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HU-EP-12/50, HU-Mathematik:14-2012, DESY 12-228, ZMP-HH/12-26, AEI-2012-198Harmoni R-matries for Sattering Amplitudes and Spetral RegularizationLivia Ferro1, Tomasz  Lukowski2, Carlo Meneghelli3, Jan Plefka1, and Matthias Staudaher2;41 Institut f�ur Physik, Humboldt-Universit�at zu Berlin, Newtonstra�e 15, 12489 Berlin, Germany2 Institut f�ur Mathematik und Institut f�ur Physik, Humboldt-Universit�at zu Berlin,IRIS Adlershof, Zum Gro�en Windkanal 6, 12489 Berlin, Germany3 Fahbereih Mathematik, Universit�at Hamburg, Bundesstra�e 55, 20146 Hamburg,& Theory Group, DESY, Notkestra�e 85, 22603 Hamburg, Germany4 MPI f�ur Gravitationsphysik, Albert-Einstein-Institut, Am M�uhlenberg 1, 14476 Potsdam, Germanyferro,plefka�physik.hu-berlin.de, arlo.meneghelli�gmail.om,lukowski,staudaher�mathematik.hu-berlin.dePlanar N = 4 super Yang-Mills appears to be integrable. While this allows to �nd this theory'sexat spetrum, integrability has hitherto been of no diret use for sattering amplitudes. Toremedy this, we deform all sattering amplitudes by a spetral parameter. The deformed tree-levelfour-point funtion turns out to be essentially the one-loop R-matrix of the integrable N = 4 spinhain satisfying the Yang-Baxter equation. Deformed on-shell three-point funtions yield novelthree-leg R-matries satisfying bootstrap equations. Finally, we supply initial evidene that thespetral parameter might �nd its use as a novel symmetry-respeting regulator replaing dimensionalregularization. Its physial meaning is a loal deformation of partile heliity, a fat whih mightbe useful for a muh larger lass of non-integrable four-dimensional �eld theories.I. INTRODUCTIONAmazing features have been disovered in the lastyears in studying the struture of planar maximally su-persymmetri Yang-Mills theory (N = 4 SYM). Thedisovery of a hidden dual superonformal symmetry[1℄, after ombining with the onventional superonfor-mal symmetry into a Yangian struture [2℄, points to anunderlying integrability. This struture is deeply on-neted to the Gra�mannian formulation of satteringamplitudes [3, 4℄. Here the tree-level n-point Nk�2MHVamplitudes an be written asAtreen;k = I Qka=1Qni=k+1 daiM1M2 : : :Mn Æ4j4 �C(k;n) � Z� ; (1)where ZAi are the super-twistor variables (~��i ; ~� _�i ; �Ai )with ~��i the Fourier onjugate to ��i , and A is a fun-damental index of gl(4j4). Reall that the momenta ofsattering amplitudes are expressed as p� _�i = ��i ~� _�i , and�Ai are Gra�mann variables. Moreover, C(k;n) stands fora (k�n) matrix of the omplex parameters ai, and the�rst k olumns have been �xed to a unit matrix usingthe GL(k) symmetry of the integral. By Mi we denotethe (k�k) minors of the C(k;n) matrix. In a remarkable,very reent onstrution [5℄ all amplitudes are argued tobe onstrutible to arbitrary loop order in terms of basion-shell building bloks through BCFW reursion rela-tions [6℄. More preisely, any amplitude at arbitrary but�xed loop order is expressible as a sum over suitable on-shell diagrams obtained by appropriately linking MHVand MHV three-point amplitudes and subsequently in-tegrating out all on-shell super-twistor variables on in-ternal links.In a seemingly unrelated reent development, a on-netion between tree-level amplitudes and the ompleteone-loop dilatation operator was pointed out in [7℄. Inpartiular the Hamiltonian of the N = 4 spin hain wasshown to be related to the tree-level four-point ampli-tude. Being integrable, this nearest-neighbor Hamilto-

nian is generated by an R-matrix satisfying the ele-brated Yang-Baxter equation [8℄. After de�ning mon-odromy matries, R-matries serve as an alternative,and from the perspetive of sattering proesses morenatural, way to de�ne the Yangian algebra. The ruialfeature of R-matries is their dependene on a om-plex parameter alled spetral parameter. So far, thefundamental question on how to insert the spetral pa-rameter into the sattering amplitude problem had notyet been asked, let alone answered. In this letter we�ll this gap by �rst unifying and generalizing the men-tioned developments. We then proeed to the investi-gation of radiative orretions to sattering amplitudes.Exitingly, we �nd preliminary one-loop evidene thatthe introdution of appropriate spetral parameters al-lows to regulate all infrared divergenes while stayingin stritly four dimensions, and more generally loallyrespeting all symmetries.The struture is as follows. In II. we start from theYang-Baxter equation and �nd its solution in terms of aspetral-parameter dependent deformation of the four-point tree-level sattering amplitude. In III. we thenonstrut the deformed three-point building bloks ofthis R-matrix and relate the spetral parameter to theentral harge of partiles involved in the sattering pro-ess, whih in turn leads to a physial interpretationof the deformation as a relaxation of the heliity on-straints on partiles. In IV. we present our proposal forthe spetral regularization of loop amplitudes. SetionV. provides onlusions and an outlook.II. GRASSMANNIAN R-MATRIXAs the �rst step in our onstrution we �nd a spe-tral parameter dependent deformation of the tree-levelMHV four-point amplitude. It is given by an R-matrix whih an be found from the Yang-Baxter equa-tion written in the tensor produt of two super-twistorspaes, labeled 1 and 2, and the fundamental spae,
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2labeled 3R12(z3)R13(z2)R23(z1) = R23(z1)R13(z2)R12(z3) ;where z1, z2, and z3 = z2 � z1 are spetral parame-ters. The well-known R-matries ating on the tensorprodut of the fundamental and super-twistor spaesare given by RAi3;B(z) = z ÆAB + (�1)BJAiB ;where JAiB = ZAi ��ZBi are the generators of a twistor repof gl(4j4) and (�1)A enodes grading. Then the Yang-Baxter equation is a linear equation for the R-matrixR12(z) intertwining two super-twistor representations.Let us all R(z) the integral kernel of R12(z). Welook for a solution of the Yang-Baxter equation in Gra�-mannian form, namelyR(z) = I d13d14d23d241324(1324 � 1423)F (C; z)Æ4j4(C(2;4)�Z) ;where we introdued the funtion F (C; z). This fun-tion is uniquely determined by the Yang-Baxter equa-tion together with the requirement that all partileshave physial heliities. One �ndsF (C; z) = � 13241324 � 1423�z :Hereafter, we will refer to R(z) as the four-point har-moni R-matrix. After speifying the integration overthe -variables, this is essentially the kernel of the one-loop R-matrix of theN = 4 spin hain of [8℄! Exitingly,for z 6= 0, R(z) an also be interpreted as a deformationof the n = 4 and k = 2 expression in (1). Similar butmore ompliated deformations exist for any n and k aswe will disuss in the following.In this letter we fous on the superamplitudes of N =4 SYM but a similar alulation an be done for anyrepresentation of gl(njm) that an be written in termsof one family of osillators { the so-alled generalizedone-row reps (see e.g. [9℄). The result applies to moregeneral integrable hains and is related to the harmoniation of their Hamiltonians desribed in [10℄. We deferthe onstrution to a separate paper [11℄.III. THREE-POINT R-MATRICESIn very reent work it is demonstrated that the per-turbative integrand of sattering amplitudes at arbi-trary loop order naturally deomposes into basi ubibuilding bloks [5℄. Enouragingly, this remains trueunder our deformation. In partiular, one an �nd de-formed three-point verties whih may subsequently bereombined into the R-matrix we found in the previoussetion. As in the undeformed ase [5℄, there are twodistinguished objets R�(z1; z2) and RÆ(z1; z2), whihgive deformations of the MHV and MHV three-pointamplitudes, respetively. They satisfy the followingbootstrap equations depited in Fig. 1, similar to but

di�erent from the Yang-Baxter equation of the previoussetionR�(z1; z2)R13(0)R23(z1) = z1R13(0)R�(z1; z2) ;R23(z1)R13(0)RÆ(z1; z2) = z1RÆ(z1; z2)R13(0) : (2)An additional set of equations is obtained by repla-ing spae 1 with spae 2, leading to a seond spetralparameter z2.1 1 23 = 1 1 23 1 1 23 = 1 1 23FIG. 1: Bootstrap equations for the three-point R-matries.One the integral kernels R�(z1; z2) and RÆ(z1; z2)are de�ned one �nds the following solutions to (2) inthe Gra�mannian formR�(z1; z2) = I d1d212 1z11 z22 Æ4j4(C(2;3) � Z) ;RÆ(z1; z2) = I d1d212 1z11 z22 Æ4j4(C(1;3) � Z) :After integration, the three-point R-matries take, un-der the onstraint z1+z2+z3 = 0, a Z3-symmetri formstrikingly similar to onformal �eld theory orrelatorsR�(z1; z2) = Æ4(p� _�)Æ8(q�A)h1 2i1+z3h2 3i1+z1h3 1i1+z2 ;RÆ(z1; z2) = Æ4(p� _�)Æ4(~qA)[1 2℄1+z3 [2 3℄1+z1 [3 1℄1+z2 ; (3)where we use the standard heliity spinor representa-tions of momentum and super-harges (see e.g. [12℄).Again in generalization of an important insight of [5℄,one has to now glue four three-point R-matries withappropriate spetral parameters (see Fig. 2) in order toreprodue the result for the four-point R-matrix of thelast setion. Exatly as in the undeformed ase in [5℄,it is important to stress that the R-matrix depited inFig. 2 is tree-level as opposed to one-loop.
34 12zFIG. 2: Four-point R-matrix from three-point R-matries.It may be onfusing that in our onstrution thethree-point R-matries depend on two spetral param-eters as opposed to the one parameter of the four-pointR-matrix. The reason is that for the latter we addition-ally assumed that all external partiles have physialheliities. It is easy to hek that when one makes thisfurther assumption, solutions to (2) ease to exist. Inorder to obtain a non-trivial result one has to relax thisondition. It is then possible to �nd an interpretation



3of the spetral parameters by ating with the entralharges Ci = 12 PAZAi ��ZAiC1RÆ(z1; z2) = 12z1RÆ(z1; z2) ;C2RÆ(z1; z2) = 12z2RÆ(z1; z2) ;RÆ(z1; z2) C3 = 12 (z1 + z2)RÆ(z1; z2) ;and analogously for R�. We see that the spetralparameters have the interpretation of entral hargeeigenvalues of the three partiles, and that furthermorethe verties onserve the total entral harge. Sinethe spetral parameter an be any omplex number itmeans that the partiles arry non-zero entral harges,and aordingly unphysial heliities not restrited tointegers or half-integers, as the (super-)heliity genera-tor of the ith partile is hi = 1� Ci.There exists a simple way to produe higher-pointharmoni R-matries by gluing only three-point R-matries. Taking inspiration from Postnikov [13℄, one�nds that for a given number of partiles n and givenheliity k one should take the lattie in Fig. 3k: : :21n n-1 k+1: : :FIG. 3: Lattie enoding Rn;kand translate it with the use of the ditionary of Fig. 4$  $ $FIG. 4: Ditionary for plabi diagrams.into trivalent \plabi" diagrams, whih in this ase areplanar diagrams with only three-point white and blakverties. Then one identi�es all blak verties with R�and all white verties withRÆ. The formula for the tree-level harmoni R-matrix Rn;k is obtained by multiply-ing all three-point R-matries appearing in the plabidiagram and integrating over internal, on-shell propa-gators, whih redues to solving a set of linear equa-tions. In generalization of our previous analysis we alsoassign a non-vanishing entral harge to external parti-les. After a systemati study of this gluing proedureone realizes that the �nal formula for Rn;k depends onk (n � k) spetral parameters whih an be identi�edwith the number of faes in the lattie in Fig. 3. To bemore spei�, the spetral-parameter dependene ap-pears in the form Qi f�1+zii in the integrand, wherefi are the fae variables of the plabi diagram, zi areany omplex numbers, and the produt is taken over allfaes. In our interpretation the spetral parameters ziorrespond to the \unquantized" heliities of the parti-les irling the loops of the plabi diagrams.

IV. LOOP AMPLITUDES AND SPECTRALREGULARIZATIONIn the following preliminary study we restrit our-selves to the simplest ase of the one-loop four-pointamplitude. Without deformation, the omputation forN = 4 SYM results in the fatorization of the tree-levelamplitude times the salar box integralA1-loop4;2 = Atree4;2 Z d4q (p1 + p2)2(p1 + p4)2q2(q + p1)2(q + p1 + p2)2(q � p4)2 :(4)The integration over the loop momentum leads to in-frared divergenes and thus requires regularization. Themost ommon proedure is dimensional regularizationsee however [16℄. We will avoid it here.Let us �rst suppress the z-dependene and reproduethe unregulated result in (4) as proposed in [5℄. Wehoose the following parametrization of on-shell mo-mentap� _� = ��~� _� = t� 1x� � (1 y) = � t t yt x t x y � : (5)The one-loop four-point MHV amplitude may be ob-tained from a large number of equivalent plabi dia-grams [5℄. We found the diagram in Fig. 5 partiularlyuseful for our purposes. The proedure to obtain the
3 4
2 1

0�2���3�� 0�4�� 3�� 4��0�2��
FIG. 5: Plabi diagram for the one-loop four-point MHVase. A regulating assignment of spetral parameters isadded. Note that the spetral parameters of the externaland internal lines are the di�erene of the numbers assignedto the faes. For instane, the parameter assoiated to theline onneting partiles 1 and 4 is z = 4�� � 3�� = ��, withthe sign being determined by the hoie of heliity owingupward.box integral is lear from the previous setions: one hasto glue three-point MHV and MHV amplitudes as inFig. 5. Counting the number of delta funtions and in-tegrations, one easily sees that four variables are leftunintegrated. Further, these are exatly the four inte-grations whih reonstrut the o�-shell momentum ofthe loop integration [5℄Z d4qq2 = Z d2� d2~�GL(1) d�� = Z t dt dx dy d�� ;with the o�-shell momentum written in terms of p� _�,parametrized as in (5), and referene spinors ��1 and ~� _�4



4assoiated to, respetively, external partiles 1 and 4q� _� = p� _� + ���4 ~� _�1 :Up to a trivial numerial fator, this proedure yieldsthe IR-divergent one-loop four-point amplitude (4).We now introdue spetral parameter dependeneinto the above alulation, replaing the three-pointamplitudes by the three-point harmoni R-matriesR�(z1; z2) and RÆ(z1; z2), f (3). A partiular, suit-able hoie of spetral parameters is shown in Fig. 5,resulting in the following multipliative regulating mod-i�ation of the integrand of the box integral in (4)(h34i[21℄)�4��q�2��(q + p1)�2��(q + p1 + p2)�2��(q � p4)�2�� :It is reminisent of analyti regularization, see [14℄ andreferenes therein. We then see that the spetral param-eter an be used in our one-loop example as a regula-tor, while staying in exatly four dimensions! It shouldbe noted, however, that this hoie is not unique andother hoies an have a non-regulating e�et. We sus-pet this embarrassment of rihes to be solved via �rstpriniples.V. CONCLUSIONS AND OUTLOOKIn this letter we propose a new way of looking at theinterplay between sattering amplitudes and integrabil-ity. By solving Yang-Baxter as well as bootstrap equa-tions in the Gra�mannian language, we have been ableto introdue the notion of spetral parameter into thesattering problem of N = 4 SYM. These parametershave the mathematial interpretation of partile en-tral harges, and the physial interpretation of unquan-tized, omplex heliities. We have presented initial evi-dene that the deforming parameters may be used to re-plae dimensional regularization by spetral regulariza-tion. Considering the IR-divergent one-loop salar-boxintegral, we have shown that a suitable z-deformationindeed regulates the integral. It is important to stressthat the regulator is not ad ho, but naturally emergesfrom integrability.

In onjuntion with the ruial insights of [5℄, ourresults all for a large number of exiting follow-up in-vestigations. The most urgent issue is to establish thatIR spetral regularization works to arbitrary loop or-der, and that it is onsistent: E.g. it needs to be es-tablished that the regulator properly exponentiates athigher loop order. This might signi�antly redue thedeformation freedom, i.e. might put strong onstraintson the set of spetral parameters. In [5℄ it is stressedthat the general N = 4 loop integrand is a di�erentialform with struture Qi d log fi, where fi are the faevariables mentioned in setion III. Roughly speaking,this should turn into Qi d( 1zi fzii ) under spetral regu-larization. If true, this should open the way for a om-pletely new, symmetry respeting tehnial approahto loop alulations, replaing dim reg. More generally,we suspet that spetral regularization might also be anatural UV regulator, wherever needed (Wilson loops,orrelation funtions, form fators, et.). However, themost exiting perspetive is to get a handle on all-loop,i.e. (planar) non-perturbative alulations by applyingthe powerful tehniques of the two-dimensional quan-tum inverse sattering method to our four-dimensionalsystem. Reall that in the N = 4 spetral problem theone-loop spetral parameter is \split" into two param-eters x� by the oupling onstant [15℄. Can we furtherdeform our R-matries to inlude the oupling in a non-perturbative fashion? Finally, we �nd it exiting to in-vestigate whether loally \unquantizing" the heliitiesof massless partiles ould lead to new ways to regulateIR and UV in�nities in more general, non-integrablequantum �eld theories.VI. ACKNOWLEDGEMENTSWe would like to thank N. Arkani-Hamed, R. Frassek,J. Henn, T. MLoughlin and C. Sieg for useful disus-sions. T.  L. , J. P. and M. S. thank the Israel Institutefor Advaned Studies in Jerusalem for hospitality dur-ing the initial stage of this work. J. P. and L. F. aresupported by the VW-Foundation. C. M. is partiallysupported by a DFG grant of the SFB 676.[1℄ J. M. Drummond, J. Henn, G. P. Korhemskyand E. Sokathev, Nul. Phys. B 828, 317 (2010)[arXiv:0807.1095 [hep-th℄℄.[2℄ J. M. Drummond, J. M. Henn and J. Plefka, JHEP0905 (2009) 046 [arXiv:0902.2987 [hep-th℄℄.[3℄ N. Arkani-Hamed, F. Cahazo, C. Cheung and J. Ka-plan, JHEP 1003, 020 (2010) [arXiv:0907.5418 [hep-th℄℄.[4℄ L. J. Mason and D. Skinner, JHEP 0911 (2009) 045[arXiv:0909.0250 [hep-th℄℄.[5℄ N. Arkani-Hamed, J. L. Bourjaily, F. Cahazo,A. B. Gonharov, A. Postnikov and J. Trnka,arXiv:1212.5605 [hep-th℄.[6℄ R. Britto, F. Cahazo and B. Feng, Nul. Phys. B 715,
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