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Abstra
tWe use QCD sum rules to 
ompute matrix elements of the �B = 2 operatorsappearing in the heavy-quark expansion of the width di�eren
e of the Bs masseigenstates. Our analysis in
ludes the leading-order operators Q and QS , as well asthe subleading operators R2 and R3, whi
h appear at next-to-leading order in the1=mb expansion. We 
on
lude that the violation of the fa
torization approximationfor these matrix elements due to non-perturbative va
uum 
ondensates is as low as1-2%.
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1 Introdu
tionThe phenomenon of 
avour mixing has been intensively investigated over the last de
ades.The standard model of parti
le physi
s provides us with a parameterization of 
avourphysi
s whi
h is 
ompatible with all data taken up to now. However, we are still la
kinga fundamental theory of 
avour, explaining the three-family stru
ture, the masses andmixings and CP violation.The phenomenology of 
avour mixing has a few pe
uliarities. In the standard modelthe only sour
e of 
avour mixing originates from the \mismat
h" between the two massmatri
es for the up and the down quarks, whi
h is en
oded in the relative rotation betweenthe eigenbases of these matri
es given by the CKM matrix. The mass matri
es are indu
edby Yukawa 
ouplings to the Higgs parti
le, whi
h hints at a relation between ele
troweaksymmetry breaking and the origin of 
avour.CP violation in the standard model is related to an irredu
ible phase in the CKMmatrix, whi
h 
an appear for at least three generations [1℄. Putting aside the still unsolvedmystery of strong CP violation [2℄, this leads to a few interesting 
on
lusions whi
h are
on�rmed by observation. One of these 
on
lusions is the strong suppression of (CPviolating) ele
tri
 dipole moments of quarks and leptons, whi
h is 
ompatible with data.However, in a generi
 parameterization of \new physi
s" 
ontributions it is hard to avoidele
tri
 dipole moments ex
eeding the experimental limits by orders of magnitude.A further pe
uliarity of the standard parameterization of 
avour physi
s is the sup-pression of \
avour 
hanging neutral 
urrents" (FCNC's) by the GIM me
hanism [3℄,whi
h has its root in the unitarity of the CKM matrix. In parti
ular, FCNC pro
esseswith �B = 2, �S = 2 have been intensively investigated, while �C = 2 pro
esses havenot yet been observed, in a

ordan
e with the very strong GIM suppression predi
ted bythe standard model.Espe
ially in the systems of neutral B mesons the theoreti
al des
ription is simpli�edby the fa
t that the mass di�eren
e in these systems is dominated by the short distan
e
ontribution of the top quark. Furthermore, the width di�eren
e, whi
h is expe
ted to besizable in the Bs system, 
an be 
omputed in the heavy-quark expansion [4℄.The width di�eren
e �� between the Bs mass eigenstates is determined by the o�-diagonal matrix element �12 of the �B = 2 transition operator T through �� = �2�12where �12 = 12MBs h �BsjT jBsi (1)andMBs is the Bs meson mass. The �B = 2 transitions are initiated by a 
avour 
hangingneutral 
urrent and o

ur only at the loop level in the standard model. Therefore the3



transition operator T is a 
ompli
ated, non-lo
al obje
t. The main problem howeveris the treatment of mesons as bound states of QCD, whi
h involves dynami
s in theinfrared strong 
oupling regime, where a perturbative treatment is not possible. In theheavy-quark expansion the o�-diagonal matrix element �12 
an be expanded as a seriesin inverse powers of the b-quark mass ash �BsjT jBsi =Xn Cnmnb h �BsjO�B=2n jBsi (2)where the Wilson 
oeÆ
ients Cn are 
al
ulable in perturbation theory [5℄. In this formu-lation all the non-perturbative physi
s is 
ontained in the matrix elements of the lo
al�B = 2 operators O�B=2n . At leading order in 1=mb the transition operator T involvestwo four-quark operators Q = (�bisi)V�A(�bjsj)V�A (3)QS = (�bisi)S�P (�bjsj)S�P (4)with i a 
olor index. The notation is su
h that (�bisi)V�A = �bi
�(1�
5)si and (�bisi)S�P =�bi(1 � 
5)si. At next-to-leading order in 1=mb the transition operator involves �ve new(subleading) operators. The 
omplete list of subleading operators and di�erent 
hoi
es ofbasis 
an be found in [6, 7℄. We shall fo
us on the operators involving an extra 
ovariantderivative a
ting on the strange-quark �eld, of whi
h there are four. Negle
ting higher-order terms in the 1=mb expansion these 
an further be redu
ed to the two operatorsR2 = 1m2b (�bi �D�D�si)V�A(�bisi)V�A (5)R3 = 1m2b (�bi �D�D�si)S�P (�bisi)S�P (6)with D� = ���igsA� the 
ovariant derivative. The subleading operators should be under-stood in HQET even though they are written formally in terms of full QCD �elds. Thismeans that the 
ovariant derivative a
ting on the b-quark �eld in (5)-(6) 
an be repla
edby mbv with v the velo
ity of the heavy b-quark, making expli
it that the subleadingoperators R2 and R3 are suppressed only by one power of 1=mb.The standard parameterization of the matrix elements of these operators is obtainedthrough the va
uum saturation approximation [8℄ with bag parameters Bi 
ontrolling thea

ura
y of the fa
torization, h �BsjOijBsi = Bih �BsjOijBsifa
. For the operators 
onsideredhere, we have (e.g. [6℄) (we now use B for the Bs meson and also for the bag parameterof the operator Q) h �BjQjBi = f 2BM2B2�1 + 1N
�B (7)4



h �BjQSjBi = �f 2BM2B M2B(mb +ms)2 �2� 1N
�BS (8)h �BjR2jBi = �f 2BM2B  M2Bm2b � 1!�1� 1N
�B2 (9)h �BjR3jBi = f 2BM2B  M2Bm2b � 1!�1 + 12N
�B3; (10)where N
 = 3 is the number of 
olors in QCD and fB is the Bs meson semileptoni
 de
ay
onstant.The dominant theoreti
al un
ertainties in the predi
tion of �� = �2�12 using theheavy-quark expansion are related to the hadroni
 matrix elements of the lo
al operatorsOi 2 fQ;QS; R2; R3g, or equivalently, the bag parameters Bi. The 
al
ulation of thebag parameters involves strong intera
tion dynami
s in the infrared region and is thusa problem in non-perturbative QCD. The ultimate solution 
an be provided by theirdire
t 
al
ulation in latti
e QCD. Results for Q and QS are available, although not yet
ompletely reliable [9℄. However, a 
omputation for the operators R2 and R3 is 
ompletelyla
king, and to mat
h the in
reasing pre
ision of the experimental data it is ne
essary to
onsider deviations from Bi = 1 even for these subleading operators [7℄.In this paper we use the te
hnique of QCD sum rules to provide a �rst estimate of thebag parameters for the subleading operators R2 and R3. We fo
us on the 
al
ulation ofthe parameters �Bi = Bi� 1, whi
h measure the deviations from the fa
torization resultBi = 1. We limit our analysis to the non-perturbative va
uum 
ondensate 
ontributionsto these quantities. While more sophisti
ated treatments with latti
e QCD exist for theleading-order operators Q and QS, and with QCD sum rules for Q, we also in
lude theseoperators in our analysis. Studying the full set of operators simultaneously helps 
larifythe general features of sum rules as applied to this 
lass of matrix elements.Our main �nding is that the non-perturbative 
ontributions to �B are quite small forea
h of the four operators, no larger than 1-2%. We use a simple analyti
al analysis basedon the HQET limit within �nite energy sum rules (FESR) to give insight into this result.To explore 
orre
tions to the HQET limit and to provide error estimates we perform amore thorough numeri
al analysis using Borel sum rules. The numeri
al results suggestthat 
orre
tions to the HQET limit may be large in some 
ases.The paper is organized as follows. In Se
tion 2 we des
ribe the te
hnique of sum rulesas applied to our 
ase and introdu
e some ne
essary notation. In Se
tion 3 we des
ribethe 
al
ulation of operator-produ
t expansion (OPE) expressions for the Green fun
tionsused in the analysis. Se
tions 4 and 5 
ontain our sum-rule analysis and in
ludes fullQCD and the HQET limit in FESR and Borel form. In Se
tion 6 we give the �nal results5



and dis
uss the assumptions made and un
ertainties involved. In Se
tion 7 we give thesummary of the paper. Some long formulae for the OPE spe
tral densities are 
olle
tedin the Appendix.2 Sum rule 
al
ulation of the bag parameters:the te
hniqueIn this se
tion we review the sum-rule method for 
al
ulating the hadroni
 matrix elementsof the �B = 2 operators. The starting point is the three-point 
orrelatorT (p1; p2) = i2 Z d4xd4yeip1x�ip2yhTj(x)O(0)j(y)i: (11)The operator O 2 fQ;QS; R2; R3g is a generi
 four-quark operator and the interpolating
urrent j for the B-meson 
an be either an axial-ve
tor (AV) 
urrent or pseudos
alar (PS)
urrent, de�ned as j�5 = �s
�
5b (AV 
urrent) (12)j5 = �si
5b (PS 
urrent): (13)The overlap of the interpolating 
urrents with B-meson states is de�ned through thematrix elementsh0j�s
�
5b(0)j �B(p)i = ifBp�; h0j�si
5b(0)j �B(p)i = fBM2Bmb +ms ; (14)where fB is the semileptoni
 de
ay 
onstant of the B meson, MB is the B-meson mass,mb is the b-quark mass, and ms is the strange-quark mass. For the axial-ve
tor interpo-lating 
urrent the three-point 
orrelator is a tensor, and we fo
us on the s
alar fun
tionmultiplying the tensor stru
ture p�1p�2:T ��(p1; p2) = i2 Z d4xd4yeip1x�p2yhTj�5 (x)O(0)j�5 (y)i = p�1p�2T (p1; p2) + : : : (15)where the ellipsis denote other tensor stru
tures su
h as p�1p�1, p�2p�2, p�1p�2 or g�� . It is
onvenient to use the dispersion relationT (p1; p2) = Z ds1ds2 �(s1; s2; q2)(s1 � p21)(s2 � p22) (16)and work with the spe
tral density �(s1; s2; q2). Here q = p1 � p2 and q2 = 0 at thephysi
al point relevant to the mixing. To derive the sum rules the spe
tral density isevaluated in two ways: 6



1. In a phenomenologi
al hadroni
 pi
ture. In this 
ase the spe
tral density is modeledby a B-meson pole plus a 
ontinuum 
ontribution. This yields�hadAV (s1; s2) = hf 2BÆ(s1 �M2B)Æ(s2 �M2B)h �BjOjBii+ �
ontAV (17)for the axial-ve
tor 
urrent, and�hadPS (s1; s2) = " f 2BM4B(mb +ms)2 Æ(s1 �M2B)Æ(s2 �M2B)h �BjOjBi#+ �
ontPS (18)for the pseudos
alar 
urrent.2. With QCD using the operator-produ
t expansion. The resulting spe
tral densities�OPEi are the sum of a perturbative 
ontribution and a non-perturbative 
ontributioninvolving the va
uum matrix elements of lo
al QCD operators (
ondensates).The idea of QCD sum rules is to use duality between the physi
al spe
trum measuredin terms of hadrons and the OPE predi
tion expressed in terms of quarks and gluons(the degrees of freedom of the QCD Lagrangian). Duality is implemented by 
omparingintegrals of the two spe
tral densitiesZ ds1ds2 �hadi (s1; s2) = Z ds1ds2 �OPEi (s1; s2): (19)It is 
ommon pra
ti
e to model the 
ontinuum 
ontribution to the hadroni
 spe
tral den-sity with the theoreti
al expression from the OPE. We 
hoose to mat
h the two expressionsat the point s1 = s2 = s0, so that the integration region � in the duality integral is thesquare m2b < si < s0 in the (s1; s2) plane. One then obtains the sum rulesf 2Bh �BjOjBi = Z� ds1ds2 �OPEAV (s1; s2) (AV 
urrent) (20)M4B(mb +ms)2f 2Bh �BjOjBi = Z� ds1ds2 �OPEPS (s1; s2) (PS 
urrent): (21)Cal
ulating the OPE expressions for the spe
tral density thus allows for the extra
tionof the hadroni
 matrix elements h �BjOijBi, or, equivalently, the bag parameters Bi. Thesum-rule results depend on the parameter s0 at whi
h the hadroni
 
ontinuum is modeledby the OPE result; we shall dis
uss di�erent ways of 
hoosing this parameter later on.The sum rules (20, 21) are referred to as \�nite energy sum rules" (e.g. [10℄). It isexpe
ted that results obtained with these basi
 sum rules give a reasonable approximationto a more sophisti
ated analysis. However, it is also useful to 
onsider a di�erent averagingpro
edure in the duality integrals. The most popular te
hnique is the Borel sum rule7



analysis. In Borel sum rules one works with duality integrals of moments of the spe
traldensities rather than with the spe
tral densities themselves. In parti
ular, one 
omparesthe derivatives �n=(�p2)n of the spe
tral densities for large n. In the limit n ! 1 andagain modeling the hadroni
 
ontinuum with the OPE predi
tion one arrives at the Borelsum rulef 2Bh �BjOjBie�M2BM21 �M2BM22 = Z� ds1ds2 e� s1M21 � s2M22 �OPEAV (s1; s2) (AV 
urrent) (22)and analogously for the pseudos
alar 
ase. In the Borel sum rule 
ontributions fromex
ited states are exponentially suppressed. Also, studying the stability of the sum ruleresults under variations of the Borel parameters M1 and M2 helps assess their reliability.The pro
edure sket
hed above 
an be used to 
ompute the bag parameters dire
tly.However, at the level of the OPE, one 
an identify the 
ontributions to the three-point
orrelator whi
h lead to the value B = 1 only [11, 12℄. Su
h 
ontributions 
an be ex-pressed as the produ
t of two 
olor-singlet two-point fun
tions, ea
h depending on a singlemomentum. Subtra
ting this trivial part from the QCD sum rule allows us to fo
us on thepie
e responsible for deviations from the fa
torized value. We thus split the three-point
orrelator into two pie
es a

ording toT (p1; p2) = Tfa
(p1; p2) + �T (p1; p2); (23)where the sum rule obtained from the fa
torized pie
e Tfa
 yields B = 1. This fa
torizedpart has the expli
it form Tfa
(p1; p2) = 
onst� �(p1)�(p2) (24)with the \
onst" and the �(pi) spe
i�
 to the operator involved. For instan
e, for theoperators involving a V-A Dira
 stru
ture, one hasTAVfa
(p1; p2) = 2�1 + 1N
��V (p1)�V (p2) (25)with p��V (p) = i Z dxeipxhTj(x)�b
�(1� 
5)s(0)i: (26)Using this same notation for the fa
torizable and non-fa
torizable 
ontributions to thespe
tral densities one �nds a sum rule for �B = B � 1 dire
tly. It readsf 2B�Bh �BjOjBifa
e�M2BM21 �M2BM22 = Z ds1ds2��OPEAV (s1; s2)e� s1M21 � s2M22 (27)8



for the Borel sum rule with an AV interpolating 
urrent and analogously for the other
ases.If �B is numeri
ally small 
ompared to the fa
torized value B = 1 (as one expe
tsfrom the previous analyses [12, 13, 14℄ and the present study 
on�rms), then this setupallows for an essential improvement in pre
ision in 
omparison with the analysis of the Bparameter itself.2.1 Sum rules in the HQET limitThe �B = 2 operators are identi�ed by evaluating the transition operator as a seriesin 1=mb, a

ording to the heavy-quark expansion. In this treatment, the operators arede�ned in terms of QCD �elds and 
ontain impli
itmb dependen
e. For pro
esses 
ontain-ing heavy quarks it is advantageous to make this mb dependen
e expli
it by performing
al
ulations in the formal limit mb ! 1 using the framework of HQET. The e�e
tivetheory sets up a systemati
 expansion in powers of 1=mb, and separates the perturbativee�e
ts o

urring at the s
ale mb from those responsible for the hadroni
 dynami
s at thes
ale �QCD. In addition to our QCD results, we shall 
onsider our results evaluated inthe HQET limit.To 
arry out this expansion to a given order in �s(mb) and 1=mb, one must mat
h theinterpolating 
urrents and the QCD Lagrangian onto their HQET expressions, and evalu-ate the three-point 
orrelator in the sum-rule analysis using these e�e
tive-theory obje
ts.In this paper we shall limit the HQET expansion of a given matrix element to leadingorder in both perturbative and 1=mb 
orre
tions, ignoring even the e�e
ts of leading-logresummation. To this level of a

ura
y the mat
hing onto HQET is trivial, and 
an beobtained dire
tly from the QCD sum-rule expressions by making 
ertain substitutionsand then expanding in a series in the large b-quark mass. On the phenomenologi
al sideof the sum rules, this is done by writing MB = mb + �� and expanding to leading order in��=mb. On the OPE side, this is done by writing the spe
tral variables as si = (mb +Ei)2and expanding to leading order in Ei=mb.Applying the HQET expansion to the �nite energy sum rules (20,21) is straightforward,and will be dis
ussed in Se
tion 4.2. In our numeri
al analysis in Se
tion 5, we will alsoneed the HQET limit of the QCD Borel sum rule (22) (and its PS analogue). To obtainthe HQET expression, we 
hoose the Borel parameters M21 = M22 = M2 and de�neW =M2=mb. Performing the HQET expansion yieldsf 2Bh �BjOjBiHQET = 4 Z ~� dE1dE2 e (4���2E1�2E2)W ~�OPEAV (E1; E2) (AV 
urrent) (28)9



(a) (b)Figure 1: The leading-order perturbative 
ontribution to the three-point 
orrelator (a),and a non-fa
torizable perturbative 
ontribution at next-to-leading-order (b).where the HQET limit of the matrix elements are de�ned by the expansion of the right-hand side of (7). In this 
ase the duality interval ~� is given by 0 < Ei < E0. Theexpressions for �B are then derived as before.3 The OPE for the three-point 
orrelatorsIn this se
tion we des
ribe the 
al
ulation of the spe
tral density fun
tions using theOPE. The leading-order results are given by the bare quark loops shown in Figure 1(a).The 
ross denotes the insertion of any one of the four-quark operators Q;QS; R2; R3,and the solid dots 
an be either axial-ve
tor or pseudos
alar interpolating 
urrents. Theanalysis works very mu
h the same for ea
h of these eight possible 
ases. Corre
tions tothe leading-order result 
ome from two sour
es: higher-order perturbative 
orre
tions andnon-perturbative 
orre
tions in the form of va
uum 
ondensates. Our fo
us in this paperis on the va
uum 
ondensate 
ontributions, whi
h we 
onsider up to dimension six by
al
ulating the gluon 
ondensate, the mixed quark-gluon 
ondensate, and the four-quark
ondensate.The leading non-perturbative 
ontributions involve the gluon 
ondensate, a dimension-four obje
t de�ned through the va
uum matrix elementhGa��Gb��i = Æab12(N2
 � 1)(g��g�� � g��g��)hGGi: (29)The non-fa
torizable 
orre
tions proportional to the gluon 
ondensate are obtained by
al
ulating the diagram shown in Figure 2(a) along with the three other permutationswhere the gluons are atta
hed to di�erent loops. Diagrams where the two gluons areatta
hed to the same loop are fa
torizable and hen
e do not 
ontribute to �B.The 
al
ulation is most easily performed using the external-�eld method [15℄. Theadvantage of this te
hnique is that the external gluon �eld 
an be expressed in terms of10



(a) (b) (c)Figure 2: Non-fa
torizable 
ontributions involving (a) the hGGi 
ondensate, (b) the h�sGsi
ondensate, and (
) the h�ss�ssi 
ondensate.the �eld-strength tensor a

ording to the relationAa�(x) = 12x�Ga�� +O(x2): (30)This property allows for a dire
t extra
tion of the gluon 
ondensate 
ontributions fromthe diagrams in Fig 2(a), and also simpli�es the 
al
ulation for the subleading operatorsR2 and R3. Sin
e the operators R2 and R3 are evaluated at the point x = 0, the diagramswhere a gluon is emitted from the operator itself (the 
ross in the diagrams) vanish, andone need only 
onsider derivative 
ouplings, whose evaluation is essentially the same asfor the leading-order operators Q and QS.We next 
onsider the dimension-�ve 
ontributions. These are proportional to themixed quark-gluon 
ondensate, whi
h is de�ned through the matrix elementh�s�igsGa��tas�i = (i���)��48 h�sGsi: (31)The relevant non-fa
torizable diagrams are shown in Figure 2(b). As with the gluon
ondensate, the relation (30) leads to simpli�
ations for the subleading operators R2; R3.Also in this 
ase one need not 
onsider gluons emitted from the 
ovariant derivative;moreover, the external strange-quark �elds 
arry vanishing momentum, so derivatives
an only a
t on the strange-quark �eld 
ontra
ted inside the loop.Finally, we 
onsider the dimension-six 
ontributions involving the four-quark 
onden-sate. The relevant non-fa
torizable diagrams are shown in Figure 2(
). These vanish forthe subleading operators R2 and R3, as 
an be seen by using (30) and then noting thatthe derivative terms a
t on the va
uum �elds and thus vanish. For the leading-order op-erators Q and QS the 
ontributions involve matrix elements of the form h�s�1s�s�2si wherethe �i involve both Dira
 and 
olor indi
es. To evaluate these non-fa
torizable four-quark11



matrix elements we use the va
uum saturation approximation, by whi
h the full matrixelement is expressed ash�s�1s�s�2si = 1(4N
)2 (tr�1 tr�2 � tr�1�2) h�ssi2: (32)This approximation dates ba
k to the �rst appli
ations of the sum rule method [16℄, andsin
e then has been 
he
ked through numeri
al analysis in many physi
al 
hannels. Oneparti
ular study for ve
tor-ve
tor and axial-axial 
hannels established that the fa
tor-ization is a

urate within 15-20% [17℄. Upon using this approximation for the 
urrent
orrelator, we �nd that non-fa
torizable 
ontributions from the four-quark 
ondensate tosum rule for Q and QS also vanish. Details are given in the appendix.We shall limit our OPE analysis to these non-perturbative 
ondensates. To this levelof a

ura
y, the OPE result for the spe
tral density 
an be written as��i(s1; s2) = ��GGi (s1; s2)hGGi+��sGsi (s1; s2)h�sGsi+ : : : (33)for ea
h of the eight 
ases. Expli
it results for the ��i 
an be found in the appendix.The result for the operator Q with an AV (PS) interpolating 
urrent was �rst obtainedin [12℄ ([13℄), while the others are new. The ellipsis refers to the 
orre
tions not taken intoa

ount in our analysis. These in
lude 
ontributions from the dimension six 
ondensatehfab
Ga��Gb��G
��i, whose numeri
al value is 
onsidered to be small [16℄. An attempt totake into a

ount 
ondensates of operators of dimension 7 and even 8 was made in ref. [13℄for the operator Q. We note, however, that the numeri
al values of these 
ondensates arevery un
ertain and their e�e
ts small, and thus ex
lude them from the analysis.More important are higher-order perturbative 
orre
tions. The next-to-leading order
orre
tions are parametri
ally on the order of �s(mb)=� � 0:06 for �s(mb) = 0:2. Non-fa
torizable perturbative 
orre
tions require the evaluation of three-loop diagrams su
has that shown in Figure 1(b). These were 
al
ulated in [18℄ for the leading-order operatorQ, but are unknown for the other 
ases.As an example and to introdu
e notation we give here the expli
it expression for theQS operator with a pseudos
alar interpolating 
urrent:��PS(s1; s2) = 148�2 h�s� GGi 1s1s2 �s1s22 (6� 3z1 � 3z2 + z1z2) + (p1p2)2z1z2�+ 116�2 h�sGsimb �(�2 + z1)Æ(s2 �m2b) + (�2 + z2)Æ(s1 �m2b)� (34)Here zi = m2b=si, and Æ(si � m2b) is the Dira
 Æ fun
tion. At the physi
al point q2 =(p1 � p2)2 = 0 the s
alar produ
t (p1p2) should be understood as (p1p2) = (s1 + s2)=2.12



We also need the HQET expansion of the spe
tral density, whi
h we obtain by usingsi = (mb + Ei)2 and expanding to lowest order in Ei=mb. In this 
ase this limit reads��HQETPS (E1; E2) = 148�2 14�2 �32hg2sGGi � 6�2h�sGsi (Æ(E1) + Æ(E2)) �: (35)4 The bag parameters from �nite energy sum rulesIn this se
tion we present the sum-rule results for the �Bi using the �nite energy sumrules (20, 21) evaluated at leading order in the HQET approximation. We �rst give simpleanalyti
al expressions for the �Bi, obtained by relating the sum-rule parameter s0 to theB-meson de
ay 
onstant fB, thereby eliminating one parameter. Upon inserting numeri
alvalues it be
omes 
lear that �B is suppressed by a small s
ale ratio, independent of theparti
ular operator being 
onsidered.4.1 The 
hoi
e of duality intervalThe sum-rule results for the �Bi depend on the 
hoi
e of the parameter s0 de�ning theupper limit in the duality integrals in (20), (27). For the hadroni
 part the best a

ura
yis obtained by 
onsidering small values of s0 for whi
h saturation by the ground state isa justi�ed approximation. The OPE side, on the other hand, is best suited for in
lusivequantities for whi
h perturbation theory is valid. The quantity s0 must be 
hosen insu
h a way as to balan
e between these two 
ases, and the exa
t value to use is thus amatter of judgement. A useful guide for determining its value is to use QCD sum rulesfor the matrix elements (14) to express s0 in terms of the de
ay 
onstant fB. This makesthe �nite energy sum rule analysis of the three-point 
orrelator parametri
ally free andthe analyti
al results simple, allowing us to dis
uss qualitative features whi
h are lesstransparent in a purely numeri
al analysis.The two-point sum rule for the de
ay 
onstant fB is obtained in the standard way.One evaluates the spe
tral density for the two-point fun
tion in both a phenomenologi
alhadroni
 pi
ture and in the OPE. Equating the integrals of the two spe
tral densities overa duality interval gives a result for the de
ay 
onstant fB. We 
al
ulate the OPE spe
traldensity by evaluating the two-point fun
tion in its 
rudest approximation, in
luding onlythe bare quark loop. For the two-point fun
tion of axial ve
tor 
urrents we have�OPEAV (s) = 14�2 (1� z)2(1 + 2z); z = m2b=s: (36)For the phenomenologi
al spe
tral density we have�PHAV(s) = f 2BÆ(s�M2B): (37)13



Equating the two expressions as in (19) (lo
al duality �nite energy sum rules [19℄) yields(2�fB)2 = s0(1� z0)3 (AV 
urrent) (38)z0 = m2b=s0. We see that the duality interval parameter s0 
an be expressed through fBand mb. We rewrite the expression (38) in a form suitable for HQET by substitutings0 = (mb + E0)2 and expanding in the ratio E0=mb � 1. Retaining the leading term ofthe expansion we �nd an equation relating the HQET sum-rule parameter E0 with thephysi
al quantity fB: (2�fB)2 � 8mbE30 (AV 
urrent): (39)For fB = 240 MeV and mb = 4:8 GeV one �nds E0 = 1:1 GeV. Repeating the analysisfor the pseudos
alar interpolating 
urrent, where (negle
ting the strange-quark mass)�OPEPS = 38�2 s 1� m2bs !2 (40)we have in the HQET limit(2�fB)2 � 4mbE30 (PS 
urrent) (41)whi
h gives E0 = 1:4 GeV. Thus, the numeri
al value of the duality interval 
u
tuatesdepending on the 
hannel 
hosen for its determination. At any rate the results are 
on-sistent with the general expe
tation that the s
ale of duality in hadroni
 physi
s is about1 GeV.This idea of determining the value of the duality interval from two-point sum rulesworks well quantitatively also for light quarks. Indeed, by 
omparison, for light u-, d-quarks one �nds the relation (2�f�)2 = s0, whi
h gives s0 = 0:7 GeV2 for f� = 130 MeV.This is the a
tual duality parameter for sum rules in the axial-ve
tor 
hannel of lightmesons [20℄.The relations (39) and (41) allow for a simple parameter-free analysis in the HQETlimit. They show the 
orre
t s
aling for the semileptoni
 de
ay 
onstant with the heavyquark mass, fB � 1=pmb, and upon using them in the sum rules the expli
it results for thebag parameters be
ome independent of mb, as appropriate for hadroni
 quantities. For aquantitative 
omparison with full QCD higher-order 
orre
tions in E0=mb are importantnumeri
ally, as the expansion parameter E0=mb � 0:2 is not very small. We see thisfurther in our analysis with Borel sum rules.14



4.2 Finite energy sum rules in HQETIn this se
tion we present the analysis using the �nite energy sum rules (20, 21) expandedto leading order in HQET. We work at leading order in �s and ignore even leading-logresummation. At this level of pre
ision the HQET approximation 
an be obtained by �rstevaluating matrix elements in full QCD and then expanding as des
ribed in Se
tion 2.1.To evaluate the phenomenologi
al side of the sum rules we use the expli
it expressions(7), and to evaluate the OPE side we use the HQET results from the appendix.4.2.1 Leading order operators Q and QSWe start our analysis with the leading-order operators Q and QS, for whi
h we des
ribethe pro
edure in some detail.Operator Q with axial ve
tor interpolating 
urrent: On the phenomenologi
alside of the sum rule (20) we have after subtra
ting the fa
torized 
ontribution (
f. eq. 27)IPH = 83�Bf 4BM2B � 83�Bf 4Bm2b ; (42)where in the se
ond equality we used the HQET limit. To evaluate the OPE side in thesame limit we use si = (mb + Ei)2 in the QCD spe
tral density from the Appendix andexpand to leading order in Ei=mb, leaving��OPE(s1; s2) = 148�2 h�s� GGi(p1; p2)s1s2 2z1z2(�3 + z1 + z2 � 2z1z2)� 148�2 hg2sG2i4�2 1m2b (�6): (43)Performing the integration on the OPE side we arrive at the sum rule83�B(2�fB)4 = �2hg2sG2iE20m2b : (44)Using (39) to trade (2�fB)4 for E0 we �nd the simple result�B = � 3256 hg2sG2iE40 : (45)The result for the non-perturbative bag parameter is independent of mb, as it should bein the HQET limit, where dynami
al quantities depend on soft physi
s only. This fa
t
an be noti
ed already from (44) by using the s
aling relation fB � 1=pmb dedu
ed from15



(39). Taking the value of the gluon 
ondensate as hg2sG2i = 0:48 GeV4 = (0:83 GeV)4 [16℄we have �B = �0:006; (46)at E0 = 1 GeV, whi
h shows that the non-fa
torizable 
ontribution to the matrix elementis tiny.Examining the expressions for �B, one sees that it is the suppression by the 
ombi-nation of variables (2�fB)4m2b=E20 = 64E40 = (3:3 GeV)4 whi
h leads to this result. This
ombination does not s
ale with mb in the HQET limit and fB is further enhan
ed byN1=2
 in the large-N
 limit. Sin
e the s
ale of the gluon 
ondensate is given by (0:83 GeV)4,the result for �B is proportional to the fourth power of a small number. In the absen
eof any a

idental numeri
al enhan
ement of the 
oeÆ
ients, whi
h we do not see, the\natural" size of the deviations from fa
torization is extremely small.The answer (46) is the leading-order HQET result. To get a feel for the size of thesubleading terms, we list the next few terms in the expansion of the OPE spe
tral density:�B = � 3256 hg2sG2iE40 "1� 113 E0mb + 10�E0mb�2 � 2159 �E0mb�3 + : : :#= � 3256 hg2sG2iE40 [1� 0:8 + 0:4� 0:2 + : : :℄= � 3256 hg2sG2iE40 (0:5) ; (47)where we used mb = 4:8 GeV and to obtain the last line we evaluated the full QCDresult. This shows that the subleading terms are not small, and that keeping only theleading-order term misses the full QCD result by a fa
tor of two, at least at E0 = 1 GeV.Given the small size of �B the fa
tor of two is numeri
ally irrelevant, and is a
tuallywithin the un
ertainties of the analysis. We return to this point in Se
tion 6, using thesubleading operator R2 as an additional example.Operator Q with pseudos
alar interpolating 
urrent: We 
an repeat the 
ompu-tation using a pseudos
alar interpolating 
urrent. At leading order in 1=mb we negle
tms and expand as before, �nding83�B(2�fB)4 = 1m2b ��hg2sG2iE20 + 8�2h�sGsiE0� : (48)The mixed quark-gluon 
ondensate is parameterized as h�sGsi = m20h�ssi. For numeri
alevaluation we use m20 = 0:8 GeV2 [21, 22℄ and h�ssi = 0:8h�uui [23, 24℄. For the light quark16




ondensate h�uui we take h�uui = (�0:24 GeV)3. A 
onvenient normalization for the mixedquark-gluon 
ondensate is�2h�sGsi = �0:1 GeV5 = (�0:63 GeV)5; (49)whi
h is of the same order of magnitude as hg2sG2i and is really given by the hadroni
s
ale of 1 GeV (or say by the �-meson mass m� = 770 MeV). We see that all dimensionfulquantities are on the order of the fundamental QCD s
ale of 1 GeV as expe
ted.Using (39) to eliminate fB one �nds�B = � 3256  hg2sG2i2E40 � 4�2h�sGsiE50 ! = � 3256 (0:24 + 0:4) = �0:008 (50)at E0 = 1 GeV. The result is more or less the same as with the axial-ve
tor interpolating
urrent but the stru
ture of 
ontributions 
hanged. The gluon 
ondensate 
ontributes lessand mixed quark-gluon gives a 
ontribution (it was zero for the axial-ve
tor 
ase).Using EPS0 = 1:4 GeV from (41) for the pseudos
alar 
hannel one �nds�B = � 364  hg2sG2i2(EPS0 )4 � 4�2h�sGsi(EPS0 )5 ! = � 364 (0:062 + 0:074) = �0:006 (51)whi
h 
oin
ides with the previous result from the AV 
urrent. Even though it is moreproper to use the result (41) for the PS 
hannel, for the remaining operators we shall use(39) in both the AV and PS 
hannel; the di�eren
es are very small.Operator QS with axial ve
tor interpolating 
urrent: Repeating the analysis forQS with an axial-ve
tor 
urrent we �nd the sum rule� 53�BS(2�fB)4 = 1m2b �16hg2sG2iE20 � 4�2h�sGsiE0� (52)and �BS = � 1640  hg2sG2iE40 � 24�2 h�sGsiE50 ! = � 1640 (0:48 + 2:4) = �0:005 (53)again a very small number. Note that the result is dominated by the 
ontribution of themixed quark-gluon 
ondensate, even though it is formally subleading 
ompared to thegluon 
ondensate. This is a general situation, as 
ontributions from the gluon 
ondensateare often small numeri
ally.
17



Operator QS with pseudos
alar interpolating 
urrent: Repeating for the pseu-dos
alar 
urrent we have�BS = � 3640  hg2sG2iE40 � 8�2 h�sGsiE50 ! = � 3640 (0:48 + 0:8) = �0:006: (54)The 
oeÆ
ients of the gluon and mixed quark-gluon 
ondensates 
hanged, but their sumis very 
lose to that obtained with the axial-ve
tor 
urrent.We 
on
lude that the deviation from fa
torization is tiny just be
ause of the s
alesinvolved. No surprisingly big numbers or drasti
 
an
ellations o

urred in the analysis.4.2.2 Subleading operators R2 and R3The analysis is essentially un
hanged for the subleading operators R2 and R3. The newfeature is the appearan
e of the parameter �� = MB � mb even at leading-order in theHQET expansion (numeri
ally MB = 5367:5 � 1:8 MeV [25℄). It enters through theexpansion of the matrix elements (7), whi
h readh �BjR2jBiHQET = �f 2Bm2b �2��mb��1� 1N
�B2 (55)h �BjR3jBiHQET = f 2Bm2b �2��mb��1 + 12N
�B3: (56)This ��=mb power suppression of the matrix elements on the phenomenologi
al side ofthe sum rules is 
ompensated by an E0=mb suppression from the OPE spe
tral densities.Then, up to a fa
tor of E0=2�� � 1, the magnitude of �B for the subleading operators is�xed by the same s
ale ratios as before, and as with the leading-order 
ase there are nolarge deviations from fa
torization.Operator R2 with axial ve
tor interpolating 
urrent:� 2��mb(2�fB)423�B2 = 1m2b �hg2sG2imbE30 ��32�� 2�2h�sGsimbE20� (57)Noti
e that for this subleading operator the phenomenologi
al and OPE sides of the sumrule are suppressed by the hadroni
 s
ales �� and E0 respe
tively. This is expli
it in theHQET expressions but not in the QCD ones. Using (39) and taking �� = 0:5 GeV�B2 = E02�� 9256  hg2sG2iE40 + 4�2h�sGsi3E50 ! = 9256 (0:48� 0:13) = 0:012: (58)We see that �B2 is again very small, although this time it is a positive number insteadof a negative one. 18



Operator R2 with pseudos
alar interpolating 
urrent:�B2 = E02�� 3256  hg2sG2iE40 � 4�2h�sGsiE50 ! = 3256 (0:48 + 0:4) = 0:010: (59)Operator R3 with the axial ve
tor interpolating 
urrent:76�B3 = E02�� 164  hg2sG2iE40 �16�� 2�2h�sGsiE50 ! = 164 (0:08 + 0:2) = 0:004: (60)and �B3 = 0:004 (61)Operator R3 with pseudos
alar interpolating 
urrent:76�B3 = E02�� 164  hg2sG2iE40 �14�� �2h�sGsiE50 ! = 164 (0:12 + 0:1) = 0:003 (62)and �B3 = 0:003: (63)We 
an summarize by saying that the �nite energy sum rules within the HQET ap-proximation suggest that fa
torization is perfe
tly pre
ise, if only non-perturbative 
on-densate e�e
ts are taken into a

ount. The bag parameter B2 has the largest violation offa
torization, but it is still very small in absolute terms, approximately 1%.5 The bag parameters from Borel sum rulesWe have seen in the previous se
tion that the deviations from fa
torization for boththe leading and subleading operators are very small. In this se
tion we perform a morethorough numeri
al analysis using Borel sum rules. This serves to 
on�rm these resultsand to show that it is possible to impose very 
onservative error estimates without alteringthis 
on
lusion. We also use the numeri
s to 
ompare the HQET and full QCD results.5.1 Borel sum rules in full QCDThe Borel sum rules in full QCD are evaluated a

ording to (22) and the analogousexpression for the pseudos
alar interpolating 
urrent. Although it is possible to evaluatethe Borel integrals analyti
ally, the results are quite lengthy and we do not need them forthis purely numeri
al analysis. 19
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Figure 3: Plot of ��B vs. M2 (GeV2) for the leading-order operators Q and QS and �Bfor the subleading operators R2 and R3 with the Borel sum rules in full QCD. The short-dashed lines are obtained using an axial ve
tor interpolating 
urrent, and the long-dashedlines using a pseudos
alar 
urrent. The parameter values are given by mb = 4:2 GeV,fBs = 240 MeV, s0 = 36 GeV2, and ms as explained in the text.To evaluate the sum rules, we must �rst give numeri
al values for the QCD parametersfBs , mb, and ms. For the de
ay 
onstant we 
hoose fBs = 240 MeV as the default value.For the b-quark mass one 
an take the pole mass or the MS mass. The pole mass ismpoleb = 4:8 GeV while the MS value is mMSb = 4:2 GeV [26, 27℄. For the full QCDanalysis the MS mass is more appropriate. However, sin
e we are working to lowest orderin �s, we 
annot distinguish these two quark-mass de�nitions, and the di�eren
e 
an bea

ounted for as an additional un
ertainty in �B. This di�eren
e would be under 
ontrolif �s 
orre
tions were taken into a

ount.The strange-quark mass appears on the OPE side of the sum rules for all 
hannels,and in the phenomenologi
al side for the 
ase of the pseudos
alar interpolating 
urrent.We have seen that �B is extremely small in all 
ases, and the e�e
ts of a non-zero strangequark mass do little to alter this. We 
hoose to keep it non-zero on the phenomenologi
alside for the leading-order operators Q and QS, using ms = 100 MeV. Keeping it non-zero20
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Figure 4: Plots of (�)�B vs. W (GeV) obtained with the Borel sum rules in HQET.The short-dashed lines are obtained using an axial ve
tor interpolating 
urrent, and thelong-dashed lines using a pseudos
alar 
urrent. We take �� = 600 MeV, mb = 4:8 GeV,fBs = 240 MeV, and 2E0 = 2:5 GeV.in the OPE spe
tral densities 
ompli
ates the analyti
al expressions without 
hanging the�nal results in a signi�
ant way. For the subleading operators it is 
onsistent to set it tozero at this order in the heavy-quark expansion.The results for �B vs. the Borel parameter M2 for ea
h operator are shown inFigure 3. The two lines in ea
h plot are obtained by using an axial-ve
tor and pseu-dos
alar interpolating 
urrent. All results have a reasonable stability region in M2 at10 GeV2 < M2 < 20 GeV2. There is some dependen
e on the 
hoi
e of interpolating
urrent, whi
h as we will see later is within the un
ertainties of the analysis. We noteagain that �B is positive for the subleading operators R2 and R3, whereas it is negativefor the leading operators Q and QS.5.2 Borel sum rules in HQETThe Borel sum rules in HQET are performed a

ording to (28) and analogously for thePS interpolating 
urrent. We fo
us on numeri
al results, although the analyti
al results21



Operator �B(%) QCD �B(%) HQETQ �0:6� 0:5 �0:6� 0:5QS �0:5� 0:4 �0:6� 0:4R2 0:3� 0:3 0:8� 0:7R3 0:3� 0:2 0:3� 0:2Table 1: A summary of the results.for the Borel integrals are very simple. In fa
t, they redu
e to those from the �nite energysum rules in the limit W ! 1. In 
ontrast to our treatment of the �nite energy sumrules, however, in our numeri
al studies we treat E0 and f 2Bmb as free parameters. Weagain use fBs = 240 MeV as the default value. While in the QCD 
al
ulation the MS masswas more natural, in HQET the pole mass appears in the 
onstru
tion of the e�e
tivetheory and is more natural. We use mpoleb = 4:8 GeV.The results for �B vs. the HQET Borel parameter W for ea
h operator are shownin Figure 4. The plots are stable in the region 1 GeV < W < 2:5 GeV, whi
h is rathertypi
al for Borel sum rules in HQET. The values of �B in the stability range are 
loseto those in the QCD plots in Figure 3. The one noti
eable ex
eption is R2, where theHQET values are about twi
e as large as the QCD ones. We 
omment further on this inthe next se
tion.6 Final results and dis
ussionWe now present our �nal numeri
al results and estimate the asso
iated un
ertainties. Theresults are summarized in Table 1.To obtain the table entries for full QCD, we �x the Borel parameter atM2 = 15 GeV2and vary the other parameters in the rangesQCD210 MeV < fBs < 270 MeV4 GeV < mb < 4:4 GeV32 GeV2 < s0 < 40 GeV2where the default values lie in the 
enter of the above ranges. We also vary the 
ondensatesabout their default values by �30%. For a given 
ase, we �nd upper and lower values22
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Figure 5: Plots showing ��B vs. W (GeV) for the 
ase of the QS operator, axial-ve
tor
urrent, using a range of parameter values in the HQET sum rule. The plots are madeby varying the parameters as explained in the text. For the 
ondensate variations, thedark-gray band 
orresponds to the gluon 
ondensate and the larger light-gray band tothe quark-gluon 
ondensate variation. In ea
h 
ase, the dashed line 
orresponds to thelower border of the parameter range (e.g. fBs = 210 MeV) and the solid line to the upperborder (e.g. fBs = 270 MeV).of �B to identify the error ranges. For the fBs ; mb and s0 variations the ranges areasymmetri
; in those 
ases we use the larger deviation in the error analysis. Finally,we add the un
ertainties from ea
h of the �ve variations in quadrature, and average theresults from the axial-ve
tor and pseudos
alar interpolating 
urrents to obtain the resultsquoted in the table.The pro
edure is the same for the HQET sum rules, although the set of parametersis di�erent. This time we �x the Borel parameter at W = 2 GeV and the b-quark massat mb = 4:8 GeV, and vary the other parameters in the rangesHQET210 MeV < fBs < 270 MeV500 MeV < �� < 700 MeV1 GeV < E0 < 1:5 GeV23



where the default values lie in the 
enter of the above ranges. The 
ondensates are againvaried by �30% about their default values. The �nal table entries are obtained as for theQCD 
ase.To illustrate the un
ertainty asso
iated with ea
h parameter variation, we 
hoose asan example the QS operator with an axial-ve
tor interpolating 
urrent in HQET. Therange of �B asso
iated with ea
h variation is represented by the gray bands in Figure 5.It is seen that the largest errors are asso
iated with the value of the de
ay 
onstant fB.This is not surprising, sin
e the expli
it results s
ale as 1=f 4B. At the default value W = 2the dependen
e on �� and E0 is moderate. The results depend linearly on the 
ondensatesand at W = 2 the un
ertainty due to the 
ondensates is 
omparable with that due to fB.In all 
ases ex
ept for R2, our 
entral values for �B in QCD and HQET turned outto be (nearly) equal. However, in interpreting this result, one should be 
lear that notonly the bag parameters, but also the QCD parameters fB and MB have an expansionin 1=mb. When 
omparing the QCD result with the HQET result, we have no means ofdisentangling the 
orre
tions to fB and MB from those to Bi, so it is not obvious whethernumeri
al dis
repan
ies are due to 
orre
tions to the bag parameters, form fa
tors, mesonmasses, the OPE, or even our 
hoi
es of sum rule parameters. The 
on
lusion to make isthat the leading-order expansion and the full results are 
onsistent with one another inall 
ases, within the un
ertainties of the analysis.This said, further investigation of the HQET series for the OPE spe
tral densities forR2 reveals some interesting features. As an example, we take the pie
e of the spe
traldensity for R2 multiplying hGGi as 
al
ulated with an axial-ve
tor 
urrent, and 
onsidersome higher-order terms in the E0=mb expansion of the integrated spe
tral density. Usingthe notation xi = Ei=mb, integrating over the square 0 < xi < x0, and normalizing to theleading-order term in the x0 = E0=mb expansion, we have4 R dx1dx2�GG(x1; x2)4 R dx1dx2(�9=2x1 � 9=2x2) = 1� 15427 x0 + 56027 x20 + : : : = 1:0� 1:2 + 0:9 + : : : (64)To derive the numbers we used x0 = E0=mb � 0:2 for E0 = 1 GeV. The se
ond and thirdterms are as large as the �rst, and the 
orre
tions do not fall below 10% until the sixthterm, so the \HQET" expansion is not well behaved. We put HQET in quotes, be
ausethe expansion is just the diagrammati
 one, not a rigorous one in terms of operators. Itwould be interesting to see whether this poor 
onvergen
e persists even with a more 
arefultreatment of the subleading 
orre
tions. If so, this would have important impli
ations forlatti
e QCD results, where 
orre
tions to the HQET limit are not easy to 
ontrol.In quoting our �nal results, we used only those obtained from the Borel sum rules.However, one 
an work with either �nite energy or Borel sum rules. Finite energy sum24



rules 
an be obtained from Borel sum rules in the limit M2 !1 and are therefore moresensitive to the model of the 
ontinuum. We used both and saw little di�eren
e. Our sumrule analysis is by no means unique. For instan
e, one 
an 
hange the duality integrals bymodifying ea
h side of the sum rule in the same way (for instan
e by dividing both sidesby (s1s2)). This de�nitely 
hanges the shape of the 
urves and 
an provide better stability.However, our main point is that �B is so small that we need not be too sophisti
ated withthe sum rules analysis. The splitting into fa
torized and non-fa
torized parts is powerfuland useful pre
isely be
ause the absolute value of �B turns out to be small. Even withvery 
onservative error estimates the results are numeri
ally informative, and our �nalresults { the range for the values of �B { rather reliable.It is instru
tive to 
ompare our approa
h to latti
e QCD. In the latti
e approa
hthe parameter B is 
omputed as a whole, sin
e a splitting into fa
torizable and non-fa
torizable parts is not possible at the level of simulation. Then for the 
omputation of theparameter B (and not �B dire
tly) even good a

ura
y of the method (say, about 20%,a typi
al a

ura
y in hadroni
 physi
s) gives a less pre
ise statement about fa
torizationthan our te
hnique.Our analysis was limited to leading order in perturbative 
orre
tions. A more a

uratedetermination would require the 
omputation of the next-to-leading order perturbative
ontributions. These involve three-loop diagrams and this is a non-trivial task. Resultsare nonetheless available for the operatorQ [18℄, where it was shown that these 
orre
tionsamount to about 10%. For the other operators, we 
an say only that the 
orre
tions areparametri
ally on the order of �s=� and are also expe
ted to be around 10%. Thus, aqualitative predi
tion of the sum-rule analysis is that deviations from fa
torization aresuppressed either by s
ale ratios or by the strong-
oupling 
onstant and are thereforesmall.
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7 Con
lusionsWe used QCD sum rules to 
al
ulate the bag parameters for the leading and next-to-leading order operators in the 1=mb expansion of the transition operator used to analyzeBs � �Bs mixing. We found that the violation of the fa
torization approximation for thematrix elements of both the leading and subleading operators due to non-perturbativeva
uum 
ondensate 
ontributions is well under 
ontrol and small. Our �nal results forthe parameters �Bi = Bi � 1 are�BjQ = �0:6� 0:5%�BjQS = �0:5� 0:4%�BjR2 = 0:3� 0:3%�BjR3 = 0:3� 0:2%We believe that our very 
onservative error estimates make our �nal quantitative results(the range for the values of �B) rather reliable.Our result that the non-perturbative 
ontributions to the �Bi are extremely smallmeans that the non-fa
torizable 
ontributions to the matrix elements are most likelydominated by 
al
ulable perturbative e�e
ts. We did not attempt to in
lude the next-to-leading order perturbative 
ontributions in our analysis. Our naive expe
tation, based onthe existing 
al
ulations for the operator Q, is that these 
orre
tions 
an 
ontribute anadditional�10%. To 
larify this point would require the evaluation of the set of three-loopdiagrams appearing in the perturbative analysis.A
knowledgements AAP thanks the Parti
le Theory Group of Siegen Universitywhere this work was done during his stay as a Mer
ator Guest Professor (Contra
t DFGSI 349/10-1). BDP a
knowledges the support of the SFB/TR09 \Computational Parti
lePhysi
s". This work was supported by the German National S
ien
e Foundation (DFG)under 
ontra
t MA 1187/10-1 and by the German Ministry of Resear
h BMBF under
ontra
t 05HT6PSA.8 AppendixHere we 
ompile the results for the 
ondensate 
ontributions to the OPE spe
tral densityin ea
h of the eight 
ases. For the axial-ve
tor 
urrent we single out the s
alar amplitude26



multiplying the stru
ture tensor stru
ture p�1p�2 . For the pseudos
alar interpolating 
urrentthere is only one amplitude as the 
orrelation fun
tion is a s
alar.8.1 Spe
tral densities for QFor the AV interpolating 
urrent we have��AV = 148�2 h�s� GGi 1s1s2 (p1p2)2z1z2(�3 + z1 + z2 � 2z1z2) (65)� 148�2 14�2 1m2b �� 6hg2sG2i� (66)where z = m2b=s and we omit the fa
tor �(si �m2b) setting the lower limits of integrationfor the si. The fa
tor (p1p2) = s1=2 + s2=2 for q2 = 0. To take the heavy-quark limit inthe se
ond line we used si = m2b(1 + xi)2 and expanded to lowest order in xi = Ei=mb.For the PS interpolating 
urrent:��PS = 148�2 h�s� GGi 1s1s2 (p1p2)m2b3(�2 + z1 + z2 � z1z2) (67)+ (p1p2) 116�2 h�sGsimb � 1s12z1Æ(s2 �m2b) + 1s2 2z2Æ(s1 �m2b)� (68)� 148�2 14�2 �� 3hg2sG2i+ 12mb�2h�sGsi �2Æ(s2 �m2b) + 2Æ(s1 �m2b)� � (69)8.2 Spe
tral densities for QSAV interpolating 
urrent:��AV = 148�2 h�s� GGi m2bs1s2 12(6� 3(z1 + z2) + z1z2)+ 116�2 h�sGsimb � 1s1 (�2 + z1)Æ(s2 �m2b) + 1s2 (�2 + z2)Æ(s1 �m2b)� (70)� 148�2 14�2 1m2b �12hg2sGGi � 12mb�2h�sGsi �Æ(s2 �m2b) + Æ(s1 �m2b)� � (71)PS interpolating 
urrent:��PS = 148�2 h�s� GGi 1s1s2 �s1s22 (6� 3z1 � 3z2 + z1z2) + (p1p2)2z1z2�+ 116�2 h�sGsimb �(�2 + z1)Æ(s2 �m2b) + (�2 + z2)Æ(s1 �m2b)� (72)� 148�2 14�2 �32hg2sGGi � 12mb�2h�sGsi �Æ(s2 �m2b) + Æ(s1 �m2b)� � (73)27



8.3 Spe
tral densities for R2AV interpolating 
urrent:��AV = 148�2 h�s� GGi 1m2b � 112(�4z31z32 + 12z31z22 � 4z31z2 � 9z21z22 � 3z21z2+9z1z2 � 2z1 + 1)+(p1p2)2s1s2 z21z2(2z1z22 � 4z1z2 + z1 + 4z2 � 3)�+ (z1 $ z2)+ 116�2 h�sGsi 1mb (29z31 + 16z21 � 12z1 + 19)Æ(s2 �m2b) + (z1 $ z2) (74)� 148�2 14�2 1m2b �� 92x1hg2sGGi � 12x1mb�2h�sGsiÆ(s2 �m2b) + (x1 $ x2)� (75)Note that the 1=mb suppression of R2 
ompared to Q and QS is manifest only after theHQET expansion. The 
oeÆ
ient of the hg2sGGi term is large and there is a relative signof hGGi and h�sGsi terms 
ompared to all other 
ases. This is a unique feature.PS interpolating 
urrent:��PS = 148�2 h�s� GGi�38(�z21z22 + 3z21z2 � z21 � 2z1z2 � z1 + 2)+32 (p1p2)2s1s2 z1(z1z22 � 3z1z2 + z1 + 3z2 � 2)�+ (z1 $ z2)+ 116�2 h�sGsi 1mb � m2b4 (z21 � 1) + (p1p2)2m2b z21(�z1 + 1)! Æ(s2 �m2b)�+ (z1 $ z2)(76)� 148�2 14�2 �� 32x1hg2sGGi+ 12x1mb�2h�sGsiÆ(s2 �m2b) + (x1 $ x2)� (77)8.4 Spe
tral densities for R3AV interpolating 
urrent:��AV = 148�2 h�s� GGi(p1p2)4s1s2 �z1(�z1z22 + 7z1z2 � 3z1 � 9z2 + 6)�+ (z1 $ z2)+ 116�2 h�sGsi(p1p2)2mbs1 (�z21 + 3z1 � 2)Æ(s2 �m2) + (z1 $ z2) (78)� 148�2 14�2 1m2b �12x1hg2sGGi � 12x1mb�2h�sGsiÆ(s2 �m2b) + (x1 $ x2)� (79)PS interpolating 
urrent:��PS = 148�2 h�s� GGi 1m2b �(p1p2)16 (�z21z22 + 10z21z2 � 6z1z2 � 12z1 + 9)28



+(p1p2)32s1s2 z21z2(�z2 + 1)�+ (z1 $ z2)+ 116�2 h�sGsi(p1p2)4mb (�z21 + 3z1 � 2)Æ(s2 �m2b) + (z1 $ z2) (80)� 148�2 14�2 �34x1hg2sGGi � 6x1mb�2h�sGsiÆ(s2 �m2b)�+ (x1 $ x2) (81)8.5 Four-quark 
ondensates in the OPEIn this subse
tion we dis
uss the treatment of the 4-quark 
ondensates, and show that theirnon-fa
torizable 
ontributions to the 
urrent 
orrelator vanish upon applying the va
uumsaturation approximation. The Fourier-transformed three-point 
orrelators involving Qand QS are given byT (p1; p2) = 2h0j(�s�J(mb + /p1)�Os) (�s�J(mb � /p2)�Os)j0i 1(m2b � p21)(m2b � p22)! ; (82)where �O = 
�(1 � 
5) for Q and (1 � 
5) for QS, and �J = 
�
5 for the axial-ve
torinterpolating 
urrent, and i
5 for the pseudos
alar one. In 
ontrast to the 
ase for thegluon and quark gluon-
ondensates, expli
it expressions for the fa
torizable 
ontributionsto the three-point fun
tions are needed. They readTQfa
 = 2�1 + 1N
��(p1)�(�p2) (83)for Q and TQSfa
 = 2�1� 12N
��(p1)�(�p2) (84)for QS. The fun
tions �(pi) for an operator with Dira
 stru
ture �O and an interpolating
urrent stru
ture �J read�(p) = i Z d4xeipxh0jT n�s�Jb(x)�b�Os(0)o j0i = h0j�s�J(mb + /p)�Osj0i 1(m2b � p2) : (85)We now isolate the part of the 
urrent 
orrelator �T whi
h 
ontributes to a non-zero �Bby using the de�nition (23), whi
h gives�T i(p1; p2) = T i(p1; p2)� 2�1 + 1N
��(p1)�(�p2): (86)The full 
orrelator T 
ontains four-quark matrix elements of the form h�s�1s�s�2si. Eval-uating these matrix elements using (32), we �nd that �T vanishes for all 
ases.29
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