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HU-EP-07/09DESY-07-043MIT-CTP 3827Area-preserving di�eomorphisms in gauge theoryon a non-ommutative plane: a lattie studyWolfgang Bietenholz a, Antonio Bigarini b; and Alessandro Torrielli da John von Neumann Institut f�ur Computing (NIC)Deutshes Elektron Syhrotron (DESY)Platanenallee 6, D-15738 Zeuthen, Germanyb Dipartimento di Fisia, Universit�a degli Studi di Perugiaand INFN, Sezione di Perugia,Via Pasoli 1, I-06100 Perugia, Italy Institut f�ur PhysikHumboldt-Universit�at zu BerlinNewtonstr. 15, D-12489 Berlin, Germanyd Center for Theoretial Physis, Laboratory for Nulear Sienesand Department of PhysisMassahusetts Institute of Tehnology77 Massahusetts Avenue, Cambridge, MA 02139-4307, USAWe onsider Yang-Mills theory with the U(1) gauge group on a non-ommu-tative plane. Perturbatively it was observed that the invariane of this the-ory under area-preserving di�eomorphisms (APDs) breaks down to a rigidsubgroup SL(2; R). Here we present expliit results for the APD symme-try breaking at �nite gauge oupling and �nite non-ommutativity. Theyare based on lattie simulations and measurements of Wilson loops with thesame area but with a variety of di�erent shapes. Our results are onsistentwith the expeted loss of invariane under APDs. Moreover, they stronglysuggest that non-perturbatively the SL(2; R) symmetry does not persist ei-ther.
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1 IntrodutionInvariane under area-preserving di�eomorphisms (APDs) [1℄ is a basi sym-metry of ordinary Yang-Mills theories in two dimensions. In partiular itmeans that Wilson loop expetation values only depend on the oriented ar-eas singled out on the manifold. Thanks to this property the theory aquiresan almost topologial avour [2℄ and, as a onsequene, it an be solved an-alytially. Elegant group theoreti methods [3℄ lead to losed expressions forthe partition funtion and a set of observables [4℄.The invariane under APDs was initially believed to persist also in U(n)gauge theories de�ned on a non-ommutative (NC) two-dimensional mani-fold. It was assumed to play a entral role in the large gauge group |harateristi of gauge theories on NC spaes | whih merges internal andspae-time transformations. A detailed study of the non-ommutative gauge-transformation algebra was performed in Ref. [5℄. If APD symmetry holds,one might hope to be able to solve gauge theories also on a NC plane bygeneralising the powerful geometri proedures developed in the ommutativespae.This senario was suggested by an intriguing observation for U(n) gaugetheory on a NC torus. It an be related by Morita equivalene to its dual ona ommutative torus [6℄, where the APD invariane is granted. The theoryon the NC plane would then be reahed by a suitable limit, and one ouldhope for the invariane to be preserved [7℄.Wilson loop perturbative expansions in the oupling onstant g and in 1=�| � being the non-ommutativity parameter | were performed on the NCplane. To the order �rst onsidered in Refs. [8,9℄, the results were onsistentwith APD invariane.Later on Ref. [10℄ extended those results to the next order, namelyO(��2)atO(g4). The outome revealed di�erent expetation values for a Wilson loopwith the shape of a irle and a retangle of the same area. This observationmotivated the systemati investigation in Ref. [11℄, where Wilson loops ina wide lass of ontours were onsidered in the axial gauge. These resultssuggest that the APD symmetry breaks down to a residual subgroup of linearunimodular transformations, SL(2; R).Subsequently non-perturbative arguments for this APD symmetry break-ing were given based on the Morita duality on tori [12℄. Reently, Ref. [13℄reonsidered this issue by applying twist deformation tehniques, whih alsoon�rm that the APD symmetry may break at the quantum level. A newstudy of the large � expansion [14℄ reports the break-down of the area law atO(1=�2), in agreement with simulations results at �nite � [15℄. Ref. [14℄ doesnot report the observation of any symmetry. However, the question about2



the ultimate status of (partial) APD symmetry is still open.The present work presents expliit results for Wilson loops with polygonalontours, at �nite � and g, under APDs. Our non-perturbative results areobtained on the lattie and extrapolated to the ontinuum. They agree withthe breaking of this symmetry, both on the lattie and in the ontinuum limit.Moreover we provide evidene against the survival of a residual symmetrysubgroup SL(2; R).In Setion 2 we briey review the U(1) gauge theory on a NC plane, itslattie disretisation and the mapping onto a twisted Eguhi-Kawai model,whih an be simulated. Setion 3 presents our simulation results for theplanar limit, whih is neessary to identify a physial sale. Then we addressin Setion 4 the Double Saling Limit to a ontinuous NC plane of in�nite ex-tent, whih allows us to study expliitly the e�et of APD transformations onWilson loops. In Setion 5 we on�rm the APD symmetry breaking by on-sidering observables, whih di�er from those in Setion 4. Their perturbativetreatment is ommented on in an Appendix. Setion 6 fouses spei�allyon the SL(2; R) symmetry, and Setion 7 is dediated to our onlusions.2 U(1) gauge theory on a non-ommutativeplaneIn this work, we onsider the simplest version of a Eulidean NC plane byassuming a onstant non-ommutativity parameter �, so that the oordinateoperators ful�l [x̂�; x̂�℄ = i � ��� (�; � = 1; 2) : (1)Suh oordinates desribe a harged partile moving in a (ommutative)plane, whih is rossed by a strong, orthogonal magneti �eld. The lat-ter an be formally interpreted as B / 1=�, see e.g. Ref. [16℄. A similaronept is also used to map open strings in a magneti bakground onto NC�eld theory [17℄.We an return to the use of ordinary (ommutative) oordinates if all the�elds are multiplied by star produts (or Moyal produts),�(x) ?  (x) := �(x) exp� i2 �� � ���!�� �  (x) : (2)Here we fous on pure U(1) gauge theory with the Eulidean ationS[A℄ = 14 Z d 2xF�� ? F�� ;F�� = ��A� � ��A� + ig[A�; A�℄? : (3)3



The last term is a star-ommutator, whih shows that even the U(1) gauge�eld is self-interating on NC spaes. This ation is star-gauge invariant, i.e.invariant under transformationsA�(x)! U(x) ? A�(x) ? U(x)y � igU(x) ? ��U(x)y ; (4)if U(x) is star-unitary, U(x)y ? U(x) = 11.Other U(n) gauge theories may be studied along the same lines, but theformulation of SU(n) gauge theories runs into trouble on NC spaes. There-fore it is motivated to onentrate on U(1) as a physial gauge group, whihan be aommodated on NC manifolds.Although the points in suh spaes are somewhat fuzzy, it is possible tointrodue a lattie struture.1 This is a �rst step towards a formulation tobe used in Monte Carlo simulations. In the operator formalism this stepimposes the onstraint exp �i2�a x̂�� = 1̂1 ; (5)where a is the lattie spaing. If we require the momentum omponents tobe ommutative and periodi over the Brillouin zone, the above onditionimplies that only disrete momenta our, whih is harateristi for a �nitevolume. On a N �N lattie with periodi boundary onditions, the allowedmomenta are spaed by 2�=(aN). As a onsequene, the non-ommutativityparameter an be identi�ed as � = 1�Na2 : (6)We are most interested in a Double Saling Limit (DSL)a! 0 and N !1 at Na2 = onst: ; (7)whih leads to a ontinuous NC plane of in�nite extent. The requirement totake the UV and IR limits simultaneously in a balaned way is related to thegeneri UV/IR mixing of the divergenes in NC �eld theory [20℄.This is learly distint from the planar limit, N ! 1 at �xed gaugeoupling, whih means here a �xed lattie spaing. The non-ommutativityparameter diverges in this limit. In higher dimensions, this implies that non-planar ontributions are suppressed, and the planar limit restores ommuta-tivity in perturbation theory.2 In two dimensions the situation is di�erent,1Here we only sketh this regularisation very briey, for details we refer for instane tothe review [18℄, or the theses quoted in Refs. [15℄ and [19℄.2We remark, however, that this restoration does not need to hold generally: it an failnon-perturbatively for instane in the ase of spontaneous symmetry breaking [21℄.4



and non-planar diagrams provide \anomalous" perturbative ontributions inthe limit of in�nite non-ommutativity, whih are of the same order of mag-nitude as the planar diagrams [8{10℄. However, suh terms are shown todisappear when applying the proedure reently introdued in Ref. [14℄.Even on the lattie it is far from obvious how to simulate NC gaugetheory; note that the ompat formulation seems to require star-unitary linkvariables. In this respet, it is highly pro�table to map the system onto atwisted Eguhi-Kawai model (TEK model). This model is de�ned on a singlespae-point and its ation takes the form [22℄STEK[U ℄ = �N�X�6=� Z��Tr�U�U�U y�U y�� : (8)U1 and U2 are unitary N �N matries whih enode the degrees of freedomof the U(1) lattie gauge theory. For the twist fator we adopt the hoie ofRef. [15℄, Z21 = Z�12 = exp(i�(N + 1)=N) , where N has to be odd. There isan exat equivalene to the lattie NC U(1) gauge theory, i.e. the algebrasare idential, as Ref. [23℄ showed in the large N limit. A re�ned onsiderationfound suh a mapping even at �nite N [24℄. Hene the TEK model an beused for numerial simulations of NC gauge theories, and it is most suitablefor this purpose.It is straightforward to formulate Wilson loops in this matrix model. Forinstane, a retangular loop with side lengths aI and aJ (and lokwiseorientation) orresponds to the termW (I � J) = 1NZIJ12 Tr�U I1UJ2 U y I1 U yJ2 � : (9)Mapping this quantity bak to the lattie leads in fat to a sensible de�ni-tion of a Wilson loop in the NC gauge theory [25, 26℄. Suh Wilson loopsare omplex in general [9, 15℄. The ation (8) is real, however, sine bothorientations of the plaquettes are summed over, whih is essential for thefeasibility of numerial simulations.Simulations of gauge theories with the standard Metropolis algorithm arenotoriously ineÆient. This also holds for the TEK model. Moreover theusual remedy | the appliation of the heat-bath algorithm | annot beapplied straightforwardly, beause the dimensionally redued ation (8) isnon-linear in the link variables. However, by introduing an auxiliary matrix�eld the ation an be linearised [27℄, so that the heat-bath algorithm worksand the model an indeed be simulated eÆiently.3 This method allowed us3This method has reently been extended to the 4d model where two dimensions are5



to explore rather large systems of N > 100. For the parameter sets (N; �)that we investigated, we olleted statistis of 1000 well thermalised anddeorrelated on�gurations.3 The planar limitIn the planar limit we obtain the U(N ! 1) lattie gauge theory on aommutative plane, whih was solved by Gross and Witten [28℄. In this limitthey found an exat area law for the Wilson loops. In (dimensionless) lattieunits it takes the formhW (I�J)i = exp(��(�)IJ) ; �(�) = � � ln� � � 1=2� ln(1� 14� ) � � 1=2 : (10)In terms of dimensional units the string tension � turns into an area, and itallows us therefore to identify a dimensional lattie spaing asa =p�(�) : (11)In these units the string tension is set to 1 in the planar limit.Of ourse, we are ultimately interested in the DSL aording to eq. (7).But to give it an expliit meaning we �rst have to identify a dimensionallattie spaing, i.e. we have to introdue a sale to interpret the lattie units.Relation (11) an be used for this purpose [15, 30℄, provided that the valuesof N , whih are aessible to our simulations, do approximate the planarlimit well (for the quantities of interest). Otherwise one would have to worryabout �nite N artifats distorting the physial interpretation of our results.We veri�ed this property �rst by heking the validity of the large NShwinger-Dyson equations. On the lattie, they relate Wilson loops of dif-ferent shapes in the planar limit.4 An example for the orresponding ontoursis illustrated in Figure 1 (f. �rst work in Ref. [22℄). Indeed, we observe thatour measurements for the two sides of this equation onverge well as weinrease N to a magnitude of O(100) at �xed �, see Figure 2.5The Eguhi-Kawai equivalene to the model solved by Gross and Wittenalso implies the validity of the APD symmetry in the planar limit. Againwe testify if this symmetry an be observed to set in (approximately) for theredued; this is adequate for QED in a four dimensional spae, omposed of a ommutativeand an NC plane [19℄.4This was the property that motivated the original onstrution of the dimensionallyredued matrix model (without twist fator) by Eguhi and Kawai [29℄.5A variant of this result has been reported before in a proeeding ontribution [31℄ andin a Ph.D. thesis [32℄. Earlier observations in this ontext were given in Ref. [30℄.6
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Figure 1: An example of a set of ontours, whih are involved in a Shwinger-Dyson equation. These equations relate the vauum expetation values of theorresponding Wilson loops in the planar limit. They an be derived from theinvariane under an in�nitesimal substitution of the ompat link variableson the lattie [22℄.
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Figure 2: The onvergene towards the validity of the Shwinger-Dyson equa-tions as N inreases at �xed � = 0:75 (on the left) and � = 1 (on the right).The y-axis is the absolute value of the deviation between the two sides of thespei� Shwinger-Dyson equation illustrated in Figure 1. The x-axis orre-sponds to the lattie area of the ontour C, whih has a retangular shape ofthe form I � (I + 1). These equations are well approximated as N reahesO(100).system sizes that we simulated. We onsider four types of Wilson loops:we denote them as square loops, retangular loops, stair loops and L-loops.In partiular we onsidered these loops at the areas A = 4; 9; 16; 25 : : :in lattie units. The retangular loops are maximally anisotropi, i.e. theirshapes are retangles of side lengths 1 and A.6 For the shapes of stair loopsand L-loops we refer to Figure 3. Note that these two loop types involve two6In Setion 4 we will also onsider retangles with a �xed ratio between the two sidelengths. 7



slightly di�erent ases, depending on whether the area A is even or odd.

Figure 3: An illustration of the di�erent Wilson loops that we onsidered.Their ontours are all polygonal, without multiple-intersetions. They aresquares, L-shapes (with legs of width 1 lattie spaing and equal length, orlengths deviating by 1 if the area A is even), maximally anisotropi retanglesand stairs (again in two variants, depending whether A is even or odd).All the four types of loops (with A �xed) are related by APDs. In par-tiular the square and retangles transform into eah other under SL(2; R)on the plane.We now present numerial results for these Wilson loops W as we ap-proah the planar limit. As an example, we �rst onsider the absolute valuejW j as a funtion of the dimensional area at a �xed lattie area of A = 36.Figure 4 shows results for N = 75 and 155. We see that the absolute valuesfor the di�erent shapes oinide for small and for large areas, but they splitapart at an intermediate physial area of Aa2 = O(10).However, even in this intermediate regime the di�erenes between theWilson loops at a �xed area onverge to zero in the planar limit; examplesfor this behaviour are shown in Figure 5. Sine � was kept �xed in theseplots, both the area in lattie units and in dimensional units is onstant.For the interpretation of our simulation results, we an therefore rely onthe sale (11) extrated from the planar limit. This allows us to proeed nowto the investigation of the DSL, whih desribes the theory on a NC planein the simultaneous UV and IR limit.8
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From Refs. [15℄ we know the following properties about the square loops:� The observable hW (I � I)i does indeed stabilise in the DSL. The ex-istene of this universality lass shows in partiular that the model isnon-perturbatively renormalisable.� At small area, the absolute value jhW (I � I)ij follows an area law. Inthat regime, whih extends up to (aI)2<� 4, the phase is pratiallyzero.� For larger areas, jhW (I�I)ij does not deay any further, but the phasestarts to inrease linearly in the area. It obeys the simple relationphase = (aI)2� = (aI)2 �B ; (12)where we symbolially introdued a magneti �eld B = 1=� aross theplane. As we mentioned in Setion 2, this identi�ation of the mag-neti �eld has been implemented in string theory and in solid statephysis. The behaviour (12) just orresponds to the Aharonov-Bohme�et, whih �ts perfetly into the magneti interpretation of non-ommutativity. Ref. [15℄ disovered this behaviour (unexpetedly) asa dynamial e�et at low energy.To revisit the seond point | the area law for small Wilson loops, wherethe phase is pratially zero | we measured the Creutz ratio�(I; J) = � ln h hW (I � J)i hW ((I � 1)� (J � 1))ihW ((I � 1)� J)i hW (I � (J � 1))i i : (13)This ratio singles out the string tension � for deays / exp(��A), pro-vided that it is equivalent for the various retangular Wilson loops involved.Typial results for (nearly) square shaped Wilson loops, �(I; I), as well asextremely anisotropi (retangular) Wilson loops, �(2; J), are shown in Fig-ure 6.7 For both shapes we �nd a stable behaviour as we inrease N at �xed�, whih suggests that our results an safely be extrapolated to the DSL.Deeply inside the area law regime we obtain � ' 1. Hene in this range thebehaviour in the DSL oinides with the planar limit. We observe, however, amarked deviation from it as the area approahes the transition to the regimeof the Aharonov-Bohm type behaviour.At moderate area the Creutz ratios for the squares and the retanglesdi�er a little. This is a �rst observation hinting at shape independene forretangles deeply inside the area law regime, but not beyond.7We atually averaged over �(2; J) and �(J; 2) in order to inrease the statistis.10
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we approah the DSL. The orresponding results at � = 2:63 are presented inFigure 8. For the latter � value we show in addition the Wilson loop phasesarg(hW i) in Figure 9. These �gures demonstrate that the Wilson loops forN = 125 and N = 155 | plotted against the dimensional area | are almostidential. This shows that we are indeed in the asymptoti regime of theDSL. We an therefore be on�dent that our results reveal the behaviour inthe ontinuous NC plane. This on�dene will be further substantiated byresults for variants of these observables to be presented in the Setion 5.As soon as the area exeeds the area law regime, we observe a lear dis-tintion between the absolute values jhW ij for di�erent shapes, see Figures 7and 8.8 This distintion ours for any pair of the ontour types onsidered.We show again the retangles of the form 1�A (in lattie units), whih be-ome in�nitesimally narrow in the DSL (in dimensional units). In additionwe also inlude retangles with a �xed ratio of 4 between the side lengths,whih keep an invariant shape as we approah the DSL. The di�erent expe-tation values for the narrow retangles with the same area show learly thatthe APD symmetry breaks.The distintion between squares and retangles of �xed side ratio in theseplots is less striking than the other ases. However, exatly these retanglesare diretly relevant to explore the fate of the symmetry subgroup SL(2; R),hene we will fous on them spei�ally in Setion 6.Next we disuss the phases arg(hW i) , whih we show for � = 2:63 inFigure 9. As the area inreases beyond the area law regime, the squareshapes, retangles with �xed side ratio and the stairs follow very well theAharonov-Bohm type behaviour orresponding to eq. (12), whih had beenobserved earlier for squares and ertain retangles [15℄. The L-shape does notagree optimally, but its behaviour is reasonably lose, in partiular on the�ner lattie whih orresponds to N = 155. We remark that the extremelyanisotropi retangles onsidered earlier lead to strong deviations from eq.(12), as we are going to show in the Setion 5 (Figure 13). Apparently shapeswhih beome extremely thin (in physial units) as we approah the DSL anlead to suh features (although this is not the ase for the stair loops).In any ase, our results for the phases are very similar for the di�erent Nvalues, so they on�rm that we are in an asymptoti window of the DSL. Thephase of the Wilson loop has a muh stronger trend towards (at least partial)APD symmetry than the absolute value. As far as we ould hek, the phase(alone) is well ompatible with this symmetry for �xed shapes in dimensionalunits, with a �nite extent in eah diretion. But of ourse the di�erenes in8We note that the total area of the system amounts to V = �N�, hene for ourparameters V � � is granted. 12
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Figure 8: The analogous plots to Figure 7, but now at � = 2:63. Again theresults learly on�rm a shape dependene beyond the area law regime, whihis stable as we inrease N towards the DSL.jhW ij are suÆient to disard APD symmetry as a basi property of thistheory.
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Figure 9: The phases of various Wilson loops at � = 2:63 for N = 125 (ontop) and N = 155 (below). The Aharonov-Bohm type behaviour in eq. (12)at large area is very well on�rmed for the shapes shown here. They inluderesults for retangular loops with a �xed ratio of 4 and a ratio of 11 betweenthe side lengths, so that its shape is invariant on the way to the DSL. TheL-shape, on the other hand, beomes in�nitesimally thin in this limit. Itsphase follows eq. (12) with some utuations.
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5 APD symmetry breaking for alternative ob-servablesOur results for the standard observables jhW ij and arg(hW i) were presentedin Setion 4 and illustrated the shape dependene of Wilson loops with thesame area (in dimensional units). We gave evidene for this e�et to persistin the DSL.In this setion we present the orresponding results for hjW ji and harg(W )i,whih are somewhat di�erent observables. The quantities of Setion 4 aretratable in perturbation theory, and these are therefore the observables thathave been addressed in Refs. [8{14℄. Moreover they were measured in theprevious numerial study in Ref. [15℄. On the other hand, the quantities ofthis setion are generally not onsidered in analyti work. In the appendix weomment on the prospets of the perturbative treatment of hjW ji. However,hjW ji and harg(W )i an be handled numerially without spei� problems,and they also represent valid physial observables.9 For instane, in lattiegauge theory it is also usual to measure hjP ji (P being the Polyakov loop) |its magnitude serves as a riterion to distinguish the phases of on�nementand deon�nement.We add these observables here in order to supply further strength to ourobservation of APD symmetry breaking. The new observables are suitablefor this purpose, in partiular beause hjW ji does not beome as tiny asjhW ij at moderate and large area, whih leads to smaller relative errors.We �rst present the results for hjW ji for two values of N at � = 1:63(Figure 10) and at � = 2:63 (Figure 11), in analogy to Figures 7 and 8. Thenew observables are pratially idential to those of Setion 4 at small area,where the phase is tiny throughout the Monte Carlo history. They di�er,however, as the area grows beyond this regime. There hjW ji is signi�antlylarger, whih enables a better distintion (without overlapping error bars).But the qualitative behaviour is very similar to Setion 4.Figure 12 shows the phases harg(W )i at the same parameters as in Figure10. It an be ompared to the phase arg(hW i) presented before in Figure9 (for � = 2:63). Also this phase follows losely the Aharonov-Bohm typebehaviour of eq. (12) for the squares, the stairs loops and for the retanglewith a �xed side ratios. (For the squares this behaviour was also observedin 4d NC U(1) gauge theory [19℄.) Again the phase of the L-shape loopsdeviates. It utuates strongly in the Monte Carlo history all over the interval(��; �℄ , keeping its mean values lose to zero.9Atually we onsidered the observables of this setion already in Setion 3 when wedisussed the validity of the sale identi�ed from the planar limit (Figures 4 and 5).16
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Figure 10: The expetation values hjW ji for various Wilson loops at a �xednon-ommutativity parameter � = 1:63. On top we show results at N = 125and below at N = 155. The striking similarity of these plots on�rms thatDSL onvergene is reahed. The results reveal a lear shape dependenebeyond the area law regime also for this observable.At last we onsider the phases of the retangles of the form 1 � A, i.e.of an in�nitesimally narrow shape in the DSL. We mentioned in Setion 4that these phases do not follow eq. (12). In Figure 13 we add the phases forthese retangles at � = 2:62. We show arg(hW i) on the left, and harg(W )i17
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is nevertheless manifest on the non-perturbative level.
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stritive, to a �nite order the symmetry may be proteted in part [11℄, witha residual subgroup showing up in other approahes as well [13℄.However, on the non-perturbative level and by onsidering �nite �, thequantum e�ets unfold their full power and destroy the APD symmetry,inluding the subgroup SL(2; R). Here we presented expliit results forthe APD symmetry breaking. We onsidered four types of Wilson loopswith polygonal ontours, without multiple-intersetions. At the same area,numerial simulations revealed the shape dependene of the Wilson loopexpetation values on the lattie. Our results were obtained for onstantnon-ommutativity parameters � at di�erent values of N | for inreasingN the volume beomes larger (in dimensional units) and the lattie �ner.The results for the Wilson loops remain very stable, hene they allow fora reliable extrapolation to a ontinuous plane of in�nite extent at �xednon-ommutativity (Double Saling Limit). This limit reveals the break-ing of APD symmetry | inluding the SL(2; R) subgroup | on the non-perturbative level. Furthermore our results extend the loss of APD symmetryto the disretised model in a �nite volume.To be more preise, the APD symmetry holds very well for relatively smallloop areas (in dimensional units). For a �xed lattie area this orresponds tothe weak oupling regime, and hene the agreement with the leading orderperturbative results appears onsistent. However, as the dimensional areainreases, this agreement | and therefore the APD symmetry | ollapses:it partially persists in the phase of the Wilson loops, but not in their abso-lute values. We also observed that the SL(2; R) subgroup has is a relativelyhigh viability as an approximate symmetry (whih is onsistent with pertur-bative results), but its breaking beomes manifest for strongly anisotropitransformations in this subgroup.We onlude that NC gauge theory has a rih struture, even in d = 2,far beyond its ommutative ounterpart. This onlusion rises hope for ex-iting e�ets. On the other hand, it also means that an analytial solutionis unlikely. Therefore numerial results are of great importane, as it is thease in ommutative Yang-Mills theories in four dimensions.Aknowledgements: We are indebted to F. Hofheinz and J. Volkholz for valu-able help with the numerial work, and to A. Bassetto for reading the manusript.We also thank them, as well as G. De Pol, H. Dorn, L. Griguolo, J. Nishimura,P. Sodano, Y. Susaki and F. Vian for interesting disussions. The work of A.B.was supported by Istituto Nazionale di Fisia Nuleare (INFN), by the DeutsheForshungsgemeinshaft (DFG), and by the Pan-European Researh Infrastrutureon High Performane Computing (HPC-Europa). He thanks M. M�uller-Preu�kerfor kindly supporting his HPC-Europa appliation. The work of A.T. was sup-23



ported by the DFG within the Shwerpunktprogramm Stringtheorie 1096, by INFNwith a Bruno Rossi postdotoral fellowship, and by the U.S. Department of En-ergy (D.O.E.) under ooperative researh agreement DE-FG02-05ER41360. Theomputations were performed on the Hohleistungs-Rehenzentrum in Stuttgart(HLRS) and on a PC luster at Humboldt-Universit�at.A The perturbative treatment of hjW jiIn this appendix we omment on the perturbative treatment of the observablehjW ji, along the lines of the formalism onstruted in Refs. [8, 9℄. We referthe reader to those works for the details and the relevant literature, whilehere we just reall the basi ingredients needed for our argument.A onvenient gauge hoie for perturbative Wilson loop alulations isthe light-one gauge A� = 0. Faddeev-Popov ghosts are known to deouplealso in the NC ase, and the two-dimensional Lagrangian in this gauge looksindeed free. The non-trivial information on the dynamis is enoded in thesingular behaviour of the propagatorD++ = i [k�2� ℄ : (14)Two presriptions for the pole are important, the Cauhy prinipal valuemethod by 't Hooft, and the presription due to Wu, Mandelstam and Leib-brandt [35℄, whih employs the propagatorD++ = i [k� + i�k+℄�2 : (15)In the ommutative ase, the latter presription is genuinely perturbative,while the former is able to produe results for the Wilson loops, whih takeinto aount non-perturbative ontributions, and it yields exponentiation(area law). But in the NC ase, the former presription behaves very wildlyand has been soon abandoned, while the latter gives sensible results at all theorders onsidered. Also, the rotation to the Eulidean version of the theoryturned out to be useful.When examining the perturbative series of the Wilson loop hW i, onenoties that the NC phase fator intermingles non-trivially, in the non-planardiagrams, with the propagators in the momentum and ontour integrations.The results are themselves expansions, typially in 1=� ; the Wilson loop isanalyti around � =1.The perturbative series for the observable hjW ji looks a priori quite dif-
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ferent from the one of jhW ij. The relevant expansion in the U(1) ase readshjW ji = * ��� 1Xn=0(i g)n Z 10 ds1 : : :Z 1sn�1 dsn _��(s1) : : : _��(sn)Z d2xA+(x+ �(s1)) ? : : : ? A+(x + �(sn))��� � : (16)Clearly the presene of the modulus inside the quantum average ompliatesthe task of rearranging the expansion in terms of the Green funtions of thetheory, for one has �rst to write it shematially asp(P :::)(P :::)� and thenperform a Taylor series in g. The fat that the sums begin with a onstant,followed by terms with an inreasing number of �elds, allows to formallytreat the series as analyti around g = 0. At the end, one omputes thevauum expetation value, based on the Green funtionsh0jT A+(x + �(s1)) ? : : : ? A+(x + �(s2n))j0i : (17)Eah term an in priniple be treated similarly to the standard ase: oneis left with multiple integrals of propagators and Moyal phases, in momen-tum spae and on domains whih are simplexes in the ontour parameters.These ontributions an be visualised by attahing the propagator lines alongthe ontour itself: di�erent simplexes orrespond then to di�erent rossingpatterns of the propagators.In the simplest ase of the O(g4) omputation, the momentum integralsan be arried out exatly using omplex plane tehniques and identities ofBessel funtions, and the remaining ontour integration is then performednumerially. For the new observable, are must be taken in omputing someof the integrals, beause one enounters terms like� �Z 10 dsi _��(si) Z d2x exp[ i p(x+ �(si))℄A+(p)�2 � ; (18)whih appear already at the order O(g2). This order is una�eted by theMoyal phase, but still the overall integration over the spae-time base-pointx fores the appearane of a orrelator hA+(0)A+(0)i at zero momentumwhih is infrared divergent. On the other hand, the integration over thelosed ontour vanishes beause it redues to R 10 dsi _��(si) = 0. Therefore,one has to �x the order of integrations, suh that the ontour integration isperformed �rst. Still, it is not lear if this an be made onsistent at anyorder, or if other potentially divergent terms will appear due to the nestingof ontour integrals, or, most important, due to interferene with the NCphase fator. We leave this interesting analysis for future developments.25
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