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Shoen manifold with line bundles as resolved magnetized orbifoldsStefan Groot Nibbelinka;1, Patrik K.S. Vaudrevangeb;2a Arnold Sommerfeld Center for Theoretial Physis,Ludwig-Maximilians-Universit�at M�unhen, 80333 M�unhen, Germanyb Deutshes Elektronen{Synhrotron DESY, Notkestra�e 85, 22607 Hamburg, GermanyAbstratWe give an alternative desription of the Shoen manifold as the blow{up of a Z2 � Z2 orbifoldin whih one Z2 fator ats as a roto{translation. Sine for this orbifold the �xed tori are onlyidenti�ed in pairs but not orbifolded, four{dimensional hirality an never be obtained in heterotistring ompati�ations using standard tehniques alone. However, hirality is reovered when itstori beome magnetized. To exemplify this, we onstrut an E8 � E80 heteroti SU(5) GUT on theShoen manifold with Abelian gauge uxes, whih beomes an MSSM with three generations after anappropriate Wilson line is assoiated to its freely ating involution. We reprodue this model as astandard heteroti orbifold CFT of the (partially) blown down Shoen manifold with a magneti ux.Finally, in analogy to a proposal for non{perturbative heteroti models by Aldazabal et al. we suggestmodi�ations to the heteroti orbifold spetrum formulae in the presene of magnetized tori.
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1 Introdution and summaryThere are two standard approahes in the literature to geometrial string ompati�ation of theheteroti string. (Non{geometrial approahes involve e.g. free{fermioni models [1, 2℄ and Gepneronstrutions [3,4℄.) Either strings are onsidered on singular (toroidal) orbifolds or on smooth Calabi{Yau manifolds. The main advantage of orbifolds over smooth Calabi{Yau spaes is that they are sosimple that the heteroti string an be quantized on them exatly [5, 6℄. Therefore, one has aessto the full spetrum of the theory; not just to its zero modes. In addition, one an san in a verysystemati way through the parameter spae of heteroti orbifold ompati�ations in order to searhfor interesting models for string phenomenology (using e.g. [7℄). This has resulted, for example, in amini{landsape of a few hundred MSSM models based on the heteroti E8�E80 orbifold T 6=Z6{II [8,9℄.An orbifold an be onsidered as a Calabi{Yau spae at a singular point in its moduli spaewhere symmetries get enhaned. To go away from the orbifold point in moduli spae the orbifoldsingularities have to be resolved (or deformed). In this blow{up proess ertain (exeptional) ylesthat were hidden inside the singularities aquire �nite volumes. From the heteroti orbifold modelperspetive this orresponds to turning on Vauum{Expetation{Values (VEVs) for twisted states,so{alled blow{up modes, whih are loalized at the singularities of the orbifold. Unfortunately, anexat string quantization is out of reah at a generi point in moduli spae and there is typially muhless symmetry. For example, it turns out that in full blow{up any mini{landsape model has brokenhyperharge [10,11℄. This might be interpreted in two ways: Either one does not go to the full blow{upin order to keep hyperharge unbroken and our string vauum is very lose to the orbifold point, orour string vauum is at a generi point of the moduli spae and di�erent onstrutions are needed forphenomenology. As disussed in [12, 13℄ freely ating involutions an be used as an example for theseond interpretation and an MSSM orbifold model has been onstruted on the heteroti T 6=Z2�Z2orbifold, whih in priniple an avoid hyperharge breaking in full blow{up.Furthermore, there have been various onstrutions of MSSM models in the ontext of the heterotistring ompati�ed on smooth Calabi{Yau manifolds. For example, a three generation MSSM has beenonstruted in [14℄ on the Shoen manifold [15℄ using a stable SU(5) vetor bundle [16{18℄. Similaronstrutions { yet not fully supersymmetri [19℄ { an be found in e.g. [20℄. Even though the Shoenmanifold is just one partiular Calabi{Yau spae, it is a typial example of a omplete intersetionCalabi{Yau: It an be obtained as a set of hyper surfaes within a diret produt of projetive spaes.Most heteroti models built on the Shoen manifold require ompliated onstrutions of stableSU(N) bundles. Therefore, one may wonder whether it is also possible to design MSSM{like heterotistring models on the Shoen manifolds using line bundles. As has been realized by various groups[21,22℄ the analysis of line bundles on smooth Calabi{Yau spaes, desribed as omplete intersetionsin tori varieties, an be performed muh easier than their non{Abelian ounterparts. The main reasonfor this is that for line bundle gauge bakgrounds the stability of the bundle redues to solving simpleDonaldson{Uhlenbek{Yau (DUY) equations [23,24℄ in terms of the K�ahler moduli [25,26℄. Moreover,the embedding of line bundles into the ten{dimensional heteroti gauge group (E8 � E80 or SO(32),where we fous on the E8�E80 ase, but most of our results equally apply to the SO(32) ase.) an beharaterized by vetors of integers [27, 28℄. This makes it possible to perform omputer{aided sansfor potentially phenomenologially viable models.The Shoen manifold does not only provide an interesting example of a Calabi{Yau onstrutedas a omplete intersetion. It an also be onsidered as a smooth limit of a ertain orbifold [29℄. Thisorbifold has some speial properties: It is a T 6=Z2 � Z2,rototrans orbifold, where Z2,rototrans ats as1



a roto{translation, i.e. as a simultaneously performed rotation and translation [30℄ (and [31℄ in thetype II string ontext, where this kind of orbifolds are alled shift orbifolds). This has far reahingonsequenes for the struture of the �xed points and tori and, in turn, modi�es the breaking of higherdimensional supersymmetry to N = 1 in four dimensions for heteroti string ompati�ations. Aswe will see, this neessarily results in vetor{like spetra for this kind of orbifold geometry.This is not a peuliar feature of this speial orbifold, many more orbifolds with this property areknown. Reently, there has been a lassi�ation of all six{dimensional toroidal orbifold geometriesthat give rise to four{dimensional N = 1 supersymmetry [32℄. These geometries an be arranged intwo sets: The ones with Abelian point group and the ones with non{Abelian point group. 23 of the138 geometries with Abelian point group share the property that they neessarily lead to non{hiralspetra for heteroti string ompati�ations. (These are Z2�Z2 variants, part of the lassi�ation ofRef. [29℄.) For the non{Abelian ases these numbers are essentially unknown. However, one expliitexample of a heteroti S3 orbifold [33℄ also turns out to produe only vetor{like spetra. We thereforeexpet that also a sizable portion of the non{Abelian point group orbifolds will unavoidably be non{hiral in four dimensions.Hene, it is an important question whether there exists an unavoidable no{go theorem againstfour{dimensional hirality for all these heteroti orbifolds. Fortunately, we will show that it is possibleto irumvent this no{go by allowing for magnetized tori on the orbifold. Conretely, we put magnetiuxes on the tori of the Shoen orbifold and show that four{dimensional hiral spetra an be realized.More than that, we will show that it is even possible to obtain MSSM{like models in this way.There is one tehnial subtlety in the onstrution of suh orbifolds with magnetized tori: As far aswe know, ontrary to onventional orbifolds, it is unknown how to quantize the heteroti string exatlyon them. We by{pass this obstrution in two ways: First, we onsider the whole onstrution in blow{up, i.e. on the smooth Shoen manifold. Seond, we show that one an start with a six{dimensionalspetrum obtained from a standard heteroti T 4=Z2 orbifold, whih is a subspae of the partiallyblown{down Shoen manifold, using onventional CFT tehniques. Then, one an use �eld theoretialmethods, disussed e.g. in [34{36℄, to determine the onsequenes of the additional (magneti) uxesand to obtain a hiral spetrum in four dimensions. Both approahes, i.e. the smooth approah andthe hybrid approah of ombining CFT and �eld theoretial methods, will reprodue exatly the samespetrum.Paper overviewIn Setion 2 we review the basis of heteroti orbifold models. In addition we introdue the DW(0{2)orbifold whih is of entral interest in this work. Setion 3 provides an alternative desription of theShoen manifold as the resolution of this DW(0{2) orbifold. In Setion 4 we desribe the E8 � E80heteroti string with line bundles on the divisors of the Shoen manifold inluding magneti uxes onthe tori of the underlying orbifold. Moreover, we identify the relevant onsisteny onditions for suhgauge bakgrounds and ompute the resulting hiral spetra in both, four and six, dimensions. Then,we provide an example that mainly serves to illustrate various aspets of the general theory developedin this paper. In Setion 5 we onstrut a spei� example, whih is potentially phenomenologiallyinteresting as it has the partile spetrum of the MSSM in four dimensions. We analyze this exampleusing two approahes: First, the smooth approah and, seond, the hybrid approah of ombiningCFT and �eld theoretial methods. Finally, in Setion 6 we speulate on how to extend the standardheteroti CFT desription of orbifolds in the presene of magnetized tori.2



AknowledgementsWe would like to thank Vinent Bouhard and Ron Donagi for early disussions that initiated thisprojet. We are also indebted to Kang{Sin Choi, James Gray, Tatsuo Kobayashi and Fabian R�uhle forvaluable disussions. SGN would like to thank the organizers of the Workshop\Topologial HeterotiStrings and (0,2) Mirror Symmetry" in Vienna for hospitality. We also thank the organizers of theBethe Forum and the 4th Bethe Center Workshop on \Uni�ation and String Theory" in Bonn/BadHonnef for hospitality. This researh has been supported by the "LMUExellent" Programme. P.V.is supported by SFB grant 676.2 Heteroti Z2 � Z2 orbifoldsIn this setion we desribe some basi geometrial properties of Z2�Z2 orbifolds and explain how todetermine whether suh orbifolds an lead to heteroti (E8 � E80) string models with hiral spetrain four dimensions. We follow the lassi�ation sheme for these orbifolds developed by Donagi{Wendland [29℄. (See their Table 1 for details and nomenlature). In partiular, we desribe theirDW(0{2) orbifold whih an be onsidered as a ertain singular limit of the so{alled Shoen manifold.However, for omparison purposes we �rst reall some basi fats of Z2� Z2 orbifolds and give somedetails of the more often onsidered DW(0{1) orbifold.2.1 General features of Z2 � Z2 orbifoldsWe onsider Z2 �Z2 orbifolds de�ned as R6=S (1)where the spae group S spei�es an equivalene relation on R6 as g X � X for all g 2 S andX 2 R6 . A general spae group element g = (#; `) onsists of a six{dimensional rotation matrix #and a translation `. It ats on X 2 R6 as g X = #X + `. The spae group is generated by twotypes of elements: The purely translational elements gi = (11; ei) are determined by six basis vetorsei (i = 1; : : : ; 6) that span a six{dimensional lattie and hene de�ne a six{torus. For simpliity, weidentify R6 = C3 and take as basis vetorse1 = (1; 0; 0) ; e2 = (i; 0; 0) ; e3 = (0; 1; 0) ; e4 = (0; i; 0) ; e5 = (0; 0; 1) ; e6 = (0; 0; i) : (2)Consequently, we denote the torus oordinates by z = (z1; z2; z3) 2 T 21 �T 22 �T 23 in this omplex basis.The remaining two generators of the spae group, g� and g!, involve Z2 �Z2 rotations, denoted by �and !, possibly ombined with some translations. When this is the ase suh elements are referred toas roto{translations. The phases of the rotations ating on C3 arev� = �0; 12 ;�12� ; and v! = ��12 ; 0; 12� ; (3)respetively.The ation of the spae group elements is subsequently extended to the left{moving setor of theheteroti worldsheet theory that desribes the target spae gauge degrees of freedom. In a bosoniformulation this setor an be desribed by 16 left{moving oordinates XIL (I = 1; : : : ; 16) living on atorus R16=�E8�E80 de�ned by the E8�E80 root lattie �E8�E80 . The simplest way to extend the spae3



group ation is the shift embedding whih ats as: g XIL = XIL + 2� V Ig . Hene V : g 7! Vg de�nes agroup homomorphism of the spae group S to the Abelian group R16 under addition. For a generalspae group element g = gk� gl! gn11 � : : : � gn66 , with k; l = 0; 1 and ni 2 Z, the loal twist vg and shiftvetor Vg an be expanded asvg = k v� + l v! ; Vg = k V� + l V! + niWi (4)in terms of the gauge shift vetors V� and V! and the disrete Wilson lines Wi where summation overi from 1 to 6 is understood. In order that Vg de�nes a proper group homomorphism, it is requiredthat 2V� �= 2V! �= 2Wi �= 0 ; (5)where �= means equal up to �E8�E80 lattie vetors.The entral onsisteny requirement of heteroti orbifold ompati�ations is modular invariane.For a Z2� Z2 orbifold it requires for all ommuting spae group elements h; g thatVh � Vg � vh � vg � 0 ; (6)where � indiates that both sides are equal up to integers. Combined with equation (5) this leads tothe following set of irreduible modular invariane onditions:V 2� � v2� ; V 2! � v2! ; V� � V! � v� � v! ; V� �Wi � V! �Wi � 0 ; Wi �Wj � 0 ; (7)by going through all possible ommuting hoies of g; h 2 S.The spetrum of (twisted or untwisted) losed strings from the setor g 2 S is ditated by theirleft{ and right{moving massesM2L = 12 P 2sh + eNg � 34 ; M2R = 12 p2sh � 14 ; (8)in terms of the (shifted) left{ and right{moving momentaPsh = P + Vg ; psh = p+ vg ; (9)where P 2 �E8�E80 and p is from the vetorial or spinorial weight lattie of SO(8). Here, the twistvetor vg is extended to a four{dimensional vetor with an extra 0 as �rst omponent. Furthermore,eNg is a (frational or integer) number operator ounting the number of left{moving osillators ~��nating on the left{moving ground state of the g{twisted setor. The physial spetrum is subjet tothe level mathing ondition M2L = M2R. The massless states in four dimensions have vanishing left{and right{moving masses, ML =MR = 0, and are subjet to the projetion onditionsVh � Psh � vh � �psh +� ~Ng� � 12�Vg � Vh � vg � vh� ; (10)for all spae group elements h that ommute with g, using � ~N ig = ~N�ig � ~N ig, i = 0; 1; 2; 3, where ~N�igand ~N ig are integer osillator numbers ounting the numbers of osillators ~��i�n and ~�i�n ating on theground state of the g{twisted setor, respetively. 4
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Figure 1: Fixed tori of the DW(0{1) orbifold. Every �xed torus intersets 4 + 4 other �xed tori andthe intersetion loi are points in six dimensions.2.2 The standard DW(0{1) Z2 � Z2 orbifoldNow, we onsider the standard T 6=Z2 � Z2 orbifold whih orresponds to the DW(0{1) model ofRef. [29℄ in order to see how four{dimensional hirality arises. In this ase, the elements g� and g! atonly as rotations, hene the spae group S is generated by the elements: g� = ��; 0�, g! = �!; 0� andgi = �11; ei�.When ompatifying the heteroti string on this orbifold, massless strings are attahed to its �xedtori. There are 16 + 16 + 16 �xed tori assoiated to three twisted setors with orbifold elements g�,g! and g�g!. These �xed tori are in one{to{one orrespondene to the spae group elements:(�; niei) for n1 = n2 = 0 and n3; n4; n5; n6 = 0; 1 ; (11a)(!; niei) for n3 = n4 = 0 and n1; n2; n5; n6 = 0; 1 ; (11b)(�!; niei) for n5 = n6 = 0 and n1; n2; n3; n4 = 0; 1 ; (11)and are displayed in �gure 1. At a given �xed torus there exists a six{dimensional N = 1 theory (i.e.N = 2 theory in four{dimensional language) with loalized hypermultiplets on it. Sine every �xedtorus intersets other �xed tori, six{dimensional N = 1 supersymmetry is broken to N = 1 in fourdimensions at the intersetion points. Tehnially, eah �xed torus is orbifolded by the ation of someother non{trivial elements beause the orbifold generators g� and g! ommute. For example, the �xedtorus of (�; 0) is orbifolded by (!; 0) and (�!; 0). Hene, the projetion onditions (10) are ative andredue a hypermultiplet in six dimensions to a four{dimensional hiral super�eld, giving hiral matter.5
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Figure 2: Fixed tori of the DW(0{2) orbifold. The �xed tori of the �{setor never interset the onesfrom the !{setor, as they lie displaed in the third torus.For example, in the orbifold standard embedding, where the twists � and ! are embedded via theshifts V� = �0; 12 ; - 12 ; 05��08� and V! = � - 12 ; 0; 12 ; 05��08�, we obtain a theory with 51 hiral 27{plets (3untwisted and 3 � 16 twisted) and 3 untwisted hiral 27{plets of E6 in four dimensions. This preiselyorresponds to the hodge numbers of the DW(0{1) orbifold: (h11; h21) = (51; 3).2.3 The DW(0{2) Z2 � Z2 orbifoldNext, we turn to the orbifold T 6=Z2 � Z2,rototrans whih will be the main fous in this work: theDW(0{2) model in the lassi�ation [29℄. Its spae group S is generated by the elements g� = ��; 0�,g! = �!; 12e5� and gi = �11; ei�. In detail, the ation of g�, g!, g!g� and g�g! on C3 is given byg� : �z1; z2; z3� = �z1;�z2;�z3� ; g!g� : �z1; z2; z3� = �� z1;�z2; z3 + 12� ;g! : �z1; z2; z3� = �� z1; z2;�z3 + 12� ; g�g! : �z1; z2; z3� = �� z1;�z2; z3 � 12� : (12)This shows expliitly that g� ats as an ordinary Z2 rotation, while g! de�nes a Z2 roto{translation,whih we denote by Z2,rototrans. The remaining two elements at as an Z2 in the �rst two two{tori,but as a translation over half a lattie vetor e5 in the third two{torus.This has various important onsequenes for the distribution of �xed tori within the DW(0{2)orbifold: Rather than 16+16+16 there are only 8+8 �xed tori. These are left �xed by the groupelements g� and g!. Sine g�g! and g!g� at as a pure translations in the third T 2, they do notprodue any �xed tori by themselves, but rather identify the �xed tori of g� and g! in pairs. The �xedtori of g� and g! are in one{to{one orrespondene to the spae group elements,gr = ��; niei� for n1 = n2 = 0 and n3; n4; n6 = 0; 1 ; (13a)g0r0 = �!; 12e5 + niei� for n3 = n4 = 0 and n1; n2; n06 = 0; 1 : (13b)We will often refer to the positions �z1; 12n3 + i2n4; i2n6� and �12n1 + i2n2; z2; 14 + i2n06) of the �xed toriof g� and g! using multi{indies r = (n3; n4; n6) and r0 = (n1; n2; n06), respetively. As illustrated in6



�gure 2 the �xed tori r and r0 lie parallel to eah other in the third T 2. To emphasize this importantfat we use the primes on r0 and n06 to signal that the 8 �xed points r0 are shifted by 14e5 = (0; 0; 14 )in the third torus w.r.t. the �xed points r.When ompatifying the heteroti string on this orbifold, massless strings are attahed to these�xed tori as for the DW(0{1) orbifold above. However, sine in this ase the �xed tori do not interset,there are no projetions ating loally on the six{dimensional N = 1 theory. (Or more tehnially,even though � and ! ommute,the spae group elements g� and g! do not, sine they are de�ned toat on R6 not on T 6, see (12). Hene, the projetion ondition (10) is not implemented for theseelements.) Nevertheless, from a four{dimensional point{of{view supersymmetry is broken to N = 1:There are two six{dimensional theories living on the �xed tori of the g� and g! setors whih realizedi�erent six{dimensional N = 1 supersymmetries. Hene, in the e�etive four{dimensional theoryonly N = 1 remains. As this provides an example of non{loal supersymmetry breaking, the six{dimensional hypermultiplets just branh into two hiral multiplets and onsequently the resultingfour{dimensional theory is neessarily non{hiral. Conretely, for the orbifold standard embeddingwe �nd for this orbifold 3 + 2 � 8 = 19 hiral 27{plets and 3 + 2 � 8 = 19 hiral 27{plets of E6, i.e.the Hodge numbers are (19; 19). In fat, beause supersymmetry is broken non{loally, any DW(0{2)orbifold is non{hiral, independently of the hoie of shifts and Wilson lines.Beause of this, it would seem that this type of orbifold an never be relevant for four{dimensionalmodel building. One of the main messages of this paper is that one should not disard suh orbifoldsfor phenomenology just yet. In fat, as shown in Setion 5 it is possible to onstrut an expliit sixgeneration SU(5) GUT model on the resolution of this orbifold. To break the GUT to the MSSM andto redue the number of generations by a fator two one an use a (true �eld{theoretial) Wilson lineWfree assoiated to a free involution Z2,free of the geometry. In terms of the omplex oordinates wetake this involution to at as �z1; z2; z3�! �z1 + i2 ; z2 + i2 ; z3 + i2� : (14)When this involution has been modded out the resulting geometry orresponds to the DW(1{3) orbifoldwith Hodge numbers (11; 11) in the lassi�ation [29℄. In order that this is a symmetry of the fullmodel, the disrete Wilson lines get severely restrited, i.e. W2 �=W4 �=W6 and Wfree �= 12W2.3 Shoen manifoldThe Shoen manifold X was �rst introdued in [15℄; here we follow the desription of this manifoldgiven e.g. in [16{18, 37℄. The Shoen manifold is de�ned as the �ber produtX = B �P1 B0 ; (15)of two (four{dimensional) rational ellipti surfaes B and B0. Hene, the manifold X is naturallyequipped with two projetions �0 : X ! B and � : X ! B0 that projet on either fator of the �berprodut. Suh a rational ellipti surfae B is de�ned as a two{torus �bration � : B ! P1 over thebase P1. In terms of the �brations � and �0 the �ber produt (15) is written asX := �(p; p0) 2 B �B0 j �(p) = �0(p0)	 : (16)A two{torus an be desribed as an ellipti urve, i.e. via the Weierstrass mapping as the so-lution to an homogeneous ubi polynomial onstraint f(x) = 0 in the homogeneous oordinates7



x = (x0; x1; x2) 2 P2. The omplex struture of the torus is enoded in the onstraint f(x) = 0:A homogeneous ubi polynomial is haraterized by 3 + 6 + 1 = 10 omplex parameters, of whiheight an be removed by omplexi�ed SU(3) rotations of x and the overall omplex sale is irrelevant.Beause of the �bration the omplex struture in general varies over the base P1. Therefore, therational ellipti surfae B an be given byB = P2P1 � 31 � : B = �p = (x; t) 2 (P2;P1) j t0 f0(x)� t1 f1(x) = 0	 : (17)The surfae B an thus be onsidered as the blow{up of P2 at (generially) 3 � 3 = 9 points x whereboth ubi polynomials vanish simultaneously f0(x) = f1(x) = 0. Sine at eah of these points anexeptional yle P1 is inserted, the ohomology group H2(B;Z) = Z10 is spanned by the hyper planelass ` of P2 and the exeptional lasses e� (� = 1; : : : ; 9) with intersetion numbers `2 = �e2� = 1.This surfae has 1(B) = 3 `�P� e� and Euler number �(B) = 2(B) = �(P2) + 9 � �(P1) = 12.As the desription of B0 is similar, the manifold X an be written as a omplete intersetionCalabi{Yau X = P2P2P1 24 3 00 31 1 35 : 8<: t0 f0(x)� t1 f1(x) = 0t0 f 00(x0)� t1 f 01(x0) = 0 : (18)Clearly, the Calabi{Yau ondition is satis�ed as the horizontal sums of the degrees of the homoge-neous polynomials are one higher than the dimension of the respetive projetive spaes. In thisrepresentation the number of omplex struture deformations is readily ounted: There are 4 ubipolynomials, f0(x); f1(x); f 00(x0); f 01(x0), eah ontaining 10 omplex parameters. By rede�nitions ofx, x0 and t one an remove 2 � 8 + 3 of them and two overall omplex sales are irrelevant, heneh12 = 4 � 10 � 2 � 8 � 3 � 2 = 19. On both B and B0 there are 10 (1; 1){forms orresponding to thelasses `; e� and `0; e0�, respetively. However, sine �(p) = �0(p0) there is one linear relation amongthem. Consequently, the number of K�ahler deformation equals h11 = 2 � 10� 1 = 19. In summary theHodge numbers of X are (19; 19).3.1 Singular Shoen manifold: the DW(0{2) orbifoldPutting the disussion above and the information obtained in Subsetion 2.3 together suggests that theT 6=Z2�Z2;rototrans orbifold an be onsidered as a spei� singular limit of the Shoen manifold, sinetheir Hodge numbers agree. Indeed, by the following onsiderations this an be on�rmed [29℄: Onthe overing six{torus oordinates z the projets �0 and � at as �0(z) = (z1; z3) and �(z) = (z2; z3),hene the rational ellipti surfaes B and B0 are given in this singular limit asB = �(z1; z3) 2 T 21 � T 23 j (z1; z3) � (z1;�z3) � (�z1; 12 � z3) � (�z1; z3 + 12 )	 ; (19a)B0 = �(z02; z03) 2 T 22 � T 23 j (z02; z03) � (z02; 12 � z03) � (�z02;�z03) � (�z02; z03 + 12 )	 : (19b)These spaes are isomorphi: By applying a hange of oordinates (z02; z03) = (z1; z3 + 14) the identi�-ations in B beome idential to those in B0. The P1 in the �ber produt, whih has the topology ofa two{sphere, beomes a retangular pillowP1 = �(z3) 2 T 23 j (z3) � (�z3) � (12 � z3)	 : (20)8



3.2 Shoen manifold as the resolution of the DW(0{2) orbifoldAs has been explained e.g. in [13,38,39℄ one an onstrut the smooth resolutions of ompat orbifoldsin a systemati fashion. In partiular, it is possible to determine a onvenient basis of divisors andthe intersetion numbers of the resolution of the orbifold T 6=Z2 � Z2,rototrans. Hene, when applyingthese methods to the DW(0{2) orbifold one obtains a smooth Calabi{Yau spae whih onstitutes adi�erent realization of the Shoen manifold. As we will use this desription of the Shoen manifold inthe remainder of this paper, we desribe this proedure in some detail below.Intersetion ring of a basis of divisorsThe inherited divisors Ra (a = 1; 2; 3) orrespond to the torus divisors fza = ag with a some generiomplex numbers that are made ompatible with the orbifold ation:R1 := fz1 = 1g [ fz1 = �1g ; R2 := fz2 = 2g [ fz2 = �2g ;R3 := fz3 = 3g [ fz3 = �3g [ fz3 = 12 + 3g [ fz1 = 12 � 1g ; (21)Next we de�ne the ordinary divisors assoiated to the loal oordinates de�ned near the �xed pointsof the orbifoldD1;n1n2 := fz1 = 12 n1 + i2 n2g ; D2;n3n4 := fz2 = 12 n3 + i2 n4g ;D3;n6 := fz3 = i2 n6g [ fz3 = 12 + i2 n6g ; D03;n06 := fz3 = 14 + i2 n06g [ fz3 = 34 + i2 n06g : (22)Finally, the exeptional divisors, denoted by E0r0 and Er, arise when we resolve the Z2 singularitiesusing e.g. tori geometry tehniques. Sine the �xed tori are identi�ed in pairs in the DW(0{2) orbifold,we an represent them in terms of the exeptional divisors in the fundamental domain of the originalT 6 (before modding out this identi�ation):Er = En3n4n6 = En3n40n6 [En3n41n6 ; E0r0 = E0n1n2n06 = En1n20n06 [En1n21n06 : (23)These 8+8 exeptional divisors stem from the 8+8 �xed tori displayed in the Figure 2.Between these divisors the following linear equivalene relations hold:2D1;n1n2 = R1 �Xn06 E0n1n2n06 ; 2D03;n06 = R3 � Xn1;n2E0n1n2n06 ;2D2;n3n4 = R2 �Xn6 En3n4n6 ; 2D3;n6 = R3 � Xn3;n4En3n3n6 : (24)These linear equivalene relations show that a basis for the H2(X;R) are formed by the divisors Rand E. (In total we have 3 + 2 � 8 = 19 of them.) In this basis the Shoen manifold has the followingnon{vanishing self{intersetions between these divisors:R1R2R3 = 4 ; R2(E0n1n2n06)2 = R1(En3n4n6)2 = �4 : (25)Using the linear equivalene relations (24) (self{)intersetions between any ombination of R's, D'sand E's are readily omputed. 9



Chern lassesThe total Chern lass (TX) of the tangent bundle of the resolution spae X an be omputed fromthe splitting priniple as (TX) =Y(1 +D) Y(1 +E) Y(1�R)2 ; (26)where the produts are taken over all divisors of the appropriate types. By expanding this out, wean determine the �rst and seond Chern lasses of X. Using the linear equivalene relations (24) we�nd that 1(TX) = 0, on�rming that X de�nes a Calabi{Yau spae. For the seond Chern lass weobtain 2(TX) = �34�Xr0 (E0r0)2 +Xr (Er)2�+ : : : (27)The dots : : : refer to further terms that appear in this expansion in priniple, but whih never on-tribute when integrated over any four{yle using the intersetion numbers given above.By employing the adjuntion formula, 2(D) = D 2(XjD) one an determine the Euler numberof the hyper surfae assoiated to the divisor D. In partiular, from�(R1) = 2(R1) = 24 ; �(R2) = 2(R2) = 24 ; and �(R3) = 2(R3) = 0 ; (28)we infer that the divisors R1 and R2 are K3 surfaes and R3 is a four{torus. Finally, one may onsiderD1;00 and D2;00 as the divisor lasses assoiated to the rational ellipti surfaes B0 and B, respetively.Indeed, the Euler number of D1;00 equals �(D1;00) = 12, and, sine D1;00E2r = �2, D1;00 ontains thesame �xed points of g� as B0, see (19). Hene, we may identify B0 = D1;00 and similarly B = D2;00.4 Line bundle models on the Shoen resolutionIn this Setion we onsider Abelian gauge bakgrounds on the Shoen geometry as desribed in the pre-vious Setion. After that we determine the harged hiral spetrum in the presene of this bakground,showing in partiular that even with line bundles it is possible to obtain hirality in four dimensions.Subsetion 4.3 explains how the spetra of suh line bundle bakgrounds an be interpreted as het-eroti orbifolds with appropriate blow{up modes swithed on. The �nal Subsetion illustrates variousaspets by giving an expliit line bundle model on the Shoen manifold.4.1 Abelian gauge ux bakgroundsOn the spae X we onsider an Abelian gauge bakground F whih is embedded in the Cartansubalgebra, spanned by the generators HI , of the E8 � E80 gauge group of the heteroti theory. Ingeneral this gauge ux is supported on both the exeptional and inherited divisorsF2� =Xa RaHBa +Xr ErHVr +Xr0 E0r0 HV 0r0 : (29)The line bundle vetors Vr; V 0r0 and the magneti uxes Ba on the tori are sixteen{dimensional om-ponent vetors that haraterize the orresponding line bundle embedding in E8 � E80. To shorten10



the notation we have written HA = AI HI , where A are referred to as bundle or ux vetors with 16omponents, AI .In order that this gauge bakground is ompatible with the freely ating Z2,free involution (14) ofthe orbifold, we need to require thatVn3 n4 n6 = Vn3 n4+1n6+1 ; V 0n1 n2 n06 = V 0n1 n2+1n06+1 ; (30)Given that the indies take values ni = 0; 1, the addition of indies is performed modulo 2.Flux quantizationFor a gauge ux on�guration (29) to be physially admissible it has to be integrally quantized, i.e.ZC F2� 2 Z ; (31)for all urves C that the manifold X admits. This gives a stringent set of onditions on the bundlevetors 2V 0n1n2n06 �= 2Vn3n4n6 �= 0 ; 2B1 �= 2B2 �= 2B3 �= 0 ; (32a)Xn1;n2 V 0n1n2n06 +B1 �= Xn3;n4 Vn3n4n6 +B2 �= 0 ; Xn06 V 0n1n2n06 +Xn6 Vn3n4n6 +B3 �= 0 : (32b)The �rst two onditions of (32a) are obtained by integrating over the urves D2;n3n4E0n1n2n06 andD1;n1n2En3n4n6 , respetively. The �rst two sum onditions in (32b) result from integrating overD2;n3n4D03;n06 and D1;n1n2D3;n6 , respetively. The last sum relation in (32b) is found by integrat-ing over D1;n1n2D2;n3n4 . When we ombine these sum equations with the �rst two onditions of (32a),the latter three of (32a) are inferred. These equations are quite triky to be solved in general. However,there are two (related) ans�atze that simplify the problem onsiderably:First of all, one may assume that the various bundle vetors are either equal or opposite, e.g.Vn3n4n6 = Xs=0;1(�)s(n4+n6) Vsn3 ; V 0n1n2n06 = Xs0=0;1(�)s0(n2+n06) V 0s0n1 : (33)This partiular hoie is ompatible with the requirement (30) that the gauge uxes admit the Z2,freeation of equation (14). In this ase, the sums of Vr and V 0r0 in the onditions (32b) form lattievetors. Consequently, the magneti uxes of the tori Ba have to be lattie vetors themselves.Seondly, taking inspiration from the expansion (4) of the loal shift vetors Vg in the orbifoldonstrution, one may write the loal bundle vetors asVn3n4n6 = V� + n3W3 + n4W4 + n6W6 + Ln3n4n6 ;V 0n1n2n06 = V! + n1W1 + n2W2 + n06W6 + L0n1n2n06 ; (34)where 2V� �= 2V! �= 2Wi �= 0 and Ln3n4n6 �= L0n1n2n06 �= 0. Then, again, the sum onditions (32b) implythat the magneti uxes Ba are lattie vetors. 11



Bianhi identitiesThe entral onsisteny requirements for smooth ompati�ations are the integrated Bianhi identi-ties. In this work we ignore the possibility of �ve{branes, therefore the integrated Bianhi identitieshave to vanish for all divisors D, i.e. ZD �trF2 � trR2� = 0 : (35)Using the expression for the seond Chern lass (27) of X, we �nd in the present ase that theseonditions amount to B1 � Vr = 0 ; B2 � V 0r0 = 0 ; B1 �B2 = 0 ; (36a)Xr (Vr)2 = 12 + 2B2 �B3 ; Xr0 (V 0r0)2 = 12 + 2B1 �B3 ; (36b)by integrating over Er, Er0 , R3, and R1, R2, respetively.The equations in (36a) show that the gauge uxes B1 and B2 have to be perpendiular, and, thatthe gauge ux B1 on R1 is perpendiular to all the line bundle vetors Vr. Similarly, the gauge uxB2 is perpendiular to all vetors V 0r0 . However, there are no onditions on the inner produts B1 � V 0r0and B2 � Vr. The Bianhi identities on the seond line, (36b), are reminisent of the Bianhi identityon a single C 2=Z2 resolution, i.e. V 2 = 3=2 (see e.g. Refs. [40,41℄). For example, when B2 or B3 vanishand all eight Vr are equal, this ondition is reprodued identially. The magnetized tori thus lead tomodi�ations of the standard loal Bianhi identity of the loal C 2=Z2 resolution.DUY equations and the blow{down limitUsing that the volume of a divisor D is de�ned as Vol(D) = RD J2=2, the tree{level DUY equationR J2F = 0 an be represented asXa Vol(Ra)Ba +Xr Vol(Er)Vr +Xr0 Vol(E0r0)V 0r0 = 0 : (37)These onditions an be very restritive. They give an equal number of relations between the volumesas the number of linear independent vetors the Ba, Vr and V 0r0 an be deomposed in. However, onesuh relation may fore many volumes to zero simultaneously, beause these volumes are of ourseassumed to be non{negative.As we desribe the Shoen manifold as a resolution of the T 6=Z2 � Z2,rototrans, we would like todetermine the requirements under whih a gauge ux on�guration allows for a regular blow{downlimit in whih the underlying six torus T 6 has a �nite volume. Hene, we searh for solutions whihallow for a full blow-down to the singular orbifold, i.e. with Vol(Er) = Vol(E0r0) = 0 and Vol(Ra) > 0.In this ase, the DUY equations simplify toVol(R1)B1 +Vol(R2)B2 +Vol(R3)B3 = 0 : (38)It follows that unless the Ba are linearly dependent or all zero, at least some of the volumes Vol(Ra)are fored to vanish. In partiular, if only one Ba is non{zero, then the orresponding volume has to12



be zero in the blow{down limit, and hene a regular blow{down limit does not exist. Even when B3is a linear ombination of B1 and B2 but one of the oeÆients is positive, two volumes are foredto zero. Hene, only if B3 is a linear ombination with negative oeÆients of B1 and B2, a regularblow{down limit exists. Hene, possibly the simplest way to realize this has B3 = �B1 �B2. We anast this in the form of two equationsB21 Vol(R1) +B1 �B3Vol(R3) = 0 ; B22 Vol(R2) +B2 �B3Vol(R3) = 0 ; (39)sine B1 and B2 are perpendiular, see (36a). Sine we know from (32a) that 2Ba �= 0, we see thatthe ratios of the volumes of the inherited divisors, Vol(Ra)=Vol(R3), a = 1; 2, are frational.To allow for a full blow{up we need in addition that the uxes loated at the exeptional divisorsto be hosen suh that the volumes of all of them an be taken to be positive at the same time. Toensure this it is again onvenient to hoose that the orresponding bundle vetors are alternating, e.g.like in (33).It turns out that the ombination of the ux quantization, DUY equations and the Bianhi identi-ties is extremely restritive, hene, to obtain semi{realisti models, one is often fored to give up therequirement of a regular blow{down limit. (In addition, the one{loop orretion to the DUY equa-tion [26℄ an fore some volumes to be non{vanishing.) When this limit does not exist, an orbifoldinterpretation of the model is not ruled out: Often it is possible to shrink quite a number of exeptionalyles to zero, while keeping the volumes Vol(Ra) > 0. Hene, loally near those shrunken yles anon{ompat orbifold analysis is still possible.4.2 Spetra omputationTo determine the physial onsequene of models build on suh orbifold resolutions we need to beable to determine the spetrum of massless states. A onvenient way of omputing the spetrum onan orbifold resolution is provided by the multipliity operator introdued e.g. in [40{42℄. Using thesemethods we an determine both the spetra in four dimensions as well as on six{dimensional hypersurfaes.Four{dimensional spetrumThe spetrum in four dimensions is of key interest in phenomenologial studies. It an be determinedby letting the operator N4D(X) = ZX n16 � F2��3 + 112 2(TX) F2�o ; (40)at on the states ontained in the ten{dimensional gaugino. This operator is normalized suh thatit ounts the number of hiral super�elds. Using the intersetion numbers determined above this isomputed straightforwardly:N4D(X) = 2�1�Xr H2Vr�HB1 + 2�1�Xr0 H2V 0r0�HB2 + 4HB1HB2HB3 : (41)The multipliities of the hiral multiplets in four dimensions are then determined by evaluating thisoperator on the roots of E8 � E80. 13



There is some tension between solving the Bianhi identities and hirality, beause of the orthog-onality relations, (36a), among the uxes Ba, Vr and V 0r0 . However, say B1 � Vr = 0, does not implythat on all E8�E08 roots HB1H2Vr vanishes. As we show by some examples disussed in the Setion 5,it is indeed possible to obtain a hiral spetrum in four dimensions.Six{dimensional spetra on divisorsIn addition, we an de�ne the multipliity operator N6D(D) in six dimensions for any divisor D � X.Positive values of N6D ount the number of half{hyper multiplets, while negative values ount (twotimes) the number of vetor multiplets. (In six dimensions the fermions of hyper and vetor multipletshave opposite hirality.) As integrals over the whole spae X they readN6D(D) = ZX Dn12 � F2��2 + 112 2(D)o ; (42)where 2(D) are given in (28). Given that the divisors R1; R2 may be interpreted as K3 surfaesand R3 as a four{torus, the spetra on these divisors are probably the most interesting. Using theintersetion numbers we readily ompute this expliitly for D = Ra:N6D(R1) = 2�1�Xr H2Vr�+ 4HB2HB3 ; (43a)N6D(R2) = 2�1�Xr0 H2V 0r0�+ 4HB1HB3 ; (43b)N6D(R3) = 4HB1HB2 : (43)Relation between the six{ and four{dimensional spetraAs explained in Subsetion 2.3 the orbifold T 6=Z2�Z2,rototrans never leads to four{dimensional hirality.The reason is basially that suh models only ontain hypermultiplets in six dimension, whih simplybranh to vetor{like ombinations of hiral multiplets in four dimensions. In the smooth ase wehave found a way to bypass this no{go. The key here are the magneti uxes Ba on the divisors Rathat orrespond to the tori of the orbifold in the blow{down limit. Indeed, if we set all Ba = 0, then(41) simply says that N4D = 0: no hirality. Hene, preisely by allowing for magnetized divisors Rawe an avoid this no{go and obtain hirality.To see that this e�et is expeted from �eld theory, let us onsider the ase in whih the uxB2 has been swithed o�. The four{dimensional multipliity operator (41) then leads to a relationbetween the six{dimensional spetrum on R1 given by (43a) and the spetrum in four dimensions:N4D(X) = HB1 N6D(R1) : (44)This equation an be interpreted as follows: When we ompatify on a K3�T 2, then we an onsider�rst the six{dimensional theory that results from the ompati�ation on K3. This e�etive six{dimensional model is subsequently redued on a two{torus. It is well{known that if there is nomagneti ux, this seond step results in a vetor{like spetrum in four dimensions. However, if thereis a magneti ux B present, a hiral spetrum arises: only the hiral fermioni states of harge q forwhih Bq > 0 survive, and their multipliity is given by Bq provided that the smallest harge in the14



spetrum is unity [34,36℄. It is intriguing to notie that (44) says exatly this: N6D(R1) determines thespetrum in a six{dimensional world. The operator HB1 gives the harge B1 �w of the six{dimensionalstate assoiated with the E8 � E80 root w under the magneti ux B1.When all three uxes are swithed on, the relation between the four{ and six{dimensional spetraapparently reads N4D(X) = HB1 N6D(R1) +HB2 N6D(R2)�HB3 N6D(R3) : (45)This follows diretly by identifying the six{dimensional multipliity operators (43) in the four{dimensionalexpression (41). The �nal term orrets for over ounting of states harged under B1, B2 and B3 si-multaneously.4.3 Interpretation as blow{up of DW(0{2) orbifold modelsSo far, we have analyzed the Shoen geometry as a smooth Calabi{Yau and desribed line bundlebakgrounds on it. The fat that the Shoen manifold is the resolution of the DW(0{2) orbifold, asdisussed in Setion 3, has essentially been irrelevant in our investigation. Now, we would like todesribe how a given line bundle model an be understood as a heteroti DW(0{2) orbifold modelwith a ertain number of blow{up modes attaining vauum expetation values (VEVs). We �rstreall how this analysis an be done in general using a N = 1 language in four dimensions following[10, 13, 42℄. After that we onlude this Subsetion by desribing this proedure in a six{dimensionalsupersymmetri formulation whih is more appropriate sine the DW(0{2) orbifold model has N = 1supersymmetri setors in six dimensions.Four dimensional N = 1 languageIn heteroti orbifolds a �xed point gets blown up if a twisted hiral super�eld �(r)bm, loalized at that�xed point, aquires a non{vanishing VEV: h�(r)bmi 6= 0. The value of this VEV determines the volumeof the exeptional yle Er that appears in this resolution proess. As we realled in Setion 2.1any twisted state is haraterized by a shifted left{moving momentum Psh. In Refs. [10, 13, 43℄ itwas realized that, as long as this twisted state does not involve any osillator exitations, its shiftedmomentum Psh preisely determines the loal line bundle vetor Vr assoiated to the exeptionaldivisor Er. Some speial ases might our: Sometimes it happens that a bundle vetor orrespondsto a blow{up mode that has been projeted out by the orbifold ation in the four{dimensional theory.It is also possible that the bundle vetor is assoiated to a massive state in the orbifold spetrum.The spetrum of the orbifold model and the one of the blow{up theory are generially not idential,but losely related: First of all the VEVs of the twisted states h�(r)bmi lead to some gauge symmetrybreaking. Furthermore, the blow{up modes are not present in the blow{up spetrum as harged states,but rather as (omplexi�ed) axions br. The relation between the blow{up mode and the axion reads�(r)bm = ebr h�(r)bmi : (46)In the smooth desription this axion generially gives a mass to the gauge �eld of the broken U(1)via the Stuekelberg mehanism. In the blow{up piture the U(1) is broken just by a standard Higgsmehanism.As a onsequene of this gauge symmetry breaking the representations of matter �elds get branhed.But still, this is not enough to math the orbifold and resolution spetra [10,13℄: One needs to preform15



�eld rede�nitions of the other twisted matter states �orb involving the orresponding blow{up modesto obtain an exat agreement of the spetra, i.e.�orb = e�br �res : (47)The signs � have to be hosen appropriately to ensure that the weights of �res are E8 � E80 roots,while those of �orb belong to the shifted weight lattie de�ned in (9).Blow{ups in six dimensionsBefore we desribe the blow{up proedure in a six{dimensional language, we �rst briey reall someproperties of N = 1 theories in six dimensions. There are three basi irreduible representation ofN = 1 supersymmetry relevant for our disussion: i) A vetor multiplet V = (V;�) ontains a vetorsuper�eld V and a hiral super�eld � from the 4D N = 1 perspetive. ii) A hypermultiplet ontainstwo independent hiral super�elds H = (�;�) that live in harge{onjugate representations. Thismeans that the gauge properties of the hypermultiplet is uniquely spei�ed by the representation andU(1) harges of either hiral omponent. iii) Finally, a half{hyper multiplet is a hypermultiplet with aertain reality ondition imposed. Therefore, it has only half of the number of independent omponentsas a normal hypermultiplet. In other words, using the four{dimensional N = 1 terminology, a half{hyper is a hiral super�eld in a real or pseudo{real representation.Now, if a twisted hypermultiplet plays the role of a blow{up mode in order to resolve a �xed torus,then only one of its hiral super�eld omponents atually takes a VEV, while the other omponentonly gets rede�ned: H(r)bm = ebr (h�(r)bmi;�(r)bm,res) : (48)Beause the hiral super�eld omponents of a hypermultiplet arry opposite U(1) harges, they haveto be rede�ned with opposite powers of the blow{up mode:Horb = (�orb;�orb) = �e�br �res; e�br �res� ; (49)for appropriate hoie of sign �. After these �eld rede�nitions the hiral super�elds in the blow{upmode hypermultiplet do not seem to fall into proper N = 1 representations anymore. However, thisdoes not signify that the blow{up breaks six{dimensional supersymmetry: The remaining hiral super-�eld omponents will be ompletely neutral, and therefore form half{hypermultiplets by themselves.4.4 Sample model: An eight generation GUTWe onlude this Setion with a onrete example of a line bundle model whih is onstruted onthe Shoen geometry to illustrate many aspets of the general desription developed in this and thepreeding Setions. Consider the following partiular line bundle model on the resolution of ourT 6=Z2� Z2,rototrans:B3 = �B1 ; B2 = 0 ; Vn3n4n6 = (�)n4+n6 V0 ; V 0n1n2n06(�)n2+n06 V 0n1 ; (50)with B1 = �1; 1; 1; -1; 0; 03��08� ;V0 = �0; 0; 12 ; 12 ; 0; 03��1; 07� ; V 00 = �0; 0; 0; 12 ; 12 ; 03��08� ;V 01 = �12 ; -12 ; 0; 0; 0; 03��08� : (51)16



This model exhibits the following properties:The bundle vetors satisfy all the requirements spei�ed in Setion 4.1: The quantization onditions(32) are ful�lled, beause the alternating signs in the Vr and V 0r0 are in aordane with (33) and thevetors Ba are lattie vetors.They also satisfy all Bianhi identities (36): B1 is perpendiular to all vetors Vr. Sine all vetorsVr square to 3=2 and B2 = 0 the �rst ondition in (36b) is satis�ed. The seond ondition in (36b) issatis�ed as well, sine both sides are equal:Xr0 V 0r02 = 8 � 12 = 4 ; 12 + 2B1B3 = 12� 2 � 4 = 4 : (52)Beause B3 = �B1 and B2 = 0 a blow{down of this model is allowed by the DUY equations (37)while keeping the torus radii, set by the volumes of the divisors Ra, �nite. In the blow{down limit,Vol(Er) = Vol(E0r0) = 0, the volumes of R1 and R3 have to be equal, Vol(R3) = Vol(R1). Thealternating signs of Vr and V 0r0 ensure that the DUY equations also allow for a �nite blow{up of allexeptional yles.The gauge group that is left unbroken by this Abelian gauge on�guration isSU(5)� SO(14)0 �U(1)5 ; (53)from the �rst and seond E8 group fator. Sine for this hoie of bundle vetors B2 = 0 and all Vrare equal up to a sign, the 4D multipliity operator (41) redues toN4D = 2HB1�1� 8H2V0� : (54)The resulting spetrum, 8 (10;1) + 12 (5;1) + 4 (5;1) + 24 (1;1) ; (55)is hiral w.r.t. to the �ve U(1) harges (whih we omitted for notational simpliity). (W.r.t. thehidden gauge group at most a purely vetor{like spetrum arises, whih is invisible for the multipliityoperator.) Hene, the model might be onsidered as an eight generations SU(5) GUT toy{model withfour Higgs pairs.5 A line bundle MSSM on the Shoen manifoldWe present an MSSM{like model with three generations as a line bundle model on the resolution ofT 6=Z2 � Z2,rototrans. In the �rst Subsetion we onstrut an SU(5) GUT model with six generationson the Shoen manifold using line bundles. In Subsetion 5.2 we identify a Wilson line that an beassoiated with a freely ating involution, whih both redues the number of generations to three andbreaks the gauge group to the standard model group. In the next Subsetion we show that a K3subspae of the Shoen manifold an be blown down to a four{dimensional orbifold T 4=Z2 on whihthe model an be quantized using standard CFT tehniques. In Subsetion 5.4 we use this to give analternative desription of the line bundle MSSM on the Shoen manifold in terms of a blow{up of thisorbifold with a magnetized torus. 17



5.1 Six GUT generations on the Shoen resolutionWe de�ne a line bundle model on the Shoen manifold with the ux vetorsB1 = �3;�3; 06��3; 3; 06� and B2 = B3 = 0 ; (56)on the ordinary divisors Ra,V(0;0;0) = V(0;1;0) = �V(0;0;1) = �V(0;1;1) = �148��0; 0; 0; 12 ; 0;�12 ;�12 ;�12� ; (57a)V(1;0;0) = V(1;1;0) = �V(1;0;1) = �V(1;1;1) = �0; 12 ; 12 ; 05��0; 12 ; 0; 0; 0;�12 ;�12 ;�12� ; (57b)on the exeptional divisors Er, and �nally,V 0(0;0;0) = �V 0(0;1;1) = �0;�12 ;�12 ; 05��12 ; 12 ; 12 ; 0;�12 ; 0; 0; 0� ; (58a)V 0(0;1;0) = �V 0(0;0;1) = �0;�12 ;�12 ; 05��12 ; 12 ;�12 ; 0; 12 ; 0; 0; 0� ; (58b)V 0(1;0;0) = V 0(1;1;0) = �0; 1; 0; 05��� 12 ;�12 ; 0; 0; 0; 0; 0; 0� ; (58)V 0(1;1;1) = V 0(1;0;1) = �� 1; 07��� 12 ;�12 ; 06� ; (58d)on the exeptional divisors E0r0 .This hoie of bundle vetors ful�lls the quantization onditions (32) and the DUY equations (37)for appropriately hosen volumes. All bundle vetors Vr and V 0r0 have V 2r = V 0r02 = 3=2. This isonsistent with the Bianhi identities (36b), whih redue toXr (Vr)2 =Xr0 (V 0r0)2 = 12 ; (59)sine there are no orretions resulting from magneti uxes Ba as only B1 6= 0. The unbroken gaugegroup in this gauge on�guration readsSU(5)� SU(5)0 �U(1)8 : (60)The four{dimensional multipliity operator (41) is omputed straightforwardly and the resulting hiralspetrum is given in Table 1. In this Table we have distinguished the various states, in partiular thesinglets, by their eight U(1) harges (q0; : : : ; q7). Notie that, uriously, this model has six generationsin both, the observable and the hidden, SU(5).5.2 Freely ating Z2 and MSSM with three generationsOne an de�ne a freely ating involution Z2;free as in equation (14) that redues the number ofgenerations by a fator 1=2. In addition, the freely ating involution an be embedded as a Wilsonline that breaks SU(5) to SU(3)� SU(2)�U(1)Y . We take this Wilson line,Wfree = �03; 1; 1; 1;�32 ;�32��08� ; (61)to point in the standard hyperharge diretion of SU(5). This hoie of Wfree �xes the �rst SU(5) tode�ne the observable setor and leads to an MSSM{like model with three generations.18



Super�eld Representation U(1) hargesmultipliity SU(5)� SU(5)0 q0 q1 q2 q3 q4 q5 q6 q76 �10;1� 0 0 0 0 1 0 -3 06 (5;1) 0 0 0 0 0 0 -6 06 �5;1� 1 0 1 0 -1 0 1 06 (5;1) 1 0 1 0 0 0 4 024 (1;1) 2 0 0 0 0 0 0 06 (1;1) -1 0 -1 0 -1 0 5 06 (1;1) 1 0 -3 0 0 0 0 06 (1;1) 0 0 0 0 2 0 0 06 �1;10� 0 0 0 2 0 0 0 -624 (1;5) 0 1 0 3 0 0 0 -26 �1;5� 0 0 0 -2 0 0 0 -86 �1;5� 0 0 0 0 0 1 0 76 �1;5� 0 0 0 0 0 -1 0 742 (1;1) 0 0 0 4 0 1 0 -542 (1;1) 0 0 0 4 0 -1 0 -524 (1;1) 0 1 0 -3 0 1 0 -524 (1;1) 0 1 0 -3 0 -1 0 -56 (1;1) 0 2 0 0 0 0 0 0Table 1: This line bundle model on the Shoen manifold has six generations of SU(5) in both, theobservable and the hidden, setors. States in the �rst blok are harged under the observable E8;states in the seond blok are harged under the hidden group.Contrary to the situation in �eld theory, there are further requirements on this Wilson line instring theory [12,13℄: It has to satisfy 2Wfree �=W2 �=W4 �=W6 �= 0 and it has to respet the modularinvariane onditions 2W 2free �Wfree �Wi � 0 : (62)These additional onditions were derived in ontext of orbifold onstrutions where Z2,free is part ofthe spae group.5.3 Singular limits of the Shoen GUT with line bundlesFull blow down limitTaking the magneti ux B1 to vanish for a moment, we an onsider the full blow{down limit of theGUT model with six generations. It has an exat heteroti orbifold CFT as formulated in Setion 2.3as the T 6=Z2 � Z2,rototrans orbifold with a de�nite hoie of gauge shifts, V�; V!, and disrete Wilsonlines, Wi. As ditated by the ux vetors (57) and (58) they are given byV� = �148��12 ;�12 ; 12 ; 0; 12 ; 03� ; V! = �0;�12 ;�12 ; 05��� 12 ;�12 ;�12 ; 0; 12 ; 03� ;W1 = �0; 12 ;�12 ; 1; 1; 03��0; 1; 12 ; 1;�12 ; 03� ; W3 = �� 14 ; 14 ; 14 ;�145��0; 12 ; 0; 12 ;�1; 03� ; (63)19



and the other Wilson lines vanish. This hoie ful�lls the onditions of modular invariane (7). Asdisussed in Setion 2.3, the spetrum of this orbifold an be omputed using orbifold CFT tehniquesbut is neessarily non{hiral as long as no magneti uxes Ba have been reintrodued.The T 4=Z2 orbifold inside the Shoen manifoldSine the Shoen model de�ned in this Setion has only a single magneti ux, B1, swithed on, see(56), the DUY equations (37) imply that in a full blow{down the volume of R1 has to vanish as well.However, we an exploit that there also exists a partial blow{down in whih all Vol(Er) ! 0 whilethe volumes of all inherited divisors Ra and of at least some other exeptional divisors E0r0 stay �nite.Therefore, this partial blow{down leads to an intermediate T 4=Z2 orbifold with torus oordinates(z2; z3) on whih the Z2 ation ats via the twist v� given in (3) (.f. [11℄).For this intermediate T 4=Z2 orbifold an exat heteroti CFT desription exists. Taking its gaugeembedding as given by V� and W3 from equation (63), its low energy limit results in a model withN = 1 supersymmetry in six dimensions with gauge groupE6 � SU(8)0 �U(1)3 : (64)The spetrum of hypermultiplets inluding U(1) harges of this intermediate six{dimensional orbifoldtheory is omputed using [7℄ and listed in the �rst olumn of Table 2.A simple, yet non{trivial rosshek of this spetrum is that it is free of irreduible gravitationalanomalies, e.g. that the sum ondition #(hyper)�#(vetor) = 244 holds. Indeed, using Table 2 it isstraightforward to ount the number of vetor{ and hypermultiplets:#(vetor) = 78 + 63 + 3 � 1 = 144 ; #(hyper) = 2 � �27 + 12 � 70 + 2�+ 16 � 2 � 8 + 4 = 388 ; (65)where the fator 12 aounts for the fat that the (1;70)(0;0;0) is a half{hyper. The last 4 additionalhypers orrespond to untwisted moduli whih are not displayed in Table 2.5.4 Shoen line bundle MSSM as a blown up orbifoldThe MSSM{like model of Subsetion 5.1 an now be reprodued as a blow{up of the T 4=Z2 orbifolddisussed in the Subsetion above equipped with a magneti ux on the torus to generate four{dimensional hirality. In short, this proedure reads:1. Blow{up the T 4=Z2 orbifold to a smooth K3 manifold by giving VEVs to 16 blow{up modesand use �eld rede�nitions to obtain the spetrum on K3.2. Turn on the additional uxes on the divisors E0r0 , deompose gauge group and branh the rep-resentations aordingly.3. Generate four{dimensional hirality by swithing on the magneti ux B1 as well.In this proess the magneti ux B1 does not lead to breaking of four{dimensional supersymmetrysine the ontribution from the uxes on E0r0 anels the one from B1 in the DUY equations (37). Inthe following we desribe this proedure in detail:20



Blowing up the intermediate T 4=Z2 orbifoldThe intermediate T 4=Z2 orbifold gets blown up to a K3 surfae by assigning VEVs to the blow{up modes, i.e. to 16 twisted states loalized at the 16 singularities of the T 4=Z2 orbifold. At eahsingularity (labeled by the multi{index r = (n3; n4; n5; n6)) a blow{up mode, �(r)bm ontained in atwisted hypermultiplet, is hosen suh that its shifted left{moving momentum P (r)sh agrees with theux vetor Vr loalized on the divisor Er:P (r)sh = Vr for all r = (n3; n4; n5; n6) : (66)All these blow{up modes are hosen to be in eight{dimensional representations of the hidden SU(8)0gauge group of the T 6=Z2 orbifold, so that, onsequently, the gauge group gets broken toE6 � SU(7)0 �U(1)4 : (67)As explained in Subsetion 4.3, when the blow{up mode �(r)bm in a given twisted setor attains aVEV, �eld rede�nitions, (48) and (49), have to be performed on the other states in the same twistedsetor in order to ensure that all �elds in the blow{up are haraterized by E8 � E80 roots. Theappropriate �eld rede�nitions required by this blow{up proedure are listed in the seond olumn ofTable 2. As the phases of the orbifold blow{up modes have been reinterpreted as axions, the remaininghypermultiplet omponents do not seem to form proper six{dimensional N = 1 hypermultiplets.However, as an be veri�ed from this Table, these hiral super�eld are neutral and an thus beinterpreted as half{hypermultiplets.Additional uxes on the exeptional divisors E0r0Up to now, we have turned on uxes only on the exeptional divisors Er, whih orrespond to theblown{up �xed points of the T 4=Z2 orbifold. After the �eld rede�nition to the blow{up �eld basis,the harges w.r.t. to the four U(1) fators are taken suh that they orrespond to the �rst fourharges (q0; q1; q2; q3) in Table 1. The U(1)'s assoiated to the harges (q0; q1; q2) already exist at theintermediate T 4=Z2 orbifold, the fourth U(1) arises by symmetry breaking of the hidden SU(8)0 in theblow{up proedure.Turning on additional uxes (58) on E0r0 indues a further gauge symmetry breaking toSU(5)� SU(5)0 �U(1)8 : (68)Sine, these uxes are loated at resolved �xed points of the other orbifold twist v!, they respet adi�erent six{dimensional supersymmetry. This means that by swithing on these uxes the modelbeomes N = 1 in four dimensions. However, beause the divisors E0r0 do not interset with Er (i.e.the �xed tori of the g�{ and g!{twisted setors do not interset) see �gure 2, this does not enfore anyhiral projetion on the matter spetrum (in ontrast to, say, the gravitino): The matter states on K3(i.e. the blow{up of the intermediate T 4=Z2) are simply deomposed into four{dimensional super�eldsand their representations are branhed aording to the symmetry breaking (68).
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Table 2: The �rst olumn gives 6D N = 1 multiplets on the T 4=Z2 orbifold with twist g� and gauge embeddingV� and W3 from equation (63). The seond olumn indiates whih state is the blow{up mode and gives the �eldrede�nitions neessary to math the orbifold and blow{up states. In the third olumn we only indiate the stateswhih are part of the four{dimensional hiral spetrum, i.e. those for whih ~N4D, given in the last olumn, is positive.6D N = 1 super Blow{up indued rede�nitions of Surviving 4D 4D multi-multiplet on T 4=Z2 its hiral super�eld omponent(s) hiral super�elds pliity(E6 � SU(8)0 �U(1)3) (E6 � SU(7)0 �U(1)4) (SU(5)� SU(5)0 �U(1)8) ~N4Duntwisted gauge setor(78;1)(0;0;0) (78;1)(0;0;0) �10;1�(0;0;0;0;1;0;�3;0) 6(vetor) (5;1)(0;0;0;0;0;0;�6;0) 6(1;1)(0;0;0;0;2;0;0;0) 6(1;63)(0;0;0) (1;48)(0;0;0;0) �1;5�(0;0;0;0;0;1;0;7) 6(vetor) �1;5�(0;0;0;0;0;�1;0;7) 6�1;7�(0;0;0;4) { {(1;7)(0;0;0;�4) (1;1)(0;0;0;�4;0;1;0;5) 6(1;1)(0;0;0;�4;0;�1;0;5) 6(1;1)(0;0;0;0) { {untwisted matter setors: Ua, a = 2; 3(27;1)(�1;0;�1) (27;1)(�1;0;�1;0) (1;1)(�1;0;�1;0;�1;0;5;0) 6(hyper) �27;1�(1;0;1;0) (5;1)(1;0;1;0;0;0;4;0) 6�5;1�(1;0;1;0;�1;0;1;0) 6(1;70)(0;0;0) �1;35�(0;0;0;�2) �1;5�(0;0;0;�2;0;0;0;�8) 6(half{hyper) (1;35)(0;0;0;2) �1;10�(0;0;0;2;0;0;0;�6) 6(1;1)(1;0;�3) (1;1)(1;0;�3;0) (1;1)(1;0;�3;0;0;0;0;0) 6(hyper) (1;1)(�1;0;3;0) { {(1;1)(0;2;0) (1;1)(0;2;0;0) (1;1)(0;2;0;0;0;0;0;0) 6(hyper) (1;1)(0;�2;0;0) { {twisted matter setor at the �xed tori: r = (0; n4; n5; 0), n4; n5 = 0; 1(1;8)�� 12 ;�12 ;� 32� (1;1)� 12 ; 12 ; 32 ;�72� = e+br blow{up mode axion(hyper) (1;1)�� 12 ;� 12 ;�32 ; 72� = e+br (1;1)(0;0;0;0) { {(1;7)�� 12 ;� 12 ;�32 ;� 12� = e+br (1;7)(0;0;0;�4) { {�1;7�� 12 ; 12 ; 32 ; 12� = e�br �1;7�(0;0;0;4) (1;1)(0;0;0;4;0;1;0;�5) 6(1;1)(0;0;0;4;0;�1;0;�5) 6(1;8)� 12 ;�12 ; 32� (1;1)� 12 ;� 12 ;32 ; 72� = e+br (1;1)(1;0;3;0) { {(hyper) (1;1)�� 12 ;12 ;� 32 ;� 72� = e�br (1;1)(�1;0;�3;0) { {�1;7��� 12 ; 12 ;�32 ; 12� = e+br �1;7�(0;1;0;�3) (1;1)(0;1;0;�3;0;1;0;�5) 6(1;1)(0;1;0;�3;0;�1;0;�5) 6(1;7)� 12 ;�12 ; 32 ;� 12� = e�br (1;7)(0;�1;0;3) { {ontinued . . .22



6D N = 1 super Blow{up indued rede�nitions of Surviving 4D 4D multi-multiplet on T 4=Z2 its hiral super�eld omponent(s) hiral super�elds pliity(E6 � SU(8)0 �U(1)3) (E6 � SU(7)0 �U(1)4) (SU(5)� SU(5)0 �U(1)8) ~N4Dtwisted matter setor at the �xed tori: r = (0; n4; n5; 1), n4; n5 = 0; 1(1;8)�� 12 ;�12 ;� 32� (1;1)�� 12 ;� 12 ;�32 ; 72� = e+br blow{up mode axion(hyper) (1;1)� 12 ; 12 ;32 ;� 72� = e+br (1;1)(0;0;0;0) { {�1;7�� 12 ; 12 ;32 ; 12� = e+br �1;7�(0;0;0;4) (1;1)(0;0;0;4;0;1;0;�5) 6(1;1)(0;0;0;4;0;�1;0;�5) 6(1;7)�� 12 ;�12 ;� 32 ;�12� = e�br (1;7)(0;0;0;�4) { {(1;8)� 12 ;�12 ; 32� (1;1)�� 12 ; 12 ;�32 ;� 72� = e+br (1;1)(�1;0;�3;0) { {(hyper) (1;1)� 12 ;� 12 ; 32 ; 72� = e�br (1;1)(1;0;3;0) { {(1;7)� 12 ;� 12 ;32 ;� 12� = e+br (1;7)(0;�1;0;3) { {�1;7���12 ; 12 ;� 32 ; 12� = e�br �1;7�(0;1;0;�3) (1;1)(0;1;0;�3;0;1;0;�5) 6(1;1)(0;1;0;�3;0;�1;0;�5) 6twisted matter setor at the �xed tori: r = (1; n4; n5; 0), n4; n5 = 0; 1(1;8)��1;12 ;0� (1;1)�1;� 12 ;0;�72� = e+br blow{up mode axion(hyper) (1;1)��1; 12 ;0;72� = e+br (1;1)(0;0;0;0) { {(1;7)��1; 12 ;0;�12� = e+br (1;7)(0;0;0;�4) { {�1;7��1;� 12 ;0; 12� = e�br �1;7�(0;0;0;4) (1;1)(0;0;0;4;0;1;0;�5) 6(1;1)(0;0;0;4;0;�1;0;�5) 6(1;8)�1;12 ;0� (1;1)�1; 12 ;0;72� = e+br (1;1)(2;0;0;0) (1;1)(2;0;0;0;0;0;0;0) 6(hyper) (1;1)��1;�12 ;0;� 72� = e�br (1;1)(�2;0;0;0) { {�1;7���1;� 12 ;0;12� = e+br �1;7�(0;�1;0;�3) { {(1;7)�1; 12 ;0;� 12� = e�br (1;7)(0;1;0;3) (1;5)(0;1;0;3;0;0;0;�2) 6twisted matter setor at the �xed tori: r = (1; n4; n5; 1), n4; n5 = 0; 1(1;8)��1;12 ;0� (1;1)��1; 12 ;0;72� = e+br blow{up mode axion(hyper) (1;1)�1;� 12 ;0;�72� = e+br (1;1)(0;0;0;0) { {�1;7��1;� 12 ;0;12� = e+br �1;7�(0;0;0;4) (1;1)(0;0;0;4;0;1;0;�5) 6(1;1)(0;0;0;4;0;�1;0;�5) 6(1;7)��1; 12 ;0;� 12� = e�br (1;7)(0;0;0;�4) { {(1;8)�1;12 ;0� (1;1)��1;� 12 ;0;�72� = e+br (1;1)(�2;0;0;0) { {(hyper) (1;1)�1; 12 ;0; 72� = e�br (1;1)(2;0;0;0) (1;1)(2;0;0;0;0;0;0;0) 6(1;7)�1; 12 ;0;�12� = e+br (1;7)(0;1;0;3) (1;5)(0;1;0;3;0;0;0;�2) 6�1;7���1;�12 ;0; 12� = e�br �1;7�(0;�1;0;�3) { {23



Generating four dimensional hiralityStates from Er feel the ux on their \�xed torus", i.e. on R1, so that the B1 ux indues hirality infour dimensions. Whether a state is part of the harged hiral spetrum is deided by the operator~N4D = 2HB1 : (69)In general [34, 36℄, if ~N4D is positive for a hiral super�eld �res, then ~N4D opies of �res appear inthe four{dimensional spetrum. While, if ~N4D is negative �res is ompletely projeted out. Thus thisrelation (similarly to (44)) shows that four dimensional hirality only arises if the ux B1 is swithedon. Two important observations are in order: Chiral multiplets originating from the six{dimensionalvetor multiplets get an extra fator (�1) in order to aount for the di�erent hiralities of vetorand hypermultiplets in six dimensions. In addition, note that the e�et of the Wilson line W1 in thepresene of a ux B1 in the same torus an be seen in a �eld theoretial approah as a shift in thewave{funtions. Hene, onerning the spetrum of massless modes it an be negleted.As the 16 �xed points of T 4=Z2 are identi�ed pairwise by the Z2 ation of g!, one has to restritto twisted states with n5 = 0. Furthermore, g! projets out all states from the untwisted setor U2 asan be seen in the full orbifold model T 6=Z2�Z2,rototrans. The result of the additional uxes is listedin the third and fourth olumns of Table 2. The hiral part of the resulting spetrum agrees with thespetrum of the smooth model listed in Table 1.6 Towards an CFT desription of orbifolds with magnetized toriIn this setion we propose modi�ations to the standard CFT onstrution of heteroti orbifolds inthe presene of magnetized tori. To failitate this disussion we �rst reall a few standard fats ofheteroti orbifolds, i.e. orbifolds without any magneti ux supported on the two{tori, Ba = 0.6.1 Standard modular invariane onditionsThe onditions of modular invariane are ompatible with the loal Bianhi identities in the abseneof Ba{uxes in the following sense: If we hoose spae group elements g = h = gr or gr0 , as de�ned inequation (13) we see from (6) that the assoiated loal shifts Vgr and Vgr0 ful�llV 2gr � 32 ; V 2gr0 � 32 ; (70)where r; r0 label the 8+8 �xed points of the twisted setors of � and !, respetively. On the otherhand, in the smooth piture if we assume gauge uxes Vr �= Vgr and V 0r0 �= Vgr0 of length{square 3=2at all 8+8 resolved �xed points r and r0, respetively, then modular invariane orresponds (modulointegers) to 1=8th of the Bianhi identities (36b) with Ba = 0.
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6.2 Heteroti desription of the Shoen orbifold with magnetized toriInspired by the logi put forward in [44℄ we propose how the modular invariane onditions (6) aremodi�ed in the presene of magnetially harged tori, Ba 6= 0. Sine the magneti uxes are onstantover the tori, it is natural to assume that at a given �xed point they only ontribute as one overthe number of �xed points, i.e. 1=8. As an be inferred from the loal Bianhi identities (36b) themagneti uxes, Ba, ontribute to the energy (12 is replaed by 12 + 2Ba � B3, a = 1; 2). Hene, wepropose that the loal modular invariane onditions (70) are modi�ed toV 2gr � 32 + 14 B2 �B3 ; V 2gr0 � 32 + 14 B1 �B3 ; (71)In order to satisfy the quantization onditions (32) and the DUY equations in blow{down (38) it isonvenient to expand B3 as a linear ombination of B1 and B2 with negative oeÆients. Aordingto equation (71) this redues the lengths of the loal shifts Vgr and Vgr0 . For example, using e.g.B3 = �B1 �B2 yields V 2gr � 32 � 14 B22 .However, as we have seen in blow{up not only the onsisteny onditions, i.e. the Bianhi ondi-tions, get modi�ed in the presene of Ba{uxes, but also the spetra. Therefore, one ould imaginethat the mass shell ondition (8) on orbifolds is modi�ed as well when Ba 6= 0. In analogy to theproposal in [44℄, we expet that the left{moving mass is modi�ed toM2L = 12 (P + Vgr)2 + eN � 34 � 18 B2 � B3 ; M2L = 12 (P + Vgr0 )2 + eN � 34 � 18 B1 � B3 : (72)If we follow the interpretation of the loal line bundle vetors as the shifted momenta (9) of twistedstates that generate the blow{up at r or r0 these equations will ontribute new twisted states asblow{up modes, whih where not part of the Ba = 0 orbifold spetrum.When one onsiders the standard heteroti orbifold, (massless) states, that survive the level math-ing ondition, are subjet to the orbifold projetion onditions (10). Modi�ations of these projetionsare, as far as we are aware, not disussed in the literature. Moreover, sine it is unknown how theheteroti string is quantized in the presene of magnetized tori, there is also not an obvious ompu-tation that would determine the appropriate orretions. However, as usual we expet that at leastself{projetions, i.e. taking h = g, should not projet out any state. Hene, at least the self{projetionondition should be modi�ed toVg � Psh � vg � �psh +� ~Ng� � 12�V 2g � v2g + 14 Ba � B3� ; (73)where a = 1 for g = gr0 and a = 2 for g = gr.6.3 Sample model as blow{up of orbifold with magnetized toriTo illustrate our proposal we return to our example of an eight generation SU(5) GUT model disussedin Subsetion 4.4. Notie, that the bundle vetors Vr de�ned in (50) an be interpreted as the shiftedleft{moving momenta Psh of twisted states without osillator exitations of a onventional Z2 orbifold,sine V 2r = 3=2 is interpreted as the masslessness ondition P 2sh = 3=2. The bundle vetors V 0r0 on theother hand have V 0r02 = 1=2. In a onventional orbifold model these would orrespond to twisted stateswith osillators. However, as disussed in Setion 6, we expet that the left{moving mass formula getsmodi�ed to (72) in the presene of magnetized tori. If orret, one still interprets the V 0r0 as shiftedleft{moving momenta of twisted states without osillators. Hene, even though this model has ablow{down limit, the resulting theory in this limit is not a onventional orbifold CFT.25
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