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M. DiehlDeutshes Elektronen-Synhroton DESY, 22603 Hamburg, GermanyAbstrat: We provide a framework to analyze the eletroprodution proess ep ! ep�with a polarized target, writing the angular distribution of the � deay produts in termsof spin density matrix elements that parameterize the hadroni subproess �p ! �p.Using the heliity basis for both photon and meson, we �nd a representation in whih theexpressions for a polarized and unpolarized target are related by simple substitution rules.Keywords: Lepton-Nuleon Sattering, Spin and Polarization E�ets.
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1. IntrodutionExlusive vetor meson prodution has long played an important role in studying thestrong interation. The seminal work [1, 2℄ has renewed interest in this proess, showingthat in Bjorken kinematis it provides aess to generalized parton distributions and thusto a wealth of information on the struture of the proton. While most theoretial andexperimental studies so far are for an unpolarized proton, the partiular interest of targetpolarization beame lear when it was pointed out that meson prodution on a transverselypolarized target is sensitive to the nuleon heliity-ip distribution E [3, 4℄. This distri-bution o�ers unique views on the orbital angular momentum arried by partons in theproton [5, 6℄ and on the orrelation between polarization and the spatial distribution ofpartons [7℄. Whereas the orresponding polarization asymmetry in deeply virtual Comptonsattering is under better theoretial ontrol, vetor meson prodution has the advantageof a greater sensitivity to the distribution of gluons (whih in Compton sattering onlyenters at next-to-leading order in �s). This holds not only in the high-energy regime buteven in a wide range of �xed-target kinematis [8, 9, 10℄, where polarization measurementsare feasible at existing or planned experimental failities.A di�erent motivation to study polarized exlusive � prodution is that this hannelplays a rather prominent role in semi-inlusive pion prodution [11, 12, 9℄, whih has beomea privileged tool to study a variety of spin e�ets, see e.g. [13℄. It is important to identify{ 1 {



kinematial regions where the exlusive hannel ep ! ep� ! ep�+�� dominates semi-inlusive observables, beause in these regions great are must be taken when interpretingthe data in terms of semi-inlusive fatorization.Even with an unpolarized target, the spin struture of the proess ep! ep�! ep�+��is very rih, beause the angular distribution of the �nal state ontains information on theheliities of the exhanged virtual photon and of the � meson, as was worked out in thelassial analysis of Shilling and Wolf [14℄. Yet more detailed information is available withtarget polarization [15℄. Experiments on unpolarized targets have found that s-hannelheliity is approximately onserved in the transition from the � to the �, with heliityhanging amplitudes ourring at most at the 10% level [16, 17, 18, 19, 20℄. This greatlysimpli�es the spin struture of the proess. The aim of the present paper is to providean analysis framework for exlusive � prodution on a polarized nuleon target, making asexpliit as possible the relation between the angular dependene of the ross setion andthe heliity amplitudes desribing the hadroni subproess �p! �p. We will present ourresults in a form that emphasizes the lose similarity in struture between an unpolarizedand a polarized target. Using the heliity basis for both virtual photon and meson, we alsoprovide an alternative to the representation of the unpolarized ross setion in [14℄.The following setion gives the de�nitions of the kinematis and polarization variablesfor the reation under study. In Setion 3 we de�ne the heliity amplitudes and the spindensity matrix elements desribing the proess and disuss some of their general properties.In Setion 4 we express the angular distribution of the polarized ross setion in terms ofthese spin density matrix elements and point out some salient features of this representa-tion. The simpli�ations arising from distinguishing natural and unnatural parity exhangein the reation are disussed in Setion 5. A number of positivity bounds relating di�erentspin density matrix elements are given in Setion 6. In Setion 7 we explain the omplia-tions arising from the distintion between target polarization relative to the momentum ofeither the inident lepton or the virtual photon. The role of non-resonant ontributions in�+�� prodution is briey disussed in Setion 8. Our results are summarized in Setion 9.2. Kinematis and target polarizationLet us onsider the eletroprodution proesse(l) + p(p)! e(l0) + p(p0) + �(q0) (2.1)followed by the deay �(q0)! �+(k) + ��(k0); (2.2)where four-momenta are given in parentheses. Throughout this work we use the one-photonexhange approximation. All or results are equally valid for the prodution of a � followedby the deay �! K+K�. They also hold if the sattered proton is replaed by an inlusivesystem X with four-momentum p0, as explained at the end of Setion 3.To desribe the kinematis we use the onventional variables for deep inelasti pro-esses, Q2 = �q2, xB = Q2=(2p � q) and y = (p � q)=(p � l). We neglet the lepton mass{ 2 {
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Figure 1: Kinematis of ep ! ep� in the target rest frame. ST is the transverse omponent ofthe target spin vetor w.r.t. the virtual photon diretion.throughout and denote the longitudinal lepton beam polarization by P`, with P` = +1orresponding to a purely right-handed and P` = �1 to a purely left-handed beam. Let usnow go to the target rest frame and introdue the right-handed oordinate system (x; y; z)of Fig. 1 suh that q points in the positive z diretion and l has a positive x omponent. Inthis system we have l = jlj(sin � ; 0; os �) and q = jqj(0; 0; 1), where the angle � betweenl and q is de�ned to be between 0 and �. In aordane with the Trento onvention [21℄we de�ne the angle � between the lepton and the hadron plane as the azimuthal angle ofq0 in this oordinate system, and �S as the azimuthal angle of the target spin vetor S.Following [22℄ we write S = (ST os�S ; ST sin�S ;�SL) with 0 � ST � 1 and �1 � SL � 1,so that ST and SL desribe transverse and longitudinal polarization with respet to thevirtual photon momentum, with SL = 1 orresponding to a right-handed proton in the�p .m.
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Figure 2: Kinematis of the hadroni subproess �p ! �p followed by the deay � ! �+��.The oordinate systems (x; y; z) and (x0; y0; z0) di�er from those in Fig. 1.
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To desribe the target polarization of a given experimental setup, we introdue an-other right-handed oordinate system (x0; y0; z0) in the target rest frame suh that l =jlj(0; 0; 1) and q = jqj(� sin � ; 0; os �) as shown in Fig. 1. In this system we writeS = (PT os ;PT sin ;�PL) with 0 � PT � 1 and �1 � PL � 1, following again [22℄. PTand PL desribe transverse and longitudinal polarization with respet to the lepton beamdiretion, with PL = 1 orresponding to a right-handed proton in the ep .m. The two setsof variables desribing the target polarization are related byST os�S = os �PT os � sin �PL ;ST sin�S = PT sin ;SL = sin �PT os + os �PL ; (2.3)whih we will use in Set. 7. In terms of invariants the mixing angle � is given bysin � = s1� y � 14y221 + 2 ;  = 2xBMNQ ; (2.4)whereMN is the nuleon mass. In Bjorken kinematis  is small, and so is sin � � p1� y.We �nally speify the variables desribing the vetor meson deay (2.2). This is onve-niently done in the �+�� .m., whih an be obtained from the �p .m. by a boost in thediretion of the sattered nuleon as shown in Fig. 2. In the �+�� .m. we introdue theright-handed oordinate system (x; y; z) shown in Fig. 2, where p0 = jp0j(0; 0;�1) and wherethe target momentum p has a positive x omponent. In this system we de�ne # and ' as thepolar and azimuthal angle of the �+ momentum, i.e. k = jkj(sin# os'; sin# sin'; os #).The relation between our notation here and the one of Shilling and Wolf is1�here = ��[14℄ ; 'here = �[14℄ ; #here = � [14℄ : (2.5)3. Heliity amplitudes and spin density matrixThe strong-interation dynamis of the eletroprodution proess (2.1) is fully ontainedin the heliity amplitudes for the subproess �p! �p. From these we will onstrut spindensity matrix elements whih desribe the angular distribution of the overall reationep! ep �+�� and its dependene on the target polarization.Sine we will deal with interferene terms we must speify our phase onventions. Wedo this in the �p .m. and use the right-handed oordinate system (x0; y0; z0) shown inFig. 2. In this system we have q = jqj(0; 0;�1) and q0 = jq0j(sin�; 0;� os �), with thesattering angle � of the vetor meson de�ned to be between 0 and �. Note that the positivez0 axis points along p rather than q, as is often preferred for theoretial alulations. Wespeify polarization states of the target proton by two-omponent spinors �+1=2 = (1; 0)1We remark that the expression for sin� given in eq. (13) of [14℄ is inorret sine it is always positive.A orret de�nition is given in [23℄. { 4 {



for positive and ��1=2 = (0; 1) for negative heliity. For the polarization vetors of thevirtual photon we hoose"+1 = � 1p2 �0; 1;�i; 0� ; "�1 = 1p2 �0; 1; i; 0� ;"�0 = N"�q� � q2p � q p�� ; (3.1)and for the polarization vetors of the �e+1 = � 1p2 �0; os �;�i; sin�� ; e�1 = 1p2 �0; os �; i; sin�� ;e�0 = Ne�q0� � q02p0 � q0 p0�� ; (3.2)where the subsripts indiate heliities. N" and Ne are positive onstants ensuring theproper normalization "20 = 1 and e20 = �1 of the longitudinal polarization vetors. In the� rest frame and the oordinate system (x; y; z) of Fig. 2, our meson polarization vetorshave the standard form e+1 = �(0; 1; i; 0)=p2, e�1 = (0; 1;�i; 0)=p2 and e0 = (0; 0; 0; 1).Our phase onventions for the proton and the virtual photon are as in [22℄.We now introdue amplitudes T ���� for the subproess �(�)+ p(�)! �(�)+ p(�) withde�nite heliities �; �; �; �. Sine the above phase onventions are de�ned with refereneonly to momentum vetors of this subproess, the heliity amplitudes only depend on thephoton virtuality, the �p sattering energy and the sattering angle �, or equivalently onQ2, xB and t = (p� p0)2. With our phase onventions they obey the usual parity relationsT�������� = (�1)�����+� T ���� (3.3)for equal Q2, xB and t on both sides. With these heliity amplitudes we de�ne���0��0;��0 = (NT + �NL)�1 X� T ���� �T �0��0�0�� : (3.4)Regarding the upper indies this is the spin density matrix of the vetor meson, whereas thelower indies speify the polarizations in the �p state from whih the meson is produed.2The normalization fatorsNT = 12 X�;�;���T ��+���2 ; NL = 12 X�;�;���T ��0���2 (3.5)are proportional to the di�erential ross setions d�T =dt and d�L=dt for transverse andlongitudinal photon polarization, respetively, and� = 1� y � 14 y221� y + 12 y2 + 14 y22 (3.6)2Taking the trae in the meson polarization indies we obtain the relation P� �����0;��0 / d��0��0�=dtbetween the spin density matrix � introdued here and the ross setions and interferene terms used in[22℄. Compared with [22℄ we take the opposite order of indies in �, so that � and �0 appear in the standardorder for a spin density matrix. { 5 {



is the usual ratio of longitudinal and transverse photon ux. In addition to Q2, xB andt, the spin density matrix elements ���0��0;��0 depend on � through the normalization fator(NT + �NL). If one an perform a Rosenbluth separation by measuring at di�erent � butequal Q2 and xB, it is advantageous to normalize them instead to NT , NL or pNTNL aswas done in [14℄. It is straightforward to implement suh a hange in the formulae we givein the following.We �nd it useful to introdue the ombinationsu��0��0 = 12����0��0;++ + ���0��0;��� ; l��0��0 = 12����0��0;++ � ���0��0;��� (3.7)for an unpolarized and a longitudinally polarized target, where for the sake legibility wehave labeled the target polarization by � instead of �12 . The ombinationss��0��0 = 12����0��0;+� + ���0��0;�+� ; n��0��0 = 12����0��0 ;+� � ���0��0;�+� (3.8)respetively desribe transverse target polarization in the hadron plane (\sideways") andperpendiular to it (\normal"). One readily �nds that the matries u , l and s are hermi-tian, whereas n is antihermitian,u�0��0� = �u��0��0�� ; l�0��0� = �l��0��0�� ; s�0��0� = �s��0��0�� ;n�0��0� = � �n��0��0�� : (3.9)The diagonal elements u����, l���� and s���� are therefore purely real, whereas n���� is purelyimaginary. Furthermore, the parity relations (3.3) translate intou����0����0 = (�1)�����0+�0 u��0��0 ; l����0����0 = �(�1)�����0+�0 l��0��0 ;n����0����0 = (�1)�����0+�0 n��0��0 ; s����0����0 = �(�1)�����0+�0 s��0��0 : (3.10)As a onsequene the matrix elementsu�+�+ ; u+��+ ; u�+0 0 ; u 0 0�+ (3.11)are purely real, whereas the orresponding elements of l , s and n are purely imaginary.Both experiment and theory indiate that s-hannel heliity is approximately onservedin the � ! � transition for small invariant momentum transfer t. Correspondingly, oneexpets that spin density matrix elements involving the produt of two heliity onservingamplitudes are greater than interferene terms between a heliity onserving and a heliityhanging amplitude, and that those are greater than matrix elements involving the produtof two heliity hanging amplitudes (where we refer to the heliities of the photon and the� but not of the nuleon). Exeptions to this rule are however possible, sine two largeamplitudes an have a small interferene term beause of their relative phase, and sinethere an be anellation of individually large terms in the linear ombinations (3.7) and(3.8) assoiated with di�erent target polarizations. With this aveat in mind one anreadily assess the expeted size of the spin density matrix elements (3.7) and (3.8) byomparing the upper with the lower indies.{ 6 {



Let us now investigate the behavior of our matrix elements for �! 0, i.e. in the limitof forward sattering �p! �p. To this end we perform a partial wave deompositionT ���� (�) =XJ t����(J) dJ���;���(�) (3.12)where we have suppressed the dependene of T and the partial wave amplitudes t(J) onQ2 and xB . Using the behavior dJm;n(�) � �jm�nj of the rotation funtions for �! 0 wereadily �nd u��0��0 ; l��0��0 � �p ; n��0��0 ; s��0��0 � �q (3.13)with p � pmin = min�;�=�1=2n��� � �� � + ���+ ��� 0 � �0 � � + ���o ;q � qmin = min�;�=�1=2n��� � �� � + ���+ ��� 0 � �0 � � � ���o : (3.14)With � / (t0 � t)1=2 for small �, we an rewrite (3.13) asu��0��0 ; l��0��0 �t!t0 (t0 � t)p=2 ; n��0��0 ; s��0��0 �t!t0 (t0 � t)q=2 ; (3.15)where t0 is the value of t for � = 0 at given Q2 and xB. In Tables 1 and 2 we givethe orresponding powers for the linear ombinations of spin density matrix elements thatwill appear in our results for the ross setion in Setion 4. We have ordered the entriesaording to the hierarhy disussed after (3.11), listing �rst terms ontaining the produtof two heliity onserving amplitudes, then terms ontaining the interferene between aheliity onserving and a heliity hanging amplitude, and �nally terms whih only involveheliity hanging amplitudes (with heliities always referring to the photon and the � butnot to the nuleon).We emphasize that ertain partial wave amplitudes t����(J) in (3.12) may be zero ornegligibly small for dynamial reasons. The atual powers of (t0 � t)1=2 in (3.15) anthus be larger than the minimum values pmin and qmin required by angular momentumonservation. If there is for instane no s-hannel heliity transferred between the proton-proton and the photon-meson transitions, then the relevant powers for n and s are givenby q = pmin+1, whih is equal to qmin+2 for all but the �rst four entries in Tables 1 and 2.A onrete realization of this senario is the alulation in [24℄, where the proton-protontransition is desribed by the generalized parton distributions H, E and ~H, ~E, whih donot allow for heliity transfer to the photon-meson transition.In the limit of large Q2 at �xed xB and t, the proof of the fatorization theoremin [2℄ implies that the transition from a longitudinal photon to a longitudinal � beomesdominant, with all other transitions suppressed by powers of 1=Q. In this limit only thespin density matrix elements u 0 00 0 and n 0 00 0 survive and an be expressed as onvolutions ofhard-sattering kernels with generalized parton distributions and the light-one distributionamplitude of the �. To leading order in 1=Q one has in partiularImn 0 00 0u 0 00 0 = pt0 � tMN p1� �2 Im�E�H�(1� �2) jHj2 � ��2 + t=(4M2N )� jEj2 � 2�2Re�E�H� ; (3.16)
{ 7 {



matrix elements pminu 0 0++ + �u 0 00 0 0u 0+0+ � u�00+ l 0+0+ � l�00+ 0u++++ + u��++ + 2�u++0 0 l++++ + l��++ 0u�+�+ l�+�+ 0u 0 00+ l 0 00+ 1u 0+++ � u�0++ + 2Re �u 0+0 0 l 0+++ � l�0++ + 2i Im �l 0+0 0 1u 0+�+ l 0+�+ 1u 0�0+ � u+00+ l 0�0+ � l+00+ 2u�+++ + �u�+0 0 l�+++ + �l�+0 0 2u++�+ l++�+ 2u++0+ + u��0+ l++0+ + l��0+ 1u�+0+ l�+0+ 1l 0 0++ 2u 0 0�+ l 0 0�+ 2u+0�+ l+0�+ 3u+�0+ l+�0+ 3u+��+ l+��+ 4Table 1: Minimum values of the powers whih ontrol the t! t0 behavior of ombinations of spindensity matrix elements u and l as in (3.15). Some of the ombinations are purely real or purelyimaginary beause of the symmetry relations (3.9) and (3.10), whereas others are omplex valued.where � = xB=(2�xB) and the onvolution integrals H and E are for instane given in [22℄.Experimental results and phenomenologial analysis show however that 1=Q2 suppressede�ets an be numerially signi�ant for Q2 of several GeV2, see e.g. [25, 24, 9, 10℄. Thisonerns both power orretions within u 0 00 0 or n 0 00 0 and formally power suppressed spindensity matrix elements suh as u++++ or u 0+0+ . The detailed analysis in [2℄ reveals thatbeyond leading-power auray in 1=Q, fatorization of meson prodution into a hard-sattering subproess and nonperturbative quantities pertaining either to the target orto the meson may be broken. On the other hand, fatorization based approahes whihgo beyond leading power in 1=Q and in partiular also evaluate transition amplitudes fortransverse polarization of the � or � have been phenomenologially rather suessful, seee.g. [26, 24℄Let us �nally generalize our onsiderations to the proesse(l) + p(p)! e(l0) +X(p0) + �(q0) ; (3.17)where the target proton dissoiates into a hadroni system X. In analogy to the elasti aseone an introdue heliity amplitudes T ��;X�� and ombine them into spin density matrix
{ 8 {



matrix elements qminn 0 0++ + �n 0 00 0 1n 0+0+ � n�00+ s 0+0+ � s�00+ 1n++++ + n��++ + 2�n++0 0 s++++ + s��++ 1n�+�+ s�+�+ 1n 0 00+ s 0 00+ 0n 0+++ � n�0++ + 2i Im �n 0+0 0 s 0+++ � s�0++ + 2i Im �s 0+0 0 0n 0+�+ s 0+�+ 0n 0�0+ � n+00+ s 0�0+ � s+00+ 1n�+++ + �n�+0 0 s�+++ + �s�+0 0 1n++�+ s++�+ 1n++0+ + n��0+ s++0+ + s��0+ 0n�+0+ s�+0+ 0s 0 0++ 1n 0 0�+ s 0 0�+ 1n+0�+ s+0�+ 2n+�0+ s+�0+ 2n+��+ s+��+ 3Table 2: As Table 1 but for ombinations of spin density matrix elements n and s .elements ���0��0;��0 = (NT + �NL)�1 XX;� T ��;X�� �T �0�;X�0�0 �� : (3.18)The normalization fators NT and NL are de�ned as in (3.5) but with an additional sumover all hadroni states X of given invariant mass MX , on whih ���0��0;��0 now dependsin addition to Q2, xB , t and �. The ombinations (3.7) and (3.8) for di�erent targetpolarization have the same symmetry properties (3.9) and (3.10) as in the elasti ase.Their behavior for t! t0 an be di�erent, sine in (3.14) one must now take the minimumover all possible heliities � = �12 ;�32 ; : : : of the hadroni system X. One �nds howeverthat the powers pmin and qmin for the ombinations of spin density matrix elements inTables 1 and 2 are the same as in the elasti ase. The results in the remainder of thiswork only depend on the properties (3.9) and (3.10) and thus immediately generalize tothe ase of target dissoiation.4. The angular distributionThe alulation of the ross setion for ep! ep �+�� proeeds by using standard methodsand we shall only sketh the essential steps. More details are for instane given in [14, 27,{ 9 {



22℄. With our phase onventions the polarization state of the proton target is desribed bythe spin density matrix ���0 = 12  1 + SL ST e�i(���S)ST ei(���S) 1� SL ! ; (4.1)whih is to be ontrated with the matrix in (3.4). The result is onveniently expressed interms of the ombinations (3.7) and (3.8) asX�;�0 ���0 ���0��0;��0 = u��0��0 + SL l��0��0 + ST os(�� �S) s��0��0 � ST sin(�� �S) in��0��0 (4.2)and desribes the subproess �p ! �p. The deay � ! �+�� is taken into aount bymultipliation with the spherial harmonis,���0 =X�;�0 X�;�0 ���0 ���0��0;��0 Y1�('; #)Y �1�0('; #) ; (4.3)whereY1+1 = �r 38� sin# ei' ; Y10 =r 34� os# ; Y1�1 =r 38� sin# e�i' : (4.4)To obtain the ross setion for the overall proess ep! ep�+�� one must �nally ontratthe matrix ���0 in (4.3) with the spin density matrix of the virtual photon.3 The rosssetion an be written asd�d d� d'd(os #) dxB dQ2 dt = 1(2�)2 d�dxB dQ2 dt� �WUU + P`WLU + SLWUL + P`SLWLL + STWUT + P`STWLT� (4.5)with d�dxB dQ2 dt = �em2� y21� � 1� xBxB 1Q2 �d�Tdt + � d�Ldt � ; (4.6)where d�T =dt and d�L=dt are the usual �p ross setions for a transverse and longitudinalphoton and an unpolarized proton, with Hand's onvention for virtual photon ux. Theangular distribution is desribed by the quantities WXY , where X spei�es the beam andY the target polarization. The normalization of the unpolarized term WUU isZ d�2� Z d' d(os#) WUU(�; '; #) = 1 : (4.7)To limit the length of subsequent expressions, we further deompose the oeÆients a-ording to the � polarization and writeWXY (�; '; #)= 34�� os2# WLLXY (�) +p2 os# sin# WLTXY (�; ') + sin2# W TTXY (�; ') � (4.8)for X;Y = U;L. The prodution of a longitudinal � is desribed by WLLXY , the prodution3Up to a global fator, the result of this ontration an e.g. be obtained from eq. (3.20) of [27℄, with���0 in the present work orresponding to �(X)�0� in [27℄ and �here = �'[27℄.{ 10 {



of a transverse � (inluding the interferene between positive and negative � heliity) byW TTXY , and the interferene between longitudinal and transverse � polarization by WLTXY .For a transversely polarized target we have in addition a dependene on �S ,WXT (�S ; �; '; #)= 34�� os2# WLLXT (�S ; �) +p2 os# sin# WLTXT (�S ; �; ') + sin2# W TTXT (�S ; �; ') � (4.9)with X = U;L. In addition to the angles, all oeÆients WXY depend on Q2, xB and t,whih we have not displayed for the sake of legibility.For unpolarized target and beam we haveWLLUU(�) = �u 0 0++ + �u 0 00 0 �� 2 os �p�(1 + �) Reu 0 00+ � os(2�) �u 0 0�+ ;WLTUU (�; ') = os(�+ ')p�(1 + �) Re�u 0+0+ � u�00+�� os' Re�u 0+++ � u�0++ + 2�u 0+0 0 �+ os(2�+ ') �Re u 0+�+� os(�� ')p�(1 + �) Re�u 0�0+ � u+00+�+ os(2� � ') �Re u+0�+ ;W TTUU (�; ') = 12 �u++++ + u��++ + 2�u++0 0 �+ 12 os(2�+ 2') �u�+�+� os�p�(1 + �) Re�u++0+ + u��0+�+ os(�+ 2')p�(1 + �) Re u�+0+� os(2') Re�u�+++ + �u�+0 0 �� os(2�) �Re u++�++ os(�� 2')p�(1 + �) Reu+�0+ + 12 os(2�� 2') �u+��+ : (4.10)Here and in the following we order terms aording to the hierarhy disussed after (3.11),as already done in Table 1. The terms independent of � and ' in WLLUU and W TTUU arerelated by u++++ + u��++ + 2�u++0 0 = 1� �u 0 0++ + �u 0 00 0 � ; (4.11)whih ensures the normalization ondition (4.7). The terms for beam polarization with anunpolarized target readWLLLU (�) = �2 sin�p�(1� �) Imu 0 00+ ;WLTLU (�; ') = sin(�+ ')p�(1� �) Im�u 0+0+ � u�00+�� sin'p1� �2 Im�u 0+++ � u�0++�� sin(�� ')p�(1� �) Im�u 0�0+ � u+00+� ;W TTLU (�; ') = � sin�p�(1� �) Im�u++0+ + u��0+�+ sin(�+ 2')p�(1� �) Imu�+0+� sin(2')p1� �2 Imu�++++ sin(�� 2')p�(1� �) Imu+�0+ : (4.12)
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The results for longitudinal target polarization are very similar, withWLLUL(�) = �2 sin�p�(1 + �) Im l 0 00+ � sin(2�) � Im l 0 0�+ ;WLTUL (�; ') = sin(�+ ')p�(1 + �) Im�l 0+0+ � l�00+�� sin' Im�l 0+++ � l�0++ + 2�l 0+0 0 �+ sin(2�+ ') � Im l 0+�+� sin(�� ')p�(1 + �) Im�l 0�0+ � l+00+�+ sin(2�� ') � Im l+0�+ ;W TTUL (�; ') = 12 sin(2�+ 2') � Im l�+�+� sin�p�(1 + �) Im�l++0+ + l��0+�+ sin(�+ 2')p�(1 + �) Im l�+0+� sin(2') Im�l�+++ + �l�+0 0 �� sin(2�) � Im l++�++ sin(�� 2')p�(1 + �) Im l+�0+ + 12 sin(2�� 2') � Im l+��+ (4.13)for an unpolarized beam, andWLLLL (�) = �2 os�p�(1� �) Re l 0 00+ +p1� �2 l 0 0++ ;WLTLL (�; ') = os(�+ ')p�(1� �) Re�l 0+0+ � l�00+�� os'p1� �2 Re�l 0+++ � l�0++�� os(�� ')p�(1� �) Re�l 0�0+ � l+00+� ;W TTLL (�; ') =p1� �2 12 �l++++ + l��++�� os�p�(1� �) Re�l++0+ + l��0+�+ os(�+ 2')p�(1� �) Re l�+0+� os(2')p1� �2 Re l�++++ os(�� 2')p�(1� �) Re l+�0+ (4.14)for beam polarization. In (4.10) to (4.14) we have used the symmetry relations (3.9) and(3.10) to write our results with a minimal set of matrix elements u��0��0 or l��0��0 . Althoughthey are a little lengthy, their struture is quite simple:1. The ombinations u++��0 + u����0 , u 0+��0 � u�0��0 and u 0���0 � u+0��0 and their analogs for lalways appear together beause the orresponding produts of spherial harmonisare idential, Y1+1Y �1+1 = Y1�1Y �1�1 and Y10Y �1+1 = �Y1�1Y �10. In some ases theorresponding sum an be simpli�ed using symmetry relations like u++0 0 + u��0 0 =2u++0 0 , but in others one remains with a linear ombination of matrix elements thatannot be separated. With the aveats disussed after (3.11) one �nds however thatthese ombinations are dominated by a single term. Exeptions are Re�u 0+++ �u�0+++2�u 0+0 0 � and Im�l 0+++ � l�0++ + 2�l 0+0 0 �, eah of whih ontains two interferene termsbetween a heliity onserving and a heliity hanging amplitude.{ 12 {



2. An angular dependene through (k� + m') is assoiated with the interferene be-tween transverse and longitudinal � polarization for jmj = 1, the interferene betweenpositive and negative � heliity for jmj = 2, and equal � polarization in the amplitudeand its onjugate for m = 0. In the same way jkj = 1, jkj = 2 and k = 0 are related tothe virtual photon polarization. Notie that for m = 0 one an distinguish transverseand longitudinal � prodution by the # dependene in (4.8), whereas for k = 0 theseparation of terms for transverse and longitudinal photons requires variation of �.The beam spin asymmetries WLU and WLL ontain no terms with jkj = 2, beausethere is no term with P` os 2� or P` sin 2� in the spin density matrix of the virtualphoton.3. The unpolarized or doubly polarized terms WUU and WLL depend on Reu or Re land are even under the reetion (�; ')! (��;�') of the azimuthal angles, whereasthe single spin asymmetriesWLU andWUL depend on Imu or Im l and are odd under(�; ')! (��;�'). This is a onsequene of parity and time reversal invariane.4. As we have written our results, the angular distribution for longitudinal target po-larization an be obtained from the one for an unpolarized target by replaingos(k�+m') Re u ! sin(k�+m') Im l ;sin(k�+m') Imu ! os(k�+m') Re l : (4.15)Terms with k = m = 0 in WUU and WLL are independent of � and ', and have ofourse no ounterparts inWUL orWLU . This orresponds to 16 terms with a di�erentangular dependene in WUU and 14 terms in WUL, and to 10 terms in WLL and 8terms in WLU .The symmetry properties (3.9) and (3.10), whih we used to obtain (4.10) to (4.14), areidential for u��0��0 and in��0��0 , as well as for l��0��0 and s��0��0 . Aording to (4.2) the ross setionfor a transversely polarized target an therefore be obtained from the one for longitudinaland no target polarization by the replaementsReu ! ST sin(�� �S) Imn ; SL Im l ! ST os(�� �S) Im s ;Imu ! �ST sin(�� �S) Ren ; SLRe l ! ST os(�� �S) Re s : (4.16)We thus simply haveWLLUT (�S ; �) = sin(�� �S) h Im�n 0 0++ + �n 0 00 0 �� 2 os �p�(1 + �) Imn 0 00+ � os(2�) � Imn 0 0�+ i+ os(�� �S) h�2 sin�p�(1 + �) Im s 0 00+ � sin(2�) � Im s 0 0�+ i ;WLTUT (�S ; �; ') = sin(�� �S) h os(�+ ')p�(1 + �) Im�n 0+0+ � n�00+�� os' Im�n 0+++ � n�0++ + 2�n 0+0 0 �+ os(2�+ ') � Imn 0+�+� os(�� ')p�(1 + �) Im�n 0�0+ � n+00+�+ os(2�� ') � Imn+0�+ i{ 13 {



+ os(�� �S) h sin(�+ ')p�(1 + �) Im�s 0+0+ � s�00+�� sin' Im�s 0+++ � s�0++ + 2�s 0+0 0 �+ sin(2� + ') � Im s 0+�+� sin(�� ')p�(1 + �) Im�s 0�0+ � s+00+�+ sin(2�� ') � Im s+0�+ i ;W TTUT (�S ; �; ') = sin(�� �S) h 12 Im�n++++ + n��++ + 2�n++0 0 �+ 12 os(2�+ 2') � Imn�+�+� os�p�(1 + �) Im�n++0+ + n��0+�+ os(�+ 2')p�(1 + �) Imn�+0+� os(2') Im�n�+++ + �n�+0 0 �� os(2�) � Imn++�++ os(�� 2')p�(1 + �) Imn+�0+ + 12 os(2�� 2') � Im n+��+ i+ os(�� �S) h 12 sin(2�+ 2') � Im s�+�+� sin�p�(1 + �) Im�s++0+ + s��0+�+ sin(�+ 2')p�(1 + �) Im s�+0+� sin(2') Im�s�+++ + �s�+0 0 �� sin(2�) � Im s++�++ sin(�� 2')p�(1 + �) Im s+�0+ + 12 sin(2�� 2') � Im s+��+ i (4.17)for an unpolarized beam, andWLLLT (�S ; �) = sin(�� �S) h 2 sin�p�(1� �) Ren 0 00+ i+ os(�� �S) h�2 os �p�(1� �) Re s 0 00+ +p1� �2 s 0 0++ i ;WLTLT (�S ; �; ') = sin(�� �S) h� sin(�+ ')p�(1� �) Re�n 0+0+ � n�00+�+ sin'p1� �2 Re�n 0+++ � n�0++�+ sin(�� ')p�(1� �) Re�n 0�0+ � n+00+� i+ os(�� �S) h os(�+ ')p�(1� �) Re�s 0+0+ � s�00+�� os'p1� �2 Re�s 0+++ � s�0++�� os(�� ')p�(1� �) Re�s 0�0+ � s+00+� i ;W TTLT (�S ; �; ') = sin(�� �S)� h sin�p�(1� �) Re�n++0+ + n��0+�� sin(�+ 2')p�(1� �) Ren�+0++ sin(2')p1� �2 Ren�+++� sin(�� 2')p�(1� �) Ren+�0+ i+ os(�� �S) hp1� �2 12 �s++++ + s��++�{ 14 {



unpolarized beam polarized beamWUU WUL WUT WLU WLL WLTRe u Im l Imn Im s Imu Re l Ren Re s15 14 16 14 8 10 8 10Table 3: Number of linear ombinations of spin density matrix elements desribing the angulardistribution of the ross setion (4.5). The number of independent ombinations for Reu is oneless than for Imn beause of the relation (4.11).� os�p�(1� �) Re�s++0+ + s��0+�+ os(�+ 2')p�(1� �) Re s�+0+� os(2')p1� �2 Re s�++++ os(�� 2')p�(1� �) Re s+�0+ i (4.18)for beam polarization. With obvious adjustments, the general struture disussed in points1 to 3 above is found again for a transverse target. Note that the terms u 0 0++ + �u 0 00 0 andu++++ + u��++ + 2�u++0 0 in the unpolarized oeÆients WLLUU and W TTUU add up to 1 aordingto (4.11), whereas their ounterparts Im�n 0 0++ + �n 0 00 0 � and Im�n++++ + n��++ + 2�n++0 0 � inWLLUT and W TTUT are independent quantities. To keep the lose similarity between the twoases we have not used (4.11) to simplify (4.10).Sine there are two independent transverse polarizations relative to the hadron plane(normal and sideways) we have a rather large number of terms with di�erent angulardependene in (4.17) and (4.18). The single spin asymmetry WUT ontains 16 termswith Imn and 14 terms with Im s , whereas the double spin asymmetry WLT ontains 8terms with Ren and 10 terms with Re s . Table 3 lists the number of independent linearombinations of spin density matrix elements desribing the angular distribution for thedi�erent ombinations of beam and target spin. For reasons disussed in Setion 5 it isuseful to onsider the spin density matries n and s separately. It is then natural to workin the basis of angular funtions given by the produt of sin(� � �S) or os(� � �S) withsin(k� +m') or os(k� +m'). With the replaement rules (4.15) and (4.16) we obtainthe ombinationssin(�� �S) os(k�+m') Imn + os(�� �S) sin(k�+m') Im s ;� sin(�� �S) sin(k�+m') Ren + os(�� �S) os(k�+m') Re s (4.19)in WUT and WLT , respetively.We onlude this setion by giving the relation between our spin density matrix ele-ments for an unpolarized target and those in the lassial work [14℄ of Shilling and Wolf.We have u 0 0++ + �u 0 00 0 = r0400 ;Re�u 0+0+ � u�00+� = p2 �Im r610 �Re r510� ;u++++ + u��++ + 2�u++0 0 = 1� r0400 ;u�+�+ = r11�1 � Im r21�1 ;{ 15 {



Re u 0 00+ = �r500=p2 ;Re�u 0+++ � u�0++ + 2�u 0+0 0 � = 2Re r0410 ;Re u 0+�+ = Re r110 � Im r210 ;Re�u 0�0+ � u+00+� = p2 �Im r610 +Re r510� ;Re�u�+++ + �u�+0 0 � = r041�1 ;Re u++�+ = r111 ;Re�u++0+ + u��0+� = �p2 r511 ;Re u�+0+ = �Im r61�1 � r51�1�=p2 ;u 0 0�+ = r100 ;Re u+0�+ = Re r110 + Im r210 ;Re u+�0+ = ��Im r61�1 + r51�1�=p2 ;u+��+ = r11�1 + Im r21�1 (4.20)and Im�u 0+0+ � u�00+� = p2 �Im r710 +Re r810� ;Imu 0 00+ = r800=p2 ;Im�u 0+++ � u�0++� = �2 Im r310 ;Im�u 0�0+ � u+00+� = p2 �Im r710 �Re r810� ;Imu�+++ = � Im r31�1 ;Im�u++0+ + u��0+� = p2 r811 ;Imu�+0+ = �Im r71�1 + r81�1�=p2 ;Imu+�0+ = ��Im r71�1 � r81�1�=p2 : (4.21)The lower indies in the matrix elements of Shilling and Wolf refer to the � heliity andorrespond to the upper indies of u in our notation. Their upper indies orrespond to arepresentation of the virtual photon spin density matrix whih refers partly to irular andpartly to linear polarization, whereas we use the heliity basis for the photon throughout.The onsequenes of approximate s-hannel heliity onservation are more expliit in ournotation: the relation Im r610 � �Re r510 for instane orresponds to ��Re�u 0+0+ � u�00+��� ���Re�u 0�0+ � u+00+���. Notie also that the simple relation between single-spin asymmetriesand imaginary parts of spin density matrix elements disussed in point 3 above holds inthe heliity basis but not for linear polarization.We note that our phase onvention (3.1) for the heliity states of the virtual photondi�ers from the one in [14℄ by a relative minus sign between transverse and longitudinalpolarization, and that our normalization fators NT and NL in (3.5) di�er from those in[14℄ by a fator of two. The ombinations of heliity amplitudes orresponding to the spindensity matrix elements in (4.20) and (4.21) should be ompared aording to12 " 1NT + �NL X�� T ���� �T �0��0� ��#here = ���0 " 1NT + �NL X�� T��;�� T ��0�;�0�# [14℄ ; (4.22)
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where �0� = ��0 = �1 for the interferene of transverse and longitudinal photon polar-ization, and ���0 = +1 in all other ases.45. Natural and unnatural parityThe exlusive proess �p! �p is desribed by eighteen independent heliity amplitudes,and we have already used approximate s-hannel heliity onservation to establish a hierar-hy among these amplitudes and the spin density matrix elements onstruted from them.A further dynamial riterion to order these quantities is given by natural and unnaturalparity exhange, whih we shall now disuss.Following [14℄ we de�ne amplitudes N for natural and U unnatural parity exhange aslinear ombinationsN���� = 12 �T ���� + (�1)��� T������ � = 12 �T ���� + (�1)��� T ������ � ;U���� = 12 �T ���� � (�1)��� T������ � = 12 �T ���� � (�1)��� T ������ � : (5.1)With respet to the photon and meson heliity, the amplitudes N have the same symmetrybehavior as the amplitudes for �t! �t on a spin-zero target t, whereas the orrespondingrelation for the amplitudes U has an additional minus sign,N������ = (�1)���N���� ; U������ = �(�1)��� U���� : (5.2)For the proton heliity we have relations N�+�+ = N���� and N�+�� = �N���+ for natural parityexhange, ompared to U�+�+ = �U���� and U�+�� = U���+ for unnatural parity exhange. Thissymmetry behavior immediately implies that in a dynamial desription using generalizedparton distributions, amplitudes N go with distributions H and E, whereas amplitudes Ugo with distributions ~H and ~E. This is expliitly borne out in the alulation of [24℄. SineU 0�0� = 0 aording to (5.2), unnatural parity exhange amplitudes are power suppressedat large Q2 and the leading-twist fatorization theorem [2℄ only applies to the naturalparity exhange amplitudes N 0�0� . We remark that in the ontext of low-energy dynamist-hannel exhange of a pion plays a prominent role for unnatural parity exhange ampli-tudes, see e.g. [15℄. This has a natural ounterpart in the framework of generalized partondistributions, where pion exhange gives an essential ontribution to the distribution ~E inthe isovetor hannel [28, 3, 29℄.4The orrespondene in (4.20) to (4.22) is obtained from omparing our results (4.10) and (4.12) for theangular distribution with the ones in eqs. (92) and (92a) of [14℄, together with the relation between spindensity matrix elements and heliity amplitudes spei�ed in eq. (91) and Appendix A of [14℄. We have notfound an expliit spei�ation of the phase onvention for the virtual photon polarizations used in [14℄.{ 17 {



For the spin density matrix elements one readily �ndsu��0��0 = (NT + �NL)�1 X� hN���+ �N�0��0+�� + U���+ �U�0��0+�� i ;l��0��0 = (NT + �NL)�1 X� hN���+ �U �0��0+�� + U���+ �N �0��0+�� i ;s��0��0 = (NT + �NL)�1 X� hN���+ �U �0��0��� + U���+ �N �0��0��� i ;n��0��0 = (NT + �NL)�1 X� hN���+ �N �0��0��� + U���+ �U �0��0��� i : (5.3)The matrix elements u and n hene involve a produt of two natural parity exhangeamplitudes plus a produt of two amplitudes for unnatural parity exhange, whereas land s involve the interferene between natural and unnatural parity exhange [15℄. Tothe extent that amplitudes U are smaller than their ounterparts N , one an thus expetthat matrix elements l and s are small ompared with u and n for equal heliity indies.Exeptions to this guideline are possible sine produts N���+ �N�0��0+�� or N���� �N �0��0+�� mayhave a small real or imaginary part due to the relative phase between the two amplitudes.If amplitudes U are smaller than N , one an furthermore neglet the terms~u��0��0 = (NT + �NL)�1 X� U���+ �U�0��0+�� ;~n��0��0 = (NT + �NL)�1 X� U���+ �U�0��0��� (5.4)involving unnatural parity exhange in the matrix elements u and n . Using the relations(�1)��� u���0���0 = u��0��0 � 2~u��0��0 (5.5)following from (5.2) and (5.3), we have in partiular�u 0+�+ = u 0+++ � 2~u 0+++ ; u�+�+ = u++++ � 2~u++++ ;�u�+0+ = u++0+ � 2~u++0+ ; u++�+ = u�+++ � 2~u�+++ : (5.6)This allows us to rewriteWLTUU = � os' Re�u 0+++ � u�0++ + 2�u 0+0 0 �� os(2�+ ') �Re�u 0+++ � 2~u 0+++�+ : : : os(�+ ') + : : : os(�� ') + : : : os(2�� ') ;W TTUU = 12 �u++++ + u��++ + 2�u++0 0 �+ 12 os(2�+ 2') ��u++++ � 2~u++++�� os�p�(1 + �) Re�u++0+ + u��0+�� os(�+ 2')p�(1 + �) Re�u++0+ � 2~u++0+�� os(2') Re�u�+++ + �u�+0 0 �� os(2�) �Re�u�+++ � 2~u�+++�+ : : : os(�� 2') + : : : os(2�� 2') ;
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W TTLU = � sin�p�(1� �) Im�u++0+ + u��0+�� sin(�+ 2')p�(1� �) Im�u++0+ � 2~u++0+�+ : : : sin(2') + : : : sin(�� 2') ; (5.7)where terms indiated by : : : are the same as in the original expressions (4.10) and (4.12)and have not been repeated for brevity. We see that the oeÆients of adjaent terms in(5.7) will be approximately equal to the extent that unnatural parity exhange is suppressedand s-hannel heliity approximately onserved. This an be tested experimentally bymeasuring the angular distribution of the �nal-state partiles.The relations (5.6) and their ounterparts for other index ombinations an also beused to approximately isolate spin density matrix elements of partiular interest. Consideras an example the leading-twist matrix element u 0 00 0 , whih in the angular distributionappears only in the ombination u 0 0++ + �u 0 00 0 , i.e. together with a matrix element thatshould be suppressed sine it does not onserve s-hannel heliity. If unnatural parityexhange is strongly suppressed, an even better approximation for u 0 00 0 an be obtainedfrom the linear ombination�u 0 00 0 + 2~u 0 0++ = �u 0 0++ + �u 0 00 0 �+ u 0 0�+ ; (5.8)whose r.h.s. an be extrated from the angular distribution. Similarly, one an approxi-mately isolate the matrix element Re u 0+0 0 in the ombination�Re u 0+0 0 +Re�~u 0+++ � ~u�0++� = 12hRe�u 0+++ � u�0++ + 2�u 0+0 0 �+Re u 0+�+ +Reu+0�+i : (5.9)Conversely, one an extrat from the angular distribution the linear ombinations~u++++ + ~u++�� + 2�~u++0 0 � 2Re ~u++�+ = 12 �u++++ + u��++ + 2�u++0 0 �� 12 u�+�+ � 12 u+��++Re�u�+++ + �u�+0 0 ��Re u++�+ ;~u++0+ + ~u��0+ = 12�u++0+ + u��0+�+ 12 u�+0+ + 12 u+�0+ ; (5.10)whih only involve unnatural parity exhange. In a dynamial approah based on gen-eralized parton distributions, these ombinations are interesting beause they isolate thepolarized distributions ~H and ~E and in partiular involve these distributions for gluons,whih are very hard to aess in any other proess.5 The prie to pay for this is thatthe orresponding amplitudes are power suppressed and annot be alulated with thetheoretial rigor provided by the leading-twist fatorization theorem. On the other hand,phenomenologial analysis indiates that a quantitative desription of meson produtionat Q2 of a few GeV2 requires the inlusion of power-suppressed e�ets also for the leadingmatrix element u 0 00 0 .The disussion of the matrix elements for transverse target polarization normal to thehadron plane proeeds in full analogy to the unpolarized ase. With(�1)��� n���0���0 = n��0��0 � 2~n��0��0 (5.11)5In ontrast to their quark ounterparts, ~Hg and ~Eg do not appear in pseudosalar meson produtionat leading twist and leading order in �s, see e.g. Setion 5.1.1 of [30℄.{ 19 {



we have �n 0+�+ = n 0+++ � 2~n 0+++ ; n�+�+ = n++++ � 2~n++++ ;�n�+0+ = n++0+ � 2~n++0+ ; n++�+ = n�+++ � 2~n�+++ (5.12)and an writeWLTUT = os(�� �S) h : : : i+ sin(�� �S)� h� os' Im�n 0+++ � n�0++ + 2�n 0+0 0 �� os(2�+ ') � Im�n 0+++ � 2~n 0+++�+ : : : os(�+ ') + : : : os(�� ') + : : : os(2� � ') i ;W TTUT = os(�� �S) h : : : i+ sin(�� �S)� h 12 Im�n++++ + n��++ + 2�n++0 0 �+ 12 os(2�+ 2') � Im�n++++ � 2~n++++�� os�p�(1 + �) Im�n++0+ + n��0+�� os(�+ 2')p�(1 + �) Im�n++0+ � 2~n++0+�� os(2') Im�n�+++ + �n�+0 0 �� os(2�) � Im�n�+++ � 2~n�+++�+ : : : os(�� 2') + : : : os(2� � 2') i ;W TTLT = os(�� �S) h : : : i+ sin(�� �S)� h sin�p�(1� �) Re�n++0+ + n��0+�+ sin(�+ 2')p�(1� �) Re�n++0+ � 2~n++0+�+ : : : sin(2') + : : : sin(�� 2') i ; (5.13)where terms denoted by : : : are as in the original expressions (4.17) and (4.18). Again, theoeÆients of adjaent terms should be approximately equal to the extent that unnaturalparity exhange is suppressed and s-hannel heliity approximately onserved. The matrixelements Imn 0 00 0 and Imn 0+0 0 an be approximately isolated in� Imn 0 00 0 + 2 Im ~n 0 0++ = Im�n 0 0++ + �n 0 00 0 �+ Imn 0 0�+ (5.14)and� Imn 0+0 0 + Im�~n 0+++ � ~n�0++� = 12hIm�n 0+++ � n�0++ + 2�n 0+0 0 �+ Imn 0+�+ + Imn+0�+i: (5.15)In turn, the linear ombinationsIm�~n++++ + ~n++�� + 2�~n++0 0 � 2~n++�+� = 12 Im�n++++ + n��++ + 2�n++0 0 �� 12 Imn�+�+ � 12 Imn+��++ Im�n�+++ + �n�+0 0 �� Imn++�+ ;~n++0+ + ~n��0+ = 12�n++0+ + n��0+�+ 12 n�+0+ + 12 n+�0+ (5.16)involve only unnatural parity exhange. { 20 {



6. Positivity onstraintsFrom the de�nition (3.4) of the spin-density matrix elements one readily �ndsX��� X�0�0�0 ��� ���0��0;��0 ��0�0�0�� = (NT + �NL)�1 X� ���X��� ��� T ���� ���2 � 0 (6.1)for arbitrary omplex numbers ���. Hene ���0��0;��0 is a positive semide�nite matrix, withrow indies spei�ed by f���g and olumn indies by f� 0�0�0g. This implies inequalitiesamong the spin density matrix elements, whih extend those given e.g. in [22, 27℄. Wedo not attempt here to study the bounds following from positivity of the full 18 � 18matrix ���0��0;��0 , whih is quite unwieldy. Instead, we onsider the subset of matrix elementsonserving s-hannel heliity for the photon-meson transition and derive a number of simpleinequalities, whih may be useful in pratie. Ordering the row and olumn indies asf+++g; f0 0+g; f��+g; f++�g; f0 0�g; f���g, we have a positive semide�nite matrixC, whih an be written in blok form asC =  A+ B+B� A� ! (6.2)with A� =0BB� u++++ + � l++++ �u 0+0+ + � l 0+0+�� u�+�+ � � l�+�+u 0+0+ + � l 0+0+ u 0 00 0 u 0+0+ � � l 0+0+u�+�+ + � l�+�+ �u 0+0+ � � l 0+0+�� u++++ � � l++++ 1CCA (6.3)and B� = 0BB� s++++ + � n++++ �s 0+0+ � � n 0+0+�� �s�+�+ + � n�+�+s 0+0+ + � n 0+0+ � n 0 00 0 �s 0+0+ + � n 0+0+s�+�+ + � n�+�+ ��s 0+0+ + � n 0+0+�� �s++++ + � n++++ 1CCA ; (6.4)where � = �1. Conentrating �rst on the matrix elements for an unpolarized or longitu-dinally polarized target, we �nd that the matrix A� has eigenvalues whose expressions arevery lengthy and therefore restrit our attention to 2�2 submatries. The matrix obtainedfrom the �rst and third rows and olumns of A+ has eigenvaluesu++++ �q�u�+�+�2 + �l++++�2 + �Im l�+�+�2 ; (6.5)whose positivity implies a bound�l++++�2 + �Im l�+�+�2 � �u++++�2 � �u�+�+�2 : (6.6)Similarly, the matrix obtained from the �rst and seond and the matrix obtained from theseond and third rows and olumns of A+ have respetive eigenvalues12 �u++++ + l++++ + u 0 00 0 �� 12q�u++++ + l++++ � u 0 00 0 �2 + 4 ��u 0+0+ + l 0+0+ ��2 ;12 �u++++ � l++++ + u 0 00 0 �� 12q�u++++ � l++++ � u 0 00 0 �2 + 4 ��u 0+0+ � l 0+0+ ��2 ; (6.7)
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whose positivity gives bounds�Reu 0+0+ +Re l 0+0+�2 + �Imu 0+0+ + Im l 0+0+�2 � u 0 00 0 �u++++ + l++++� ;�Reu 0+0+ �Re l 0+0+�2 + �Imu 0+0+ � Im l 0+0+�2 � u 0 00 0 �u++++ � l++++� : (6.8)A weaker ondition is obtained by taking the sum of these two bounds,�Re l 0+0+�2 + �Im l 0+0+�2 � u 0 00 0 u++++ � �Re u 0+0+�2 � �Imu 0+0+�2 : (6.9)The bounds (6.6) and (6.9) have right-hand sides involving only matrix elements aessi-ble with an unpolarized target and onstrain the matrix elements for longitudinal targetpolarization on their left-hand sides.As a seond example let us derive onditions whih involve only matrix elements uand n . To this end we onsider the matrixC0 = 12�C+DyCD� (6.10)with D = 0BBBBBBB� 0 0 1 0 0 00 1 0 0 0 01 0 0 0 0 00 0 0 0 0 10 0 0 0 1 00 0 0 1 0 0
1CCCCCCCA ; (6.11)whih is half the sum of the positive semide�nite matries C and DyCD and hene positivesemide�nite itself. One readily �nds that matrix elements l and s drop out in C0, whihreads

C0 = 0BBBBBBBBBBB�
u++++ �u 0+0+�� u�+�+ n++++ ��n 0+0+�� n�+�+u 0+0+ u 0 00 0 u 0+0+ n 0+0+ n 0 00 0 n 0+0+u�+�+ �u 0+0+�� u++++ n�+�+ ��n 0+0+�� n++++�n++++ �n 0+0+�� �n�+�+ u++++ �u 0+0+�� u�+�+�n 0+0+ �n 0 00 0 �n 0+0+ u 0+0+ u 0 00 0 u 0+0+�n�+�+ �n 0+0+�� �n++++ u�+�+ �u 0+0+�� u++++

1CCCCCCCCCCCA : (6.12)
This matrix has three eigenvaluesu++++ � u�+�+ + Imn++++ � Imn�+�+ ;12�u++++ + u�+�+ + Imn++++ + Imn�+�+ + u 0 00 0 + Imn 0 00 0 �� 12q�u++++ + u�+�+ + Imn++++ + Imn�+�+ � u 0 00 0 � Imn 0 00 0 �2 + 8 ��u 0+0+ � in 0+0+ ��2 (6.13)and three further eigenvalues obtained by reversing the sign of all matrix elements n . Theirpositivity results in the bounds�Imn++++ � Imn�+�+�2 � �u++++ � u�+�+�2 (6.14){ 22 {



and 2 �Reu 0+0+ + Imn 0+0+�2 + 2 �Imu 0+0+ �Ren 0+0+�2� �u 0 00 0 + Imn 0 00 0 � �u++++ + u�+�+ + Imn++++ + Imn�+�+� ;2 �Reu 0+0+ � Imn 0+0+�2 + 2 �Imu 0+0+ +Ren 0+0+�2� �u 0 00 0 � Imn 0 00 0 � �u++++ + u�+�+ � Imn++++ � Imn�+�+� : (6.15)Omitting the terms with Imu 0+0+ and Ren 0+0+ , one obtains bounds involving only matrixelements that are aessible with an unpolarized lepton beam.As we have seen in Setion 4, s-hannel heliity onserving matrix elements an beextrated from the angular distribution under the approximation that s-hannel heliityhanging transitions are suppressed. The bounds derived in this setion may be used tohek the onsisteny of this approximation.7. Mixing between transverse and longitudinal polarizationSo far we have disussed target polarization longitudinal or transverse to the virtual photondiretion in the target rest frame, whih is natural from the point of view of the strong-interation dynamis. In an experimental setup one has however de�nite target polarizationwith respet to the lepton beam diretion. The transformation from one polarization basisto the other is readily performed using the relations (2.3). For a target having longitudinalpolarization PL with respet to the lepton beam one �ndsd�d� d'd(os #) dxB dQ2 dt = 12� d�dxB dQ2 dt� �WUU + PLhos �WUL � sin �WUT (�S = 0)i+ P`WLU + P`PLhos �WLL � sin �WLT (�S = 0)i� : (7.1)Note that in this ase the azimuthal angle  in (4.5) needs to be de�ned with respetto some �xed spatial diretion in the target rest frame, rather than with respet to the(vanishing) transverse omponent of the target polarization relative to the lepton beam.We have integrated over this angle in (7.1) beause the ross setion does not depend on it.For a target having transverse polarization PT with respet to the lepton beam onehas d�d�S d� d'd(os #) dxB dQ2 dt = 1(2�)2 d�dxB dQ2 dt os �1� sin2� sin2�S� WUU + PT os �WUT + sin � os�SWUL�1� sin2� sin2�S�1=2+ P`WLU + P`PT os �WLT + sin � os�SWLL�1� sin2� sin2�S�1=2 ! : (7.2)The fator os � =(1 � sin2� sin2�S) omes from the hange of variables from d to d�S{ 23 {



in the ross setion. The relation between these two angles is readily obtained by settingPL = 0 in (2.3) and given in [22℄.It is a straightforward (if somewhat lengthy) exerise to insert our results (4.13), (4.14)and (4.17), (4.18) into (7.1) and (7.2) and to rewrite the expressions in terms of a suitablebasis of funtions depending on the azimuthal angles. Here we only give the ombinationsneeded in (7.2) for a transversely polarized target and an unpolarized beam,os �WLLUT (�S ; �) + sin � os�SWLLUL(�)= sin(�� �S) � os � Im�n 0 0++ + �n 0 00 0 �� sin �p�(1 + �) Im l 0 00+� os(2�)nos � � Imn 0 0�+ � sin �p�(1 + �) Im l 0 00+o� 2 os�nos �p�(1 + �) Imn 0 00+ + 14 sin � � Im l 0 0�+o�+ os(�� �S) �� sin(2�)nos � � Im s 0 0�+ + sin �p�(1 + �) Im l 0 00+o� 2 sin�nos �p�(1 + �) Im s 0 00+ + 14 sin � � Im l 0 0�+o�� 12 sin � sin(�S + 2�) � Im l 0 0�+ ; (7.3)os �WLTUT (�S ; �; ') + sin � os�SWLTUL (�; ')= sin(�� �S) � os(�+ ')nos �p�(1 + �) Im�n 0+0+ � n�00+�+ 12 sin � hIm�l 0+++ � l�0++ + 2�l 0+0 0 �+ � Im l 0+�+io� os(�� ')nos �p�(1 + �) Im�n 0�0+ � n+00+�+ 12 sin � hIm�l 0+++ � l�0++ + 2�l 0+0 0 �� � Im l+0�+io+os(2�+ ')nos � � Imn 0+�+ � 12 sin �p�(1 + �) Im�l 0+0+ � l�00+�o+os(2�� ')nos � � Imn+0�+ + 12 sin �p�(1 + �) Im�l 0�0+ � l+00+�o� os'nos � Im�n 0+++ � n�0++ + 2�n 0+0 0 �� 12 sin �p�(1 + �) hIm�l 0+0+ � l�00+�� Im�l 0�0+ � l+00+�io�+ os(�� �S) � sin(�+ ')nos �p�(1 + �) Im�s 0+0+ � s�00+�� 12 sin � hIm�l 0+++ � l�0++ + 2�l 0+0 0 �� � Im l 0+�+io
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� sin(�� ')nos �p�(1 + �) Im�s 0�0+ � s+00+�� 12 sin � hIm�l 0+++ � l�0++ + 2�l 0+0 0 �+ � Im l+0�+io+sin(2�+ ')nos � � Im s 0+�+ + 12 sin �p�(1 + �) Im�l 0+0+ � l�00+�o+sin(2�� ')nos � � Im s+0�+ � 12 sin �p�(1 + �) Im�l 0�0+ � l+00+�o� sin'nos � Im�s 0+++ � s�0++ + 2�s 0+0 0 �� 12 sin �p�(1 + �) hIm�l 0+0+ � l�00+�+ Im�l 0�0+ � l+00+�io�+ 12 sin � nsin(�S + 2�+ ') � Im l 0+�+ + sin(�S + 2�� ') � Im l+0�+o ; (7.4)os �W TTUT (�S ; �; ') + sin � os�SW TTUL (�; ')= sin(�� �S) �12 os � Im�n++++ + n��++ + 2�n++0 0 �� 12 sin �p�(1 + �) Im�l++0+ + l��0+�� os(2�)nos � � Imn++�+ � 12 sin �p�(1 + �) Im�l++0+ + l��0+�o� os�nos �p�(1 + �) Im�n++0+ + n��0+�+ 12 sin � � Im l++�+o+ 12 os(2�+ 2')nos � � Imn�+�+ � sin �p�(1 + �) Im l�+0+o+ 12 os(2�� 2')nos � � Imn+��+ � sin �p�(1 + �) Im l+�0+o� os(2')nos � Im�n�+++ + �n�+0 0 �� 12 sin �p�(1 + �) hIm l�+0+ + Im l+�0+io+ os(�+ 2')nos �p�(1 + �) Imn�+0+ + 14 sin � h� Im l�+�+ + 2 Im�l�+++ + �l�+0 0 �io+ os(�� 2')nos �p�(1 + �) Imn+�0+ + 14 sin � h� Im l+��+ � 2 Im�l�+++ + �l�+0 0 �io�+ os(�� �S) �� sin(2�)nos � � Im s++�+ + 12 sin �p�(1 + �) Im�l++0+ + l��0+�o� sin�nos �p�(1 + �) Im�s++0+ + s��0+�+ 12 sin � � Im l++�+o+ 12 sin(2�+ 2')nos � � Im s�+�+ + sin �p�(1 + �) Im l�+0+o+ 12 sin(2�� 2')nos � � Im s+��+ + sin �p�(1 + �) Im l+�0+o� sin(2')n os � Im�s�+++ + �s�+0 0 �� 12 sin �p�(1 + �) hIm l�+0+ � Im l+�0+io
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+ sin(�+ 2')nos �p�(1 + �) Im s�+0+ + 14 sin � h� Im l�+�+ � 2 Im�l�+++ + �l�+0 0 �io+ sin(�� 2')nos �p�(1 + �) Im s+�0+ + 14 sin � h� Im l+��+ + 2 Im�l�+++ + �l�+0 0 �io�+ 14 sin � nsin(�S + 2�+ 2') � Im l�+�+ + sin(�S + 2�� 2') � Im l+��+o� 12 sin � sin(�S + 2�) � Im l++�+ : (7.5)Compared with (4.17) and (4.18) we have hanged the order of terms suh that one readilysees whih oeÆients os � Imn or os � Im s reeive an admixture from the same oef-�ients sin � Im l . The terms in the last lines of (7.3) and (7.4) and in the last two linesof (7.5) involve only oeÆients sin � Im l . They ome with an angular dependene whihis absent for sin � = 0, as is readily seen by rewritingsin(�S + 2�+m') = � sin(�� �S) os(3�+m') + os(�� �S) sin(3� +m') : (7.6)We see in (7.3) to (7.5) that from the angular dependene of the ross setion fortransverse target polarization one an extrat linear ombinations of terms os � Imn andsin � Im l or of os � Im s and sin � Im l . To separate these terms requires an additionalmeasurement with longitudinal target polarization.6 The expressions (7.3) to (7.5) allowus to see for whih terms the admixture of sin � Im l terms an be expeted to be small, sothat Imn and Im s may be determined with reasonable auray without suh an additionalmeasurement. Let us disuss a few examples.1. The leading-twist matrix element n 0 00 0 appears in the linear ombination0 = os � Im�n 0 0++ + �n 0 00 0 �� sin �p�(1 + �) Im l 0 00+ (7.7)in (7.3) and thus has an admixture from l 0 00+ , whih involves one s-hannel heliityhanging amplitude. Aording to Setion 5 this admixture is additionally suppressedif unnatural parity exhange is small ompared with natural parity exhange. Onemay also add to 0 the angular oeÆient1 = � os � � Imn 0 0�+ + sin �p�(1 + �) Im l 0 00+ (7.8)from (7.3), thus trading the admixture of sin � l 0 00+ for an admixture of os � n 0 0�+ ,whih involves two s-hannel heliity hanging amplitudes (but laks the relativefator tan � and is not suppressed by unnatural parity exhange). We remark thatthe linear ombination of matrix elements in (5.14) orresponds to 0 � 1=�, wherel 0 00+ does not drop out. Whether 0, 0+ 1 or 0� 1=� gives the best approximationto os � � Imn 0 00 0 will thus depend on the detailed magnitude of the relevant terms.In pratie one might for instane use the di�erene between these terms as a measurefor the unertainty of this approximation.6A orresponding separation for semi-inlusive pion prodution ep! e�X has reently been performedin [31℄. { 26 {



2. The s-hannel heliity onserving matrix elements n 0+0+ in (7.4) and n++++ , n�+�+ in(7.5) ome together with terms involving at least one s-hannel heliity hangingamplitude. These admixtures should hene be negligible unless the orrespondings-hannel heliity onserving matrix element is small itself. For Imn 0+0+ this may forinstane happen beause of the relative phase between the interfering amplitudes.3. The matrix element n 0 00+ in (7.3) omes with an admixture from l 0 0�+ , whih involvestwo s-hannel heliity hanging amplitudes and should hene again be suppressed. Inaddition, one an extrat Im l 0 0�+ from the angular dependene itself, given the lastterm in (7.3). We remark that the unpolarized analog u 0 00+ of n 0 00+ has a real partwhih is experimentally seen to be nonzero [17, 19℄, providing evidene that s-hannelheliity is not stritly onserved in eletroprodution. (In the notation of Shillingand Wolf one has r500 = �p2Reu 0 00+ .)4. The only s-hannel heliity onserving matrix elements for sideways transverse targetpolarization in (7.3) to (7.5) are s 0+0+ and s�+�+ . They ome together with termsinvolving at least one s-hannel heliity hanging amplitude, so that the situationis similar to the one in point 2. Note however that in the present ase there is noadditional suppression of the admixture terms due to unnatural parity exhange,sine both s and l ontain one unnatural parity exhange amplitude.In these examples one thus has the favorable situation that the admixture from longitudinalpolarization terms is probably small and in some ases may even be removed or traded foryet smaller terms. This does not always happen: the matrix elements n 0+�+ and s 0+�+ in(7.4) reeive for instane an admixture from the s-hannel heliity onserving term l 0+0+ ,whih may not be small itself, so that from the oeÆients of sin(� � �S) os(2� + ') oros(���S) sin(2�+') one annot diretly infer on the matrix elements Imn 0+�+ or Im s 0+�+ .To make a more preise statement about their size one needs independent information onIm l 0+0+ , for instane from the positivity bound (6.9).8. A note on non-resonant ontributionsSo far we have treated the prodution of two pions in a two-step piture, where a � is �rstprodued in ep! ep� and then deays as �! �+��. For deriving the angular distributionand polarization dependene we have used that the pion pair is in the L = 1 partial wave,as an be seen in (4.3). We did however not use the narrow-width approximation forthe � or make any assumption about its line shape. In fat, our results for the angulardistribution an readily be used at any given invariant mass m�� of the pion pair, with theep ross setions on the left- and right-hand sides of (4.5) made di�erential in m��. Thespin-density matrix ���0��0;��0 and its linear ombinations u , l , s , n then depend on m�� andrefer not to �p ! �p but to �p ! �+�� p with �+�� in the L = 1 partial wave. Noexpliit referene to the � resonane needs to be made in this ase.The situation is more ompliated if one onsiders other partial waves of the pion pair,whih an arise from non-resonant prodution mehanisms. To desribe a general �+��{ 27 {



state, one should replae ���0��0;��0 with the spin-density matrix ���0;LL0��0;��0 for a pion pair withangular momentum L in the amplitude and L0 in the onjugate amplitude. One then has totake YL�('; #)Y �L0�0('; #) instead of Y1�('; #)Y �1�0('; #) in (4.3) and will obviously obtaina di�erent angular dependene of the ep ross setion. The distribution in ' and # for apion pair with L = 0; 1; 2 has been disussed in [32℄.It is quite simple to test for the presene of L = 0 or L = 2 partial waves in databy using disrete symmetry properties, and for m�� around the � mass one an expetthat partial waves with L = 3 or higher are strongly phase spae suppressed. Sine evenpartial waves of the �+�� system have harge onjugation parity C = +1 and odd partialwaves have C = �1, the interferene of L = 1 with L = 0 or L = 2 gives rise to terms inthe angular distribution whih are odd under interhange of the �+ and �� momenta, i.e.under the replaement#! � � # ; '! '+ � : (8.1)Simple examples are an angular dependene like os# or like an odd polynomial in os#.Corresponding observables provide a way to study the L = 0 and L = 2 partial waves as a\signal" interfering with the � resonane \bakground" [33, 34℄. This has been used in theexperimental analysis [35℄, whih did see suh interferene away from the � resonane peak,whereas lose to the peak the predominane of the � was too strong to observe a signi�antontribution from any partial wave with L 6= 1. If on the other hand one is interested in apreise study of the L = 1 omponent, one an eliminate its interferene with even partialwaves by symmetrizing the angular distribution aording to (8.1). One is then left withontributions from L = 0 and L = 2 in both the amplitude and its onjugate, whih shouldbe very small around the � peak.9. SummaryWe have expressed the fully di�erential ross setion for exlusive � prodution on a po-larized nuleon in terms of spin density matrix element for the subproess �p! �p. Wework in the heliity basis for both � and � and obtain very similar forms for the unpolar-ized and polarized parts of the ross setions, with the substitution rules (4.15) and (4.16).The terms for transverse target polarization normal to the hadron plane losely resemblethose for an unpolarized target, and in both ases the number of independent spin densitymatrix elements is redued if one neglets unnatural parity exhange ompared with nat-ural parity exhange. The spin density matrix elements for transverse target polarizationin the hadron plane losely resemble those for a longitudinally polarized target, with bothtypes of matrix elements involving the interferene between natural and unnatural parityexhange. We have given simple positivity bounds whih involve only matrix elements foran unpolarized target and either those for longitudinal target polarization or for transversetarget polarization normal to the hadron plane. Furthermore, we have investigated theadmixture of longitudinal target polarization relative to the virtual photon momentum fora target polarized transversely to the lepton beam. This admixture should be small forthe spin density matrix elements whih onserve s-hannel heliity in the transition from{ 28 {



� to �, but it may be important for s-hannel heliity hanging matrix elements. Finally,we have briey disussed how the results obtained in this paper an be used and extendedfor analyzing the prodution of pion pairs not assoiated with the � resonane.AknowledgmentsIt is a pleasure to thank my olleagues from HERMES for their interest in this work andfor many disussions, espeially A. Borissov, J. Dreshler, D. Hash and A. Rostomyan.I also gratefully aknowledge helpful disussions with P. Kroll and A. Sh�afer. This workis supported by the Helmholtz Assoiation, ontrat number VH-NG-004.Referenes[1℄ A. V. Radyushkin, Phys. Lett. B 385 (1996) 333 [hep-ph/9605431℄.[2℄ J. C. Collins, L. Frankfurt and M. Strikman, Phys. Rev. D 56 (1997) 2982 [hep-ph/9611433℄.[3℄ K. Goeke, M. V. Polyakov and M. Vanderhaeghen, Prog. Part. Nul. Phys. 47 (2001) 401[hep-ph/0106012℄.[4℄ F. Ellinghaus, W.-D. Nowak, A. V. Vinnikov and Z. Ye, Eur. Phys. J. C 46 (2006) 729[hep-ph/0506264℄.[5℄ X. D. Ji, Phys. Rev. Lett. 78 (1997) 610 [hep-ph/9603249℄.[6℄ M. Burkardt and G. Shnell, Phys. Rev. D 74 (2006) 013002 [hep-ph/0510249℄.[7℄ M. Burkardt, Int. J. Mod. Phys. A 18 (2003) 173 [hep-ph/0207047℄.[8℄ M. Diehl and A. V. Vinnikov, Phys. Lett. B 609 (2005) 286 [hep-ph/0412162℄.[9℄ M. Diehl, W. Kugler, A. Sh�afer and C. Weiss, Phys. Rev. D 72, 034034 (2005)[hep-ph/0506171℄.[10℄ S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 50 (2007) 829 [hep-ph/0611290℄.[11℄ V. Uleshhenko and A. Szzurek, Ata Phys. Polon. B 33 (2002) 3299 [hep-ph/0207049℄.[12℄ A. Airapetian et al. [HERMES Collab.℄, Phys. Rev. Lett. 94 (2005) 012002 [hep-ex/0408013℄.[13℄ W. Vogelsang, hep-ph/0309295; A. Metz, hep-ph/0412156.[14℄ K. Shilling and G. Wolf, Nul. Phys. B 61 (1973) 381.[15℄ H. Fraas, Annals Phys. 87 (1974) 417.[16℄ M. R. Adams et al. [E665 Collab.℄, Z. Phys. C 74 (1997) 237.[17℄ J. Breitweg et al. [ZEUS Collab.℄, Eur. Phys. J. C 12 (2000) 393 [hep-ex/9908026℄;C. Adlo� et al. [H1 Collab.℄, Eur. Phys. J. C 13 (2000) 371 [hep-ex/9902019℄.[18℄ C. Adlo� et al. [H1 Collab.℄, Phys. Lett. B 539 (2002) 25 [hep-ex/0203022℄.[19℄ A. Borissov [HERMES Collab.℄, Proeedings of \Di�ration 06", PoS (DIFF2006) 014;B. Marianski [HERMES Collab.℄, Proeedings of \DIS 2006", World Sienti�, Hakensak2007, 255{258. { 29 {



[20℄ N. d'Hose [COMPASS Collab.℄, Proeedings of \DIS 2006", World Sienti�, Hakensak2007, 259{262.[21℄ A. Bahetta, U. D'Alesio, M. Diehl and C. A. Miller, Phys. Rev. D 70 (2004) 117504[hep-ph/0410050℄.[22℄ M. Diehl and S. Sapeta, Eur. Phys. J. C 41 (2005) 515 [hep-ph/0503023℄.[23℄ P. Joos et al., Nul. Phys. B 113 (1976) 53.[24℄ S. V. Goloskokov and P. Kroll, Eur. Phys. J. C 42 (2005) 281 [hep-ph/0501242℄.[25℄ M. Vanderhaeghen, P. A. M. Guihon and M. Guidal, Phys. Rev. D 60 (1999) 094017[hep-ph/9905372℄.[26℄ D. Yu. Ivanov and R. Kirshner, Phys. Rev. D 58 (1998) 114026 [hep-ph/9807324℄.[27℄ T. Arens, O. Nahtmann, M. Diehl and P. V. Landsho�, Z. Phys. C 74 (1997) 651[hep-ph/9605376℄.[28℄ L. Mankiewiz, G. Piller and A. Radyushkin, Eur. Phys. J. C10 (1999) 307 [hep-ph/9812467℄.[29℄ S. I. Ando, J. W. Chen and C. W. Kao, Phys. Rev. D 74 (2006) 094013 [hep-ph/0602200℄;M. Diehl, A. Manashov and A. Sh�afer, Eur. Phys. J. A31 (2007) 335 [hep-ph/0611101℄.[30℄ M. Diehl, Phys. Rept. 388 (2003) 41 [hep-ph/0307382℄.[31℄ A. Airapetian et al. [HERMES Collaboration℄, Phys. Lett. B 622 (2005) 14 [hep-ex/0505042℄.[32℄ R. L. Sekulin, Nul. Phys. B 56 (1973) 227.[33℄ B. Lehmann-Dronke, A. Sh�afer, M. V. Polyakov and K. Goeke, Phys. Rev. D 63 (2001)114001 [hep-ph/0012108℄;N. Warkentin, M. Diehl, D. Yu. Ivanov and A. Sh�afer, Eur. Phys. J. A 32 (2007) 273[hep-ph/0703148℄.[34℄ P. H�agler, B. Pire, L. Szymanowski and O. V. Teryaev, Eur. Phys. J. C 26 (2002) 261[hep-ph/0207224℄.[35℄ A. Airapetian et al. [HERMES Collaboration℄, Phys. Lett. B 599 (2004) 212[hep-ex/0406052℄.

{ 30 {


