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HU-EP-07/09DESY-07-043MIT-CTP 3827Area-preserving di�eomorphisms in gauge theoryon a non-
ommutative plane: a latti
e studyWolfgang Bietenholz a, Antonio Bigarini b;
 and Alessandro Torrielli da John von Neumann Institut f�ur Computing (NIC)Deuts
hes Elektron Sy
hrotron (DESY)Platanenallee 6, D-15738 Zeuthen, Germanyb Dipartimento di Fisi
a, Universit�a degli Studi di Perugiaand INFN, Sezione di Perugia,Via Pas
oli 1, I-06100 Perugia, Italy
 Institut f�ur PhysikHumboldt-Universit�at zu BerlinNewtonstr. 15, D-12489 Berlin, Germanyd Center for Theoreti
al Physi
s, Laboratory for Nu
lear S
ien
esand Department of Physi
sMassa
husetts Institute of Te
hnology77 Massa
husetts Avenue, Cambridge, MA 02139-4307, USAWe 
onsider Yang-Mills theory with the U(1) gauge group on a non-
ommu-tative plane. Perturbatively it was observed that the invarian
e of this the-ory under area-preserving di�eomorphisms (APDs) breaks down to a rigidsubgroup SL(2; R). Here we present expli
it results for the APD symme-try breaking at �nite gauge 
oupling and �nite non-
ommutativity. Theyare based on latti
e simulations and measurements of Wilson loops with thesame area but with a variety of di�erent shapes. Our results are 
onsistentwith the expe
ted loss of invarian
e under APDs. Moreover, they stronglysuggest that non-perturbatively the SL(2; R) symmetry does not persist ei-ther.
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1 Introdu
tionInvarian
e under area-preserving di�eomorphisms (APDs) [1℄ is a basi
 sym-metry of ordinary Yang-Mills theories in two dimensions. In parti
ular itmeans that Wilson loop expe
tation values only depend on the oriented ar-eas singled out on the manifold. Thanks to this property the theory a
quiresan almost topologi
al 
avour [2℄ and, as a 
onsequen
e, it 
an be solved an-alyti
ally. Elegant group theoreti
 methods [3℄ lead to 
losed expressions forthe partition fun
tion and a set of observables [4℄.The invarian
e under APDs was initially believed to persist also in U(n)gauge theories de�ned on a non-
ommutative (NC) two-dimensional mani-fold. It was assumed to play a 
entral role in the large gauge group |
hara
teristi
 of gauge theories on NC spa
es | whi
h merges internal andspa
e-time transformations. A detailed study of the non-
ommutative gauge-transformation algebra was performed in Ref. [5℄. If APD symmetry holds,one might hope to be able to solve gauge theories also on a NC plane bygeneralising the powerful geometri
 pro
edures developed in the 
ommutativespa
e.This s
enario was suggested by an intriguing observation for U(n) gaugetheory on a NC torus. It 
an be related by Morita equivalen
e to its dual ona 
ommutative torus [6℄, where the APD invarian
e is granted. The theoryon the NC plane would then be rea
hed by a suitable limit, and one 
ouldhope for the invarian
e to be preserved [7℄.Wilson loop perturbative expansions in the 
oupling 
onstant g and in 1=�| � being the non-
ommutativity parameter | were performed on the NCplane. To the order �rst 
onsidered in Refs. [8,9℄, the results were 
onsistentwith APD invarian
e.Later on Ref. [10℄ extended those results to the next order, namelyO(��2)atO(g4). The out
ome revealed di�erent expe
tation values for a Wilson loopwith the shape of a 
ir
le and a re
tangle of the same area. This observationmotivated the systemati
 investigation in Ref. [11℄, where Wilson loops ina wide 
lass of 
ontours were 
onsidered in the axial gauge. These resultssuggest that the APD symmetry breaks down to a residual subgroup of linearunimodular transformations, SL(2; R).Subsequently non-perturbative arguments for this APD symmetry break-ing were given based on the Morita duality on tori [12℄. Re
ently, Ref. [13℄re
onsidered this issue by applying twist deformation te
hniques, whi
h also
on�rm that the APD symmetry may break at the quantum level. A newstudy of the large � expansion [14℄ reports the break-down of the area law atO(1=�2), in agreement with simulations results at �nite � [15℄. Ref. [14℄ doesnot report the observation of any symmetry. However, the question about2



the ultimate status of (partial) APD symmetry is still open.The present work presents expli
it results for Wilson loops with polygonal
ontours, at �nite � and g, under APDs. Our non-perturbative results areobtained on the latti
e and extrapolated to the 
ontinuum. They agree withthe breaking of this symmetry, both on the latti
e and in the 
ontinuum limit.Moreover we provide eviden
e against the survival of a residual symmetrysubgroup SL(2; R).In Se
tion 2 we brie
y review the U(1) gauge theory on a NC plane, itslatti
e dis
retisation and the mapping onto a twisted Egu
hi-Kawai model,whi
h 
an be simulated. Se
tion 3 presents our simulation results for theplanar limit, whi
h is ne
essary to identify a physi
al s
ale. Then we addressin Se
tion 4 the Double S
aling Limit to a 
ontinuous NC plane of in�nite ex-tent, whi
h allows us to study expli
itly the e�e
t of APD transformations onWilson loops. In Se
tion 5 we 
on�rm the APD symmetry breaking by 
on-sidering observables, whi
h di�er from those in Se
tion 4. Their perturbativetreatment is 
ommented on in an Appendix. Se
tion 6 fo
uses spe
i�
allyon the SL(2; R) symmetry, and Se
tion 7 is dedi
ated to our 
on
lusions.2 U(1) gauge theory on a non-
ommutativeplaneIn this work, we 
onsider the simplest version of a Eu
lidean NC plane byassuming a 
onstant non-
ommutativity parameter �, so that the 
oordinateoperators ful�l [x̂�; x̂�℄ = i � ��� (�; � = 1; 2) : (1)Su
h 
oordinates des
ribe a 
harged parti
le moving in a (
ommutative)plane, whi
h is 
rossed by a strong, orthogonal magneti
 �eld. The lat-ter 
an be formally interpreted as B / 1=�, see e.g. Ref. [16℄. A similar
on
ept is also used to map open strings in a magneti
 ba
kground onto NC�eld theory [17℄.We 
an return to the use of ordinary (
ommutative) 
oordinates if all the�elds are multiplied by star produ
ts (or Moyal produ
ts),�(x) ?  (x) := �(x) exp� i2 �� � ���!�� �  (x) : (2)Here we fo
us on pure U(1) gauge theory with the Eu
lidean a
tionS[A℄ = 14 Z d 2xF�� ? F�� ;F�� = ��A� � ��A� + ig[A�; A�℄? : (3)3



The last term is a star-
ommutator, whi
h shows that even the U(1) gauge�eld is self-intera
ting on NC spa
es. This a
tion is star-gauge invariant, i.e.invariant under transformationsA�(x)! U(x) ? A�(x) ? U(x)y � igU(x) ? ��U(x)y ; (4)if U(x) is star-unitary, U(x)y ? U(x) = 11.Other U(n) gauge theories may be studied along the same lines, but theformulation of SU(n) gauge theories runs into trouble on NC spa
es. There-fore it is motivated to 
on
entrate on U(1) as a physi
al gauge group, whi
h
an be a

ommodated on NC manifolds.Although the points in su
h spa
es are somewhat fuzzy, it is possible tointrodu
e a latti
e stru
ture.1 This is a �rst step towards a formulation tobe used in Monte Carlo simulations. In the operator formalism this stepimposes the 
onstraint exp �i2�a x̂�� = 1̂1 ; (5)where a is the latti
e spa
ing. If we require the momentum 
omponents tobe 
ommutative and periodi
 over the Brillouin zone, the above 
onditionimplies that only dis
rete momenta o

ur, whi
h is 
hara
teristi
 for a �nitevolume. On a N �N latti
e with periodi
 boundary 
onditions, the allowedmomenta are spa
ed by 2�=(aN). As a 
onsequen
e, the non-
ommutativityparameter 
an be identi�ed as � = 1�Na2 : (6)We are most interested in a Double S
aling Limit (DSL)a! 0 and N !1 at Na2 = 
onst: ; (7)whi
h leads to a 
ontinuous NC plane of in�nite extent. The requirement totake the UV and IR limits simultaneously in a balan
ed way is related to thegeneri
 UV/IR mixing of the divergen
es in NC �eld theory [20℄.This is 
learly distin
t from the planar limit, N ! 1 at �xed gauge
oupling, whi
h means here a �xed latti
e spa
ing. The non-
ommutativityparameter diverges in this limit. In higher dimensions, this implies that non-planar 
ontributions are suppressed, and the planar limit restores 
ommuta-tivity in perturbation theory.2 In two dimensions the situation is di�erent,1Here we only sket
h this regularisation very brie
y, for details we refer for instan
e tothe review [18℄, or the theses quoted in Refs. [15℄ and [19℄.2We remark, however, that this restoration does not need to hold generally: it 
an failnon-perturbatively for instan
e in the 
ase of spontaneous symmetry breaking [21℄.4



and non-planar diagrams provide \anomalous" perturbative 
ontributions inthe limit of in�nite non-
ommutativity, whi
h are of the same order of mag-nitude as the planar diagrams [8{10℄. However, su
h terms are shown todisappear when applying the pro
edure re
ently introdu
ed in Ref. [14℄.Even on the latti
e it is far from obvious how to simulate NC gaugetheory; note that the 
ompa
t formulation seems to require star-unitary linkvariables. In this respe
t, it is highly pro�table to map the system onto atwisted Egu
hi-Kawai model (TEK model). This model is de�ned on a singlespa
e-point and its a
tion takes the form [22℄STEK[U ℄ = �N�X�6=� Z��Tr�U�U�U y�U y�� : (8)U1 and U2 are unitary N �N matri
es whi
h en
ode the degrees of freedomof the U(1) latti
e gauge theory. For the twist fa
tor we adopt the 
hoi
e ofRef. [15℄, Z21 = Z�12 = exp(i�(N + 1)=N) , where N has to be odd. There isan exa
t equivalen
e to the latti
e NC U(1) gauge theory, i.e. the algebrasare identi
al, as Ref. [23℄ showed in the large N limit. A re�ned 
onsiderationfound su
h a mapping even at �nite N [24℄. Hen
e the TEK model 
an beused for numeri
al simulations of NC gauge theories, and it is most suitablefor this purpose.It is straightforward to formulate Wilson loops in this matrix model. Forinstan
e, a re
tangular loop with side lengths aI and aJ (and 
lo
kwiseorientation) 
orresponds to the termW (I � J) = 1NZIJ12 Tr�U I1UJ2 U y I1 U yJ2 � : (9)Mapping this quantity ba
k to the latti
e leads in fa
t to a sensible de�ni-tion of a Wilson loop in the NC gauge theory [25, 26℄. Su
h Wilson loopsare 
omplex in general [9, 15℄. The a
tion (8) is real, however, sin
e bothorientations of the plaquettes are summed over, whi
h is essential for thefeasibility of numeri
al simulations.Simulations of gauge theories with the standard Metropolis algorithm arenotoriously ineÆ
ient. This also holds for the TEK model. Moreover theusual remedy | the appli
ation of the heat-bath algorithm | 
annot beapplied straightforwardly, be
ause the dimensionally redu
ed a
tion (8) isnon-linear in the link variables. However, by introdu
ing an auxiliary matrix�eld the a
tion 
an be linearised [27℄, so that the heat-bath algorithm worksand the model 
an indeed be simulated eÆ
iently.3 This method allowed us3This method has re
ently been extended to the 4d model where two dimensions are5



to explore rather large systems of N > 100. For the parameter sets (N; �)that we investigated, we 
olle
ted statisti
s of 1000 well thermalised andde
orrelated 
on�gurations.3 The planar limitIn the planar limit we obtain the U(N ! 1) latti
e gauge theory on a
ommutative plane, whi
h was solved by Gross and Witten [28℄. In this limitthey found an exa
t area law for the Wilson loops. In (dimensionless) latti
eunits it takes the formhW (I�J)i = exp(��(�)IJ) ; �(�) = � � ln� � � 1=2� ln(1� 14� ) � � 1=2 : (10)In terms of dimensional units the string tension � turns into an area, and itallows us therefore to identify a dimensional latti
e spa
ing asa =p�(�) : (11)In these units the string tension is set to 1 in the planar limit.Of 
ourse, we are ultimately interested in the DSL a

ording to eq. (7).But to give it an expli
it meaning we �rst have to identify a dimensionallatti
e spa
ing, i.e. we have to introdu
e a s
ale to interpret the latti
e units.Relation (11) 
an be used for this purpose [15, 30℄, provided that the valuesof N , whi
h are a

essible to our simulations, do approximate the planarlimit well (for the quantities of interest). Otherwise one would have to worryabout �nite N artifa
ts distorting the physi
al interpretation of our results.We veri�ed this property �rst by 
he
king the validity of the large NS
hwinger-Dyson equations. On the latti
e, they relate Wilson loops of dif-ferent shapes in the planar limit.4 An example for the 
orresponding 
ontoursis illustrated in Figure 1 (
f. �rst work in Ref. [22℄). Indeed, we observe thatour measurements for the two sides of this equation 
onverge well as wein
rease N to a magnitude of O(100) at �xed �, see Figure 2.5The Egu
hi-Kawai equivalen
e to the model solved by Gross and Wittenalso implies the validity of the APD symmetry in the planar limit. Againwe testify if this symmetry 
an be observed to set in (approximately) for theredu
ed; this is adequate for QED in a four dimensional spa
e, 
omposed of a 
ommutativeand an NC plane [19℄.4This was the property that motivated the original 
onstru
tion of the dimensionallyredu
ed matrix model (without twist fa
tor) by Egu
hi and Kawai [29℄.5A variant of this result has been reported before in a pro
eeding 
ontribution [31℄ andin a Ph.D. thesis [32℄. Earlier observations in this 
ontext were given in Ref. [30℄.6
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Figure 1: An example of a set of 
ontours, whi
h are involved in a S
hwinger-Dyson equation. These equations relate the va
uum expe
tation values of the
orresponding Wilson loops in the planar limit. They 
an be derived from theinvarian
e under an in�nitesimal substitution of the 
ompa
t link variableson the latti
e [22℄.
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Figure 2: The 
onvergen
e towards the validity of the S
hwinger-Dyson equa-tions as N in
reases at �xed � = 0:75 (on the left) and � = 1 (on the right).The y-axis is the absolute value of the deviation between the two sides of thespe
i�
 S
hwinger-Dyson equation illustrated in Figure 1. The x-axis 
orre-sponds to the latti
e area of the 
ontour C, whi
h has a re
tangular shape ofthe form I � (I + 1). These equations are well approximated as N rea
hesO(100).system sizes that we simulated. We 
onsider four types of Wilson loops:we denote them as square loops, re
tangular loops, stair loops and L-loops.In parti
ular we 
onsidered these loops at the areas A = 4; 9; 16; 25 : : :in latti
e units. The re
tangular loops are maximally anisotropi
, i.e. theirshapes are re
tangles of side lengths 1 and A.6 For the shapes of stair loopsand L-loops we refer to Figure 3. Note that these two loop types involve two6In Se
tion 4 we will also 
onsider re
tangles with a �xed ratio between the two sidelengths. 7



slightly di�erent 
ases, depending on whether the area A is even or odd.

Figure 3: An illustration of the di�erent Wilson loops that we 
onsidered.Their 
ontours are all polygonal, without multiple-interse
tions. They aresquares, L-shapes (with legs of width 1 latti
e spa
ing and equal length, orlengths deviating by 1 if the area A is even), maximally anisotropi
 re
tanglesand stairs (again in two variants, depending whether A is even or odd).All the four types of loops (with A �xed) are related by APDs. In par-ti
ular the square and re
tangles transform into ea
h other under SL(2; R)on the plane.We now present numeri
al results for these Wilson loops W as we ap-proa
h the planar limit. As an example, we �rst 
onsider the absolute valuejW j as a fun
tion of the dimensional area at a �xed latti
e area of A = 36.Figure 4 shows results for N = 75 and 155. We see that the absolute valuesfor the di�erent shapes 
oin
ide for small and for large areas, but they splitapart at an intermediate physi
al area of Aa2 = O(10).However, even in this intermediate regime the di�eren
es between theWilson loops at a �xed area 
onverge to zero in the planar limit; examplesfor this behaviour are shown in Figure 5. Sin
e � was kept �xed in theseplots, both the area in latti
e units and in dimensional units is 
onstant.For the interpretation of our simulation results, we 
an therefore rely onthe s
ale (11) extra
ted from the planar limit. This allows us to pro
eed nowto the investigation of the DSL, whi
h des
ribes the theory on a NC planein the simultaneous UV and IR limit.8
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A = 36 , β = 1.05Figure 5: An illustration of the 
onvergen
e towards the APD symmetry inthe planar limit. On the left we show the di�eren
es of hjW ji for Wilsonloops with latti
e area A = 25 at � = 0:77, so the dimensional area amounts toAa2 ' 9:81. In the plot on the right-hand-side the parameters are A = 36 and� = 1:05, whi
h implies almost the same area, Aa2 ' 9:79. For in
reasingN the di�eren
es between the Wilson loops with di�erent shapes de
reaserapidly, so we are approximating well the behaviour in the planar limit.4 The Double S
aling LimitWe now employ the s
ale (11) provided by the Gross-Witten area law (10);its use for the range of parameters under 
onsideration has been justi�ed inSe
tion 3. This enables us to study the DSL (7) to a 
ontinuous plane ofin�nite extent and �nite non-
ommutativity.9



From Refs. [15℄ we know the following properties about the square loops:� The observable hW (I � I)i does indeed stabilise in the DSL. The ex-isten
e of this universality 
lass shows in parti
ular that the model isnon-perturbatively renormalisable.� At small area, the absolute value jhW (I � I)ij follows an area law. Inthat regime, whi
h extends up to (aI)2<� 4, the phase is pra
ti
allyzero.� For larger areas, jhW (I�I)ij does not de
ay any further, but the phasestarts to in
rease linearly in the area. It obeys the simple relationphase = (aI)2� = (aI)2 �B ; (12)where we symboli
ally introdu
ed a magneti
 �eld B = 1=� a
ross theplane. As we mentioned in Se
tion 2, this identi�
ation of the mag-neti
 �eld has been implemented in string theory and in solid statephysi
s. The behaviour (12) just 
orresponds to the Aharonov-Bohme�e
t, whi
h �ts perfe
tly into the magneti
 interpretation of non-
ommutativity. Ref. [15℄ dis
overed this behaviour (unexpe
tedly) asa dynami
al e�e
t at low energy.To revisit the se
ond point | the area law for small Wilson loops, wherethe phase is pra
ti
ally zero | we measured the Creutz ratio�(I; J) = � ln h hW (I � J)i hW ((I � 1)� (J � 1))ihW ((I � 1)� J)i hW (I � (J � 1))i i : (13)This ratio singles out the string tension � for de
ays / exp(��A), pro-vided that it is equivalent for the various re
tangular Wilson loops involved.Typi
al results for (nearly) square shaped Wilson loops, �(I; I), as well asextremely anisotropi
 (re
tangular) Wilson loops, �(2; J), are shown in Fig-ure 6.7 For both shapes we �nd a stable behaviour as we in
rease N at �xed�, whi
h suggests that our results 
an safely be extrapolated to the DSL.Deeply inside the area law regime we obtain � ' 1. Hen
e in this range thebehaviour in the DSL 
oin
ides with the planar limit. We observe, however, amarked deviation from it as the area approa
hes the transition to the regimeof the Aharonov-Bohm type behaviour.At moderate area the Creutz ratios for the squares and the re
tanglesdi�er a little. This is a �rst observation hinting at shape independen
e forre
tangles deeply inside the area law regime, but not beyond.7We a
tually averaged over �(2; J) and �(J; 2) in order to in
rease the statisti
s.10
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hing a DSL. For both shapes, i.e. for �(I; I)(squares) and for �(2; J) (re
tangles), we observe stable Creutz ratios in theDSL. At small area the string tension takes the same value as in the planarlimit. At moderate area the results from square shaped and from extremelyanisotropi
 re
tangles begin to di�er a little.Regarding the behaviour at large areas, whi
h is very spe
i�
 to the NCplane, one may wonder why the short-ranged non-
ommutativity has strikinge�e
ts on the large rather than the small Wilson loops. UV/IR mixing [20℄ isapparently at work, even though the perturbative expansion of this model 
anbe formulated without divergen
es. This suggests that UV/IR mixing o

ursnon-perturbatively, and it belongs therefore to the fundamental nature of NC�eld theory. This is in agreement with analyti
 [33℄ and numeri
al [32, 34℄results for the NC ��4 model, and for 4d NC QED [19℄.At last we pro
eed to a systemati
 study of the fate of the APD symmetryin the DSL. Figures 7 and 8 show results for the absolute values of Wilson loopexpe
tation values, jhW ij , with respe
t to the shapes illustrated in Figure3. Figure 7 refers to a �xed non-
ommutativity parameter � = 1:63, and itshows results for two values of N . For in
reasing N the dimensional volumeis enlarged and the latti
e be
omes �ner (be
ause Na2 is kept 
onstant), so11



we approa
h the DSL. The 
orresponding results at � = 2:63 are presented inFigure 8. For the latter � value we show in addition the Wilson loop phasesarg(hW i) in Figure 9. These �gures demonstrate that the Wilson loops forN = 125 and N = 155 | plotted against the dimensional area | are almostidenti
al. This shows that we are indeed in the asymptoti
 regime of theDSL. We 
an therefore be 
on�dent that our results reveal the behaviour inthe 
ontinuous NC plane. This 
on�den
e will be further substantiated byresults for variants of these observables to be presented in the Se
tion 5.As soon as the area ex
eeds the area law regime, we observe a 
lear dis-tin
tion between the absolute values jhW ij for di�erent shapes, see Figures 7and 8.8 This distin
tion o

urs for any pair of the 
ontour types 
onsidered.We show again the re
tangles of the form 1�A (in latti
e units), whi
h be-
ome in�nitesimally narrow in the DSL (in dimensional units). In additionwe also in
lude re
tangles with a �xed ratio of 4 between the side lengths,whi
h keep an invariant shape as we approa
h the DSL. The di�erent expe
-tation values for the narrow re
tangles with the same area show 
learly thatthe APD symmetry breaks.The distin
tion between squares and re
tangles of �xed side ratio in theseplots is less striking than the other 
ases. However, exa
tly these re
tanglesare dire
tly relevant to explore the fate of the symmetry subgroup SL(2; R),hen
e we will fo
us on them spe
i�
ally in Se
tion 6.Next we dis
uss the phases arg(hW i) , whi
h we show for � = 2:63 inFigure 9. As the area in
reases beyond the area law regime, the squareshapes, re
tangles with �xed side ratio and the stairs follow very well theAharonov-Bohm type behaviour 
orresponding to eq. (12), whi
h had beenobserved earlier for squares and 
ertain re
tangles [15℄. The L-shape does notagree optimally, but its behaviour is reasonably 
lose, in parti
ular on the�ner latti
e whi
h 
orresponds to N = 155. We remark that the extremelyanisotropi
 re
tangles 
onsidered earlier lead to strong deviations from eq.(12), as we are going to show in the Se
tion 5 (Figure 13). Apparently shapeswhi
h be
ome extremely thin (in physi
al units) as we approa
h the DSL 
anlead to su
h features (although this is not the 
ase for the stair loops).In any 
ase, our results for the phases are very similar for the di�erent Nvalues, so they 
on�rm that we are in an asymptoti
 window of the DSL. Thephase of the Wilson loop has a mu
h stronger trend towards (at least partial)APD symmetry than the absolute value. As far as we 
ould 
he
k, the phase(alone) is well 
ompatible with this symmetry for �xed shapes in dimensionalunits, with a �nite extent in ea
h dire
tion. But of 
ourse the di�eren
es in8We note that the total area of the system amounts to V = �N�, hen
e for ourparameters V � � is granted. 12
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Figure 7: The absolute values of various Wilson loops at a �xed non-
ommutativity parameter � = 1:63. On top we show results at N = 125and below at N = 155. As we in
rease N the dimensional volume grows andthe latti
e spa
ing shrinks, so that we approa
h simultaneously the limits tothe 
ontinuum and to in�nite volume (UV and IR limit). The striking sim-ilarity of these plots 
on�rms that DSL 
onvergen
e is rea
hed. The resultsshow a 
lear shape dependen
e beyond the area law regime, and therefore thebreaking of APD symmetry. 13
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Figure 8: The analogous plots to Figure 7, but now at � = 2:63. Again theresults 
learly 
on�rm a shape dependen
e beyond the area law regime, whi
his stable as we in
rease N towards the DSL.jhW ij are suÆ
ient to dis
ard APD symmetry as a basi
 property of thistheory.
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Figure 9: The phases of various Wilson loops at � = 2:63 for N = 125 (ontop) and N = 155 (below). The Aharonov-Bohm type behaviour in eq. (12)at large area is very well 
on�rmed for the shapes shown here. They in
luderesults for re
tangular loops with a �xed ratio of 4 and a ratio of 11 betweenthe side lengths, so that its shape is invariant on the way to the DSL. TheL-shape, on the other hand, be
omes in�nitesimally thin in this limit. Itsphase follows eq. (12) with some 
u
tuations.
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5 APD symmetry breaking for alternative ob-servablesOur results for the standard observables jhW ij and arg(hW i) were presentedin Se
tion 4 and illustrated the shape dependen
e of Wilson loops with thesame area (in dimensional units). We gave eviden
e for this e�e
t to persistin the DSL.In this se
tion we present the 
orresponding results for hjW ji and harg(W )i,whi
h are somewhat di�erent observables. The quantities of Se
tion 4 aretra
table in perturbation theory, and these are therefore the observables thathave been addressed in Refs. [8{14℄. Moreover they were measured in theprevious numeri
al study in Ref. [15℄. On the other hand, the quantities ofthis se
tion are generally not 
onsidered in analyti
 work. In the appendix we
omment on the prospe
ts of the perturbative treatment of hjW ji. However,hjW ji and harg(W )i 
an be handled numeri
ally without spe
i�
 problems,and they also represent valid physi
al observables.9 For instan
e, in latti
egauge theory it is also usual to measure hjP ji (P being the Polyakov loop) |its magnitude serves as a 
riterion to distinguish the phases of 
on�nementand de
on�nement.We add these observables here in order to supply further strength to ourobservation of APD symmetry breaking. The new observables are suitablefor this purpose, in parti
ular be
ause hjW ji does not be
ome as tiny asjhW ij at moderate and large area, whi
h leads to smaller relative errors.We �rst present the results for hjW ji for two values of N at � = 1:63(Figure 10) and at � = 2:63 (Figure 11), in analogy to Figures 7 and 8. Thenew observables are pra
ti
ally identi
al to those of Se
tion 4 at small area,where the phase is tiny throughout the Monte Carlo history. They di�er,however, as the area grows beyond this regime. There hjW ji is signi�
antlylarger, whi
h enables a better distin
tion (without overlapping error bars).But the qualitative behaviour is very similar to Se
tion 4.Figure 12 shows the phases harg(W )i at the same parameters as in Figure10. It 
an be 
ompared to the phase arg(hW i) presented before in Figure9 (for � = 2:63). Also this phase follows 
losely the Aharonov-Bohm typebehaviour of eq. (12) for the squares, the stairs loops and for the re
tanglewith a �xed side ratios. (For the squares this behaviour was also observedin 4d NC U(1) gauge theory [19℄.) Again the phase of the L-shape loopsdeviates. It 
u
tuates strongly in the Monte Carlo history all over the interval(��; �℄ , keeping its mean values 
lose to zero.9A
tually we 
onsidered the observables of this se
tion already in Se
tion 3 when wedis
ussed the validity of the s
ale identi�ed from the planar limit (Figures 4 and 5).16
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Figure 10: The expe
tation values hjW ji for various Wilson loops at a �xednon-
ommutativity parameter � = 1:63. On top we show results at N = 125and below at N = 155. The striking similarity of these plots 
on�rms thatDSL 
onvergen
e is rea
hed. The results reveal a 
lear shape dependen
ebeyond the area law regime also for this observable.At last we 
onsider the phases of the re
tangles of the form 1 � A, i.e.of an in�nitesimally narrow shape in the DSL. We mentioned in Se
tion 4that these phases do not follow eq. (12). In Figure 13 we add the phases forthese re
tangles at � = 2:62. We show arg(hW i) on the left, and harg(W )i17
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Figure 11: The analogous plots to Figure 10, but now at � = 2:63. The resultsaÆrm on
e more a shape dependen
e beyond the area law regime, whi
h isstable as we in
rease N . In parti
ular the di�eren
es at �xed area do notshrink as we in
rease N towards the DSL, in 
ontrast to the planar limitbehaviour in Figure 5.on the right. They are very similar, and | more importantly | they are inex
ellent agreement for the di�erent N values. This 
on�rms on
e more thatwe a

ess the double s
aling window with the parameters used.18
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Figure 12: The phases harg(W )i of various Wilson loops at � = 1:63 forN = 125 (on top) and N = 155 (below). The Aharonov-Bohm type behaviourin eq. (12) at large area holds well also for this phase for the stair loops, thesquares and the re
tangular loops with a �xed side ratios of 4 and of 11. Onthe other hand, the average phase of the L-shape loops remains very smalleven at large areas.This se
tion presented additional APD symmetry breaking results, nowfor hjW ji and harg(W )i. The values and physi
al meanings of these observ-ables are di�erent from those in Se
tion 4, but qualitatively the results are in19
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Figure 13: The phases of narrow re
tangles with the shape 1�A at � = 2:62.We show the phase of hW i (on the left) and the expe
tation value of arg(W )(on the right). Their values are very similar, but these phases are not relatedto eq. (12). The essential observation here is that the phases pra
ti
ally
oin
ide for the two sets of parameters, whi
h 
on�rms again that we do seethe window that extrapolates to the DSL.full agreement. The observables added here provide further strength to ourinvestigation of APD symmetry breaking | see also the theoreti
al reasoningin the Appendix.6 The SL(2; R) symmetry breakingWhile the breaking of the full APD symmetry has already been demonstratedextensively, the spe
i�
 
ase of the SL(2; R) symmetry subgroup may seemless obvious from the Figures shown so far. Hen
e this se
tion fo
uses onre
tangles only to illustrate in parti
ular the breaking of this subgroup.Figures 14 and 15 are dedi
ated to the de
ay of the absolute values jhW ijand hjW ji for the re
tangles. We show in both �gures the behaviour for �xed�, where we in
lude the data from N = 125 and N = 155 in the same plot.Here we also add results for the de
ay of re
tangles with a �xed side ratio of11, whi
h are helpful to demonstrate the SL(2; R) breaking more 
learly.For the re
tangles with �xed shapes these observables tend to os
illate aswe vary the dimensional area beyond the area law regime. This observationis well 
ompatible with the data from both N values, hen
e it seems to
hara
terise the DSL. These os
illations have similar mean values, but theamplitude is signi�
antly larger for the ratio 11 between the side length when
ompared to ratio 4 or 1 (squares).We 
on
lude that the SL(2; R) symmetry is indeed more viable to someapproximation than the rest of the APD symmetry group, but its breaking20



is nevertheless manifest on the non-perturbative level.
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Figure 14: The de
ay of the absolute values jhW ij (on top) and of hjW ji(below) for re
tangular loops at � = 1:63. Beyond the area law regime, there
tangles with �nite sides in the DSL (i.e. with a �xed side ratio) tend toos
illate around � 0:01 for jhW ij and a somewhat larger value for hjW ji.The amplitudes, however, depend 
learly on the side ratio, whi
h shows theSL(2; R) symmetry breaking. This is most evident for the re
tangles withside ratio 11 (their data are 
onne
ted by a line to guide the eye).
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Figure 15: The analogous plots to Figure 14, but now at � = 2:63. Theobserved de
ays of the re
tangular Wilson loops is very similar for both non-
ommutativity parameters � that we 
onsider. Again the SL(2; R) symmetrybreaking 
an been seen best from the data for re
tangles with side ratio 11(whi
h are 
onne
ted to guide the eye).7 Con
lusionsWhile APD symmetry holds in ordinary two-dimensional Yang-Mills theory,it turns out to be broken by non-
ommutativity. Perturbation theory 
anreveal this e�e
t, depending on the order 
onsidered. Sin
e this is still re-22



stri
tive, to a �nite order the symmetry may be prote
ted in part [11℄, witha residual subgroup showing up in other approa
hes as well [13℄.However, on the non-perturbative level and by 
onsidering �nite �, thequantum e�e
ts unfold their full power and destroy the APD symmetry,in
luding the subgroup SL(2; R). Here we presented expli
it results forthe APD symmetry breaking. We 
onsidered four types of Wilson loopswith polygonal 
ontours, without multiple-interse
tions. At the same area,numeri
al simulations revealed the shape dependen
e of the Wilson loopexpe
tation values on the latti
e. Our results were obtained for 
onstantnon-
ommutativity parameters � at di�erent values of N | for in
reasingN the volume be
omes larger (in dimensional units) and the latti
e �ner.The results for the Wilson loops remain very stable, hen
e they allow fora reliable extrapolation to a 
ontinuous plane of in�nite extent at �xednon-
ommutativity (Double S
aling Limit). This limit reveals the break-ing of APD symmetry | in
luding the SL(2; R) subgroup | on the non-perturbative level. Furthermore our results extend the loss of APD symmetryto the dis
retised model in a �nite volume.To be more pre
ise, the APD symmetry holds very well for relatively smallloop areas (in dimensional units). For a �xed latti
e area this 
orresponds tothe weak 
oupling regime, and hen
e the agreement with the leading orderperturbative results appears 
onsistent. However, as the dimensional areain
reases, this agreement | and therefore the APD symmetry | 
ollapses:it partially persists in the phase of the Wilson loops, but not in their abso-lute values. We also observed that the SL(2; R) subgroup has is a relativelyhigh viability as an approximate symmetry (whi
h is 
onsistent with pertur-bative results), but its breaking be
omes manifest for strongly anisotropi
transformations in this subgroup.We 
on
lude that NC gauge theory has a ri
h stru
ture, even in d = 2,far beyond its 
ommutative 
ounterpart. This 
on
lusion rises hope for ex-
iting e�e
ts. On the other hand, it also means that an analyti
al solutionis unlikely. Therefore numeri
al results are of great importan
e, as it is the
ase in 
ommutative Yang-Mills theories in four dimensions.A
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omputations were performed on the Ho
hleistungs-Re
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luster at Humboldt-Universit�at.A The perturbative treatment of hjW jiIn this appendix we 
omment on the perturbative treatment of the observablehjW ji, along the lines of the formalism 
onstru
ted in Refs. [8, 9℄. We referthe reader to those works for the details and the relevant literature, whilehere we just re
all the basi
 ingredients needed for our argument.A 
onvenient gauge 
hoi
e for perturbative Wilson loop 
al
ulations isthe light-
one gauge A� = 0. Faddeev-Popov ghosts are known to de
ouplealso in the NC 
ase, and the two-dimensional Lagrangian in this gauge looksindeed free. The non-trivial information on the dynami
s is en
oded in thesingular behaviour of the propagatorD++ = i [k�2� ℄ : (14)Two pres
riptions for the pole are important, the Cau
hy prin
ipal valuemethod by 't Hooft, and the pres
ription due to Wu, Mandelstam and Leib-brandt [35℄, whi
h employs the propagatorD++ = i [k� + i�k+℄�2 : (15)In the 
ommutative 
ase, the latter pres
ription is genuinely perturbative,while the former is able to produ
e results for the Wilson loops, whi
h takeinto a

ount non-perturbative 
ontributions, and it yields exponentiation(area law). But in the NC 
ase, the former pres
ription behaves very wildlyand has been soon abandoned, while the latter gives sensible results at all theorders 
onsidered. Also, the rotation to the Eu
lidean version of the theoryturned out to be useful.When examining the perturbative series of the Wilson loop hW i, onenoti
es that the NC phase fa
tor intermingles non-trivially, in the non-planardiagrams, with the propagators in the momentum and 
ontour integrations.The results are themselves expansions, typi
ally in 1=� ; the Wilson loop isanalyti
 around � =1.The perturbative series for the observable hjW ji looks a priori quite dif-
24



ferent from the one of jhW ij. The relevant expansion in the U(1) 
ase readshjW ji = * ��� 1Xn=0(i g)n Z 10 ds1 : : :Z 1sn�1 dsn _��(s1) : : : _��(sn)Z d2xA+(x+ �(s1)) ? : : : ? A+(x + �(sn))��� � : (16)Clearly the presen
e of the modulus inside the quantum average 
ompli
atesthe task of rearranging the expansion in terms of the Green fun
tions of thetheory, for one has �rst to write it s
hemati
ally asp(P :::)(P :::)� and thenperform a Taylor series in g. The fa
t that the sums begin with a 
onstant,followed by terms with an in
reasing number of �elds, allows to formallytreat the series as analyti
 around g = 0. At the end, one 
omputes theva
uum expe
tation value, based on the Green fun
tionsh0jT A+(x + �(s1)) ? : : : ? A+(x + �(s2n))j0i : (17)Ea
h term 
an in prin
iple be treated similarly to the standard 
ase: oneis left with multiple integrals of propagators and Moyal phases, in momen-tum spa
e and on domains whi
h are simplexes in the 
ontour parameters.These 
ontributions 
an be visualised by atta
hing the propagator lines alongthe 
ontour itself: di�erent simplexes 
orrespond then to di�erent 
rossingpatterns of the propagators.In the simplest 
ase of the O(g4) 
omputation, the momentum integrals
an be 
arried out exa
tly using 
omplex plane te
hniques and identities ofBessel fun
tions, and the remaining 
ontour integration is then performednumeri
ally. For the new observable, 
are must be taken in 
omputing someof the integrals, be
ause one en
ounters terms like� �Z 10 dsi _��(si) Z d2x exp[ i p(x+ �(si))℄A+(p)�2 � ; (18)whi
h appear already at the order O(g2). This order is una�e
ted by theMoyal phase, but still the overall integration over the spa
e-time base-pointx for
es the appearan
e of a 
orrelator hA+(0)A+(0)i at zero momentumwhi
h is infrared divergent. On the other hand, the integration over the
losed 
ontour vanishes be
ause it redu
es to R 10 dsi _��(si) = 0. Therefore,one has to �x the order of integrations, su
h that the 
ontour integration isperformed �rst. Still, it is not 
lear if this 
an be made 
onsistent at anyorder, or if other potentially divergent terms will appear due to the nestingof 
ontour integrals, or, most important, due to interferen
e with the NCphase fa
tor. We leave this interesting analysis for future developments.25



Here we would like to remark that, provided one 
an 
onsistently treat theseambiguities, then the arguments about order-by-order APD invarian
e at� = 0 seem to apply. This implies that the observed shape-dependen
e ofhjW ji in the NC plane appears as a valid argument for 
on
luding that APDsymmetry breaks down when going from � = 0 to a �nite � value.Referen
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