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1 Introdu
tionRe
ently, Mellin-Barnes (MB) representations of Feynman integrals have been used ex-tensively in various phenomenologi
al and theoreti
al studies of quantum �eld theory. Inmany appli
ations, sometimes in quite sophisti
ated ones [1,2,3℄, the MB-integrals 
anbe solved analyti
ally. One also may merge knowledge of some analyti
al solutions givenby MB-integrals with other methods, e.g. the di�erential equations approa
h, as demon-strated in [4℄. An introdu
tion to the subje
t with many examples may be found in themonographies [5,6℄. A systemati
 derivation and numeri
al evaluation of MB-representa-tions for Feynman integrals with a (unpublished) Maple pa
kage was des
ribed in [7℄. Atthe same time, the Mathemati
a program MB for the automatized analyti
 
ontinuationof MB-integrals was published in [8℄. With AMBRE, we deliver a Mathemati
a tool forthe derivation of MB-integrals and their subsequent analyti
 
ontinuation and numeri
alevaluation with MB.The arti
le is organized as follows. In se
tion 2 we introdu
e the formulae used for the MB-representation of a general Feynman integral. The basi
 features of AMBRE are des
ribed inse
tion 3. One-loop examples are given in se
tion 4. Se
tion 5 des
ribes the implementationof the loop-by-loop approa
h to multi-loop integrals. Examples with tadpoles and on-shelldiagrams as well as problems related to non-planar topologies are dis
ussed in se
tions6{8. A summary follows in se
tion 9. In an appendix we list the Mathemati
a fun
tionsof AMBRE.2 Constru
tion of Mellin-Barnes representationsThe ba
kbone of the pro
edure to build up MB-representations with AMBRE is the relation1(A+B)� = B��2�i�(�) i1Z�i1 d�A� B�� �(��)�(� + �); (1)where the integration 
ontour separates the poles of the �-fun
tions.The obje
t to be evaluated by AMBRE is an L-loop Feynman integral 1 in d = 4 � 2"dimensions with N internal lines with momenta qi and masses mi, and E external legswith momenta pe:GL[T (k)℄ = 1(i�d=2)L Z ddk1 : : : ddkL T (k)(q21 �m21)�1 : : : (q2i �m2i )�j : : : (q2N �m2N )�N : (2)1 Often one uses the additional normalization e"
EL; we leave this to the later evaluation withthe pa
kage MB [8℄. 4



The numerator T (k) is a tensor in the integration variables:T (k)= 1; k�l ; k�l k�n; : : : (3)The momenta of the denominator fun
tions di may be expressed by external and loopmomenta:di= q2i �m2i =  LXl=1 �ilkl � Pi!2 �m2i =  LXl=1 �ilkl � EXe=1�iepe!2 �m2i : (4)In the pa
kage AMBRE, in a �rst step the momentum integrals are repla
ed by Feynmanparameter integrals:GL[T (k)℄ = (�1)N�� �N� � d2L�QNi=1 �(�i) 1Z0 NYj=1 dxj x�j�1j Æ(1� NXi=1 xi)U(x)N��d(L+1)=2F (x)N��dL=2 PL(T )(5)withN� = NXi=1 �i: (6)The two fun
tions U and F are 
hara
teristi
s of the topology of the Feynman integral.One may derive them fromN = NXi=1 xi(q2i �m2i ) � kMk � 2kQ+ J; (7)where Mll0 = PNi=1 �il0�ilxi, and Ql = PNi=1 �ilPixi, and J = PNi=1(P 2i �m2i )xi; namely:U(x) =det(M); (8)F (x)=�det(M) J +Q ~MQ: (9)The U and F as well as ~M = det(M)M�1 are polynomials in x, and so are the numeratorfun
tions PL(T ) in (2) for s
alar and ve
tor integrals:PL(1)= 1; (10)PL(k�l )= LXl0=1 ~Mll0Q�l0 : (11)5



Tensors of higher degree depend additionally on the diagonalizing rotation V for N ,Ndiag = (�1; : : : ; �L) = (V �1)+MV �1; (12)and be
ome non-polynomial in x. As an example, we quote here the 
ase of an L-loopintegral with a tensor of degree two:PL(k�l k�l0)= LXi=1"[ ~MliQi℄�[ ~Ml0iQi℄� � � �N� � d2L� 1�� �N� � d2L� UF (V �1li )+(V �1l0i )�i g��2 #: (13)The formulae simplify 
onsiderably for one-loop integrals:U =M = ~M = det(M) = V = NXi xi = 1; (14)F =�UJ +Q2 = NXi;j [PiPj � P 2i +m2i ℄xixj � NXi�j fijxixj: (15)Then, the tensor fa
tors P1(T ) in (5) will be
ome:P1(1)=1; (16)P1(k�)= NXi=1 xiP �i ; (17)P1(k�k�)= NXi=1 xiP �i NXj=1xjP �j � � �N� � d2 � 1�� �N� � d2� F g��2 ; et
., (18)with P �i being the so-
alled 
hords introdu
ed in (4). For the general 
ase P1(T ) seese
tion 4.2.One now has to perform the x-integrations. In AMBRE, we will do this by the followingsimple formula:1Z0 NYi=1 dxi xqi�1i Æ0�1�Xj xj1A= �(q1) � � ��(qN )� (q1 + � � �+ qN) : (19)From the above text it is evident that the integrand of (5) 
ontains besides simple sumsof monomials Qi xnii also di�erent stru
tures. This is due to the appearan
e of the fa
torsU(x) and F (x). Beginning with two-loop tensor integrals, one fa
es additionally a 
om-pli
ated dependen
e of P (T ) on x for higher rank tensors T due to the appearen
e of Vand �, see (13). 6



For this reason, the present version of AMBRE is restri
ted to s
alar and ve
tor integralsand/or to one-loop integrals. In these 
ases one may rewrite F (x) and U(x) so that (19)be
omes appli
able; for the one-loop 
ase only the F (x). That is why we dis
uss here onlythe F (x). From (15), the F (x) may be written as a sum of NF � 12N(N+1) non-vanishing,bilinear terms in xi:F (x)�(N��dL=2)=24NFXn=1 fn(i; j)xixj35�(N��dL=2)= 1�(N� � dL=2) 1(2�i)NF NFYi=1 i1+uiZ�i1+ui dzi NFYn=2 [fn(ij)xixj℄zn[f1(ij)xixj℄�(N��dL=2)�PNFj=2 zj �0�N� � dL2 + NFXj=2 zj1A NFYj=2�(�zj):(20)Here, fn(i; j) = fij if fij 6= 0. Inserting (20) (and if needed a similar representation forthe U(x)) and the tensor fun
tion P (T ) into (2) allows to apply (19) for an evaluation ofthe x-integrations.As a result, any s
alar Feynman integral may be represented by a single multi-dimensionalMB-integral and L-loop tensor integrals by �nite sums of MB-integrals. With AMBRE wewill evaluate the L-loop integrals by a loop-by-loop te
hnique, whi
h essentially allows usto restri
t the formalism to the one-loop 
ase. By the examples it will be seen that thisis a powerful ansatz for many appli
ations.In subsequent steps, the pa
kage MB may be 
alled. This pa
kage needs as input someMB-integral(s), e.g. as being prepared by AMBRE. As des
ribed in detail in [8℄, MB allowsto analyti
ally expand a Feynman integral in " and to evaluate the resulting sequen
e of�nite MB-integrals by one or the other method.3 Using AMBREIn this se
tion we des
ribe the use of the Mathemati
a pa
kage AMBRE. AMBRE stands forAutomati
Mellin-Barnes Representation. It is a (semi-)automati
 pro
edure written formulti-loop 
al
ulations. The pa
kage works with Mathemati
a 5.0 and later versions of it.The algorithm to build up MB-representations for Feynman integrals as des
ribed in thelast se
tion 
onsists of the following parts:(i) de�ne kinemati
al invariants whi
h depend on the external momenta;7



(ii) make a de
ision about the order in whi
h L 1-loop subloops (L � 1) will be workedout sequentially;(iii) 
onstru
t a Feynman integral for the 
hosen subloop and perform manipulations onthe 
orresponding F -polynomial to make it optimal for later use of the MB repre-sentations;(iv) use equation (20);(v) perform the integrations over Feynman parameters with equation (19);(vi) go ba
k to step (iii) and repeat the steps for the next subloop until F in the last, Lthsubloop will be 
hanged into an MB-integral. (21)The steps (ii) and (iii) must be analyzed 
arefully, be
ause there exists some freedom of
hoi
e on the order of loop integrations in step (ii) and also on the order of MB integrationsin step (iii). Di�erent 
hoi
es may lead to di�erent forms of MB-representations.The present version 1.0 of AMBRE 
an be used to 
onstru
t planar Mellin-Barnes represen-tations for:� s
alar multi-loop, multi-leg integrals� tensor one-loop integrals� integrals with spe
i�
 higher-rank numerators ending up with a single MB-integralIn the next se
tions several examples will be used for an introdu
tion to spe
i�
 featuresof the pa
kage.Here, we des
ribe basi
 fun
tions of the pa
kage. The starting point of all 
al
ulations is aproper de�nition of the integral (2) and of the kinemati
al invariants to be used. Formally,it has to be done in the following way:Fullintegral[{numerator}, {denominator}, {internal momenta}℄;invariants = {invariants as a rule}; (22)We re
ommend to use ki and pi as symbols for internal and external momenta, respe
tively.Also non-zero masses should appear as symbols; a numeri
 value may 
ause problems inmulti-loop 
al
ulations.The 
ommand Fullintegral de�nes a given integral. For example:Fullintegral[{1}, {PR[k1, 0, n1℄*PR[k1 + p1, m, n2℄}, {k1}℄; (23)
orresponds to:Z ddk1i�d=2 1(k21)n1[(k1 + p1)2 �m2℄n2 : (24)8



The last argument in the Fullintegral fun
tion is a list of internal momenta. The orderof internal momenta in this list 
ontrols the ordering of integrations (if iterated). Forexample {k3,k2,k1} de�nes the �rst integration to be over k3, the se
ond over k2 andthe third over k1. The next step is to prepare a subloop of the full integral by 
olle
tingall propagators whi
h 
arry a given loop momentum ki. We do this by initiating the
onse
utive fun
tions:IntPart[iteration℄ (25)Ea
h iteration, i = 1; 2; : : : ; L, prepares the appropriate subloop for the integration overthe 
orresponding internal momentum. It will display a pie
e of the Fullintegral with:� the numerator asso
iated with the given subloop� subloop for a given internal momentum� internal momentum for whi
h AMBRE will integrate the subloopThe exe
ution of IntPart[iteration℄ pro
eeds in the order IntPart[1℄, IntPart[2℄,then IntPart[3℄, and so on. If there is a need to 
hange the ordering of integrations,one has to 
hange the order in the starting list of internal momenta (22). InsertingIntPart[2℄ before IntPart[1℄ would not be a proper way to do this. In the outputof IntPart[iteration℄ a tag message will be displayed:Fauto::mode: U and F polynomials will be 
al
ulatedin AUTO mode. In order to use MANUAL mode exe
ute Fauto[0℄. (26)By running Fauto[0℄, AMBRE will 
al
ulate the F -polynomial (with name fup
) for agiven subloop. At this stage, a user might wish to modify fup
 manually, e.g. by applyingsome 
hanges in kinemati
s.During the 
al
ulations, the FX fun
tion of AMBRE may appear in the F -polynomial. Thisfun
tion 
olle
ts full squares of sums of Feynman parameters, e.g.:FX[X[1℄+X[3℄℄^2 � (x1 + x3)2: (27)Su
h terms appear in the F -polynomials if some masses in the loops are equal. They willlater allow to apply Barnes' lemma leading to lower dimensional MB-representations. Atthe other hand, the exponent two of the square may lead to arguments of �-fun
tions in(20) with doubled integration variables, with far-rea
hing 
onsequen
es for an analyti
alevaluation when a sum over an in�nite series of residua is tried.The basi
 fun
tion for deriving the Mellin-Barnes representation is:SubLoop[integral℄ (28)9



This fun
tion takes output generated by IntPart[iteration℄ and performs the following
al
ulations:� 
al
ulate the F -polynomial for the subloop (only if Fauto[1℄ is set)� determine the MB-representation for the F -polynomial� integrate over Feynman parameters xiAs a result, the MB-representation for a given subloop integral will be displayed. In multi-loop 
al
ulations one will noti
e additional propagators (marked in red in the output ofAMBRE) whi
h appear from the intermediate F -polynomial (see se
tion 5.1 for an instru
-tive example).As mentioned, AMBRE 
an 
onstru
t Mellin-Barnes representations for general one looptensor integrals. The pro
edure of 
al
ulating su
h 
ases is basi
ally the same, with fewminor di�eren
es. First of all, the numerator input must be de�ned. A one-loop boxdiagram with numerators (k1p1)(k1p2)(k1p3) might look like this:Fullintegral[{k1*p1,k1*p2,k1*p3},{PR[k1,m,n1℄PR[k1+p1,0,n2℄PR[k1+p1+p2,m,n3℄PR[k1+p3,0,n4℄},{k1}℄;(29)We have written this pro
edure su
h that numerators 
onsist of s
alar produ
ts of internaland external momenta. In the 
al
ulations with tensors, the de�nitions of momentum
ows in the subloops play a 
ru
ial role for the results and have to be 
ontrolled 
arefully.Another di�eren
e to s
alar 
ases is the way how AMBRE displays results. Be
ause they
an be long, we de
ided to use a short notation. For example:{ARint[1℄,ARint[2℄,ARint[3℄} (30)The result of the evaluation has to be understood as the sum of the elements,ARint[1℄+ARint[2℄+ARint[3℄,where ea
h ARint[i℄ is one of the resulting MB-integrals. By exe
utingARint[result,i℄one may display the appropriate ARint[i℄. The pro
edure uses the short notation bydefault, but it is also possible to use the option Result->True in order to for
e SubLoopto display the full result:SubLoop[integral,Result->True℄; (31)Finally, we have also implemented Barnes' �rst lemma:10



i1Z�i1 dz�(a+ z)�(b + z)�(
� z)�(d� z)= �(a+ 
)�(a+ d)�(b+ 
)�(b + d)�(a+ b + 
+ d) ; (32)and Barnes' se
ond lemma:i1Z�i1 dz �(a + z)�(b + z)�(
 + z)�(d� z)�(e� z)�(a+ b + 
+ d+ e+ z) =�(a+ d)�(a+ e)�(b+ d)�(b + e)�(
+ d)�(
+ e)�(a+ b + d+ e)�(a + 
+ d+ e)�(b+ 
 + d+ e) : (33)The usage of Barnes' lemmas is simple; one has to exe
ute:BarnesLemma[representation,i℄ (34)where i is 1 or 2 for the �rst or se
ond Barnes' lemma, respe
tively. This fun
tion triesto apply the lemma on all integration variables zi of the MB-representation whi
h do notappear in the exponents of kinemati
al invariants. It also sear
hes in the exponents ofkinemati
al invariants for pairs of integration variables. For example, be in one exponentthe 
ombination (z1 + z2) and in another one the 
ombination (�z1 � z2). This mightappear as di
tated by the stru
ture of equation (1). The automati
 
hange z1� > z1� z2eliminates z2 in these exponents so that Barnes' lemma 
an be applied for z2. A 
ommentwill be displayed if the lemma was su

essfully applied. Barnes' �rst lemma is quite oftenappli
able, while Barnes' se
ond lemma applies only sporadi
ally (see example14.nb).The automati
 
hange of variables may be swit
hed o� by 
alling shift[0℄.In the appendix we list the Mathemati
a fun
tions of AMBRE.4 One-loop integralsWe will give a 
ouple of examples starting with 
onstru
tion of MB-representations forthe 1-loop Feynman integrals whi
h are an important ingredient of the algorithm (21).Most of the 
ases 
onsidered in subsequent se
tions are 
onne
ted with massless gaugetheories or massive QED.4.1 Example: the pentagon diagram of massive QEDLet us 
onsider the one-loop �ve-point fun
tion shown in �gure 1. The external momentaful�ll p23 = 0, p2i = m2 for the other parti
les, and the sij = (pi + pj)2 are kinemati
al11



Fig. 1. Massive QED pentagon diagraminvariants of the pro
ess. If we naively use the FUPolynomial fun
tion of the MB pa
kage,we will get:U = x1 + x2 + x3 + x4 + x5; (35)F =m2x21 + 2m2x1x3 � s15x1x3 +m2x23 + 2m2x1x4 � s23x1x4 +m2x2x4� s45x2x4 + 2m2x3x4 +m2x24 � s12x2x5 +m2x3x5 � s34x3x5: (36)A simple 
ounting of terms in the F -polynomial would prove that this leads to a twelve-dimensional MB-integral. Of 
ourse the terms in F 
an be grouped from the beginningand we will see in a minute that a �ve-fold MB-integral may be obtained; see also thesample �le example1.nb 2 .First, propagators and kinemati
al invariants are de�ned:Fullintegral[{1},{PR[k1 + p1, 1, n1℄*PR[k1 + p1 + p5, 0, n2℄*PR[k1 + p1 + p4 + p5, 1, n3℄*PR[k1 + p1 + p3 + p4 + p5, 1, n4℄*PR[k1 + p1 + p2 + p3 + p4 + p5, 0, n5℄},{k1}℄; (37)The kinemati
s is de�ned in a 
y
li
 way:p2i = m2i ; si;i+1 = (pi + pi+1)2; i = 1; :::; 5: (38)Then, using the IntPart and SubLoop fun
tions the steps (ii)-(v) of the algorithm (21)are worked out and we end up with a nine-fold MB-representation. This representation isdue to the following F -polynomial, 
onstru
ted in the automati
 way by AMBRE:F 0 =m2(x1 + x3 + x4)2 � s15x1x3 � s23x1x4 +m2x2x4 � s45x2x4 � s12x2x5+ m2x3x5 � s34x3x5: (39)2 The sample Mathemati
a �les are part of the pa
kage AMBRE. They are available at [9,10℄.12



Some mass terms have been 
olle
ted here, but the F -polynomial 
an be further simpli�edby rede�ning s34 ! �s34 +m2 and s45 ! �s45 +m2, so that ea
h term xixj appears onlyon
e. The F 0 polynomial be
omes �nally:F 00 =m2(x1 + x3 + x4)2 � s15x1x3 � s23x1x4 � �s45x2x4 � s12x2x5 � �s34x3x5; (40)whi
h gives a seven-fold MB-representation. In 
ertain 
ases, some of the MB-integrationsdo not depend on the kinemati
s and Barnes lemmas may be applied. Here, due to the term(x1+x3+x4)2 one may twi
e use Barnes' �rst lemma (32) and thus the MB-representation
an be further redu
ed to a �ve-fold integral. A �ve-parti
le s
attering pro
ess depends on�ve variables (plus a mass in Bhabha s
attering), so a further simpli�
ation is impossible.In sample �le example2.nb, we use another de�nition of kinemati
al variables, namelyp2i = m2; p1p2 = 12(t0 � 2m2); p1p3 = 12(t� t0 � v1);p1p4 = m2 + 12(v1 � s� t); p1p5 = 12(s� 2m2); p2p3 = 12v1;p2p4 = 12(s� v1 � v2 � 2m2); p2p5 = 12(v2 � s� t0 + 2m2);p3p4 = 12v2; p3p5 = 12(t0 � t� v2); p4p5 = 12(t� 2m2); (41)
and we get F dire
tly in the form:F 000 =(x1 + x3 + x4)2 � tx1x3 � t0x1x4 � v2x2x4 � sx2x5 � v1x3x5: (42)No wonder, that using fun
tion SubLoop we obtain dire
tly the smallest, seven-dimensionalintegral, whi
h then again redu
es to the �ve-fold integral. The resulting MB-representa-tion for the s
alar Feynman integral is:G[1℄ = �e"
E(2�i)5 5Yi=1 +i1+uiZ�i1+ui dri(�s)�3�"�r1(�t)r2(�t0)r3 �v1s �r4 �v2s �r5�[�r2℄�[�r3℄�[1 + r2 + r3℄�[�r1 + r2 + r3℄�[�2� "� r1 � r4℄�[�r4℄�[1 + r2 + r4℄�[�2� "� r1 � r5℄�[�r5℄�[1 + r3 + r5℄�[3 + "+ r1 + r4 + r5℄�[3 + 2r1 + r4 + r5℄�[�1� 2"℄�[3 + 2(r2 + r3) + r4 + r5℄ : (43)The real parts of the integration strips are �2 < u1 < �1 and �1=2 < ui < 0; i = 2 : : : 5.A subsequent appli
ation of MB shows that up to 
onstant terms in �, needed for an evalu-ation of two-loop massive Bhabha s
attering [11℄, there are maximally three-dimensional�nite 
ontributions to be evaluated further.13



Fig. 2. Massive QED one-loop box diagram4.2 NumeratorsAMBRE may handle arbitrary one-loop tensor integrals. The one-loop Feynman parameterintegral for a tensor of degree m is the generalization of equation (18):G1(Tm)�G1(k�1 � � �k�m)= (�1)N�QNi=1 �(�i) Z NYi=1 dxix�i�1i Æ(1� NXj=1xj) mXr=0 � �n� d+r2 �(�2) r2F n� d+r2 nArPm�ro[�1;:::;�m℄ :(44)Here F � F (x) and P � P1(k�) = Pi xiPi = Pi;e xi�iep�e were introdu
ed in equations(9) and (17). The r starts from zero (with A0 = 1), and it is Ar = 0 for r odd, andAr = g[�i1�i2 � � �g �ir�1�ir ℄ for r even. The 
onvention [�i1 : : :℄ means the totally symmetri

ombination of the arguments.In AMBRE tensorial numerators are assumed to be 
ontra
ted with the external momentape, so that the following quantity is evaluated:Pm G1(Tm)� �p�1e1 � � � p�mem � G1(k�1 � � �k�m): (45)As an example, we have prepared the massive QED one-loop box of �gure 2 in sample �leexample3.nb with the numerator (k1p1)(k1p2)(k1p3). The 
orresponding de�nition usedin AMBRE is:Fullintegral[{k1*p1,k1*p2,k1*p3},{PR[k1,m,n1℄PR[k1+p1,0,n2℄PR[k1+p1+p2,m,n3℄PR[k1+p3,0,n4℄},{k1}℄;(46)Obviously, when working with tensor integrals we expe
t the result to be a sum of severalMB-integrals (the higher the rank is, the more integrals will be obtained). We have 
ross
he
ked numeri
ally results for two-, three- and four-point fun
tions by 
omparing ourresults (from using AMBRE and MB) with de
ompositions of integrals into master integrals14
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Fig. 3. General one-loop vertexusing the Integration-By-Parts method implemented in the pa
kage IdSolver (M. Cza-kon, unpublished). Cross 
he
ks were done for numerators with up to eight s
alar produ
tsin the numerators of the Feynman integrals.Finally we refer to se
tion 5.2 for the interesting spe
ial 
ase of irredu
ible numeratorsarising in intermediate subloops. In 
ertain 
ases, the result for a tensor integral mayremain as 
ompa
t as it is for s
alar integrals.4.3 More massesN -point fun
tions with arbitrary internal masses and o�-shell external legs give 
ompli-
ated multi-dimensional MB-integrals. Let us 
onsider here and in example4.nb a generalone-loop s
alar vertex, Fig. 3. In this 
ase we get a �ve-dimensional MB-integral:Vgeneral= (�1)n123�[n1℄�[n2℄�[n3℄�[4� 2"� n123℄1(2�i)5 +i1Z�i1 dz1 +i1Z�i1 dz2 +i1Z�i1 dz3 +i1Z�i1 dz4 +i1Z�i1 dz5 5Yi=1 �[�zi℄�[2� �� n1 � z1 + z5℄(m21)z1(m22)z3(m23)2���n123�z12345(m21 +m22 �M21 )z2(m21 +m23 �M22 )z4(m22 +m23 �M21 �M22 � s)z5�[n1 + z1124℄�[4� 2"� n1123 � z1124℄�[n2 + z235℄�[�2 + "+ n123 + z12345℄; (47)where we abbreviated z1124 = 2z1 + z2 + z4 and n123 = n1 + n2 + n3, et
.For the massive QED 
ase, M1 = M2 = m2 = m3 = m;m1 = 0, we get a 
ompa
tone-dimensional MB-representation:VQED= (�1)n123�[4� 2�� n1123℄�[n2℄�[n3℄�[4� 2�� n123℄ 12�i +i1Z�i1 dz(m2)z(�s)2���n123�z�[�z℄�[2� �� n12 � z℄�[2� �� n13 � z℄�[�2 + � + n123 + z℄�[4� 2"� n1123 � 2z℄ : (48)15



Fig. 4. Six-point s
alar fun
tions; left: massless 
ase, right: massive 
ase4.4 More legsFor topologies with a higher number of legs, there is an in
reasing number of kinemati
alinvariants and so the dimension of MB-representations in
reases. The number of dimen-sions may be
ome smaller after analyti
al 
ontinuation in " and for lowest orders in ".For a s
alar or ve
tor Bhabha massive �ve-point fun
tion, Fig. 1, up to 
onstant termsin �, it in
ludes at most three-dimensional integrals, whi
h hopefully 
an be solved evenanalyti
ally [11℄. In general, the MB-representation for that 
ase is �ve-dimensional, seese
tion 1.In example5.nb we derive MB-representations for a massless and a massive one-loophexagon s
alar diagram, see �gure 4. In general, it is an eight-fold integral, but the 
onstantterm in � in
ludes again only up to three-dimensional MB-integrals.If all internal lines have equal non-vanishing mass, one has to deal with a nine-dimensionalMB-integral. Again, the numeri
al results have been 
he
ked for both 
ases in the Eu-
lidean region against se
tor de
omposition. The pa
kage 
ontains the auxiliary �leKinemati
sGen.m whi
h generates the kinemati
s for six-point fun
tions with arbitraryo�-shell external legs.
5 Multi-loop integrals: loop-by-loop integrationsThe Feynman integral (5) in
ludes a delta-fun
tion whi
h makes U = 1 for one-loopdiagrams there so that the MB-relation (1) a
ts only on F . This simpli�
ation 
an be madealso useful in multi-loop integrals by performing loop-by-loop integrations. We 
olle
tedfew examples whi
h will exhibit several spe
i�
 features.16



Fig. 5. Massive two-loop planar QED box5.1 Example: two-loop planar box in massive QEDLet us take the massive two-loop planar box topology 3 with seven internal lines as in-trodu
ed in example6.nb. The momentum 
ow is de�ned in the following way, with allmomenta being in
oming:Fullintegral[{1},{PR[k1, m, n1℄PR[k1 + p1, 0, n2℄PR[k1 + p1 + p2, m, n3℄PR[k1 - k2, 0, n4℄PR[k2, m, n5℄PR[k2 + p1 + p2, m, n6℄PR[k2 - p3, 0, n7℄}, {k2, k1}℄: (49)First, the momentum integration over k2 is taken. The k2 
ow in the �rst subloop isde�ned by the fun
tion IntPart[1℄, whi
h 
ontains all propagators with momentum k2:integral = PR[k1 - k2, 0, n4℄*PR[k2, m, n5℄*PR[k2 + p1 + p2, m,n6℄*PR[k2 - p3, 0, n7℄: (50)We just mention that generally it is preferred to 
hoose the order of iteration su
h that�rst the loops with lowest number of lines are exe
uted. Then their F -polynomials havea minimal number of terms. The �rst loop's F -polynomial is the SubLoop[integral℄fun
tion:F [k2℄ � fup
=m^2*FX[X[2℄ + X[3℄℄^2 - PR[k1, m℄*X[1℄*X[2℄-PR[k1 + p1 + p2, m℄*X[1℄*X[3℄ - s*X[2℄*X[3℄ -PR[k1 - p3, 0℄*X[1℄*X[4℄ + 4*m^2*X[3℄*X[4℄ -s*X[3℄*X[4℄ - t*X[3℄*X[4℄ - u*X[3℄*X[4℄ (51)It is reprodu
ed here as derived without intera
tions by the user. The F -polnomial 
on-tains a mass term with the FX fun
tion whi
h later will allow to apply Barnes' �rst3 In fa
t there are three double-box diagrams in massive QED. One of them is non-planar, andwe dis
uss here the so-
alled �rst planar diagram [3℄.17



lemma su

essfully, and also a redundan
y in X[3℄*X[4℄. The following nine-fold MB-representation after integrating over k2 is obtained:SubLoop1[((-1))^(n4 + n5 + n6 + n7 + z2 + z3 + z5) 4^z6(m^2^(z1 + z6) (-s)^(z4 + z7) (-t)^z8(-u)^(2-ep - n4-n5-n6-n7 - z1 - z2 - z3 - z4 - z5 - z6 - z7 - z8)Gamma[-z1℄ Gamma[(-z2)℄ Gamma[(-z3)℄ Gamma[2 - ep - n4 - n5 - n6 - z1 - z2 - z3 - z4℄ Gamma[(-z4)℄Gamma[(-z5)℄ Gamma[n4 + z2 + z3 + z5℄ Gamma[(-z6)℄ Gamma[(-z7)℄Gamma[-z8℄ Gamma[-2+ep + n4 + n5 + n6 + n7 + z1 + z2 + z3 + z4 + z5 +z6 + z7 + z8℄ Gamma[ 2 - ep - n4 - n5 - n7 + z1 - z2 - z5 - z9℄Gamma[(-z9)℄ Gamma[(-2) z1 + z9℄ Gamma[n5 + z2 + z4 + z9℄)/(Gamma[n4℄ Gamma[n5℄ Gamma[n6℄ Gamma[4 - 2 ep - n4 - n5 - n6 - n7℄Gamma[n7℄ Gamma[(-2) z1℄)),PR[k1, m, z2℄PR[k1 + p1 + p2, m, z3℄PR[k1 - p3, 0, z5℄℄) (52)It is 
lear that the fa
tors in front of the X[3℄X[4℄ 
oeÆ
ient sum up to zero, due tos + t + u = 4m2. To remove them from the beginning, the Fauto[0℄ option must beexe
uted, followed by a modi�
ation of F :fup
 = fup
 /. u -> 4*m^2-s-t: (53)In this way, exe
uting the SubLoop[integral℄ fun
tion again, the MB-representationbe
omes �ve-dimensional, and also the term 4z6 is absent now.The same situation appears in the se
ond iteration, when integrating over k1. We 
answit
h to the Fauto[0℄ mode and again modify F . After again applying Barnes' �rstlemma, we end up with a six-dimensional integral.Of 
ourse, by writing from the very beginning the kinemati
al invariants without theinvariant u, one 
an work out the whole 
ase fully automati
 with mode Fauto[1℄.5.2 Spe
ial numeratorsThe example6.nb is interesting in yet another respe
t. After the �rst integration, thepropagators for the se
ond one 
ontain four propagators, some of them with shifted indi
es
ompared to the input:PR[k1, m, n1-z2℄PR[k1 + p1, 0, n2℄PR[k1 + p1 + p2, m, n3-z3℄PR[k1 - p3, 0, z5℄: (54)18



This 
orresponds to the one-loop box of example example3.nb dis
ussed in se
tion 4.2, butwith shifted indi
es. It in
ludes the one new propagator with momentum q5 = k1�p3. If wewould have been evaluating an integral with numerator (q25)�n8 and repeat the 
al
ulation,we would get after the k2 integral an F -polynomial with one of the terms in
luding thepropagator PR[k1 + p1 + p2 + p4, 0, 1℄; see SubLoop[integral℄ in example7.nb;see also [5℄. It will sum up with PR[k1 + p1 + p2 + p4, 0, -n8℄ resulting in the fol-lowing integralintegral= PR[k1, m, n1 - z2℄ PR[k1 + p1, 0, n2℄PR[k1 + p1 + p2, m, n3 - z3℄PR[k1 + p1 + p2 + p4, 0, -2 + ep + n4 +n5 + n6 + n7 - n8 + z1 + z2 + z3 + z4℄; (55)whi
h has the following well-known F -form of the one-loop box:m^2 FX[X[1℄ + X[3℄℄^2 - s X[1℄ X[3℄ - t X[2℄ X[4℄:What is essential here, no additional momentum stru
ture appears.Analyzing the irredu
ible numerators of the topology for the given momentum 
hoi
e,one �nds that there are two s
alar produ
ts whi
h may not be represented by linear
ombinations of the propagators (and thus are 
alled irredu
ible): k1p3 together with k2p1or k1p3 together with k2p2. So, q25 represents one of two existing irredu
ible numeratorsand it may be quite useful to have a simple MB-representation for that 
ase. We seethat there are integrals with (sele
ted) numerators whi
h may be represented by a singleMB-representation as if a s
alar integral would have been studied. This was used severaltimes in examples given in [5,6℄ and in referen
es 
ited therein, and it was also used e.g.in [12℄ for a study of massive two-loop box master integrals, and for more sophisti
atedfour-loop 
ases in [13℄.Finally, a six-dimensional MB-integral emerges like in the s
alar 
ase. To 
he
k this inte-gral numeri
ally with the MB pa
kage, two analyti
al 
ontinuations, one in � and one inone of the powers of propagators must be done. We have 
he
ked the numeri
al result alsoagainst the results we got from a se
tor de
omposition 
al
ulation and from a small-massexpanded version [14,12℄.5.3 Further examples: A three-loop planar box, a four-loop self-energy, and a two-looppentagonA three-loop planar integral, shown in �gure 6, is treated in example8.nb. The result isa 10-fold MB-representation. With the MB pa
kage it was shown that the numeri
al resultagrees with [6℄. 19
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Fig. 6. The loop-by-loop iterative pro
edureThe dimensions of some MB-representations for several massless and massive laddertopologies are summarized in Table 1. We apply an iterative pro
edure. For planar topolo-gies the loop-by-loop iteration gives always proper topologies whi
h obey momentum 
on-servation. Only some powers of propagators 
hange into non-integer (
omplex) numbers.A similar pro
edure 
an be applied to more 
ompli
ated topologies whi
h obey the samerule: integrating over an internal momentum leads to a topology with propagators and mo-mentum 
ow obeying momentum 
onservation in the remaining parts, i.e. we get regularsubtopologies.In this pro
edure, the 
hoi
e of momenta 
owing and the order of iterations are very im-portant. Look e.g. at the two-loop ladder example, also shown in �gure 6. If we would allowfor the momentum 
ow k1 through all the outer lines, and take �rst the integration over k1and then that over k2, the �nal representation would not 
ome out optimal (and Barnes'lemmas do not help). Starting instead with the k2 integration, we will again end up, aswith the momentum 
ows shown in the �gure, with a six-dimensional representation.In �les example9.nb and example10.nb, massless MB-representations are 
onstru
ted fora four-loop two-point topology and for a two-loop �ve-point massless topology, see �gure 7.The six-dimensional four-loop self-energy has been 
he
ked numeri
ally against se
tor de-
omposition. In example10.nb, there are three di�erent derivations of MB-representationsfor the same kinemati
s, de�ned by equation (38). In ea
h 
ase we got another dimensionof MB-integrals. The minimal dimension of the integral is seven when we integrate �rstover internal momenta of the box and then over that of the pentagon. We 
he
ked thatthis agrees numeri
ally with [15℄ where also a seven-dimensional MB-integral has beenobtained. If we integrate �rst over the internal momentum running in the pentagon andnext over that in the box, then a nine-dimensional MB-integral is obtained; again numeri-
ally they agree. In the third derivation, the momentum 
ow in the propagators is 
hosenMassless Massive1-loop 2-loop 3-loop 4-loop 1-loop 2-loop 3-loop 4-loop1 4 7 10 3 8 13 181 4 7 10 2 6 10 14Table 1Dimensions of ladder topologies before and after applying Barnes' �rst Lemma.20
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Fig. 7. Massless topologies; left: four-loop two-point diagram, right: two-loop �ve-point diagramin a di�erent way. Then a 13-dimensional MB-integral results.6 TadpolesThe loop-by-loop approa
h 
an also be applied to planar tadpoles. Attention must be paidto keep the right order of integrations. Making iterations with the Fauto[1℄ option (i.e.automati
), we may end up with three di�erent forms of propagators in the last iteration:one massive propagator, massive and massless propagators, or one massless propagator.For the �rst situation the well known formula is used in AMBRE:Z ddk(k2 � q2)� = i�d=2(�1)��[� + �� 2℄�[�℄ 1(q2)�+��2 : (56)We found that for some massive tadpoles a term (�m)� 
an appear whi
h would lead toan os
illatory error while doing numeri
al 
al
ulations with MB. In su
h a situation onehas to go ba
k to the previous subloop and modify the F -polynomial with Fauto[0℄ sothat two propagators with equal momenta appear: a massive and a massless one. Thesame pro
edure must be applied when a single massless propagator appears in the lastintegral.We give as an example example11.nb, for the diagram also shown left in �gure 8. UsingAMBRE, we have 
onstru
ted a one-dimensional Mellin-Barnes representation:T (n1; :::; n5)= (�1)2+n12345(m2)8�4��n12345 1Q5i=1 �[ni℄ �[2� �� n4℄�[2� �� n5℄�[2� �℄ +i1Z�i1 dz1��[�z1℄�[2� �� n1 � z1℄�[2� �� n2 � z1℄�[4� 2�� n12 � z1℄� �[�6 + 3�+ n1245 + z1℄�[�8 + 4�+ n12345 + z1℄�[4� 2�� n12 � 2z1℄ (57)At this point the proper order of integrations is very important. A di�erent 
hoi
e 
anlead to two- or even higher-dimensional representations.Using MB we got for the basi
 integral numeri
ally:21



Fig. 8. Four-loop tadpoles with three massive lines; left: with a one-dimensional MB-represen-tation, right: with a six-dimensional MB-representationT (1; 1; 1; 1; 1)= 0:25�4 + 1�3 + 2:843300366757447 1�2 + 5:7815436104210331�+22:955621881705923 + 80:89550616785341�+ 1085:2836587072804�2+4545:303884134432�3 + 35998:99383263255�4; (58)This is in agreement with [16℄.However, it appears that MB-representations for four-loop tadpoles 
an be more 
ompli-
ated. In example12.nb, treating the diagram in �gure 8 (right), we get a six-dimensionalMB-integral. Taking into a

ount other approa
hes [16,17℄, one may see that the MB-approa
h to multi-loop 
al
ulations has natural limits, espe
ially in the massive 
ases.
7 On-shell diagramsMellin-Barnes representations 
an be also useful for solving on-shell topologies. For on-shell self-energies, one may use the pa
kage ON-SHELL2 [18,19℄ written in FORM v.2.3[20℄. In example13.nb we show how to evaluate the self-energy SE5l3m2 shown in �gure9, whi
h is in the notations of [18℄ the diagram F01101. The MB-representation is atwo-dimensional integral:F01101=� 1(2�i)2 1�[1� 2�℄ +i1Z�i1 dz1 +i1Z�i1 dz2�[�z1℄�[�z2℄�[��� z1℄�[1 + 2�+ z1℄�[1� 3�� z1℄��[��� z1 � z2℄�[�3�� z1 + z2℄�[1� �+ z1 + z2℄�[1 + � + z1 + z2℄�[1� �� z1 + z2℄�[2 + � + z1 + z2℄ : (59)In the example, the agreement with the result of On-Shell2 result is demonstrated.A simpler 
ase is SE3l1m with one massive and two massless propagators, see �gure 9.22



Fig. 9. On-shell self-energies; left: SE5l3m2, right: SE3l1mThe result is simple:SE3l1mOS = �(m2)(1�2�)�[3� 4�℄�[1� �℄2�[�℄�[�1 + 2�℄�[3� 3�℄�[2� 2�℄ : (60)It 
an be expanded easily to any order in �. Here, in example14.nb, Barnes' se
ond lemmahas been used, whi
h happens not too often. Again, the agreement with the On-Shell2result is presented.8 Non-planar topologiesThe loop-by-loop iterative pro
edure des
ribed in this paper seems to be not the mosteÆ
ient approa
h in the 
ase of non-planar topologies. It is known from [21℄ that themassless non-planar vertex is des
ribed by a two-dimensional Feynman parameter integral.If we 
onsider the loop-by-loop pro
edure for this 
ase, we 
an divide the two-loop topologyin �gure 10 into two parts (follow the verti
al line). The hourglass topology on the right-hand side, with two o�-shell legs, gives a three-dimensional MB-representation [6℄, andadding the se
ond part on the left-hand side we end up with a four-dimensional integral.No matter how we arrange the momenta 
ows in the diagram, it 
annot be
ome better.To get the minimal, two-dimensional integral, another approa
h must be realized. It is anopen question to us if the representation of non-planar diagrams 
an be automatized ina way like that for planar 
ases 4 .
Fig. 10. Non-planar massless vertex4 The non-planar examples in the study [7℄ do not go beyond our observations stated here.23



9 SummaryWe have des
ribed the Mathemati
a pa
kage AMBRE for the 
onstru
tion of MB-represen-tations for planar Feynman integrals and gave in a tutorial part a variety of sampleappli
ations. Typi
ally, the iterative loop-by-loop approa
h gives a possibility to 
onstru
tMB-integrals of minimal dimension. Usually Barnes' �rst and se
ond lemmas help toget the minimal dimension of MB-integrals, independent both of the 
ow of momentain diagrams and of the order of iterations. However, for more 
ompli
ated kinemati
s,starting with �ve legs, the order of iterations and the 
hoi
e of momenta 
ows matters.As is shown there in the 
ase of tadpoles, MB-representations for massive topologies arenot always the best way of evaluation. For some topologies quite simple representationsare found, however, also multi-dimensional MB-integrals may arise from whi
h it is hardto get stable, a

urate numeri
al results, not mentioning exa
t analyti
al results.Constru
ting useful MB-representations for a given Feynman integral is a kind of an art.As an example, let us mention the QED master integral B5l2m2 (a diagram with �ve lines,two of them being massive; notations are due to [22,12℄). This integral may be obtainedby 
ontra
ting dire
tly two lines in the massive Bhabha two-loop planar integral B7l4m1[3℄ (the so-
alled �rst planar master of massive QED). In [12℄ it was shown that, afterexpansion in �, the expression for B5l2m2 
onsists of eleven integrals, one being four-dimensional. This was 
ompared to 
onstru
ting B5l2m2 from the s
rat
h, loop-by-loop.Here, again after expansion in �, we are left with four integrals, all of them being three-dimensional or simpler. This 
an be 
he
ked easily by the reader using the MB pa
kage andboth the representation B7l4m1 given in [3℄ (the 
ontra
tion of two lines must be donethere) and the representation B5l2m2 given in [12℄. There is no simple relation betweenboth representations, due to our la
k of knowledge on more 
ompli
ated relations betweenintegrals of di�erent dimensionality. One should also mention that an independent 
he
k ofthe MB-representations always is strongly re
ommended. By 
onstru
tion, neither AMBREnor MB perform rigorous proofs of their appli
ability.Certainly, the number of integration variables is of importan
e for the �nal evaluation ofMB-integrals, both in a fully analyti
al form or using approximations in some kinemati
allimits. In many 
ases some pa
kage like XSUMMER [23,24℄ 
an be used after deriving sumsover residua. This again might be
ome non-e�e
tive if the number of the nested sums {
onne
ted with the dimension of the MB-integrals { is too large or if the result is not inthe 
lass of fun
tions 
overed by (e.g.) XSUMMER. Similar statements hold for the 
ase of afully numeri
al evaluation of MB-integrals.To summarize, for many appli
ations of present phenomenologi
al or more theoreti
alinterest the pa
kage AMBRE solves an important part of the 
omplete 
al
ulational problem:the derivation of expressions for a large 
lass of Feynman integrals, whi
h may then beused for further study. 24
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� BarnesLemma[repr,1,Shifts->True℄ { fun
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