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1 IntrodutionEver sine the analyti solution for tahyon ondensation in open bosoni string �eld theory [1℄was onstruted by Shnabl [2℄, new analyti tehnologies have been developed [3, 4, 5, 6, 7,8, 9, 10, 11, 12, 13, 14, 15℄, and analyti solutions for marginal deformations were reentlyonstruted [16, 17℄.1 We believe that we are now in a new phase of researh on open string�eld theory.2Extension of these new tehnologies to losed string �eld theory, however, does not seemstraightforward. The star produt [1℄ used in open string �eld theory has a simpler desriptionin the onformal �eld theory (CFT) formulation when we use a oordinate alled the sliverframe whih was originally introdued in [37℄. It has been an important ingredient in reentdevelopments. Closed bosoni string �eld theory [38, 39, 40, 41, 42, 43℄ and heteroti string�eld theory [44, 45℄, however, use in�nitely many non-assoiative string produts, and we havenot found any oordinate where simple desriptions of these string produts are possible.On the other hand, extension to open superstring �eld theory formulated by Berkovits [46℄is promising beause the string produt used in the theory is the same as that in open bosonistring �eld theory. In this paper we onstrut analyti solutions for marginal deformations inopen superstring �eld theory.We �rst review the solutions for marginal deformations in open bosoni string �eld theory.The solutions take the form of an expansion in terms of the deformation parameter �, andanalyti expressions to all order in � have been derived when operator produts made of themarginal operator are regular [16, 17℄. When the operator produt of the marginal operatorwith itself is singular, solutions were onstruted to O(�3) by regularizing the singularity andby adding ounterterms [17℄.The goal of this paper is to onstrut analyti solutions in open superstring �eld theory whenoperator produts made of the marginal operator and the assoiated superonformal primary�eld of dimension 1=2 are regular. It will be a starting point for onstruting analyti solutionswhen these operators have singular operator produts. We �rst simplify the equation of motionfor open superstring �eld theory by �eld rede�nition. We then make an ansatz motivated bythe struture of the solutions in the bosoni ase and solve the equation of motion analytially.The solutions in the superstring ase turn out to be remarkably simple and similar to those inthe bosoni ase. The �nal setion of the paper is devoted to onlusions and disussion.We learned that T. Erler independently found analyti solutions for marginal deformationsin open superstring �eld theory [47℄ prior to our onstrution.1 For earlier study of marginal deformations in string �eld theory and related work, see [18, 19, 20, 21, 22,23, 24, 25, 26, 27, 28, 29, 30, 31, 32℄.2 See [33, 34, 35, 36℄ for reviews. 1



2 Solutions in open bosoni string �eld theoryIn this setion, we review the analyti solutions for marginal deformations onstruted in [16, 17℄for the open bosoni string. The equation of motion for open bosoni string �eld theory [1℄ isgiven by QB	+	2 = 0 ; (2.1)where 	 is the open string �eld and QB is the BRST operator. All the string produts in thispaper are de�ned by the star produt [1℄. The open bosoni string �eld 	 has ghost number 1and is Grassmann odd. The BRST operator is Grassmann odd and is nilpotent: Q2B = 0 . It isa derivation with respet to the star produt:QB ('1 '2) = (QB'1)'2 + (�1)'1 '1 (QB '2) (2.2)for any states '1 and '2, where (�1)'1 = 1 when '1 is Grassmann even and (�1)'1 = �1 when'1 is Grassmann odd.The deformation of the boundary CFT for the open string by a matter primary �eld V ofdimension 1 is marginal to linear order in the deformation parameter. When the deformationis exatly marginal, we expet a solution of the form	� = 1Xn=1 �n	(n) ; (2.3)where � is the deformation parameter, to the nonlinear equation of motion (2.1). When operatorproduts made of V are regular, analyti expressions of 	(n)'s were derived in [16, 17℄, and theBPZ inner produt h';	(n) i for a state ' in the Fok spae is given byh';	(n) i = Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 h f Æ '(0) V (1)B V (1 + t1)B V (1 + t1 + t2) : : :� B V (1 + t1 + t2 + : : :+ tn�1) iW1+t1+t2+:::+tn�1 :(2.4)We follow the notation used in [3, 10, 17℄. In partiular, see the beginning of setion 2 of [3℄ forthe relation to the notation used in [2℄. Here and in what follows we use ' to denote a generistate in the Fok spae and '(0) to denote its orresponding operator in the state-operatormapping. We use the doubling trik in alulating CFT orrelation funtions. As in [10℄, wede�ne the oriented straight lines V �� byV �� = n z ���Re(z) = � 12 (1 + �)o ;orientation : � 12 (1 + �)� i1! � 12 (1 + �) + i1 ; (2.5)2



and the surfae W� an be represented as the region between V �0 and V +2�, where V �0 and V +2�are identi�ed by translation. The funtion f(z) isf(z) = 2� artan z ; (2.6)and f Æ '(z) denotes the onformal transformation of '(z) by the map f(z). The operator Bis de�ned by B = Z dz2�i b(z) ; (2.7)and when B is loated between two operators at t1 and t2 with 1=2 < t1 < t2, the ontour of theintegral an be taken to be �V +� with 2 t1� 1 < � < 2 t2� 1. The antiommutation relation ofB and (z) is fB; (z)g = 1 ; (2.8)and B2 = 0.The solution an be written more ompatly ash';	(n) i = Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 D f Æ '(0) n�2Yi=0h V (1 + `i)B i V (1 + `n�1)EW1+`n�1 ;(2.9)where `0 = 0 ; `i � iXk=1 tk for i = 1 ; 2 ; 3 ; : : : : (2.10)It an be further simpli�ed as 	� = 11� �Xb Jb �Xb ; (2.11)where 11� �Xb Jb � 1 + 1Xn=1 (�Xb Jb )n : (2.12)The state Xb is the same as 	(1):h';Xb i = h f Æ '(0) V (1) iW1 : (2.13)It solves the linearized equation of motion: QBXb = 0. The de�nition of Jb is a little involved.It is de�ned when it appears as '1 Jb '2 between two states '1 and '2 in the Fok spae. Thestring produt '1 Jb '2 is given byh'; '1 Jb '2 i = Z 10 dt h f Æ '(0) f1 Æ '1(0)B f1+t Æ '2(0) iW1+t ; (2.14)3



where '1(0) and '2(0) are the operators orresponding to the states '1 and '2, respetively.The map fa(z) is a ombination of f(z) and translation:fa(z) = 2� artan z + a : (2.15)The string produt '1 Jb '2 is well de�ned if f1 Æ '1(0)B f1+t Æ '2(0) is regular in the limitt! 0 . In the de�nition of 	�, Jb always appears between two Xb's. Sine (1)B (1+ t) = (1)in the limit t ! 0 , the ghost part of Xb JbXb is �nite.3 Therefore, Xb JbXb is well de�ned ifthe operator produt V (1)V (1 + t) is regular in the limit t ! 0 . The ghost part of the state	(n) = (Xb Jb)n�1Xb is also �nite beause B (z)B = B and (1)B (1 + `n�1) = (1) in thelimit `n�1 ! 0 . Therefore, 	(n) is well de�ned if the operator produt in the matter setorZ 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 n�1Yi=0hV (1 + `i) i (2.16)is �nite. For example, the marginal deformation assoiated with the rolling tahyon and thedeformations in the light-one diretions satisfy the regularity ondition [16, 17℄.An important property of Jb is '1 (QBJb)'2 = '1 '2 (2.17)when f1 Æ'1(0) f1+t Æ'2(0) vanishes in the limit t! 0 . Sine the BRST transformation of b(z)is the energy-momentum tensor T (z), the inner produt h'; '1 (QBJb)'2 i is given byh'; '1 (QBJb)'2 i = Z 10 dt h f Æ '(0) f1 Æ '1(0)L f1+t Æ '2(0) iW1+t ; (2.18)where L = Z dz2�i T (z) ; (2.19)and the ontour of the integral is the same as that of B. As disussed in [3℄, an insertionof L is equivalent to taking a derivative with respet to t. It is analogous to the relationL0 e�tL0 = � �t e�tL0 in the standard strip oordinates, where L0 is the zero mode of theenergy-momentum tensor. We thus haveh'; '1 (QBJb)'2 i = Z 10 dt �t h f Æ '(0) f1 Æ '1(0) f1+t Æ '2(0) iW1+t= h f Æ '(0) f1 Æ '1(0) f2 Æ '2(0) iW2 (2.20)3 Note that fa Æ V (0) = V (a) beause V is a primary �eld of dimension 0.4



when f1 Æ '1(0) f1+t Æ '2(0) vanishes in the limit t ! 0 . This ompletes the proof of (2.17).When '1 = '2 = Xb, the operator produt V (1) V (1 + t) vanishes in the limit t ! 0 ifV (1)V (1 + t) is regular in the limit t! 0 . In the language of [17℄, '1 Jb '2 is'1 Jb '2 = Z 10 dt '1 e�(t�1)L+L (�B+L )'2 ; (2.21)and the relation (2.17) follows from fQB; B+L g = L+L .To summarize, when operator produts made of V are regular, the solution (2.11) is wellde�ned, and we an safely use the relationsQBXb = 0 ; QBJb = 1 (2.22)for the Grassmann-odd states Xb and Jb when we alulate the BRST transformation of 	�. Itis now straightforward to alulate QB	�, and the result isQB	� = � 11� �Xb Jb �Xb 11� �Xb Jb �Xb : (2.23)We have thus shown that 	� in (2.11) satis�es the equation of motion (2.1).3 Equation of motion for open superstring �eld theoryThe equation of motion for open superstring �eld theory [46℄ is�0 ( e��QB e� ) = 0 ; (3.1)where � is the open superstring �eld. It is Grassmann even and has ghost number 0 and piturenumber 0. The superghost setor is desribed by �, �, and � [48, 49℄, and the zero modes of �and � are inluded in the Hilbert spae. The operator �0 is the zero mode of � and a derivationwith respet to the star produt. For any states '1 and '2, we have�0 ('1 '2) = (�0 '1)'2 + (�1)'1 '1 (�0 '2) ; (3.2)as in the ase of QB, where (�1)'1 = 1 when '1 is Grassmann even and (�1)'1 = �1 when '1is Grassmann odd. The Grassmann-odd operator �0 is nilpotent and antiommutes with QB:Q2B = 0 ; �20 = 0 ; fQB; �0g = 0 : (3.3)Sine �0 ( e��QB e� ) = e�� [QB ( e� �0 e�� ) ℄ e� , the equation of motion an also be writtenas follows: QB ( e� �0 e�� ) = 0 : (3.4)5



We further simplify the equation of motion by �eld rede�nition. Sine the open superstring�eld � has vanishing ghost and piture numbers, there is a natural lass of �eld rede�nitionsgiven by �new = 1Xn=1 an�nold ; (3.5)where an's are onstants. The map from �old to �new is well de�ned at least perturbatively.We hoose 1� �new = e��old ; (3.6)and the equation of motion (3.4) written in terms of �new is�QB � 11� � �0 �� = � 11� � hQB �0� + (QB � ) 11� � ( �0� ) i = 0 ; (3.7)where 11� � � 1 + 1Xn=1 �n : (3.8)In the following setions, we solve the equation of motion of the formQB �0� + (QB � ) 11� � ( �0 � ) = 0 ; (3.9)or QB �0� + (QB � ) ( �0� ) + 1Xn=1 (QB � )�n ( �0� ) = 0 : (3.10)4 Solutions to seond orderFor any marginal deformation of the boundary CFT for the open superstring, there is an as-soiated superonformal primary �eld V1=2 of dimension 1=2, and the marginal operator V1 ofdimension 1 is the supersymmetry transformation of V1=2. For example, V1=2 is the fermionioordinate  �(z) when V1 is the derivative of the bosoni oordinate i �X�(z) up to a normal-ization onstant. In the RNS formalism, the unintegrated vertex operator in the �1 piture ise��V1=2, and the unintegrated vertex operator in the 0 piture is V1. In open superstring �eldtheory [46℄, the solution to the linearized equation of motion QB �0 �(1) = 0 assoiated with themarginal deformation is given by �(1) = X, where X is the state orresponding to the operatorV(0) =  �e��V1=2(0):h';X i = h f Æ '(0)V(1) iW1 = h f Æ '(0)  �e��V1=2(1) iW1 : (4.1)See [28℄ for some expliit alulations in open superstring �eld theory when V1=2(z) =  �(z) .6



When the deformation is exatly marginal, we expet a solution of the form�� = 1Xn=1 �n �(n) ; (4.2)where � is the deformation parameter, to the nonlinear equation of motion (3.9). The equationfor �(2) is QB �0�(2) = � (QB �(1)) (�0�(1)) = � (QBX) (�0X) : (4.3)The right-hand side is annihilated by QB and by �0 beause QB�0X = 0 . In order to solve theequation for �(2), we introdue a state J by replaing b(z) in Jb for the bosoni ase with �b(z).Sine �0 � �b(z) � I dw2�i �(w) �b(z) = b(z) (4.4)and the BRST transformation of b(z) gives the energy-momentum tensor, we expet that �b(z)in the superstring ase plays a similar role of b(z) in the bosoni ase. In fat, the zero modeof �b(z) divided by L0 was used in the alulation of on-shell four-point amplitudes in [50℄. Weagain de�ne J when it appears as '1 J '2 between two states '1 and '2 in the Fok spae. Thestring produt '1 J '2 is given byh'; '1 J '2 i = Z 10 dt h f Æ '(0) f1 Æ '1(0)J f1+t Æ '2(0) iW1+t ; (4.5)where '1(0) and '2(0) are the operators orresponding to the states '1 and '2, respetively.The operator J is de�ned by J = Z dz2�i �b(z) ; (4.6)and when J is loated between two operators at t1 and t2 with 1=2 < t1 < t2, the ontour ofthe integral an be taken to be �V +� with 2 t1 � 1 < � < 2 t2 � 1. As in the ase of Jb, thestring produt '1 J '2 is well de�ned if f1 Æ '1(0)J f1+t Æ '2(0) is regular in the limit t ! 0 .We also have an important relation'1 (QB �0 J )'2 = '1 '2 (4.7)if f1 Æ '1(0) f1+t Æ '2(0) vanishes in the limit t ! 0 . The proof of this relation follows fromthat of (2.17) after we use (4.4) in alulating �0J . We will disuss these regularity onditionslater and proeed for the moment assuming they are satis�ed. Namely, we assume that statesinvolving J are well de�ned and that we an use the relationsQB�0X = 0 ; QB�0J = 1 (4.8)for the Grassmann-even states X and J . 7



Motivated by the struture of the solutions in the bosoni ase, we look for a solution whihonsists of X J X, QB, and �0 to the equation (4.3) for �(2). There are nine possible states:(QB�0X) J X = 0 ; (QBX) (�0J)X ; (QBX) J (�0X) ;(�0X) (QBJ)X ; X (QB�0J)X = X2 ; X (QBJ) (�0X) ;(�0X) J (QBX) ; X (�0J) (QBX) ; X J (QB�0X) = 0 : (4.9)Two of them vanish and one of them redues to X2. We then alulate the ation of QB�0 onthe nonvanishing states:QB�0 [ (QBX) (�0J)X ℄ = � (QBX) (�0X) ;QB�0 [ (QBX) J (�0X) ℄ = (QBX) (�0X) ;QB�0 [ (�0X) (QBJ)X ℄ = � (�0X) (QBX) ;QB�0 [X (QB�0J)X ℄ = � (�0X) (QBX) + (QBX) (�0X) ;QB�0 [X (QBJ) (�0X) ℄ = � (QBX) (�0X) ;QB�0 [ (�0X) J (QBX) ℄ = (�0X) (QBX) ;QB�0 [X (�0J) (QBX) ℄ = � (�0X) (QBX) : (4.10)
We thus �nd that (QBX) (�0J)X, � (QBX) J (�0X), and X (QBJ) (�0X) solve the equa-tion (4.3) for �(2). We an also take an appropriate linear ombination of the seven states, anddi�erent solutions should be related by gauge transformations. We hoose�(2) = (QBX) (�0J)X (4.11)and onsider its extension to �(n) in the next setion.5 Solutions in open superstring �eld theoryRemarkably, a simple extension of �(2) in (4.11) solves the equation of motion (3.9) to all ordersin �. A solution is given by�(3) = (QBX) (�0J) (QBX) (�0J)X ;�(4) = (QBX) (�0J) (QBX) (�0J) (QBX) (�0J)X ;...�(n) = [ (QBX) (�0J) ℄n�1X ; (5.1)or �� = 11� � (QBX) (�0J) �X ; (5.2)8



where 11� � (QBX) (�0J) � 1 + 1Xn=1 [� (QBX) (�0J) ℄n : (5.3)Let us now show that �� given by (5.2) satis�es the equation of motion (3.9). Sine QBXand �0J are annihilated by �0, the state �0 �� is given by�0�� = 11� � (QBX) (�0J) � (�0X) : (5.4)For the alulation of QB ��, we use QB [ (QBX) (�0J) ℄ = �QBX to �ndQB 11� � (QBX) (�0J) = � 11� � (QBX) (�0J) � (QBX) 11� � (QBX) (�0J) : (5.5)The state QB �� is given byQB �� =� 11� � (QBX) (�0J) � (QBX) 11� � (QBX) (�0J) �X+ 11� � (QBX) (�0J) � (QBX)= 11� � (QBX) (�0J) � (QBX) h 1� 11� � (QBX) (�0J) �X i : (5.6)
Note that (QB �� ) 11� �� = 11� � (QBX) (�0J) � (QBX) : (5.7)Finally, QB �0�� is given byQB �0�� = � 11� � (QBX) (�0J) � (QBX) 11� � (QBX) (�0J) � (�0X) : (5.8)We have thus shown that �� given by (5.2) satis�es the equation of motion (3.9).An expliit expression of �(n) in the CFT formulation is given byh';�(n) i = Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 D f Æ '(0) n�2Yi=0hQB � V(1 + `i)B iV(1 + `n�1)EW1+`n�1 ;(5.9)where the BRST transformation of V isQB � V(z) = V1(z) + �e�V1=2(z) : (5.10)Note that J in J has been replaed by B in �0J beause of (4.4). The term �e�V1=2(1 + `i) inQB � V(1 + `i) does not ontribute when i = 1; 2; : : : ; n � 2 beause B2 = 0 . By repeatedly9



using B (z)B = B, we �ndh';�(n) i = Z dn�1tD f Æ '(0) V1(1)B n�2Yi=1hV1(1 + `i) i  �e��V1=2(1 + `n�1)EW1+`n�1+ Z dn�1tD f Æ '(0) �e�V1=2(1)B n�2Yi=1hV1(1 + `i) i  �e��V1=2(1 + `n�1)EW1+`n�1 ;(5.11)where we have de�ned Z dn�1t � Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 : (5.12)We an also onstrut a di�erent solution if we hoose �(2) to be X (QBJ) (�0X). It is easyto show that �� given by �� = �X 11� � (QBJ) (�0X) (5.13)satis�es the equation of motion (3.9). It is also straightforward to onstrut analyti solutionsbased on star-algebra projetors other than the sliver state using the method in [10℄.6 Regularity onditionsIn the proof that the solution (5.2) satis�es the equation of motion (3.9), we used the followingrelations: (QBX) (QB�0J)X = (QBX)X ;(QBX) (QB�0J) (QBX) = (QBX) (QBX) ;(QBX) (QB�0J) (�0X) = (QBX) (�0X) : (6.1)Let us study the onditions for these relations to hold. Sine�0 � V(z) = �0 � [ �e��V1=2(z) ℄ = �e��V1=2(z) ;QB � V(z) = QB � [ �e��V1=2(z) ℄ = V1(z) + �e�V1=2(z) ; (6.2)and V, QB � V, and �0 � V are all primary �elds of dimension 0, the ondition for (4.7) giveslimw!z [ V1(z) + �e�V1=2(z) ℄ �e��V1=2(w) = 0 ;limw!z [ V1(z) + �e�V1=2(z) ℄ [ V1(w) + �e�V1=2(w) ℄ = 0 ;limw!z [ V1(z) + �e�V1=2(z) ℄ e��V1=2(w) = 0 : (6.3)These are satis�ed if the operator produts V1(z)V1=2(w) and V1(z)V1(w) are regular in thelimit w ! z, and V1=2(z)V1=2(w) vanishes in the limit w ! z. The vertex operator V1=2(z) is10



Grassmann odd so that the last ondition is satis�ed if the operator produt V1=2(z)V1=2(w)is not singular. To summarize, the equation of motion is satis�ed if the operator produtsV1(z)V1=2(w), V1(z)V1(w), and V1=2(z)V1=2(w) are regular in the limit w! z.Let us next onsider if the solution itself is �nite and if any intermediate steps in the proofare well de�ned. The expressions an be divergent when two or more operators ollide, but ifthe states[ (QBX) (�0J) ℄n�1X ; [ (QBX) (�0J) ℄n�1 (QBX) ; [ (QBX) (�0J) ℄n�1 (�0X) (6.4)for any positive integer n are �nite, the solution and any intermediate steps in the proofare well de�ned. An expliit expression of �(n) = [ (QBX) (�0J) ℄n�1X has been presentedin (5.11). Expressions of [ (QBX) (�0J) ℄n�1 (QBX) and [ (QBX) (�0J) ℄n�1 (�0X) an be ob-tained from (5.11) by replaing  �e��V1=2(1 + `n�1) with V1(1 + `n�1) + �e�V1=2(1 + `n�1) andwith �e��V1=2(1+ `n�1) , respetively. The b ghost setor is �nite beause (z)B (w) is �nitein the limit w ! z. The superghost setor is also �nite beause �e�(1) �e��(1 + `n�1) and�e�(1) �e�(1 + `n�1) are �nite in the limit `n�1 ! 0. Therefore, all the expressions are wellde�ned if the ontributions from the matter setor listed below are �nite:Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 n�1Yi=0hV1(1 + `i) i ;Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 V1=2(1) n�1Yi=1hV1(1 + `i) i ;Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 n�2Yi=0hV1(1 + `i) iV1=2(1 + `n�1) ;Z 10 dt1 Z 10 dt2 : : :Z 10 dtn�1 V1=2(1) n�2Yi=1hV1(1 + `i) iV1=2(1 + `n�1) ;
(6.5)

where `i was de�ned in (2.10). To summarize, if operator produts of an arbitrary numberof V1's and at most two V1=2's are regular, the solution (5.2) is well de�ned and satis�es theequation of motion (3.9).7 Conlusions and disussionWe have onstruted analyti solutions for marginal deformations in open superstring �eldtheory when operator produts made of V1's and V1=2's are regular. Our solutions are verysimple and remarkably similar to the solutions in the bosoni ase [16, 17℄. We expet thatthere will be further progress of analyti methods in open superstring �eld theory.11



It would be interesting to study the rolling tahyon in open superstring �eld theory, andwe expet that marginal deformations assoiated with the rolling tahyon solutions satisfythe regularity onditions disussed in the preeding setion. However, deformations we areinterested in typially have singular operator produts of the marginal operator. In the bosoniase, solutions to third order in � have been onstruted when the operator produt of themarginal operator is singular [17℄. We hope that a proedure similar to the one developed inthe bosoni ase will work in the superstring ase, and it is important to arry out the programto all orders in the deformation parameter.Our hoie of �(2) in (4.11) was based on a tehnial reason, and it is not lear if thisgauge hoie is physially suitable. In partiular, the solution �� in (5.2) does not satisfy thereality ondition on the string �eld. However, it is diÆult for us to imagine that there are twoinequivalent solutions generated by a single marginal operator whih oinide to linear order in�, and we expet that our solution is related to a real one by a gauge transformation. In fat,we an expliitly on�rm this at O(�2). In order to see this, it is useful to write the solution inthe original de�nition of the string �eld by inverting the �eld rede�nition (3.6):�old = � ln ( 1� �new ) = 1Xn=1 1n �nnew : (7.1)We expand �old in powers of � as �old = 1Xn=1 �n �(n)old ; (7.2)and then �(2)old is given by�(2)old = �(2)new + 12 (�(1)new)2 = (QBX) (�0J)X + 12 X2 : (7.3)The string �eld �(2)old does not satisfy the reality ondition.4 However, there is another solutionwhih satis�es the reality ondition given by12 [ (QBX) (�0J)X +X (�0J) (QBX) ℄ ; (7.4)and the di�erene between (7.3) and (7.4) is(QBX) (�0J)X + 12 X2 � 12 [ (QBX) (�0J)X +X (�0J) (QBX) ℄ = 12 QB [X (�0J)X ℄ (7.5)4 A string �eld within our ansatz satis�es the reality ondition when it is odd under the onjugation given byreplaing X ! �X and by reversing the order of string produts. Signs from antiommuting Grassmann-oddstring �elds have to be taken are of in reversing the order of string produts.12



and an be eliminated by a gauge transformation. The open superstring �eld theory formulatedby Berkovits an also be used to desribe the N = 2 string by replaing QB and �0 with thegenerators in the N = 2 string [46℄, but the reality ondition on the string �eld for the N = 2string does not seem to be satis�ed for �� in (5.2) either.5 The onjugation in [46℄ seems to map�� in (5.2) to �� in (5.13). We again expet that our solution is related to a solution satisfyingthe reality ondition by a gauge transformation. For example, � (QBX) J (�0X), whih isanother solution to the equation for �(2), seems to satisfy the reality ondition, and the di�erenebetween �(QBX) J (�0X) and �(2) in (4.11) is �0 [ (QBX) J X ℄ and an be eliminated by a gaugetransformation generated by �0. We have also found that (QBX) (QBJ)X (�0J) (�0X), whihseems to satisfy the reality ondition, solves the equation for �(3) when �(2) is �(QBX) J (�0X),but we have not been able to extend the solution to all orders in �. We think that there isa good hane that solutions satisfying the reality ondition for the ordinary superstring orfor the N = 2 string an be found within our ansatz, and it would be desirable to have theirexpliit expressions. On the other hand, we believe that the solution in (5.2) has an advantagebeause the ations of QB and �0 on (5.2) are very simple.It has been expeted that the moduli spae of D-branes are reprodued by the moduli spaeof solutions to open string �eld theory, and we think that our approah provides a onrete setupto address this question. We have seen a one-to-one orrespondene between the ondition forexat marginality in boundary CFT [51℄ and the absene of obstrution in solving the equationof motion for string �eld theory at O(�2) in the bosoni ase [17℄. It would be important to studythe orrespondene at higher orders and in the superstring ase, and a better understandingof the orrespondene might help us omplete the program of onstruting solutions when theoperator produt of the marginal operator is singular. We hope that further developmentsin this subjet will shed light on more oneptual issus in string theory suh as bakgroundindependene or the question why the ondition that the � funtion vanishes in the world-sheettheory gives the equation of motion in the spaetime theory.Note addedAfter the �rst version of this paper was submitted to arXiv, we found analyti solutionssatisfying the reality ondition [52℄. We also learned that T. Erler independently onstrutedanalyti solutions satisfying the reality ondition, whih were presented in the seond versionof [47℄.5 Our understanding is that the onjugation in [46℄ is given by replaing X ! X , J ! �J , QB ! �0,and �0 ! QB and by reversing the order of string produts, and the string �eld should be even under theonjugation. Again signs from antiommuting Grassmann-odd string �elds have to be taken are of in reversingthe order of string produts. The string �eld �new in (3.6) is real when �old is real with respet to this realityondition, while this is not the ase for the reality ondition for the ordinary superstring disussed earlier.13
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