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AbstratWe use QCD sum rules to ompute matrix elements of the �B = 2 operatorsappearing in the heavy-quark expansion of the width di�erene of the Bs masseigenstates. Our analysis inludes the leading-order operators Q and QS , as well asthe subleading operators R2 and R3, whih appear at next-to-leading order in the1=mb expansion. We onlude that the violation of the fatorization approximationfor these matrix elements due to non-perturbative vauum ondensates is as low as1-2%.

http://arxiv.org/abs/hep-ph/0703244v1


Contents1 Introdution 32 Sum rule alulation of the bag parameters:the tehnique 62.1 Sum rules in the HQET limit . . . . . . . . . . . . . . . . . . . . . . . . . 93 The OPE for the three-point orrelators 104 The bag parameters from �nite energy sum rules 134.1 The hoie of duality interval . . . . . . . . . . . . . . . . . . . . . . . . . 134.2 Finite energy sum rules in HQET . . . . . . . . . . . . . . . . . . . . . . . 154.2.1 Leading order operators Q and QS . . . . . . . . . . . . . . . . . . 154.2.2 Subleading operators R2 and R3 . . . . . . . . . . . . . . . . . . . . 185 The bag parameters from Borel sum rules 195.1 Borel sum rules in full QCD . . . . . . . . . . . . . . . . . . . . . . . . . . 195.2 Borel sum rules in HQET . . . . . . . . . . . . . . . . . . . . . . . . . . . 216 Final results and disussion 227 Conlusions 268 Appendix 268.1 Spetral densities for Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278.2 Spetral densities for QS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278.3 Spetral densities for R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288.4 Spetral densities for R3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288.5 Four-quark ondensates in the OPE . . . . . . . . . . . . . . . . . . . . . . 29

2



1 IntrodutionThe phenomenon of avour mixing has been intensively investigated over the last deades.The standard model of partile physis provides us with a parameterization of avourphysis whih is ompatible with all data taken up to now. However, we are still lakinga fundamental theory of avour, explaining the three-family struture, the masses andmixings and CP violation.The phenomenology of avour mixing has a few peuliarities. In the standard modelthe only soure of avour mixing originates from the \mismath" between the two massmatries for the up and the down quarks, whih is enoded in the relative rotation betweenthe eigenbases of these matries given by the CKM matrix. The mass matries are induedby Yukawa ouplings to the Higgs partile, whih hints at a relation between eletroweaksymmetry breaking and the origin of avour.CP violation in the standard model is related to an irreduible phase in the CKMmatrix, whih an appear for at least three generations [1℄. Putting aside the still unsolvedmystery of strong CP violation [2℄, this leads to a few interesting onlusions whih areon�rmed by observation. One of these onlusions is the strong suppression of (CPviolating) eletri dipole moments of quarks and leptons, whih is ompatible with data.However, in a generi parameterization of \new physis" ontributions it is hard to avoideletri dipole moments exeeding the experimental limits by orders of magnitude.A further peuliarity of the standard parameterization of avour physis is the sup-pression of \avour hanging neutral urrents" (FCNC's) by the GIM mehanism [3℄,whih has its root in the unitarity of the CKM matrix. In partiular, FCNC proesseswith �B = 2, �S = 2 have been intensively investigated, while �C = 2 proesses havenot yet been observed, in aordane with the very strong GIM suppression predited bythe standard model.Espeially in the systems of neutral B mesons the theoretial desription is simpli�edby the fat that the mass di�erene in these systems is dominated by the short distaneontribution of the top quark. Furthermore, the width di�erene, whih is expeted to besizable in the Bs system, an be omputed in the heavy-quark expansion [4℄.The width di�erene �� between the Bs mass eigenstates is determined by the o�-diagonal matrix element �12 of the �B = 2 transition operator T through �� = �2�12where �12 = 12MBs h �BsjT jBsi (1)andMBs is the Bs meson mass. The �B = 2 transitions are initiated by a avour hangingneutral urrent and our only at the loop level in the standard model. Therefore the3



transition operator T is a ompliated, non-loal objet. The main problem howeveris the treatment of mesons as bound states of QCD, whih involves dynamis in theinfrared strong oupling regime, where a perturbative treatment is not possible. In theheavy-quark expansion the o�-diagonal matrix element �12 an be expanded as a seriesin inverse powers of the b-quark mass ash �BsjT jBsi =Xn Cnmnb h �BsjO�B=2n jBsi (2)where the Wilson oeÆients Cn are alulable in perturbation theory [5℄. In this formu-lation all the non-perturbative physis is ontained in the matrix elements of the loal�B = 2 operators O�B=2n . At leading order in 1=mb the transition operator T involvestwo four-quark operators Q = (�bisi)V�A(�bjsj)V�A (3)QS = (�bisi)S�P (�bjsj)S�P (4)with i a olor index. The notation is suh that (�bisi)V�A = �bi�(1�5)si and (�bisi)S�P =�bi(1 � 5)si. At next-to-leading order in 1=mb the transition operator involves �ve new(subleading) operators. The omplete list of subleading operators and di�erent hoies ofbasis an be found in [6, 7℄. We shall fous on the operators involving an extra ovariantderivative ating on the strange-quark �eld, of whih there are four. Negleting higher-order terms in the 1=mb expansion these an further be redued to the two operatorsR2 = 1m2b (�bi �D�D�si)V�A(�bisi)V�A (5)R3 = 1m2b (�bi �D�D�si)S�P (�bisi)S�P (6)with D� = ���igsA� the ovariant derivative. The subleading operators should be under-stood in HQET even though they are written formally in terms of full QCD �elds. Thismeans that the ovariant derivative ating on the b-quark �eld in (5)-(6) an be replaedby mbv with v the veloity of the heavy b-quark, making expliit that the subleadingoperators R2 and R3 are suppressed only by one power of 1=mb.The standard parameterization of the matrix elements of these operators is obtainedthrough the vauum saturation approximation [8℄ with bag parameters Bi ontrolling theauray of the fatorization, h �BsjOijBsi = Bih �BsjOijBsifa. For the operators onsideredhere, we have (e.g. [6℄) (we now use B for the Bs meson and also for the bag parameterof the operator Q) h �BjQjBi = f 2BM2B2�1 + 1N�B (7)4



h �BjQSjBi = �f 2BM2B M2B(mb +ms)2 �2� 1N�BS (8)h �BjR2jBi = �f 2BM2B  M2Bm2b � 1!�1� 1N�B2 (9)h �BjR3jBi = f 2BM2B  M2Bm2b � 1!�1 + 12N�B3; (10)where N = 3 is the number of olors in QCD and fB is the Bs meson semileptoni deayonstant.The dominant theoretial unertainties in the predition of �� = �2�12 using theheavy-quark expansion are related to the hadroni matrix elements of the loal operatorsOi 2 fQ;QS; R2; R3g, or equivalently, the bag parameters Bi. The alulation of thebag parameters involves strong interation dynamis in the infrared region and is thusa problem in non-perturbative QCD. The ultimate solution an be provided by theirdiret alulation in lattie QCD. Results for Q and QS are available, although not yetompletely reliable [9℄. However, a omputation for the operators R2 and R3 is ompletelylaking, and to math the inreasing preision of the experimental data it is neessary toonsider deviations from Bi = 1 even for these subleading operators [7℄.In this paper we use the tehnique of QCD sum rules to provide a �rst estimate of thebag parameters for the subleading operators R2 and R3. We fous on the alulation ofthe parameters �Bi = Bi� 1, whih measure the deviations from the fatorization resultBi = 1. We limit our analysis to the non-perturbative vauum ondensate ontributionsto these quantities. While more sophistiated treatments with lattie QCD exist for theleading-order operators Q and QS, and with QCD sum rules for Q, we also inlude theseoperators in our analysis. Studying the full set of operators simultaneously helps larifythe general features of sum rules as applied to this lass of matrix elements.Our main �nding is that the non-perturbative ontributions to �B are quite small foreah of the four operators, no larger than 1-2%. We use a simple analytial analysis basedon the HQET limit within �nite energy sum rules (FESR) to give insight into this result.To explore orretions to the HQET limit and to provide error estimates we perform amore thorough numerial analysis using Borel sum rules. The numerial results suggestthat orretions to the HQET limit may be large in some ases.The paper is organized as follows. In Setion 2 we desribe the tehnique of sum rulesas applied to our ase and introdue some neessary notation. In Setion 3 we desribethe alulation of operator-produt expansion (OPE) expressions for the Green funtionsused in the analysis. Setions 4 and 5 ontain our sum-rule analysis and inludes fullQCD and the HQET limit in FESR and Borel form. In Setion 6 we give the �nal results5



and disuss the assumptions made and unertainties involved. In Setion 7 we give thesummary of the paper. Some long formulae for the OPE spetral densities are olletedin the Appendix.2 Sum rule alulation of the bag parameters:the tehniqueIn this setion we review the sum-rule method for alulating the hadroni matrix elementsof the �B = 2 operators. The starting point is the three-point orrelatorT (p1; p2) = i2 Z d4xd4yeip1x�ip2yhTj(x)O(0)j(y)i: (11)The operator O 2 fQ;QS; R2; R3g is a generi four-quark operator and the interpolatingurrent j for the B-meson an be either an axial-vetor (AV) urrent or pseudosalar (PS)urrent, de�ned as j�5 = �s�5b (AV urrent) (12)j5 = �si5b (PS urrent): (13)The overlap of the interpolating urrents with B-meson states is de�ned through thematrix elementsh0j�s�5b(0)j �B(p)i = ifBp�; h0j�si5b(0)j �B(p)i = fBM2Bmb +ms ; (14)where fB is the semileptoni deay onstant of the B meson, MB is the B-meson mass,mb is the b-quark mass, and ms is the strange-quark mass. For the axial-vetor interpo-lating urrent the three-point orrelator is a tensor, and we fous on the salar funtionmultiplying the tensor struture p�1p�2:T ��(p1; p2) = i2 Z d4xd4yeip1x�p2yhTj�5 (x)O(0)j�5 (y)i = p�1p�2T (p1; p2) + : : : (15)where the ellipsis denote other tensor strutures suh as p�1p�1, p�2p�2, p�1p�2 or g�� . It isonvenient to use the dispersion relationT (p1; p2) = Z ds1ds2 �(s1; s2; q2)(s1 � p21)(s2 � p22) (16)and work with the spetral density �(s1; s2; q2). Here q = p1 � p2 and q2 = 0 at thephysial point relevant to the mixing. To derive the sum rules the spetral density isevaluated in two ways: 6



1. In a phenomenologial hadroni piture. In this ase the spetral density is modeledby a B-meson pole plus a ontinuum ontribution. This yields�hadAV (s1; s2) = hf 2BÆ(s1 �M2B)Æ(s2 �M2B)h �BjOjBii+ �ontAV (17)for the axial-vetor urrent, and�hadPS (s1; s2) = " f 2BM4B(mb +ms)2 Æ(s1 �M2B)Æ(s2 �M2B)h �BjOjBi#+ �ontPS (18)for the pseudosalar urrent.2. With QCD using the operator-produt expansion. The resulting spetral densities�OPEi are the sum of a perturbative ontribution and a non-perturbative ontributioninvolving the vauum matrix elements of loal QCD operators (ondensates).The idea of QCD sum rules is to use duality between the physial spetrum measuredin terms of hadrons and the OPE predition expressed in terms of quarks and gluons(the degrees of freedom of the QCD Lagrangian). Duality is implemented by omparingintegrals of the two spetral densitiesZ ds1ds2 �hadi (s1; s2) = Z ds1ds2 �OPEi (s1; s2): (19)It is ommon pratie to model the ontinuum ontribution to the hadroni spetral den-sity with the theoretial expression from the OPE. We hoose to math the two expressionsat the point s1 = s2 = s0, so that the integration region � in the duality integral is thesquare m2b < si < s0 in the (s1; s2) plane. One then obtains the sum rulesf 2Bh �BjOjBi = Z� ds1ds2 �OPEAV (s1; s2) (AV urrent) (20)M4B(mb +ms)2f 2Bh �BjOjBi = Z� ds1ds2 �OPEPS (s1; s2) (PS urrent): (21)Calulating the OPE expressions for the spetral density thus allows for the extrationof the hadroni matrix elements h �BjOijBi, or, equivalently, the bag parameters Bi. Thesum-rule results depend on the parameter s0 at whih the hadroni ontinuum is modeledby the OPE result; we shall disuss di�erent ways of hoosing this parameter later on.The sum rules (20, 21) are referred to as \�nite energy sum rules" (e.g. [10℄). It isexpeted that results obtained with these basi sum rules give a reasonable approximationto a more sophistiated analysis. However, it is also useful to onsider a di�erent averagingproedure in the duality integrals. The most popular tehnique is the Borel sum rule7



analysis. In Borel sum rules one works with duality integrals of moments of the spetraldensities rather than with the spetral densities themselves. In partiular, one omparesthe derivatives �n=(�p2)n of the spetral densities for large n. In the limit n ! 1 andagain modeling the hadroni ontinuum with the OPE predition one arrives at the Borelsum rulef 2Bh �BjOjBie�M2BM21 �M2BM22 = Z� ds1ds2 e� s1M21 � s2M22 �OPEAV (s1; s2) (AV urrent) (22)and analogously for the pseudosalar ase. In the Borel sum rule ontributions fromexited states are exponentially suppressed. Also, studying the stability of the sum ruleresults under variations of the Borel parameters M1 and M2 helps assess their reliability.The proedure skethed above an be used to ompute the bag parameters diretly.However, at the level of the OPE, one an identify the ontributions to the three-pointorrelator whih lead to the value B = 1 only [11, 12℄. Suh ontributions an be ex-pressed as the produt of two olor-singlet two-point funtions, eah depending on a singlemomentum. Subtrating this trivial part from the QCD sum rule allows us to fous on thepiee responsible for deviations from the fatorized value. We thus split the three-pointorrelator into two piees aording toT (p1; p2) = Tfa(p1; p2) + �T (p1; p2); (23)where the sum rule obtained from the fatorized piee Tfa yields B = 1. This fatorizedpart has the expliit form Tfa(p1; p2) = onst� �(p1)�(p2) (24)with the \onst" and the �(pi) spei� to the operator involved. For instane, for theoperators involving a V-A Dira struture, one hasTAVfa(p1; p2) = 2�1 + 1N��V (p1)�V (p2) (25)with p��V (p) = i Z dxeipxhTj(x)�b�(1� 5)s(0)i: (26)Using this same notation for the fatorizable and non-fatorizable ontributions to thespetral densities one �nds a sum rule for �B = B � 1 diretly. It readsf 2B�Bh �BjOjBifae�M2BM21 �M2BM22 = Z ds1ds2��OPEAV (s1; s2)e� s1M21 � s2M22 (27)8



for the Borel sum rule with an AV interpolating urrent and analogously for the otherases.If �B is numerially small ompared to the fatorized value B = 1 (as one expetsfrom the previous analyses [12, 13, 14℄ and the present study on�rms), then this setupallows for an essential improvement in preision in omparison with the analysis of the Bparameter itself.2.1 Sum rules in the HQET limitThe �B = 2 operators are identi�ed by evaluating the transition operator as a seriesin 1=mb, aording to the heavy-quark expansion. In this treatment, the operators arede�ned in terms of QCD �elds and ontain impliitmb dependene. For proesses ontain-ing heavy quarks it is advantageous to make this mb dependene expliit by performingalulations in the formal limit mb ! 1 using the framework of HQET. The e�etivetheory sets up a systemati expansion in powers of 1=mb, and separates the perturbativee�ets ourring at the sale mb from those responsible for the hadroni dynamis at thesale �QCD. In addition to our QCD results, we shall onsider our results evaluated inthe HQET limit.To arry out this expansion to a given order in �s(mb) and 1=mb, one must math theinterpolating urrents and the QCD Lagrangian onto their HQET expressions, and evalu-ate the three-point orrelator in the sum-rule analysis using these e�etive-theory objets.In this paper we shall limit the HQET expansion of a given matrix element to leadingorder in both perturbative and 1=mb orretions, ignoring even the e�ets of leading-logresummation. To this level of auray the mathing onto HQET is trivial, and an beobtained diretly from the QCD sum-rule expressions by making ertain substitutionsand then expanding in a series in the large b-quark mass. On the phenomenologial sideof the sum rules, this is done by writing MB = mb + �� and expanding to leading order in��=mb. On the OPE side, this is done by writing the spetral variables as si = (mb +Ei)2and expanding to leading order in Ei=mb.Applying the HQET expansion to the �nite energy sum rules (20,21) is straightforward,and will be disussed in Setion 4.2. In our numerial analysis in Setion 5, we will alsoneed the HQET limit of the QCD Borel sum rule (22) (and its PS analogue). To obtainthe HQET expression, we hoose the Borel parameters M21 = M22 = M2 and de�neW =M2=mb. Performing the HQET expansion yieldsf 2Bh �BjOjBiHQET = 4 Z ~� dE1dE2 e (4���2E1�2E2)W ~�OPEAV (E1; E2) (AV urrent) (28)9



(a) (b)Figure 1: The leading-order perturbative ontribution to the three-point orrelator (a),and a non-fatorizable perturbative ontribution at next-to-leading-order (b).where the HQET limit of the matrix elements are de�ned by the expansion of the right-hand side of (7). In this ase the duality interval ~� is given by 0 < Ei < E0. Theexpressions for �B are then derived as before.3 The OPE for the three-point orrelatorsIn this setion we desribe the alulation of the spetral density funtions using theOPE. The leading-order results are given by the bare quark loops shown in Figure 1(a).The ross denotes the insertion of any one of the four-quark operators Q;QS; R2; R3,and the solid dots an be either axial-vetor or pseudosalar interpolating urrents. Theanalysis works very muh the same for eah of these eight possible ases. Corretions tothe leading-order result ome from two soures: higher-order perturbative orretions andnon-perturbative orretions in the form of vauum ondensates. Our fous in this paperis on the vauum ondensate ontributions, whih we onsider up to dimension six byalulating the gluon ondensate, the mixed quark-gluon ondensate, and the four-quarkondensate.The leading non-perturbative ontributions involve the gluon ondensate, a dimension-four objet de�ned through the vauum matrix elementhGa��Gb��i = Æab12(N2 � 1)(g��g�� � g��g��)hGGi: (29)The non-fatorizable orretions proportional to the gluon ondensate are obtained byalulating the diagram shown in Figure 2(a) along with the three other permutationswhere the gluons are attahed to di�erent loops. Diagrams where the two gluons areattahed to the same loop are fatorizable and hene do not ontribute to �B.The alulation is most easily performed using the external-�eld method [15℄. Theadvantage of this tehnique is that the external gluon �eld an be expressed in terms of10



(a) (b) (c)Figure 2: Non-fatorizable ontributions involving (a) the hGGi ondensate, (b) the h�sGsiondensate, and () the h�ss�ssi ondensate.the �eld-strength tensor aording to the relationAa�(x) = 12x�Ga�� +O(x2): (30)This property allows for a diret extration of the gluon ondensate ontributions fromthe diagrams in Fig 2(a), and also simpli�es the alulation for the subleading operatorsR2 and R3. Sine the operators R2 and R3 are evaluated at the point x = 0, the diagramswhere a gluon is emitted from the operator itself (the ross in the diagrams) vanish, andone need only onsider derivative ouplings, whose evaluation is essentially the same asfor the leading-order operators Q and QS.We next onsider the dimension-�ve ontributions. These are proportional to themixed quark-gluon ondensate, whih is de�ned through the matrix elementh�s�igsGa��tas�i = (i���)��48 h�sGsi: (31)The relevant non-fatorizable diagrams are shown in Figure 2(b). As with the gluonondensate, the relation (30) leads to simpli�ations for the subleading operators R2; R3.Also in this ase one need not onsider gluons emitted from the ovariant derivative;moreover, the external strange-quark �elds arry vanishing momentum, so derivativesan only at on the strange-quark �eld ontrated inside the loop.Finally, we onsider the dimension-six ontributions involving the four-quark onden-sate. The relevant non-fatorizable diagrams are shown in Figure 2(). These vanish forthe subleading operators R2 and R3, as an be seen by using (30) and then noting thatthe derivative terms at on the vauum �elds and thus vanish. For the leading-order op-erators Q and QS the ontributions involve matrix elements of the form h�s�1s�s�2si wherethe �i involve both Dira and olor indies. To evaluate these non-fatorizable four-quark11



matrix elements we use the vauum saturation approximation, by whih the full matrixelement is expressed ash�s�1s�s�2si = 1(4N)2 (tr�1 tr�2 � tr�1�2) h�ssi2: (32)This approximation dates bak to the �rst appliations of the sum rule method [16℄, andsine then has been heked through numerial analysis in many physial hannels. Onepartiular study for vetor-vetor and axial-axial hannels established that the fator-ization is aurate within 15-20% [17℄. Upon using this approximation for the urrentorrelator, we �nd that non-fatorizable ontributions from the four-quark ondensate tosum rule for Q and QS also vanish. Details are given in the appendix.We shall limit our OPE analysis to these non-perturbative ondensates. To this levelof auray, the OPE result for the spetral density an be written as��i(s1; s2) = ��GGi (s1; s2)hGGi+��sGsi (s1; s2)h�sGsi+ : : : (33)for eah of the eight ases. Expliit results for the ��i an be found in the appendix.The result for the operator Q with an AV (PS) interpolating urrent was �rst obtainedin [12℄ ([13℄), while the others are new. The ellipsis refers to the orretions not taken intoaount in our analysis. These inlude ontributions from the dimension six ondensatehfabGa��Gb��G��i, whose numerial value is onsidered to be small [16℄. An attempt totake into aount ondensates of operators of dimension 7 and even 8 was made in ref. [13℄for the operator Q. We note, however, that the numerial values of these ondensates arevery unertain and their e�ets small, and thus exlude them from the analysis.More important are higher-order perturbative orretions. The next-to-leading orderorretions are parametrially on the order of �s(mb)=� � 0:06 for �s(mb) = 0:2. Non-fatorizable perturbative orretions require the evaluation of three-loop diagrams suhas that shown in Figure 1(b). These were alulated in [18℄ for the leading-order operatorQ, but are unknown for the other ases.As an example and to introdue notation we give here the expliit expression for theQS operator with a pseudosalar interpolating urrent:��PS(s1; s2) = 148�2 h�s� GGi 1s1s2 �s1s22 (6� 3z1 � 3z2 + z1z2) + (p1p2)2z1z2�+ 116�2 h�sGsimb �(�2 + z1)Æ(s2 �m2b) + (�2 + z2)Æ(s1 �m2b)� (34)Here zi = m2b=si, and Æ(si � m2b) is the Dira Æ funtion. At the physial point q2 =(p1 � p2)2 = 0 the salar produt (p1p2) should be understood as (p1p2) = (s1 + s2)=2.12



We also need the HQET expansion of the spetral density, whih we obtain by usingsi = (mb + Ei)2 and expanding to lowest order in Ei=mb. In this ase this limit reads��HQETPS (E1; E2) = 148�2 14�2 �32hg2sGGi � 6�2h�sGsi (Æ(E1) + Æ(E2)) �: (35)4 The bag parameters from �nite energy sum rulesIn this setion we present the sum-rule results for the �Bi using the �nite energy sumrules (20, 21) evaluated at leading order in the HQET approximation. We �rst give simpleanalytial expressions for the �Bi, obtained by relating the sum-rule parameter s0 to theB-meson deay onstant fB, thereby eliminating one parameter. Upon inserting numerialvalues it beomes lear that �B is suppressed by a small sale ratio, independent of thepartiular operator being onsidered.4.1 The hoie of duality intervalThe sum-rule results for the �Bi depend on the hoie of the parameter s0 de�ning theupper limit in the duality integrals in (20), (27). For the hadroni part the best aurayis obtained by onsidering small values of s0 for whih saturation by the ground state isa justi�ed approximation. The OPE side, on the other hand, is best suited for inlusivequantities for whih perturbation theory is valid. The quantity s0 must be hosen insuh a way as to balane between these two ases, and the exat value to use is thus amatter of judgement. A useful guide for determining its value is to use QCD sum rulesfor the matrix elements (14) to express s0 in terms of the deay onstant fB. This makesthe �nite energy sum rule analysis of the three-point orrelator parametrially free andthe analytial results simple, allowing us to disuss qualitative features whih are lesstransparent in a purely numerial analysis.The two-point sum rule for the deay onstant fB is obtained in the standard way.One evaluates the spetral density for the two-point funtion in both a phenomenologialhadroni piture and in the OPE. Equating the integrals of the two spetral densities overa duality interval gives a result for the deay onstant fB. We alulate the OPE spetraldensity by evaluating the two-point funtion in its rudest approximation, inluding onlythe bare quark loop. For the two-point funtion of axial vetor urrents we have�OPEAV (s) = 14�2 (1� z)2(1 + 2z); z = m2b=s: (36)For the phenomenologial spetral density we have�PHAV(s) = f 2BÆ(s�M2B): (37)13



Equating the two expressions as in (19) (loal duality �nite energy sum rules [19℄) yields(2�fB)2 = s0(1� z0)3 (AV urrent) (38)z0 = m2b=s0. We see that the duality interval parameter s0 an be expressed through fBand mb. We rewrite the expression (38) in a form suitable for HQET by substitutings0 = (mb + E0)2 and expanding in the ratio E0=mb � 1. Retaining the leading term ofthe expansion we �nd an equation relating the HQET sum-rule parameter E0 with thephysial quantity fB: (2�fB)2 � 8mbE30 (AV urrent): (39)For fB = 240 MeV and mb = 4:8 GeV one �nds E0 = 1:1 GeV. Repeating the analysisfor the pseudosalar interpolating urrent, where (negleting the strange-quark mass)�OPEPS = 38�2 s 1� m2bs !2 (40)we have in the HQET limit(2�fB)2 � 4mbE30 (PS urrent) (41)whih gives E0 = 1:4 GeV. Thus, the numerial value of the duality interval utuatesdepending on the hannel hosen for its determination. At any rate the results are on-sistent with the general expetation that the sale of duality in hadroni physis is about1 GeV.This idea of determining the value of the duality interval from two-point sum rulesworks well quantitatively also for light quarks. Indeed, by omparison, for light u-, d-quarks one �nds the relation (2�f�)2 = s0, whih gives s0 = 0:7 GeV2 for f� = 130 MeV.This is the atual duality parameter for sum rules in the axial-vetor hannel of lightmesons [20℄.The relations (39) and (41) allow for a simple parameter-free analysis in the HQETlimit. They show the orret saling for the semileptoni deay onstant with the heavyquark mass, fB � 1=pmb, and upon using them in the sum rules the expliit results for thebag parameters beome independent of mb, as appropriate for hadroni quantities. For aquantitative omparison with full QCD higher-order orretions in E0=mb are importantnumerially, as the expansion parameter E0=mb � 0:2 is not very small. We see thisfurther in our analysis with Borel sum rules.14



4.2 Finite energy sum rules in HQETIn this setion we present the analysis using the �nite energy sum rules (20, 21) expandedto leading order in HQET. We work at leading order in �s and ignore even leading-logresummation. At this level of preision the HQET approximation an be obtained by �rstevaluating matrix elements in full QCD and then expanding as desribed in Setion 2.1.To evaluate the phenomenologial side of the sum rules we use the expliit expressions(7), and to evaluate the OPE side we use the HQET results from the appendix.4.2.1 Leading order operators Q and QSWe start our analysis with the leading-order operators Q and QS, for whih we desribethe proedure in some detail.Operator Q with axial vetor interpolating urrent: On the phenomenologialside of the sum rule (20) we have after subtrating the fatorized ontribution (f. eq. 27)IPH = 83�Bf 4BM2B � 83�Bf 4Bm2b ; (42)where in the seond equality we used the HQET limit. To evaluate the OPE side in thesame limit we use si = (mb + Ei)2 in the QCD spetral density from the Appendix andexpand to leading order in Ei=mb, leaving��OPE(s1; s2) = 148�2 h�s� GGi(p1; p2)s1s2 2z1z2(�3 + z1 + z2 � 2z1z2)� 148�2 hg2sG2i4�2 1m2b (�6): (43)Performing the integration on the OPE side we arrive at the sum rule83�B(2�fB)4 = �2hg2sG2iE20m2b : (44)Using (39) to trade (2�fB)4 for E0 we �nd the simple result�B = � 3256 hg2sG2iE40 : (45)The result for the non-perturbative bag parameter is independent of mb, as it should bein the HQET limit, where dynamial quantities depend on soft physis only. This fatan be notied already from (44) by using the saling relation fB � 1=pmb dedued from15



(39). Taking the value of the gluon ondensate as hg2sG2i = 0:48 GeV4 = (0:83 GeV)4 [16℄we have �B = �0:006; (46)at E0 = 1 GeV, whih shows that the non-fatorizable ontribution to the matrix elementis tiny.Examining the expressions for �B, one sees that it is the suppression by the ombi-nation of variables (2�fB)4m2b=E20 = 64E40 = (3:3 GeV)4 whih leads to this result. Thisombination does not sale with mb in the HQET limit and fB is further enhaned byN1=2 in the large-N limit. Sine the sale of the gluon ondensate is given by (0:83 GeV)4,the result for �B is proportional to the fourth power of a small number. In the abseneof any aidental numerial enhanement of the oeÆients, whih we do not see, the\natural" size of the deviations from fatorization is extremely small.The answer (46) is the leading-order HQET result. To get a feel for the size of thesubleading terms, we list the next few terms in the expansion of the OPE spetral density:�B = � 3256 hg2sG2iE40 "1� 113 E0mb + 10�E0mb�2 � 2159 �E0mb�3 + : : :#= � 3256 hg2sG2iE40 [1� 0:8 + 0:4� 0:2 + : : :℄= � 3256 hg2sG2iE40 (0:5) ; (47)where we used mb = 4:8 GeV and to obtain the last line we evaluated the full QCDresult. This shows that the subleading terms are not small, and that keeping only theleading-order term misses the full QCD result by a fator of two, at least at E0 = 1 GeV.Given the small size of �B the fator of two is numerially irrelevant, and is atuallywithin the unertainties of the analysis. We return to this point in Setion 6, using thesubleading operator R2 as an additional example.Operator Q with pseudosalar interpolating urrent: We an repeat the ompu-tation using a pseudosalar interpolating urrent. At leading order in 1=mb we negletms and expand as before, �nding83�B(2�fB)4 = 1m2b ��hg2sG2iE20 + 8�2h�sGsiE0� : (48)The mixed quark-gluon ondensate is parameterized as h�sGsi = m20h�ssi. For numerialevaluation we use m20 = 0:8 GeV2 [21, 22℄ and h�ssi = 0:8h�uui [23, 24℄. For the light quark16



ondensate h�uui we take h�uui = (�0:24 GeV)3. A onvenient normalization for the mixedquark-gluon ondensate is�2h�sGsi = �0:1 GeV5 = (�0:63 GeV)5; (49)whih is of the same order of magnitude as hg2sG2i and is really given by the hadronisale of 1 GeV (or say by the �-meson mass m� = 770 MeV). We see that all dimensionfulquantities are on the order of the fundamental QCD sale of 1 GeV as expeted.Using (39) to eliminate fB one �nds�B = � 3256  hg2sG2i2E40 � 4�2h�sGsiE50 ! = � 3256 (0:24 + 0:4) = �0:008 (50)at E0 = 1 GeV. The result is more or less the same as with the axial-vetor interpolatingurrent but the struture of ontributions hanged. The gluon ondensate ontributes lessand mixed quark-gluon gives a ontribution (it was zero for the axial-vetor ase).Using EPS0 = 1:4 GeV from (41) for the pseudosalar hannel one �nds�B = � 364  hg2sG2i2(EPS0 )4 � 4�2h�sGsi(EPS0 )5 ! = � 364 (0:062 + 0:074) = �0:006 (51)whih oinides with the previous result from the AV urrent. Even though it is moreproper to use the result (41) for the PS hannel, for the remaining operators we shall use(39) in both the AV and PS hannel; the di�erenes are very small.Operator QS with axial vetor interpolating urrent: Repeating the analysis forQS with an axial-vetor urrent we �nd the sum rule� 53�BS(2�fB)4 = 1m2b �16hg2sG2iE20 � 4�2h�sGsiE0� (52)and �BS = � 1640  hg2sG2iE40 � 24�2 h�sGsiE50 ! = � 1640 (0:48 + 2:4) = �0:005 (53)again a very small number. Note that the result is dominated by the ontribution of themixed quark-gluon ondensate, even though it is formally subleading ompared to thegluon ondensate. This is a general situation, as ontributions from the gluon ondensateare often small numerially.
17



Operator QS with pseudosalar interpolating urrent: Repeating for the pseu-dosalar urrent we have�BS = � 3640  hg2sG2iE40 � 8�2 h�sGsiE50 ! = � 3640 (0:48 + 0:8) = �0:006: (54)The oeÆients of the gluon and mixed quark-gluon ondensates hanged, but their sumis very lose to that obtained with the axial-vetor urrent.We onlude that the deviation from fatorization is tiny just beause of the salesinvolved. No surprisingly big numbers or drasti anellations ourred in the analysis.4.2.2 Subleading operators R2 and R3The analysis is essentially unhanged for the subleading operators R2 and R3. The newfeature is the appearane of the parameter �� = MB � mb even at leading-order in theHQET expansion (numerially MB = 5367:5 � 1:8 MeV [25℄). It enters through theexpansion of the matrix elements (7), whih readh �BjR2jBiHQET = �f 2Bm2b �2��mb��1� 1N�B2 (55)h �BjR3jBiHQET = f 2Bm2b �2��mb��1 + 12N�B3: (56)This ��=mb power suppression of the matrix elements on the phenomenologial side ofthe sum rules is ompensated by an E0=mb suppression from the OPE spetral densities.Then, up to a fator of E0=2�� � 1, the magnitude of �B for the subleading operators is�xed by the same sale ratios as before, and as with the leading-order ase there are nolarge deviations from fatorization.Operator R2 with axial vetor interpolating urrent:� 2��mb(2�fB)423�B2 = 1m2b �hg2sG2imbE30 ��32�� 2�2h�sGsimbE20� (57)Notie that for this subleading operator the phenomenologial and OPE sides of the sumrule are suppressed by the hadroni sales �� and E0 respetively. This is expliit in theHQET expressions but not in the QCD ones. Using (39) and taking �� = 0:5 GeV�B2 = E02�� 9256  hg2sG2iE40 + 4�2h�sGsi3E50 ! = 9256 (0:48� 0:13) = 0:012: (58)We see that �B2 is again very small, although this time it is a positive number insteadof a negative one. 18



Operator R2 with pseudosalar interpolating urrent:�B2 = E02�� 3256  hg2sG2iE40 � 4�2h�sGsiE50 ! = 3256 (0:48 + 0:4) = 0:010: (59)Operator R3 with the axial vetor interpolating urrent:76�B3 = E02�� 164  hg2sG2iE40 �16�� 2�2h�sGsiE50 ! = 164 (0:08 + 0:2) = 0:004: (60)and �B3 = 0:004 (61)Operator R3 with pseudosalar interpolating urrent:76�B3 = E02�� 164  hg2sG2iE40 �14�� �2h�sGsiE50 ! = 164 (0:12 + 0:1) = 0:003 (62)and �B3 = 0:003: (63)We an summarize by saying that the �nite energy sum rules within the HQET ap-proximation suggest that fatorization is perfetly preise, if only non-perturbative on-densate e�ets are taken into aount. The bag parameter B2 has the largest violation offatorization, but it is still very small in absolute terms, approximately 1%.5 The bag parameters from Borel sum rulesWe have seen in the previous setion that the deviations from fatorization for boththe leading and subleading operators are very small. In this setion we perform a morethorough numerial analysis using Borel sum rules. This serves to on�rm these resultsand to show that it is possible to impose very onservative error estimates without alteringthis onlusion. We also use the numeris to ompare the HQET and full QCD results.5.1 Borel sum rules in full QCDThe Borel sum rules in full QCD are evaluated aording to (22) and the analogousexpression for the pseudosalar interpolating urrent. Although it is possible to evaluatethe Borel integrals analytially, the results are quite lengthy and we do not need them forthis purely numerial analysis. 19
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Figure 3: Plot of ��B vs. M2 (GeV2) for the leading-order operators Q and QS and �Bfor the subleading operators R2 and R3 with the Borel sum rules in full QCD. The short-dashed lines are obtained using an axial vetor interpolating urrent, and the long-dashedlines using a pseudosalar urrent. The parameter values are given by mb = 4:2 GeV,fBs = 240 MeV, s0 = 36 GeV2, and ms as explained in the text.To evaluate the sum rules, we must �rst give numerial values for the QCD parametersfBs , mb, and ms. For the deay onstant we hoose fBs = 240 MeV as the default value.For the b-quark mass one an take the pole mass or the MS mass. The pole mass ismpoleb = 4:8 GeV while the MS value is mMSb = 4:2 GeV [26, 27℄. For the full QCDanalysis the MS mass is more appropriate. However, sine we are working to lowest orderin �s, we annot distinguish these two quark-mass de�nitions, and the di�erene an beaounted for as an additional unertainty in �B. This di�erene would be under ontrolif �s orretions were taken into aount.The strange-quark mass appears on the OPE side of the sum rules for all hannels,and in the phenomenologial side for the ase of the pseudosalar interpolating urrent.We have seen that �B is extremely small in all ases, and the e�ets of a non-zero strangequark mass do little to alter this. We hoose to keep it non-zero on the phenomenologialside for the leading-order operators Q and QS, using ms = 100 MeV. Keeping it non-zero20
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Operator �B(%) QCD �B(%) HQETQ �0:6� 0:5 �0:6� 0:5QS �0:5� 0:4 �0:6� 0:4R2 0:3� 0:3 0:8� 0:7R3 0:3� 0:2 0:3� 0:2Table 1: A summary of the results.for the Borel integrals are very simple. In fat, they redue to those from the �nite energysum rules in the limit W ! 1. In ontrast to our treatment of the �nite energy sumrules, however, in our numerial studies we treat E0 and f 2Bmb as free parameters. Weagain use fBs = 240 MeV as the default value. While in the QCD alulation the MS masswas more natural, in HQET the pole mass appears in the onstrution of the e�etivetheory and is more natural. We use mpoleb = 4:8 GeV.The results for �B vs. the HQET Borel parameter W for eah operator are shownin Figure 4. The plots are stable in the region 1 GeV < W < 2:5 GeV, whih is rathertypial for Borel sum rules in HQET. The values of �B in the stability range are loseto those in the QCD plots in Figure 3. The one notieable exeption is R2, where theHQET values are about twie as large as the QCD ones. We omment further on this inthe next setion.6 Final results and disussionWe now present our �nal numerial results and estimate the assoiated unertainties. Theresults are summarized in Table 1.To obtain the table entries for full QCD, we �x the Borel parameter atM2 = 15 GeV2and vary the other parameters in the rangesQCD210 MeV < fBs < 270 MeV4 GeV < mb < 4:4 GeV32 GeV2 < s0 < 40 GeV2where the default values lie in the enter of the above ranges. We also vary the ondensatesabout their default values by �30%. For a given ase, we �nd upper and lower values22
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Figure 5: Plots showing ��B vs. W (GeV) for the ase of the QS operator, axial-vetorurrent, using a range of parameter values in the HQET sum rule. The plots are madeby varying the parameters as explained in the text. For the ondensate variations, thedark-gray band orresponds to the gluon ondensate and the larger light-gray band tothe quark-gluon ondensate variation. In eah ase, the dashed line orresponds to thelower border of the parameter range (e.g. fBs = 210 MeV) and the solid line to the upperborder (e.g. fBs = 270 MeV).of �B to identify the error ranges. For the fBs ; mb and s0 variations the ranges areasymmetri; in those ases we use the larger deviation in the error analysis. Finally,we add the unertainties from eah of the �ve variations in quadrature, and average theresults from the axial-vetor and pseudosalar interpolating urrents to obtain the resultsquoted in the table.The proedure is the same for the HQET sum rules, although the set of parametersis di�erent. This time we �x the Borel parameter at W = 2 GeV and the b-quark massat mb = 4:8 GeV, and vary the other parameters in the rangesHQET210 MeV < fBs < 270 MeV500 MeV < �� < 700 MeV1 GeV < E0 < 1:5 GeV23



where the default values lie in the enter of the above ranges. The ondensates are againvaried by �30% about their default values. The �nal table entries are obtained as for theQCD ase.To illustrate the unertainty assoiated with eah parameter variation, we hoose asan example the QS operator with an axial-vetor interpolating urrent in HQET. Therange of �B assoiated with eah variation is represented by the gray bands in Figure 5.It is seen that the largest errors are assoiated with the value of the deay onstant fB.This is not surprising, sine the expliit results sale as 1=f 4B. At the default value W = 2the dependene on �� and E0 is moderate. The results depend linearly on the ondensatesand at W = 2 the unertainty due to the ondensates is omparable with that due to fB.In all ases exept for R2, our entral values for �B in QCD and HQET turned outto be (nearly) equal. However, in interpreting this result, one should be lear that notonly the bag parameters, but also the QCD parameters fB and MB have an expansionin 1=mb. When omparing the QCD result with the HQET result, we have no means ofdisentangling the orretions to fB and MB from those to Bi, so it is not obvious whethernumerial disrepanies are due to orretions to the bag parameters, form fators, mesonmasses, the OPE, or even our hoies of sum rule parameters. The onlusion to make isthat the leading-order expansion and the full results are onsistent with one another inall ases, within the unertainties of the analysis.This said, further investigation of the HQET series for the OPE spetral densities forR2 reveals some interesting features. As an example, we take the piee of the spetraldensity for R2 multiplying hGGi as alulated with an axial-vetor urrent, and onsidersome higher-order terms in the E0=mb expansion of the integrated spetral density. Usingthe notation xi = Ei=mb, integrating over the square 0 < xi < x0, and normalizing to theleading-order term in the x0 = E0=mb expansion, we have4 R dx1dx2�GG(x1; x2)4 R dx1dx2(�9=2x1 � 9=2x2) = 1� 15427 x0 + 56027 x20 + : : : = 1:0� 1:2 + 0:9 + : : : (64)To derive the numbers we used x0 = E0=mb � 0:2 for E0 = 1 GeV. The seond and thirdterms are as large as the �rst, and the orretions do not fall below 10% until the sixthterm, so the \HQET" expansion is not well behaved. We put HQET in quotes, beausethe expansion is just the diagrammati one, not a rigorous one in terms of operators. Itwould be interesting to see whether this poor onvergene persists even with a more arefultreatment of the subleading orretions. If so, this would have important impliations forlattie QCD results, where orretions to the HQET limit are not easy to ontrol.In quoting our �nal results, we used only those obtained from the Borel sum rules.However, one an work with either �nite energy or Borel sum rules. Finite energy sum24



rules an be obtained from Borel sum rules in the limit M2 !1 and are therefore moresensitive to the model of the ontinuum. We used both and saw little di�erene. Our sumrule analysis is by no means unique. For instane, one an hange the duality integrals bymodifying eah side of the sum rule in the same way (for instane by dividing both sidesby (s1s2)). This de�nitely hanges the shape of the urves and an provide better stability.However, our main point is that �B is so small that we need not be too sophistiated withthe sum rules analysis. The splitting into fatorized and non-fatorized parts is powerfuland useful preisely beause the absolute value of �B turns out to be small. Even withvery onservative error estimates the results are numerially informative, and our �nalresults { the range for the values of �B { rather reliable.It is instrutive to ompare our approah to lattie QCD. In the lattie approahthe parameter B is omputed as a whole, sine a splitting into fatorizable and non-fatorizable parts is not possible at the level of simulation. Then for the omputation of theparameter B (and not �B diretly) even good auray of the method (say, about 20%,a typial auray in hadroni physis) gives a less preise statement about fatorizationthan our tehnique.Our analysis was limited to leading order in perturbative orretions. A more auratedetermination would require the omputation of the next-to-leading order perturbativeontributions. These involve three-loop diagrams and this is a non-trivial task. Resultsare nonetheless available for the operatorQ [18℄, where it was shown that these orretionsamount to about 10%. For the other operators, we an say only that the orretions areparametrially on the order of �s=� and are also expeted to be around 10%. Thus, aqualitative predition of the sum-rule analysis is that deviations from fatorization aresuppressed either by sale ratios or by the strong-oupling onstant and are thereforesmall.
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7 ConlusionsWe used QCD sum rules to alulate the bag parameters for the leading and next-to-leading order operators in the 1=mb expansion of the transition operator used to analyzeBs � �Bs mixing. We found that the violation of the fatorization approximation for thematrix elements of both the leading and subleading operators due to non-perturbativevauum ondensate ontributions is well under ontrol and small. Our �nal results forthe parameters �Bi = Bi � 1 are�BjQ = �0:6� 0:5%�BjQS = �0:5� 0:4%�BjR2 = 0:3� 0:3%�BjR3 = 0:3� 0:2%We believe that our very onservative error estimates make our �nal quantitative results(the range for the values of �B) rather reliable.Our result that the non-perturbative ontributions to the �Bi are extremely smallmeans that the non-fatorizable ontributions to the matrix elements are most likelydominated by alulable perturbative e�ets. We did not attempt to inlude the next-to-leading order perturbative ontributions in our analysis. Our naive expetation, based onthe existing alulations for the operator Q, is that these orretions an ontribute anadditional�10%. To larify this point would require the evaluation of the set of three-loopdiagrams appearing in the perturbative analysis.Aknowledgements AAP thanks the Partile Theory Group of Siegen Universitywhere this work was done during his stay as a Merator Guest Professor (Contrat DFGSI 349/10-1). BDP aknowledges the support of the SFB/TR09 \Computational PartilePhysis". This work was supported by the German National Siene Foundation (DFG)under ontrat MA 1187/10-1 and by the German Ministry of Researh BMBF underontrat 05HT6PSA.8 AppendixHere we ompile the results for the ondensate ontributions to the OPE spetral densityin eah of the eight ases. For the axial-vetor urrent we single out the salar amplitude26



multiplying the struture tensor struture p�1p�2 . For the pseudosalar interpolating urrentthere is only one amplitude as the orrelation funtion is a salar.8.1 Spetral densities for QFor the AV interpolating urrent we have��AV = 148�2 h�s� GGi 1s1s2 (p1p2)2z1z2(�3 + z1 + z2 � 2z1z2) (65)� 148�2 14�2 1m2b �� 6hg2sG2i� (66)where z = m2b=s and we omit the fator �(si �m2b) setting the lower limits of integrationfor the si. The fator (p1p2) = s1=2 + s2=2 for q2 = 0. To take the heavy-quark limit inthe seond line we used si = m2b(1 + xi)2 and expanded to lowest order in xi = Ei=mb.For the PS interpolating urrent:��PS = 148�2 h�s� GGi 1s1s2 (p1p2)m2b3(�2 + z1 + z2 � z1z2) (67)+ (p1p2) 116�2 h�sGsimb � 1s12z1Æ(s2 �m2b) + 1s2 2z2Æ(s1 �m2b)� (68)� 148�2 14�2 �� 3hg2sG2i+ 12mb�2h�sGsi �2Æ(s2 �m2b) + 2Æ(s1 �m2b)� � (69)8.2 Spetral densities for QSAV interpolating urrent:��AV = 148�2 h�s� GGi m2bs1s2 12(6� 3(z1 + z2) + z1z2)+ 116�2 h�sGsimb � 1s1 (�2 + z1)Æ(s2 �m2b) + 1s2 (�2 + z2)Æ(s1 �m2b)� (70)� 148�2 14�2 1m2b �12hg2sGGi � 12mb�2h�sGsi �Æ(s2 �m2b) + Æ(s1 �m2b)� � (71)PS interpolating urrent:��PS = 148�2 h�s� GGi 1s1s2 �s1s22 (6� 3z1 � 3z2 + z1z2) + (p1p2)2z1z2�+ 116�2 h�sGsimb �(�2 + z1)Æ(s2 �m2b) + (�2 + z2)Æ(s1 �m2b)� (72)� 148�2 14�2 �32hg2sGGi � 12mb�2h�sGsi �Æ(s2 �m2b) + Æ(s1 �m2b)� � (73)27



8.3 Spetral densities for R2AV interpolating urrent:��AV = 148�2 h�s� GGi 1m2b � 112(�4z31z32 + 12z31z22 � 4z31z2 � 9z21z22 � 3z21z2+9z1z2 � 2z1 + 1)+(p1p2)2s1s2 z21z2(2z1z22 � 4z1z2 + z1 + 4z2 � 3)�+ (z1 $ z2)+ 116�2 h�sGsi 1mb (29z31 + 16z21 � 12z1 + 19)Æ(s2 �m2b) + (z1 $ z2) (74)� 148�2 14�2 1m2b �� 92x1hg2sGGi � 12x1mb�2h�sGsiÆ(s2 �m2b) + (x1 $ x2)� (75)Note that the 1=mb suppression of R2 ompared to Q and QS is manifest only after theHQET expansion. The oeÆient of the hg2sGGi term is large and there is a relative signof hGGi and h�sGsi terms ompared to all other ases. This is a unique feature.PS interpolating urrent:��PS = 148�2 h�s� GGi�38(�z21z22 + 3z21z2 � z21 � 2z1z2 � z1 + 2)+32 (p1p2)2s1s2 z1(z1z22 � 3z1z2 + z1 + 3z2 � 2)�+ (z1 $ z2)+ 116�2 h�sGsi 1mb � m2b4 (z21 � 1) + (p1p2)2m2b z21(�z1 + 1)! Æ(s2 �m2b)�+ (z1 $ z2)(76)� 148�2 14�2 �� 32x1hg2sGGi+ 12x1mb�2h�sGsiÆ(s2 �m2b) + (x1 $ x2)� (77)8.4 Spetral densities for R3AV interpolating urrent:��AV = 148�2 h�s� GGi(p1p2)4s1s2 �z1(�z1z22 + 7z1z2 � 3z1 � 9z2 + 6)�+ (z1 $ z2)+ 116�2 h�sGsi(p1p2)2mbs1 (�z21 + 3z1 � 2)Æ(s2 �m2) + (z1 $ z2) (78)� 148�2 14�2 1m2b �12x1hg2sGGi � 12x1mb�2h�sGsiÆ(s2 �m2b) + (x1 $ x2)� (79)PS interpolating urrent:��PS = 148�2 h�s� GGi 1m2b �(p1p2)16 (�z21z22 + 10z21z2 � 6z1z2 � 12z1 + 9)28



+(p1p2)32s1s2 z21z2(�z2 + 1)�+ (z1 $ z2)+ 116�2 h�sGsi(p1p2)4mb (�z21 + 3z1 � 2)Æ(s2 �m2b) + (z1 $ z2) (80)� 148�2 14�2 �34x1hg2sGGi � 6x1mb�2h�sGsiÆ(s2 �m2b)�+ (x1 $ x2) (81)8.5 Four-quark ondensates in the OPEIn this subsetion we disuss the treatment of the 4-quark ondensates, and show that theirnon-fatorizable ontributions to the urrent orrelator vanish upon applying the vauumsaturation approximation. The Fourier-transformed three-point orrelators involving Qand QS are given byT (p1; p2) = 2h0j(�s�J(mb + /p1)�Os) (�s�J(mb � /p2)�Os)j0i 1(m2b � p21)(m2b � p22)! ; (82)where �O = �(1 � 5) for Q and (1 � 5) for QS, and �J = �5 for the axial-vetorinterpolating urrent, and i5 for the pseudosalar one. In ontrast to the ase for thegluon and quark gluon-ondensates, expliit expressions for the fatorizable ontributionsto the three-point funtions are needed. They readTQfa = 2�1 + 1N��(p1)�(�p2) (83)for Q and TQSfa = 2�1� 12N��(p1)�(�p2) (84)for QS. The funtions �(pi) for an operator with Dira struture �O and an interpolatingurrent struture �J read�(p) = i Z d4xeipxh0jT n�s�Jb(x)�b�Os(0)o j0i = h0j�s�J(mb + /p)�Osj0i 1(m2b � p2) : (85)We now isolate the part of the urrent orrelator �T whih ontributes to a non-zero �Bby using the de�nition (23), whih gives�T i(p1; p2) = T i(p1; p2)� 2�1 + 1N��(p1)�(�p2): (86)The full orrelator T ontains four-quark matrix elements of the form h�s�1s�s�2si. Eval-uating these matrix elements using (32), we �nd that �T vanishes for all ases.29
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