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Hyperubi Smeared Links for Dynamial FermionsAnna Hasenfratz� and Roland Ho�mannyDepartment of Physis, University of Colorado, Boulder, CO-80309-390Stefan ShaeferzNIC, DESY, Platanenallee 6, D-15738 Zeuthen, GermanyAbstratWe investigate a variant of hyperubi gauge link smearing where the SU(3) projetion is replaedwith a normalization to the orresponding unitary group. This smearing is di�erentiable and thussuitable for use in dynamial fermion simulations using moleular dynamis type algorithms. Weshow that this smearing is as e�ient as projeted hyperubi smearing in removing ultravioletnoise from the gauge �elds. We test the normalized hyperubi smearing in dynamial improved(lover) Wilson and valene overlap simulations.
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ContentsI. Introdution 2II. De�nition of the smeared links 4A. Stout and n-APE smearing in SU(2) 5B. Comparing projeted, normalized and stout smearings 6III. Fore of the NHYP link 9A. Derivative of the f onstants 11IV. Numerial tests 12A. Overlap tests 13B. Wilson lover ation tests 14V. Conlusions 17VI. Aknowledgment 17Referenes 17I. INTRODUCTIONIn reent years, signi�ant progress has been made in full QCD lattie simulations. Thereare simulations with 2+1 �avors, with realisti quark masses, and in large volumes, thoughfrequently only two of the three onditions are met at one. These simulations are performedwith di�erent kinds of fermion formulations, from the simplest unimproved Wilson fermionsto highly improved nearly hiral fermions, with improved rooted staggered fermions andeven with the expensive but exatly hiral overlap fermions. All these alulations, eventhose with inexat hiral symmetry, are still expensive and require large omputer resoures.Improving the fermioni ation suh that simulations ould be performed on oarser latties,or improving the performane of algorithms to better �t today's omputer power is importantfor truly realisti simulations. It seems that a simple modi�ation, the use of smeared gauge�elds in the fermioni ation, an help improve both the ation and the omputationalperformane as well.Smeared links are a natural part of improved fermioni ations. In the perfet ationformulation the Dira operator at the renormalization group �xed point is �tted by anextended but ultra-loal Dira operator. This �t is not feasible unless the gauge links ofthe Dira operator are smeared [1℄. The exatly hiral overlap operator [2℄ e�etively alsoontains smeared links, even if the kernel operator is based on thin links. This an be seenwhen one onsiders the expanded form of the overlap formulation with the square root termin d(�R0)=pdy(�R0)d(�R0). The order d3, d5, et. terms all ontribute to the nearestneighbor fermion oupling of the overlap Dira operator with extended gauge onnetions.2



The most frequently used staggered fermion formulation, the so alled Asqtad ation, alsouses fat links [3℄. The smeared links disussed above are part of the de�nition of the Diraoperator. The gauge ation is independent and in most ases is not smeared.The e�et of smearing is two-fold. First, it averages out small sale vauum �utuations,reduing the non-physial ultra-violet noise in the fermioni ation, seondly it removesextreme loal �utuations of the gauge �elds, lattie disloations. In the various fermiondisretizations, the e�et of vauum �utuations and disloations omes in di�erent dis-guises. Staggered fermions' taste breaking is triggered by gauge �eld �utuations withinthe hyperube and smearing an e�etively redue this e�et [3, 4℄. For Wilson fermionsdisloations ontribute to the spread of the near zero real modes of the Dira operator.Those modes make it impossible to simulate at small quark masses without going to very�ne lattie spaing, and/or large volumes [5℄. Smearing removes the disloations and reduesthe spread of the eigenmodes [6℄.Chiral fermions an also bene�t from smeared links. The ost of the overlap operator islargely given by the density of low modes of the kernel operator from whih it is onstruted.Smearing redues the ourrene of these low modes and thereby an redue the ost ofapplying the operator by an order of magnitude [7, 8℄. In simulations using domain wallfermions, the low modes of the kernel operator are known to ause expliit breaking of hiralsymmetry, indiated by a non-vanishing residual mass. If there are fewer of those modes,hiral symmetry is realized to a higher degree and one an use a smaller �fth dimensionwithout inreasing the residual mass.There is no unique riterion what onstitutes a �good� smearing proedure besides theexpliit onstrution of the �xed point Dira operator or the expanded form of overlapfermions. Without suh guiding priniples, any smearing, as long as it onsists of addingirrelevant (loal) operators to the ation, is aeptable. The smeared links do not even haveto be SU(3) elements as is illustrated by the suess of the Asqtad ation. Any aeptableproedure will lead to a valid ation, but hosen properly, smearing will improve the salingof the ontinuum limit. If the modi�ation of the gauge �elds are too weak, the smearinghas no e�et. On the other hand, a de�nition of the fat link whih spreads over many sitesand heavily mixes the links an lead to an ation whih again has strong ut-o� e�ets [9℄.Thus, an optimal smearing is as loal as possible while removing as muh of the short sale�utuations as possible.The �rst smearing was introdued by the APE ollaboration [10℄ and di�erent formsof smearing have been used in quenhed studies sine then. Dynamial simulations withsmeared links beame pratial when the fully di�erentiable stout smearing was proposedby Morningstar and Peardon [11℄. Iterating either APE or stout links an wash out shortto intermediate sale physial properties of the ation, leading to large sale violations inquantities sensitive to those sales. Hyper-ubi (HYP) bloking, introdued in Ref. [4℄,irumvents this problem by reduing the spread of onseutive smearing steps. In thispaper, we will disuss variants of the HYP bloking that are di�erentiable and suitable formoleular dynamis simulations.In the next Setion we �rst modify the APE onstrution by replaing the original SU(3)3



projetion by a normalization to U(3). These normalized n-APE links are di�erentiable andas e�etive in removing short sale vauum �utuations as the projeted APE smearing.Next we ombine n-APE smearing with the HYP de�nition and show that n-HYP links areas e�etive as 3 levels of stout smearing and are onsiderably better than HYP links on-struted from stout smearing. The di�erentiable n-HYP smearing an be used in dynamialsimulations and in Set. III we give details of how the fermioni fore an be evaluatedwith n-HYP smearing. This fore term an be ombined with any fermioni ation and inSet. IV we illustrate the e�etiveness of the smearing both with overlap and Wilson loverfermions.II. DEFINITION OF THE SMEARED LINKSThe APE smeared link [10℄ is the basis of most smearing methods. First the staple sum�n;� =P� 6=� Un;�Un+�;�U yn+�;� is added to the original link Un;� as
n;� = (1� �)Un;� + �0 �n;� : (1)Here �0 = �=m and m is the number of staples inluded in the staple sum. Next 
, a generalN �N matrix, is projeted bak to SU(N) asVp = maxV 2SU(3)Re tr (V 
y) : (2)In the following we will refer to this onstrution as projeted- or p-APE. Sine no losedform for the derivative of the p-APE links is known, they are di�ult to use in moleulardynamis (MD) simulations.Not long ago Peardon and Morningstar suggested a di�erentiable smearing method [11℄.Their onstrution uses the staple sum �n;� to de�ne the di�erentiable SU(N) stout link asVs = e�SU; (3)S = 12(�U y � U�y)� 12N tr(�U y � U�y) : (4)It is not obvious why the suggested form is a smearing at all beyond the perturbative regimewhere �U y � n I. There the stout links are indeed idential to projeted APE smearedlinks with � = �=6 [12℄. Nevertheless stout smearing appears to work similarly to APE wellbeyond the perturbative regime.Here we onsider a smeared link that is loser in spirit to the projeted APE links but itis di�erentiable and appropriate for MD simulations. From the N �N general 
 matrix ofEq. (1) we form a U(N) unitary matrix asVn = 
(
y
)�1=2 : (5)Sine 
y
 is Hermitian and positive de�nite, (
y
)�1=2 is well de�ned, unless det 
 = 0.The smeared link Vn is unitary but not in SU(N), its determinant in general is not one.4



The form in Eq. (5) was �rst used in Ref. [13℄ to de�ne smeared operators, while in Ref. [14℄Vn is divided by the ube-root of its determinant to de�ne an SU(N) link.One should note that there is no requirement that the smeared link be an SU(N) element,but in pratie projeting the link bak to SU(N) was found to be more e�etive in removingshort sale �utuations. Here we will show that the U(N) element Vn link is as e�etive asthe projeted smeared link. In the following we will refer to the Vn links de�ned in Eq. (5) asnormalized- or n-APE smearing. Sine at the 1-loop perturbative level neither the projetionnor the normalization of the link plays any role, the 1-loop perturbative properties of allthree smearing presriptions are idential.HYP smearing, as introdued in Ref. [4℄, onsists of three onseutive projeted APEtype smearing steps but the staple sums at the higher level are onstruted suh that onlylinks within the hyperubes attahed to the original link enter. The onseutive smearinglevels are onstruted asVn;� = ProjSU(3)[(1� �1)Un;� + �16 X�� 6=� eVn;�;�eVn+�̂;�;� eV yn+�̂;�;�℄ ; (6)eVn;�;� = ProjSU(3)[(1� �2)Un;� + �24 X��6=�;�V n;�;� �V n+�̂;�;� �V yn+�̂;�;� �℄ ; (7)V n;�;� � = ProjSU(3)[(1� �3)Un;� + �32 X�� 6=�;�;�Un;�Un+�̂;�U yn+�̂;�℄ : (8)The Un;� are the thin links from site n in diretion �, the Vn;� are the resulting HYP blokedfat links. The intermediate �elds eV and V are onstruted suh that the ontributions to Vare restrited to the attahed hyper-ube. The indies after the semi-olon always indiatethe diretions exluded from the sums. The three SU(3) projetions make the HYP smearedon�gurations very smooth while keeping the smearing within a hyperube ensures thateven short distane properties of the on�gurations are only minimally distorted. While themain ingredient, the SU(3) projetions, make the HYP links di�ult to use in dynamialsimulations, any of the above disussed di�erentiable smearings an be ombined with theHYP onstrution. In the following we will refer to the original HYP links as p-HYP, to thenormalized smearing as n-HYP and the stout HYP onstrution as stout - or s-HYP. Again,at the 1-loop perturbative level the three desriptions are idential [12℄.A. Stout and n-APE smearing in SU(2)The two smearing presriptions are easiest to ompare for the gauge group SU(2). Therelevant quantity for both is �U y whih is a linear ombination of SU(2) elements and anbe written as �U y = !0I+ i �! ��; (9)
5



where !0 and �! = n̂! are real. For SU(2) the traeless anti�Hermitian part of �U y, S inEq. (4), is just i�!�� and we thus haveVs = ei��!��U = [os(�!) + i sin(�!) n̂��℄U; (10)while the APE link (1), normalized aording to Eq. (5) isVn = h1 + �!0N0 + i �!N0 n̂��iU ; (11)N0 = p(1 + �!0)2 + (�!)2 ; (12)where � = �0=(1 � �). The stout link is independent of !0, the trae of �U y, and thusontains less information about the original �elds than the n-APE link.Eqs. (10) and (11) an nevertheless be approximately idential if �!; �! � 1, and !0an be replaed by its average value. Aording to Eq. (9) !0 is related to the trae of theplaquettes around the thin link U , so h!0i = m tr(Uplaq)=N = m + O(!2) when ! � 1.These onditions are satis�ed near the ontinuum limit where �utuations are suppressedand the gauge links are lose to the unit matrix. Then stout and n-APE links agree if�!=N0 � sin(�!), or � = �1 + �h!0i = �=m1� �(1� tr(Uplaq)=N) : (13)This relation agrees with the perturbatively expeted form � = �=m if tr(Uplaq) = N . Ontypial MC on�gurations the plaquette is onsiderably smaller than that, suggesting thateven if stout and n-APE smearing an be mathed on MC on�gurations, the orrespondingstout parameter ould be signi�antly di�erent from the perturbatively expeted value.While the optimal parameter for APE smearing is largely independent of the gauge oupling,this is not so for stout smearing. On rough on�gurations where �! is not small and !0annot be replaed by its average, stout links ould be very di�erent from n- or p-APE linksand resemble little the form of Eq. (1).B. Comparing projeted, normalized and stout smearingsSmearing redues lattie artifats by removing some of the non-physial ultraviolet �u-tuations of the gauge on�gurations. The e�etiveness of the smearing an be measured bythe smoothness of the plaquette, i.e. by the value of the average plaquette, and even moreso by the distribution of the smallest plaquette on �nite volume on�gurations.The omparisons presented in this setion are based on a set of 500 quenhed 84 lattiesgenerated with the plaquette gauge ation at � = 5:8, orresponding to a lattie spaingof 0.136 fm. In Fig. 1 we show the average plaquette after one level of p-APE, n-APEand stout smearing as a funtion of the smearing parameter �. The values measured afterprojeted and normalized APE smearing are nearly indistinguishable, prediting the bestsmearing at about � = 0:75. Above this value the smearing beomes unstable, the averageplaquette drops even with only one level of smearing. The stout smeared plaquette is plotted6
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hU pi p-APEn-APEstout, � = �=6stout, � from Eq. (13)Figure 1: The average plaquette on quenhed � = 5:8 on�gurations as a funtion of the smearingparameter � after various single level smearings.
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Figure 2: The histograms show the distribution of the smallest smeared plaquette. The left panelompares projeted (lines) and normalized (shaded) APE with � = 0:75 smearing parameter. Theright panel ompares n-APE (shaded) with � = 0:75 and stout smearing with 6� = 1:1 (lines).in two di�erent ways: one with the perturbatively predited relation � = 6�, and also withthe relation based on the SU(2) predition of Eq. (13). While the former parametrizationleads to a very di�erent result than the APE smeared links, the latter one is surprisinglyonsistent with those [25℄.The most extreme �utuations an be studied from the tail distribution of the plaquette.Figure 2 shows the histogram of the smallest plaquettes. The left panel ompares p-APEand n-APE smearings at the same � = 0:75 parameter value. It is surprising how small thedeviation is between the two smearings even here when individual plaquettes are onsidered.If any di�erene is observable, it is to the advantage of the n-APE smearing in the sense7



Smearing htrUpi htrUminp i1� stout 2.60 -0.78(1)2� stout 2.84 -0.16(2)3� stout 2.91 0.46(3)s-HYP a) 2.80 -0.39(2)s-HYP b) 2.64 0.00(5)n-HYP 2.82 0.38(3)Table I: Comparison of the plaquette and the minimum plaquette values. The di�erent smearingsonsidered are: 1, 2 and 3 levels of stout smearing with 6� = 0:9; stout-HYP a) with parameters6� = (0:85; 0:75; 0:35) ; b) with parameters 6� = (1:2; 1:0; 0:4); n-HYP with standard HYPparameters � = (0:75; 0:6; 0:3);that the latter produes slightly larger minimal plaquette values. The right panel ompares� = 0:75 n-APE and stout smearing at its optimal value, 6� = 1:1. The di�erene is obvious,n-APE removes more of the extreme �utuations than stout smearing. Stout smearing with6� = 0:75 is onsiderably worse than n-APE smearing.Next we onsider HYP links based on the three di�erent smearings. In Ref. [4℄ theprojeted-HYP parameters were optimized by maximizing the smallest plaquette on a setof oarse (� = 5:7) on�gurations. The optimal parameters found that way (�1 = 0:75;�2 = 0:6 and �3 = 0:3) turned out to be fairly independent of the gauge oupling and loseto the perturbative values that minimize taste violations for staggered fermions (�1 = 0:875�2 = 0:571 and �3 = 0:25). Sine we found that n- and p-APE smearing are nearly iden-tial numerially and they are idential perturbatively, we expet that the same parametervalues are optimal for n-HYP as well. To optimize the stout-HYP parameters we repeatedthe proedure of Ref. [4℄. We found it di�ult to identify an optimal parameter set, thesensitivity, espeially to the last parameter �3, is weak ompared to statistial �utuations.The best parameter values were large, even larger than what one would predit based onEq. (13), and did not remove as many of the small plaquettes as n-HYP smearing.In Table I we ompare the average plaquette and the average of the minimum plaquettevalues. In addition to n-HYP smearing with parameters � = (0:75; 0:6; 0:3) we onsider1, 2 and 3 levels of stout smearing with 6� = 0:9 smearing parameter, s-HYP smearingwith parameters 6� = (0:85; 0:75; 0:35) and with parameters 6� = (1:2; 1:0; 0:4). Theformer s-HYP parameters orrespond to n-HYP parameters resaled aording to Eq. (13),the latter one to the values found by optimizing the minimum plaquette distribution. Theaverage plaquette value does not always follow the minimum plaquette. Based on the averageplaquette one would expet that 2 levels of stout smearing are about the same or better thann-HYP. This expetation is false as we will show in Set. IV . The minimum plaquette isa muh better indiator of the quality of smearing. That observable puts n-HYP lose to 3levels of stout and onsiderable better than s-HYP even with the optimized b) parameterset.To summarize our observations, we expet normalized-HYP to be as good as projeted-8



HYP with the same parameter values. The n-HYP parameters do not have to be hangedwith the gauge oupling and perturbative orretions are expeted to be small. If stout-HYPsmearing is used in numerial simulations, the parameters will have to be tuned dependingon the gauge oupling. Stout-HYP smearing with parameters tuned that way is e�etivein removing average �utuations though it does not work as well in removing the extreme�utuations. At one-loop perturbation theory all three smearings are idential, but sine theoptimal stout parameters at large or moderate lattie spaing are well above the perturbativevalues, one expets larger perturbative orretions for stout links. In dynamial updatesthe omputational overhead for n-HYP and stout-HYP is similar, therefore overall n-HYPappears to be a better hoie for simulations. In the following we desribe the implementationof n-HYP smearing in dynamial simulations.III. FORCE OF THE NHYP LINKThe equations of motion whih are approximately solved in the moleular dynamis evo-lution derive from dH=d� = 0, where H = p2=2 + Sf + Sg is the moleular dynamisHamiltonian. The omputation of the fermion ontribution to the derivative is subjet ofthis setion. We denote the part of the fermioni ation that depends on the smeared linksby Se�(V ) and assume its derivative �� with respet to the V links has already been per-formed. We now desribe how to use the hain rule to ompute the derivative with respet tothe thin links. In our disussion we follow losely Ref. [11℄. We start out with the derivativeof Se� with respet to the simulation time parameter �dd� Se� = Re tr ÆSe�ÆV� dV�d� � Re tr (�n;� _Vn;�) : (14)Here _V = dV=d� refers to the derivative with respet to the simulation time �: Next we usethe de�nition of V in terms of the thin links U and the fat links eV aording to Eq. (6),with the projetion replaed by the normalization as given in Eq. (5), to getRe tr (�� _V�) = Re trh�(1)� _U� + e�(1)�;� _eV �;�i ; (15)�(1)n;� = �n;� �Vn;��Un;� ; (16)e�(1)n;�;� = Xm;� �m;� �Vm;�� eVn;�;� ; (17)where the sum over m runs over all sites in the ��� plaquettes attahed to the link (n; �)and � an be either � or �. Next we express eV�;� in terms of the thin links U and smearedlinks V aording to Eq. (7), and ontinue this proedure until we reah the level where onlyderivatives of the thin links are leftRe tr (�� _V�) = Re trh(�(1)� + �(2)� ) _U� + �(2)�;�;� _V �;�;�i (18)= Re tr h(�(1)� + �(2)� + �(3)� ) _U�i (19)9



with �(2)� = e�(1)�;�� eV�;��U� ; (20)�(2)n;�;�;� = Xm;�;� e�(1)�;� � eVm;�;��V n;�;�;� ;�(3)n;� = Xm;�;�; �(2)m;�;�; �V m;�;�;�Un;� :Here we an �nally identify �(1)� + �(2)� + �(3)� = ÆSe�=ÆU� as the fermioni fore term.Sine the additional levels to Eq. (15) are very simple modi�ations of the �rst level�only restriting the diretions the sum runs over�let us restrit the following disussionto the �rst level. In terms of 
 de�ned in Eq. (1), the n-APE link is then given by V� =
�(
y�
�)�1=2. To ompute the inverse square root of Q = 
+
, we employ a methodanalogous to Morningstar and Peardon using the Cayley Hamilton theorem. A non-singular3� 3 matrix Q an always be written asQ�1=2 = f0 I+ f1Q+ f2Q2 ; (21)where the salars f0, f1, and f2 are funtions of the traes of Q, Q2 and Q3 only. It isonvenient to de�ne 0 = trQ ; 1 = 12 trQ2 ; 2 = 13 trQ3 : (22)The details of the funtional dependene of the fi on the j is disussed in Se. IIIA.To use the strategy indiated in Eq. (15), we apply the hain rule until we are only leftwith derivatives of U or V , yled to the right of the trae. For simpliity in the followingwe drop the index �.Re tr� _V = Re tr�� dd� (
Q�1=2)�= Re tr(Q�1=2� _
) + tr(�
) _f0 + tr(Q�
) _f1 + tr(Q2�
) _f2 (23)+f1tr(�
 _Q) + f2tr((�
Q +Q�
) _Q) :Sine the fi are salar funtions of the traes n we get_fi =Xn �fi�n tr(Qn _Q) : (24)The omputation of the derivatives bij = �fi=�j is desribed in the next setion. De�ningBn = b0n + b1nQ+ b2nQ2, Eq. (23) leads toRe tr(Q�1=2� _
) + Re tr(hXn tr(Bn�
)Qn + f1�
 + f2(�
Q +Q�
)i _Q) : (25)Next, we de�ne the sum in the square braket as A and use that Q = 
+
 to getRe trn(Q�1=2� + A
+ + A+
+) _
o � Re tr(� _
) (26)10



with � = (A + A+)
+ +Q�1=2�. To ompute the derivative of 
, we apply the hain ruleagainRe tr(�n;� _Vn;�) = Re tr(�n;� _
n;�)= Re tr�n;�h(1� �) _Un;� + �0X� _eV n;�;�eVn+�̂;�;� eV +n+�̂+�̂;�;�+eVn;�;� _eV n+�̂;�;� eV +x+�̂+�̂;�;� + eVn;�;�eVn+�̂;�;� _eV +n+�̂+�̂;�;�i :Now we an write down the �nal expression for �(1) . First there is the �global� ontributionfrom the thin link �(1)n;� = (1� �)�n;� (27)and then there is the term that is multiplied with the derivatives of the eV 's, whih we haveto ollet from the various ontributions from neighboring sitese�(1)n;�;� = �0hV n+�;�;�V yn+�;�;��n;�;� + V n+�;�;��n+�;�;�V yn;�;� + �yn+�;�;�V yn+�;�;�V yn;�;�+(� ! ��)i :The next term in the fore expression, �(2)� , is alulated the same way, by replaing ��withe�(1)�;� and V� with eV�;�, and similarly for �(3)� .A. Derivative of the f onstantsThis setion desribes the omputation of the Cayley-Hamilton onstants fi for the matrixQ�1=2 and their derivatives with respet to the traes of Qn. The starting point is thede�nition in Eq. (21). Sine the matrix Q = 
y
 is a positive, Hermitian matrix, it anbe diagonalized with non-negative eigenvalues gi. Eq. (21) then translates into an equationrelating the eigenvalues to the oe�ients f .0B� 1 g0 g201 g1 g211 g2 g22 1CA0B� f0f1f2 1CA = 0B� g�1=20g�1=21g�1=22 1CA (28)This equation has to be solved for f . Naturally, all expressions are symmetri in the eigen-values g0, g1 and g2. It turns out to be onvenient to express the solution in terms of thesymmetri polynomials of the square roots of the eigenvalues pgiu = pg0 +pg1 +pg2 ; v = pg0g1 +pg0g2 +pg1g2 ; w = pg0g1g2 ; (29)suh that we get for the oe�ients f the following resultsf0 = �w(u2 + v) + uv2w(uv � w)f1 = �w � u3 + 2uvw(uv � w) (30)f2 = uw(uv � w) :11



To ompute the symmetri polynomials, we need a losed formula of the eigenvalues of Qin terms of its traes (whih are independent of the basis)n = 1n+ 1trQn+1 = 1n+ 1Xi gn+1i :This leads to a ubi equation whose solution is most easily expressed in terms ofS = 1=3� 20=18 ; R = 2=2� 01=3 + 30=27 ; � = aros� RS3=2� (31)with whih the eigenvalues read for n = 0, 1, 2gn = 03 + 2pS os��3 + (n� 1)2�3 � (32)Finally for their use in Eq. (25), we need to ompute the derivatives of the fi with respetto the traes j. To this end, we use the hain rule and writeBij = �fi�j =Xk �fi�gk �gk�j : (33)The matrix �gk�j is the inverse of the Vandermonde matrix �k�gj = gkj . Fatoring out theommon denominator d = 2w3(uv � w)3 we get for the symmetri matrix B = C=dC00 = �w3u6 + 3vw3u4 + 3v4wu4 � v6u3 � 4w4u3 � 12v3w2u3+16v2w3u2 + 3v5wu2 � 8vw4u� 3v4w2u+ w5 + v3w3C01 = �w2u7 � v2wu6 + v4u5 + 6vw2u5 � 5w3u4 � v3wu4 � 2v5u3�6v2w2u3 + 10vw3u2 + 6v4wu2 � 3w4u� 6v3w2u+ 2v2w3C02 = w2u5 + v2wu4 � v4u3 � 4vw2u3 + 4w3u2 + 3v3wu2 � 3v2w2u+ vw3C11 = �wu8 � v2u7 + 7vwu6 + 4v3u5 � 5w2u5 � 16v2wu4 � 4v4u3 + 16vw2u3�3w3u2 + 12v3wu2 � 12v2w2u+ 3vw3C12 = wu6 + v2u5 � 5vwu4 � 2v3u3 + 4w2u3 + 6v2wu2 � 6vw2u+ w3C22 = �wu4 � v2u3 + 3vwu2 � 3w2u :Note that this expression is singular only for w = 0, beause uv � w > 0 as long as oneeigenvalue is non-zero. The pole in w = pg0g1g2 orresponds to at least one zero eigenvalueof Q.IV. NUMERICAL TESTSThe alulation of the fermioni fore is onsiderably more involved with HYP links thanwith stout links, but one the ontribution from the smearing is implemented, it an simplyreplae a stout smearing fore routine. Sine in Ref. [7, 15, 16, 17, 18, 19℄ stout smearing12



was used in dynamial overlap simulations, we have tested n-HYP smearing in the sameset-up. We have also implemented smearing in dynamial Wilson lover simulations. In thefollowing we brie�y summarize our experiene with n-HYP links, onentrating mainly onalgorithmi issues.A ommon algorithmi onern, independent of the fermioni formulation, is the potentialourrene of links with exatly zero determinant, det
 = 0. In suh ase the normalizedsmeared link is ill-de�ned and the fore term diverges. In our test runs we found only oneout of 1010 smeared link evaluations det
 � 10�8 and in single preision arithmetis thatresulted in an exeptionally large fore term. The orresponding on�guration was rejetedand the simulation ontinued without problem. In double preision even this one ourreneould have been handled. The problem of det
 � 0 might beome muh more severe at(even) oarser latties but will disappear on the way to the ontinuum.A. Overlap testsSmeared links are a ommon ingredient to hiral fermion simulations beause the ostof the Dira operator appliation depends to a large part on the spetral properties of thekernel operator it is onstruted from. To be spei�, let us onentrate on Neuberger'soverlap operator Dov = (R0 � mov2 ) [1 + 5�(h(�R0))℄ +mov ; (34)with R0 the radius of the Ginsparg�Wilson irle, mov the bare quark mass, � the matrixsign funtion and h = 5d the Hermitian Dira kernel operator at negative mass shift �R0.d is a Wilson like lattie Dira operator, for our tests we take the planar operator disussedin Refs. [7, 20℄.Evaluating the ation of the matrix sign funtion of h on a vetor is the expensive partof overlap fermion simulations. The standard tehnique is to ompute the lowest few eigen-modes of h expliitly and use the spetral representation of the sign funtion for the orre-sponding sub-spae. For the rest of the spetrum, a polynomial or rational approximationis used. In our test we use the Zolotarev rational approximation. The approximated signfuntion therefore reads�(h) � hXi bih2 + i (1�X� P�) +X� sign�P� (35)with P� the projetor on the low-mode of h(�R0) with eigenvalue �. For eah appliationof Dov on a vetor a multi-shift system with the kernel operator has to be solved. Itsondition number (and therefore the ost) dereases if the region from whih the modes aretreated expliitly is inreased. Firstly, the lower bound of the Zolotarev approximation anbe inreased whih yields a larger minimal i. Seondly the smallest mode of h2 whih hasnot been projeted is larger. Thus the ondition number of the whole system is smaller andit takes less iterations to solve the system of linear equations. A lower density of modes atthe origin an therefore greatly redue the ost of using the overlap operator. This an beahieved by onstruting the kernel operator h from smeared links.13



n-HYP 2� stout 3� stout#h�v 262(19) 604(38) 291(22)hj�10ji 0.31(1) 0.16(1) 0.28(1)Table II: The average number of appliations of the kernel operator per appliation of the overlapfor di�erent kinds of fat links. We also give the average of the absolute value of the tenth eigenvalue,the largest eigenvalue for whih we use the spetral representation.To estimate how smearing in the kernel operator a�ets the ost of overlap simulations,we ompute one omponent of the overlap propagator at mass amov = 0:03 on 30 123 � 24dynamial lover on�gurations desribed in Setion IVB. On eah on�guration we projetout the lowest 10 eigenmodes of the kernel operator h(�R0). The number of iterations ofthe solver in the appliation of the sign funtion is averaged over the whole omputation ofthe propagator. This gives the largest part of the ost of applying the overlap operator in arealisti situation.We ompare kernel operators built from n-HYP links and stout links with two and threelevels of smearing. The stout smearing parameter is set to 6� = 0:9 whih is the value usedin reent alulations using dynamial overlap fermions [16, 18℄, while for n-HYP we usethe standard HYP parameters. The results are displayed in Table II. The largest projetedmode is around 0.3 for both n-HYP and three levels of stout smearing whereas it is roughlyhalf that for 2 levels of stout smearing. Beause the smallest shift is muh smaller than that,this also means that the ondition number of the former is a fator two smaller than for thelatter.This is also re�eted in the ost of applying the overlap operator. Two levels of stoutsmearing is about twie as expensive as either n-HYP or three iterated stout smearings.However, the n-HYP smearing is more loal than three levels of stout smearing and alsoomes with smaller oe�ients mixing the original links with the staple.B. Wilson lover ation testsWe have implemented n-HYP smearing with two �avor O(a) improved Wilson fermions.For the gauge ation we use the Lüsher-Weisz ation and �x the tadpole oe�ient u0 tobe 0.875, the value that orresponds approximately to our simulation values. Note that thishoie a�ets the gauge ation only sine the lover oe�ient is left at its tree�level valueSW = 1:0; preliminary simulations indiated that this is lose to the value that minimizesthe width of the spetral gap of the Hermitian Dira operator [26℄. At � = 7:2 the lattiespaing is around 0.13 fm and simulations in smaller volumes (lattie size of 83�12) predit,from the vanishing of the PCAC quark mass (see Fig. 3), a ritial hopping parameter of� = 0:12787(14). This value is surprisingly lose to the one found in a quenhed simulationwith p-HYP smearing at similar lattie spaing [12℄. The additive mass shift is dramatiallysmaller for HYP links than for thin link lover fermions, even with non�perturbative SW.The remaining results quoted in this setion are obtained from simulating a 123�24 lattie14
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Figure 3: The PCAC quark mass from simulations at � = 7:2 on 83�12 latties. The additive massshift is only amadd = 0:090(4).at � = 7:2 and � = 0:1266. We have aumulated 500 trajetories after thermalization andmeasured eigenvalues of D and 5D, n-HYP smeared Wilson loops, as well as pseudosalarorrelators every 5 trajetories.The three most expensive parts of the update are the alulation of the fermioni fore(inluding inversions), the gauge fore and the n-HYP bloking (inluding the n-HYP foreterm). Of the total CPU time in these runs they onsumed 75%, 13% and 11%, respe-tively. Thus, even with inexpensive fermion formulations suh as Wilson the omputationaloverhead of the n-HYP bloking is negligible. One should also note that the inversions ofthe Dira operator are expeted to be signi�antly heaper than in a omparable physialsituation with thin link lover fermions if the latter is possible at all.A few remarks on the details of our simulation are in plae: Eah trajetory was splitin 25 steps using a Sexton-Weingarten integrator and the same integrator on a �ner timesale was also used for the gauge fore. This resulted in an aeptane rate of 0.879(7). On32 nodes of a Myrinet luster with 2GHz Xeon proessors, one unit length trajetory tookabout 17 minutes to omplete.From �ts to the stati quark potential [21℄ we extrat the Sommer sale [22℄ r0=a =3:903(25) and the string tension ap� = 0:2897(26). The bare urrent quark mass am =0:0451(9) is in good agreement with the small volume data shown in Fig. 3, indiating smalluto� e�ets. Assuming r0 = 0:5 fm we obtain a lattie spaing of 0:128(1) fm and bareurrent quark mass of 69:4(1:5)MeV. We �nd a ratio of pseudosalar to vetor meson massof 0:57(3).The behavior of the low-lying eigenmodes of the Dira operator are of partiular interestif one wants to determine the degree of hiral symmetry that is retained at �nite lattiespaing. Also, the lowest eigenvalue of the Hermitian Dira operator 5D is important foralgorithmi reasons as it determines the spetral gap and indiates the lowest bare quarkmass potentially aessible at a given lattie spaing and volume [5℄.15
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Figure 4: The infrared spetrum of the n-HYP Wilson lover Dira operator (left panel), and thespetral gap as determined from the lowest eigenmode of the Hermitian 5D Dira operator on thesame on�gurations (right panel). The dashed line in both plots indiates the median of the spetralgap distribution. Data are from 100 123 � 24 on�gurations with lattie spaing a � 0:13 fm andbare quark mass m � 69MeV.The left panel of Fig 4 shows the infrared spetrum (lowest 40 eigenmodes) of the n-HYP Dira lover operator from 100 on�gurations. The omplex spetrum has a ratherwell de�ned left boundary that follows a irle with only a few real modes violating thatbound. This indiates that even at this oarse lattie spaing muh smaller quark massesan be reahed without enountering exeptional on�gurations. A similar plot is publishedin Ref. [23℄ showing the eigenmodes of the hirally improved CI Dira operator in two �avordynamial simulations at similar lattie spaing and volume, though about 50% lighter quarkmasses. The spetrum in Fig. 4 ompares well with that plot, showing similar widening ofthe Ginsparg�Wilson irle for the two ations.A more diret measure of the aessible mass range is the spetral gap, i.e. the distributionof the smallest magnitude eigenvalue of the Hermitian Dira operator 5D [5, 24℄. Thisdistribution is plotted on the right panel of Fig. 4 with the median �� = 63:3(4) MeVmarked by a dotted line. The ratio of the median and the PCAC quark mass is indiative ofthe renormalization fator ZA=(ZmZP ) [5, 12℄ and the value we obtain, 0.91, signals smallperturbative orretions.To failitate omparison with similar distributions in Ref. [5℄ the data is plotted with thesame bin size, �� = 1:5MeV. The width of the distribution, de�ned as half the width of theshortest interval that ontains 68.3% of the data, is � = 5:5(6)MeV. Sine the distribution inFig. 4 is quite asymmetri, it is more physial to de�ne the width as the interval to the left ofthe median that ontains 68.3% of the data. This modi�ed de�nition gives � = 4:6(6)MeV.16



One expets that simulations at quark masses of about 3� are safe, whih orresponds to' 15MeV at this volume and lattie spaing. In Ref. [5℄ it was found that, at least forunimproved thin link Wilson fermions [24℄, the width of the spetral gap sales inverselywith the square root of the volume, �pV � 1. Assuming the same saling law in our asewe �nd �pV � 0:61� 0:73, depending on the de�nition of the width. The derease signalsthe improved hiral properties of the smeared Dira operator. The median �� of the lowestmode of the Hermitian operator is also indiated in the omplex Dira spetrum, where itis tangent to the irle that bounds the spetrum.V. CONCLUSIONSWe have suessfully implemented and tested a gauge link smearing sheme that inheritsthe good properties of HYP smearing (loality and removal of disloations) while still beingsuitable for MD based algorithms. This is ahieved by replaing the projetion steps inthe original HYP onstrution by normalizations to the orresponding unitary group, thusallowing the alulation of the moleular dynamis fore for fermions oupled to the smearedlinks. We have tested the n-HYP smearing with overlap fermions where we found that theyan be simulated as e�etively as 3 level stout smeared fermions and about twie as fastas 2-level stout smeared ones. We have also implemented the smearing with Wilson -loverfermions. Our preliminary tests indiate that light quarks, even as low as 15 MeV, an besimulated at a � 0:13 fm latties and volumes aL & 1:6 fm. In addition, the smoothness ofthe smeared links speed up the inversion of the Dira operator.We have reported only preliminary results here. The volume, quark mass, and lattiespaing dependene of Wilson lover simulations with n-HYP links will be tested in thefuture.VI. ACKNOWLEDGMENTAt various stages of this projet we have bene�ted from disussions with T. DeGrand,F. Niedermayer and T. Kovás. We thank the omputer enter of DESY at Zeuthen forproviding us with essential resoures and support. This researh was partially supported bythe US Dept. of Energy.
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