) + BO(1s) — BY (w,) + BO(w,9)] [MP0)] )
f

(3.29)
apte(s = Y Q3Re {[BU(s,0) + BY (ts) + BY (ut) - BY (w9)] [V (5)] '},
f
(3.30)
At ) = B Q3Re {[BY(s,0) + BU(s) - B 1) + BY(w.9)] [mP0)] '}
f
(3.31)
H}l)(m) is given in Eq. (Z.I8)), and the new functions, in the small mass limit, read as
B (ry) = -- (”““—2 + 23 +y) Le(2) + (166G + 4Lo(x) +2L2(y)
e\ y Y
— 4L() Le(y) | +22[10G + Le(@) + Le(y) — L3(x) + L2(y)
— 2L L) | 4y [10G + 2L(@) + 2Lol) — L2(a) + L2()
— 2L.(@) Le(y) ], (3.32)
(1) 4 1‘2 .1‘2 2
Bwy) = — (25 420+ y) L) +4°- [8G + L2y) ~2Le(@) L) |

+ 20106~ Le(@) + Lely) - L3 (@) + L2(y) - 2Le(x) Lo(y) |
+ Y [10G+2Le(0) + 2Lely) — L2(@) + L2y) = 2Le(@) Le(y) |, (333)

2 2
BO@) = (L@ 425 [~8G - 2L@) - 120) + 2L) L) |

— 4(z + y)Le(x). (3.34)

For the computation of the non-fermionic corrections these functions are needed up to first order
in €, since they are combined with the real emission. However, this higher-order expansion is not
relevant here.

4 The Net Fermionic NNLO Differential Cross Section

In this Section we use the results of Section Bl and derive an explicit expression for the NNLO
differential cross section of Eq. (ZI9).
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Note that the full set of two-loop fermionic virtual corrections to Bhabha scattering represents
an infrared-divergent quantity. In order to obtain a finite quantity, we take into account the real
emission of soft photonsﬁ from the external legs of one-loop fermionic diagrams (class la, Figure[I)).
The exact result is available in the literature, see e.g. Eq. (25) and Appendix A in [18]. Here we
show the high-energy approximation relevant for our computation. We consider events involving a
single soft photon carrying energy w in the final state,

“(p1) + et (p2) = e (p3) + et (pa) +7(k), (4.1)

and compute one-loop purely-fermionic corrections. Obviously, these real corrections factorize and
their structure is completely equivalent to the tree-level ones. In complete analogy with Eq. (2.0)
we write

doy,  [ay dof® ay? do3*t° 5
0= )+ (5) g e, (42)
where
dot° a2 1 1 1
dé = - [?vl(s,t;e) + 2—t2v1(t,s €) + E'UQ(S t;€) F(w,s,t,mg), (4.3)
dgNEO a1
d;) = ?{8—2v1(5,t;e)ZQ?Re[H?)(s)]
f

+$ v2(s,t;€) ; Q?c Re [chl)(.s) + chl)(t)] }F(w,s,t,mg). (4.4)

chl)(:n) can be read in Eq. (ZI8) and, at variance with Eqs. (23)-(21), the kinematical factors
introduced in Eq. B need to be expanded up to O(e), since the real-emission factor shows an

infrared divergency,
() () x)
+ In? (%) +21n (%) 21n <%> +1In (—é) —In (1 + é)]
+ 4ln (%) [in (-é) I (1 + é) -1
C 4G+ In? ({) _ n2 (1 + 5)
o, <—5> + oL, < f) | (45)

Summing the virtual contributions of Eq. (Z19) to the real-photon emission of Eq. (£4) we write
the NNLO fermionic corrections to Bhabha scattering through the sum of electron-loop contributions
(do™N©¢) and components arising from heavier fermion loops,

F(OJ, S’ t) mz)

doNNLo doNto d NNLO,e o NNLO, £2 o NNLO, £t g NNLO, 2f

dQ + d}) - +2Qf +ZQf + Z Qlef27(4.6)
f#e f#e f1,fae

3The energy w carried by a soft photon in the final state is small with respect to the center-of-mass energy F
introduced in Eq. ([22]).
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The double summation over the fermion species arises from the loop-by-loop terms of Eqs. (B.6)
and (324). Here we do not include the case f; = fo = e, which is incorporated in de™~“°-¢. Note
also the term proportional to Q‘Jﬁ, coming from Eq. (B.3]). The result for electron loops can be found

in Eq. (46) of [18]. For heavier fermion loops we introduce = —t/s and get:
daN;;lo,f‘* _ Z_{ (1-= + z? [m (%) +1In(Ry) +4¢; — g] + 111(37)(:6—12 - % n g - g) } (4.7)
W - 0‘?{ (1-z ” [1n2 (7;2> +1n(Ry,) In(Ry,) + In <£2> (1n(Rfl) +1In(Ry,) — ?)
- 3oin, +mRf»—zn+§1n2<w><;2—;é+£—§>+<—;<§—s+4w—2w2>
ottty )~ 9 ()] s - 255}
7d“N;;°’f2 = O‘; {oree 4 oot <%> } (4.9)
ool = QigyﬂQ—ﬂm<£9+m%mﬂ+W(E9[? In (Ry) +In (1~ 2) ~ In (z)]
+ In (%) [—51—? + % In(Ry) — In? (Ry) — 2In (Ry) (ln () —In(1— x)) — 8Lis (w)]
+ 417—(?85 - 41—?1 n(Ry) + % In® (Ry) — In? (Ry) (ln (z) —In (1 — g;)) — 81In (Ry) Lis ()

40 _ . 4 11 23 162 9 1 17
v @ en () [o( g gty -5 Ee) 16 (et s

- Z—%+§w2)+ln (l—m)(—%—ké—;—g—k%w—;:ﬁ)+ln(w)ln(1—w)(3%
+ -In*(1-2) —3%+%—§+x 2)+ln()1n(1—w)(—3%+3%—§+w
2 7 55 46 14 4 10,

T 1 9 1

- ?)-i-gln(m)ln (1—w)(—P - ——
1 17 )

+ W(By) (-5 -+ -3t

2 T 9
+E—4+§)+ln (CU)[
22
322 12z 4 12 5”3)
2
3
5

82 9z 3 9° 9"
10 29 10 >
922 Oz 9

10 37 1 2

022 T8z T2 9"

21— 9.2
+1In" (1 a:)[ 5 g%

2 11 5 11

+ ln(Rf)(—@+a—§+Fa?— a:2) +1n(a:)ln(1—a:)[—

+ 2—9037 +1In (Ry) (3i2 —%—%+3x—§x2)]+ln(a?) [—%+%—%+?—§:x
- ggp +L12()(—wi‘2+;2 7+31‘—§x2)+ln(Rﬂ(%—£+%—?—;x+%x2)
b G( gty g gt emaen g e Y e
@) (gt g g g vl g g g )

+ Li3($)(;%—3%+3—§x+§x2)_}_;SLQ(:U)(—%—}—%—w-}-m?)
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1— 2)?
UQNNLO’f2 = 27( m+w) {ln2 <7;2> +In

4 11

+3CU+2

(%) [—g +In(Ry) —In(1—2)

23

3

3

)

s 7 5 2, 9 2 1 1
+ |:1H<—g>l($)(3? 32 —§£U+§ZU)+1H (ZE)(@—E‘Fl—gCﬂ
1 1 1 16 29 23 10 ,
In order to have compact results we used
In?(1 — zy)

Snp (y) = e

In Table [ (Table [) we show numerical values for the NNLO corrections to the differential cross
section for a scattering angle § = 3° (6 = 90°). In both tables we set w = E/10. Finally, in Figure @

(_1)n+p—1 /1 " lnnfl(w)
0

T

we plot the ratio of the two-loop fermionic corrections to the tree-level cross section,

an 2 doNNLO +d0.’1;ILO
R(\/E) - (;) do™°
for v/s = 10 GeV and /s = 500 GeV.
| do / dQ [nb] | /5 [GeV] | 10 91 500

LO QED [Eq. @7)] | 440873 | 5323.91 | 176.349
LO Zfitter 49, 50] 440875 | 53315 | 176.283
NNLO (e) [Eq. @6)] | -1397.35 | -35.8374 | -1.88151
NNLO (e + p) “ -1394.74 | -43.1888 | -2.41643
NNLO (e + p +7) * -2.55179
NNLO photonic ~ [14,16] | 9564.09 | 251.661 | 12.7943

)

] +In(z)In (Ry)

)

(4.12)

(4.13)

Table 4: Numerical values for the NNLO corrections to the differential cross section respect to the
solid angle. Results are expressed in nanobarns for a scattering angle § = 3°. Empty entries are
related to cases where the high-energy approximation cannot be applied.

It is clear from the Tables, that although there is no decoupling of the heavier fermions (as
indeed there shouldn’t, since the typical scale of the process is large compared to all the masses),
the electron loop contributions dominate in the fermionic part and the latter is still substantially

smaller than the pure photonic corrections.

5 Summary

In this article, we completed the computation of the virtual two-loop QED fermionic corrections
to Bhabha scattering. Based on the kinematics of the targeted phenomenological applications, we

considered the limit m? < m} < s,t, u.
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do / dQ [nb] | /5 [GeV] | 10 91 500

LO QED [Eq. @3)] | 0.466409 | 0.00563228 0.000186564
LO Zfitter [49,50] 0.468499 | 0.127292 0.0000854731
NNLO (e) [Eq. @B)] | -0.00453987 | -0.0000919387 | -4.28105 - 10~°
NNLO (e + p) “ -0.00570942 | -0.000122796 | -5.90469 - 10~6
NNLO (e + p +71) * -0.00586082 | -0.000135449 | -6.7059 - 10~°
NNLO (e + p +7+t) ¢ -6.6927 - 10~°
NNLO photonic [14,16] 0.0358755 | 0.000655126 | 0.0000284063

Table 5: Numerical values for the NNLO corrections to the differential cross section respect to the
solid angle. Results are expressed in nanobarns for a scattering angle § = 90°. Empty entries are
related to cases where the high-energy approximation cannot be applied.

0 : T : T : T : 0 : T : T : T
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14 i .
—0.02 |
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7003 n 1 n 1 n 1 n 701 n 1 n 1 n 1

0 50 100 150 0 50 100 150

0[°] 0[°]

Figure 4: Ratio of the fermionic NNLO corrections to the differential cross section respect to the
tree-level result for /s = 10 GeV and /s = 500 GeV. A solid line represents the electron-loop
contributions, a dotted one the sum of electron- and muon-loop ones, and a dashed one includes also
T leptons.

The fermionic double box contributions with two different mass scales have been derived for the
first time here. Their numerical importance is comparable to the two-loop self-energies and vertices.
We note, however, a qualitative difference. Due to the structure of the collinear singularities of the
graphs, the contributions of the heavier fermions are not suppressed.

A numerical estimation of differential cross sections shows that the net fermionic two-loop effects
may be neglected for applications at LEP 1 and LEP 2, but have to be taken into account for
precision calculations when a level of 10~* has to be reached, as is anticipated for the Giga-Z option
of the ILC project.

Completing the NNLO program for Bhabha scattering requires still several ingredients. First, let
us mention the contributions from the five light quark flavors. Here, an approach based on dispersion
relations d la [51] should be suitable. On the other hand, the heavy top quark might be considered
decoupling in a large part of the interesting kinematical regions. Furthermore, an implementation
of the loop-by-loop corrections with pentagon diagrams has to be done.

Finally, light fermionic pair emission diagrams need to be considered. As known from the form-
factor case, they are responsible for the cancellation of the leading part of the logarithmic sensitivity
on the masses.

Exact and approximated results are made publicly available at [24]. The combination of our re-
sult with the photonic two-loop corrections of [16] and with electron loop corrections of [17,23]
proves well-suited for phenomenogical purposes, e.g. a precise luminosity determination at a future
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Figure 5: Same as Figure [ including the photonic contributions of [2,14,16] (dash-dotted lines).
International Linear Collider.
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Note added

We would like to thank T. Becher and K. Melnikov for drawing our attention to a problem with a first
version of our result, which lead us to discover an incorrectly expanded integral. After correction,
Eq. 4.9 agrees with the result published in the meantime in [53].

A Mass-Expanded Master Integrals

The list of Master Integrals required by our computation can already be found in Table V of [20].
The eight most difficult masters, those involving two different mass scales, have been derived in [42].
Because they are a substantial part of the present study we reproduce them here:

SE312Mim[on shell] = M? m*‘*f{R[Qi2 + f -3t %2 + L(R) - %L2(R)]
45 Cg 7
+ R [1—8 - 5L(R)] 6[3(16 + c2 — <L(R) + L*(R)
1 3 8
- 5LS(R)) + R2(—Z + S L(R) - 5L?(R))] 3 (A1)
SE312Mimd [on shell] = m‘4€{2—12 + % [1 + 2L (R)] + % (1+&G)+L(R)+L*(R)
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V412M1im[x]

V412M1imd [x]

V412M2m[x]

V412M2md [x]

B512M2m[x,y]

B512M2md [x,y]

+

+

[} (343G —2G) + (1 4+ G) L(R) + L* (B) + 2L° (R)]

6 3
R[—Z + %L(R) +e <g ~L(R) + ZL%R))]
R [—3—1 + %L(R) + e(—% + 1—18L(R) + iL%R))] 3 (A.2)

m—46{2_12 + % + %[19 -3¢ — L?n(x)]
2

MT (<2446 — 463 — 2L (2) + 2Lnr(z) — 4G Lar(a)

2L (@) Lar(2) — L4 () = L) Loe () + L3 0)] }, (4.3)
m74e

= {2_12 + % [1 n %Lm(w)] +2— (o + L (z) + i Ly, (x)
M7 E — Lar() = 1+3G + Lun(x) + Ly (@)
Lin(z)Ly(z) — %wa(a:)] } (A.4)
mf o+ L[4 Ln(@)] + 519+ G) 45 L) + L@}, (45)
m6—x4€ [12<3 _ 6<2LM(£IZ) _ L?VI(ZU)], (A6)

—4e
x {elﬂzm(w) + %(—@ + 2L () + %Lfn(m) - Lm(w)Lm(y))

2> — 25 + AL () + L (&) + 3 L) — 4G Ln(y)

DL () Lo (y) + Lun (#) L2 () — ~L3, (1)

=13,
(3G + 312(0) — Ln()Lnly) + 52 (0)) 0 (1+ )

(o) L)t (-2) 15 ()} an
O @ 0) + Ln@ L] - 26 + Gln(a) + 4Ly
2L (£) (1) + 5 B (9) ~ 2 L(R) + 2@ L) L(R) — 51 (R)
(3@ + %Lfn(m) — Lon(@) L (y) + %Lfn(y)) In (1 + %)

(Em@ = Ln()Liz (-2) — 1is (-2} }. (A8)

We list also the other ezpanded masters, including the correct normalizations. Note that, compared
to the conventions employed in [20] and in Eq. (Z18)), all integrals are rescaled by a factor mL(P—20),
where L is the number of loops, D = 4 — 2¢ and [ is the number of internal lines. Expansions are
performed up to the order required by our computation. For example, we include O(m?) terms in
SE212m[x] (see Eq. (AI0)) since the reduction procedure generates coefficients containing 1/m?.
The same consideration applies to O(e) terms, which are included as long as the reduction brings
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inverse powers of € in the coefficient functions. Since in the following no ambiguities arise, in we
drop the subscript f and we set L(z) = In(—m?/z),

Tilim = (m?)!¢ E +1+¢ (1+ C—;) +e2(1+ %2 - C—?f)] (A.9)
SE212m[x] = m*‘“{% + 2+ L(z) + 2%2 [1 - L(m)] + 6[4 - C—; + 2L(x)

2
n %L2(a:)+m7(2+2g2—L2(a:))]+e2[8—C2—§C3
1 ) 1 . m?
+ 4L(m)—§§2L(a:)+L(a:)+—L(m)+7(2+C2

6
+ 4G+ GL(@) — %LB(Q:))]}, (A.10)
_ o2efl _ & 1.0
SE210m[x] = m {€+2+L(a:)+e[4 5 +2L(m)+2L(a:)]
+ e3-6 - ggg + 4I(z) - %CgL(a:) + L*(x) + %LS(Q:)]}, (A.11)
—2€
V3lim[x] = mw {4(2 + %L2(a:) - e[—5C3 + G L(z) - %LB(I‘)] } (A.12)
SE31im[on shell]l = (m?)'7%* [2%2 + 4% + % + g@) + e(—% + 24—5@ + 1—31C3)
949 55 55 303
SE312m[x] = (m?)l—%{el2 + %(3 - #) +54 G —L*(x) — % [% + %L(m)]
+ € [3 + 3¢ + ?gg —4L(z) + 2 L(x) — 3L%(z) — L3(x)
x (115 G 13 1
— W(TG_Z+ZL(33)+§L2($))]}’ (A14)
2
SE312md[x] = m_46{2—12 + i - % + C—; — L(x) — %LQ(CU) - m7 [—2 + LQ(CU)]
+ € [—% + ;CQ + §C3 —5L(x) + (L(x) — 207 (x) — %L3(w)
2
- (=66 - 4L) 26 L) + @) + I'@)]}. (A.15)

Finally, the mass expanded one-loop box Master Integral B412m[x,y] can be collected from Eqs.(4.70)-
(4.75) of [52]:
—2e€

Balom[x,y] = {2 [L(y) “In (g)] +2L%(y) — 2L(y) In (%) + e[4<3 — 96 L(y)

zy le
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+ §L3(y) +5CIn (g) — I%(y)In (g) + %1113 <§> —6(yIn (1 + 5)
+ 2 (-%) In G) In (1 + g) ~In? (g) In (1 + %)
+ 2 (g) Lis (1 + g) + 2Lis <—§>] } (A.16)

References

[1] D. Bardin, W. Hollik, and T. Riemann, Z. Phys. C49 (1991) 485-490.

[2] A. Arbuzov, E. Kuraev, and B. Shaikhatdenov, Mod. Phys. Lett. A13 (1998) 2305-2316,
hep-ph/9806215.

3] Z. Bern, L. Dixon, and A. Ghinculov, Phys. Rev. D63 (2001) 053007, hep-ph/0010075.
4] V. Smirnov, Phys. Lett. B460 (1999) 397-404, hep-ph/9905323.
5] J. Tausk, Phys. Lett. B469 (1999) 225-234, hep-ph/9909506.

[

[

[

[6] F. Berends and R. Kleiss, Nucl. Phys. B228 (1983) 537.

[7] F. Berends, R. Kleiss, and W. Hollik, Nucl. Phys. B304 (1988) 712.
[

8] S. Jadach, W. Placzek, E. Richter-Was, B. Ward, and Z. Was, Comput. Phys. Commun. 102
(1997) 229-251.

[9] S. Jadach, W. Placzek, and B. Ward, Phys. Lett. B390 (1997) 298-308, hep-ph/9608412.

[10] A. Arbuzov, G. Fedotovich, E. Kuraev, N. Merenkov, V. Rushai, and L. Trentadue, JHEP 10
(1997) 001, hep-ph/9702262.

[11] A. Arbuzov, G. Fedotovich, F. Ignatov, E. Kuraev, and A. Sibidanov, Fur. Phys. J. C46 (2006)
689-703, hep-ph/0504233.

[12] C. Carloni Calame, C. Lunardini, G. Montagna, O. Nicrosini, and F. Piccinini, Nucl. Phys.
B584 (2000) 459-479, hep-ph/0003268.

[13] G. Balossini, C. Carloni Calame, G. Montagna, O. Nicrosini, and F. Piccinini, Nucl. Phys.
B758 (2006) 227-253, hep-ph/0607181!

14] N. Glover, B. Tausk, and J. van der Bij, Phys. Lett. B516 (2001) 33—-38, hep-ph/0106052.

[

[15] A. Penin, Phys. Rev. Lett. 95 (2005) 010408, hep-ph /0501120
[16] A. Penin, Nucl. Phys. B734 (2006) 185-202, hep-ph /0508127,
[

17] R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi, and J. van der Bij, Nucl. Phys. B701
(2004) 121-179, hep-ph/0405275.

[18] R. Bonciani, A. Ferroglia, P. Mastrolia, E. Remiddi, and J. van der Bij, Nucl. Phys. B716
(2005) 280-302, hep-ph/0411321.

[19] R. Bonciani and A. Ferroglia, Phys. Rev. D72 (2005) 056004, hep-ph/0507047.
[20] M. Czakon, J. Gluza, and T. Riemann, Phys. Rev. D71 (2005) 073009, hep-ph/0412164.

21


http://www.arXiv.org/abs/hep-ph/9806215
http://www.arXiv.org/abs/hep-ph/0010075
http://www.arXiv.org/abs/hep-ph/9905323
http://www.arXiv.org/abs/hep-ph/9909506
http://www.arXiv.org/abs/hep-ph/9608412
http://arXiv.org/abs/hep-ph/9702262
http://www.arXiv.org/abs/hep-ph/0504233
http://arXiv.org/abs/hep-ph/0003268
http://www.arXiv.org/abs/hep-ph/0607181
http://www.arXiv.org/abs/hep-ph/0106052
http://www.arXiv.org/abs/hep-ph/0501120
http://www.arXiv.org/abs/hep-ph/0508127
http://www.arXiv.org/abs/hep-ph/0405275
http://www.arXiv.org/abs/hep-ph/0411321
http://www.arXiv.org/abs/hep-ph/0507047
http://www.arXiv.org/abs/hep-ph/0412164

[21] M. Czakon, J. Gluza, K. Kajda, and T. Riemann, Nucl. Phys. Proc. Suppl. 157 (2006) 16-20,
hep-ph/0602102.

[22] M. Czakon, J. Gluza, and T. Riemann, Nucl. Phys. B751 (2006) 1-17, hep-ph/0604101.

[23] R. Bonciani and A. Ferroglia, Two-Loop QED Bhabha Scattering at
http://pheno.physik.uni-freiburg.de/~bhabha/.

[24] S. Actis, M. Czakon, J. Gluza and T. Riemann, Two-Loop QED Bhabha Scattering at
http://wwu-zeuthen.desy.de/theory/research/bhabha/bhabha.html/.

[25] S. Actis, A. Ferroglia, G. Passarino, M. Passera, C. Sturm and S. Uccirati, GraphShot, a FORM
package for automatic generation and manipulation of one and two loop Feynman diagrams,
unpublished.

26] P. Nogueira, J. Comput. Phys. 105 (1993) 279.

27] P. Nogueira, An introduction to QGRAF 2.0, ftp://gtae2.ist.utl.pt/pub/qgraf/.

28] M. Tentyukov and J. Fleischer, Comput. Phys. Commun. 132 (2000) 124-141, hep-ph/9904258.
29] J. Vermaseren, New Features of FORM, math-ph/0010025.

30] M. Czakon, DiaGen/IdSolver, unpublished.

31] S. Laporta and E. Remiddi, Phys. Lett. B379 (1996) 283-291, hep-ph/9602417.

32] S. Laporta, Int. J. Mod. Phys. A15 (2000) 5087-5159, hep-ph/0102033.

33] E. Remiddi and J. Vermaseren, Int. J. Mod. Phys. A15 (2000) 725-754, hep-ph/9905237.

[
[
[
[
[
[
[
[
[34] T. Gehrmann and E. Remiddi, Nucl. Phys. B580 (2000) 485-518, hep-ph/9912329.
[35] T. Gehrmann and E. Remiddi, Nucl. Phys. B601 (2001) 248-286, hep-ph/0008287.

[36] S. Wolfram, The Mathematica book, Wolfram media/Cambridge University Press, 2003.
[37] N. Usyukina, Teor. Mat. Fiz. 22 (1975) 300-306.

[38] E. Boos and A. Davydychev, Theor. Math. Phys. 89 (1991) 1052-1063.

[39] M. Czakon, Comput. Phys. Commun. 175 (2006) 559-571, hep-ph/0511200.

[40] M. Roth and A. Denner, Nucl. Phys. B479 (1996) 495-514, hep-ph/9605420.

[41] S. Moch and P. Uwer, Comput. Phys. Commun. 174 (2006) 759-770, math-ph/0508008.
[

42] S. Actis, M. Czakon, J. Gluza, and T. Riemann, Nucl. Phys. Proc. Suppl. 160 (2006) 91-100,
hep-ph /0609051,

[43] G.’t Hooft and M. Veltman, Nucl. Phys. B44 (1972) 189-213.

[44] C. Bollini and J. Giambiagi, Nuovo Cim. B12 (1972) 20-25.

[45] R. Bonciani, P. Mastrolia, and E. Remiddi, Nucl. Phys. B661 (2003) 289-343, hep-ph/0301170.
[46] P. Mastrolia and E. Remiddi, Nucl. Phys. B664 (2003) 341-356, hep-ph/0302162.

[47] R. Bonciani, P. Mastrolia, and E. Remiddi, Nucl. Phys. B676 (2004) 399-452, hep-ph/0307295.
[48] G. Burgers, Phys. Lett. B164 (1985) 167.

22


http://www.arXiv.org/abs/hep-ph/0602102
http://www.arXiv.org/abs/hep-ph/0604101
ftp://gtae2.ist.utl.pt/pub/qgraf/
http://arXiv.org/abs/hep-ph/9904258
http://arxiv.org/abs/math-ph/0010025
http://www.arXiv.org/abs/hep-ph/9602417
http://arXiv.org/abs/hep-ph/0102033
http://www.arXiv.org/abs/hep-ph/9905237
http://arXiv.org/abs/hep-ph/9912329
http://www.arXiv.org/abs/hep-ph/0008287
http://www.arXiv.org/abs/hep-ph/0511200
http://www.arXiv.org/abs/hep-ph/9605420
http://www.arXiv.org/abs/math-ph/0508008
http://www.arXiv.org/abs/hep-ph/0609051
http://www.arXiv.org/abs/hep-ph/0301170
http://www.arXiv.org/abs/hep-ph/0302162
http://www.arXiv.org/abs/hep-ph/0307295

[49] D. Bardin, P. Christova, M. Jack, L. Kalinovskaya, A. Olchevski, S. Riemann, and T. Riemann,
Comput. Phys. Commun. 133 (2001) 229-395, hep-ph/9908433.

[50] A. Arbuzov, M. Awramik, M. Czakon, A. Freitas, M. Grunewald, K. Monig, S. Riemann, and
T. Riemann, Comput. Phys. Commun. 174 (2006) 728-758, hep-ph/0507146.

[51] B. Kniehl, M. Krawczyk, J. Kuhn, and R. Stuart, Phys. Lett. B209 (1988) 337.

[52] J. Fleischer, J. Gluza, A. Lorca, and T. Riemann, Fur. J. Phys. 48 (2006) 35-52,
hep-ph/0606210.

[53] T. Becher and K. Melnikov, arXiv:0704.3582 [hep-ph].

23


http://www.arXiv.org/abs/hep-ph/9908433
http://www.arXiv.org/abs/hep-ph/0507146
http://www.arXiv.org/abs/hep-ph/0606210

	Introduction
	Expansion of the Cross Section
	NLO Differential Cross Section
	Outline of the NNLO Computation
	Renormalization

	Two-Loop Corrections
	Vacuum-Polarization Corrections
	Vertex Corrections
	Box Corrections
	Products of One-Loop Corrections

	The Net Fermionic NNLO Differential Cross Section
	Summary
	Mass-Expanded Master Integrals

