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DESY 07-034Evolution equations for extended dihadron fragmentation funtionsFederio A. Ceopieri�Dipartimento di Fisia, Universit�a di Parma,Viale delle Sienze, Campus Sud, 43100 Parma, ItalyMaro RadiiyDipartimento di Fisia Nuleare e Teoria, Universit�a di Pavia, andIstituto Nazionale di Fisia Nuleare, Sezione di Pavia, I-27100 Pavia, ItalyAlessandro BahettazTheory Group, Deutshes Elektronen-Synhroton DESY,D-22603 Hamburg, GermanyWe onsider dihadron fragmentation funtions, desribing the fragmentation of a parton in twounpolarized hadrons, and in partiular extended dihadron fragmentation funtions, expliitly de-pendent on the invariant mass, Mh, of the hadron pair. We �rst rederive the known results onMh-integrated funtions using Jet Calulus tehniques, and then we present the evolution equa-tions for extended dihadron fragmentation funtions. Our results are relevant for the analysis ofexperimental measurements of two-partile-inlusive proesses at di�erent energies.PACS numbers: 13.87.Fh, 13.66.B, 12.38.BxI. INTRODUCTIONThe fragmentation of partons into hadrons has been studied in detail in semi-inlusive proesses with one hadrondeteted in the �nal state, suh as e+e� annihilation, Semi-Inlusive Deep-Inelasti Sattering (SIDIS) or hadron-hadron ollisions. Fatorization theorems (see, e.g., [1, 2, 3℄) allow to separate perturbatively alulable short-rangeoeÆient funtions from long-distane nonperturbative fragmentation funtions Di!h1 (z), desribing the \deay" ofthe hard parton i into an observed hadron h with frational energy z, provided a hard sale is available. This is thease of the e+e� ! hX reation, where the oeÆient funtion is known at least to O(�s) [4, 5℄, with �s the runningstrong oupling onstant. The same fragmentation funtions, Di!h1 , our in the fatorized formula for SIDIS atO(�s) [4, 5℄, ombined with the spei� proess-dependent oeÆient funtions at the same auray. For hadroniollisions, fatorization is usually assumed, but has not been proven yet.When onsidering semi-inlusive proesses with two deteted hadrons in the �nal state, e.g., e+e� ! h1h2X , a newlass of fragmentation funtions, the so-alled Dihadron Fragmentation Funtions (DiFF), needs to be introduedto guarantee fatorization of all ollinear singularities [6℄. From this perspetive, DiFF are analogous to fraturefuntions in the spae-like regime [7, 8℄. The DiFF evolution equations have been reently reanalyzed in Ref. [9℄and the ross setion for e+e� ! h1h2X has been alulated to O(�s) in Ref. [10℄. At O(�0s), the prodution of twohadrons h1, h2 with frational energies z1, z2 and belonging to the same jet, is desribed by a DiFF, Di!h1h21 (z1; z2),i.e., the fragmentation of a single parton i into the two hadrons. At O(�s), hadrons produed in the same jet ouldeither ome from the fragmentation of a single parton into two hadrons or by the fragmentation of two ollinearpartons, i and j, into single hadrons. This implies that evolution equations for DiFF ontain an inhomogeneous termof the form Di!h11 
Dj!h21 [10℄.All these studies foused on DiFF as funtions of the energy frations z1 and z2, integrated over all the otherkinematial variables of the produed hadron pair, inluding their invariant mass Mh. However, the largest amountof experimental information related to DiFF onsists of invariant mass spetra of hadron pairs produed in e+e�annihilation [11, 12, 13℄, Semi-Inlusive Deep-Inelasti Sattering (SIDIS) [14, 15, 16℄ and proton-proton ollisions [17,18, 19℄. In this paper, using the tehniques of Jet Calulus [6, 20℄ we dedue the evolution equations for DiFF withan expliit dependene on Mh. In analogy with Ref. [21℄, we address them as extended Dihadron FragmentationFuntions (extDiFF).�Eletroni address: eopieri��s.unipr.ityEletroni address: maro.radii�pv.infn.itzEletroni address: alessandro.bahetta�desy.de
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2DiFF turn out to have important appliations in polarization studies, sine they an at as spin-analyzers of thefragmenting quark [22℄. In partiular, the transverse polarization sT of the fragmenting quark an be related tothe azimuthal orientation of the plane ontaining the two hadron momenta P1 and P2, through the mixed produtP1�P2 �sT . The strength of this relation is desribed by the DiFF H<) i!h1h21 [23℄. In SIDIS with transversely polarizedtargets, this DiFF appears in ombination with the transversity distribution funtion [24, 25, 26℄, thus providing away to onstrain this elusive partoni distribution (for a review on transversity, see Ref. [27℄). The HERMES [28℄ andCOMPASS [29℄ ollaborations have reported preliminary measurements of the indued spin asymmetry (at hQ2i � 2:5GeV2). In the meanwhile, the BELLE ollaboration is planning to perform the extration of the fragmentationfuntion H<)1 in e+e� annihilation [30℄, but at the higher sale ps � 10 GeV [31℄. The invariant-mass dependene ofthis fragmentation funtion is unknown and nontrivial, as shown, e.g., by model alulations [25, 26, 32℄. Therefore,the study of the evolution properties of extDiFF is also timely.The paper is organized as follows. In Se. II, using Jet Calulus we reover the inhomogeneous evolution equations forDiFF derived in Ref. [10℄. In Se. III, following the same lines we dedue the evolution equations for the orrespondingextDiFF. Finally, in Se. IV we draw our onlusions.II. INTEGRATED DIHADRON FRAGMENTATION FUNCTIONSThe ross setion at order O(�s) for the e+e� ! hX proess, where a hadron has momentum Ph and energyfration z = 2Ph � q=Q2 with respet to the enter-of-mass (m) energy Q2 � q2, an be written formally asd�hdz =Xi �i 
Di!h1 ; (1)where Di!h1 desribes the \deay" at leading twist of the hard parton i into the observed hadron h, the sum on irunning over all possible partons speies i = q; �q; g. The proess-dependent oeÆient funtion �i an be alulatedand regularized in perturbation theory and it is known at least at O(�s) [4, 5℄. The Di!h1 at O(�s), i.e., whih absorbsall the ollinear singularities, an be aurately parametrized [33, 34℄, exept for the z ! 0 portion of phase spae.The generalization of Eq. (1) to the proess e+e� ! h1h2X is not straightforward, if one wants to over the wholephase spae aessible to (h1; h2). The di�erential ross setion, again at O(�s), has been reently alulated inRef. [10℄ and reads, with obvious notations,d�h1;h2dz1dz2 =Xij �ij 
Di!h11 
Dj!h21 +Xi �i 
Di!h1h21 ; (2)where the DiFF Di!h1h21 ontains information on the fragmentation, at leading twist and O(�s), of the hard partoni diretly into the observed hadron pair h1; h2. At order O(�0s), the �rst term of Eq. (2) would orrespond to thebak-to-bak emission of a parton and an antiparton, eventually fragmenting in the hadrons h1 and h2 belonging totwo well separated jets. The seond term would apply instead to the ase where the hadron pair is produed very losein phase spae and it is deteted inside the same jet while the other jet is inlusively summed over. However, at orderO(�s) a new kind of ollinear singularities arises in the partoni ross setion; it orresponds to the on�gurationwhere eah hadron is obtained from the fragmentation of a single parton, the two partons being almost ollinear, i.e.,with a very small relative transverse momentum rT . These 1=r2T singularities annot be reabsorbed in eah Di!h1 ,beause they do not orrespond to the bak-to-bak on�guration. Hene, they must be reabsorbed in Di!h1h21 , thusmaking the two terms in Eq. (2) indistinguishable [10℄.As a onsequene, after integrating over rT the DiFF must satisfy the following evolution equation [10℄dd lnQ2Di!h1h21 (z1; z2; Q2) = �s(Q2)2� Z 1z1+z2 duu2 Dj!h1h21 �z1u ; z2u ;Q2� Pji(u)+ �s(Q2)2� Z 1�z2z1 duu(1� u) Dj!h11 �z1u ;Q2�Dk!h21 � z21� u;Q2� P̂ ijk(u) ; (3)where here, and in the following, a sum over repeated parton indies is understood. The �rst term in the right-hand side represents the usual homogeneous evolution for the DiFF Di!h1h21 in omplete analogy with the ase ofsingle-hadron fragmentation: the probability for the parton i to fragment into the hadrons h1; h2; is a�eted by theprobability of emitting a parton j with momentum fration u through the Altarelli-Parisi splitting vertex Pji(u) [35℄,listed in Eqs. (A.1){(A.4) of the appendix for onveniene. The seond term is a new inhomogeneous ontribution



3that orresponds to the probability for the parton i to split in the two partons j and k with momentum frations uand (1�u), respetively, eah one fragmenting in one of the two observed hadrons. The P̂ ijk(u) are the Altarelli-Parisisplitting funtions without virtual ontributions [20℄, again listed in Eqs. (A.6){(A.9) of the appendix for onveniene.From this point of view, the situation is similar to the DIS ase in the target fragmentation region, sine the DiFFan be oneived as the time-like version of the frature funtions in the spae-like domain [7, 8℄.In the following, we will make use of Jet Calulus [6, 20℄ and reover the evolution equation (3) within thisformalism. We will onsider the semi-inlusive prodution of two hadrons, h1 and h2, belonging to the same jet andnegleting the emission of wide-angle hard partons (and related jets). Therefore, we will not perform a �xed-orderalulation of the e+e� ! h1h2X ross setion. Rather, we will onsider a parton i with a large virtuality �Q2(0 < � < 1), whih fragments in two hadrons h1 and h2 inside the same jet. The virtuality an be reonstrutedfrom the invariant mass of the jet by a suitable jet-�nding algorithm [36℄. The phase-spae struture of ollinearsingularities singled out in �xed-order alulations an be translated in Jet Calulus as a degeneray in all possibleompeting mehanisms, whih ould realize the desidered �nal state on�guration [6, 20℄. Thus, the ross setion isthe sum of all prodution mehanisms, as in Eq. (2).We use Q2 as evolution sale, instead of �Q2. In Leading Logarithmi Approximation (LLA), this substitutionindues only subleading orretions and thus is fully justi�ed within this approximation. Moreover, it is onvenientto replae this variable with the evolution variableY = 12��0 ln ��s(�2R)�s(Q2)� ; (4)also named the evolution imaginary time [20℄. In Eq. (4), �2R is the renormalization sale and �0 = (11N�2Nf)=(12�)is the one-loop � funtion with N, Nf , the number of olors and avors, respetively. In LLA, the running of �s istaken into aount at one loop by �s(Q2) = 1�0 ln(Q2=�2QCD) ; (5)where �2QCD is the infrared sale. Hene, the di�erential evolution length is justdY = �s(Q2)2� dQ2Q2 : (6)Let us de�ne the variable y as y = 12��0 ln ��s(Q20)�s(Q2)� ; (7)with Q20 and Q2 two arbitrary sales, and introdue the perturbative parton-to-parton time-like evolution funtionEij(x; y), whih expresses the probability of �nding a parton j at the sale Q20 with a momentum fration x of theparent parton i at the sale Q2. The funtion Eij(x; y) an be shown to satisfy standard evolution equations [6, 20℄ddyEij(x; y) = Z 1x duu Ekj �xu; y�Pki(u) ; (8)that an be iteratively solved by using the initial onditionEij(x; y)jy=0 = ÆjiÆ(1� x) ; (9)with Æji the Kroneker symbol. The Eij(x; y) resums leading logarithms of the type �ns lnn(Q2=Q20), whih show up inthe ollinear limit of perturbative alulations at the partoni level. As a rosshek, we an expand Eq. (8) at orderO(�s) with the initial ondition (9); negleting for simpliity the running of �s in Eq. (7), we getEij(x; y) � Eij(x;Q20; Q2) � ÆjiÆ(1� x) + �s2� Pji(x) ln Q2Q20 : (10)Leading logarithmi ontributions are therefore automatially aounted for at all orders through the funtion E.Consider now the fragmentation proess i ! h1h2X where h1 and h2 are deteted within the same jet and with



4relative transverse momentum R2T . Q2. The orresponding ross-setion, normalized to the jet-ross setion, an bewritten as1�jet d�i!h1h2dz1dz2 � Di!h1h21 (z1; z2; Y ) = Di!h1h21;A (z1; z2; Y ) +Di!h1h21;B (z1; z2; Y )= Z 1z1+z2 dww2 Dj!h1h21 �z1w ; z2w ; y0�Eij(w; Y � y0)+ Z Yy0 dy Z 1z1+z2 dww2 Z 1� z2wz1w duu(1� u) P̂ jlk(u)Eij(w; Y � y)Dk!h11 � z1wu; y�Dl!h21 � z2w(1� u) ; y� :(11)The �rst term \A" is the onvolution of the DiFF at some arbitrary (but still perturbative) fatorization sale y0 withthe parton-to-parton evolution funtion Eij . The seond term \B", instead, represents the two separate single-hadronfragmentations, integrated over all possible generi intermediate sales y at whih the branhing j ! kl at partonilevel might our. Integration limits in Eq.(11) are �xed by momentum onservation. Both terms are depited inFig. 1. In order to reover Eq.(3), we now take the derivative of Eq. (11) with respet to the variable Y . Using Eq. (8)
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FIG. 1: Double- and single-hadron fragmentations in Eq. (11). The momentum frations are indiated along with the saleand the parton indies. The blak dot represents the parton evolution funtion E.and the de�nition of Di!h1h21;A , we get for the \A" termddY Di!h1h21;A (z1; z2; Y ) = Z 1z1+z2 dww2 Dj!h1h21 �z1w ; z2w ; y0� ddY [Eij(w; Y � y0)℄= Z 1z1+z2 duu2 Dk!h1h21;A �z1u ; z2u ; Y � Pki(u) : (12)The derivative d=dY of the \B" ontribution in Eq. (11) produes two terms, sine there is an expliit Y -dependenein the upper integration limit. Using Eq. (9) and the same proedure as before, we getddY Di!h1h21;B (z1; z2; Y ) = Z 1z1+z2 dww2 ÆjiÆ(1� w) Z 1� z2wz1w duu(1� u) P̂ jlk(u)Dk!h11 � z1wu; Y �Dl!h21 � z2w(1� u) ; Y �+ Z Yy0 dy Z 1z1+z2 dww2 Z 1� z2wz1w duu(1� u) P̂ jlk(u) ddY Eij(w; Y � y)Dk!h11 � z1wu; y�Dl!h21 � z2w(1� u) ; y�= Z 1�z2z1 duu(1� u) P̂ ilk(u)Dk!h11 �z1u ; Y �Dl!h21 � z21� u; Y �+ Z 1z1+z2 duu2 Pki(u)Dk!h1h21;B �z1u ; z2u ; Y � : (13)
Summing up Eqs. (12) and (13), we getddY Di!h1h21 (z1; z2; Y ) = Z 1z1+z2 duu2 Dk!h1h21 �z1u ; z2u ; Y � Pki(u)+ Z 1�z2z1 duu(1� u) Dk!h11 �z1u ; Y �Dl!h21 � z21� u; Y � P̂ ilk(u) ; (14)



5whih is exatly Eq. (3), after hanging the saling variable Y bak to the more familiar Q2. This derivation is usefulto adjust the formalism of Jet Calulus from Refs. [6, 20℄ to the alulation of the e+e� ! h1h2X ross setion atO(�s) from Ref. [10℄. However, we want to stress again that even if the two expressions are formally idential, theyhave been derived from rather di�erent approahes. Eq. (3) from Ref. [10℄ applies to the full phase spae for theprodution of two hadrons. Instead, Eq. (14) gives the evolution of the parton i in a jet within whih we identify thetwo deteted hadrons h1 and h2; thus, it is valid only in the portion of phase spae de�ned by the jet. We reall thatif Q2 is the m energy of the e+e� annihilation, the event is haraterized by a ertain number of jets resulting alsofrom a large-angle hard parton emission; this is not inluded in the LLA used here. Therefore, the evolution sale inEq. (14) must be intended as the invariant mass of the onsidered jet, i.e., �Q2 with 0 < � < 1.III. EXTENDED DIHADRON FRAGMENTATION FUNCTIONSIn the previous setion, we onsidered the inlusive prodution of two hadrons h1 and h2 inside the same jet, summingup all possible values of their invariant mass Mh. If the proess starts from the hard sale Q2 of the fragmentingparton (or, equivalently, �Q2 in the ase of the jet), there is no intermediate sale that allows to distinguish the twoontributions in Eq. (11): the y0 in the \A" term is arbitrary, and the sale y for the partoni branhing in the \B"term is summed over.However, most of the experimental information on unpolarized DiFF onsists of invariant mass spetra of hadronpairs [11, 12, 13, 14, 15, 16, 17, 18, 19℄. In addition, e�ets related to the partial-wave expansion of DiFF [37℄ are bestexplored when the latter expliitly depend on M2h . Hene, in this setion we will address the evolution equations forDiFF at the �xed saleM2h . We will indiate these objets as extended Dihadron Fragmentation Funtions (extDiFF),as the time-like analogue of the extended frature funtions that were introdued in Ref. [21℄ for the spae-like SIDISin the target fragmentation region.The dependene of the extDiFF upon M2h an be easily mapped into R2T , the square of the relative transversemomentum of the hadron pair. In fat, it results [37℄R2T � (P1T � P2T )24 = z1z2z1 + z2 � M2hz1 + z2 � M21z1 � M22z2 � ; (15)with M1 and M2 the masses of the hadrons h1 and h2, respetively. From the �rst line of Eq. (11), we get the obviousde�nition1�jet d�i!h1h2dz1dz2 � Di!h1h21 (z1; z2; Y ) = Di!h1h21;A (z1; z2; Y ) +Di!h1h21;B (z1; z2; Y )� Z dR2T 1�jet d�i!h1h2dz1dz2dR2T = Z dR2T Di!h1h21;A (z1; z2; R2T ; Y ) + Z dR2T Di!h1h21;B (z1; z2; R2T ; Y ) : (16)The inhomogeneous \B" term desribes the time-like branhing of parton i in two partons k and l with transverserelative momentum rT , eventually fragmenting in the two hadrons h1 and h2 with transverse relative momentum RT .If the R2T sale is �xed and in the perturbative regime, the sale at the partoni branhing is no longer arbitrary asin Eq. (11) [6, 20℄. In fat, if u and (1� u) are the frational momenta of partons k and l, the parton virtualities arerelated by k2i = k2ku + k2l1� u + r2T4u(1� u) : (17)Hene, �xing rT at the partoni level determines in turn the branhing sale k2i . At the hadroni level, this is notguaranteed and some assumptions must be made. We will suppose that in the fragmentations k ! h1 and l ! h2the parton virtualities are negligible, i.e., k2k ' k2l ' 0, meaning that, one the branhing i ! kl has ourred, boththe perturbative and nonperturbative transverse momenta generated in the fragmentation of the partons k and l arenegligible (inidentally, perturbatively generated transverse momenta an be taken into aount by using time-likeevolution equations depending on transverse momentum [38℄). Consequently, the transverse relative momentum rTbetween k and l should not be substantially altered in the fragmentation, implyingk2i � r2T � R2T : (18)Corretions to the above relation a�et our �nal result only at subleading level. Instead, the above assumption isalso onsistent with the approximation we are working with. Leading logarithms are known to manifest themselves



6when the transversa momenta of the emitted partons are strongly ordered along the ladder, e.g., Q2 � r2T;1 � : : :�r2T;n � Q20. Hadron pairs with large relative transverse momentum RT are thus produed earlier in the imaginarytime Y than hadron pairs with small RT , as appropriate for time-like kinematis.If R2T is thus in the perturbative domain, in analogy with Eq. (4), we an de�ne the variable yT asyT = 12��0 ln � �s(�2R)�s(R2T )� ; (19)or, in di�erential form, ddR2T = �s(R2T )2�R2T ddyT : (20)Sine the sale at whih the branhing ours is �xed by R2T , from Eqs. (11), (16) and (20), we obtainDi!h1h21;B (z1; z2; R2T ; Y )= �s(R2T )2�R2T ddyT Z Yy0 dy Z 1z1+z2 dww2 Z 1� z2wz1w duu(1� u) P̂ jlk(u)Eij(w; Y � y)Dk!h11 � z1wu; y�Dl!h21 � z2w(1� u) ; y�= �s(R2T )2�R2T Z 1z1+z2 dww2 Z 1� z2wz1w duu(1� u) P̂ jlk(u)Eij(w; Y � yT )Dk!h11 � z1wu; yT�Dl!h21 � z2w(1� u) ; yT� : (21)If the sale R2T is �xed in the nonperturbative regime, the above arguments leading to Eq. (20) do not apply. Thisis the ase for the homogeneous \A" term in Eq. (16), whih desribes the diret fragmentation of parton i in thetwo hadrons h1 and h2: the virtuality k2i of the parent parton annot be reonstruted from R2T and it is set to thearbitrary fatorization sale Q20 (or, in our notations, y0). From Eqs. (11) and (16), we simply getDi!h1h21;A (z1; z2; R2T ; Y ) = Z 1z1+z2 dww2 Dj!h1h21;A �z1w ; z2w ;R2T ; y0� Eij(w; Y � y0) : (22)Summing up Eqs. (22) and (21), and providing eah term with an extra step funtion to separate the two di�erentkinematial regimes, we get the omplete expression for the extDiFF at LLA:Di!h1h21 (z1; z2; R2T ; Y ) = Di!h1h21;A (z1; z2; R2T ; Y ) +Di!h1h21;B (z1; z2; R2T ; Y )= Z 1z1+z2 dww2 Dj!h1h21;A �z1w ; z2w ;R2T ; y0�Eij(w; Y � y0) �(y0 � yT )+ �s(R2T )2�R2T Z 1z1+z2 dww2 Z 1� z2wz1w duu(1� u) P̂ jlk(u)Eij(w; Y � yT )Dk!h11 � z1wu; yT�Dl!h21 � z2w(1� u) ; yT� �(yT � y0):(23)Note that, despite the presene of the step funtions, the separation between the two regimes is still arbitrary, sineit depends on y0 whih is itself arbitrary. The evolution equations for the extDiFF an be obtained, in analogy withEq. (14), by taking the derivative with respet to Y [or, equivalently, Q2 via Eq. (6)℄. By using Eq. (8) and thede�nition (23) of the extDiFF themselves, we getdd lnQ2Di!h1h21 (z1; z2; R2T ; Q2) = �s(Q2)2� Z 1z1+z2 duu2 Dj!h1h21 �z1u ; z2u ;R2T ; Q2�Pji(u) : (24)We expliitly heked that by integrating Eq. (24) upon R2T we reover Eq. (3). In onlusion, if the hadron pair isinlusively produed in the same jet at �xed transverse relative momentum RT (or, equivalently, �xed invariant massMh), the evolution equations for the extDiFF are of the standard homogeneous type. The expliit dependene onthis new sale breaks the degeneray of the two prodution mehanisms desribed in the previous setion. The samearguments apply to the SIDIS target fragmentation region where extended frature funtions, expliitly dependingupon the invariant momentum transfer t between the inoming and outgoing hadron, satisfy a homogeneous evolutionequation [21℄. On the basis of Eq. (24), we argue that the ross setion at order O(�s) for the inlusive prodution ofthe two hadrons h1; h2; inside the same jet and with invariant mass Mh, an be expressed in the fatorized formd�i!h1h2dz1dz2dR2T =Xi �i 
Di!h1h21 (R2T ; Q2) ; (25)



7where �i are the same oeÆient funtions found in the single-hadron inlusive ross setion of Eq. (1). In ourabove derivation, we used the tehniques of Jet Calulus [6, 20℄, where the fatorization of ollinear singularities anbe automatially aommodated through the use of the parton-to-parton evolution funtion E. Exhanges of softpartiles are, however, not aounted for.Eq. (24) an be onveniently diagonalized using a double Mellin transformation. We de�neDi!h1h2n;m (R2T ; Q2) = Z 10 dz1 Z 1�z10 dz2 zn�11 zm�12 Di!h1h21 (z1; z2; R2T ; Q2) ; (26)and the anomalous dimension Aij(n+m) = Z 10 duPji(u)um+n�2 : (27)With simple algebra manipulations, it is easy to verify thatdd lnQ2Di!h1h2n;m (R2T ; Q2) = �s(Q2)2� Dj!h1h2n;m (R2T ; Q2)Aij(n+m) : (28)The above results an be extended also to polarized extDiFF, in partiular to the only one surviving when thehadron pair is ollinear, i.e., H<) i!h1h21 [23, 37℄. The evolution equations for this funtion have the same form of theunpolarized ase, namelydd lnQ2H<) i!h1h21 (z1; z2; R2T ; Q2) = �s(Q2)2� Z 1z1+z2 duu2 H<) j!h1h21 �z1u ; z2u ;R2T ; Q2� ÆPji(u) ; (29)where the splitting funtions ÆPji for a transversely polarized fragmenting parton are used [39℄. The ÆPji are listedin Eqs. (A.10){(A.13) of the appendix.These evolution equations an be onveniently used for phenomenologial analyses, sine they an onnet experi-mental data taken at di�erent energies. IV. CONCLUSIONSWe have shown that in leading logarithm approximation the so-alled extended Dihadron Fragmentation Funtions(extDiFF), desribing the inlusive prodution of two hadrons inside the same jet at �xed invariant mass Mh, satisfyevolution equations of the same homogeneous type as in the single-hadron fragmentation ase. We stress that theexpliit dependene on the sale M2h is required to break the degeneray at O(�s) between the fragmentation froma single parton or after the branhing in two ollinear partons. While the �rst ontribution pertains to the nonper-turbative regime, in the latter the transverse relative momentum RT of the two hadrons an be traed bak to thetransverse relative momentum of the two ollinear partons after the branhing, and, ultimately, to the hard sale ofthe originating parton. The analysis of the orresponding ontribution to extDiFF shows that the dependene on thisperturbative sale an be predited.In our derivation, we used the tehniques of Jet Calulus [6, 20℄. Fatorization of ollinear singularities an beautomatially aommodated through the use of the parton-to-parton evolution funtion E. On the basis of thesimple result for the evolution equations of extDiFF, we argue that the ross setion at order O(�s) for the inlusiveprodution of the two hadrons h1; h2; inside the same jet and with invariant massMh, an be expressed in a fatorizedform involving the same oeÆient funtions as in the single-hadron inlusive ross setion. A omplete proof of thisstatement would require however the inlusion of soft partile exhanges, whih are not aounted for in Jet Calulusapproah.Evolution equations an be extended also to polarized extDiFF, in partiular to H<) i!h1h21 [23℄. Suh fragmentationfuntion an be extrated from e+e� annihilation [30℄, evolved to the sale of semi-inlusive deep inelasti satteringmeasurements and allow the extration of the transversity distribution funtion [24, 25, 26℄.AknowledgmentsF.A.C. would like to thank the DESY Theory Group and the Universiy of Parma for �nanial support. This workis part of the European Integrated Infrastruture Initiative in Hadron Physis projet under the ontrat numberRII3-CT-2004-506078.



8APPENDIX: SPLITTING FUNCTIONSThe unpolarized leading-order splitting funtions P (u) read [35℄Pqq(u) = CF "2� 11� u�+ + 32 Æ(1� u)� 1� u# ; (A.1)Pqg(u) = TR[1� 2u+ 2u2℄ ; (A.2)Pgq(u) = CF � 2u � 2 + u� ; (A.3)Pgg(u) = 2CA "� 11� u�+ + 1u + u(1� u)� 2#+ 11CA � 2Nf6 Æ(1� u) ; (A.4)where Nf is the number of avors, CA = 3, CF = 4=3, TR = 1=2; the \ + " presription is de�ned as usual byZ 10 dz f(z)[g(z)℄+ = Z 10 dz g(z) [f(z)� f(1)℄ : (A.5)The unpolarized leading-order splitting funtions P̂ are readily obtained from the previous ones by dropping virtualontributions at the endpoint. In our notations, they read:P̂ qgq(u) = CF � 21� u � 1� u� ; (A.6)P̂ gq�q(u) = TR[1� 2u+ 2u2℄ ; (A.7)P̂ qqg(u) = CF � 2u � 2 + u� ; (A.8)P̂ ggg(u) = 2CA � 11� u + 1u + u(1� u)� 2� : (A.9)The transversely polarized leading-order splitting funtions ÆP read [39, 40℄ÆPqq(u) = CF "2� 11� u�+ + 32Æ(1� u)� 2# ; (A.10)ÆPqg(u) = 0 ; (A.11)ÆPgq(u) = 0 ; (A.12)ÆPgg(u) = 2CA "� 11� u�+ � 1#+ 11CA � 2Nf6 Æ(1� u) : (A.13)Due to angular momentum onservation, there is no mixing between quarks and gluons. The last splitting funtionan be used to evolve the DiFF for linearly polarized gluons, ÆĜ<) [41℄.[1℄ R. K. Ellis, H. Georgi, M. Mahaek, H. D. Politzer, and G. G. Ross, Nul. Phys. B152, 285 (1979).[2℄ D. Amati, R. Petronzio, and G. Veneziano, Nul. Phys. B140, 54 (1978).[3℄ J. C. Collins, D. E. Soper, and G. Sterman, in Perturbative quantum hromodynamis, edited by A. H. Mueller (WorldSienti�, Singapore, 1989).[4℄ G. Altarelli, R. K. Ellis, G. Martinelli, and S.-Y. Pi, Nul. Phys. B160, 301 (1979).[5℄ W. Furmanski and R. Petronzio, Zeit. Phys. C11, 293 (1982).[6℄ K. Konishi, A. Ukawa, and G. Veneziano, Phys. Lett. B78, 243 (1978).[7℄ L. Trentadue and G. Veneziano, Phys. Lett. B323, 201 (1994).[8℄ D. Graudenz, Nul. Phys. B432, 351 (1994), hep-ph/9406274.[9℄ A. Majumder and X.-N. Wang, Phys. Rev. D70, 014007 (2004), hep-ph/0402245.[10℄ D. de Florian and L. Vanni, Phys. Lett. B578, 139 (2004), hep-ph/0310196.



9[11℄ P. D. Aton et al. (OPAL), Z. Phys. C56, 521 (1992).[12℄ P. Abreu et al. (DELPHI), Phys. Lett. B298, 236 (1993).[13℄ D. Buskuli et al. (ALEPH), Z. Phys. C69, 379 (1996).[14℄ I. Cohen et al., Phys. Rev. D25, 634 (1982).[15℄ J. J. Aubert et al. (European Muon), Phys. Lett. B133, 370 (1983).[16℄ M. Arneodo et al. (European Muon), Z. Phys. C33, 167 (1986).[17℄ V. Blobel et al. (Bonn-Hamburg-Munih), Phys. Lett. B48, 73 (1974).[18℄ M. Aguilar-Benitez et al., Z. Phys. C50, 405 (1991).[19℄ J. Adams et al. (STAR), Phys. Rev. Lett. 92, 092301 (2004), nul-ex/0307023.[20℄ K. Konishi, A. Ukawa, and G. Veneziano, Nul. Phys. B157, 45 (1979).[21℄ G. Camii, M. Grazzini, and L. Trentadue, Phys. Lett. B439, 382 (1998), hep-ph/9802438.[22℄ A. V. Efremov, L. Mankiewiz, and N. A. Tornqvist, Phys. Lett. B284, 394 (1992).[23℄ A. Bianoni, S. BoÆ, R. Jakob, and M. Radii, Phys. Rev. D62, 034008 (2000), hep-ph/9907475.[24℄ J. C. Collins, S. F. Heppelmann, and G. A. Ladinsky, Nul. Phys. B420, 565 (1994), hep-ph/9305309.[25℄ R. L. Ja�e, X. Jin, and J. Tang, Phys. Rev. Lett. 80, 1166 (1998), hep-ph/9709322.[26℄ M. Radii, R. Jakob, and A. Bianoni, Phys. Rev. D65, 074031 (2002), hep-ph/0110252.[27℄ V. Barone and P. G. Ratli�e, Transverse Spin Physis (World Sienti�, River Edge, USA, 2003).[28℄ P. B. van der Nat (HERMES) (2005), hep-ex/0512019.[29℄ A. Martin (COMPASS) (2007), hep-ex/0702002.[30℄ D. Boer, R. Jakob, and M. Radii, Phys. Rev. D67, 094003 (2003), hep-ph/0302232.[31℄ K. Hasuko, M. Grosse Perdekamp, A. Ogawa, J. S. Lange, and V. Siegle, AIP Conf. Pro. 675, 454 (2003).[32℄ A. Bahetta and M. Radii, Phys. Rev. D74, 114007 (2006), hep-ph/0608037.[33℄ S. Kretzer, Phys. Rev. D62, 054001 (2000), hep-ph/0003177.[34℄ B. A. Kniehl, G. Kramer, and B. Potter, Nul. Phys. B582, 514 (2000), hep-ph/0010289.[35℄ G. Altarelli and G. Parisi, Nul. Phys. B126, 298 (1977).[36℄ S. Catani, Y. L. Dokshitzer, F. Fiorani, and B. R. Webber, Nul. Phys. B377, 445 (1992).[37℄ A. Bahetta and M. Radii, Phys. Rev. D67, 094002 (2003), hep-ph/0212300.[38℄ F. A. Ceopieri and L. Trentadue, Phys. Lett. B636, 310 (2006), hep-ph/0512372.[39℄ M. Stratmann and W. Vogelsang, Phys. Rev. D65, 057502 (2002), hep-ph/0108241.[40℄ X. Artru and M. Mekh�, Z. Phys. C45, 669 (1990).[41℄ A. Bahetta and M. Radii, Phys. Rev. D70, 094032 (2004), hep-ph/0409174.


	Introduction
	Integrated dihadron fragmentation functions
	Extended dihadron fragmentation functions
	Conclusions
	Acknowledgments
	Splitting functions
	References

