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Abstra
tWe extend the 
al
ulable analyti
 approa
h to marginal deformations re
ently developed inopen bosoni
 string �eld theory to open superstring �eld theory formulated by Berkovits. We
onstru
t analyti
 solutions to all orders in the deformation parameter when operator produ
tsmade of the marginal operator and the asso
iated super
onformal primary �eld are regular.
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1 Introdu
tionEver sin
e the analyti
 solution for ta
hyon 
ondensation in open bosoni
 string �eld theory [1℄was 
onstru
ted by S
hnabl [2℄, new analyti
 te
hnologies have been developed [3, 4, 5, 6, 7,8, 9, 10, 11, 12, 13, 14, 15℄, and analyti
 solutions for marginal deformations were re
ently
onstru
ted [16, 17℄.1 We believe that we are now in a new phase of resear
h on open string�eld theory.2Extension of these new te
hnologies to 
losed string �eld theory, however, does not seemstraightforward. The star produ
t [1℄ used in open string �eld theory has a simpler des
riptionin the 
onformal �eld theory (CFT) formulation when we use a 
oordinate 
alled the sliverframe whi
h was originally introdu
ed in [37℄. It has been an important ingredient in re
entdevelopments. Closed bosoni
 string �eld theory [38, 39, 40, 41, 42, 43℄ and heteroti
 string�eld theory [44, 45℄, however, use in�nitely many non-asso
iative string produ
ts, and we havenot found any 
oordinate where simple des
riptions of these string produ
ts are possible.On the other hand, extension to open superstring �eld theory formulated by Berkovits [46℄is promising be
ause the string produ
t used in the theory is the same as that in open bosoni
string �eld theory. In this paper we 
onstru
t analyti
 solutions for marginal deformations inopen superstring �eld theory.We �rst review the solutions for marginal deformations in open bosoni
 string �eld theory.The solutions take the form of an expansion in terms of the deformation parameter �, andanalyti
 expressions to all order in � have been derived when operator produ
ts made of themarginal operator are regular [16, 17℄. When the operator produ
t of the marginal operatorwith itself is singular, solutions were 
onstru
ted to O(�3) by regularizing the singularity andby adding 
ounterterms [17℄.The goal of this paper is to 
onstru
t analyti
 solutions in open superstring �eld theory whenoperator produ
ts made of the marginal operator and the asso
iated super
onformal primary�eld of dimension 1=2 are regular. It will be a starting point for 
onstru
ting analyti
 solutionswhen these operators have singular operator produ
ts. We �rst simplify the equation of motionfor open superstring �eld theory by �eld rede�nition. We then make an ansatz motivated bythe stru
ture of the solutions in the bosoni
 
ase and solve the equation of motion analyti
ally.The solutions in the superstring 
ase turn out to be remarkably simple and similar to those inthe bosoni
 
ase. The �nal se
tion of the paper is devoted to 
on
lusions and dis
ussion.We learned that T. Erler independently found analyti
 solutions for marginal deformationsin open superstring �eld theory [47℄ prior to our 
onstru
tion.1 For earlier study of marginal deformations in string �eld theory and related work, see [18, 19, 20, 21, 22,23, 24, 25, 26, 27, 28, 29, 30, 31, 32℄.2 See [33, 34, 35, 36℄ for reviews. 1



2 Solutions in open bosoni
 string �eld theoryIn this se
tion, we review the analyti
 solutions for marginal deformations 
onstru
ted in [16, 17℄for the open bosoni
 string. The equation of motion for open bosoni
 string �eld theory [1℄ isgiven by QB	+	2 = 0 ; (2.1)where 	 is the open string �eld and QB is the BRST operator. All the string produ
ts in thispaper are de�ned by the star produ
t [1℄. The open bosoni
 string �eld 	 has ghost number 1and is Grassmann odd. The BRST operator is Grassmann odd and is nilpotent: Q2B = 0 . It isa derivation with respe
t to the star produ
t:QB ('1 '2) = (QB'1)'2 + (�1)'1 '1 (QB '2) (2.2)for any states '1 and '2, where (�1)'1 = 1 when '1 is Grassmann even and (�1)'1 = �1 when'1 is Grassmann odd.The deformation of the boundary CFT for the open string by a matter primary �eld V ofdimension 1 is marginal to linear order in the deformation parameter. When the deformationis exa
tly marginal, we expe
t a solution of the form	� = 1Xn=1 �n	(n) ; (2.3)where � is the deformation parameter, to the nonlinear equation of motion (2.1). When operatorprodu
ts made of V are regular, analyti
 expressions of 	(n)'s were derived in [16, 17℄, and theBPZ inner produ
t h';	(n) i for a state ' in the Fo
k spa
e is given byh';	(n) i = Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 h f Æ '(0) 
V (1)B 
V (1 + t1)B 
V (1 + t1 + t2) : : :� B 
V (1 + t1 + t2 + : : :+ tn�1) iW1+t1+t2+:::+tn�1 :(2.4)We follow the notation used in [3, 10, 17℄. In parti
ular, see the beginning of se
tion 2 of [3℄ forthe relation to the notation used in [2℄. Here and in what follows we use ' to denote a generi
state in the Fo
k spa
e and '(0) to denote its 
orresponding operator in the state-operatormapping. We use the doubling tri
k in 
al
ulating CFT 
orrelation fun
tions. As in [10℄, wede�ne the oriented straight lines V �� byV �� = n z ���Re(z) = � 12 (1 + �)o ;orientation : � 12 (1 + �)� i1! � 12 (1 + �) + i1 ; (2.5)2



and the surfa
e W� 
an be represented as the region between V �0 and V +2�, where V �0 and V +2�are identi�ed by translation. The fun
tion f(z) isf(z) = 2� ar
tan z ; (2.6)and f Æ '(z) denotes the 
onformal transformation of '(z) by the map f(z). The operator Bis de�ned by B = Z dz2�i b(z) ; (2.7)and when B is lo
ated between two operators at t1 and t2 with 1=2 < t1 < t2, the 
ontour of theintegral 
an be taken to be �V +� with 2 t1� 1 < � < 2 t2� 1. The anti
ommutation relation ofB and 
(z) is fB; 
(z)g = 1 ; (2.8)and B2 = 0.The solution 
an be written more 
ompa
tly ash';	(n) i = Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 D f Æ '(0) n�2Yi=0h 
V (1 + `i)B i 
V (1 + `n�1)EW1+`n�1 ;(2.9)where `0 = 0 ; `i � iXk=1 tk for i = 1 ; 2 ; 3 ; : : : : (2.10)It 
an be further simpli�ed as 	� = 11� �Xb Jb �Xb ; (2.11)where 11� �Xb Jb � 1 + 1Xn=1 (�Xb Jb )n : (2.12)The state Xb is the same as 	(1):h';Xb i = h f Æ '(0) 
V (1) iW1 : (2.13)It solves the linearized equation of motion: QBXb = 0. The de�nition of Jb is a little involved.It is de�ned when it appears as '1 Jb '2 between two states '1 and '2 in the Fo
k spa
e. Thestring produ
t '1 Jb '2 is given byh'; '1 Jb '2 i = Z 10 dt h f Æ '(0) f1 Æ '1(0)B f1+t Æ '2(0) iW1+t ; (2.14)3



where '1(0) and '2(0) are the operators 
orresponding to the states '1 and '2, respe
tively.The map fa(z) is a 
ombination of f(z) and translation:fa(z) = 2� ar
tan z + a : (2.15)The string produ
t '1 Jb '2 is well de�ned if f1 Æ '1(0)B f1+t Æ '2(0) is regular in the limitt! 0 . In the de�nition of 	�, Jb always appears between two Xb's. Sin
e 
(1)B 
(1+ t) = 
(1)in the limit t ! 0 , the ghost part of Xb JbXb is �nite.3 Therefore, Xb JbXb is well de�ned ifthe operator produ
t V (1)V (1 + t) is regular in the limit t ! 0 . The ghost part of the state	(n) = (Xb Jb)n�1Xb is also �nite be
ause B 
(z)B = B and 
(1)B 
(1 + `n�1) = 
(1) in thelimit `n�1 ! 0 . Therefore, 	(n) is well de�ned if the operator produ
t in the matter se
torZ 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 n�1Yi=0hV (1 + `i) i (2.16)is �nite. For example, the marginal deformation asso
iated with the rolling ta
hyon and thedeformations in the light-
one dire
tions satisfy the regularity 
ondition [16, 17℄.An important property of Jb is '1 (QBJb)'2 = '1 '2 (2.17)when f1 Æ'1(0) f1+t Æ'2(0) vanishes in the limit t! 0 . Sin
e the BRST transformation of b(z)is the energy-momentum tensor T (z), the inner produ
t h'; '1 (QBJb)'2 i is given byh'; '1 (QBJb)'2 i = Z 10 dt h f Æ '(0) f1 Æ '1(0)L f1+t Æ '2(0) iW1+t ; (2.18)where L = Z dz2�i T (z) ; (2.19)and the 
ontour of the integral is the same as that of B. As dis
ussed in [3℄, an insertionof L is equivalent to taking a derivative with respe
t to t. It is analogous to the relationL0 e�tL0 = � �t e�tL0 in the standard strip 
oordinates, where L0 is the zero mode of theenergy-momentum tensor. We thus haveh'; '1 (QBJb)'2 i = Z 10 dt �t h f Æ '(0) f1 Æ '1(0) f1+t Æ '2(0) iW1+t= h f Æ '(0) f1 Æ '1(0) f2 Æ '2(0) iW2 (2.20)3 Note that fa Æ 
V (0) = 
V (a) be
ause 
V is a primary �eld of dimension 0.4



when f1 Æ '1(0) f1+t Æ '2(0) vanishes in the limit t ! 0 . This 
ompletes the proof of (2.17).When '1 = '2 = Xb, the operator produ
t 
V (1) 
V (1 + t) vanishes in the limit t ! 0 ifV (1)V (1 + t) is regular in the limit t! 0 . In the language of [17℄, '1 Jb '2 is'1 Jb '2 = Z 10 dt '1 e�(t�1)L+L (�B+L )'2 ; (2.21)and the relation (2.17) follows from fQB; B+L g = L+L .To summarize, when operator produ
ts made of V are regular, the solution (2.11) is wellde�ned, and we 
an safely use the relationsQBXb = 0 ; QBJb = 1 (2.22)for the Grassmann-odd states Xb and Jb when we 
al
ulate the BRST transformation of 	�. Itis now straightforward to 
al
ulate QB	�, and the result isQB	� = � 11� �Xb Jb �Xb 11� �Xb Jb �Xb : (2.23)We have thus shown that 	� in (2.11) satis�es the equation of motion (2.1).3 Equation of motion for open superstring �eld theoryThe equation of motion for open superstring �eld theory [46℄ is�0 ( e��QB e� ) = 0 ; (3.1)where � is the open superstring �eld. It is Grassmann even and has ghost number 0 and pi
turenumber 0. The superghost se
tor is des
ribed by �, �, and � [48, 49℄, and the zero modes of �and � are in
luded in the Hilbert spa
e. The operator �0 is the zero mode of � and a derivationwith respe
t to the star produ
t. For any states '1 and '2, we have�0 ('1 '2) = (�0 '1)'2 + (�1)'1 '1 (�0 '2) ; (3.2)as in the 
ase of QB, where (�1)'1 = 1 when '1 is Grassmann even and (�1)'1 = �1 when '1is Grassmann odd. The Grassmann-odd operator �0 is nilpotent and anti
ommutes with QB:Q2B = 0 ; �20 = 0 ; fQB; �0g = 0 : (3.3)Sin
e �0 ( e��QB e� ) = e�� [QB ( e� �0 e�� ) ℄ e� , the equation of motion 
an also be writtenas follows: QB ( e� �0 e�� ) = 0 : (3.4)5



We further simplify the equation of motion by �eld rede�nition. Sin
e the open superstring�eld � has vanishing ghost and pi
ture numbers, there is a natural 
lass of �eld rede�nitionsgiven by �new = 1Xn=1 an�nold ; (3.5)where an's are 
onstants. The map from �old to �new is well de�ned at least perturbatively.We 
hoose 1� �new = e��old ; (3.6)and the equation of motion (3.4) written in terms of �new is�QB � 11� � �0 �� = � 11� � hQB �0� + (QB � ) 11� � ( �0� ) i = 0 ; (3.7)where 11� � � 1 + 1Xn=1 �n : (3.8)In the following se
tions, we solve the equation of motion of the formQB �0� + (QB � ) 11� � ( �0 � ) = 0 ; (3.9)or QB �0� + (QB � ) ( �0� ) + 1Xn=1 (QB � )�n ( �0� ) = 0 : (3.10)4 Solutions to se
ond orderFor any marginal deformation of the boundary CFT for the open superstring, there is an as-so
iated super
onformal primary �eld V1=2 of dimension 1=2, and the marginal operator V1 ofdimension 1 is the supersymmetry transformation of V1=2. For example, V1=2 is the fermioni

oordinate  �(z) when V1 is the derivative of the bosoni
 
oordinate i �X�(z) up to a normal-ization 
onstant. In the RNS formalism, the unintegrated vertex operator in the �1 pi
ture is
e��V1=2, and the unintegrated vertex operator in the 0 pi
ture is 
V1. In open superstring �eldtheory [46℄, the solution to the linearized equation of motion QB �0 �(1) = 0 asso
iated with themarginal deformation is given by �(1) = X, where X is the state 
orresponding to the operatorV(0) = 
 �e��V1=2(0):h';X i = h f Æ '(0)V(1) iW1 = h f Æ '(0) 
 �e��V1=2(1) iW1 : (4.1)See [28℄ for some expli
it 
al
ulations in open superstring �eld theory when V1=2(z) =  �(z) .6



When the deformation is exa
tly marginal, we expe
t a solution of the form�� = 1Xn=1 �n �(n) ; (4.2)where � is the deformation parameter, to the nonlinear equation of motion (3.9). The equationfor �(2) is QB �0�(2) = � (QB �(1)) (�0�(1)) = � (QBX) (�0X) : (4.3)The right-hand side is annihilated by QB and by �0 be
ause QB�0X = 0 . In order to solve theequation for �(2), we introdu
e a state J by repla
ing b(z) in Jb for the bosoni
 
ase with �b(z).Sin
e �0 � �b(z) � I dw2�i �(w) �b(z) = b(z) (4.4)and the BRST transformation of b(z) gives the energy-momentum tensor, we expe
t that �b(z)in the superstring 
ase plays a similar role of b(z) in the bosoni
 
ase. In fa
t, the zero modeof �b(z) divided by L0 was used in the 
al
ulation of on-shell four-point amplitudes in [50℄. Weagain de�ne J when it appears as '1 J '2 between two states '1 and '2 in the Fo
k spa
e. Thestring produ
t '1 J '2 is given byh'; '1 J '2 i = Z 10 dt h f Æ '(0) f1 Æ '1(0)J f1+t Æ '2(0) iW1+t ; (4.5)where '1(0) and '2(0) are the operators 
orresponding to the states '1 and '2, respe
tively.The operator J is de�ned by J = Z dz2�i �b(z) ; (4.6)and when J is lo
ated between two operators at t1 and t2 with 1=2 < t1 < t2, the 
ontour ofthe integral 
an be taken to be �V +� with 2 t1 � 1 < � < 2 t2 � 1. As in the 
ase of Jb, thestring produ
t '1 J '2 is well de�ned if f1 Æ '1(0)J f1+t Æ '2(0) is regular in the limit t ! 0 .We also have an important relation'1 (QB �0 J )'2 = '1 '2 (4.7)if f1 Æ '1(0) f1+t Æ '2(0) vanishes in the limit t ! 0 . The proof of this relation follows fromthat of (2.17) after we use (4.4) in 
al
ulating �0J . We will dis
uss these regularity 
onditionslater and pro
eed for the moment assuming they are satis�ed. Namely, we assume that statesinvolving J are well de�ned and that we 
an use the relationsQB�0X = 0 ; QB�0J = 1 (4.8)for the Grassmann-even states X and J . 7



Motivated by the stru
ture of the solutions in the bosoni
 
ase, we look for a solution whi
h
onsists of X J X, QB, and �0 to the equation (4.3) for �(2). There are nine possible states:(QB�0X) J X = 0 ; (QBX) (�0J)X ; (QBX) J (�0X) ;(�0X) (QBJ)X ; X (QB�0J)X = X2 ; X (QBJ) (�0X) ;(�0X) J (QBX) ; X (�0J) (QBX) ; X J (QB�0X) = 0 : (4.9)Two of them vanish and one of them redu
es to X2. We then 
al
ulate the a
tion of QB�0 onthe nonvanishing states:QB�0 [ (QBX) (�0J)X ℄ = � (QBX) (�0X) ;QB�0 [ (QBX) J (�0X) ℄ = (QBX) (�0X) ;QB�0 [ (�0X) (QBJ)X ℄ = � (�0X) (QBX) ;QB�0 [X (QB�0J)X ℄ = � (�0X) (QBX) + (QBX) (�0X) ;QB�0 [X (QBJ) (�0X) ℄ = � (QBX) (�0X) ;QB�0 [ (�0X) J (QBX) ℄ = (�0X) (QBX) ;QB�0 [X (�0J) (QBX) ℄ = � (�0X) (QBX) : (4.10)
We thus �nd that (QBX) (�0J)X, � (QBX) J (�0X), and X (QBJ) (�0X) solve the equa-tion (4.3) for �(2). We 
an also take an appropriate linear 
ombination of the seven states, anddi�erent solutions should be related by gauge transformations. We 
hoose�(2) = (QBX) (�0J)X (4.11)and 
onsider its extension to �(n) in the next se
tion.5 Solutions in open superstring �eld theoryRemarkably, a simple extension of �(2) in (4.11) solves the equation of motion (3.9) to all ordersin �. A solution is given by�(3) = (QBX) (�0J) (QBX) (�0J)X ;�(4) = (QBX) (�0J) (QBX) (�0J) (QBX) (�0J)X ;...�(n) = [ (QBX) (�0J) ℄n�1X ; (5.1)or �� = 11� � (QBX) (�0J) �X ; (5.2)8



where 11� � (QBX) (�0J) � 1 + 1Xn=1 [� (QBX) (�0J) ℄n : (5.3)Let us now show that �� given by (5.2) satis�es the equation of motion (3.9). Sin
e QBXand �0J are annihilated by �0, the state �0 �� is given by�0�� = 11� � (QBX) (�0J) � (�0X) : (5.4)For the 
al
ulation of QB ��, we use QB [ (QBX) (�0J) ℄ = �QBX to �ndQB 11� � (QBX) (�0J) = � 11� � (QBX) (�0J) � (QBX) 11� � (QBX) (�0J) : (5.5)The state QB �� is given byQB �� =� 11� � (QBX) (�0J) � (QBX) 11� � (QBX) (�0J) �X+ 11� � (QBX) (�0J) � (QBX)= 11� � (QBX) (�0J) � (QBX) h 1� 11� � (QBX) (�0J) �X i : (5.6)
Note that (QB �� ) 11� �� = 11� � (QBX) (�0J) � (QBX) : (5.7)Finally, QB �0�� is given byQB �0�� = � 11� � (QBX) (�0J) � (QBX) 11� � (QBX) (�0J) � (�0X) : (5.8)We have thus shown that �� given by (5.2) satis�es the equation of motion (3.9).An expli
it expression of �(n) in the CFT formulation is given byh';�(n) i = Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 D f Æ '(0) n�2Yi=0hQB � V(1 + `i)B iV(1 + `n�1)EW1+`n�1 ;(5.9)where the BRST transformation of V isQB � V(z) = 
V1(z) + �e�V1=2(z) : (5.10)Note that J in J has been repla
ed by B in �0J be
ause of (4.4). The term �e�V1=2(1 + `i) inQB � V(1 + `i) does not 
ontribute when i = 1; 2; : : : ; n � 2 be
ause B2 = 0 . By repeatedly9



using B 
(z)B = B, we �ndh';�(n) i = Z dn�1tD f Æ '(0) 
V1(1)B n�2Yi=1hV1(1 + `i) i 
 �e��V1=2(1 + `n�1)EW1+`n�1+ Z dn�1tD f Æ '(0) �e�V1=2(1)B n�2Yi=1hV1(1 + `i) i 
 �e��V1=2(1 + `n�1)EW1+`n�1 ;(5.11)where we have de�ned Z dn�1t � Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 : (5.12)We 
an also 
onstru
t a di�erent solution if we 
hoose �(2) to be X (QBJ) (�0X). It is easyto show that �� given by �� = �X 11� � (QBJ) (�0X) (5.13)satis�es the equation of motion (3.9). It is also straightforward to 
onstru
t analyti
 solutionsbased on star-algebra proje
tors other than the sliver state using the method in [10℄.6 Regularity 
onditionsIn the proof that the solution (5.2) satis�es the equation of motion (3.9), we used the followingrelations: (QBX) (QB�0J)X = (QBX)X ;(QBX) (QB�0J) (QBX) = (QBX) (QBX) ;(QBX) (QB�0J) (�0X) = (QBX) (�0X) : (6.1)Let us study the 
onditions for these relations to hold. Sin
e�0 � V(z) = �0 � [ 
�e��V1=2(z) ℄ = �
e��V1=2(z) ;QB � V(z) = QB � [ 
�e��V1=2(z) ℄ = 
V1(z) + �e�V1=2(z) ; (6.2)and V, QB � V, and �0 � V are all primary �elds of dimension 0, the 
ondition for (4.7) giveslimw!z [ 
V1(z) + �e�V1=2(z) ℄ 
�e��V1=2(w) = 0 ;limw!z [ 
V1(z) + �e�V1=2(z) ℄ [ 
V1(w) + �e�V1=2(w) ℄ = 0 ;limw!z [ 
V1(z) + �e�V1=2(z) ℄ 
e��V1=2(w) = 0 : (6.3)These are satis�ed if the operator produ
ts V1(z)V1=2(w) and V1(z)V1(w) are regular in thelimit w ! z, and V1=2(z)V1=2(w) vanishes in the limit w ! z. The vertex operator V1=2(z) is10



Grassmann odd so that the last 
ondition is satis�ed if the operator produ
t V1=2(z)V1=2(w)is not singular. To summarize, the equation of motion is satis�ed if the operator produ
tsV1(z)V1=2(w), V1(z)V1(w), and V1=2(z)V1=2(w) are regular in the limit w! z.Let us next 
onsider if the solution itself is �nite and if any intermediate steps in the proofare well de�ned. The expressions 
an be divergent when two or more operators 
ollide, but ifthe states[ (QBX) (�0J) ℄n�1X ; [ (QBX) (�0J) ℄n�1 (QBX) ; [ (QBX) (�0J) ℄n�1 (�0X) (6.4)for any positive integer n are �nite, the solution and any intermediate steps in the proofare well de�ned. An expli
it expression of �(n) = [ (QBX) (�0J) ℄n�1X has been presentedin (5.11). Expressions of [ (QBX) (�0J) ℄n�1 (QBX) and [ (QBX) (�0J) ℄n�1 (�0X) 
an be ob-tained from (5.11) by repla
ing 
 �e��V1=2(1 + `n�1) with 
V1(1 + `n�1) + �e�V1=2(1 + `n�1) andwith �
e��V1=2(1+ `n�1) , respe
tively. The b
 ghost se
tor is �nite be
ause 
(z)B 
(w) is �nitein the limit w ! z. The superghost se
tor is also �nite be
ause �e�(1) �e��(1 + `n�1) and�e�(1) �e�(1 + `n�1) are �nite in the limit `n�1 ! 0. Therefore, all the expressions are wellde�ned if the 
ontributions from the matter se
tor listed below are �nite:Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 n�1Yi=0hV1(1 + `i) i ;Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 V1=2(1) n�1Yi=1hV1(1 + `i) i ;Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 n�2Yi=0hV1(1 + `i) iV1=2(1 + `n�1) ;Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 V1=2(1) n�2Yi=1hV1(1 + `i) iV1=2(1 + `n�1) ;
(6.5)

where `i was de�ned in (2.10). To summarize, if operator produ
ts of an arbitrary numberof V1's and at most two V1=2's are regular, the solution (5.2) is well de�ned and satis�es theequation of motion (3.9).7 Con
lusions and dis
ussionWe have 
onstru
ted analyti
 solutions for marginal deformations in open superstring �eldtheory when operator produ
ts made of V1's and V1=2's are regular. Our solutions are verysimple and remarkably similar to the solutions in the bosoni
 
ase [16, 17℄. We expe
t thatthere will be further progress of analyti
 methods in open superstring �eld theory.11



It would be interesting to study the rolling ta
hyon in open superstring �eld theory, andwe expe
t that marginal deformations asso
iated with the rolling ta
hyon solutions satisfythe regularity 
onditions dis
ussed in the pre
eding se
tion. However, deformations we areinterested in typi
ally have singular operator produ
ts of the marginal operator. In the bosoni

ase, solutions to third order in � have been 
onstru
ted when the operator produ
t of themarginal operator is singular [17℄. We hope that a pro
edure similar to the one developed inthe bosoni
 
ase will work in the superstring 
ase, and it is important to 
arry out the programto all orders in the deformation parameter.Our 
hoi
e of �(2) in (4.11) was based on a te
hni
al reason, and it is not 
lear if thisgauge 
hoi
e is physi
ally suitable. In parti
ular, the solution �� in (5.2) does not satisfy thereality 
ondition on the string �eld. However, it is diÆ
ult for us to imagine that there are twoinequivalent solutions generated by a single marginal operator whi
h 
oin
ide to linear order in�, and we expe
t that our solution is related to a real one by a gauge transformation. In fa
t,we 
an expli
itly 
on�rm this at O(�2). In order to see this, it is useful to write the solution inthe original de�nition of the string �eld by inverting the �eld rede�nition (3.6):�old = � ln ( 1� �new ) = 1Xn=1 1n �nnew : (7.1)We expand �old in powers of � as �old = 1Xn=1 �n �(n)old ; (7.2)and then �(2)old is given by�(2)old = �(2)new + 12 (�(1)new)2 = (QBX) (�0J)X + 12 X2 : (7.3)The string �eld �(2)old does not satisfy the reality 
ondition.4 However, there is another solutionwhi
h satis�es the reality 
ondition given by12 [ (QBX) (�0J)X +X (�0J) (QBX) ℄ ; (7.4)and the di�eren
e between (7.3) and (7.4) is(QBX) (�0J)X + 12 X2 � 12 [ (QBX) (�0J)X +X (�0J) (QBX) ℄ = 12 QB [X (�0J)X ℄ (7.5)4 A string �eld within our ansatz satis�es the reality 
ondition when it is odd under the 
onjugation given byrepla
ing X ! �X and by reversing the order of string produ
ts. Signs from anti
ommuting Grassmann-oddstring �elds have to be taken 
are of in reversing the order of string produ
ts.12



and 
an be eliminated by a gauge transformation. The open superstring �eld theory formulatedby Berkovits 
an also be used to des
ribe the N = 2 string by repla
ing QB and �0 with thegenerators in the N = 2 string [46℄, but the reality 
ondition on the string �eld for the N = 2string does not seem to be satis�ed for �� in (5.2) either.5 The 
onjugation in [46℄ seems to map�� in (5.2) to �� in (5.13). We again expe
t that our solution is related to a solution satisfyingthe reality 
ondition by a gauge transformation. For example, � (QBX) J (�0X), whi
h isanother solution to the equation for �(2), seems to satisfy the reality 
ondition, and the di�eren
ebetween �(QBX) J (�0X) and �(2) in (4.11) is �0 [ (QBX) J X ℄ and 
an be eliminated by a gaugetransformation generated by �0. We have also found that (QBX) (QBJ)X (�0J) (�0X), whi
hseems to satisfy the reality 
ondition, solves the equation for �(3) when �(2) is �(QBX) J (�0X),but we have not been able to extend the solution to all orders in �. We think that there isa good 
han
e that solutions satisfying the reality 
ondition for the ordinary superstring orfor the N = 2 string 
an be found within our ansatz, and it would be desirable to have theirexpli
it expressions. On the other hand, we believe that the solution in (5.2) has an advantagebe
ause the a
tions of QB and �0 on (5.2) are very simple.It has been expe
ted that the moduli spa
e of D-branes are reprodu
ed by the moduli spa
eof solutions to open string �eld theory, and we think that our approa
h provides a 
on
rete setupto address this question. We have seen a one-to-one 
orresponden
e between the 
ondition forexa
t marginality in boundary CFT [51℄ and the absen
e of obstru
tion in solving the equationof motion for string �eld theory at O(�2) in the bosoni
 
ase [17℄. It would be important to studythe 
orresponden
e at higher orders and in the superstring 
ase, and a better understandingof the 
orresponden
e might help us 
omplete the program of 
onstru
ting solutions when theoperator produ
t of the marginal operator is singular. We hope that further developmentsin this subje
t will shed light on more 
on
eptual issus in string theory su
h as ba
kgroundindependen
e or the question why the 
ondition that the � fun
tion vanishes in the world-sheettheory gives the equation of motion in the spa
etime theory.Note addedAfter the �rst version of this paper was submitted to arXiv, we found analyti
 solutionssatisfying the reality 
ondition [52℄. We also learned that T. Erler independently 
onstru
tedanalyti
 solutions satisfying the reality 
ondition, whi
h were presented in the se
ond versionof [47℄.5 Our understanding is that the 
onjugation in [46℄ is given by repla
ing X ! X , J ! �J , QB ! �0,and �0 ! QB and by reversing the order of string produ
ts, and the string �eld should be even under the
onjugation. Again signs from anti
ommuting Grassmann-odd string �elds have to be taken 
are of in reversingthe order of string produ
ts. The string �eld �new in (3.6) is real when �old is real with respe
t to this reality
ondition, while this is not the 
ase for the reality 
ondition for the ordinary superstring dis
ussed earlier.13
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