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her�mathematik.hu-berlin.dePlanar N = 4 super Yang-Mills appears to be integrable. While this allows to �nd this theory'sexa
t spe
trum, integrability has hitherto been of no dire
t use for s
attering amplitudes. Toremedy this, we deform all s
attering amplitudes by a spe
tral parameter. The deformed tree-levelfour-point fun
tion turns out to be essentially the one-loop R-matrix of the integrable N = 4 spin
hain satisfying the Yang-Baxter equation. Deformed on-shell three-point fun
tions yield novelthree-leg R-matri
es satisfying bootstrap equations. Finally, we supply initial eviden
e that thespe
tral parameter might �nd its use as a novel symmetry-respe
ting regulator repla
ing dimensionalregularization. Its physi
al meaning is a lo
al deformation of parti
le heli
ity, a fa
t whi
h mightbe useful for a mu
h larger 
lass of non-integrable four-dimensional �eld theories.I. INTRODUCTIONAmazing features have been dis
overed in the lastyears in studying the stru
ture of planar maximally su-persymmetri
 Yang-Mills theory (N = 4 SYM). Thedis
overy of a hidden dual super
onformal symmetry[1℄, after 
ombining with the 
onventional super
onfor-mal symmetry into a Yangian stru
ture [2℄, points to anunderlying integrability. This stru
ture is deeply 
on-ne
ted to the Gra�mannian formulation of s
atteringamplitudes [3, 4℄. Here the tree-level n-point Nk�2MHVamplitudes 
an be written asAtreen;k = I Qka=1Qni=k+1 d
aiM1M2 : : :Mn Æ4j4 �C(k;n) � Z� ; (1)where ZAi are the super-twistor variables (~��i ; ~� _�i ; �Ai )with ~��i the Fourier 
onjugate to ��i , and A is a fun-damental index of gl(4j4). Re
all that the momenta ofs
attering amplitudes are expressed as p� _�i = ��i ~� _�i , and�Ai are Gra�mann variables. Moreover, C(k;n) stands fora (k�n) matrix of the 
omplex parameters 
ai, and the�rst k 
olumns have been �xed to a unit matrix usingthe GL(k) symmetry of the integral. By Mi we denotethe (k�k) minors of the C(k;n) matrix. In a remarkable,very re
ent 
onstru
tion [5℄ all amplitudes are argued tobe 
onstru
tible to arbitrary loop order in terms of basi
on-shell building blo
ks through BCFW re
ursion rela-tions [6℄. More pre
isely, any amplitude at arbitrary but�xed loop order is expressible as a sum over suitable on-shell diagrams obtained by appropriately linking MHVand MHV three-point amplitudes and subsequently in-tegrating out all on-shell super-twistor variables on in-ternal links.In a seemingly unrelated re
ent development, a 
on-ne
tion between tree-level amplitudes and the 
ompleteone-loop dilatation operator was pointed out in [7℄. Inparti
ular the Hamiltonian of the N = 4 spin 
hain wasshown to be related to the tree-level four-point ampli-tude. Being integrable, this nearest-neighbor Hamilto-

nian is generated by an R-matrix satisfying the 
ele-brated Yang-Baxter equation [8℄. After de�ning mon-odromy matri
es, R-matri
es serve as an alternative,and from the perspe
tive of s
attering pro
esses morenatural, way to de�ne the Yangian algebra. The 
ru
ialfeature of R-matri
es is their dependen
e on a 
om-plex parameter 
alled spe
tral parameter. So far, thefundamental question on how to insert the spe
tral pa-rameter into the s
attering amplitude problem had notyet been asked, let alone answered. In this letter we�ll this gap by �rst unifying and generalizing the men-tioned developments. We then pro
eed to the investi-gation of radiative 
orre
tions to s
attering amplitudes.Ex
itingly, we �nd preliminary one-loop eviden
e thatthe introdu
tion of appropriate spe
tral parameters al-lows to regulate all infrared divergen
es while stayingin stri
tly four dimensions, and more generally lo
allyrespe
ting all symmetries.The stru
ture is as follows. In II. we start from theYang-Baxter equation and �nd its solution in terms of aspe
tral-parameter dependent deformation of the four-point tree-level s
attering amplitude. In III. we then
onstru
t the deformed three-point building blo
ks ofthis R-matrix and relate the spe
tral parameter to the
entral 
harge of parti
les involved in the s
attering pro-
ess, whi
h in turn leads to a physi
al interpretationof the deformation as a relaxation of the heli
ity 
on-straints on parti
les. In IV. we present our proposal forthe spe
tral regularization of loop amplitudes. Se
tionV. provides 
on
lusions and an outlook.II. GRASSMANNIAN R-MATRIXAs the �rst step in our 
onstru
tion we �nd a spe
-tral parameter dependent deformation of the tree-levelMHV four-point amplitude. It is given by an R-matrix whi
h 
an be found from the Yang-Baxter equa-tion written in the tensor produ
t of two super-twistorspa
es, labeled 1 and 2, and the fundamental spa
e,
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2labeled 3R12(z3)R13(z2)R23(z1) = R23(z1)R13(z2)R12(z3) ;where z1, z2, and z3 = z2 � z1 are spe
tral parame-ters. The well-known R-matri
es a
ting on the tensorprodu
t of the fundamental and super-twistor spa
esare given by RAi3;B(z) = z ÆAB + (�1)BJAiB ;where JAiB = ZAi ��ZBi are the generators of a twistor repof gl(4j4) and (�1)A en
odes grading. Then the Yang-Baxter equation is a linear equation for the R-matrixR12(z) intertwining two super-twistor representations.Let us 
all R(z) the integral kernel of R12(z). Welook for a solution of the Yang-Baxter equation in Gra�-mannian form, namelyR(z) = I d
13d
14d
23d
24
13
24(
13
24 � 
14
23)F (C; z)Æ4j4(C(2;4)�Z) ;where we introdu
ed the fun
tion F (C; z). This fun
-tion is uniquely determined by the Yang-Baxter equa-tion together with the requirement that all parti
leshave physi
al heli
ities. One �ndsF (C; z) = � 
13
24
13
24 � 
14
23�z :Hereafter, we will refer to R(z) as the four-point har-moni
 R-matrix. After spe
ifying the integration overthe 
-variables, this is essentially the kernel of the one-loop R-matrix of theN = 4 spin 
hain of [8℄! Ex
itingly,for z 6= 0, R(z) 
an also be interpreted as a deformationof the n = 4 and k = 2 expression in (1). Similar butmore 
ompli
ated deformations exist for any n and k aswe will dis
uss in the following.In this letter we fo
us on the superamplitudes of N =4 SYM but a similar 
al
ulation 
an be done for anyrepresentation of gl(njm) that 
an be written in termsof one family of os
illators { the so-
alled generalizedone-row reps (see e.g. [9℄). The result applies to moregeneral integrable 
hains and is related to the harmoni
a
tion of their Hamiltonians des
ribed in [10℄. We deferthe 
onstru
tion to a separate paper [11℄.III. THREE-POINT R-MATRICESIn very re
ent work it is demonstrated that the per-turbative integrand of s
attering amplitudes at arbi-trary loop order naturally de
omposes into basi
 
ubi
building blo
ks [5℄. En
ouragingly, this remains trueunder our deformation. In parti
ular, one 
an �nd de-formed three-point verti
es whi
h may subsequently bere
ombined into the R-matrix we found in the previousse
tion. As in the undeformed 
ase [5℄, there are twodistinguished obje
ts R�(z1; z2) and RÆ(z1; z2), whi
hgive deformations of the MHV and MHV three-pointamplitudes, respe
tively. They satisfy the followingbootstrap equations depi
ted in Fig. 1, similar to but

di�erent from the Yang-Baxter equation of the previousse
tionR�(z1; z2)R13(0)R23(z1) = z1R13(0)R�(z1; z2) ;R23(z1)R13(0)RÆ(z1; z2) = z1RÆ(z1; z2)R13(0) : (2)An additional set of equations is obtained by repla
-ing spa
e 1 with spa
e 2, leading to a se
ond spe
tralparameter z2.1 1 23 = 1 1 23 1 1 23 = 1 1 23FIG. 1: Bootstrap equations for the three-point R-matri
es.On
e the integral kernels R�(z1; z2) and RÆ(z1; z2)are de�ned one �nds the following solutions to (2) inthe Gra�mannian formR�(z1; z2) = I d
1d
2
1
2 1
z11 
z22 Æ4j4(C(2;3) � Z) ;RÆ(z1; z2) = I d
1d
2
1
2 1
z11 
z22 Æ4j4(C(1;3) � Z) :After integration, the three-point R-matri
es take, un-der the 
onstraint z1+z2+z3 = 0, a Z3-symmetri
 formstrikingly similar to 
onformal �eld theory 
orrelatorsR�(z1; z2) = Æ4(p� _�)Æ8(q�A)h1 2i1+z3h2 3i1+z1h3 1i1+z2 ;RÆ(z1; z2) = Æ4(p� _�)Æ4(~qA)[1 2℄1+z3 [2 3℄1+z1 [3 1℄1+z2 ; (3)where we use the standard heli
ity spinor representa-tions of momentum and super-
harges (see e.g. [12℄).Again in generalization of an important insight of [5℄,one has to now glue four three-point R-matri
es withappropriate spe
tral parameters (see Fig. 2) in order toreprodu
e the result for the four-point R-matrix of thelast se
tion. Exa
tly as in the undeformed 
ase in [5℄,it is important to stress that the R-matrix depi
ted inFig. 2 is tree-level as opposed to one-loop.
34 12zFIG. 2: Four-point R-matrix from three-point R-matri
es.It may be 
onfusing that in our 
onstru
tion thethree-point R-matri
es depend on two spe
tral param-eters as opposed to the one parameter of the four-pointR-matrix. The reason is that for the latter we addition-ally assumed that all external parti
les have physi
alheli
ities. It is easy to 
he
k that when one makes thisfurther assumption, solutions to (2) 
ease to exist. Inorder to obtain a non-trivial result one has to relax this
ondition. It is then possible to �nd an interpretation



3of the spe
tral parameters by a
ting with the 
entral
harges Ci = 12 PAZAi ��ZAiC1RÆ(z1; z2) = 12z1RÆ(z1; z2) ;C2RÆ(z1; z2) = 12z2RÆ(z1; z2) ;RÆ(z1; z2) C3 = 12 (z1 + z2)RÆ(z1; z2) ;and analogously for R�. We see that the spe
tralparameters have the interpretation of 
entral 
hargeeigenvalues of the three parti
les, and that furthermorethe verti
es 
onserve the total 
entral 
harge. Sin
ethe spe
tral parameter 
an be any 
omplex number itmeans that the parti
les 
arry non-zero 
entral 
harges,and a

ordingly unphysi
al heli
ities not restri
ted tointegers or half-integers, as the (super-)heli
ity genera-tor of the ith parti
le is hi = 1� Ci.There exists a simple way to produ
e higher-pointharmoni
 R-matri
es by gluing only three-point R-matri
es. Taking inspiration from Postnikov [13℄, one�nds that for a given number of parti
les n and givenheli
ity k one should take the latti
e in Fig. 3k: : :21n n-1 k+1: : :FIG. 3: Latti
e en
oding Rn;kand translate it with the use of the di
tionary of Fig. 4$ 
 $ $FIG. 4: Di
tionary for plabi
 diagrams.into trivalent \plabi
" diagrams, whi
h in this 
ase areplanar diagrams with only three-point white and bla
kverti
es. Then one identi�es all bla
k verti
es with R�and all white verti
es withRÆ. The formula for the tree-level harmoni
 R-matrix Rn;k is obtained by multiply-ing all three-point R-matri
es appearing in the plabi
diagram and integrating over internal, on-shell propa-gators, whi
h redu
es to solving a set of linear equa-tions. In generalization of our previous analysis we alsoassign a non-vanishing 
entral 
harge to external parti-
les. After a systemati
 study of this gluing pro
edureone realizes that the �nal formula for Rn;k depends onk (n � k) spe
tral parameters whi
h 
an be identi�edwith the number of fa
es in the latti
e in Fig. 3. To bemore spe
i�
, the spe
tral-parameter dependen
e ap-pears in the form Qi f�1+zii in the integrand, wherefi are the fa
e variables of the plabi
 diagram, zi areany 
omplex numbers, and the produ
t is taken over allfa
es. In our interpretation the spe
tral parameters zi
orrespond to the \unquantized" heli
ities of the parti-
les 
ir
ling the loops of the plabi
 diagrams.

IV. LOOP AMPLITUDES AND SPECTRALREGULARIZATIONIn the following preliminary study we restri
t our-selves to the simplest 
ase of the one-loop four-pointamplitude. Without deformation, the 
omputation forN = 4 SYM results in the fa
torization of the tree-levelamplitude times the s
alar box integralA1-loop4;2 = Atree4;2 Z d4q (p1 + p2)2(p1 + p4)2q2(q + p1)2(q + p1 + p2)2(q � p4)2 :(4)The integration over the loop momentum leads to in-frared divergen
es and thus requires regularization. Themost 
ommon pro
edure is dimensional regularizationsee however [16℄. We will avoid it here.Let us �rst suppress the z-dependen
e and reprodu
ethe unregulated result in (4) as proposed in [5℄. We
hoose the following parametrization of on-shell mo-mentap� _� = ��~� _� = t� 1x� � (1 y) = � t t yt x t x y � : (5)The one-loop four-point MHV amplitude may be ob-tained from a large number of equivalent plabi
 dia-grams [5℄. We found the diagram in Fig. 5 parti
ularlyuseful for our purposes. The pro
edure to obtain the
3 4
2 1

0�2���3�� 0�4�� 3�� 4��0�2��
FIG. 5: Plabi
 diagram for the one-loop four-point MHV
ase. A regulating assignment of spe
tral parameters isadded. Note that the spe
tral parameters of the externaland internal lines are the di�eren
e of the numbers assignedto the fa
es. For instan
e, the parameter asso
iated to theline 
onne
ting parti
les 1 and 4 is z = 4�� � 3�� = ��, withthe sign being determined by the 
hoi
e of heli
ity 
owingupward.box integral is 
lear from the previous se
tions: one hasto glue three-point MHV and MHV amplitudes as inFig. 5. Counting the number of delta fun
tions and in-tegrations, one easily sees that four variables are leftunintegrated. Further, these are exa
tly the four inte-grations whi
h re
onstru
t the o�-shell momentum ofthe loop integration [5℄Z d4qq2 = Z d2� d2~�GL(1) d�� = Z t dt dx dy d�� ;with the o�-shell momentum written in terms of p� _�,parametrized as in (5), and referen
e spinors ��1 and ~� _�4



4asso
iated to, respe
tively, external parti
les 1 and 4q� _� = p� _� + ���4 ~� _�1 :Up to a trivial numeri
al fa
tor, this pro
edure yieldsthe IR-divergent one-loop four-point amplitude (4).We now introdu
e spe
tral parameter dependen
einto the above 
al
ulation, repla
ing the three-pointamplitudes by the three-point harmoni
 R-matri
esR�(z1; z2) and RÆ(z1; z2), 
f (3). A parti
ular, suit-able 
hoi
e of spe
tral parameters is shown in Fig. 5,resulting in the following multipli
ative regulating mod-i�
ation of the integrand of the box integral in (4)(h34i[21℄)�4��q�2��(q + p1)�2��(q + p1 + p2)�2��(q � p4)�2�� :It is reminis
ent of analyti
 regularization, see [14℄ andreferen
es therein. We then see that the spe
tral param-eter 
an be used in our one-loop example as a regula-tor, while staying in exa
tly four dimensions! It shouldbe noted, however, that this 
hoi
e is not unique andother 
hoi
es 
an have a non-regulating e�e
t. We sus-pe
t this embarrassment of ri
hes to be solved via �rstprin
iples.V. CONCLUSIONS AND OUTLOOKIn this letter we propose a new way of looking at theinterplay between s
attering amplitudes and integrabil-ity. By solving Yang-Baxter as well as bootstrap equa-tions in the Gra�mannian language, we have been ableto introdu
e the notion of spe
tral parameter into thes
attering problem of N = 4 SYM. These parametershave the mathemati
al interpretation of parti
le 
en-tral 
harges, and the physi
al interpretation of unquan-tized, 
omplex heli
ities. We have presented initial evi-den
e that the deforming parameters may be used to re-pla
e dimensional regularization by spe
tral regulariza-tion. Considering the IR-divergent one-loop s
alar-boxintegral, we have shown that a suitable z-deformationindeed regulates the integral. It is important to stressthat the regulator is not ad ho
, but naturally emergesfrom integrability.

In 
onjun
tion with the 
ru
ial insights of [5℄, ourresults 
all for a large number of ex
iting follow-up in-vestigations. The most urgent issue is to establish thatIR spe
tral regularization works to arbitrary loop or-der, and that it is 
onsistent: E.g. it needs to be es-tablished that the regulator properly exponentiates athigher loop order. This might signi�
antly redu
e thedeformation freedom, i.e. might put strong 
onstraintson the set of spe
tral parameters. In [5℄ it is stressedthat the general N = 4 loop integrand is a di�erentialform with stru
ture Qi d log fi, where fi are the fa
evariables mentioned in se
tion III. Roughly speaking,this should turn into Qi d( 1zi fzii ) under spe
tral regu-larization. If true, this should open the way for a 
om-pletely new, symmetry respe
ting te
hni
al approa
hto loop 
al
ulations, repla
ing dim reg. More generally,we suspe
t that spe
tral regularization might also be anatural UV regulator, wherever needed (Wilson loops,
orrelation fun
tions, form fa
tors, et
.). However, themost ex
iting perspe
tive is to get a handle on all-loop,i.e. (planar) non-perturbative 
al
ulations by applyingthe powerful te
hniques of the two-dimensional quan-tum inverse s
attering method to our four-dimensionalsystem. Re
all that in the N = 4 spe
tral problem theone-loop spe
tral parameter is \split" into two param-eters x� by the 
oupling 
onstant [15℄. Can we furtherdeform our R-matri
es to in
lude the 
oupling in a non-perturbative fashion? Finally, we �nd it ex
iting to in-vestigate whether lo
ally \unquantizing" the heli
itiesof massless parti
les 
ould lead to new ways to regulateIR and UV in�nities in more general, non-integrablequantum �eld theories.VI. ACKNOWLEDGEMENTSWe would like to thank N. Arkani-Hamed, R. Frassek,J. Henn, T. M
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