Evolution equations for extended dihadron fragmentation functions

Federico A. Ceccopier*
Dipartimento di Fisica, Università di Parma, Viale delle Scienze, Campus Sud, 43100 Parma, Italy
Marco Radic \dagger
Dipartimento di Fisica Nucleare e Teorica, Università di Pavia, and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, I-27100 Pavia, Italy
Alessandro Bacchettd周
Theory Group, Deutsches Elektronen-Synchroton DESY,
D-22603 Hamburg, Germany

Abstract

We consider dihadron fragmentation functions, describing the fragmentation of a parton in two unpolarized hadrons, and in particular extended dihadron fragmentation functions, explicitly dependent on the invariant mass, M_{h}, of the hadron pair. We first rederive the known results on M_{h}-integrated functions using Jet Calculus techniques, and then we present the evolution equations for extended dihadron fragmentation functions. Our results are relevant for the analysis of experimental measurements of two-particle-inclusive processes at different energies.

PACS numbers: 13.87.Fh, 13.66.Bc, 12.38.Bx

I. INTRODUCTION

The fragmentation of partons into hadrons has been studied in detail in semi-inclusive processes with one hadron detected in the final state, such as $e^{+} e^{-}$annihilation, Semi-Inclusive Deep-Inelastic Scattering (SIDIS) or hadronhadron collisions. Factorization theorems (see, e.g., [1, 2, 3]) allow to separate perturbatively calculable short-range coefficient functions from long-distance nonperturbative fragmentation functions $D_{1}^{i \rightarrow h}(z)$, describing the "decay" of the hard parton i into an observed hadron h with fractional energy z, provided a hard scale is available. This is the case of the $e^{+} e^{-} \rightarrow h X$ reaction, where the coefficient function is known at least to $O\left(\alpha_{s}\right)[4,5]$, with α_{s} the running strong coupling constant. The same fragmentation functions, $D_{1}^{i \rightarrow h}$, occur in the factorized formula for SIDIS at $O\left(\alpha_{s}\right)$ [4, 5], combined with the specific process-dependent coefficient functions at the same accuracy. For hadronic collisions, factorization is usually assumed, but has not been proven yet.

When considering semi-inclusive processes with two detected hadrons in the final state, e.g., $e^{+} e^{-} \rightarrow h_{1} h_{2} X$, a new class of fragmentation functions, the so-called Dihadron Fragmentation Functions (DiFF), needs to be introduced to guarantee factorization of all collinear singularities [6]. From this perspective, DiFF are analogous to fracture functions in the space-like regime [7, 8]. The DiFF evolution equations have been recently reanalyzed in Ref. [9] and the cross section for $e^{+} e^{-} \rightarrow h_{1} h_{2} X$ has been calculated to $O\left(\alpha_{s}\right)$ in Ref. [10]. At $O\left(\alpha_{s}^{0}\right)$, the production of two hadrons h_{1}, h_{2} with fractional energies z_{1}, z_{2} and belonging to the same jet, is described by a $\operatorname{DiFF}, D_{1}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}\right)$, i.e., the fragmentation of a single parton i into the two hadrons. At $O\left(\alpha_{s}\right)$, hadrons produced in the same jet could either come from the fragmentation of a single parton into two hadrons or by the fragmentation of two collinear partons, i and j, into single hadrons. This implies that evolution equations for DiFF contain an inhomogeneous term of the form $D_{1}^{i \rightarrow h_{1}} \otimes D_{1}^{j \rightarrow h_{2}}$ [10].

All these studies focused on DiFF as functions of the energy fractions z_{1} and z_{2}, integrated over all the other kinematical variables of the produced hadron pair, including their invariant mass M_{h}. However, the largest amount of experimental information related to DiFF consists of invariant mass spectra of hadron pairs produced in $e^{+} e^{-}$ annihilation [11, 12, 13], Semi-Inclusive Deep-Inelastic Scattering (SIDIS) 14, 15, 16] and proton-proton collisions [17, 18, 19]. In this paper, using the techniques of Jet Calculus [6, 20] we deduce the evolution equations for DiFF with an explicit dependence on M_{h}. In analogy with Ref. [21], we address them as extended Dihadron Fragmentation Functions (extDiFF).

[^0]DiFF turn out to have important applications in polarization studies, since they can act as spin-analyzers of the fragmenting quark [22]. In particular, the transverse polarization s_{T} of the fragmenting quark can be related to the azimuthal orientation of the plane containing the two hadron momenta P_{1} and P_{2}, through the mixed product $P_{1} \times P_{2} \cdot s_{T}$. The strength of this relation is described by the DiFF $H_{1}^{\varangle i \rightarrow h_{1} h_{2}}$ [23]. In SIDIS with transversely polarized targets, this DiFF appears in combination with the transversity distribution function [24, 25, 26], thus providing a way to constrain this elusive partonic distribution (for a review on transversity, see Ref. [27]). The HERMES [28] and COMPASS [29] collaborations have reported preliminary measurements of the induced spin asymmetry (at $\left\langle Q^{2}\right\rangle \approx 2.5$ GeV^{2}). In the meanwhile, the BELLE collaboration is planning to perform the extraction of the fragmentation function H_{1}^{\varangle} in $e^{+} e^{-}$annihilation [30], but at the higher scale $\sqrt{s} \approx 10 \mathrm{GeV}$ [31]. The invariant-mass dependence of this fragmentation function is unknown and nontrivial, as shown, e.g., by model calculations [25, 26, 32]. Therefore, the study of the evolution properties of extDiFF is also timely.

The paper is organized as follows. In Sec.II, using Jet Calculus we recover the inhomogeneous evolution equations for DiFF derived in Ref. [10]. In Sec.III, following the same lines we deduce the evolution equations for the corresponding extDiFF. Finally, in Sec. IV we draw our conclusions.

II. INTEGRATED DIHADRON FRAGMENTATION FUNCTIONS

The cross section at order $O\left(\alpha_{s}\right)$ for the $e^{+} e^{-} \rightarrow h X$ process, where a hadron has momentum P_{h} and energy fraction $z=2 P_{h} \cdot q / Q^{2}$ with respect to the center-of-mass (cm) energy $Q^{2} \equiv q^{2}$, can be written formally as

$$
\begin{equation*}
\frac{d \sigma^{h}}{d z}=\sum_{i} \sigma^{i} \otimes D_{1}^{i \rightarrow h} \tag{1}
\end{equation*}
$$

where $D_{1}^{i \rightarrow h}$ describes the "decay" at leading twist of the hard parton i into the observed hadron h, the sum on i running over all possible partons species $i=q, \bar{q}, g$. The process-dependent coefficient function σ^{i} can be calculated and regularized in perturbation theory and it is known at least at $O\left(\alpha_{s}\right)[4,5]$. The $D_{1}^{i \rightarrow h}$ at $O\left(\alpha_{s}\right)$, i.e., which absorbs all the collinear singularities, can be accurately parametrized [33, 34], except for the $z \rightarrow 0$ portion of phase space.

The generalization of Eq. (1) to the process $e^{+} e^{-} \rightarrow h_{1} h_{2} X$ is not straightforward, if one wants to cover the whole phase space accessible to $\left(h_{1}, h_{2}\right)$. The differential cross section, again at $O\left(\alpha_{s}\right)$, has been recently calculated in Ref. [10] and reads, with obvious notations,

$$
\begin{equation*}
\frac{d \sigma^{h_{1}, h_{2}}}{d z_{1} d z_{2}}=\sum_{i j} \sigma^{i j} \otimes D_{1}^{i \rightarrow h_{1}} \otimes D_{1}^{j \rightarrow h_{2}}+\sum_{i} \sigma^{i} \otimes D_{1}^{i \rightarrow h_{1} h_{2}} \tag{2}
\end{equation*}
$$

where the DiFF $D_{1}^{i \rightarrow h_{1} h_{2}}$ contains information on the fragmentation, at leading twist and $O\left(\alpha_{s}\right)$, of the hard parton i directly into the observed hadron pair h_{1}, h_{2}. At order $O\left(\alpha_{s}^{0}\right)$, the first term of Eq. (2) would correspond to the back-to-back emission of a parton and an antiparton, eventually fragmenting in the hadrons h_{1} and h_{2} belonging to two well separated jets. The second term would apply instead to the case where the hadron pair is produced very close in phase space and it is detected inside the same jet while the other jet is inclusively summed over. However, at order $O\left(\alpha_{s}\right)$ a new kind of collinear singularities arises in the partonic cross section; it corresponds to the configuration where each hadron is obtained from the fragmentation of a single parton, the two partons being almost collinear, i.e., with a very small relative transverse momentum r_{T}. These $1 / r_{T}^{2}$ singularities cannot be reabsorbed in each $D_{1}^{i \rightarrow h}$, because they do not correspond to the back-to-back configuration. Hence, they must be reabsorbed in $D_{1}^{i \rightarrow h_{1} h_{2}}$, thus making the two terms in Eq. (22) indistinguishable [10].

As a consequence, after integrating over r_{T} the DiFF must satisfy the following evolution equation [10]

$$
\begin{align*}
\frac{d}{d \ln Q^{2}} D_{1}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, Q^{2}\right)= & \frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \int_{z_{1}+z_{2}}^{1} \frac{d u}{u^{2}} D_{1}^{j \rightarrow h_{1} h_{2}}\left(\frac{z_{1}}{u}, \frac{z_{2}}{u}, Q^{2}\right) P_{j i}(u) \\
& +\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \int_{z_{1}}^{1-z_{2}} \frac{d u}{u(1-u)} D_{1}^{j \rightarrow h_{1}}\left(\frac{z_{1}}{u}, Q^{2}\right) D_{1}^{k \rightarrow h_{2}}\left(\frac{z_{2}}{1-u}, Q^{2}\right) \hat{P}_{j k}^{i}(u) \tag{3}
\end{align*}
$$

where here, and in the following, a sum over repeated parton indices is understood. The first term in the righthand side represents the usual homogeneous evolution for the DiFF $D_{1}^{i \rightarrow h_{1} h_{2}}$ in complete analogy with the case of single-hadron fragmentation: the probability for the parton i to fragment into the hadrons h_{1}, h_{2}, is affected by the probability of emitting a parton j with momentum fraction u through the Altarelli-Parisi splitting vertex $P_{j i}(u)$ (35], listed in Eqs. (A.1)-(A.4) of the appendix for convenience. The second term is a new inhomogeneous contribution
that corresponds to the probability for the parton i to split in the two partons j and k with momentum fractions u and $(1-u)$, respectively, each one fragmenting in one of the two observed hadrons. The $\hat{P}_{j k}^{i}(u)$ are the Altarelli-Parisi splitting functions without virtual contributions [20], again listed in Eqs. (A.6)-(A.9) of the appendix for convenience. From this point of view, the situation is similar to the DIS case in the target fragmentation region, since the DiFF can be conceived as the time-like version of the fracture functions in the space-like domain [7, 8].

In the following, we will make use of Jet Calculus [6, 20] and recover the evolution equation (3) within this formalism. We will consider the semi-inclusive production of two hadrons, h_{1} and h_{2}, belonging to the same jet and neglecting the emission of wide-angle hard partons (and related jets). Therefore, we will not perform a fixed-order calculation of the $e^{+} e^{-} \rightarrow h_{1} h_{2} X$ cross section. Rather, we will consider a parton i with a large virtuality ϵQ^{2} $(0<\epsilon<1)$, which fragments in two hadrons h_{1} and h_{2} inside the same jet. The virtuality can be reconstructed from the invariant mass of the jet by a suitable jet-finding algorithm [36]. The phase-space structure of collinear singularities singled out in fixed-order calculations can be translated in Jet Calculus as a degeneracy in all possible competing mechanisms, which could realize the desidered final state configuration [6, 20]. Thus, the cross section is the sum of all production mechanisms, as in Eq. (2).

We use Q^{2} as evolution scale, instead of ϵQ^{2}. In Leading Logarithmic Approximation (LLA), this substitution induces only subleading corrections and thus is fully justified within this approximation. Moreover, it is convenient to replace this variable with the evolution variable

$$
\begin{equation*}
Y=\frac{1}{2 \pi \beta_{0}} \ln \left[\frac{\alpha_{s}\left(\mu_{R}^{2}\right)}{\alpha_{s}\left(Q^{2}\right)}\right] \tag{4}
\end{equation*}
$$

also named the evolution imaginary time [20]. In Eq. (4), μ_{R}^{2} is the renormalization scale and $\beta_{0}=\left(11 N_{c}-2 N_{f}\right) /(12 \pi)$ is the one-loop β function with N_{c}, N_{f}, the number of colors and flavors, respectively. In LLA, the running of α_{s} is taken into account at one loop by

$$
\begin{equation*}
\alpha_{s}\left(Q^{2}\right)=\frac{1}{\beta_{0} \ln \left(Q^{2} / \Lambda_{Q C D}^{2}\right)} \tag{5}
\end{equation*}
$$

where $\Lambda_{Q C D}^{2}$ is the infrared scale. Hence, the differential evolution length is just

$$
\begin{equation*}
d Y=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \frac{d Q^{2}}{Q^{2}} \tag{6}
\end{equation*}
$$

Let us define the variable y as

$$
\begin{equation*}
y=\frac{1}{2 \pi \beta_{0}} \ln \left[\frac{\alpha_{s}\left(Q_{0}^{2}\right)}{\alpha_{s}\left(Q^{2}\right)}\right] \tag{7}
\end{equation*}
$$

with Q_{0}^{2} and Q^{2} two arbitrary scales, and introduce the perturbative parton-to-parton time-like evolution function $E_{j}^{i}(x, y)$, which expresses the probability of finding a parton j at the scale Q_{0}^{2} with a momentum fraction x of the parent parton i at the scale Q^{2}. The function $E_{j}^{i}(x, y)$ can be shown to satisfy standard evolution equations [6, 20]

$$
\begin{equation*}
\frac{d}{d y} E_{j}^{i}(x, y)=\int_{x}^{1} \frac{d u}{u} E_{j}^{k}\left(\frac{x}{u}, y\right) P_{k i}(u), \tag{8}
\end{equation*}
$$

that can be iteratively solved by using the initial condition

$$
\begin{equation*}
\left.E_{j}^{i}(x, y)\right|_{y=0}=\delta_{j i} \delta(1-x), \tag{9}
\end{equation*}
$$

with $\delta_{j i}$ the Kronecker symbol. The $E_{j}^{i}(x, y)$ resums leading logarithms of the type $\alpha_{s}^{n} \ln ^{n}\left(Q^{2} / Q_{0}^{2}\right)$, which show up in the collinear limit of perturbative calculations at the partonic level. As a crosscheck, we can expand Eq. (8) at order $O\left(\alpha_{s}\right)$ with the initial condition (9); neglecting for simplicity the running of α_{s} in Eq. (7), we get

$$
\begin{equation*}
E_{j}^{i}(x, y) \equiv E_{j}^{i}\left(x, Q_{0}^{2}, Q^{2}\right) \approx \delta_{j i} \delta(1-x)+\frac{\alpha_{s}}{2 \pi} P_{j i}(x) \ln \frac{Q^{2}}{Q_{0}^{2}} \tag{10}
\end{equation*}
$$

Leading logarithmic contributions are therefore automatically accounted for at all orders through the function E. Consider now the fragmentation process $i \rightarrow h_{1} h_{2} X$ where h_{1} and h_{2} are detected within the same jet and with
relative transverse momentum $R_{T}^{2} \lesssim Q^{2}$. The corresponding cross-section, normalized to the jet-cross section, can be written as

$$
\begin{align*}
\frac{1}{\sigma_{j e t}} \frac{d \sigma^{i \rightarrow h_{1} h_{2}}}{d z_{1} d z_{2}} \equiv & D_{1}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, Y\right)=D_{1, A}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, Y\right)+D_{1, B}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, Y\right) \\
= & \int_{z_{1}+z_{2}}^{1} \frac{d w}{w^{2}} D_{1}^{j \rightarrow h_{1} h_{2}}\left(\frac{z_{1}}{w}, \frac{z_{2}}{w}, y_{0}\right) E_{j}^{i}\left(w, Y-y_{0}\right) \\
& +\int_{y_{0}}^{Y} d y \int_{z_{1}+z_{2}}^{1} \frac{d w}{w^{2}} \int_{\frac{z_{1}}{w}}^{1-\frac{z_{2}}{w}} \frac{d u}{u(1-u)} \hat{P}_{l k}^{j}(u) E_{j}^{i}(w, Y-y) D_{1}^{k \rightarrow h_{1}}\left(\frac{z_{1}}{w u}, y\right) D_{1}^{l \rightarrow h_{2}}\left(\frac{z_{2}}{w(1-u)}, y\right) \tag{11}
\end{align*}
$$

The first term " A " is the convolution of the DiFF at some arbitrary (but still perturbative) factorization scale y_{0} with the parton-to-parton evolution function E_{j}^{i}. The second term " B ", instead, represents the two separate single-hadron fragmentations, integrated over all possible generic intermediate scales y at which the branching $j \rightarrow k l$ at partonic level might occur. Integration limits in Eq.(11) are fixed by momentum conservation. Both terms are depicted in Fig. [1] In order to recover Eq.(3), we now take the derivative of Eq. (11) with respect to the variable Y. Using Eq. (8)

FIG. 1: Double- and single-hadron fragmentations in Eq. (11). The momentum fractions are indicated along with the scale and the parton indices. The black dot represents the parton evolution function E.
and the definition of $D_{1, A}^{i \rightarrow h_{1} h_{2}}$, we get for the " A " term

$$
\begin{align*}
\frac{d}{d Y} D_{1, A}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, Y\right) & =\int_{z_{1}+z_{2}}^{1} \frac{d w}{w^{2}} D_{1}^{j \rightarrow h_{1} h_{2}}\left(\frac{z_{1}}{w}, \frac{z_{2}}{w}, y_{0}\right) \frac{d}{d Y}\left[E_{j}^{i}\left(w, Y-y_{0}\right)\right] \tag{12}\\
& =\int_{z_{1}+z_{2}}^{1} \frac{d u}{u^{2}} D_{1, A}^{k \rightarrow h_{1} h_{2}}\left(\frac{z_{1}}{u}, \frac{z_{2}}{u}, Y\right) P_{k i}(u)
\end{align*}
$$

The derivative $d / d Y$ of the " B " contribution in Eq. (11) produces two terms, since there is an explicit Y-dependence in the upper integration limit. Using Eq. (9) and the same procedure as before, we get

$$
\begin{gather*}
\frac{d}{d Y} D_{1, B}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, Y\right)=\int_{z_{1}+z_{2}}^{1} \frac{d w}{w^{2}} \delta_{j i} \delta(1-w) \int_{\frac{z_{1}}{w}}^{1-\frac{z_{2}}{w}} \frac{d u}{u(1-u)} \hat{P}_{l k}^{j}(u) D_{1}^{k \rightarrow h_{1}}\left(\frac{z_{1}}{w u}, Y\right) D_{1}^{l \rightarrow h_{2}}\left(\frac{z_{2}}{w(1-u)}, Y\right) \\
\quad+\int_{y_{0}}^{Y} d y \int_{z_{1}+z_{2}}^{1} \frac{d w}{w^{2}} \int_{\frac{z_{1}}{w}}^{1-\frac{z_{2}}{w}} \frac{d u}{u(1-u)} \hat{P}_{l k}^{j}(u) \frac{d}{d Y} E_{j}^{i}(w, Y-y) D_{1}^{k \rightarrow h_{1}}\left(\frac{z_{1}}{w u}, y\right) D_{1}^{l \rightarrow h_{2}}\left(\frac{z_{2}}{w(1-u)}, y\right) \tag{13}\\
\quad=\int_{z_{1}}^{1-z_{2}} \frac{d u}{u(1-u)} \hat{P}_{l k}^{i}(u) D_{1}^{k \rightarrow h_{1}}\left(\frac{z_{1}}{u}, Y\right) D_{1}^{l \rightarrow h_{2}}\left(\frac{z_{2}}{1-u}, Y\right)+\int_{z_{1}+z_{2}}^{1} \frac{d u}{u^{2}} P_{k i}(u) D_{1, B}^{k \rightarrow h_{1} h_{2}}\left(\frac{z_{1}}{u}, \frac{z_{2}}{u}, Y\right) .
\end{gather*}
$$

Summing up Eqs. (12) and (13), we get

$$
\begin{align*}
\frac{d}{d Y} D_{1}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, Y\right)= & \int_{z_{1}+z_{2}}^{1} \frac{d u}{u^{2}} D_{1}^{k \rightarrow h_{1} h_{2}}\left(\frac{z_{1}}{u}, \frac{z_{2}}{u}, Y\right) P_{k i}(u) \\
& +\int_{z_{1}}^{1-z_{2}} \frac{d u}{u(1-u)} D_{1}^{k \rightarrow h_{1}}\left(\frac{z_{1}}{u}, Y\right) D_{1}^{l \rightarrow h_{2}}\left(\frac{z_{2}}{1-u}, Y\right) \hat{P}_{l k}^{i}(u) \tag{14}
\end{align*}
$$

which is exactly Eq. (3), after changing the scaling variable Y back to the more familiar Q^{2}. This derivation is useful to adjust the formalism of Jet Calculus from Refs. [6, 20] to the calculation of the $e^{+} e^{-} \rightarrow h_{1} h_{2} X$ cross section at $O\left(\alpha_{s}\right)$ from Ref. [10]. However, we want to stress again that even if the two expressions are formally identical, they have been derived from rather different approaches. Eq. (3) from Ref. [10] applies to the full phase space for the production of two hadrons. Instead, Eq. (14) gives the evolution of the parton i in a jet within which we identify the two detected hadrons h_{1} and h_{2}; thus, it is valid only in the portion of phase space defined by the jet. We recall that if Q^{2} is the cm energy of the $e^{+} e^{-}$annihilation, the event is characterized by a certain number of jets resulting also from a large-angle hard parton emission; this is not included in the LLA used here. Therefore, the evolution scale in Eq. (14) must be intended as the invariant mass of the considered jet, i.e., ϵQ^{2} with $0<\epsilon<1$.

III. EXTENDED DIHADRON FRAGMENTATION FUNCTIONS

In the previous section, we considered the inclusive production of two hadrons h_{1} and h_{2} inside the same jet, summing up all possible values of their invariant mass M_{h}. If the process starts from the hard scale Q^{2} of the fragmenting parton (or, equivalently, ϵQ^{2} in the case of the jet), there is no intermediate scale that allows to distinguish the two contributions in Eq. (11): the y_{0} in the " A " term is arbitrary, and the scale y for the partonic branching in the " B " term is summed over.

However, most of the experimental information on unpolarized DiFF consists of invariant mass spectra of hadron pairs [11, 12, 13, 14, 15, 16, 17, 18, 19]. In addition, effects related to the partial-wave expansion of DiFF [37] are best explored when the latter explicitly depend on M_{h}^{2}. Hence, in this section we will address the evolution equations for DiFF at the fixed scale M_{h}^{2}. We will indicate these objects as extended Dihadron Fragmentation Functions (extDiFF), as the time-like analogue of the extended fracture functions that were introduced in Ref. [21] for the space-like SIDIS in the target fragmentation region.

The dependence of the extDiFF upon M_{h}^{2} can be easily mapped into R_{T}^{2}, the square of the relative transverse momentum of the hadron pair. In fact, it results 37]

$$
\begin{equation*}
R_{T}^{2} \equiv \frac{\left(P_{1 T}-P_{2 T}\right)^{2}}{4}=\frac{z_{1} z_{2}}{z_{1}+z_{2}}\left[\frac{M_{h}^{2}}{z_{1}+z_{2}}-\frac{M_{1}^{2}}{z_{1}}-\frac{M_{2}^{2}}{z_{2}}\right] \tag{15}
\end{equation*}
$$

with M_{1} and M_{2} the masses of the hadrons h_{1} and h_{2}, respectively. From the first line of Eq. (11), we get the obvious definition

$$
\begin{align*}
\frac{1}{\sigma_{j e t}} \frac{d \sigma^{i \rightarrow h_{1} h_{2}}}{d z_{1} d z_{2}} & \equiv D_{1}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, Y\right)=D_{1, A}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, Y\right)+D_{1, B}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, Y\right) \tag{16}\\
& \equiv \int d R_{T}^{2} \frac{1}{\sigma_{j e t}} \frac{d \sigma^{i \rightarrow h_{1} h_{2}}}{d z_{1} d z_{2} d R_{T}^{2}}=\int d R_{T}^{2} D_{1, A}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, R_{T}^{2}, Y\right)+\int d R_{T}^{2} D_{1, B}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, R_{T}^{2}, Y\right)
\end{align*}
$$

The inhomogeneous " B " term describes the time-like branching of parton i in two partons k and l with transverse relative momentum r_{T}, eventually fragmenting in the two hadrons h_{1} and h_{2} with transverse relative momentum R_{T}. If the R_{T}^{2} scale is fixed and in the perturbative regime, the scale at the partonic branching is no longer arbitrary as in Eq. (11) [6, 20]. In fact, if u and $(1-u)$ are the fractional momenta of partons k and l, the parton virtualities are related by

$$
\begin{equation*}
k_{i}^{2}=\frac{k_{k}^{2}}{u}+\frac{k_{l}^{2}}{1-u}+\frac{r_{T}^{2}}{4 u(1-u)} . \tag{17}
\end{equation*}
$$

Hence, fixing r_{T} at the partonic level determines in turn the branching scale k_{i}^{2}. At the hadronic level, this is not guaranteed and some assumptions must be made. We will suppose that in the fragmentations $k \rightarrow h_{1}$ and $l \rightarrow h_{2}$ the parton virtualities are negligible, i.e., $k_{k}^{2} \simeq k_{l}^{2} \simeq 0$, meaning that, once the branching $i \rightarrow k l$ has occurred, both the perturbative and nonperturbative transverse momenta generated in the fragmentation of the partons k and l are negligible (incidentally, perturbatively generated transverse momenta can be taken into account by using time-like evolution equations depending on transverse momentum [38]). Consequently, the transverse relative momentum r_{T} between k and l should not be substantially altered in the fragmentation, implying

$$
\begin{equation*}
k_{i}^{2} \approx r_{T}^{2} \approx R_{T}^{2} \tag{18}
\end{equation*}
$$

Corrections to the above relation affect our final result only at subleading level. Instead, the above assumption is also consistent with the approximation we are working with. Leading logarithms are known to manifest themselves
when the transversa momenta of the emitted partons are strongly ordered along the ladder, e.g., $Q^{2} \gg r_{T, 1}^{2} \gg \ldots \gg$ $r_{T, n}^{2} \gg Q_{0}^{2}$. Hadron pairs with large relative transverse momentum R_{T} are thus produced earlier in the imaginary time Y than hadron pairs with small R_{T}, as appropriate for time-like kinematics.

If R_{T}^{2} is thus in the perturbative domain, in analogy with Eq. (4), we can define the variable y_{T} as

$$
\begin{equation*}
y_{T}=\frac{1}{2 \pi \beta_{0}} \ln \left[\frac{\alpha_{s}\left(\mu_{R}^{2}\right)}{\alpha_{s}\left(R_{T}^{2}\right)}\right] \tag{19}
\end{equation*}
$$

or, in differential form,

$$
\begin{equation*}
\frac{d}{d R_{T}^{2}}=\frac{\alpha_{s}\left(R_{T}^{2}\right)}{2 \pi R_{T}^{2}} \frac{d}{d y_{T}} . \tag{20}
\end{equation*}
$$

Since the scale at which the branching occurs is fixed by R_{T}^{2}, from Eqs. (11), (16) and (20), we obtain

$$
\begin{align*}
& D_{1, B}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, R_{T}^{2}, Y\right) \\
& =\frac{\alpha_{s}\left(R_{T}^{2}\right)}{2 \pi R_{T}^{2}} \frac{d}{d y_{T}} \int_{y_{0}}^{Y} d y \int_{z_{1}+z_{2}}^{1} \frac{d w}{w^{2}} \int_{\frac{z_{1}}{w}}^{1-\frac{z_{2}}{w}} \frac{d u}{u(1-u)} \hat{P}_{l k}^{j}(u) E_{j}^{i}(w, Y-y) D_{1}^{k \rightarrow h_{1}}\left(\frac{z_{1}}{w u}, y\right) D_{1}^{l \rightarrow h_{2}}\left(\frac{z_{2}}{w(1-u)}, y\right) \tag{21}\\
& =\frac{\alpha_{s}\left(R_{T}^{2}\right)}{2 \pi R_{T}^{2}} \int_{z_{1}+z_{2}}^{1} \frac{d w}{w^{2}} \int_{\frac{z_{1}}{w}}^{1-\frac{z_{2}}{w}} \frac{d u}{u(1-u)} \hat{P}_{l k}^{j}(u) E_{j}^{i}\left(w, Y-y_{T}\right) D_{1}^{k \rightarrow h_{1}}\left(\frac{z_{1}}{w u}, y_{T}\right) D_{1}^{l \rightarrow h_{2}}\left(\frac{z_{2}}{w(1-u)}, y_{T}\right) .
\end{align*}
$$

If the scale R_{T}^{2} is fixed in the nonperturbative regime, the above arguments leading to Eq. (20) do not apply. This is the case for the homogeneous " A " term in Eq. (16), which describes the direct fragmentation of parton i in the two hadrons h_{1} and h_{2} : the virtuality k_{i}^{2} of the parent parton cannot be reconstructed from R_{T}^{2} and it is set to the arbitrary factorization scale Q_{0}^{2} (or, in our notations, y_{0}). From Eqs. (11) and (16), we simply get

$$
\begin{equation*}
D_{1, A}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, R_{T}^{2}, Y\right)=\int_{z_{1}+z_{2}}^{1} \frac{d w}{w^{2}} D_{1, A}^{j \rightarrow h_{1} h_{2}}\left(\frac{z_{1}}{w}, \frac{z_{2}}{w}, R_{T}^{2}, y_{0}\right) E_{j}^{i}\left(w, Y-y_{0}\right) \tag{22}
\end{equation*}
$$

Summing up Eqs. (22) and (21), and providing each term with an extra step function to separate the two different kinematical regimes, we get the complete expression for the extDiFF at LLA:

$$
\begin{align*}
& D_{1}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, R_{T}^{2}, Y\right)=D_{1, A}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, R_{T}^{2}, Y\right)+D_{1, B}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, R_{T}^{2}, Y\right) \\
&= \int_{z_{1}+z_{2}}^{1} \frac{d w}{w^{2}} D_{1, A}^{j \rightarrow h_{1} h_{2}}\left(\frac{z_{1}}{w}, \frac{z_{2}}{w}, R_{T}^{2}, y_{0}\right) E_{j}^{i}\left(w, Y-y_{0}\right) \theta\left(y_{0}-y_{T}\right) \\
&+\frac{\alpha_{s}\left(R_{T}^{2}\right)}{2 \pi R_{T}^{2}} \int_{z_{1}+z_{2}}^{1} \frac{d w}{w^{2}} \int_{\frac{z_{1}}{w}}^{1-\frac{z_{2}}{w}} \frac{d u}{u(1-u)} \hat{P}_{l k}^{j}(u) E_{j}^{i}\left(w, Y-y_{T}\right) D_{1}^{k \rightarrow h_{1}}\left(\frac{z_{1}}{w u}, y_{T}\right) D_{1}^{l \rightarrow h_{2}}\left(\frac{z_{2}}{w(1-u)}, y_{T}\right) \theta\left(y_{T}-y_{0}\right) . \tag{23}
\end{align*}
$$

Note that, despite the presence of the step functions, the separation between the two regimes is still arbitrary, since it depends on y_{0} which is itself arbitrary. The evolution equations for the extDiFF can be obtained, in analogy with Eq. (14), by taking the derivative with respect to Y [or, equivalently, Q^{2} via Eq. (6)]. By using Eq. (8) and the definition (23) of the extDiFF themselves, we get

$$
\begin{equation*}
\frac{d}{d \ln Q^{2}} D_{1}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, R_{T}^{2}, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \int_{z_{1}+z_{2}}^{1} \frac{d u}{u^{2}} D_{1}^{j \rightarrow h_{1} h_{2}}\left(\frac{z_{1}}{u}, \frac{z_{2}}{u}, R_{T}^{2}, Q^{2}\right) P_{j i}(u) \tag{24}
\end{equation*}
$$

We explicitly checked that by integrating Eq. (24) upon R_{T}^{2} we recover Eq. (3). In conclusion, if the hadron pair is inclusively produced in the same jet at fixed transverse relative momentum R_{T} (or, equivalently, fixed invariant mass M_{h}), the evolution equations for the extDiFF are of the standard homogeneous type. The explicit dependence on this new scale breaks the degeneracy of the two production mechanisms described in the previous section. The same arguments apply to the SIDIS target fragmentation region where extended fracture functions, explicitly depending upon the invariant momentum transfer t between the incoming and outgoing hadron, satisfy a homogeneous evolution equation [21]. On the basis of Eq. (24), we argue that the cross section at order $O\left(\alpha_{s}\right)$ for the inclusive production of the two hadrons h_{1}, h_{2}, inside the same jet and with invariant mass M_{h}, can be expressed in the factorized form

$$
\begin{equation*}
\frac{d \sigma^{i \rightarrow h_{1} h_{2}}}{d z_{1} d z_{2} d R_{T}^{2}}=\sum_{i} \sigma^{i} \otimes D_{1}^{i \rightarrow h_{1} h_{2}}\left(R_{T}^{2}, Q^{2}\right) \tag{25}
\end{equation*}
$$

where σ^{i} are the same coefficient functions found in the single-hadron inclusive cross section of Eq. (11). In our above derivation, we used the techniques of Jet Calculus [6, 20], where the factorization of collinear singularities can be automatically accommodated through the use of the parton-to-parton evolution function E. Exchanges of soft particles are, however, not accounted for.

Eq. (24) can be conveniently diagonalized using a double Mellin transformation. We define

$$
\begin{equation*}
D_{n, m}^{i \rightarrow h_{1} h_{2}}\left(R_{T}^{2}, Q^{2}\right)=\int_{0}^{1} d z_{1} \int_{0}^{1-z_{1}} d z_{2} z_{1}^{n-1} z_{2}^{m-1} D_{1}^{i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, R_{T}^{2}, Q^{2}\right) \tag{26}
\end{equation*}
$$

and the anomalous dimension

$$
\begin{equation*}
A_{j}^{i}(n+m)=\int_{0}^{1} d u P_{j i}(u) u^{m+n-2} \tag{27}
\end{equation*}
$$

With simple algebra manipulations, it is easy to verify that

$$
\begin{equation*}
\frac{d}{d \ln Q^{2}} D_{n, m}^{i \rightarrow h_{1} h_{2}}\left(R_{T}^{2}, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} D_{n, m}^{j \rightarrow h_{1} h_{2}}\left(R_{T}^{2}, Q^{2}\right) A_{j}^{i}(n+m) \tag{28}
\end{equation*}
$$

The above results can be extended also to polarized extDiFF, in particular to the only one surviving when the hadron pair is collinear, i.e., $H_{1}^{\varangle i \rightarrow h_{1} h_{2}}$ [23, 37]. The evolution equations for this function have the same form of the unpolarized case, namely

$$
\begin{equation*}
\frac{d}{d \ln Q^{2}} H_{1}^{\varangle i \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, R_{T}^{2}, Q^{2}\right)=\frac{\alpha_{s}\left(Q^{2}\right)}{2 \pi} \int_{z_{1}+z_{2}}^{1} \frac{d u}{u^{2}} H_{1}^{\varangle j \rightarrow h_{1} h_{2}}\left(\frac{z_{1}}{u}, \frac{z_{2}}{u}, R_{T}^{2}, Q^{2}\right) \delta P_{j i}(u), \tag{29}
\end{equation*}
$$

where the splitting functions $\delta P_{j i}$ for a transversely polarized fragmenting parton are used [39]. The $\delta P_{j i}$ are listed in Eqs. (A.10)- A.13) of the appendix.

These evolution equations can be conveniently used for phenomenological analyses, since they can connect experimental data taken at different energies.

IV. CONCLUSIONS

We have shown that in leading logarithm approximation the so-called extended Dihadron Fragmentation Functions (extDiFF), describing the inclusive production of two hadrons inside the same jet at fixed invariant mass M_{h}, satisfy evolution equations of the same homogeneous type as in the single-hadron fragmentation case. We stress that the explicit dependence on the scale M_{h}^{2} is required to break the degeneracy at $O\left(\alpha_{s}\right)$ between the fragmentation from a single parton or after the branching in two collinear partons. While the first contribution pertains to the nonperturbative regime, in the latter the transverse relative momentum R_{T} of the two hadrons can be traced back to the transverse relative momentum of the two collinear partons after the branching, and, ultimately, to the hard scale of the originating parton. The analysis of the corresponding contribution to extDiFF shows that the dependence on this perturbative scale can be predicted.

In our derivation, we used the techniques of Jet Calculus [6, 20]. Factorization of collinear singularities can be automatically accommodated through the use of the parton-to-parton evolution function E. On the basis of the simple result for the evolution equations of extDiFF, we argue that the cross section at order $O\left(\alpha_{s}\right)$ for the inclusive production of the two hadrons h_{1}, h_{2}, inside the same jet and with invariant mass M_{h}, can be expressed in a factorized form involving the same coefficient functions as in the single-hadron inclusive cross section. A complete proof of this statement would require however the inclusion of soft particle exchanges, which are not accounted for in Jet Calculus approach.

Evolution equations can be extended also to polarized extDiFF, in particular to $H_{1}^{\varangle i \rightarrow h_{1} h_{2}}$ [23]. Such fragmentation function can be extracted from $e^{+} e^{-}$annihilation [30], evolved to the scale of semi-inclusive deep inelastic scattering measurements and allow the extraction of the transversity distribution function 24, 25, 26].

Acknowledgments

F.A.C. would like to thank the DESY Theory Group and the Universiy of Parma for financial support. This work is part of the European Integrated Infrastructure Initiative in Hadron Physics project under the contract number RII3-CT-2004-506078.

APPENDIX: SPLITTING FUNCTIONS

The unpolarized leading-order splitting functions $P(u)$ read [35]

$$
\begin{align*}
P_{q q}(u) & =C_{F}\left[2\left(\frac{1}{1-u}\right)_{+}+\frac{3}{2} \delta(1-u)-1-u\right] \tag{A.1}\\
P_{q g}(u) & =T_{R}\left[1-2 u+2 u^{2}\right] \tag{A.2}\\
P_{g q}(u) & =C_{F}\left[\frac{2}{u}-2+u\right]^{u} \tag{A.3}\\
P_{g g}(u) & =2 C_{A}\left[\left(\frac{1}{1-u}\right)_{+}+\frac{1}{u}+u(1-u)-2\right]+\frac{11 C_{A}-2 N_{f}}{6} \delta(1-u) \tag{A.4}
\end{align*}
$$

where N_{f} is the number of flavors, $C_{A}=3, C_{F}=4 / 3, T_{R}=1 / 2$; the " + " prescription is defined as usual by

$$
\begin{equation*}
\int_{0}^{1} d z f(z)[g(z)]_{+}=\int_{0}^{1} d z g(z)[f(z)-f(1)] \tag{A.5}
\end{equation*}
$$

The unpolarized leading-order splitting functions \hat{P} are readily obtained from the previous ones by dropping virtual contributions at the endpoint. In our notations, they read:

$$
\begin{align*}
\hat{P}_{g q}^{q}(u) & =C_{F}\left[\frac{2}{1-u}-1-u\right] \tag{A.6}\\
\hat{P}_{q \bar{q}}^{g}(u) & =T_{R}\left[1-2 u+2 u^{2}\right] \tag{A.7}\\
\hat{P}_{q g}^{q}(u) & =C_{F}\left[\frac{2}{u}-2+u\right] \tag{A.8}\\
\hat{P}_{g g}^{g}(u) & =2 C_{A}\left[\frac{1}{1-u}+\frac{1}{u}+u(1-u)-2\right] . \tag{A.9}
\end{align*}
$$

The transversely polarized leading-order splitting functions δP read [39, 40]

$$
\begin{align*}
\delta P_{q q}(u) & =C_{F}\left[2\left(\frac{1}{1-u}\right)_{+}+\frac{3}{2} \delta(1-u)-2\right] \tag{A.10}\\
\delta P_{q g}(u) & =0 \tag{A.11}\\
\delta P_{g q}(u) & =0 \tag{A.12}\\
\delta P_{g g}(u) & =2 C_{A}\left[\left(\frac{1}{1-u}\right)_{+}-1\right]+\frac{11 C_{A}-2 N_{f}}{6} \delta(1-u) \tag{A.13}
\end{align*}
$$

Due to angular momentum conservation, there is no mixing between quarks and gluons. The last splitting function can be used to evolve the DiFF for linearly polarized gluons, $\delta \hat{G}^{\varangle}$ [41] .
[1] R. K. Ellis, H. Georgi, M. Machacek, H. D. Politzer, and G. G. Ross, Nucl. Phys. B152, 285 (1979).
[2] D. Amati, R. Petronzio, and G. Veneziano, Nucl. Phys. B140, 54 (1978).
[3] J. C. Collins, D. E. Soper, and G. Sterman, in Perturbative quantum chromodynamics, edited by A. H. Mueller (World Scientific, Singapore, 1989).
[4] G. Altarelli, R. K. Ellis, G. Martinelli, and S.-Y. Pi, Nucl. Phys. B160, 301 (1979).
[5] W. Furmanski and R. Petronzio, Zeit. Phys. C11, 293 (1982).
[6] K. Konishi, A. Ukawa, and G. Veneziano, Phys. Lett. B78, 243 (1978).
[7] L. Trentadue and G. Veneziano, Phys. Lett. B323, 201 (1994).
[8] D. Graudenz, Nucl. Phys. B432, 351 (1994), hep-ph/9406274.
[9] A. Majumder and X.-N. Wang, Phys. Rev. D70, 014007 (2004), hep-ph/0402245.
[10] D. de Florian and L. Vanni, Phys. Lett. B578, 139 (2004), hep-ph/0310196.
[11] P. D. Acton et al. (OPAL), Z. Phys. C56, 521 (1992).
[12] P. Abreu et al. (DELPHI), Phys. Lett. B298, 236 (1993).
[13] D. Buskulic et al. (ALEPH), Z. Phys. C69, 379 (1996).
[14] I. Cohen et al., Phys. Rev. D25, 634 (1982).
[15] J. J. Aubert et al. (European Muon), Phys. Lett. B133, 370 (1983).
[16] M. Arneodo et al. (European Muon), Z. Phys. C33, 167 (1986).
[17] V. Blobel et al. (Bonn-Hamburg-Munich), Phys. Lett. B48, 73 (1974).
[18] M. Aguilar-Benitez et al., Z. Phys. C50, 405 (1991).
[19] J. Adams et al. (STAR), Phys. Rev. Lett. 92, 092301 (2004), nucl-ex/0307023.
[20] K. Konishi, A. Ukawa, and G. Veneziano, Nucl. Phys. B157, 45 (1979).
[21] G. Camici, M. Grazzini, and L. Trentadue, Phys. Lett. B439, 382 (1998), hep-ph/9802438.
[22] A. V. Efremov, L. Mankiewicz, and N. A. Tornqvist, Phys. Lett. B284, 394 (1992).
[23] A. Bianconi, S. Boffi, R. Jakob, and M. Radici, Phys. Rev. D62, 034008 (2000), hep-ph/9907475.
[24] J. C. Collins, S. F. Heppelmann, and G. A. Ladinsky, Nucl. Phys. B420, 565 (1994), hep-ph/9305309.
[25] R. L. Jaffe, X. Jin, and J. Tang, Phys. Rev. Lett. 80, 1166 (1998), hep-ph/9709322.
[26] M. Radici, R. Jakob, and A. Bianconi, Phys. Rev. D65, 074031 (2002), hep-ph/0110252.
[27] V. Barone and P. G. Ratcliffe, Transverse Spin Physics (World Scientific, River Edge, USA, 2003).
[28] P. B. van der Nat (HERMES) (2005), hep-ex/0512019.
[29] A. Martin (COMPASS) (2007), hep-ex/0702002.
[30] D. Boer, R. Jakob, and M. Radici, Phys. Rev. D67, 094003 (2003), hep-ph/0302232.
[31] K. Hasuko, M. Grosse Perdekamp, A. Ogawa, J. S. Lange, and V. Siegle, AIP Conf. Proc. 675, 454 (2003).
[32] A. Bacchetta and M. Radici, Phys. Rev. D74, 114007 (2006), hep-ph/0608037.
[33] S. Kretzer, Phys. Rev. D62, 054001 (2000), hep-ph/0003177.
[34] B. A. Kniehl, G. Kramer, and B. Potter, Nucl. Phys. B582, 514 (2000), hep-ph/0010289.
[35] G. Altarelli and G. Parisi, Nucl. Phys. B126, 298 (1977).
[36] S. Catani, Y. L. Dokshitzer, F. Fiorani, and B. R. Webber, Nucl. Phys. B377, 445 (1992).
[37] A. Bacchetta and M. Radici, Phys. Rev. D67, 094002 (2003), hep-ph/0212300.
[38] F. A. Ceccopieri and L. Trentadue, Phys. Lett. B636, 310 (2006), hep-ph/0512372.
[39] M. Stratmann and W. Vogelsang, Phys. Rev. D65, 057502 (2002), hep-ph/0108241.
[40] X. Artru and M. Mekhfi, Z. Phys. C45, 669 (1990).
[41] A. Bacchetta and M. Radici, Phys. Rev. D70, 094032 (2004), hep-ph/0409174.

[^0]: *Electronic address: ceccopieri@fis.unipr.it
 \dagger Electronic address: marco.radici@pv.infn.it
 \ddagger Electronic address: alessandro.bacchetta@desy.de

