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1 IntrodutionReently, Mellin-Barnes (MB) representations of Feynman integrals have been used ex-tensively in various phenomenologial and theoretial studies of quantum �eld theory. Inmany appliations, sometimes in quite sophistiated ones [1,2,3℄, the MB-integrals anbe solved analytially. One also may merge knowledge of some analytial solutions givenby MB-integrals with other methods, e.g. the di�erential equations approah, as demon-strated in [4℄. An introdution to the subjet with many examples may be found in themonographies [5,6℄. A systemati derivation and numerial evaluation of MB-representa-tions for Feynman integrals with a (unpublished) Maple pakage was desribed in [7℄. Atthe same time, the Mathematia program MB for the automatized analyti ontinuationof MB-integrals was published in [8℄. With AMBRE, we deliver a Mathematia tool forthe derivation of MB-integrals and their subsequent analyti ontinuation and numerialevaluation with MB.The artile is organized as follows. In setion 2 we introdue the formulae used for the MB-representation of a general Feynman integral. The basi features of AMBRE are desribed insetion 3. One-loop examples are given in setion 4. Setion 5 desribes the implementationof the loop-by-loop approah to multi-loop integrals. Examples with tadpoles and on-shelldiagrams as well as problems related to non-planar topologies are disussed in setions6{8. A summary follows in setion 9. In an appendix we list the Mathematia funtionsof AMBRE.2 Constrution of Mellin-Barnes representationsThe bakbone of the proedure to build up MB-representations with AMBRE is the relation1(A+B)� = B��2�i�(�) i1Z�i1 d�A� B�� �(��)�(� + �); (1)where the integration ontour separates the poles of the �-funtions.The objet to be evaluated by AMBRE is an L-loop Feynman integral 1 in d = 4 � 2"dimensions with N internal lines with momenta qi and masses mi, and E external legswith momenta pe:GL[T (k)℄ = 1(i�d=2)L Z ddk1 : : : ddkL T (k)(q21 �m21)�1 : : : (q2i �m2i )�j : : : (q2N �m2N )�N : (2)1 Often one uses the additional normalization e"EL; we leave this to the later evaluation withthe pakage MB [8℄. 4



The numerator T (k) is a tensor in the integration variables:T (k)= 1; k�l ; k�l k�n; : : : (3)The momenta of the denominator funtions di may be expressed by external and loopmomenta:di= q2i �m2i =  LXl=1 �ilkl � Pi!2 �m2i =  LXl=1 �ilkl � EXe=1�iepe!2 �m2i : (4)In the pakage AMBRE, in a �rst step the momentum integrals are replaed by Feynmanparameter integrals:GL[T (k)℄ = (�1)N�� �N� � d2L�QNi=1 �(�i) 1Z0 NYj=1 dxj x�j�1j Æ(1� NXi=1 xi)U(x)N��d(L+1)=2F (x)N��dL=2 PL(T )(5)withN� = NXi=1 �i: (6)The two funtions U and F are harateristis of the topology of the Feynman integral.One may derive them fromN = NXi=1 xi(q2i �m2i ) � kMk � 2kQ+ J; (7)where Mll0 = PNi=1 �il0�ilxi, and Ql = PNi=1 �ilPixi, and J = PNi=1(P 2i �m2i )xi; namely:U(x) =det(M); (8)F (x)=�det(M) J +Q ~MQ: (9)The U and F as well as ~M = det(M)M�1 are polynomials in x, and so are the numeratorfuntions PL(T ) in (2) for salar and vetor integrals:PL(1)= 1; (10)PL(k�l )= LXl0=1 ~Mll0Q�l0 : (11)5



Tensors of higher degree depend additionally on the diagonalizing rotation V for N ,Ndiag = (�1; : : : ; �L) = (V �1)+MV �1; (12)and beome non-polynomial in x. As an example, we quote here the ase of an L-loopintegral with a tensor of degree two:PL(k�l k�l0)= LXi=1"[ ~MliQi℄�[ ~Ml0iQi℄� � � �N� � d2L� 1�� �N� � d2L� UF (V �1li )+(V �1l0i )�i g��2 #: (13)The formulae simplify onsiderably for one-loop integrals:U =M = ~M = det(M) = V = NXi xi = 1; (14)F =�UJ +Q2 = NXi;j [PiPj � P 2i +m2i ℄xixj � NXi�j fijxixj: (15)Then, the tensor fators P1(T ) in (5) will beome:P1(1)=1; (16)P1(k�)= NXi=1 xiP �i ; (17)P1(k�k�)= NXi=1 xiP �i NXj=1xjP �j � � �N� � d2 � 1�� �N� � d2� F g��2 ; et., (18)with P �i being the so-alled hords introdued in (4). For the general ase P1(T ) seesetion 4.2.One now has to perform the x-integrations. In AMBRE, we will do this by the followingsimple formula:1Z0 NYi=1 dxi xqi�1i Æ0�1�Xj xj1A= �(q1) � � ��(qN )� (q1 + � � �+ qN) : (19)From the above text it is evident that the integrand of (5) ontains besides simple sumsof monomials Qi xnii also di�erent strutures. This is due to the appearane of the fatorsU(x) and F (x). Beginning with two-loop tensor integrals, one faes additionally a om-pliated dependene of P (T ) on x for higher rank tensors T due to the appearene of Vand �, see (13). 6



For this reason, the present version of AMBRE is restrited to salar and vetor integralsand/or to one-loop integrals. In these ases one may rewrite F (x) and U(x) so that (19)beomes appliable; for the one-loop ase only the F (x). That is why we disuss here onlythe F (x). From (15), the F (x) may be written as a sum of NF � 12N(N+1) non-vanishing,bilinear terms in xi:F (x)�(N��dL=2)=24NFXn=1 fn(i; j)xixj35�(N��dL=2)= 1�(N� � dL=2) 1(2�i)NF NFYi=1 i1+uiZ�i1+ui dzi NFYn=2 [fn(ij)xixj℄zn[f1(ij)xixj℄�(N��dL=2)�PNFj=2 zj �0�N� � dL2 + NFXj=2 zj1A NFYj=2�(�zj):(20)Here, fn(i; j) = fij if fij 6= 0. Inserting (20) (and if needed a similar representation forthe U(x)) and the tensor funtion P (T ) into (2) allows to apply (19) for an evaluation ofthe x-integrations.As a result, any salar Feynman integral may be represented by a single multi-dimensionalMB-integral and L-loop tensor integrals by �nite sums of MB-integrals. With AMBRE wewill evaluate the L-loop integrals by a loop-by-loop tehnique, whih essentially allows usto restrit the formalism to the one-loop ase. By the examples it will be seen that thisis a powerful ansatz for many appliations.In subsequent steps, the pakage MB may be alled. This pakage needs as input someMB-integral(s), e.g. as being prepared by AMBRE. As desribed in detail in [8℄, MB allowsto analytially expand a Feynman integral in " and to evaluate the resulting sequene of�nite MB-integrals by one or the other method.3 Using AMBREIn this setion we desribe the use of the Mathematia pakage AMBRE. AMBRE stands forAutomatiMellin-Barnes Representation. It is a (semi-)automati proedure written formulti-loop alulations. The pakage works with Mathematia 5.0 and later versions of it.The algorithm to build up MB-representations for Feynman integrals as desribed in thelast setion onsists of the following parts:(i) de�ne kinematial invariants whih depend on the external momenta;7



(ii) make a deision about the order in whih L 1-loop subloops (L � 1) will be workedout sequentially;(iii) onstrut a Feynman integral for the hosen subloop and perform manipulations onthe orresponding F -polynomial to make it optimal for later use of the MB repre-sentations;(iv) use equation (20);(v) perform the integrations over Feynman parameters with equation (19);(vi) go bak to step (iii) and repeat the steps for the next subloop until F in the last, Lthsubloop will be hanged into an MB-integral. (21)The steps (ii) and (iii) must be analyzed arefully, beause there exists some freedom ofhoie on the order of loop integrations in step (ii) and also on the order of MB integrationsin step (iii). Di�erent hoies may lead to di�erent forms of MB-representations.The present version 1.0 of AMBRE an be used to onstrut planar Mellin-Barnes represen-tations for:� salar multi-loop, multi-leg integrals� tensor one-loop integrals� integrals with spei� higher-rank numerators ending up with a single MB-integralIn the next setions several examples will be used for an introdution to spei� featuresof the pakage.Here, we desribe basi funtions of the pakage. The starting point of all alulations is aproper de�nition of the integral (2) and of the kinematial invariants to be used. Formally,it has to be done in the following way:Fullintegral[{numerator}, {denominator}, {internal momenta}℄;invariants = {invariants as a rule}; (22)We reommend to use ki and pi as symbols for internal and external momenta, respetively.Also non-zero masses should appear as symbols; a numeri value may ause problems inmulti-loop alulations.The ommand Fullintegral de�nes a given integral. For example:Fullintegral[{1}, {PR[k1, 0, n1℄*PR[k1 + p1, m, n2℄}, {k1}℄; (23)orresponds to:Z ddk1i�d=2 1(k21)n1[(k1 + p1)2 �m2℄n2 : (24)8



The last argument in the Fullintegral funtion is a list of internal momenta. The orderof internal momenta in this list ontrols the ordering of integrations (if iterated). Forexample {k3,k2,k1} de�nes the �rst integration to be over k3, the seond over k2 andthe third over k1. The next step is to prepare a subloop of the full integral by olletingall propagators whih arry a given loop momentum ki. We do this by initiating theonseutive funtions:IntPart[iteration℄ (25)Eah iteration, i = 1; 2; : : : ; L, prepares the appropriate subloop for the integration overthe orresponding internal momentum. It will display a piee of the Fullintegral with:� the numerator assoiated with the given subloop� subloop for a given internal momentum� internal momentum for whih AMBRE will integrate the subloopThe exeution of IntPart[iteration℄ proeeds in the order IntPart[1℄, IntPart[2℄,then IntPart[3℄, and so on. If there is a need to hange the ordering of integrations,one has to hange the order in the starting list of internal momenta (22). InsertingIntPart[2℄ before IntPart[1℄ would not be a proper way to do this. In the outputof IntPart[iteration℄ a tag message will be displayed:Fauto::mode: U and F polynomials will be alulatedin AUTO mode. In order to use MANUAL mode exeute Fauto[0℄. (26)By running Fauto[0℄, AMBRE will alulate the F -polynomial (with name fup) for agiven subloop. At this stage, a user might wish to modify fup manually, e.g. by applyingsome hanges in kinematis.During the alulations, the FX funtion of AMBRE may appear in the F -polynomial. Thisfuntion ollets full squares of sums of Feynman parameters, e.g.:FX[X[1℄+X[3℄℄^2 � (x1 + x3)2: (27)Suh terms appear in the F -polynomials if some masses in the loops are equal. They willlater allow to apply Barnes' lemma leading to lower dimensional MB-representations. Atthe other hand, the exponent two of the square may lead to arguments of �-funtions in(20) with doubled integration variables, with far-reahing onsequenes for an analytialevaluation when a sum over an in�nite series of residua is tried.The basi funtion for deriving the Mellin-Barnes representation is:SubLoop[integral℄ (28)9



This funtion takes output generated by IntPart[iteration℄ and performs the followingalulations:� alulate the F -polynomial for the subloop (only if Fauto[1℄ is set)� determine the MB-representation for the F -polynomial� integrate over Feynman parameters xiAs a result, the MB-representation for a given subloop integral will be displayed. In multi-loop alulations one will notie additional propagators (marked in red in the output ofAMBRE) whih appear from the intermediate F -polynomial (see setion 5.1 for an instru-tive example).As mentioned, AMBRE an onstrut Mellin-Barnes representations for general one looptensor integrals. The proedure of alulating suh ases is basially the same, with fewminor di�erenes. First of all, the numerator input must be de�ned. A one-loop boxdiagram with numerators (k1p1)(k1p2)(k1p3) might look like this:Fullintegral[{k1*p1,k1*p2,k1*p3},{PR[k1,m,n1℄PR[k1+p1,0,n2℄PR[k1+p1+p2,m,n3℄PR[k1+p3,0,n4℄},{k1}℄;(29)We have written this proedure suh that numerators onsist of salar produts of internaland external momenta. In the alulations with tensors, the de�nitions of momentumows in the subloops play a ruial role for the results and have to be ontrolled arefully.Another di�erene to salar ases is the way how AMBRE displays results. Beause theyan be long, we deided to use a short notation. For example:{ARint[1℄,ARint[2℄,ARint[3℄} (30)The result of the evaluation has to be understood as the sum of the elements,ARint[1℄+ARint[2℄+ARint[3℄,where eah ARint[i℄ is one of the resulting MB-integrals. By exeutingARint[result,i℄one may display the appropriate ARint[i℄. The proedure uses the short notation bydefault, but it is also possible to use the option Result->True in order to fore SubLoopto display the full result:SubLoop[integral,Result->True℄; (31)Finally, we have also implemented Barnes' �rst lemma:10



i1Z�i1 dz�(a+ z)�(b + z)�(� z)�(d� z)= �(a+ )�(a+ d)�(b+ )�(b + d)�(a+ b + + d) ; (32)and Barnes' seond lemma:i1Z�i1 dz �(a + z)�(b + z)�( + z)�(d� z)�(e� z)�(a+ b + + d+ e+ z) =�(a+ d)�(a+ e)�(b+ d)�(b + e)�(+ d)�(+ e)�(a+ b + d+ e)�(a + + d+ e)�(b+  + d+ e) : (33)The usage of Barnes' lemmas is simple; one has to exeute:BarnesLemma[representation,i℄ (34)where i is 1 or 2 for the �rst or seond Barnes' lemma, respetively. This funtion triesto apply the lemma on all integration variables zi of the MB-representation whih do notappear in the exponents of kinematial invariants. It also searhes in the exponents ofkinematial invariants for pairs of integration variables. For example, be in one exponentthe ombination (z1 + z2) and in another one the ombination (�z1 � z2). This mightappear as ditated by the struture of equation (1). The automati hange z1� > z1� z2eliminates z2 in these exponents so that Barnes' lemma an be applied for z2. A ommentwill be displayed if the lemma was suessfully applied. Barnes' �rst lemma is quite oftenappliable, while Barnes' seond lemma applies only sporadially (see example14.nb).The automati hange of variables may be swithed o� by alling shift[0℄.In the appendix we list the Mathematia funtions of AMBRE.4 One-loop integralsWe will give a ouple of examples starting with onstrution of MB-representations forthe 1-loop Feynman integrals whih are an important ingredient of the algorithm (21).Most of the ases onsidered in subsequent setions are onneted with massless gaugetheories or massive QED.4.1 Example: the pentagon diagram of massive QEDLet us onsider the one-loop �ve-point funtion shown in �gure 1. The external momentaful�ll p23 = 0, p2i = m2 for the other partiles, and the sij = (pi + pj)2 are kinematial11



Fig. 1. Massive QED pentagon diagraminvariants of the proess. If we naively use the FUPolynomial funtion of the MB pakage,we will get:U = x1 + x2 + x3 + x4 + x5; (35)F =m2x21 + 2m2x1x3 � s15x1x3 +m2x23 + 2m2x1x4 � s23x1x4 +m2x2x4� s45x2x4 + 2m2x3x4 +m2x24 � s12x2x5 +m2x3x5 � s34x3x5: (36)A simple ounting of terms in the F -polynomial would prove that this leads to a twelve-dimensional MB-integral. Of ourse the terms in F an be grouped from the beginningand we will see in a minute that a �ve-fold MB-integral may be obtained; see also thesample �le example1.nb 2 .First, propagators and kinematial invariants are de�ned:Fullintegral[{1},{PR[k1 + p1, 1, n1℄*PR[k1 + p1 + p5, 0, n2℄*PR[k1 + p1 + p4 + p5, 1, n3℄*PR[k1 + p1 + p3 + p4 + p5, 1, n4℄*PR[k1 + p1 + p2 + p3 + p4 + p5, 0, n5℄},{k1}℄; (37)The kinematis is de�ned in a yli way:p2i = m2i ; si;i+1 = (pi + pi+1)2; i = 1; :::; 5: (38)Then, using the IntPart and SubLoop funtions the steps (ii)-(v) of the algorithm (21)are worked out and we end up with a nine-fold MB-representation. This representation isdue to the following F -polynomial, onstruted in the automati way by AMBRE:F 0 =m2(x1 + x3 + x4)2 � s15x1x3 � s23x1x4 +m2x2x4 � s45x2x4 � s12x2x5+ m2x3x5 � s34x3x5: (39)2 The sample Mathematia �les are part of the pakage AMBRE. They are available at [9,10℄.12



Some mass terms have been olleted here, but the F -polynomial an be further simpli�edby rede�ning s34 ! �s34 +m2 and s45 ! �s45 +m2, so that eah term xixj appears onlyone. The F 0 polynomial beomes �nally:F 00 =m2(x1 + x3 + x4)2 � s15x1x3 � s23x1x4 � �s45x2x4 � s12x2x5 � �s34x3x5; (40)whih gives a seven-fold MB-representation. In ertain ases, some of the MB-integrationsdo not depend on the kinematis and Barnes lemmas may be applied. Here, due to the term(x1+x3+x4)2 one may twie use Barnes' �rst lemma (32) and thus the MB-representationan be further redued to a �ve-fold integral. A �ve-partile sattering proess depends on�ve variables (plus a mass in Bhabha sattering), so a further simpli�ation is impossible.In sample �le example2.nb, we use another de�nition of kinematial variables, namelyp2i = m2; p1p2 = 12(t0 � 2m2); p1p3 = 12(t� t0 � v1);p1p4 = m2 + 12(v1 � s� t); p1p5 = 12(s� 2m2); p2p3 = 12v1;p2p4 = 12(s� v1 � v2 � 2m2); p2p5 = 12(v2 � s� t0 + 2m2);p3p4 = 12v2; p3p5 = 12(t0 � t� v2); p4p5 = 12(t� 2m2); (41)
and we get F diretly in the form:F 000 =(x1 + x3 + x4)2 � tx1x3 � t0x1x4 � v2x2x4 � sx2x5 � v1x3x5: (42)No wonder, that using funtion SubLoop we obtain diretly the smallest, seven-dimensionalintegral, whih then again redues to the �ve-fold integral. The resulting MB-representa-tion for the salar Feynman integral is:G[1℄ = �e"E(2�i)5 5Yi=1 +i1+uiZ�i1+ui dri(�s)�3�"�r1(�t)r2(�t0)r3 �v1s �r4 �v2s �r5�[�r2℄�[�r3℄�[1 + r2 + r3℄�[�r1 + r2 + r3℄�[�2� "� r1 � r4℄�[�r4℄�[1 + r2 + r4℄�[�2� "� r1 � r5℄�[�r5℄�[1 + r3 + r5℄�[3 + "+ r1 + r4 + r5℄�[3 + 2r1 + r4 + r5℄�[�1� 2"℄�[3 + 2(r2 + r3) + r4 + r5℄ : (43)The real parts of the integration strips are �2 < u1 < �1 and �1=2 < ui < 0; i = 2 : : : 5.A subsequent appliation of MB shows that up to onstant terms in �, needed for an evalu-ation of two-loop massive Bhabha sattering [11℄, there are maximally three-dimensional�nite ontributions to be evaluated further.13



Fig. 2. Massive QED one-loop box diagram4.2 NumeratorsAMBRE may handle arbitrary one-loop tensor integrals. The one-loop Feynman parameterintegral for a tensor of degree m is the generalization of equation (18):G1(Tm)�G1(k�1 � � �k�m)= (�1)N�QNi=1 �(�i) Z NYi=1 dxix�i�1i Æ(1� NXj=1xj) mXr=0 � �n� d+r2 �(�2) r2F n� d+r2 nArPm�ro[�1;:::;�m℄ :(44)Here F � F (x) and P � P1(k�) = Pi xiPi = Pi;e xi�iep�e were introdued in equations(9) and (17). The r starts from zero (with A0 = 1), and it is Ar = 0 for r odd, andAr = g[�i1�i2 � � �g �ir�1�ir ℄ for r even. The onvention [�i1 : : :℄ means the totally symmetriombination of the arguments.In AMBRE tensorial numerators are assumed to be ontrated with the external momentape, so that the following quantity is evaluated:Pm G1(Tm)� �p�1e1 � � � p�mem � G1(k�1 � � �k�m): (45)As an example, we have prepared the massive QED one-loop box of �gure 2 in sample �leexample3.nb with the numerator (k1p1)(k1p2)(k1p3). The orresponding de�nition usedin AMBRE is:Fullintegral[{k1*p1,k1*p2,k1*p3},{PR[k1,m,n1℄PR[k1+p1,0,n2℄PR[k1+p1+p2,m,n3℄PR[k1+p3,0,n4℄},{k1}℄;(46)Obviously, when working with tensor integrals we expet the result to be a sum of severalMB-integrals (the higher the rank is, the more integrals will be obtained). We have rossheked numerially results for two-, three- and four-point funtions by omparing ourresults (from using AMBRE and MB) with deompositions of integrals into master integrals14
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Fig. 3. General one-loop vertexusing the Integration-By-Parts method implemented in the pakage IdSolver (M. Cza-kon, unpublished). Cross heks were done for numerators with up to eight salar produtsin the numerators of the Feynman integrals.Finally we refer to setion 5.2 for the interesting speial ase of irreduible numeratorsarising in intermediate subloops. In ertain ases, the result for a tensor integral mayremain as ompat as it is for salar integrals.4.3 More massesN -point funtions with arbitrary internal masses and o�-shell external legs give ompli-ated multi-dimensional MB-integrals. Let us onsider here and in example4.nb a generalone-loop salar vertex, Fig. 3. In this ase we get a �ve-dimensional MB-integral:Vgeneral= (�1)n123�[n1℄�[n2℄�[n3℄�[4� 2"� n123℄1(2�i)5 +i1Z�i1 dz1 +i1Z�i1 dz2 +i1Z�i1 dz3 +i1Z�i1 dz4 +i1Z�i1 dz5 5Yi=1 �[�zi℄�[2� �� n1 � z1 + z5℄(m21)z1(m22)z3(m23)2���n123�z12345(m21 +m22 �M21 )z2(m21 +m23 �M22 )z4(m22 +m23 �M21 �M22 � s)z5�[n1 + z1124℄�[4� 2"� n1123 � z1124℄�[n2 + z235℄�[�2 + "+ n123 + z12345℄; (47)where we abbreviated z1124 = 2z1 + z2 + z4 and n123 = n1 + n2 + n3, et.For the massive QED ase, M1 = M2 = m2 = m3 = m;m1 = 0, we get a ompatone-dimensional MB-representation:VQED= (�1)n123�[4� 2�� n1123℄�[n2℄�[n3℄�[4� 2�� n123℄ 12�i +i1Z�i1 dz(m2)z(�s)2���n123�z�[�z℄�[2� �� n12 � z℄�[2� �� n13 � z℄�[�2 + � + n123 + z℄�[4� 2"� n1123 � 2z℄ : (48)15



Fig. 4. Six-point salar funtions; left: massless ase, right: massive ase4.4 More legsFor topologies with a higher number of legs, there is an inreasing number of kinematialinvariants and so the dimension of MB-representations inreases. The number of dimen-sions may beome smaller after analytial ontinuation in " and for lowest orders in ".For a salar or vetor Bhabha massive �ve-point funtion, Fig. 1, up to onstant termsin �, it inludes at most three-dimensional integrals, whih hopefully an be solved evenanalytially [11℄. In general, the MB-representation for that ase is �ve-dimensional, seesetion 1.In example5.nb we derive MB-representations for a massless and a massive one-loophexagon salar diagram, see �gure 4. In general, it is an eight-fold integral, but the onstantterm in � inludes again only up to three-dimensional MB-integrals.If all internal lines have equal non-vanishing mass, one has to deal with a nine-dimensionalMB-integral. Again, the numerial results have been heked for both ases in the Eu-lidean region against setor deomposition. The pakage ontains the auxiliary �leKinematisGen.m whih generates the kinematis for six-point funtions with arbitraryo�-shell external legs.
5 Multi-loop integrals: loop-by-loop integrationsThe Feynman integral (5) inludes a delta-funtion whih makes U = 1 for one-loopdiagrams there so that the MB-relation (1) ats only on F . This simpli�ation an be madealso useful in multi-loop integrals by performing loop-by-loop integrations. We olletedfew examples whih will exhibit several spei� features.16



Fig. 5. Massive two-loop planar QED box5.1 Example: two-loop planar box in massive QEDLet us take the massive two-loop planar box topology 3 with seven internal lines as in-trodued in example6.nb. The momentum ow is de�ned in the following way, with allmomenta being inoming:Fullintegral[{1},{PR[k1, m, n1℄PR[k1 + p1, 0, n2℄PR[k1 + p1 + p2, m, n3℄PR[k1 - k2, 0, n4℄PR[k2, m, n5℄PR[k2 + p1 + p2, m, n6℄PR[k2 - p3, 0, n7℄}, {k2, k1}℄: (49)First, the momentum integration over k2 is taken. The k2 ow in the �rst subloop isde�ned by the funtion IntPart[1℄, whih ontains all propagators with momentum k2:integral = PR[k1 - k2, 0, n4℄*PR[k2, m, n5℄*PR[k2 + p1 + p2, m,n6℄*PR[k2 - p3, 0, n7℄: (50)We just mention that generally it is preferred to hoose the order of iteration suh that�rst the loops with lowest number of lines are exeuted. Then their F -polynomials havea minimal number of terms. The �rst loop's F -polynomial is the SubLoop[integral℄funtion:F [k2℄ � fup=m^2*FX[X[2℄ + X[3℄℄^2 - PR[k1, m℄*X[1℄*X[2℄-PR[k1 + p1 + p2, m℄*X[1℄*X[3℄ - s*X[2℄*X[3℄ -PR[k1 - p3, 0℄*X[1℄*X[4℄ + 4*m^2*X[3℄*X[4℄ -s*X[3℄*X[4℄ - t*X[3℄*X[4℄ - u*X[3℄*X[4℄ (51)It is reprodued here as derived without interations by the user. The F -polnomial on-tains a mass term with the FX funtion whih later will allow to apply Barnes' �rst3 In fat there are three double-box diagrams in massive QED. One of them is non-planar, andwe disuss here the so-alled �rst planar diagram [3℄.17



lemma suessfully, and also a redundany in X[3℄*X[4℄. The following nine-fold MB-representation after integrating over k2 is obtained:SubLoop1[((-1))^(n4 + n5 + n6 + n7 + z2 + z3 + z5) 4^z6(m^2^(z1 + z6) (-s)^(z4 + z7) (-t)^z8(-u)^(2-ep - n4-n5-n6-n7 - z1 - z2 - z3 - z4 - z5 - z6 - z7 - z8)Gamma[-z1℄ Gamma[(-z2)℄ Gamma[(-z3)℄ Gamma[2 - ep - n4 - n5 - n6 - z1 - z2 - z3 - z4℄ Gamma[(-z4)℄Gamma[(-z5)℄ Gamma[n4 + z2 + z3 + z5℄ Gamma[(-z6)℄ Gamma[(-z7)℄Gamma[-z8℄ Gamma[-2+ep + n4 + n5 + n6 + n7 + z1 + z2 + z3 + z4 + z5 +z6 + z7 + z8℄ Gamma[ 2 - ep - n4 - n5 - n7 + z1 - z2 - z5 - z9℄Gamma[(-z9)℄ Gamma[(-2) z1 + z9℄ Gamma[n5 + z2 + z4 + z9℄)/(Gamma[n4℄ Gamma[n5℄ Gamma[n6℄ Gamma[4 - 2 ep - n4 - n5 - n6 - n7℄Gamma[n7℄ Gamma[(-2) z1℄)),PR[k1, m, z2℄PR[k1 + p1 + p2, m, z3℄PR[k1 - p3, 0, z5℄℄) (52)It is lear that the fators in front of the X[3℄X[4℄ oeÆient sum up to zero, due tos + t + u = 4m2. To remove them from the beginning, the Fauto[0℄ option must beexeuted, followed by a modi�ation of F :fup = fup /. u -> 4*m^2-s-t: (53)In this way, exeuting the SubLoop[integral℄ funtion again, the MB-representationbeomes �ve-dimensional, and also the term 4z6 is absent now.The same situation appears in the seond iteration, when integrating over k1. We answith to the Fauto[0℄ mode and again modify F . After again applying Barnes' �rstlemma, we end up with a six-dimensional integral.Of ourse, by writing from the very beginning the kinematial invariants without theinvariant u, one an work out the whole ase fully automati with mode Fauto[1℄.5.2 Speial numeratorsThe example6.nb is interesting in yet another respet. After the �rst integration, thepropagators for the seond one ontain four propagators, some of them with shifted indiesompared to the input:PR[k1, m, n1-z2℄PR[k1 + p1, 0, n2℄PR[k1 + p1 + p2, m, n3-z3℄PR[k1 - p3, 0, z5℄: (54)18



This orresponds to the one-loop box of example example3.nb disussed in setion 4.2, butwith shifted indies. It inludes the one new propagator with momentum q5 = k1�p3. If wewould have been evaluating an integral with numerator (q25)�n8 and repeat the alulation,we would get after the k2 integral an F -polynomial with one of the terms inluding thepropagator PR[k1 + p1 + p2 + p4, 0, 1℄; see SubLoop[integral℄ in example7.nb;see also [5℄. It will sum up with PR[k1 + p1 + p2 + p4, 0, -n8℄ resulting in the fol-lowing integralintegral= PR[k1, m, n1 - z2℄ PR[k1 + p1, 0, n2℄PR[k1 + p1 + p2, m, n3 - z3℄PR[k1 + p1 + p2 + p4, 0, -2 + ep + n4 +n5 + n6 + n7 - n8 + z1 + z2 + z3 + z4℄; (55)whih has the following well-known F -form of the one-loop box:m^2 FX[X[1℄ + X[3℄℄^2 - s X[1℄ X[3℄ - t X[2℄ X[4℄:What is essential here, no additional momentum struture appears.Analyzing the irreduible numerators of the topology for the given momentum hoie,one �nds that there are two salar produts whih may not be represented by linearombinations of the propagators (and thus are alled irreduible): k1p3 together with k2p1or k1p3 together with k2p2. So, q25 represents one of two existing irreduible numeratorsand it may be quite useful to have a simple MB-representation for that ase. We seethat there are integrals with (seleted) numerators whih may be represented by a singleMB-representation as if a salar integral would have been studied. This was used severaltimes in examples given in [5,6℄ and in referenes ited therein, and it was also used e.g.in [12℄ for a study of massive two-loop box master integrals, and for more sophistiatedfour-loop ases in [13℄.Finally, a six-dimensional MB-integral emerges like in the salar ase. To hek this inte-gral numerially with the MB pakage, two analytial ontinuations, one in � and one inone of the powers of propagators must be done. We have heked the numerial result alsoagainst the results we got from a setor deomposition alulation and from a small-massexpanded version [14,12℄.5.3 Further examples: A three-loop planar box, a four-loop self-energy, and a two-looppentagonA three-loop planar integral, shown in �gure 6, is treated in example8.nb. The result isa 10-fold MB-representation. With the MB pakage it was shown that the numerial resultagrees with [6℄. 19
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Fig. 6. The loop-by-loop iterative proedureThe dimensions of some MB-representations for several massless and massive laddertopologies are summarized in Table 1. We apply an iterative proedure. For planar topolo-gies the loop-by-loop iteration gives always proper topologies whih obey momentum on-servation. Only some powers of propagators hange into non-integer (omplex) numbers.A similar proedure an be applied to more ompliated topologies whih obey the samerule: integrating over an internal momentum leads to a topology with propagators and mo-mentum ow obeying momentum onservation in the remaining parts, i.e. we get regularsubtopologies.In this proedure, the hoie of momenta owing and the order of iterations are very im-portant. Look e.g. at the two-loop ladder example, also shown in �gure 6. If we would allowfor the momentum ow k1 through all the outer lines, and take �rst the integration over k1and then that over k2, the �nal representation would not ome out optimal (and Barnes'lemmas do not help). Starting instead with the k2 integration, we will again end up, aswith the momentum ows shown in the �gure, with a six-dimensional representation.In �les example9.nb and example10.nb, massless MB-representations are onstruted fora four-loop two-point topology and for a two-loop �ve-point massless topology, see �gure 7.The six-dimensional four-loop self-energy has been heked numerially against setor de-omposition. In example10.nb, there are three di�erent derivations of MB-representationsfor the same kinematis, de�ned by equation (38). In eah ase we got another dimensionof MB-integrals. The minimal dimension of the integral is seven when we integrate �rstover internal momenta of the box and then over that of the pentagon. We heked thatthis agrees numerially with [15℄ where also a seven-dimensional MB-integral has beenobtained. If we integrate �rst over the internal momentum running in the pentagon andnext over that in the box, then a nine-dimensional MB-integral is obtained; again numeri-ally they agree. In the third derivation, the momentum ow in the propagators is hosenMassless Massive1-loop 2-loop 3-loop 4-loop 1-loop 2-loop 3-loop 4-loop1 4 7 10 3 8 13 181 4 7 10 2 6 10 14Table 1Dimensions of ladder topologies before and after applying Barnes' �rst Lemma.20
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Fig. 7. Massless topologies; left: four-loop two-point diagram, right: two-loop �ve-point diagramin a di�erent way. Then a 13-dimensional MB-integral results.6 TadpolesThe loop-by-loop approah an also be applied to planar tadpoles. Attention must be paidto keep the right order of integrations. Making iterations with the Fauto[1℄ option (i.e.automati), we may end up with three di�erent forms of propagators in the last iteration:one massive propagator, massive and massless propagators, or one massless propagator.For the �rst situation the well known formula is used in AMBRE:Z ddk(k2 � q2)� = i�d=2(�1)��[� + �� 2℄�[�℄ 1(q2)�+��2 : (56)We found that for some massive tadpoles a term (�m)� an appear whih would lead toan osillatory error while doing numerial alulations with MB. In suh a situation onehas to go bak to the previous subloop and modify the F -polynomial with Fauto[0℄ sothat two propagators with equal momenta appear: a massive and a massless one. Thesame proedure must be applied when a single massless propagator appears in the lastintegral.We give as an example example11.nb, for the diagram also shown left in �gure 8. UsingAMBRE, we have onstruted a one-dimensional Mellin-Barnes representation:T (n1; :::; n5)= (�1)2+n12345(m2)8�4��n12345 1Q5i=1 �[ni℄ �[2� �� n4℄�[2� �� n5℄�[2� �℄ +i1Z�i1 dz1��[�z1℄�[2� �� n1 � z1℄�[2� �� n2 � z1℄�[4� 2�� n12 � z1℄� �[�6 + 3�+ n1245 + z1℄�[�8 + 4�+ n12345 + z1℄�[4� 2�� n12 � 2z1℄ (57)At this point the proper order of integrations is very important. A di�erent hoie anlead to two- or even higher-dimensional representations.Using MB we got for the basi integral numerially:21



Fig. 8. Four-loop tadpoles with three massive lines; left: with a one-dimensional MB-represen-tation, right: with a six-dimensional MB-representationT (1; 1; 1; 1; 1)= 0:25�4 + 1�3 + 2:843300366757447 1�2 + 5:7815436104210331�+22:955621881705923 + 80:89550616785341�+ 1085:2836587072804�2+4545:303884134432�3 + 35998:99383263255�4; (58)This is in agreement with [16℄.However, it appears that MB-representations for four-loop tadpoles an be more ompli-ated. In example12.nb, treating the diagram in �gure 8 (right), we get a six-dimensionalMB-integral. Taking into aount other approahes [16,17℄, one may see that the MB-approah to multi-loop alulations has natural limits, espeially in the massive ases.
7 On-shell diagramsMellin-Barnes representations an be also useful for solving on-shell topologies. For on-shell self-energies, one may use the pakage ON-SHELL2 [18,19℄ written in FORM v.2.3[20℄. In example13.nb we show how to evaluate the self-energy SE5l3m2 shown in �gure9, whih is in the notations of [18℄ the diagram F01101. The MB-representation is atwo-dimensional integral:F01101=� 1(2�i)2 1�[1� 2�℄ +i1Z�i1 dz1 +i1Z�i1 dz2�[�z1℄�[�z2℄�[��� z1℄�[1 + 2�+ z1℄�[1� 3�� z1℄��[��� z1 � z2℄�[�3�� z1 + z2℄�[1� �+ z1 + z2℄�[1 + � + z1 + z2℄�[1� �� z1 + z2℄�[2 + � + z1 + z2℄ : (59)In the example, the agreement with the result of On-Shell2 result is demonstrated.A simpler ase is SE3l1m with one massive and two massless propagators, see �gure 9.22



Fig. 9. On-shell self-energies; left: SE5l3m2, right: SE3l1mThe result is simple:SE3l1mOS = �(m2)(1�2�)�[3� 4�℄�[1� �℄2�[�℄�[�1 + 2�℄�[3� 3�℄�[2� 2�℄ : (60)It an be expanded easily to any order in �. Here, in example14.nb, Barnes' seond lemmahas been used, whih happens not too often. Again, the agreement with the On-Shell2result is presented.8 Non-planar topologiesThe loop-by-loop iterative proedure desribed in this paper seems to be not the mosteÆient approah in the ase of non-planar topologies. It is known from [21℄ that themassless non-planar vertex is desribed by a two-dimensional Feynman parameter integral.If we onsider the loop-by-loop proedure for this ase, we an divide the two-loop topologyin �gure 10 into two parts (follow the vertial line). The hourglass topology on the right-hand side, with two o�-shell legs, gives a three-dimensional MB-representation [6℄, andadding the seond part on the left-hand side we end up with a four-dimensional integral.No matter how we arrange the momenta ows in the diagram, it annot beome better.To get the minimal, two-dimensional integral, another approah must be realized. It is anopen question to us if the representation of non-planar diagrams an be automatized ina way like that for planar ases 4 .
Fig. 10. Non-planar massless vertex4 The non-planar examples in the study [7℄ do not go beyond our observations stated here.23



9 SummaryWe have desribed the Mathematia pakage AMBRE for the onstrution of MB-represen-tations for planar Feynman integrals and gave in a tutorial part a variety of sampleappliations. Typially, the iterative loop-by-loop approah gives a possibility to onstrutMB-integrals of minimal dimension. Usually Barnes' �rst and seond lemmas help toget the minimal dimension of MB-integrals, independent both of the ow of momentain diagrams and of the order of iterations. However, for more ompliated kinematis,starting with �ve legs, the order of iterations and the hoie of momenta ows matters.As is shown there in the ase of tadpoles, MB-representations for massive topologies arenot always the best way of evaluation. For some topologies quite simple representationsare found, however, also multi-dimensional MB-integrals may arise from whih it is hardto get stable, aurate numerial results, not mentioning exat analytial results.Construting useful MB-representations for a given Feynman integral is a kind of an art.As an example, let us mention the QED master integral B5l2m2 (a diagram with �ve lines,two of them being massive; notations are due to [22,12℄). This integral may be obtainedby ontrating diretly two lines in the massive Bhabha two-loop planar integral B7l4m1[3℄ (the so-alled �rst planar master of massive QED). In [12℄ it was shown that, afterexpansion in �, the expression for B5l2m2 onsists of eleven integrals, one being four-dimensional. This was ompared to onstruting B5l2m2 from the srath, loop-by-loop.Here, again after expansion in �, we are left with four integrals, all of them being three-dimensional or simpler. This an be heked easily by the reader using the MB pakage andboth the representation B7l4m1 given in [3℄ (the ontration of two lines must be donethere) and the representation B5l2m2 given in [12℄. There is no simple relation betweenboth representations, due to our lak of knowledge on more ompliated relations betweenintegrals of di�erent dimensionality. One should also mention that an independent hek ofthe MB-representations always is strongly reommended. By onstrution, neither AMBREnor MB perform rigorous proofs of their appliability.Certainly, the number of integration variables is of importane for the �nal evaluation ofMB-integrals, both in a fully analytial form or using approximations in some kinematiallimits. In many ases some pakage like XSUMMER [23,24℄ an be used after deriving sumsover residua. This again might beome non-e�etive if the number of the nested sums {onneted with the dimension of the MB-integrals { is too large or if the result is not inthe lass of funtions overed by (e.g.) XSUMMER. Similar statements hold for the ase of afully numerial evaluation of MB-integrals.To summarize, for many appliations of present phenomenologial or more theoretialinterest the pakage AMBRE solves an important part of the omplete alulational problem:the derivation of expressions for a large lass of Feynman integrals, whih may then beused for further study. 24
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