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Hyper
ubi
 Smeared Links for Dynami
al FermionsAnna Hasenfratz� and Roland Ho�mannyDepartment of Physi
s, University of Colorado, Boulder, CO-80309-390Stefan S
haeferzNIC, DESY, Platanenallee 6, D-15738 Zeuthen, GermanyAbstra
tWe investigate a variant of hyper
ubi
 gauge link smearing where the SU(3) proje
tion is repla
edwith a normalization to the 
orresponding unitary group. This smearing is di�erentiable and thussuitable for use in dynami
al fermion simulations using mole
ular dynami
s type algorithms. Weshow that this smearing is as e�
ient as proje
ted hyper
ubi
 smearing in removing ultravioletnoise from the gauge �elds. We test the normalized hyper
ubi
 smearing in dynami
al improved(
lover) Wilson and valen
e overlap simulations.
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es 17I. INTRODUCTIONIn re
ent years, signi�
ant progress has been made in full QCD latti
e simulations. Thereare simulations with 2+1 �avors, with realisti
 quark masses, and in large volumes, thoughfrequently only two of the three 
onditions are met at on
e. These simulations are performedwith di�erent kinds of fermion formulations, from the simplest unimproved Wilson fermionsto highly improved nearly 
hiral fermions, with improved rooted staggered fermions andeven with the expensive but exa
tly 
hiral overlap fermions. All these 
al
ulations, eventhose with inexa
t 
hiral symmetry, are still expensive and require large 
omputer resour
es.Improving the fermioni
 a
tion su
h that simulations 
ould be performed on 
oarser latti
es,or improving the performan
e of algorithms to better �t today's 
omputer power is importantfor truly realisti
 simulations. It seems that a simple modi�
ation, the use of smeared gauge�elds in the fermioni
 a
tion, 
an help improve both the a
tion and the 
omputationalperforman
e as well.Smeared links are a natural part of improved fermioni
 a
tions. In the perfe
t a
tionformulation the Dira
 operator at the renormalization group �xed point is �tted by anextended but ultra-lo
al Dira
 operator. This �t is not feasible unless the gauge links ofthe Dira
 operator are smeared [1℄. The exa
tly 
hiral overlap operator [2℄ e�e
tively also
ontains smeared links, even if the kernel operator is based on thin links. This 
an be seenwhen one 
onsiders the expanded form of the overlap formulation with the square root termin d(�R0)=pdy(�R0)d(�R0). The order d3, d5, et
. terms all 
ontribute to the nearestneighbor fermion 
oupling of the overlap Dira
 operator with extended gauge 
onne
tions.2



The most frequently used staggered fermion formulation, the so 
alled Asqtad a
tion, alsouses fat links [3℄. The smeared links dis
ussed above are part of the de�nition of the Dira
operator. The gauge a
tion is independent and in most 
ases is not smeared.The e�e
t of smearing is two-fold. First, it averages out small s
ale va
uum �u
tuations,redu
ing the non-physi
al ultra-violet noise in the fermioni
 a
tion, se
ondly it removesextreme lo
al �u
tuations of the gauge �elds, latti
e dislo
ations. In the various fermiondis
retizations, the e�e
t of va
uum �u
tuations and dislo
ations 
omes in di�erent dis-guises. Staggered fermions' taste breaking is triggered by gauge �eld �u
tuations withinthe hyper
ube and smearing 
an e�e
tively redu
e this e�e
t [3, 4℄. For Wilson fermionsdislo
ations 
ontribute to the spread of the near zero real modes of the Dira
 operator.Those modes make it impossible to simulate at small quark masses without going to very�ne latti
e spa
ing, and/or large volumes [5℄. Smearing removes the dislo
ations and redu
esthe spread of the eigenmodes [6℄.Chiral fermions 
an also bene�t from smeared links. The 
ost of the overlap operator islargely given by the density of low modes of the kernel operator from whi
h it is 
onstru
ted.Smearing redu
es the o

urren
e of these low modes and thereby 
an redu
e the 
ost ofapplying the operator by an order of magnitude [7, 8℄. In simulations using domain wallfermions, the low modes of the kernel operator are known to 
ause expli
it breaking of 
hiralsymmetry, indi
ated by a non-vanishing residual mass. If there are fewer of those modes,
hiral symmetry is realized to a higher degree and one 
an use a smaller �fth dimensionwithout in
reasing the residual mass.There is no unique 
riterion what 
onstitutes a �good� smearing pro
edure besides theexpli
it 
onstru
tion of the �xed point Dira
 operator or the expanded form of overlapfermions. Without su
h guiding prin
iples, any smearing, as long as it 
onsists of addingirrelevant (lo
al) operators to the a
tion, is a

eptable. The smeared links do not even haveto be SU(3) elements as is illustrated by the su

ess of the Asqtad a
tion. Any a

eptablepro
edure will lead to a valid a
tion, but 
hosen properly, smearing will improve the s
alingof the 
ontinuum limit. If the modi�
ation of the gauge �elds are too weak, the smearinghas no e�e
t. On the other hand, a de�nition of the fat link whi
h spreads over many sitesand heavily mixes the links 
an lead to an a
tion whi
h again has strong 
ut-o� e�e
ts [9℄.Thus, an optimal smearing is as lo
al as possible while removing as mu
h of the short s
ale�u
tuations as possible.The �rst smearing was introdu
ed by the APE 
ollaboration [10℄ and di�erent formsof smearing have been used in quen
hed studies sin
e then. Dynami
al simulations withsmeared links be
ame pra
ti
al when the fully di�erentiable stout smearing was proposedby Morningstar and Peardon [11℄. Iterating either APE or stout links 
an wash out shortto intermediate s
ale physi
al properties of the a
tion, leading to large s
ale violations inquantities sensitive to those s
ales. Hyper-
ubi
 (HYP) blo
king, introdu
ed in Ref. [4℄,
ir
umvents this problem by redu
ing the spread of 
onse
utive smearing steps. In thispaper, we will dis
uss variants of the HYP blo
king that are di�erentiable and suitable formole
ular dynami
s simulations.In the next Se
tion we �rst modify the APE 
onstru
tion by repla
ing the original SU(3)3



proje
tion by a normalization to U(3). These normalized n-APE links are di�erentiable andas e�e
tive in removing short s
ale va
uum �u
tuations as the proje
ted APE smearing.Next we 
ombine n-APE smearing with the HYP de�nition and show that n-HYP links areas e�e
tive as 3 levels of stout smearing and are 
onsiderably better than HYP links 
on-stru
ted from stout smearing. The di�erentiable n-HYP smearing 
an be used in dynami
alsimulations and in Se
t. III we give details of how the fermioni
 for
e 
an be evaluatedwith n-HYP smearing. This for
e term 
an be 
ombined with any fermioni
 a
tion and inSe
t. IV we illustrate the e�e
tiveness of the smearing both with overlap and Wilson 
loverfermions.II. DEFINITION OF THE SMEARED LINKSThe APE smeared link [10℄ is the basis of most smearing methods. First the staple sum�n;� =P� 6=� Un;�Un+�;�U yn+�;� is added to the original link Un;� as
n;� = (1� �)Un;� + �0 �n;� : (1)Here �0 = �=m and m is the number of staples in
luded in the staple sum. Next 
, a generalN �N matrix, is proje
ted ba
k to SU(N) asVp = maxV 2SU(3)Re tr (V 
y) : (2)In the following we will refer to this 
onstru
tion as proje
ted- or p-APE. Sin
e no 
losedform for the derivative of the p-APE links is known, they are di�
ult to use in mole
ulardynami
s (MD) simulations.Not long ago Peardon and Morningstar suggested a di�erentiable smearing method [11℄.Their 
onstru
tion uses the staple sum �n;� to de�ne the di�erentiable SU(N) stout link asVs = e�SU; (3)S = 12(�U y � U�y)� 12N tr(�U y � U�y) : (4)It is not obvious why the suggested form is a smearing at all beyond the perturbative regimewhere �U y � n I. There the stout links are indeed identi
al to proje
ted APE smearedlinks with � = �=6 [12℄. Nevertheless stout smearing appears to work similarly to APE wellbeyond the perturbative regime.Here we 
onsider a smeared link that is 
loser in spirit to the proje
ted APE links but itis di�erentiable and appropriate for MD simulations. From the N �N general 
 matrix ofEq. (1) we form a U(N) unitary matrix asVn = 
(
y
)�1=2 : (5)Sin
e 
y
 is Hermitian and positive de�nite, (
y
)�1=2 is well de�ned, unless det 
 = 0.The smeared link Vn is unitary but not in SU(N), its determinant in general is not one.4



The form in Eq. (5) was �rst used in Ref. [13℄ to de�ne smeared operators, while in Ref. [14℄Vn is divided by the 
ube-root of its determinant to de�ne an SU(N) link.One should note that there is no requirement that the smeared link be an SU(N) element,but in pra
ti
e proje
ting the link ba
k to SU(N) was found to be more e�e
tive in removingshort s
ale �u
tuations. Here we will show that the U(N) element Vn link is as e�e
tive asthe proje
ted smeared link. In the following we will refer to the Vn links de�ned in Eq. (5) asnormalized- or n-APE smearing. Sin
e at the 1-loop perturbative level neither the proje
tionnor the normalization of the link plays any role, the 1-loop perturbative properties of allthree smearing pres
riptions are identi
al.HYP smearing, as introdu
ed in Ref. [4℄, 
onsists of three 
onse
utive proje
ted APEtype smearing steps but the staple sums at the higher level are 
onstru
ted su
h that onlylinks within the hyper
ubes atta
hed to the original link enter. The 
onse
utive smearinglevels are 
onstru
ted asVn;� = ProjSU(3)[(1� �1)Un;� + �16 X�� 6=� eVn;�;�eVn+�̂;�;� eV yn+�̂;�;�℄ ; (6)eVn;�;� = ProjSU(3)[(1� �2)Un;� + �24 X��6=�;�V n;�;� �V n+�̂;�;� �V yn+�̂;�;� �℄ ; (7)V n;�;� � = ProjSU(3)[(1� �3)Un;� + �32 X�� 6=�;�;�Un;�Un+�̂;�U yn+�̂;�℄ : (8)The Un;� are the thin links from site n in dire
tion �, the Vn;� are the resulting HYP blo
kedfat links. The intermediate �elds eV and V are 
onstru
ted su
h that the 
ontributions to Vare restri
ted to the atta
hed hyper-
ube. The indi
es after the semi-
olon always indi
atethe dire
tions ex
luded from the sums. The three SU(3) proje
tions make the HYP smeared
on�gurations very smooth while keeping the smearing within a hyper
ube ensures thateven short distan
e properties of the 
on�gurations are only minimally distorted. While themain ingredient, the SU(3) proje
tions, make the HYP links di�
ult to use in dynami
alsimulations, any of the above dis
ussed di�erentiable smearings 
an be 
ombined with theHYP 
onstru
tion. In the following we will refer to the original HYP links as p-HYP, to thenormalized smearing as n-HYP and the stout HYP 
onstru
tion as stout - or s-HYP. Again,at the 1-loop perturbative level the three des
riptions are identi
al [12℄.A. Stout and n-APE smearing in SU(2)The two smearing pres
riptions are easiest to 
ompare for the gauge group SU(2). Therelevant quantity for both is �U y whi
h is a linear 
ombination of SU(2) elements and 
anbe written as �U y = !0I+ i �! ��; (9)
5



where !0 and �! = n̂! are real. For SU(2) the tra
eless anti�Hermitian part of �U y, S inEq. (4), is just i�!�� and we thus haveVs = ei��!��U = [
os(�!) + i sin(�!) n̂��℄U; (10)while the APE link (1), normalized a

ording to Eq. (5) isVn = h1 + �!0N0 + i �!N0 n̂��iU ; (11)N0 = p(1 + �!0)2 + (�!)2 ; (12)where � = �0=(1 � �). The stout link is independent of !0, the tra
e of �U y, and thus
ontains less information about the original �elds than the n-APE link.Eqs. (10) and (11) 
an nevertheless be approximately identi
al if �!; �! � 1, and !0
an be repla
ed by its average value. A

ording to Eq. (9) !0 is related to the tra
e of theplaquettes around the thin link U , so h!0i = m tr(Uplaq)=N = m + O(!2) when ! � 1.These 
onditions are satis�ed near the 
ontinuum limit where �u
tuations are suppressedand the gauge links are 
lose to the unit matrix. Then stout and n-APE links agree if�!=N0 � sin(�!), or � = �1 + �h!0i = �=m1� �(1� tr(Uplaq)=N) : (13)This relation agrees with the perturbatively expe
ted form � = �=m if tr(Uplaq) = N . Ontypi
al MC 
on�gurations the plaquette is 
onsiderably smaller than that, suggesting thateven if stout and n-APE smearing 
an be mat
hed on MC 
on�gurations, the 
orrespondingstout parameter 
ould be signi�
antly di�erent from the perturbatively expe
ted value.While the optimal parameter for APE smearing is largely independent of the gauge 
oupling,this is not so for stout smearing. On rough 
on�gurations where �! is not small and !0
annot be repla
ed by its average, stout links 
ould be very di�erent from n- or p-APE linksand resemble little the form of Eq. (1).B. Comparing proje
ted, normalized and stout smearingsSmearing redu
es latti
e artifa
ts by removing some of the non-physi
al ultraviolet �u
-tuations of the gauge 
on�gurations. The e�e
tiveness of the smearing 
an be measured bythe smoothness of the plaquette, i.e. by the value of the average plaquette, and even moreso by the distribution of the smallest plaquette on �nite volume 
on�gurations.The 
omparisons presented in this se
tion are based on a set of 500 quen
hed 84 latti
esgenerated with the plaquette gauge a
tion at � = 5:8, 
orresponding to a latti
e spa
ingof 0.136 fm. In Fig. 1 we show the average plaquette after one level of p-APE, n-APEand stout smearing as a fun
tion of the smearing parameter �. The values measured afterproje
ted and normalized APE smearing are nearly indistinguishable, predi
ting the bestsmearing at about � = 0:75. Above this value the smearing be
omes unstable, the averageplaquette drops even with only one level of smearing. The stout smeared plaquette is plotted6
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hU pi p-APEn-APEstout, � = �=6stout, � from Eq. (13)Figure 1: The average plaquette on quen
hed � = 5:8 
on�gurations as a fun
tion of the smearingparameter � after various single level smearings.
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Figure 2: The histograms show the distribution of the smallest smeared plaquette. The left panel
ompares proje
ted (lines) and normalized (shaded) APE with � = 0:75 smearing parameter. Theright panel 
ompares n-APE (shaded) with � = 0:75 and stout smearing with 6� = 1:1 (lines).in two di�erent ways: on
e with the perturbatively predi
ted relation � = 6�, and also withthe relation based on the SU(2) predi
tion of Eq. (13). While the former parametrizationleads to a very di�erent result than the APE smeared links, the latter one is surprisingly
onsistent with those [25℄.The most extreme �u
tuations 
an be studied from the tail distribution of the plaquette.Figure 2 shows the histogram of the smallest plaquettes. The left panel 
ompares p-APEand n-APE smearings at the same � = 0:75 parameter value. It is surprising how small thedeviation is between the two smearings even here when individual plaquettes are 
onsidered.If any di�eren
e is observable, it is to the advantage of the n-APE smearing in the sense7



Smearing htrUpi htrUminp i1� stout 2.60 -0.78(1)2� stout 2.84 -0.16(2)3� stout 2.91 0.46(3)s-HYP a) 2.80 -0.39(2)s-HYP b) 2.64 0.00(5)n-HYP 2.82 0.38(3)Table I: Comparison of the plaquette and the minimum plaquette values. The di�erent smearings
onsidered are: 1, 2 and 3 levels of stout smearing with 6� = 0:9; stout-HYP a) with parameters6� = (0:85; 0:75; 0:35) ; b) with parameters 6� = (1:2; 1:0; 0:4); n-HYP with standard HYPparameters � = (0:75; 0:6; 0:3);that the latter produ
es slightly larger minimal plaquette values. The right panel 
ompares� = 0:75 n-APE and stout smearing at its optimal value, 6� = 1:1. The di�eren
e is obvious,n-APE removes more of the extreme �u
tuations than stout smearing. Stout smearing with6� = 0:75 is 
onsiderably worse than n-APE smearing.Next we 
onsider HYP links based on the three di�erent smearings. In Ref. [4℄ theproje
ted-HYP parameters were optimized by maximizing the smallest plaquette on a setof 
oarse (� = 5:7) 
on�gurations. The optimal parameters found that way (�1 = 0:75;�2 = 0:6 and �3 = 0:3) turned out to be fairly independent of the gauge 
oupling and 
loseto the perturbative values that minimize taste violations for staggered fermions (�1 = 0:875�2 = 0:571 and �3 = 0:25). Sin
e we found that n- and p-APE smearing are nearly iden-ti
al numeri
ally and they are identi
al perturbatively, we expe
t that the same parametervalues are optimal for n-HYP as well. To optimize the stout-HYP parameters we repeatedthe pro
edure of Ref. [4℄. We found it di�
ult to identify an optimal parameter set, thesensitivity, espe
ially to the last parameter �3, is weak 
ompared to statisti
al �u
tuations.The best parameter values were large, even larger than what one would predi
t based onEq. (13), and did not remove as many of the small plaquettes as n-HYP smearing.In Table I we 
ompare the average plaquette and the average of the minimum plaquettevalues. In addition to n-HYP smearing with parameters � = (0:75; 0:6; 0:3) we 
onsider1, 2 and 3 levels of stout smearing with 6� = 0:9 smearing parameter, s-HYP smearingwith parameters 6� = (0:85; 0:75; 0:35) and with parameters 6� = (1:2; 1:0; 0:4). Theformer s-HYP parameters 
orrespond to n-HYP parameters res
aled a

ording to Eq. (13),the latter one to the values found by optimizing the minimum plaquette distribution. Theaverage plaquette value does not always follow the minimum plaquette. Based on the averageplaquette one would expe
t that 2 levels of stout smearing are about the same or better thann-HYP. This expe
tation is false as we will show in Se
t. IV . The minimum plaquette isa mu
h better indi
ator of the quality of smearing. That observable puts n-HYP 
lose to 3levels of stout and 
onsiderable better than s-HYP even with the optimized b) parameterset.To summarize our observations, we expe
t normalized-HYP to be as good as proje
ted-8



HYP with the same parameter values. The n-HYP parameters do not have to be 
hangedwith the gauge 
oupling and perturbative 
orre
tions are expe
ted to be small. If stout-HYPsmearing is used in numeri
al simulations, the parameters will have to be tuned dependingon the gauge 
oupling. Stout-HYP smearing with parameters tuned that way is e�e
tivein removing average �u
tuations though it does not work as well in removing the extreme�u
tuations. At one-loop perturbation theory all three smearings are identi
al, but sin
e theoptimal stout parameters at large or moderate latti
e spa
ing are well above the perturbativevalues, one expe
ts larger perturbative 
orre
tions for stout links. In dynami
al updatesthe 
omputational overhead for n-HYP and stout-HYP is similar, therefore overall n-HYPappears to be a better 
hoi
e for simulations. In the following we des
ribe the implementationof n-HYP smearing in dynami
al simulations.III. FORCE OF THE NHYP LINKThe equations of motion whi
h are approximately solved in the mole
ular dynami
s evo-lution derive from dH=d� = 0, where H = p2=2 + Sf + Sg is the mole
ular dynami
sHamiltonian. The 
omputation of the fermion 
ontribution to the derivative is subje
t ofthis se
tion. We denote the part of the fermioni
 a
tion that depends on the smeared linksby Se�(V ) and assume its derivative �� with respe
t to the V links has already been per-formed. We now des
ribe how to use the 
hain rule to 
ompute the derivative with respe
t tothe thin links. In our dis
ussion we follow 
losely Ref. [11℄. We start out with the derivativeof Se� with respe
t to the simulation time parameter �dd� Se� = Re tr ÆSe�ÆV� dV�d� � Re tr (�n;� _Vn;�) : (14)Here _V = dV=d� refers to the derivative with respe
t to the simulation time �: Next we usethe de�nition of V in terms of the thin links U and the fat links eV a

ording to Eq. (6),with the proje
tion repla
ed by the normalization as given in Eq. (5), to getRe tr (�� _V�) = Re trh�(1)� _U� + e�(1)�;� _eV �;�i ; (15)�(1)n;� = �n;� �Vn;��Un;� ; (16)e�(1)n;�;� = Xm;� �m;� �Vm;�� eVn;�;� ; (17)where the sum over m runs over all sites in the ��� plaquettes atta
hed to the link (n; �)and � 
an be either � or �. Next we express eV�;� in terms of the thin links U and smearedlinks V a

ording to Eq. (7), and 
ontinue this pro
edure until we rea
h the level where onlyderivatives of the thin links are leftRe tr (�� _V�) = Re trh(�(1)� + �(2)� ) _U� + �(2)�;�;� _V �;�;�i (18)= Re tr h(�(1)� + �(2)� + �(3)� ) _U�i (19)9



with �(2)� = e�(1)�;�� eV�;��U� ; (20)�(2)n;�;�;� = Xm;�;� e�(1)�;� � eVm;�;��V n;�;�;� ;�(3)n;� = Xm;�;�;
 �(2)m;�;�;
 �V m;�;�;
�Un;� :Here we 
an �nally identify �(1)� + �(2)� + �(3)� = ÆSe�=ÆU� as the fermioni
 for
e term.Sin
e the additional levels to Eq. (15) are very simple modi�
ations of the �rst level�only restri
ting the dire
tions the sum runs over�let us restri
t the following dis
ussionto the �rst level. In terms of 
 de�ned in Eq. (1), the n-APE link is then given by V� =
�(
y�
�)�1=2. To 
ompute the inverse square root of Q = 
+
, we employ a methodanalogous to Morningstar and Peardon using the Cayley Hamilton theorem. A non-singular3� 3 matrix Q 
an always be written asQ�1=2 = f0 I+ f1Q+ f2Q2 ; (21)where the s
alars f0, f1, and f2 are fun
tions of the tra
es of Q, Q2 and Q3 only. It is
onvenient to de�ne 
0 = trQ ; 
1 = 12 trQ2 ; 
2 = 13 trQ3 : (22)The details of the fun
tional dependen
e of the fi on the 
j is dis
ussed in Se
. IIIA.To use the strategy indi
ated in Eq. (15), we apply the 
hain rule until we are only leftwith derivatives of U or V , 
y
led to the right of the tra
e. For simpli
ity in the followingwe drop the index �.Re tr� _V = Re tr�� dd� (
Q�1=2)�= Re tr(Q�1=2� _
) + tr(�
) _f0 + tr(Q�
) _f1 + tr(Q2�
) _f2 (23)+f1tr(�
 _Q) + f2tr((�
Q +Q�
) _Q) :Sin
e the fi are s
alar fun
tions of the tra
es 
n we get_fi =Xn �fi�
n tr(Qn _Q) : (24)The 
omputation of the derivatives bij = �fi=�
j is des
ribed in the next se
tion. De�ningBn = b0n + b1nQ+ b2nQ2, Eq. (23) leads toRe tr(Q�1=2� _
) + Re tr(hXn tr(Bn�
)Qn + f1�
 + f2(�
Q +Q�
)i _Q) : (25)Next, we de�ne the sum in the square bra
ket as A and use that Q = 
+
 to getRe trn(Q�1=2� + A
+ + A+
+) _
o � Re tr(� _
) (26)10



with � = (A + A+)
+ +Q�1=2�. To 
ompute the derivative of 
, we apply the 
hain ruleagainRe tr(�n;� _Vn;�) = Re tr(�n;� _
n;�)= Re tr�n;�h(1� �) _Un;� + �0X� _eV n;�;�eVn+�̂;�;� eV +n+�̂+�̂;�;�+eVn;�;� _eV n+�̂;�;� eV +x+�̂+�̂;�;� + eVn;�;�eVn+�̂;�;� _eV +n+�̂+�̂;�;�i :Now we 
an write down the �nal expression for �(1) . First there is the �global� 
ontributionfrom the thin link �(1)n;� = (1� �)�n;� (27)and then there is the term that is multiplied with the derivatives of the eV 's, whi
h we haveto 
olle
t from the various 
ontributions from neighboring sitese�(1)n;�;� = �0hV n+�;�;�V yn+�;�;��n;�;� + V n+�;�;��n+�;�;�V yn;�;� + �yn+�;�;�V yn+�;�;�V yn;�;�+(� ! ��)i :The next term in the for
e expression, �(2)� , is 
al
ulated the same way, by repla
ing ��withe�(1)�;� and V� with eV�;�, and similarly for �(3)� .A. Derivative of the f 
onstantsThis se
tion des
ribes the 
omputation of the Cayley-Hamilton 
onstants fi for the matrixQ�1=2 and their derivatives with respe
t to the tra
es of Qn. The starting point is thede�nition in Eq. (21). Sin
e the matrix Q = 
y
 is a positive, Hermitian matrix, it 
anbe diagonalized with non-negative eigenvalues gi. Eq. (21) then translates into an equationrelating the eigenvalues to the 
oe�
ients f .0B� 1 g0 g201 g1 g211 g2 g22 1CA0B� f0f1f2 1CA = 0B� g�1=20g�1=21g�1=22 1CA (28)This equation has to be solved for f . Naturally, all expressions are symmetri
 in the eigen-values g0, g1 and g2. It turns out to be 
onvenient to express the solution in terms of thesymmetri
 polynomials of the square roots of the eigenvalues pgiu = pg0 +pg1 +pg2 ; v = pg0g1 +pg0g2 +pg1g2 ; w = pg0g1g2 ; (29)su
h that we get for the 
oe�
ients f the following resultsf0 = �w(u2 + v) + uv2w(uv � w)f1 = �w � u3 + 2uvw(uv � w) (30)f2 = uw(uv � w) :11



To 
ompute the symmetri
 polynomials, we need a 
losed formula of the eigenvalues of Qin terms of its tra
es (whi
h are independent of the basis)
n = 1n+ 1trQn+1 = 1n+ 1Xi gn+1i :This leads to a 
ubi
 equation whose solution is most easily expressed in terms ofS = 
1=3� 
20=18 ; R = 
2=2� 
0
1=3 + 
30=27 ; � = ar

os� RS3=2� (31)with whi
h the eigenvalues read for n = 0, 1, 2gn = 
03 + 2pS 
os��3 + (n� 1)2�3 � (32)Finally for their use in Eq. (25), we need to 
ompute the derivatives of the fi with respe
tto the tra
es 
j. To this end, we use the 
hain rule and writeBij = �fi�
j =Xk �fi�gk �gk�
j : (33)The matrix �gk�
j is the inverse of the Vandermonde matrix �
k�gj = gkj . Fa
toring out the
ommon denominator d = 2w3(uv � w)3 we get for the symmetri
 matrix B = C=dC00 = �w3u6 + 3vw3u4 + 3v4wu4 � v6u3 � 4w4u3 � 12v3w2u3+16v2w3u2 + 3v5wu2 � 8vw4u� 3v4w2u+ w5 + v3w3C01 = �w2u7 � v2wu6 + v4u5 + 6vw2u5 � 5w3u4 � v3wu4 � 2v5u3�6v2w2u3 + 10vw3u2 + 6v4wu2 � 3w4u� 6v3w2u+ 2v2w3C02 = w2u5 + v2wu4 � v4u3 � 4vw2u3 + 4w3u2 + 3v3wu2 � 3v2w2u+ vw3C11 = �wu8 � v2u7 + 7vwu6 + 4v3u5 � 5w2u5 � 16v2wu4 � 4v4u3 + 16vw2u3�3w3u2 + 12v3wu2 � 12v2w2u+ 3vw3C12 = wu6 + v2u5 � 5vwu4 � 2v3u3 + 4w2u3 + 6v2wu2 � 6vw2u+ w3C22 = �wu4 � v2u3 + 3vwu2 � 3w2u :Note that this expression is singular only for w = 0, be
ause uv � w > 0 as long as oneeigenvalue is non-zero. The pole in w = pg0g1g2 
orresponds to at least one zero eigenvalueof Q.IV. NUMERICAL TESTSThe 
al
ulation of the fermioni
 for
e is 
onsiderably more involved with HYP links thanwith stout links, but on
e the 
ontribution from the smearing is implemented, it 
an simplyrepla
e a stout smearing for
e routine. Sin
e in Ref. [7, 15, 16, 17, 18, 19℄ stout smearing12



was used in dynami
al overlap simulations, we have tested n-HYP smearing in the sameset-up. We have also implemented smearing in dynami
al Wilson 
lover simulations. In thefollowing we brie�y summarize our experien
e with n-HYP links, 
on
entrating mainly onalgorithmi
 issues.A 
ommon algorithmi
 
on
ern, independent of the fermioni
 formulation, is the potentialo

urren
e of links with exa
tly zero determinant, det
 = 0. In su
h 
ase the normalizedsmeared link is ill-de�ned and the for
e term diverges. In our test runs we found only on
eout of 1010 smeared link evaluations det
 � 10�8 and in single pre
ision arithmeti
s thatresulted in an ex
eptionally large for
e term. The 
orresponding 
on�guration was reje
tedand the simulation 
ontinued without problem. In double pre
ision even this one o

urren
e
ould have been handled. The problem of det
 � 0 might be
ome mu
h more severe at(even) 
oarser latti
es but will disappear on the way to the 
ontinuum.A. Overlap testsSmeared links are a 
ommon ingredient to 
hiral fermion simulations be
ause the 
ostof the Dira
 operator appli
ation depends to a large part on the spe
tral properties of thekernel operator it is 
onstru
ted from. To be spe
i�
, let us 
on
entrate on Neuberger'soverlap operator Dov = (R0 � mov2 ) [1 + 
5�(h(�R0))℄ +mov ; (34)with R0 the radius of the Ginsparg�Wilson 
ir
le, mov the bare quark mass, � the matrixsign fun
tion and h = 
5d the Hermitian Dira
 kernel operator at negative mass shift �R0.d is a Wilson like latti
e Dira
 operator, for our tests we take the planar operator dis
ussedin Refs. [7, 20℄.Evaluating the a
tion of the matrix sign fun
tion of h on a ve
tor is the expensive partof overlap fermion simulations. The standard te
hnique is to 
ompute the lowest few eigen-modes of h expli
itly and use the spe
tral representation of the sign fun
tion for the 
orre-sponding sub-spa
e. For the rest of the spe
trum, a polynomial or rational approximationis used. In our test we use the Zolotarev rational approximation. The approximated signfun
tion therefore reads�(h) � hXi bih2 + 
i (1�X� P�) +X� sign�P� (35)with P� the proje
tor on the low-mode of h(�R0) with eigenvalue �. For ea
h appli
ationof Dov on a ve
tor a multi-shift system with the kernel operator has to be solved. Its
ondition number (and therefore the 
ost) de
reases if the region from whi
h the modes aretreated expli
itly is in
reased. Firstly, the lower bound of the Zolotarev approximation 
anbe in
reased whi
h yields a larger minimal 
i. Se
ondly the smallest mode of h2 whi
h hasnot been proje
ted is larger. Thus the 
ondition number of the whole system is smaller andit takes less iterations to solve the system of linear equations. A lower density of modes atthe origin 
an therefore greatly redu
e the 
ost of using the overlap operator. This 
an bea
hieved by 
onstru
ting the kernel operator h from smeared links.13



n-HYP 2� stout 3� stout#h�v 262(19) 604(38) 291(22)hj�10ji 0.31(1) 0.16(1) 0.28(1)Table II: The average number of appli
ations of the kernel operator per appli
ation of the overlapfor di�erent kinds of fat links. We also give the average of the absolute value of the tenth eigenvalue,the largest eigenvalue for whi
h we use the spe
tral representation.To estimate how smearing in the kernel operator a�e
ts the 
ost of overlap simulations,we 
ompute one 
omponent of the overlap propagator at mass amov = 0:03 on 30 123 � 24dynami
al 
lover 
on�gurations des
ribed in Se
tion IVB. On ea
h 
on�guration we proje
tout the lowest 10 eigenmodes of the kernel operator h(�R0). The number of iterations ofthe solver in the appli
ation of the sign fun
tion is averaged over the whole 
omputation ofthe propagator. This gives the largest part of the 
ost of applying the overlap operator in arealisti
 situation.We 
ompare kernel operators built from n-HYP links and stout links with two and threelevels of smearing. The stout smearing parameter is set to 6� = 0:9 whi
h is the value usedin re
ent 
al
ulations using dynami
al overlap fermions [16, 18℄, while for n-HYP we usethe standard HYP parameters. The results are displayed in Table II. The largest proje
tedmode is around 0.3 for both n-HYP and three levels of stout smearing whereas it is roughlyhalf that for 2 levels of stout smearing. Be
ause the smallest shift is mu
h smaller than that,this also means that the 
ondition number of the former is a fa
tor two smaller than for thelatter.This is also re�e
ted in the 
ost of applying the overlap operator. Two levels of stoutsmearing is about twi
e as expensive as either n-HYP or three iterated stout smearings.However, the n-HYP smearing is more lo
al than three levels of stout smearing and also
omes with smaller 
oe�
ients mixing the original links with the staple.B. Wilson 
lover a
tion testsWe have implemented n-HYP smearing with two �avor O(a) improved Wilson fermions.For the gauge a
tion we use the Lüs
her-Weisz a
tion and �x the tadpole 
oe�
ient u0 tobe 0.875, the value that 
orresponds approximately to our simulation values. Note that this
hoi
e a�e
ts the gauge a
tion only sin
e the 
lover 
oe�
ient is left at its tree�level value
SW = 1:0; preliminary simulations indi
ated that this is 
lose to the value that minimizesthe width of the spe
tral gap of the Hermitian Dira
 operator [26℄. At � = 7:2 the latti
espa
ing is around 0.13 fm and simulations in smaller volumes (latti
e size of 83�12) predi
t,from the vanishing of the PCAC quark mass (see Fig. 3), a 
riti
al hopping parameter of�
 = 0:12787(14). This value is surprisingly 
lose to the one found in a quen
hed simulationwith p-HYP smearing at similar latti
e spa
ing [12℄. The additive mass shift is dramati
allysmaller for HYP links than for thin link 
lover fermions, even with non�perturbative 
SW.The remaining results quoted in this se
tion are obtained from simulating a 123�24 latti
e14
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Figure 3: The PCAC quark mass from simulations at � = 7:2 on 83�12 latti
es. The additive massshift is only amadd = 0:090(4).at � = 7:2 and � = 0:1266. We have a

umulated 500 traje
tories after thermalization andmeasured eigenvalues of D and 
5D, n-HYP smeared Wilson loops, as well as pseudos
alar
orrelators every 5 traje
tories.The three most expensive parts of the update are the 
al
ulation of the fermioni
 for
e(in
luding inversions), the gauge for
e and the n-HYP blo
king (in
luding the n-HYP for
eterm). Of the total CPU time in these runs they 
onsumed 75%, 13% and 11%, respe
-tively. Thus, even with inexpensive fermion formulations su
h as Wilson the 
omputationaloverhead of the n-HYP blo
king is negligible. One should also note that the inversions ofthe Dira
 operator are expe
ted to be signi�
antly 
heaper than in a 
omparable physi
alsituation with thin link 
lover fermions if the latter is possible at all.A few remarks on the details of our simulation are in pla
e: Ea
h traje
tory was splitin 25 steps using a Sexton-Weingarten integrator and the same integrator on a �ner times
ale was also used for the gauge for
e. This resulted in an a

eptan
e rate of 0.879(7). On32 nodes of a Myrinet 
luster with 2GHz Xeon pro
essors, one unit length traje
tory tookabout 17 minutes to 
omplete.From �ts to the stati
 quark potential [21℄ we extra
t the Sommer s
ale [22℄ r0=a =3:903(25) and the string tension ap� = 0:2897(26). The bare 
urrent quark mass am =0:0451(9) is in good agreement with the small volume data shown in Fig. 3, indi
ating small
uto� e�e
ts. Assuming r0 = 0:5 fm we obtain a latti
e spa
ing of 0:128(1) fm and bare
urrent quark mass of 69:4(1:5)MeV. We �nd a ratio of pseudos
alar to ve
tor meson massof 0:57(3).The behavior of the low-lying eigenmodes of the Dira
 operator are of parti
ular interestif one wants to determine the degree of 
hiral symmetry that is retained at �nite latti
espa
ing. Also, the lowest eigenvalue of the Hermitian Dira
 operator 
5D is important foralgorithmi
 reasons as it determines the spe
tral gap and indi
ates the lowest bare quarkmass potentially a

essible at a given latti
e spa
ing and volume [5℄.15
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Figure 4: The infrared spe
trum of the n-HYP Wilson 
lover Dira
 operator (left panel), and thespe
tral gap as determined from the lowest eigenmode of the Hermitian 
5D Dira
 operator on thesame 
on�gurations (right panel). The dashed line in both plots indi
ates the median of the spe
tralgap distribution. Data are from 100 123 � 24 
on�gurations with latti
e spa
ing a � 0:13 fm andbare quark mass m � 69MeV.The left panel of Fig 4 shows the infrared spe
trum (lowest 40 eigenmodes) of the n-HYP Dira
 
lover operator from 100 
on�gurations. The 
omplex spe
trum has a ratherwell de�ned left boundary that follows a 
ir
le with only a few real modes violating thatbound. This indi
ates that even at this 
oarse latti
e spa
ing mu
h smaller quark masses
an be rea
hed without en
ountering ex
eptional 
on�gurations. A similar plot is publishedin Ref. [23℄ showing the eigenmodes of the 
hirally improved CI Dira
 operator in two �avordynami
al simulations at similar latti
e spa
ing and volume, though about 50% lighter quarkmasses. The spe
trum in Fig. 4 
ompares well with that plot, showing similar widening ofthe Ginsparg�Wilson 
ir
le for the two a
tions.A more dire
t measure of the a

essible mass range is the spe
tral gap, i.e. the distributionof the smallest magnitude eigenvalue of the Hermitian Dira
 operator 
5D [5, 24℄. Thisdistribution is plotted on the right panel of Fig. 4 with the median �� = 63:3(4) MeVmarked by a dotted line. The ratio of the median and the PCAC quark mass is indi
ative ofthe renormalization fa
tor ZA=(ZmZP ) [5, 12℄ and the value we obtain, 0.91, signals smallperturbative 
orre
tions.To fa
ilitate 
omparison with similar distributions in Ref. [5℄ the data is plotted with thesame bin size, �� = 1:5MeV. The width of the distribution, de�ned as half the width of theshortest interval that 
ontains 68.3% of the data, is � = 5:5(6)MeV. Sin
e the distribution inFig. 4 is quite asymmetri
, it is more physi
al to de�ne the width as the interval to the left ofthe median that 
ontains 68.3% of the data. This modi�ed de�nition gives � = 4:6(6)MeV.16



One expe
ts that simulations at quark masses of about 3� are safe, whi
h 
orresponds to' 15MeV at this volume and latti
e spa
ing. In Ref. [5℄ it was found that, at least forunimproved thin link Wilson fermions [24℄, the width of the spe
tral gap s
ales inverselywith the square root of the volume, �pV � 1. Assuming the same s
aling law in our 
asewe �nd �pV � 0:61� 0:73, depending on the de�nition of the width. The de
rease signalsthe improved 
hiral properties of the smeared Dira
 operator. The median �� of the lowestmode of the Hermitian operator is also indi
ated in the 
omplex Dira
 spe
trum, where itis tangent to the 
ir
le that bounds the spe
trum.V. CONCLUSIONSWe have su

essfully implemented and tested a gauge link smearing s
heme that inheritsthe good properties of HYP smearing (lo
ality and removal of dislo
ations) while still beingsuitable for MD based algorithms. This is a
hieved by repla
ing the proje
tion steps inthe original HYP 
onstru
tion by normalizations to the 
orresponding unitary group, thusallowing the 
al
ulation of the mole
ular dynami
s for
e for fermions 
oupled to the smearedlinks. We have tested the n-HYP smearing with overlap fermions where we found that they
an be simulated as e�e
tively as 3 level stout smeared fermions and about twi
e as fastas 2-level stout smeared ones. We have also implemented the smearing with Wilson -
loverfermions. Our preliminary tests indi
ate that light quarks, even as low as 15 MeV, 
an besimulated at a � 0:13 fm latti
es and volumes aL & 1:6 fm. In addition, the smoothness ofthe smeared links speed up the inversion of the Dira
 operator.We have reported only preliminary results here. The volume, quark mass, and latti
espa
ing dependen
e of Wilson 
lover simulations with n-HYP links will be tested in thefuture.VI. ACKNOWLEDGMENTAt various stages of this proje
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