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S
hoen manifold with line bundles as resolved magnetized orbifoldsStefan Groot Nibbelinka;1, Patri
k K.S. Vaudrevangeb;2a Arnold Sommerfeld Center for Theoreti
al Physi
s,Ludwig-Maximilians-Universit�at M�un
hen, 80333 M�un
hen, Germanyb Deuts
hes Elektronen{Syn
hrotron DESY, Notkestra�e 85, 22607 Hamburg, GermanyAbstra
tWe give an alternative des
ription of the S
hoen manifold as the blow{up of a Z2 � Z2 orbifoldin whi
h one Z2 fa
tor a
ts as a roto{translation. Sin
e for this orbifold the �xed tori are onlyidenti�ed in pairs but not orbifolded, four{dimensional 
hirality 
an never be obtained in heteroti
string 
ompa
ti�
ations using standard te
hniques alone. However, 
hirality is re
overed when itstori be
ome magnetized. To exemplify this, we 
onstru
t an E8 � E80 heteroti
 SU(5) GUT on theS
hoen manifold with Abelian gauge 
uxes, whi
h be
omes an MSSM with three generations after anappropriate Wilson line is asso
iated to its freely a
ting involution. We reprodu
e this model as astandard heteroti
 orbifold CFT of the (partially) blown down S
hoen manifold with a magneti
 
ux.Finally, in analogy to a proposal for non{perturbative heteroti
 models by Aldazabal et al. we suggestmodi�
ations to the heteroti
 orbifold spe
trum formulae in the presen
e of magnetized tori.
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1 Introdu
tion and summaryThere are two standard approa
hes in the literature to geometri
al string 
ompa
ti�
ation of theheteroti
 string. (Non{geometri
al approa
hes involve e.g. free{fermioni
 models [1, 2℄ and Gepner
onstru
tions [3,4℄.) Either strings are 
onsidered on singular (toroidal) orbifolds or on smooth Calabi{Yau manifolds. The main advantage of orbifolds over smooth Calabi{Yau spa
es is that they are sosimple that the heteroti
 string 
an be quantized on them exa
tly [5, 6℄. Therefore, one has a

essto the full spe
trum of the theory; not just to its zero modes. In addition, one 
an s
an in a verysystemati
 way through the parameter spa
e of heteroti
 orbifold 
ompa
ti�
ations in order to sear
hfor interesting models for string phenomenology (using e.g. [7℄). This has resulted, for example, in amini{lands
ape of a few hundred MSSM models based on the heteroti
 E8�E80 orbifold T 6=Z6{II [8,9℄.An orbifold 
an be 
onsidered as a Calabi{Yau spa
e at a singular point in its moduli spa
ewhere symmetries get enhan
ed. To go away from the orbifold point in moduli spa
e the orbifoldsingularities have to be resolved (or deformed). In this blow{up pro
ess 
ertain (ex
eptional) 
y
lesthat were hidden inside the singularities a
quire �nite volumes. From the heteroti
 orbifold modelperspe
tive this 
orresponds to turning on Va
uum{Expe
tation{Values (VEVs) for twisted states,so{
alled blow{up modes, whi
h are lo
alized at the singularities of the orbifold. Unfortunately, anexa
t string quantization is out of rea
h at a generi
 point in moduli spa
e and there is typi
ally mu
hless symmetry. For example, it turns out that in full blow{up any mini{lands
ape model has brokenhyper
harge [10,11℄. This might be interpreted in two ways: Either one does not go to the full blow{upin order to keep hyper
harge unbroken and our string va
uum is very 
lose to the orbifold point, orour string va
uum is at a generi
 point of the moduli spa
e and di�erent 
onstru
tions are needed forphenomenology. As dis
ussed in [12, 13℄ freely a
ting involutions 
an be used as an example for these
ond interpretation and an MSSM orbifold model has been 
onstru
ted on the heteroti
 T 6=Z2�Z2orbifold, whi
h in prin
iple 
an avoid hyper
harge breaking in full blow{up.Furthermore, there have been various 
onstru
tions of MSSM models in the 
ontext of the heteroti
string 
ompa
ti�ed on smooth Calabi{Yau manifolds. For example, a three generation MSSM has been
onstru
ted in [14℄ on the S
hoen manifold [15℄ using a stable SU(5) ve
tor bundle [16{18℄. Similar
onstru
tions { yet not fully supersymmetri
 [19℄ { 
an be found in e.g. [20℄. Even though the S
hoenmanifold is just one parti
ular Calabi{Yau spa
e, it is a typi
al example of a 
omplete interse
tionCalabi{Yau: It 
an be obtained as a set of hyper surfa
es within a dire
t produ
t of proje
tive spa
es.Most heteroti
 models built on the S
hoen manifold require 
ompli
ated 
onstru
tions of stableSU(N) bundles. Therefore, one may wonder whether it is also possible to design MSSM{like heteroti
string models on the S
hoen manifolds using line bundles. As has been realized by various groups[21,22℄ the analysis of line bundles on smooth Calabi{Yau spa
es, des
ribed as 
omplete interse
tionsin tori
 varieties, 
an be performed mu
h easier than their non{Abelian 
ounterparts. The main reasonfor this is that for line bundle gauge ba
kgrounds the stability of the bundle redu
es to solving simpleDonaldson{Uhlenbe
k{Yau (DUY) equations [23,24℄ in terms of the K�ahler moduli [25,26℄. Moreover,the embedding of line bundles into the ten{dimensional heteroti
 gauge group (E8 � E80 or SO(32),where we fo
us on the E8�E80 
ase, but most of our results equally apply to the SO(32) 
ase.) 
an be
hara
terized by ve
tors of integers [27, 28℄. This makes it possible to perform 
omputer{aided s
ansfor potentially phenomenologi
ally viable models.The S
hoen manifold does not only provide an interesting example of a Calabi{Yau 
onstru
tedas a 
omplete interse
tion. It 
an also be 
onsidered as a smooth limit of a 
ertain orbifold [29℄. Thisorbifold has some spe
ial properties: It is a T 6=Z2 � Z2,rototrans orbifold, where Z2,rototrans a
ts as1



a roto{translation, i.e. as a simultaneously performed rotation and translation [30℄ (and [31℄ in thetype II string 
ontext, where this kind of orbifolds are 
alled shift orbifolds). This has far rea
hing
onsequen
es for the stru
ture of the �xed points and tori and, in turn, modi�es the breaking of higherdimensional supersymmetry to N = 1 in four dimensions for heteroti
 string 
ompa
ti�
ations. Aswe will see, this ne
essarily results in ve
tor{like spe
tra for this kind of orbifold geometry.This is not a pe
uliar feature of this spe
ial orbifold, many more orbifolds with this property areknown. Re
ently, there has been a 
lassi�
ation of all six{dimensional toroidal orbifold geometriesthat give rise to four{dimensional N = 1 supersymmetry [32℄. These geometries 
an be arranged intwo sets: The ones with Abelian point group and the ones with non{Abelian point group. 23 of the138 geometries with Abelian point group share the property that they ne
essarily lead to non{
hiralspe
tra for heteroti
 string 
ompa
ti�
ations. (These are Z2�Z2 variants, part of the 
lassi�
ation ofRef. [29℄.) For the non{Abelian 
ases these numbers are essentially unknown. However, one expli
itexample of a heteroti
 S3 orbifold [33℄ also turns out to produ
e only ve
tor{like spe
tra. We thereforeexpe
t that also a sizable portion of the non{Abelian point group orbifolds will unavoidably be non{
hiral in four dimensions.Hen
e, it is an important question whether there exists an unavoidable no{go theorem againstfour{dimensional 
hirality for all these heteroti
 orbifolds. Fortunately, we will show that it is possibleto 
ir
umvent this no{go by allowing for magnetized tori on the orbifold. Con
retely, we put magneti

uxes on the tori of the S
hoen orbifold and show that four{dimensional 
hiral spe
tra 
an be realized.More than that, we will show that it is even possible to obtain MSSM{like models in this way.There is one te
hni
al subtlety in the 
onstru
tion of su
h orbifolds with magnetized tori: As far aswe know, 
ontrary to 
onventional orbifolds, it is unknown how to quantize the heteroti
 string exa
tlyon them. We by{pass this obstru
tion in two ways: First, we 
onsider the whole 
onstru
tion in blow{up, i.e. on the smooth S
hoen manifold. Se
ond, we show that one 
an start with a six{dimensionalspe
trum obtained from a standard heteroti
 T 4=Z2 orbifold, whi
h is a subspa
e of the partiallyblown{down S
hoen manifold, using 
onventional CFT te
hniques. Then, one 
an use �eld theoreti
almethods, dis
ussed e.g. in [34{36℄, to determine the 
onsequen
es of the additional (magneti
) 
uxesand to obtain a 
hiral spe
trum in four dimensions. Both approa
hes, i.e. the smooth approa
h andthe hybrid approa
h of 
ombining CFT and �eld theoreti
al methods, will reprodu
e exa
tly the samespe
trum.Paper overviewIn Se
tion 2 we review the basi
s of heteroti
 orbifold models. In addition we introdu
e the DW(0{2)orbifold whi
h is of 
entral interest in this work. Se
tion 3 provides an alternative des
ription of theS
hoen manifold as the resolution of this DW(0{2) orbifold. In Se
tion 4 we des
ribe the E8 � E80heteroti
 string with line bundles on the divisors of the S
hoen manifold in
luding magneti
 
uxes onthe tori of the underlying orbifold. Moreover, we identify the relevant 
onsisten
y 
onditions for su
hgauge ba
kgrounds and 
ompute the resulting 
hiral spe
tra in both, four and six, dimensions. Then,we provide an example that mainly serves to illustrate various aspe
ts of the general theory developedin this paper. In Se
tion 5 we 
onstru
t a spe
i�
 example, whi
h is potentially phenomenologi
allyinteresting as it has the parti
le spe
trum of the MSSM in four dimensions. We analyze this exampleusing two approa
hes: First, the smooth approa
h and, se
ond, the hybrid approa
h of 
ombiningCFT and �eld theoreti
al methods. Finally, in Se
tion 6 we spe
ulate on how to extend the standardheteroti
 CFT des
ription of orbifolds in the presen
e of magnetized tori.2
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 Z2 � Z2 orbifoldsIn this se
tion we des
ribe some basi
 geometri
al properties of Z2�Z2 orbifolds and explain how todetermine whether su
h orbifolds 
an lead to heteroti
 (E8 � E80) string models with 
hiral spe
train four dimensions. We follow the 
lassi�
ation s
heme for these orbifolds developed by Donagi{Wendland [29℄. (See their Table 1 for details and nomen
lature). In parti
ular, we des
ribe theirDW(0{2) orbifold whi
h 
an be 
onsidered as a 
ertain singular limit of the so{
alled S
hoen manifold.However, for 
omparison purposes we �rst re
all some basi
 fa
ts of Z2� Z2 orbifolds and give somedetails of the more often 
onsidered DW(0{1) orbifold.2.1 General features of Z2 � Z2 orbifoldsWe 
onsider Z2 �Z2 orbifolds de�ned as R6=S (1)where the spa
e group S spe
i�es an equivalen
e relation on R6 as g X � X for all g 2 S andX 2 R6 . A general spa
e group element g = (#; `) 
onsists of a six{dimensional rotation matrix #and a translation `. It a
ts on X 2 R6 as g X = #X + `. The spa
e group is generated by twotypes of elements: The purely translational elements gi = (11; ei) are determined by six basis ve
torsei (i = 1; : : : ; 6) that span a six{dimensional latti
e and hen
e de�ne a six{torus. For simpli
ity, weidentify R6 = C3 and take as basis ve
torse1 = (1; 0; 0) ; e2 = (i; 0; 0) ; e3 = (0; 1; 0) ; e4 = (0; i; 0) ; e5 = (0; 0; 1) ; e6 = (0; 0; i) : (2)Consequently, we denote the torus 
oordinates by z = (z1; z2; z3) 2 T 21 �T 22 �T 23 in this 
omplex basis.The remaining two generators of the spa
e group, g� and g!, involve Z2 �Z2 rotations, denoted by �and !, possibly 
ombined with some translations. When this is the 
ase su
h elements are referred toas roto{translations. The phases of the rotations a
ting on C3 arev� = �0; 12 ;�12� ; and v! = ��12 ; 0; 12� ; (3)respe
tively.The a
tion of the spa
e group elements is subsequently extended to the left{moving se
tor of theheteroti
 worldsheet theory that des
ribes the target spa
e gauge degrees of freedom. In a bosoni
formulation this se
tor 
an be des
ribed by 16 left{moving 
oordinates XIL (I = 1; : : : ; 16) living on atorus R16=�E8�E80 de�ned by the E8�E80 root latti
e �E8�E80 . The simplest way to extend the spa
e3



group a
tion is the shift embedding whi
h a
ts as: g XIL = XIL + 2� V Ig . Hen
e V : g 7! Vg de�nes agroup homomorphism of the spa
e group S to the Abelian group R16 under addition. For a generalspa
e group element g = gk� gl! gn11 � : : : � gn66 , with k; l = 0; 1 and ni 2 Z, the lo
al twist vg and shiftve
tor Vg 
an be expanded asvg = k v� + l v! ; Vg = k V� + l V! + niWi (4)in terms of the gauge shift ve
tors V� and V! and the dis
rete Wilson lines Wi where summation overi from 1 to 6 is understood. In order that Vg de�nes a proper group homomorphism, it is requiredthat 2V� �= 2V! �= 2Wi �= 0 ; (5)where �= means equal up to �E8�E80 latti
e ve
tors.The 
entral 
onsisten
y requirement of heteroti
 orbifold 
ompa
ti�
ations is modular invarian
e.For a Z2� Z2 orbifold it requires for all 
ommuting spa
e group elements h; g thatVh � Vg � vh � vg � 0 ; (6)where � indi
ates that both sides are equal up to integers. Combined with equation (5) this leads tothe following set of irredu
ible modular invarian
e 
onditions:V 2� � v2� ; V 2! � v2! ; V� � V! � v� � v! ; V� �Wi � V! �Wi � 0 ; Wi �Wj � 0 ; (7)by going through all possible 
ommuting 
hoi
es of g; h 2 S.The spe
trum of (twisted or untwisted) 
losed strings from the se
tor g 2 S is di
tated by theirleft{ and right{moving massesM2L = 12 P 2sh + eNg � 34 ; M2R = 12 p2sh � 14 ; (8)in terms of the (shifted) left{ and right{moving momentaPsh = P + Vg ; psh = p+ vg ; (9)where P 2 �E8�E80 and p is from the ve
torial or spinorial weight latti
e of SO(8). Here, the twistve
tor vg is extended to a four{dimensional ve
tor with an extra 0 as �rst 
omponent. Furthermore,eNg is a (fra
tional or integer) number operator 
ounting the number of left{moving os
illators ~��na
ting on the left{moving ground state of the g{twisted se
tor. The physi
al spe
trum is subje
t tothe level mat
hing 
ondition M2L = M2R. The massless states in four dimensions have vanishing left{and right{moving masses, ML =MR = 0, and are subje
t to the proje
tion 
onditionsVh � Psh � vh � �psh +� ~Ng� � 12�Vg � Vh � vg � vh� ; (10)for all spa
e group elements h that 
ommute with g, using � ~N ig = ~N�ig � ~N ig, i = 0; 1; 2; 3, where ~N�igand ~N ig are integer os
illator numbers 
ounting the numbers of os
illators ~��i�n and ~�i�n a
ting on theground state of the g{twisted se
tor, respe
tively. 4
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Figure 1: Fixed tori of the DW(0{1) orbifold. Every �xed torus interse
ts 4 + 4 other �xed tori andthe interse
tion lo
i are points in six dimensions.2.2 The standard DW(0{1) Z2 � Z2 orbifoldNow, we 
onsider the standard T 6=Z2 � Z2 orbifold whi
h 
orresponds to the DW(0{1) model ofRef. [29℄ in order to see how four{dimensional 
hirality arises. In this 
ase, the elements g� and g! a
tonly as rotations, hen
e the spa
e group S is generated by the elements: g� = ��; 0�, g! = �!; 0� andgi = �11; ei�.When 
ompa
tifying the heteroti
 string on this orbifold, massless strings are atta
hed to its �xedtori. There are 16 + 16 + 16 �xed tori asso
iated to three twisted se
tors with orbifold elements g�,g! and g�g!. These �xed tori are in one{to{one 
orresponden
e to the spa
e group elements:(�; niei) for n1 = n2 = 0 and n3; n4; n5; n6 = 0; 1 ; (11a)(!; niei) for n3 = n4 = 0 and n1; n2; n5; n6 = 0; 1 ; (11b)(�!; niei) for n5 = n6 = 0 and n1; n2; n3; n4 = 0; 1 ; (11
)and are displayed in �gure 1. At a given �xed torus there exists a six{dimensional N = 1 theory (i.e.N = 2 theory in four{dimensional language) with lo
alized hypermultiplets on it. Sin
e every �xedtorus interse
ts other �xed tori, six{dimensional N = 1 supersymmetry is broken to N = 1 in fourdimensions at the interse
tion points. Te
hni
ally, ea
h �xed torus is orbifolded by the a
tion of someother non{trivial elements be
ause the orbifold generators g� and g! 
ommute. For example, the �xedtorus of (�; 0) is orbifolded by (!; 0) and (�!; 0). Hen
e, the proje
tion 
onditions (10) are a
tive andredu
e a hypermultiplet in six dimensions to a four{dimensional 
hiral super�eld, giving 
hiral matter.5
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Figure 2: Fixed tori of the DW(0{2) orbifold. The �xed tori of the �{se
tor never interse
t the onesfrom the !{se
tor, as they lie displa
ed in the third torus.For example, in the orbifold standard embedding, where the twists � and ! are embedded via theshifts V� = �0; 12 ; - 12 ; 05��08� and V! = � - 12 ; 0; 12 ; 05��08�, we obtain a theory with 51 
hiral 27{plets (3untwisted and 3 � 16 twisted) and 3 untwisted 
hiral 27{plets of E6 in four dimensions. This pre
isely
orresponds to the hodge numbers of the DW(0{1) orbifold: (h11; h21) = (51; 3).2.3 The DW(0{2) Z2 � Z2 orbifoldNext, we turn to the orbifold T 6=Z2 � Z2,rototrans whi
h will be the main fo
us in this work: theDW(0{2) model in the 
lassi�
ation [29℄. Its spa
e group S is generated by the elements g� = ��; 0�,g! = �!; 12e5� and gi = �11; ei�. In detail, the a
tion of g�, g!, g!g� and g�g! on C3 is given byg� : �z1; z2; z3� = �z1;�z2;�z3� ; g!g� : �z1; z2; z3� = �� z1;�z2; z3 + 12� ;g! : �z1; z2; z3� = �� z1; z2;�z3 + 12� ; g�g! : �z1; z2; z3� = �� z1;�z2; z3 � 12� : (12)This shows expli
itly that g� a
ts as an ordinary Z2 rotation, while g! de�nes a Z2 roto{translation,whi
h we denote by Z2,rototrans. The remaining two elements a
t as an Z2 in the �rst two two{tori,but as a translation over half a latti
e ve
tor e5 in the third two{torus.This has various important 
onsequen
es for the distribution of �xed tori within the DW(0{2)orbifold: Rather than 16+16+16 there are only 8+8 �xed tori. These are left �xed by the groupelements g� and g!. Sin
e g�g! and g!g� a
t as a pure translations in the third T 2, they do notprodu
e any �xed tori by themselves, but rather identify the �xed tori of g� and g! in pairs. The �xedtori of g� and g! are in one{to{one 
orresponden
e to the spa
e group elements,gr = ��; niei� for n1 = n2 = 0 and n3; n4; n6 = 0; 1 ; (13a)g0r0 = �!; 12e5 + niei� for n3 = n4 = 0 and n1; n2; n06 = 0; 1 : (13b)We will often refer to the positions �z1; 12n3 + i2n4; i2n6� and �12n1 + i2n2; z2; 14 + i2n06) of the �xed toriof g� and g! using multi{indi
es r = (n3; n4; n6) and r0 = (n1; n2; n06), respe
tively. As illustrated in6



�gure 2 the �xed tori r and r0 lie parallel to ea
h other in the third T 2. To emphasize this importantfa
t we use the primes on r0 and n06 to signal that the 8 �xed points r0 are shifted by 14e5 = (0; 0; 14 )in the third torus w.r.t. the �xed points r.When 
ompa
tifying the heteroti
 string on this orbifold, massless strings are atta
hed to these�xed tori as for the DW(0{1) orbifold above. However, sin
e in this 
ase the �xed tori do not interse
t,there are no proje
tions a
ting lo
ally on the six{dimensional N = 1 theory. (Or more te
hni
ally,even though � and ! 
ommute,the spa
e group elements g� and g! do not, sin
e they are de�ned toa
t on R6 not on T 6, see (12). Hen
e, the proje
tion 
ondition (10) is not implemented for theseelements.) Nevertheless, from a four{dimensional point{of{view supersymmetry is broken to N = 1:There are two six{dimensional theories living on the �xed tori of the g� and g! se
tors whi
h realizedi�erent six{dimensional N = 1 supersymmetries. Hen
e, in the e�e
tive four{dimensional theoryonly N = 1 remains. As this provides an example of non{lo
al supersymmetry breaking, the six{dimensional hypermultiplets just bran
h into two 
hiral multiplets and 
onsequently the resultingfour{dimensional theory is ne
essarily non{
hiral. Con
retely, for the orbifold standard embeddingwe �nd for this orbifold 3 + 2 � 8 = 19 
hiral 27{plets and 3 + 2 � 8 = 19 
hiral 27{plets of E6, i.e.the Hodge numbers are (19; 19). In fa
t, be
ause supersymmetry is broken non{lo
ally, any DW(0{2)orbifold is non{
hiral, independently of the 
hoi
e of shifts and Wilson lines.Be
ause of this, it would seem that this type of orbifold 
an never be relevant for four{dimensionalmodel building. One of the main messages of this paper is that one should not dis
ard su
h orbifoldsfor phenomenology just yet. In fa
t, as shown in Se
tion 5 it is possible to 
onstru
t an expli
it sixgeneration SU(5) GUT model on the resolution of this orbifold. To break the GUT to the MSSM andto redu
e the number of generations by a fa
tor two one 
an use a (true �eld{theoreti
al) Wilson lineWfree asso
iated to a free involution Z2,free of the geometry. In terms of the 
omplex 
oordinates wetake this involution to a
t as �z1; z2; z3�! �z1 + i2 ; z2 + i2 ; z3 + i2� : (14)When this involution has been modded out the resulting geometry 
orresponds to the DW(1{3) orbifoldwith Hodge numbers (11; 11) in the 
lassi�
ation [29℄. In order that this is a symmetry of the fullmodel, the dis
rete Wilson lines get severely restri
ted, i.e. W2 �=W4 �=W6 and Wfree �= 12W2.3 S
hoen manifoldThe S
hoen manifold X was �rst introdu
ed in [15℄; here we follow the des
ription of this manifoldgiven e.g. in [16{18, 37℄. The S
hoen manifold is de�ned as the �ber produ
tX = B �P1 B0 ; (15)of two (four{dimensional) rational ellipti
 surfa
es B and B0. Hen
e, the manifold X is naturallyequipped with two proje
tions �0 : X ! B and � : X ! B0 that proje
t on either fa
tor of the �berprodu
t. Su
h a rational ellipti
 surfa
e B is de�ned as a two{torus �bration � : B ! P1 over thebase P1. In terms of the �brations � and �0 the �ber produ
t (15) is written asX := �(p; p0) 2 B �B0 j �(p) = �0(p0)	 : (16)A two{torus 
an be des
ribed as an ellipti
 
urve, i.e. via the Weierstrass mapping as the so-lution to an homogeneous 
ubi
 polynomial 
onstraint f(x) = 0 in the homogeneous 
oordinates7



x = (x0; x1; x2) 2 P2. The 
omplex stru
ture of the torus is en
oded in the 
onstraint f(x) = 0:A homogeneous 
ubi
 polynomial is 
hara
terized by 3 + 6 + 1 = 10 
omplex parameters, of whi
height 
an be removed by 
omplexi�ed SU(3) rotations of x and the overall 
omplex s
ale is irrelevant.Be
ause of the �bration the 
omplex stru
ture in general varies over the base P1. Therefore, therational ellipti
 surfa
e B 
an be given byB = P2P1 � 31 � : B = �p = (x; t) 2 (P2;P1) j t0 f0(x)� t1 f1(x) = 0	 : (17)The surfa
e B 
an thus be 
onsidered as the blow{up of P2 at (generi
ally) 3 � 3 = 9 points x whereboth 
ubi
 polynomials vanish simultaneously f0(x) = f1(x) = 0. Sin
e at ea
h of these points anex
eptional 
y
le P1 is inserted, the 
ohomology group H2(B;Z) = Z10 is spanned by the hyper plane
lass ` of P2 and the ex
eptional 
lasses e� (� = 1; : : : ; 9) with interse
tion numbers `2 = �e2� = 1.This surfa
e has 
1(B) = 3 `�P� e� and Euler number �(B) = 
2(B) = �(P2) + 9 � �(P1) = 12.As the des
ription of B0 is similar, the manifold X 
an be written as a 
omplete interse
tionCalabi{Yau X = P2P2P1 24 3 00 31 1 35 : 8<: t0 f0(x)� t1 f1(x) = 0t0 f 00(x0)� t1 f 01(x0) = 0 : (18)Clearly, the Calabi{Yau 
ondition is satis�ed as the horizontal sums of the degrees of the homoge-neous polynomials are one higher than the dimension of the respe
tive proje
tive spa
es. In thisrepresentation the number of 
omplex stru
ture deformations is readily 
ounted: There are 4 
ubi
polynomials, f0(x); f1(x); f 00(x0); f 01(x0), ea
h 
ontaining 10 
omplex parameters. By rede�nitions ofx, x0 and t one 
an remove 2 � 8 + 3 of them and two overall 
omplex s
ales are irrelevant, hen
eh12 = 4 � 10 � 2 � 8 � 3 � 2 = 19. On both B and B0 there are 10 (1; 1){forms 
orresponding to the
lasses `; e� and `0; e0�, respe
tively. However, sin
e �(p) = �0(p0) there is one linear relation amongthem. Consequently, the number of K�ahler deformation equals h11 = 2 � 10� 1 = 19. In summary theHodge numbers of X are (19; 19).3.1 Singular S
hoen manifold: the DW(0{2) orbifoldPutting the dis
ussion above and the information obtained in Subse
tion 2.3 together suggests that theT 6=Z2�Z2;rototrans orbifold 
an be 
onsidered as a spe
i�
 singular limit of the S
hoen manifold, sin
etheir Hodge numbers agree. Indeed, by the following 
onsiderations this 
an be 
on�rmed [29℄: Onthe 
overing six{torus 
oordinates z the proje
ts �0 and � a
t as �0(z) = (z1; z3) and �(z) = (z2; z3),hen
e the rational ellipti
 surfa
es B and B0 are given in this singular limit asB = �(z1; z3) 2 T 21 � T 23 j (z1; z3) � (z1;�z3) � (�z1; 12 � z3) � (�z1; z3 + 12 )	 ; (19a)B0 = �(z02; z03) 2 T 22 � T 23 j (z02; z03) � (z02; 12 � z03) � (�z02;�z03) � (�z02; z03 + 12 )	 : (19b)These spa
es are isomorphi
: By applying a 
hange of 
oordinates (z02; z03) = (z1; z3 + 14) the identi�-
ations in B be
ome identi
al to those in B0. The P1 in the �ber produ
t, whi
h has the topology ofa two{sphere, be
omes a re
tangular pillowP1 = �(z3) 2 T 23 j (z3) � (�z3) � (12 � z3)	 : (20)8



3.2 S
hoen manifold as the resolution of the DW(0{2) orbifoldAs has been explained e.g. in [13,38,39℄ one 
an 
onstru
t the smooth resolutions of 
ompa
t orbifoldsin a systemati
 fashion. In parti
ular, it is possible to determine a 
onvenient basis of divisors andthe interse
tion numbers of the resolution of the orbifold T 6=Z2 � Z2,rototrans. Hen
e, when applyingthese methods to the DW(0{2) orbifold one obtains a smooth Calabi{Yau spa
e whi
h 
onstitutes adi�erent realization of the S
hoen manifold. As we will use this des
ription of the S
hoen manifold inthe remainder of this paper, we des
ribe this pro
edure in some detail below.Interse
tion ring of a basis of divisorsThe inherited divisors Ra (a = 1; 2; 3) 
orrespond to the torus divisors fza = 
ag with 
a some generi

omplex numbers that are made 
ompatible with the orbifold a
tion:R1 := fz1 = 
1g [ fz1 = �
1g ; R2 := fz2 = 
2g [ fz2 = �
2g ;R3 := fz3 = 
3g [ fz3 = �
3g [ fz3 = 12 + 
3g [ fz1 = 12 � 
1g ; (21)Next we de�ne the ordinary divisors asso
iated to the lo
al 
oordinates de�ned near the �xed pointsof the orbifoldD1;n1n2 := fz1 = 12 n1 + i2 n2g ; D2;n3n4 := fz2 = 12 n3 + i2 n4g ;D3;n6 := fz3 = i2 n6g [ fz3 = 12 + i2 n6g ; D03;n06 := fz3 = 14 + i2 n06g [ fz3 = 34 + i2 n06g : (22)Finally, the ex
eptional divisors, denoted by E0r0 and Er, arise when we resolve the Z2 singularitiesusing e.g. tori
 geometry te
hniques. Sin
e the �xed tori are identi�ed in pairs in the DW(0{2) orbifold,we 
an represent them in terms of the ex
eptional divisors in the fundamental domain of the originalT 6 (before modding out this identi�
ation):Er = En3n4n6 = En3n40n6 [En3n41n6 ; E0r0 = E0n1n2n06 = En1n20n06 [En1n21n06 : (23)These 8+8 ex
eptional divisors stem from the 8+8 �xed tori displayed in the Figure 2.Between these divisors the following linear equivalen
e relations hold:2D1;n1n2 = R1 �Xn06 E0n1n2n06 ; 2D03;n06 = R3 � Xn1;n2E0n1n2n06 ;2D2;n3n4 = R2 �Xn6 En3n4n6 ; 2D3;n6 = R3 � Xn3;n4En3n3n6 : (24)These linear equivalen
e relations show that a basis for the H2(X;R) are formed by the divisors Rand E. (In total we have 3 + 2 � 8 = 19 of them.) In this basis the S
hoen manifold has the followingnon{vanishing self{interse
tions between these divisors:R1R2R3 = 4 ; R2(E0n1n2n06)2 = R1(En3n4n6)2 = �4 : (25)Using the linear equivalen
e relations (24) (self{)interse
tions between any 
ombination of R's, D'sand E's are readily 
omputed. 9



Chern 
lassesThe total Chern 
lass 
(TX) of the tangent bundle of the resolution spa
e X 
an be 
omputed fromthe splitting prin
iple as 
(TX) =Y(1 +D) Y(1 +E) Y(1�R)2 ; (26)where the produ
ts are taken over all divisors of the appropriate types. By expanding this out, we
an determine the �rst and se
ond Chern 
lasses of X. Using the linear equivalen
e relations (24) we�nd that 
1(TX) = 0, 
on�rming that X de�nes a Calabi{Yau spa
e. For the se
ond Chern 
lass weobtain 
2(TX) = �34�Xr0 (E0r0)2 +Xr (Er)2�+ : : : (27)The dots : : : refer to further terms that appear in this expansion in prin
iple, but whi
h never 
on-tribute when integrated over any four{
y
le using the interse
tion numbers given above.By employing the adjun
tion formula, 
2(D) = D 
2(XjD) one 
an determine the Euler numberof the hyper surfa
e asso
iated to the divisor D. In parti
ular, from�(R1) = 
2(R1) = 24 ; �(R2) = 
2(R2) = 24 ; and �(R3) = 
2(R3) = 0 ; (28)we infer that the divisors R1 and R2 are K3 surfa
es and R3 is a four{torus. Finally, one may 
onsiderD1;00 and D2;00 as the divisor 
lasses asso
iated to the rational ellipti
 surfa
es B0 and B, respe
tively.Indeed, the Euler number of D1;00 equals �(D1;00) = 12, and, sin
e D1;00E2r = �2, D1;00 
ontains thesame �xed points of g� as B0, see (19). Hen
e, we may identify B0 = D1;00 and similarly B = D2;00.4 Line bundle models on the S
hoen resolutionIn this Se
tion we 
onsider Abelian gauge ba
kgrounds on the S
hoen geometry as des
ribed in the pre-vious Se
tion. After that we determine the 
harged 
hiral spe
trum in the presen
e of this ba
kground,showing in parti
ular that even with line bundles it is possible to obtain 
hirality in four dimensions.Subse
tion 4.3 explains how the spe
tra of su
h line bundle ba
kgrounds 
an be interpreted as het-eroti
 orbifolds with appropriate blow{up modes swit
hed on. The �nal Subse
tion illustrates variousaspe
ts by giving an expli
it line bundle model on the S
hoen manifold.4.1 Abelian gauge 
ux ba
kgroundsOn the spa
e X we 
onsider an Abelian gauge ba
kground F whi
h is embedded in the Cartansubalgebra, spanned by the generators HI , of the E8 � E80 gauge group of the heteroti
 theory. Ingeneral this gauge 
ux is supported on both the ex
eptional and inherited divisorsF2� =Xa RaHBa +Xr ErHVr +Xr0 E0r0 HV 0r0 : (29)The line bundle ve
tors Vr; V 0r0 and the magneti
 
uxes Ba on the tori are sixteen{dimensional 
om-ponent ve
tors that 
hara
terize the 
orresponding line bundle embedding in E8 � E80. To shorten10



the notation we have written HA = AI HI , where A are referred to as bundle or 
ux ve
tors with 16
omponents, AI .In order that this gauge ba
kground is 
ompatible with the freely a
ting Z2,free involution (14) ofthe orbifold, we need to require thatVn3 n4 n6 = Vn3 n4+1n6+1 ; V 0n1 n2 n06 = V 0n1 n2+1n06+1 ; (30)Given that the indi
es take values ni = 0; 1, the addition of indi
es is performed modulo 2.Flux quantizationFor a gauge 
ux 
on�guration (29) to be physi
ally admissible it has to be integrally quantized, i.e.ZC F2� 2 Z ; (31)for all 
urves C that the manifold X admits. This gives a stringent set of 
onditions on the bundleve
tors 2V 0n1n2n06 �= 2Vn3n4n6 �= 0 ; 2B1 �= 2B2 �= 2B3 �= 0 ; (32a)Xn1;n2 V 0n1n2n06 +B1 �= Xn3;n4 Vn3n4n6 +B2 �= 0 ; Xn06 V 0n1n2n06 +Xn6 Vn3n4n6 +B3 �= 0 : (32b)The �rst two 
onditions of (32a) are obtained by integrating over the 
urves D2;n3n4E0n1n2n06 andD1;n1n2En3n4n6 , respe
tively. The �rst two sum 
onditions in (32b) result from integrating overD2;n3n4D03;n06 and D1;n1n2D3;n6 , respe
tively. The last sum relation in (32b) is found by integrat-ing over D1;n1n2D2;n3n4 . When we 
ombine these sum equations with the �rst two 
onditions of (32a),the latter three of (32a) are inferred. These equations are quite tri
ky to be solved in general. However,there are two (related) ans�atze that simplify the problem 
onsiderably:First of all, one may assume that the various bundle ve
tors are either equal or opposite, e.g.Vn3n4n6 = Xs=0;1(�)s(n4+n6) Vsn3 ; V 0n1n2n06 = Xs0=0;1(�)s0(n2+n06) V 0s0n1 : (33)This parti
ular 
hoi
e is 
ompatible with the requirement (30) that the gauge 
uxes admit the Z2,freea
tion of equation (14). In this 
ase, the sums of Vr and V 0r0 in the 
onditions (32b) form latti
eve
tors. Consequently, the magneti
 
uxes of the tori Ba have to be latti
e ve
tors themselves.Se
ondly, taking inspiration from the expansion (4) of the lo
al shift ve
tors Vg in the orbifold
onstru
tion, one may write the lo
al bundle ve
tors asVn3n4n6 = V� + n3W3 + n4W4 + n6W6 + Ln3n4n6 ;V 0n1n2n06 = V! + n1W1 + n2W2 + n06W6 + L0n1n2n06 ; (34)where 2V� �= 2V! �= 2Wi �= 0 and Ln3n4n6 �= L0n1n2n06 �= 0. Then, again, the sum 
onditions (32b) implythat the magneti
 
uxes Ba are latti
e ve
tors. 11



Bian
hi identitiesThe 
entral 
onsisten
y requirements for smooth 
ompa
ti�
ations are the integrated Bian
hi identi-ties. In this work we ignore the possibility of �ve{branes, therefore the integrated Bian
hi identitieshave to vanish for all divisors D, i.e. ZD �trF2 � trR2� = 0 : (35)Using the expression for the se
ond Chern 
lass (27) of X, we �nd in the present 
ase that these
onditions amount to B1 � Vr = 0 ; B2 � V 0r0 = 0 ; B1 �B2 = 0 ; (36a)Xr (Vr)2 = 12 + 2B2 �B3 ; Xr0 (V 0r0)2 = 12 + 2B1 �B3 ; (36b)by integrating over Er, Er0 , R3, and R1, R2, respe
tively.The equations in (36a) show that the gauge 
uxes B1 and B2 have to be perpendi
ular, and, thatthe gauge 
ux B1 on R1 is perpendi
ular to all the line bundle ve
tors Vr. Similarly, the gauge 
uxB2 is perpendi
ular to all ve
tors V 0r0 . However, there are no 
onditions on the inner produ
ts B1 � V 0r0and B2 � Vr. The Bian
hi identities on the se
ond line, (36b), are reminis
ent of the Bian
hi identityon a single C 2=Z2 resolution, i.e. V 2 = 3=2 (see e.g. Refs. [40,41℄). For example, when B2 or B3 vanishand all eight Vr are equal, this 
ondition is reprodu
ed identi
ally. The magnetized tori thus lead tomodi�
ations of the standard lo
al Bian
hi identity of the lo
al C 2=Z2 resolution.DUY equations and the blow{down limitUsing that the volume of a divisor D is de�ned as Vol(D) = RD J2=2, the tree{level DUY equationR J2F = 0 
an be represented asXa Vol(Ra)Ba +Xr Vol(Er)Vr +Xr0 Vol(E0r0)V 0r0 = 0 : (37)These 
onditions 
an be very restri
tive. They give an equal number of relations between the volumesas the number of linear independent ve
tors the Ba, Vr and V 0r0 
an be de
omposed in. However, onesu
h relation may for
e many volumes to zero simultaneously, be
ause these volumes are of 
ourseassumed to be non{negative.As we des
ribe the S
hoen manifold as a resolution of the T 6=Z2 � Z2,rototrans, we would like todetermine the requirements under whi
h a gauge 
ux 
on�guration allows for a regular blow{downlimit in whi
h the underlying six torus T 6 has a �nite volume. Hen
e, we sear
h for solutions whi
hallow for a full blow-down to the singular orbifold, i.e. with Vol(Er) = Vol(E0r0) = 0 and Vol(Ra) > 0.In this 
ase, the DUY equations simplify toVol(R1)B1 +Vol(R2)B2 +Vol(R3)B3 = 0 : (38)It follows that unless the Ba are linearly dependent or all zero, at least some of the volumes Vol(Ra)are for
ed to vanish. In parti
ular, if only one Ba is non{zero, then the 
orresponding volume has to12



be zero in the blow{down limit, and hen
e a regular blow{down limit does not exist. Even when B3is a linear 
ombination of B1 and B2 but one of the 
oeÆ
ients is positive, two volumes are for
edto zero. Hen
e, only if B3 is a linear 
ombination with negative 
oeÆ
ients of B1 and B2, a regularblow{down limit exists. Hen
e, possibly the simplest way to realize this has B3 = �B1 �B2. We 
an
ast this in the form of two equationsB21 Vol(R1) +B1 �B3Vol(R3) = 0 ; B22 Vol(R2) +B2 �B3Vol(R3) = 0 ; (39)sin
e B1 and B2 are perpendi
ular, see (36a). Sin
e we know from (32a) that 2Ba �= 0, we see thatthe ratios of the volumes of the inherited divisors, Vol(Ra)=Vol(R3), a = 1; 2, are fra
tional.To allow for a full blow{up we need in addition that the 
uxes lo
ated at the ex
eptional divisorsto be 
hosen su
h that the volumes of all of them 
an be taken to be positive at the same time. Toensure this it is again 
onvenient to 
hoose that the 
orresponding bundle ve
tors are alternating, e.g.like in (33).It turns out that the 
ombination of the 
ux quantization, DUY equations and the Bian
hi identi-ties is extremely restri
tive, hen
e, to obtain semi{realisti
 models, one is often for
ed to give up therequirement of a regular blow{down limit. (In addition, the one{loop 
orre
tion to the DUY equa-tion [26℄ 
an for
e some volumes to be non{vanishing.) When this limit does not exist, an orbifoldinterpretation of the model is not ruled out: Often it is possible to shrink quite a number of ex
eptional
y
les to zero, while keeping the volumes Vol(Ra) > 0. Hen
e, lo
ally near those shrunken 
y
les anon{
ompa
t orbifold analysis is still possible.4.2 Spe
tra 
omputationTo determine the physi
al 
onsequen
e of models build on su
h orbifold resolutions we need to beable to determine the spe
trum of massless states. A 
onvenient way of 
omputing the spe
trum onan orbifold resolution is provided by the multipli
ity operator introdu
ed e.g. in [40{42℄. Using thesemethods we 
an determine both the spe
tra in four dimensions as well as on six{dimensional hypersurfa
es.Four{dimensional spe
trumThe spe
trum in four dimensions is of key interest in phenomenologi
al studies. It 
an be determinedby letting the operator N4D(X) = ZX n16 � F2��3 + 112 
2(TX) F2�o ; (40)a
t on the states 
ontained in the ten{dimensional gaugino. This operator is normalized su
h thatit 
ounts the number of 
hiral super�elds. Using the interse
tion numbers determined above this is
omputed straightforwardly:N4D(X) = 2�1�Xr H2Vr�HB1 + 2�1�Xr0 H2V 0r0�HB2 + 4HB1HB2HB3 : (41)The multipli
ities of the 
hiral multiplets in four dimensions are then determined by evaluating thisoperator on the roots of E8 � E80. 13



There is some tension between solving the Bian
hi identities and 
hirality, be
ause of the orthog-onality relations, (36a), among the 
uxes Ba, Vr and V 0r0 . However, say B1 � Vr = 0, does not implythat on all E8�E08 roots HB1H2Vr vanishes. As we show by some examples dis
ussed in the Se
tion 5,it is indeed possible to obtain a 
hiral spe
trum in four dimensions.Six{dimensional spe
tra on divisorsIn addition, we 
an de�ne the multipli
ity operator N6D(D) in six dimensions for any divisor D � X.Positive values of N6D 
ount the number of half{hyper multiplets, while negative values 
ount (twotimes) the number of ve
tor multiplets. (In six dimensions the fermions of hyper and ve
tor multipletshave opposite 
hirality.) As integrals over the whole spa
e X they readN6D(D) = ZX Dn12 � F2��2 + 112 
2(D)o ; (42)where 
2(D) are given in (28). Given that the divisors R1; R2 may be interpreted as K3 surfa
esand R3 as a four{torus, the spe
tra on these divisors are probably the most interesting. Using theinterse
tion numbers we readily 
ompute this expli
itly for D = Ra:N6D(R1) = 2�1�Xr H2Vr�+ 4HB2HB3 ; (43a)N6D(R2) = 2�1�Xr0 H2V 0r0�+ 4HB1HB3 ; (43b)N6D(R3) = 4HB1HB2 : (43
)Relation between the six{ and four{dimensional spe
traAs explained in Subse
tion 2.3 the orbifold T 6=Z2�Z2,rototrans never leads to four{dimensional 
hirality.The reason is basi
ally that su
h models only 
ontain hypermultiplets in six dimension, whi
h simplybran
h to ve
tor{like 
ombinations of 
hiral multiplets in four dimensions. In the smooth 
ase wehave found a way to bypass this no{go. The key here are the magneti
 
uxes Ba on the divisors Rathat 
orrespond to the tori of the orbifold in the blow{down limit. Indeed, if we set all Ba = 0, then(41) simply says that N4D = 0: no 
hirality. Hen
e, pre
isely by allowing for magnetized divisors Rawe 
an avoid this no{go and obtain 
hirality.To see that this e�e
t is expe
ted from �eld theory, let us 
onsider the 
ase in whi
h the 
uxB2 has been swit
hed o�. The four{dimensional multipli
ity operator (41) then leads to a relationbetween the six{dimensional spe
trum on R1 given by (43a) and the spe
trum in four dimensions:N4D(X) = HB1 N6D(R1) : (44)This equation 
an be interpreted as follows: When we 
ompa
tify on a K3�T 2, then we 
an 
onsider�rst the six{dimensional theory that results from the 
ompa
ti�
ation on K3. This e�e
tive six{dimensional model is subsequently redu
ed on a two{torus. It is well{known that if there is nomagneti
 
ux, this se
ond step results in a ve
tor{like spe
trum in four dimensions. However, if thereis a magneti
 
ux B present, a 
hiral spe
trum arises: only the 
hiral fermioni
 states of 
harge q forwhi
h Bq > 0 survive, and their multipli
ity is given by Bq provided that the smallest 
harge in the14



spe
trum is unity [34,36℄. It is intriguing to noti
e that (44) says exa
tly this: N6D(R1) determines thespe
trum in a six{dimensional world. The operator HB1 gives the 
harge B1 �w of the six{dimensionalstate asso
iated with the E8 � E80 root w under the magneti
 
ux B1.When all three 
uxes are swit
hed on, the relation between the four{ and six{dimensional spe
traapparently reads N4D(X) = HB1 N6D(R1) +HB2 N6D(R2)�HB3 N6D(R3) : (45)This follows dire
tly by identifying the six{dimensional multipli
ity operators (43) in the four{dimensionalexpression (41). The �nal term 
orre
ts for over 
ounting of states 
harged under B1, B2 and B3 si-multaneously.4.3 Interpretation as blow{up of DW(0{2) orbifold modelsSo far, we have analyzed the S
hoen geometry as a smooth Calabi{Yau and des
ribed line bundleba
kgrounds on it. The fa
t that the S
hoen manifold is the resolution of the DW(0{2) orbifold, asdis
ussed in Se
tion 3, has essentially been irrelevant in our investigation. Now, we would like todes
ribe how a given line bundle model 
an be understood as a heteroti
 DW(0{2) orbifold modelwith a 
ertain number of blow{up modes attaining va
uum expe
tation values (VEVs). We �rstre
all how this analysis 
an be done in general using a N = 1 language in four dimensions following[10, 13, 42℄. After that we 
on
lude this Subse
tion by des
ribing this pro
edure in a six{dimensionalsupersymmetri
 formulation whi
h is more appropriate sin
e the DW(0{2) orbifold model has N = 1supersymmetri
 se
tors in six dimensions.Four dimensional N = 1 languageIn heteroti
 orbifolds a �xed point gets blown up if a twisted 
hiral super�eld �(r)bm, lo
alized at that�xed point, a
quires a non{vanishing VEV: h�(r)bmi 6= 0. The value of this VEV determines the volumeof the ex
eptional 
y
le Er that appears in this resolution pro
ess. As we re
alled in Se
tion 2.1any twisted state is 
hara
terized by a shifted left{moving momentum Psh. In Refs. [10, 13, 43℄ itwas realized that, as long as this twisted state does not involve any os
illator ex
itations, its shiftedmomentum Psh pre
isely determines the lo
al line bundle ve
tor Vr asso
iated to the ex
eptionaldivisor Er. Some spe
ial 
ases might o

ur: Sometimes it happens that a bundle ve
tor 
orrespondsto a blow{up mode that has been proje
ted out by the orbifold a
tion in the four{dimensional theory.It is also possible that the bundle ve
tor is asso
iated to a massive state in the orbifold spe
trum.The spe
trum of the orbifold model and the one of the blow{up theory are generi
ally not identi
al,but 
losely related: First of all the VEVs of the twisted states h�(r)bmi lead to some gauge symmetrybreaking. Furthermore, the blow{up modes are not present in the blow{up spe
trum as 
harged states,but rather as (
omplexi�ed) axions br. The relation between the blow{up mode and the axion reads�(r)bm = ebr h�(r)bmi : (46)In the smooth des
ription this axion generi
ally gives a mass to the gauge �eld of the broken U(1)via the Stue
kelberg me
hanism. In the blow{up pi
ture the U(1) is broken just by a standard Higgsme
hanism.As a 
onsequen
e of this gauge symmetry breaking the representations of matter �elds get bran
hed.But still, this is not enough to mat
h the orbifold and resolution spe
tra [10,13℄: One needs to preform15



�eld rede�nitions of the other twisted matter states �orb involving the 
orresponding blow{up modesto obtain an exa
t agreement of the spe
tra, i.e.�orb = e�br �res : (47)The signs � have to be 
hosen appropriately to ensure that the weights of �res are E8 � E80 roots,while those of �orb belong to the shifted weight latti
e de�ned in (9).Blow{ups in six dimensionsBefore we des
ribe the blow{up pro
edure in a six{dimensional language, we �rst brie
y re
all someproperties of N = 1 theories in six dimensions. There are three basi
 irredu
ible representation ofN = 1 supersymmetry relevant for our dis
ussion: i) A ve
tor multiplet V = (V;�) 
ontains a ve
torsuper�eld V and a 
hiral super�eld � from the 4D N = 1 perspe
tive. ii) A hypermultiplet 
ontainstwo independent 
hiral super�elds H = (�;�
) that live in 
harge{
onjugate representations. Thismeans that the gauge properties of the hypermultiplet is uniquely spe
i�ed by the representation andU(1) 
harges of either 
hiral 
omponent. iii) Finally, a half{hyper multiplet is a hypermultiplet with a
ertain reality 
ondition imposed. Therefore, it has only half of the number of independent 
omponentsas a normal hypermultiplet. In other words, using the four{dimensional N = 1 terminology, a half{hyper is a 
hiral super�eld in a real or pseudo{real representation.Now, if a twisted hypermultiplet plays the role of a blow{up mode in order to resolve a �xed torus,then only one of its 
hiral super�eld 
omponents a
tually takes a VEV, while the other 
omponentonly gets rede�ned: H(r)bm = ebr (h�(r)bmi;�
(r)bm,res) : (48)Be
ause the 
hiral super�eld 
omponents of a hypermultiplet 
arry opposite U(1) 
harges, they haveto be rede�ned with opposite powers of the blow{up mode:Horb = (�orb;�
orb) = �e�br �res; e�br �
res� ; (49)for appropriate 
hoi
e of sign �. After these �eld rede�nitions the 
hiral super�elds in the blow{upmode hypermultiplet do not seem to fall into proper N = 1 representations anymore. However, thisdoes not signify that the blow{up breaks six{dimensional supersymmetry: The remaining 
hiral super-�eld 
omponents will be 
ompletely neutral, and therefore form half{hypermultiplets by themselves.4.4 Sample model: An eight generation GUTWe 
on
lude this Se
tion with a 
on
rete example of a line bundle model whi
h is 
onstru
ted onthe S
hoen geometry to illustrate many aspe
ts of the general des
ription developed in this and thepre
eding Se
tions. Consider the following parti
ular line bundle model on the resolution of ourT 6=Z2� Z2,rototrans:B3 = �B1 ; B2 = 0 ; Vn3n4n6 = (�)n4+n6 V0 ; V 0n1n2n06(�)n2+n06 V 0n1 ; (50)with B1 = �1; 1; 1; -1; 0; 03��08� ;V0 = �0; 0; 12 ; 12 ; 0; 03��1; 07� ; V 00 = �0; 0; 0; 12 ; 12 ; 03��08� ;V 01 = �12 ; -12 ; 0; 0; 0; 03��08� : (51)16



This model exhibits the following properties:The bundle ve
tors satisfy all the requirements spe
i�ed in Se
tion 4.1: The quantization 
onditions(32) are ful�lled, be
ause the alternating signs in the Vr and V 0r0 are in a

ordan
e with (33) and theve
tors Ba are latti
e ve
tors.They also satisfy all Bian
hi identities (36): B1 is perpendi
ular to all ve
tors Vr. Sin
e all ve
torsVr square to 3=2 and B2 = 0 the �rst 
ondition in (36b) is satis�ed. The se
ond 
ondition in (36b) issatis�ed as well, sin
e both sides are equal:Xr0 V 0r02 = 8 � 12 = 4 ; 12 + 2B1B3 = 12� 2 � 4 = 4 : (52)Be
ause B3 = �B1 and B2 = 0 a blow{down of this model is allowed by the DUY equations (37)while keeping the torus radii, set by the volumes of the divisors Ra, �nite. In the blow{down limit,Vol(Er) = Vol(E0r0) = 0, the volumes of R1 and R3 have to be equal, Vol(R3) = Vol(R1). Thealternating signs of Vr and V 0r0 ensure that the DUY equations also allow for a �nite blow{up of allex
eptional 
y
les.The gauge group that is left unbroken by this Abelian gauge 
on�guration isSU(5)� SO(14)0 �U(1)5 ; (53)from the �rst and se
ond E8 group fa
tor. Sin
e for this 
hoi
e of bundle ve
tors B2 = 0 and all Vrare equal up to a sign, the 4D multipli
ity operator (41) redu
es toN4D = 2HB1�1� 8H2V0� : (54)The resulting spe
trum, 8 (10;1) + 12 (5;1) + 4 (5;1) + 24 (1;1) ; (55)is 
hiral w.r.t. to the �ve U(1) 
harges (whi
h we omitted for notational simpli
ity). (W.r.t. thehidden gauge group at most a purely ve
tor{like spe
trum arises, whi
h is invisible for the multipli
ityoperator.) Hen
e, the model might be 
onsidered as an eight generations SU(5) GUT toy{model withfour Higgs pairs.5 A line bundle MSSM on the S
hoen manifoldWe present an MSSM{like model with three generations as a line bundle model on the resolution ofT 6=Z2 � Z2,rototrans. In the �rst Subse
tion we 
onstru
t an SU(5) GUT model with six generationson the S
hoen manifold using line bundles. In Subse
tion 5.2 we identify a Wilson line that 
an beasso
iated with a freely a
ting involution, whi
h both redu
es the number of generations to three andbreaks the gauge group to the standard model group. In the next Subse
tion we show that a K3subspa
e of the S
hoen manifold 
an be blown down to a four{dimensional orbifold T 4=Z2 on whi
hthe model 
an be quantized using standard CFT te
hniques. In Subse
tion 5.4 we use this to give analternative des
ription of the line bundle MSSM on the S
hoen manifold in terms of a blow{up of thisorbifold with a magnetized torus. 17



5.1 Six GUT generations on the S
hoen resolutionWe de�ne a line bundle model on the S
hoen manifold with the 
ux ve
torsB1 = �3;�3; 06��3; 3; 06� and B2 = B3 = 0 ; (56)on the ordinary divisors Ra,V(0;0;0) = V(0;1;0) = �V(0;0;1) = �V(0;1;1) = �148��0; 0; 0; 12 ; 0;�12 ;�12 ;�12� ; (57a)V(1;0;0) = V(1;1;0) = �V(1;0;1) = �V(1;1;1) = �0; 12 ; 12 ; 05��0; 12 ; 0; 0; 0;�12 ;�12 ;�12� ; (57b)on the ex
eptional divisors Er, and �nally,V 0(0;0;0) = �V 0(0;1;1) = �0;�12 ;�12 ; 05��12 ; 12 ; 12 ; 0;�12 ; 0; 0; 0� ; (58a)V 0(0;1;0) = �V 0(0;0;1) = �0;�12 ;�12 ; 05��12 ; 12 ;�12 ; 0; 12 ; 0; 0; 0� ; (58b)V 0(1;0;0) = V 0(1;1;0) = �0; 1; 0; 05��� 12 ;�12 ; 0; 0; 0; 0; 0; 0� ; (58
)V 0(1;1;1) = V 0(1;0;1) = �� 1; 07��� 12 ;�12 ; 06� ; (58d)on the ex
eptional divisors E0r0 .This 
hoi
e of bundle ve
tors ful�lls the quantization 
onditions (32) and the DUY equations (37)for appropriately 
hosen volumes. All bundle ve
tors Vr and V 0r0 have V 2r = V 0r02 = 3=2. This is
onsistent with the Bian
hi identities (36b), whi
h redu
e toXr (Vr)2 =Xr0 (V 0r0)2 = 12 ; (59)sin
e there are no 
orre
tions resulting from magneti
 
uxes Ba as only B1 6= 0. The unbroken gaugegroup in this gauge 
on�guration readsSU(5)� SU(5)0 �U(1)8 : (60)The four{dimensional multipli
ity operator (41) is 
omputed straightforwardly and the resulting 
hiralspe
trum is given in Table 1. In this Table we have distinguished the various states, in parti
ular thesinglets, by their eight U(1) 
harges (q0; : : : ; q7). Noti
e that, 
uriously, this model has six generationsin both, the observable and the hidden, SU(5).5.2 Freely a
ting Z2 and MSSM with three generationsOne 
an de�ne a freely a
ting involution Z2;free as in equation (14) that redu
es the number ofgenerations by a fa
tor 1=2. In addition, the freely a
ting involution 
an be embedded as a Wilsonline that breaks SU(5) to SU(3)� SU(2)�U(1)Y . We take this Wilson line,Wfree = �03; 1; 1; 1;�32 ;�32��08� ; (61)to point in the standard hyper
harge dire
tion of SU(5). This 
hoi
e of Wfree �xes the �rst SU(5) tode�ne the observable se
tor and leads to an MSSM{like model with three generations.18



Super�eld Representation U(1) 
hargesmultipli
ity SU(5)� SU(5)0 q0 q1 q2 q3 q4 q5 q6 q76 �10;1� 0 0 0 0 1 0 -3 06 (5;1) 0 0 0 0 0 0 -6 06 �5;1� 1 0 1 0 -1 0 1 06 (5;1) 1 0 1 0 0 0 4 024 (1;1) 2 0 0 0 0 0 0 06 (1;1) -1 0 -1 0 -1 0 5 06 (1;1) 1 0 -3 0 0 0 0 06 (1;1) 0 0 0 0 2 0 0 06 �1;10� 0 0 0 2 0 0 0 -624 (1;5) 0 1 0 3 0 0 0 -26 �1;5� 0 0 0 -2 0 0 0 -86 �1;5� 0 0 0 0 0 1 0 76 �1;5� 0 0 0 0 0 -1 0 742 (1;1) 0 0 0 4 0 1 0 -542 (1;1) 0 0 0 4 0 -1 0 -524 (1;1) 0 1 0 -3 0 1 0 -524 (1;1) 0 1 0 -3 0 -1 0 -56 (1;1) 0 2 0 0 0 0 0 0Table 1: This line bundle model on the S
hoen manifold has six generations of SU(5) in both, theobservable and the hidden, se
tors. States in the �rst blo
k are 
harged under the observable E8;states in the se
ond blo
k are 
harged under the hidden group.Contrary to the situation in �eld theory, there are further requirements on this Wilson line instring theory [12,13℄: It has to satisfy 2Wfree �=W2 �=W4 �=W6 �= 0 and it has to respe
t the modularinvarian
e 
onditions 2W 2free �Wfree �Wi � 0 : (62)These additional 
onditions were derived in 
ontext of orbifold 
onstru
tions where Z2,free is part ofthe spa
e group.5.3 Singular limits of the S
hoen GUT with line bundlesFull blow down limitTaking the magneti
 
ux B1 to vanish for a moment, we 
an 
onsider the full blow{down limit of theGUT model with six generations. It has an exa
t heteroti
 orbifold CFT as formulated in Se
tion 2.3as the T 6=Z2 � Z2,rototrans orbifold with a de�nite 
hoi
e of gauge shifts, V�; V!, and dis
rete Wilsonlines, Wi. As di
tated by the 
ux ve
tors (57) and (58) they are given byV� = �148��12 ;�12 ; 12 ; 0; 12 ; 03� ; V! = �0;�12 ;�12 ; 05��� 12 ;�12 ;�12 ; 0; 12 ; 03� ;W1 = �0; 12 ;�12 ; 1; 1; 03��0; 1; 12 ; 1;�12 ; 03� ; W3 = �� 14 ; 14 ; 14 ;�145��0; 12 ; 0; 12 ;�1; 03� ; (63)19



and the other Wilson lines vanish. This 
hoi
e ful�lls the 
onditions of modular invarian
e (7). Asdis
ussed in Se
tion 2.3, the spe
trum of this orbifold 
an be 
omputed using orbifold CFT te
hniquesbut is ne
essarily non{
hiral as long as no magneti
 
uxes Ba have been reintrodu
ed.The T 4=Z2 orbifold inside the S
hoen manifoldSin
e the S
hoen model de�ned in this Se
tion has only a single magneti
 
ux, B1, swit
hed on, see(56), the DUY equations (37) imply that in a full blow{down the volume of R1 has to vanish as well.However, we 
an exploit that there also exists a partial blow{down in whi
h all Vol(Er) ! 0 whilethe volumes of all inherited divisors Ra and of at least some other ex
eptional divisors E0r0 stay �nite.Therefore, this partial blow{down leads to an intermediate T 4=Z2 orbifold with torus 
oordinates(z2; z3) on whi
h the Z2 a
tion a
ts via the twist v� given in (3) (
.f. [11℄).For this intermediate T 4=Z2 orbifold an exa
t heteroti
 CFT des
ription exists. Taking its gaugeembedding as given by V� and W3 from equation (63), its low energy limit results in a model withN = 1 supersymmetry in six dimensions with gauge groupE6 � SU(8)0 �U(1)3 : (64)The spe
trum of hypermultiplets in
luding U(1) 
harges of this intermediate six{dimensional orbifoldtheory is 
omputed using [7℄ and listed in the �rst 
olumn of Table 2.A simple, yet non{trivial 
ross
he
k of this spe
trum is that it is free of irredu
ible gravitationalanomalies, e.g. that the sum 
ondition #(hyper)�#(ve
tor) = 244 holds. Indeed, using Table 2 it isstraightforward to 
ount the number of ve
tor{ and hypermultiplets:#(ve
tor) = 78 + 63 + 3 � 1 = 144 ; #(hyper) = 2 � �27 + 12 � 70 + 2�+ 16 � 2 � 8 + 4 = 388 ; (65)where the fa
tor 12 a

ounts for the fa
t that the (1;70)(0;0;0) is a half{hyper. The last 4 additionalhypers 
orrespond to untwisted moduli whi
h are not displayed in Table 2.5.4 S
hoen line bundle MSSM as a blown up orbifoldThe MSSM{like model of Subse
tion 5.1 
an now be reprodu
ed as a blow{up of the T 4=Z2 orbifolddis
ussed in the Subse
tion above equipped with a magneti
 
ux on the torus to generate four{dimensional 
hirality. In short, this pro
edure reads:1. Blow{up the T 4=Z2 orbifold to a smooth K3 manifold by giving VEVs to 16 blow{up modesand use �eld rede�nitions to obtain the spe
trum on K3.2. Turn on the additional 
uxes on the divisors E0r0 , de
ompose gauge group and bran
h the rep-resentations a

ordingly.3. Generate four{dimensional 
hirality by swit
hing on the magneti
 
ux B1 as well.In this pro
ess the magneti
 
ux B1 does not lead to breaking of four{dimensional supersymmetrysin
e the 
ontribution from the 
uxes on E0r0 
an
els the one from B1 in the DUY equations (37). Inthe following we des
ribe this pro
edure in detail:20



Blowing up the intermediate T 4=Z2 orbifoldThe intermediate T 4=Z2 orbifold gets blown up to a K3 surfa
e by assigning VEVs to the blow{up modes, i.e. to 16 twisted states lo
alized at the 16 singularities of the T 4=Z2 orbifold. At ea
hsingularity (labeled by the multi{index r = (n3; n4; n5; n6)) a blow{up mode, �(r)bm 
ontained in atwisted hypermultiplet, is 
hosen su
h that its shifted left{moving momentum P (r)sh agrees with the
ux ve
tor Vr lo
alized on the divisor Er:P (r)sh = Vr for all r = (n3; n4; n5; n6) : (66)All these blow{up modes are 
hosen to be in eight{dimensional representations of the hidden SU(8)0gauge group of the T 6=Z2 orbifold, so that, 
onsequently, the gauge group gets broken toE6 � SU(7)0 �U(1)4 : (67)As explained in Subse
tion 4.3, when the blow{up mode �(r)bm in a given twisted se
tor attains aVEV, �eld rede�nitions, (48) and (49), have to be performed on the other states in the same twistedse
tor in order to ensure that all �elds in the blow{up are 
hara
terized by E8 � E80 roots. Theappropriate �eld rede�nitions required by this blow{up pro
edure are listed in the se
ond 
olumn ofTable 2. As the phases of the orbifold blow{up modes have been reinterpreted as axions, the remaininghypermultiplet 
omponents do not seem to form proper six{dimensional N = 1 hypermultiplets.However, as 
an be veri�ed from this Table, these 
hiral super�eld are neutral and 
an thus beinterpreted as half{hypermultiplets.Additional 
uxes on the ex
eptional divisors E0r0Up to now, we have turned on 
uxes only on the ex
eptional divisors Er, whi
h 
orrespond to theblown{up �xed points of the T 4=Z2 orbifold. After the �eld rede�nition to the blow{up �eld basis,the 
harges w.r.t. to the four U(1) fa
tors are taken su
h that they 
orrespond to the �rst four
harges (q0; q1; q2; q3) in Table 1. The U(1)'s asso
iated to the 
harges (q0; q1; q2) already exist at theintermediate T 4=Z2 orbifold, the fourth U(1) arises by symmetry breaking of the hidden SU(8)0 in theblow{up pro
edure.Turning on additional 
uxes (58) on E0r0 indu
es a further gauge symmetry breaking toSU(5)� SU(5)0 �U(1)8 : (68)Sin
e, these 
uxes are lo
ated at resolved �xed points of the other orbifold twist v!, they respe
t adi�erent six{dimensional supersymmetry. This means that by swit
hing on these 
uxes the modelbe
omes N = 1 in four dimensions. However, be
ause the divisors E0r0 do not interse
t with Er (i.e.the �xed tori of the g�{ and g!{twisted se
tors do not interse
t) see �gure 2, this does not enfor
e any
hiral proje
tion on the matter spe
trum (in 
ontrast to, say, the gravitino): The matter states on K3(i.e. the blow{up of the intermediate T 4=Z2) are simply de
omposed into four{dimensional super�eldsand their representations are bran
hed a

ording to the symmetry breaking (68).
21



Table 2: The �rst 
olumn gives 6D N = 1 multiplets on the T 4=Z2 orbifold with twist g� and gauge embeddingV� and W3 from equation (63). The se
ond 
olumn indi
ates whi
h state is the blow{up mode and gives the �eldrede�nitions ne
essary to mat
h the orbifold and blow{up states. In the third 
olumn we only indi
ate the stateswhi
h are part of the four{dimensional 
hiral spe
trum, i.e. those for whi
h ~N4D, given in the last 
olumn, is positive.6D N = 1 super Blow{up indu
ed rede�nitions of Surviving 4D 4D multi-multiplet on T 4=Z2 its 
hiral super�eld 
omponent(s) 
hiral super�elds pli
ity(E6 � SU(8)0 �U(1)3) (E6 � SU(7)0 �U(1)4) (SU(5)� SU(5)0 �U(1)8) ~N4Duntwisted gauge se
tor(78;1)(0;0;0) (78;1)(0;0;0) �10;1�(0;0;0;0;1;0;�3;0) 6(ve
tor) (5;1)(0;0;0;0;0;0;�6;0) 6(1;1)(0;0;0;0;2;0;0;0) 6(1;63)(0;0;0) (1;48)(0;0;0;0) �1;5�(0;0;0;0;0;1;0;7) 6(ve
tor) �1;5�(0;0;0;0;0;�1;0;7) 6�1;7�(0;0;0;4) { {(1;7)(0;0;0;�4) (1;1)(0;0;0;�4;0;1;0;5) 6(1;1)(0;0;0;�4;0;�1;0;5) 6(1;1)(0;0;0;0) { {untwisted matter se
tors: Ua, a = 2; 3(27;1)(�1;0;�1) (27;1)(�1;0;�1;0) (1;1)(�1;0;�1;0;�1;0;5;0) 6(hyper) �27;1�(1;0;1;0) (5;1)(1;0;1;0;0;0;4;0) 6�5;1�(1;0;1;0;�1;0;1;0) 6(1;70)(0;0;0) �1;35�(0;0;0;�2) �1;5�(0;0;0;�2;0;0;0;�8) 6(half{hyper) (1;35)(0;0;0;2) �1;10�(0;0;0;2;0;0;0;�6) 6(1;1)(1;0;�3) (1;1)(1;0;�3;0) (1;1)(1;0;�3;0;0;0;0;0) 6(hyper) (1;1)(�1;0;3;0) { {(1;1)(0;2;0) (1;1)(0;2;0;0) (1;1)(0;2;0;0;0;0;0;0) 6(hyper) (1;1)(0;�2;0;0) { {twisted matter se
tor at the �xed tori: r = (0; n4; n5; 0), n4; n5 = 0; 1(1;8)�� 12 ;�12 ;� 32� (1;1)� 12 ; 12 ; 32 ;�72� = e+br blow{up mode axion(hyper) (1;1)�� 12 ;� 12 ;�32 ; 72� = e+br (1;1)(0;0;0;0) { {(1;7)�� 12 ;� 12 ;�32 ;� 12� = e+br (1;7)(0;0;0;�4) { {�1;7�� 12 ; 12 ; 32 ; 12� = e�br �1;7�(0;0;0;4) (1;1)(0;0;0;4;0;1;0;�5) 6(1;1)(0;0;0;4;0;�1;0;�5) 6(1;8)� 12 ;�12 ; 32� (1;1)� 12 ;� 12 ;32 ; 72� = e+br (1;1)(1;0;3;0) { {(hyper) (1;1)�� 12 ;12 ;� 32 ;� 72� = e�br (1;1)(�1;0;�3;0) { {�1;7��� 12 ; 12 ;�32 ; 12� = e+br �1;7�(0;1;0;�3) (1;1)(0;1;0;�3;0;1;0;�5) 6(1;1)(0;1;0;�3;0;�1;0;�5) 6(1;7)� 12 ;�12 ; 32 ;� 12� = e�br (1;7)(0;�1;0;3) { {
ontinued . . .22



6D N = 1 super Blow{up indu
ed rede�nitions of Surviving 4D 4D multi-multiplet on T 4=Z2 its 
hiral super�eld 
omponent(s) 
hiral super�elds pli
ity(E6 � SU(8)0 �U(1)3) (E6 � SU(7)0 �U(1)4) (SU(5)� SU(5)0 �U(1)8) ~N4Dtwisted matter se
tor at the �xed tori: r = (0; n4; n5; 1), n4; n5 = 0; 1(1;8)�� 12 ;�12 ;� 32� (1;1)�� 12 ;� 12 ;�32 ; 72� = e+br blow{up mode axion(hyper) (1;1)� 12 ; 12 ;32 ;� 72� = e+br (1;1)(0;0;0;0) { {�1;7�� 12 ; 12 ;32 ; 12� = e+br �1;7�(0;0;0;4) (1;1)(0;0;0;4;0;1;0;�5) 6(1;1)(0;0;0;4;0;�1;0;�5) 6(1;7)�� 12 ;�12 ;� 32 ;�12� = e�br (1;7)(0;0;0;�4) { {(1;8)� 12 ;�12 ; 32� (1;1)�� 12 ; 12 ;�32 ;� 72� = e+br (1;1)(�1;0;�3;0) { {(hyper) (1;1)� 12 ;� 12 ; 32 ; 72� = e�br (1;1)(1;0;3;0) { {(1;7)� 12 ;� 12 ;32 ;� 12� = e+br (1;7)(0;�1;0;3) { {�1;7���12 ; 12 ;� 32 ; 12� = e�br �1;7�(0;1;0;�3) (1;1)(0;1;0;�3;0;1;0;�5) 6(1;1)(0;1;0;�3;0;�1;0;�5) 6twisted matter se
tor at the �xed tori: r = (1; n4; n5; 0), n4; n5 = 0; 1(1;8)��1;12 ;0� (1;1)�1;� 12 ;0;�72� = e+br blow{up mode axion(hyper) (1;1)��1; 12 ;0;72� = e+br (1;1)(0;0;0;0) { {(1;7)��1; 12 ;0;�12� = e+br (1;7)(0;0;0;�4) { {�1;7��1;� 12 ;0; 12� = e�br �1;7�(0;0;0;4) (1;1)(0;0;0;4;0;1;0;�5) 6(1;1)(0;0;0;4;0;�1;0;�5) 6(1;8)�1;12 ;0� (1;1)�1; 12 ;0;72� = e+br (1;1)(2;0;0;0) (1;1)(2;0;0;0;0;0;0;0) 6(hyper) (1;1)��1;�12 ;0;� 72� = e�br (1;1)(�2;0;0;0) { {�1;7���1;� 12 ;0;12� = e+br �1;7�(0;�1;0;�3) { {(1;7)�1; 12 ;0;� 12� = e�br (1;7)(0;1;0;3) (1;5)(0;1;0;3;0;0;0;�2) 6twisted matter se
tor at the �xed tori: r = (1; n4; n5; 1), n4; n5 = 0; 1(1;8)��1;12 ;0� (1;1)��1; 12 ;0;72� = e+br blow{up mode axion(hyper) (1;1)�1;� 12 ;0;�72� = e+br (1;1)(0;0;0;0) { {�1;7��1;� 12 ;0;12� = e+br �1;7�(0;0;0;4) (1;1)(0;0;0;4;0;1;0;�5) 6(1;1)(0;0;0;4;0;�1;0;�5) 6(1;7)��1; 12 ;0;� 12� = e�br (1;7)(0;0;0;�4) { {(1;8)�1;12 ;0� (1;1)��1;� 12 ;0;�72� = e+br (1;1)(�2;0;0;0) { {(hyper) (1;1)�1; 12 ;0; 72� = e�br (1;1)(2;0;0;0) (1;1)(2;0;0;0;0;0;0;0) 6(1;7)�1; 12 ;0;�12� = e+br (1;7)(0;1;0;3) (1;5)(0;1;0;3;0;0;0;�2) 6�1;7���1;�12 ;0; 12� = e�br �1;7�(0;�1;0;�3) { {23



Generating four dimensional 
hiralityStates from Er feel the 
ux on their \�xed torus", i.e. on R1, so that the B1 
ux indu
es 
hirality infour dimensions. Whether a state is part of the 
harged 
hiral spe
trum is de
ided by the operator~N4D = 2HB1 : (69)In general [34, 36℄, if ~N4D is positive for a 
hiral super�eld �res, then ~N4D 
opies of �res appear inthe four{dimensional spe
trum. While, if ~N4D is negative �res is 
ompletely proje
ted out. Thus thisrelation (similarly to (44)) shows that four dimensional 
hirality only arises if the 
ux B1 is swit
hedon. Two important observations are in order: Chiral multiplets originating from the six{dimensionalve
tor multiplets get an extra fa
tor (�1) in order to a

ount for the di�erent 
hiralities of ve
torand hypermultiplets in six dimensions. In addition, note that the e�e
t of the Wilson line W1 in thepresen
e of a 
ux B1 in the same torus 
an be seen in a �eld theoreti
al approa
h as a shift in thewave{fun
tions. Hen
e, 
on
erning the spe
trum of massless modes it 
an be negle
ted.As the 16 �xed points of T 4=Z2 are identi�ed pairwise by the Z2 a
tion of g!, one has to restri
tto twisted states with n5 = 0. Furthermore, g! proje
ts out all states from the untwisted se
tor U2 as
an be seen in the full orbifold model T 6=Z2�Z2,rototrans. The result of the additional 
uxes is listedin the third and fourth 
olumns of Table 2. The 
hiral part of the resulting spe
trum agrees with thespe
trum of the smooth model listed in Table 1.6 Towards an CFT des
ription of orbifolds with magnetized toriIn this se
tion we propose modi�
ations to the standard CFT 
onstru
tion of heteroti
 orbifolds inthe presen
e of magnetized tori. To fa
ilitate this dis
ussion we �rst re
all a few standard fa
ts ofheteroti
 orbifolds, i.e. orbifolds without any magneti
 
ux supported on the two{tori, Ba = 0.6.1 Standard modular invarian
e 
onditionsThe 
onditions of modular invarian
e are 
ompatible with the lo
al Bian
hi identities in the absen
eof Ba{
uxes in the following sense: If we 
hoose spa
e group elements g = h = gr or gr0 , as de�ned inequation (13) we see from (6) that the asso
iated lo
al shifts Vgr and Vgr0 ful�llV 2gr � 32 ; V 2gr0 � 32 ; (70)where r; r0 label the 8+8 �xed points of the twisted se
tors of � and !, respe
tively. On the otherhand, in the smooth pi
ture if we assume gauge 
uxes Vr �= Vgr and V 0r0 �= Vgr0 of length{square 3=2at all 8+8 resolved �xed points r and r0, respe
tively, then modular invarian
e 
orresponds (modulointegers) to 1=8th of the Bian
hi identities (36b) with Ba = 0.
24



6.2 Heteroti
 des
ription of the S
hoen orbifold with magnetized toriInspired by the logi
 put forward in [44℄ we propose how the modular invarian
e 
onditions (6) aremodi�ed in the presen
e of magneti
ally 
harged tori, Ba 6= 0. Sin
e the magneti
 
uxes are 
onstantover the tori, it is natural to assume that at a given �xed point they only 
ontribute as one overthe number of �xed points, i.e. 1=8. As 
an be inferred from the lo
al Bian
hi identities (36b) themagneti
 
uxes, Ba, 
ontribute to the energy (12 is repla
ed by 12 + 2Ba � B3, a = 1; 2). Hen
e, wepropose that the lo
al modular invarian
e 
onditions (70) are modi�ed toV 2gr � 32 + 14 B2 �B3 ; V 2gr0 � 32 + 14 B1 �B3 ; (71)In order to satisfy the quantization 
onditions (32) and the DUY equations in blow{down (38) it is
onvenient to expand B3 as a linear 
ombination of B1 and B2 with negative 
oeÆ
ients. A

ordingto equation (71) this redu
es the lengths of the lo
al shifts Vgr and Vgr0 . For example, using e.g.B3 = �B1 �B2 yields V 2gr � 32 � 14 B22 .However, as we have seen in blow{up not only the 
onsisten
y 
onditions, i.e. the Bian
hi 
ondi-tions, get modi�ed in the presen
e of Ba{
uxes, but also the spe
tra. Therefore, one 
ould imaginethat the mass shell 
ondition (8) on orbifolds is modi�ed as well when Ba 6= 0. In analogy to theproposal in [44℄, we expe
t that the left{moving mass is modi�ed toM2L = 12 (P + Vgr)2 + eN � 34 � 18 B2 � B3 ; M2L = 12 (P + Vgr0 )2 + eN � 34 � 18 B1 � B3 : (72)If we follow the interpretation of the lo
al line bundle ve
tors as the shifted momenta (9) of twistedstates that generate the blow{up at r or r0 these equations will 
ontribute new twisted states asblow{up modes, whi
h where not part of the Ba = 0 orbifold spe
trum.When one 
onsiders the standard heteroti
 orbifold, (massless) states, that survive the level mat
h-ing 
ondition, are subje
t to the orbifold proje
tion 
onditions (10). Modi�
ations of these proje
tionsare, as far as we are aware, not dis
ussed in the literature. Moreover, sin
e it is unknown how theheteroti
 string is quantized in the presen
e of magnetized tori, there is also not an obvious 
ompu-tation that would determine the appropriate 
orre
tions. However, as usual we expe
t that at leastself{proje
tions, i.e. taking h = g, should not proje
t out any state. Hen
e, at least the self{proje
tion
ondition should be modi�ed toVg � Psh � vg � �psh +� ~Ng� � 12�V 2g � v2g + 14 Ba � B3� ; (73)where a = 1 for g = gr0 and a = 2 for g = gr.6.3 Sample model as blow{up of orbifold with magnetized toriTo illustrate our proposal we return to our example of an eight generation SU(5) GUT model dis
ussedin Subse
tion 4.4. Noti
e, that the bundle ve
tors Vr de�ned in (50) 
an be interpreted as the shiftedleft{moving momenta Psh of twisted states without os
illator ex
itations of a 
onventional Z2 orbifold,sin
e V 2r = 3=2 is interpreted as the masslessness 
ondition P 2sh = 3=2. The bundle ve
tors V 0r0 on theother hand have V 0r02 = 1=2. In a 
onventional orbifold model these would 
orrespond to twisted stateswith os
illators. However, as dis
ussed in Se
tion 6, we expe
t that the left{moving mass formula getsmodi�ed to (72) in the presen
e of magnetized tori. If 
orre
t, one still interprets the V 0r0 as shiftedleft{moving momenta of twisted states without os
illators. Hen
e, even though this model has ablow{down limit, the resulting theory in this limit is not a 
onventional orbifold CFT.25
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