
*H
EP
-P
H/
07
03
∣3
0*

Revised Version  JHEP08(2007)015
 CERN-PH-TH/2007-049

 DESY-07-029

ar
X

iv
:h

ep
-p

h/
07

03
13

0v
3 

 6
 A

ug
 2

00
7

CERN-PH-TH/2007-049
DESY-07-029

Collider signatures of gravitino dark matter
with a sneutrino NLSP

Laura Covi1, Sabine Kraml21 Deutsches Elektronen-Synchrotron DESY, D–22603 Hamburg,Germany2 CERN, CH–1211 Geneva 23, Switzerland

Abstract
For gravitino dark matter with conserved R-parity and mass in the GeV
range, very strong constraints from Big Bang Nucleosynthesis exclude
the popular NLSP candidates like neutralino and charged sleptons. In
this letter we therefore draw attention to the case of a sneutrino NLSP,
that is naturally realised in the context of gaugino mediation. We find
interesting collider signatures, characterised by soft jets or leptons due
to the small sneutrino–stau mass splitting. Moreover, the lightest neu-
tralino can have visible decays into staus, and in some part of the pa-
rameter space also into selectrons and smuons. We also show the impor-
tance of coannihilation effects for the evaluation of the BBN constraints.

1. Introduction

If the gravitino is the lightest supersymmetric particle (LSP) and stable (with conserved R-
parity) or sufficiently long-lived, it is a good candidate for the Cold Dark Matter (CDM). At
high temperatures, gravitinos are produced by thermal scatterings even if they are not in thermal
equilibrium. The resulting energy density is approximately given by [1,2]
th3=2h2 ' 0:27� TR1010 GeV

��100GeVm3=2 �� m~g1TeV

�2 ; (1)

wherem~g is the running gluino mass evaluated at low energy. For a given m~g, the maximal
possible reheating temperatureTR is obtained for the heaviest allowed gravitino mass.

Gravitinos are also produced non-thermally via the decays of the next-to-lightest super-
symmetric particle (NLSP), leading to
non-th3=2 h2 = m3=2mNLSP


th
NLSPh2 : (2)

Here
th
NLSPh2 is the would-be relic density of the NLSP from thermal freeze-out if it did not

decay. The total energy density of the gravitino LSP,
3=2h2 = 
th3=2h2 + 
non-th3=2 h2, has to
be equal or smaller than the cosmologically observed CDM density. In particular, if gravitinos
should make up all the cold dark matter,0:094 � 
3=2h2 � 0:135 [3]. In general the right CDM
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abundance can be obtained from both mechanisms for supersymmetric masses in the GeV–TeV
region [1,4].

On the other hand, Big Bang Nucleosynthesis (BBN) severely constrains the nature, the
lifetime and the freeze-out abundance of the NLSP. This is because the electromagnetic and
hadronic energy released by the NLSP decays into the gravitino at comparatively late times
(t > 100 s) can alter the primordial abundances of light elements [5,6]. Moreover if the NLSP
is charged, also bound state effects can change heavily the rates of the nuclear reactions and
modify the BBN predictions [7–9].

In fact, most NLSPs are incompatible with BBN, as long as their lifetime is not shorter
than103 s, i.e. the supersymmetric spectrum is very heavy, or their abundance is not strongly
suppressed compared to that expected by thermal freeze-out, e.g. diluted by late entropy pro-
duction [10, 11]. So in the minimal setting of simple freeze-out and masses for both gravitino
and NLSP in the GeV range, neutralino [12–16] and stau [6,7,17] NLSP are incompatible with
BBN.1 For completeness, let us mention that a stop NLSP could be viable in some particular
region of the supersymmetric parameter space [18]. A sneutrino NLSP, on the other hand, is
neutral and decays mainly into gravitino and neutrino, which are not electromagnetically or
hadronically active. The BBN bounds [19, 20] arising from the neutrino interactions and the
subdominant decay channel into quarks are much weaker than those for a neutralino or charged
slepton NLSP. In this study, we therefore consider a sneutrino NLSP as an interesting alterna-
tive.

The paper is organised as follows. In Section 2 we briefly explain the model of gaugino
mediation. In Section 3 we discuss the sparticle spectrum inthis model, focusing in particular
on the parameter range which leads to a sneutrino NLSP. In Section 4 we evaluate the BBN
constraints on the sneutrino NLSP scenario, going beyond the approximation used in [20]. In
Section 5 we discuss the signatures at LHC and ILC, and Section 6 finally contains our conclu-
sions.

2. The model

In general, in models of supersymmetry (SUSY) breaking withuniversal scalar and gaugino
masses, the right-chiral charged sleptons are lighter thanthe left-chiral ones and the sneutri-
nos. The reason is that the running ofm2~lR is dominated byU(1)Y D-term contributions, whilem2~lL receivesSU(2)L andU(1)Y D-term corrections. This picture changes, however, for non-
universal SUSY breaking parameters at the high scale, especially for non-universal Higgs-mass
parameters withm2H1 �m2H2 > 0, see e.g. [21].

A particularly attractive realisation of non-universal boundary conditions is the case of
gaugino mediation [22,23], where supersymmetry breaking occurs on a four-dimensional brane
within a higher-dimensional theory. In such a setting, fields which live in different places will
naturally feel such breaking with different strength. Gauge and Higgs superfields living in the
bulk couple directly to the chiral superfieldS responsible for SUSY breaking, which is localised
on one of the four-dimensional branes. The gaugino and Higgsfields hence acquire soft SUSY-
breaking masses at tree level. Squarks and sleptons, on the other hand, are confined to some
other branes, without direct coupling toS and this yields no-scale boundary conditions [24,25]

1Of course most of the constraints are weakened or disappear for shorter NLSP lifetime, i.e. lighter grav-
itino masses or larger NLSP masses. We recall that the NLSP lifetime is given approximately by�NLSP '106 s � m3=210GeV�2 � mNLSP100GeV��5

.
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for their masses. We therefore have the following boundary conditions at the compactification
scaleMC [23]:g1 = g2 = g3 = g ' 1=p2 ; (3a)M1 = M2 = M3 = m1=2 ; (3b)m20 = 0 for all squarks and sleptons; (3c)A0 = 0 (3d)�;B�;m2H1;2 6= 0 ; (3e)

with GUT charge normalisation used forg1. The superparticle spectrum is determined from
these boundary conditions and the renormalisation group equations. The free parameters of the
model are hencem1=2, m2H1 , m2H2 , tan �, and the sign of�; j�j being determined by radiative
electroweak symmetry breaking.

The model favours moderate values oftan � between about 10 and 25. The parameter
ranges leading to a viable low-energy spectrum were discussed in [26, 27], assumingMC =MGUT. In [28] it was shown that either the lightest neutralino or the gravitino can be viable
dark matter candidates in this model. In particular, Ref. [28] discussed the possibility of a
gravitino LSP with a (tau-)sneutrino NLSP form1=2 = 500 GeV andtan � = 10 and 20.
In this case, the sneutrino NLSP occurs form2H2 <� 0:5 TeV2 and large values ofm2H1 of
roughly2–3 TeV2. Ref. [27] also discussed the collider phenomenology of gaugino mediation,
concentrating however on the case of a neutralino LSP.

3. Sparticle spectrum in gaugino mediation with a sneutrino NLSP

We here investigate the SUSY spectrum in the gaugino-mediation model in more detail. We
assume that the gravitino is the LSP and concentrate on scenarios with a sneutrino NLSP. Fol-
lowing [26, 28], we takemt = 172:5 GeV,mb(mb) = 4:25 GeV and�SM MSs (MZ) = 0:1187
as SM input parameters, and considerm3=2 = 10 GeV as lower bound for the gravitino mass
(the upper bound being given by the NLSP mass and the BBN constraints). Moreover, we takeMC = MGUT. We useSOFTSUSY2.0.10 [29] to compute the sparticle and Higgs masses
and mixing angles, andmicrOMEGAs2.0 [30–32] to compute the primordial abundance of
the NLSP.

Figure 1 shows the sneutrino NLSP region in them2H1 versusm1=2 plane fortan � = 10
and two values ofm2H2 ,m2H2 = 0 and0:4 TeV2. Also shown are contours of constantm~�1�m~��
in GeV: sincem~�L andm~�� are driven by the same SUSY-breaking parameterM~L3 , the mass
difference between the~�� and the~�1 is always small. The mass of the~�� NLSP goes up to about
250 (230) GeV form2H2 = 0 (0:4 TeV2) andm1=2 = 600 GeV in Fig. 1. Comparing with Fig. 4
of [20], one might conclude that the~�� NLSP region of Fig. 1 is in good agreement with BBN;
this is discussed in more detail in the next section. For fixedm1=2,m~�� decreases with increasingm2H1 , and so dom~�1 andm~eL ' m~�L , whilem~�01 remains constant. One therefore finds the mass
orderings2 m~�� < m~�01 < m~�1 < m~eL, m~�� < m~�1 < m~�01 < m~eL andm~�� < m~�1 < m~eL <m~�01 within the sneutrino NLSP region. These are labelled A, B, and C, respectively, in Fig. 1.

The case oftan � = 20 is shown in Fig. 2 form2H2 = 0:2 and0:4 TeV2. Analogous
arguments as above apply. Note, however, that here the~eL does not become lighter than the~�01.

2Since selectrons and smuons are practically degenerate, inthe following ~e implicitly means selectrons and
smuons.
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Fig. 1: Sneutrino NLSP regions (in orange) in them2H1 versusm1=2 plane fortan� = 10 andm2H2 = 0 (left) andm2H2 = 0:4 TeV2 (right). The blue dashed lines show contours of constantm~�1 �m~�� in GeV. The full black lines

separate subregions of different mass ordering:m~�� < m~�01 < m~�1 < m~eL in A, m~�� < m~�1 < m~�01 < m~eL in

B, andm~�� < m~�1 < m~eL < m~�01 in C. Below the white dash-dotted line, the BBN bounds are satisfied for any

gravitino mass, i.e.m~�Y~� � 3� 10�11 GeV, as discussed in the text. In the light grey regions, no viable spectrum

is obtained, while in the narrow medium grey strips,m~�1 < 90 GeV.

Moreover, the~��–~�1 mass difference shows a different behaviour as compared totan� = 10:
At tan� = 10 and smallm2H1 , m~�� < m~�1 with the mass difference becoming smaller asm2H1
increases. Attan� = 20, the~�1 is first lighter than the~�� ; with increasingm2H1 , m~�� decreases
faster thanm~�1 , eventually leading tom~�� < m~�1 . This is why the contour ofm~�1 �m~�� = 0
is on the upper-left edge of the~�� NLSP region in Fig. 2, while it is on the lower-right edge in
Fig. 1.

A comment is in order concerning the LEP limit on the light Higgs mass. Demandingmh0 � 114:5 GeV would constrainm1=2 to m1=2 >� 500 (440) GeV in Fig. 1 (2). However,
there is still a 2–3 GeV uncertainty in the evaluation ofmh0 . If this is taken into account, the
full parameter range considered is allowed.

4. Sneutrino abundance and BBN constraints

Even if the sneutrino is neutral and decays mainly into weakly interacting particles, still BBN
constraints arise from the subleading decay channels. According to [20], Figure 4, such bounds
are satisfied for light sneutrinos with masses below 300 GeV,because the branching ratios into
quarks via virtualZ; W are rather small. This conclusion was obtained through an estimate of
the sneutrino freeze-out abundance ofY~� ' 2� 10�14 � m~�100GeV

� : (4)

In our case though, due to the close spacing between the different masses, co-annihilation ef-
fects [21] become important, making this estimate unreliable. Here note that co-annihilation ef-
fects can both decrease or increase the particle yield. The latter can occur if the co-annihilation
cross section is small, due to the presence in the thermal bath of the slightly heavier states that
can decay into the NLSP [33]. We therefore usemicrOMEGAs2.0 [30–32] to computeY~�
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Fig. 2: Same as Fig. 1 but fortan� = 20 andm2H2 = 0:2 TeV2 (left) andm2H2 = 0:4 TeV2 (right). BBN bounds

play no role in the left-hand panel.

numerically without approximation, and obtain that in our region of the parameter space the
sneutrino abundancem~�Y~� = 3:63� 10�9GeV
th~� h2 (5)

can be as large as10�10 GeV. This value violates the general bounds given in [20] fora gravitino
mass in the range2–50 GeV. The limit for a gravitino with a mass of about10 GeV is in factm~�Y~� < 3 � 10�11 GeV, which is shown as dash-dotted line in Figs. 1 and 2. For a gravitino
mass of 50 GeV or larger, or for a sneutrino decay branching ratio into hadrons substantially
smaller than10�3, this BBN bound becomes much weaker and disappears in our parameter
region. We will consider in the following benchmark points where the BBN constraints are
satisfied.

Last but not least, since
th
NLSPh2 is very small, typicallyO(10�3), throughout the~��

NLSP region,
non-th3=2 h2 is negligible and almost all the gravitino dark matter has tobe produced
thermally. Requiring
3=2h2 ' 0:1 leads toTR � 108–109 GeV form~g � 1 TeV andm eG in the
range of10–100 GeV.

5. Collider signatures

The collider signatures are characterised by the small~��–~�1 mass difference. As mentioned,
we can have the casesm~�1 > m~�01 > m~�� (region A) orm~�01 > m~�1 > m~�� (region B). In the
former the~�01 decays via~�01 ! �~�� , while in the latter it can also decay directly into the visible
channel~�01 ! � ~�1. If also the~eL is lighter than the~�01 (region C),~�01 ! e�~e�L is possible in
addition. The NLSP decay into the gravitino,~�� ! � eG, is of course invisible, regardless of the~�� lifetime. On the other hand, even if such a decay is impossible to detect, it is clear that the
sneutrino cannot be stable and the dominant DM component, since it has been already excluded
by direct searches [34].

The ~�1 can decay into� ~�01 if m~�1 > m~�01 +m� ; its 2-body decays into the NLSP,~��1 !W�~�� or H�~�� , are however kinematically forbidden due to the small mass splittings. For
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~�1 ��~�0i ~�����
(a)

~�1 ��~�0i �~����
(b)

~�1 ��~�+j �~����
(c)~�1 ~��W+ �q0; ��lq; l�

(d)

~�1 ~��H+ �q0; ��lq; l�
(e)

Fig. 3: Feynman diagrams for stau three-body decays into a sneutrino LSP (i = 1:::4, j = 1; 2). The dominant

contribution comes from theW exchange of diagram (d).m~�1 < m~�01 +m� , the~�1 hence only has 3-body decays leading tof �f 0 plus missing energy as
shown in Fig. 3. The dominant contribution comes from the diagram with the virtualW boson.
The resulting~�1 lifetime in this channel is approximately given by��1~� ' 2(2�)33G2Fm5~� F�1�m2~�m2~� � = 0:8� 10�16s � m~�100GeV

��5�F (m2~�=m2~� )F (0:9) ��1
(6)

where, after neglecting theW momentum and the SM particle masses, we haveF (a) = Z 1+a2pa dx(x2 � 4a)3=2 : (7)

So form~�1 �m~�� � 5–10 GeV the lifetime is of the order of10�16–10�18 s; a displaced vertex
is only obtained if the~�� and the~�1 are quasi-degenerate.

In the parameter range we consider, squarks and gluinos havemasses of about 1 TeV,
leading to large SUSY cross sections at the LHC. Sincem0 = 0, the gluino is always the
heaviest sparticle and decays intoq~q. Moreover,m~eL < m~eR and the left-chiral sleptons can
be light enough to be produced in cascade decays.3 In the following, we discuss these cascade
decays in more detail. If the~�01 is mainly a bino (which is the case for zero or smallm2H2),
right-chiral squarks dominantly decay intoq ~�01. If m~�1 + m� > m~�01 > m~�� , this looks just
like the neutralino-LSP case. If, however,m~�01 > m~�1 + m� > m~�� , then the~�01 can decay
further into ~�01 ! ��~��1 ! ��f �f 0~�� . Here note that thef �f 0 = (q�q0; l�l) will be quite soft.
The left-chiral squarks can have more complicated cascade decays. Ifm~�01 >� m~�1 , these are
generically given by the conventional cascade decays into the ~�01 as in the CMSSM, partly
supplemented by~�01 ! ��~��1 ! ��f �f 0~�� . The resulting signatures are missing energy plus
jets plus (single or di-) leptons PLUS an additional tau, plus additional soft leptons or jets if
they can be detected. Examples for such cascades are depicted in Fig. 4. The benchmark
point no. 2 of [26] withm1=2 = 500 GeV, tan � = 10, m2H1 = 2:7 TeV2, m2H2 = 0 is an
illustrative case. The mass spectrum and the most importantbranching ratios for this point

3This is in sharp contrast to the CMSSM/mSUGRA case, wherem~eL > m~eR , and typically only the right
sleptons appear in the cascades.
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Table 1: Spectrum and branching ratios form1=2 = 500 GeV, tan� = 10, m2H1 = 2:7 TeV2, m2H2 = 0. As the

first and second generation sfermions are practically degenerate, only the first generation is given.
Sparticle Mass [GeV] Dominant decay modes~g 1151.8 ~qLq (15%), ~qRq (37%), ~b1;2 (19%), ~t1t (29%)~uL, ~dL 1054.0, 1062.0 ~�02 q (32%), ~��1 q0 (�60%)~uR, ~dR 971.8, 1029.2 ~�01 q (99%)~t1 766.3 ~�01 t (30%), ~�+1 b (33%)~�04 617.9 ~��1 W� (46%), ~�02h (19%)~��2 614.6 ~�02W� (26%), ~��1 Z (22%)~�03 604.8 ~��1 W� (56%), ~�02Z (26%)~eR 418.3 ~�01e (100%)~�2 398.8 ~�01� (82%)~��1 387.4 ~e�L�e (15%), ~�ee� (17%), ~��1 �� (18%), ~�� �� (19%)~�02 381.3 ~��1 �� (19%), ~e�Le� (16%), ~�e�e (15%)~eL 206.5 ~�01e (100%)~�01 203.4 ~��1 �� (33%), ~���� (62%)~�e 198.5 ~���e��� (94%)~�1 182.3 ~�� l� (32%), ~��q�q0 (68%), � = 2� 10�8 GeV~�� 176.1 eG�� , 
th~� h2 = 7:2� 10�3

are given in Table 1. The 2-body decays were computed withSDECAY [35], and the 3-body
decay withCALCHEP [36]. The resulting ratios for the decay chains of Fig. 4 are (a) 33%,
(b) 6%, (c) 6.4%, (d) 3.3%, (e) 7%. The sparticle masses can bedetermined from these cascades
through the standard method of invariant-mass distributions of the SM decay products [37–41];
see also [42, 43] and references therein. The correct interpretation of the scenario is, however,
more involved than in the conventional CMSSM case, and care is needed in order not to falsely
conclude to have found SUSY with a neutralino LSP. Notice also that the chain (e) as well as
the~�1 !W �~�� decays may fake lepton number violation.

So far we have assumedm~�02 > m~lL > m~�01 . However, in some parts of the parameter
space the left sleptons can be lighter than the~�01, c.f. regions C in Fig. 1. In this case, the long
decay chains of the type of Fig. 4 (c, d, e) obviously do not occur. Instead, we have~�01;2 ! l�~l�L ,�l~�l and ~��1 ! �~l�L , l�~�l with l = (e; �) in addition to the decays into~�1 or ~�� . These are
followed by 3-body decays of the sleptons:~l�L ! l��� ~�� , �l��~�� and ~�l ! �l�� ~�� , l���~�� .
Some of the resulting squark decay chains are depicted in Fig. 5. A concrete example is realised
by taking the parameter point of Table 1 and loweringm1=2 to m1=2 = 450 GeV. The masses
and branching ratios for this case, together with the slepton decay widths, are given in Table 2.

A special situation arises for largerm2H2 , as in the right panels of Figs. 1 and 2, in which
case the� parameter becomes smaller. Consequently, the~�03;4 and ~��2 are lighter than in the
previous examples, and the~�01;2 and ~��1 acquire sizable higgsino components. The~qL then
decays dominantly into~�04q and ~��2 q0, while the~qR decays not only into~�01q but also into~�02q.
The heavy neutralino and chargino,~�04 and ~��2 , decay further into sleptons, gauge bosons, orh0 with roughly comparable rates. This makes this scenario even more complicated than that
of Table 1. The detection of the heavier neutralino and chargino states through their decays
into sleptons has been studied in [44], and the use of hadronic neutralino/chargino decays very
recently in [45].
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~qR ~�01 ~��1 ~��q �� f �f 0(a)

~qL ~�02 ~��1 ~��q �� f �f 0(b)

~qL ~�02 ~l�L ~�01 ~��q l� l� ��(c)

~qL ~�02 ~l�L ~�01 ~��1 ~��q l� l� �� f �f 0(d)

~qL ~��1 ~l�L ~�01 ~��1 ~��q0 �l l� �� f �f 0(e)

Fig. 4: Examples of squark cascade decays in gaugino mediation with a sneutrino NLSP;l = (e; �).
~qR(L) ~�01(2) ~l�L ~��q l� l��l(a)

~qL ~��1 ~�l ~��q0 l� �l��(b)

Fig. 5: Examples of squark cascade decays for the casem~�01 > m~lL [in addition to Fig. 4(a,b)].
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Table 2: Spectrum and branching ratios form1=2 = 450 GeV, tan� = 10, m2H1 = 2:7 TeV2, m2H2 = 0. As the

first and second generation sfermions are practically degenerate, only the first generation is given.
Sparticle Mass [GeV] Dominant decay modes~g 1046.1 ~qLq (14%), ~qRq (39%), ~b1;2 (18%), ~t1t (28%)~uL, ~dL 960.7, 967.6 ~�02 q (32%), ~��1 q0 (�60%)~uR, ~dR 874.9, 940.8 ~�01 q (99%)~t1 685.9 ~�01 t (29%), ~�+1 b (36%)~�04 560.5 ~��1 W� (44%), ~�02h (17%)~��2 557.5 ~�02W� (25%), ~��1 Z (21%)~�03 545.8 ~��1 W� (56%), ~�02Z (25%)~eR 411.1 ~�01e (100%)~�2 391.2 ~�01� (83%)~��1 345.3 ~e�L�e (15%), ~�ee� (16%), ~��1 �� (18%), ~���� (19%)~�02 339.5 ~��1 �� (20%), ~e�Le� (16%), ~�e�e (15%)~�01 181.4 ~e�e� (8%), ~��1 �� (25%), ~���� (32%)~eL 142.7 ~����e (�100%), � = 6� 10�7 GeV~�e 136.5 ~���e�� (91%), ~��e��+ (9%), � = 4� 10�7 GeV~�1 106.0 ~�� l� (30%), ~�� q�q0 (70%), � = 6� 10�9 GeV~�� 101.3 eG�� , 
th~� h2 = 5:5� 10�3
A comment is in order concerning the detectability of the soft leptons. For the parameter

point of Table 1 withm~�1�m~�� ' 6 GeV, for instance, the meanpT of the electrons and muons
coming from the~�1 !W �~�� decay is 5.9 GeV at generator level.4 RequiringpT (e; �) > 3GeV,5 GeV, or10 GeV in the offline reconstruction, about 60%, 40%, or 17%, respectively, of these
leptons would pass. At first glance this may appear very challenging for LHC analyses. Notice,
however, that the SUSY events can be selected by triggering on the hard jets/leptons and theEmissT , so that the detection of additional soft electrons and/or muons may well be feasible. Cuts
of pT (e) > 5 GeV andpT (�) > 3 GeV were, for example, also used in [43] for Higgs boson
search in theH ! ZZ(�) ! 4l channel. The situation is of course better for larger~��–~�1 mass
difference. Taus and jets coming from the 3-body~�1 decays will, however, hardly be observable.

At the ILC [46–48], several distinctive features of the~�� NLSP scenario may be resolved
with high accuracy, in particular the large mass splitting between left and right sleptons withm~lL < m~lR (although measuringm~lR may require a 1 TeV linear collider). Selectron-pair
production can givee+e� + EmissT or e+e��+�� + 2(f �f 0) + EmissT , and analogously for smuons
and for~�2, depending on the mass orderings. (Form~eL < m~�01, however, pair production of~eL
leads to�+�� + EmissT due to 3-body~eL decays.) Beam polarisation, angular distributions and
tunable energy can be exploited to determine the mass, chirality and spin of the sleptons.

Pair production of~�1 gives2(f �f 0) + EmissT . Since the 3-body stau decay proceeds domi-
nantly through an off-shellW boson, this results in soft jets plus missing energy in half of the
cases. In addition, about 20% of the~�1~� �1 events give jets plus a single charged lepton plusEmissT , and the remaining� 10% lead tol�l� + EmissT or mixed-flavour events of, for instance,e��� + EmissT . On the one hand this certainly complicates the analysis, onthe other hand re-
solving the variousl�l andq�q0 modes of the~�1 decay and estimating the lifetime allows one to
distinguish this scenario from a stau NLSP which decays into� eG [49–54],� axino [55] or even

4We thank Are Raklev for providing thepT spectrum.
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from the case of gravitino DM with R-parity breaking [56].

Chargino production and subsequent decay into lepton and sneutrino could also provide
an efficient way to measure the sneutrino mass, as in the case of neutralino LSP studied in [57].

Last but not least, pair-production of~�01 can lead to visible events from~�01 ! ��~��1
decays, and in the case thatm~�01 > m~eL also from~�01 ! e�~e�L , ��~��L decays. The ISR photon
spectrum may give additional information on the~�01 and~�� masses.

6. Conclusions

We have considered the case of gravitino LSP and dark matter with a sneutrino NLSP in the
scenario of gaugino-mediated supersymmetry breaking. We find viable regions of the parameter
space, where the primordial sneutrino abundance satisfies the BBN constraints. A general fea-
ture of this scenario is a small mass splitting between the~�1 � ~�L and the~�� , leading to 3-body~�1 decays intof �f 0~�� , dominantly mediated by a virtualW . This can significantly influence the
SUSY collider signatures. We have discussed these signatures depending on the mass ordering
of ~�01;2, ~�1 and~eL. In particular, ifm~�01 > m~�1 + m� (and/orm~eL), the lightest neutralino can
have visible decays into a charged lepton and slepton. Moreover, form~�01 > m~eL , also selec-
trons and smuons will only have 3-body decays into the~�� . These 3-body decays do, however,
not lead to displaced vertices unless the spectrum is quasi-degenerate.

In general this scenario predicts more soft leptons or jets in the final states and longer de-
cay chains. Detailed simulation studies will be necessary to assess the experimental precisions
achievable at the LHC or ILC in the scenarios discussed here.This is, however, beyond the
scope of this letter.
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