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DESY 12-223Lattie Hamiltonian approah to the massless Shwingermodel: preise extration of the mass gapKrzysztof Cihya,b,�, Agnieszka Kujawa-Cihyb, Marin Szyniszewskib,aNIC, DESY, Platanenallee 6, D-15738 Zeuthen, GermanybAdam Mikiewiz University, Faulty of Physis,Umultowska 85, 61-614 Poznan, PolandNOWNano DTC, University of Manhester, Manhester, M13 9PL, UKAbstratWe present results of applying the Hamiltonian approah to the masslessShwinger model. A �nite basis is onstruted using the strong ouplingexpansion to a very high order. Using exat diagonalization, the ontinuumlimit an be reliably approahed. This allows to reprodue the analytialresults for the ground state energy, as well as the vetor and salar massgaps to an outstanding preision better than 10�6%.Keywords: Shwinger model, lattie �eld theory, Hamiltonian approah,ground state, mass gap1. IntrodutionThe Shwinger model [1℄, i.e. quantum eletrodynamis in 1+1 dimen-sions, is the simplest gauge theory. Sine its formulation in 1962, it has at-trated muh attention. Notwithstanding its apparent simpliity, its physisis surprisingly rih and in several aspets resembles muh more omplex theo-ries, in partiular quantum hromodynamis (QCD). As suh, the Shwingermodel has beome the standard toy model for testing lattie tehniques1.In partiular, it was proposed to use lattie Hamiltonian methods forinvestigation of its properties [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,19, 20, 21, 22℄. Using these tehniques, several properties of the masslessand massive Shwinger model were investigated and many interesting resultswere obtained.In this paper, we onentrate on the massless ase for the 1-avour model.Our main aim is to show that lattie Hamiltonian methods an yield results�Corresponding author. Tel.: +49 33762 77306; fax: +49 33762 77419.Email addresses: krzysztof.ihy�desy.de (Krzysztof Cihy), kujawa�amu.edu.pl(Agnieszka Kujawa-Cihy), mszynisz�gmail.om (Marin Szyniszewski)1See e.g. Refs. [2, 3, 4, 5, 6℄ and referenes ited therein.Preprint submitted to Elsevier February 13, 2013
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with unpreedented preision { a few orders of magnitude more preise thantheir previous appliations. We onentrate on three simple quantites { theground state (GS) energy, the salar mass gap and the vetor mass gap.In Se. 2 we introdue the essentials of the Hamiltonian approah andthe lattie method used. Se. 3 presents our results. In Se. 4, we sum-marize, ompare our results with previous estimates and shortly disuss theprospets of the method.2. Model setupWe start with the Hamiltonian of the lattie Shwinger model in theKogut-Susskind (staggered) disretization [23, 7℄:H = � i2a MXn=1��y(n)ei�(n)�(n+ 1)� �y(n+ 1)e�i�(n)�(n)�++m MXn=1(�1)n�y(n)�(n) + ag22 MXn=1L2(n); (1)where �(n) is a single-omponent fermion �eld2, de�ned on eah site of anM -site lattie with periodi boundary onditions (i.e. on a irle) and obey-ing the antiommutation relations f�y(n); �(m)g = Ænm, f�(n); �(m)g = 0,f�y(n); �y(m)g = 0. m denotes the fermion (\quark") mass. The gauge �eldvariable �(n) is de�ned on the link between sites n and n+ 1 and is relatedto the spatial omponent of the Abelian vetor potential by �(n) = agA(n)(we work in the temporal gauge A0 = 0), where g is the gauge oupling anda is the lattie spaing. The variable L(n) is related to the eletri �eld E(n)by the relation L(n) = E(n)=g and to the gauge �eld by the ommutationrelations: [�(n); L(m)℄ = iÆnm. The possible values of L(n) are quantized:L(n)jli = ljli, where l = 0;�1;�2; : : :. This implies the following ation ofe�i�(n) on the basis states: e�i�(n)jli = jl � 1i.For numerial treatment, it is onvenient to perform the Jordan-Wignertransformation [24℄ �(n) = Qp<n(i�3(p))��(n), where �i(n) are Pauli ma-tries (�� = �1 � i�2). This gives:HJW = 12a MXn=1��+(n)ei�(n)��(n+ 1) + �+(n+ 1)e�i�(n)��(n)�++ m2 MXn=1 �1 + (�1)n�3(n)�+ ag22 MXn=1L2(n): (2)2The staggered disretization an be viewed as starting with a two-omponent fermion�eld on eah lattie site and ignoring the upper omponent on odd sites and the loweromponent on even sites. In this way, one avoids the fermion doubling problem and obtainsa well de�ned ontinuum limit in physial observables.2



Let us now onsider the hoie of the basis, whih is essential for numer-ial investigations. The natural hoie is the diret produt of Ising basis,ated upon by Pauli spin operators, and the ladder spae of states fjlig,ated upon by the operator L(n) and the rising and lowering operatorse�i�(n). With an M -site lattie, the dimension of the spin part is 2M , whilefor the gauge part the basis is in�nite-dimensional. Hene, the whole basisis in�nite-dimensional even on a �nite lattie. Clearly, for numerial ompu-tation, some hoie of (a �nite number of) basis states has to be made. Onepossibility, motivated by the physis of the problem, is to trunate at some�nite �lmax. However, suh an approah gives prohibitively large bases evenfor moderate lattie sizes M , sine the region of physially important valuesof l quikly inreases as one approahes the ontinuum limit, adding to theexponential inrease of the basis size from the spin part.Fortunately, a muh better trunation proedure exists, using the strongoupling expansion (SCE) [23, 7℄. Rewrite the Hamiltonian in a dimension-less form: W = 2ag2HJW =W0 + xV; (3)with: W0 = mag2 MXn=1 �1 + (�1)n�3(n)�+ MXn=1L2(n); (4)V = MXn=1��+(n)ei�(n)��(n+ 1) + �+(n+ 1)e�i�(n)��(n)� (5)and x � � = 1=a2g2: (6)The ontinuum limit of the model orresponds to x!1, a! 0, M !1.The SCE parameter x is onventionally denoted � in lattie gauge theoryliterature.Formally, the operator W0 an be treated as an unperturbed part andV as a perturbation. It is easy to see that the ground state of W0, whihwe will denote by j0i, is given by:j0i = j#"#" � � � #"i 
 j0000 � � � 00i; (7)i.e. \antiferromagneti" spin state and no gauge �eld exitations (L(n) = 0for all sites n), W0j0i = 0. The perturbation operator V ips two neigh-bouring spins3 and ouples them via a gauge �eld exitation (ux line)L(n) = �1. For example, for a 4-site lattie:V j0i = j#""#i
j000-1i+ j##""i
j0010i+ j"##"i
j0-100i+ j""##i
j1000i:(8)3Hene, all generated basis states have zero total magnetizationPn �3(n) for the spinpart. 3



Conventionally, a fermioni exitation on an odd site (subsript O; the sitesare numbered from right to left, n = 1; 2; : : : ;M), i.e. j #Oi (j "Oi means noexitation, i.e. spin alignment orresponding to the ground state) is referredto as a \quark", whereas an exitation on an even site (subsript E), i.e. j"Eiis an \antiquark". Thus, j"E#Oi
j0-1i is a \meson"4 (quark-antiquark witha direted gauge �eld link onneting them) and, orrespondingly j #O"Ei 
 j10i an \antimeson" (ux line direted in the other diretion).The above state V j0i � j1Si is hene a superposition of all possible 1-meson (\salar" { supersript S) states orresponding to one quark { oneantiquark exitation. We will all suh a superposition a lass of states.A lass of states is translationally invariant, however, sine we are workingin the staggered lattie formalism, a meson an only be translated by aneven number of sites, if an odd number of sites translation is performed, themeson is transformed to an antimeson (\harge onjugation" operation).One additional symmetry operation that an be performed on eah lass ofstates is a hange of \heliity" H i.e. the lokwise numbering of lattie sitesto an anti-lokwise (and taking into aount the inequivalene of even andodd sites), or vie versa. Any of the following operations, or any ombinationof them { translation by two lattie sites T2, \harge onjugation" C and\heliity" H { leaves the lass of states j1Si (and any other lass) invariant.The onstrution of the dimensionless HamiltonianW basis is performedin the following way. One starts with the ground state j0i and ats with theperturbation operator V on it to obtain a 1-meson lass of states j1Si. Then,one ats again with V , obtaining a 2-meson lass of states and a 0-mesonlass of states (i.e. ground state) et. In general, a k-meson lass of states,ated on with V , an produe several (k + 1)- and (k � 1)-meson lasses ofstates: V jkSi i =Xj aj j(k + 1)Sj i+Xj bj j(k � 1)Sj i; (9)where jkSi i is i-th k-meson lass of \salar" states and aj , bj are oeÆientsthat have to be alulated for eah state. States belonging to a given lassof states are all states related by the operations T2, C and H. All generatedlasses of states are eigenstates of the unperturbed operator W0 (diagonalelements of W ), while states with di�erent numbers of mesons are relatedvia o�-diagonal matrix elements hkSi jV j(k + 1)Sj i.One an also onstrut the Hamiltonian WV starting from the lowest4We use the standard onvention of naming the fermions in the Shwinger model\quarks" or \antiquarks" and their pairs (onneted by ux lines) \mesons" or \an-timesons". Of ourse, these partiles have nothing to do with real-world quarks andmesons of QCD.
4



\vetor" (1-meson) lass of states (instead of the 0-meson state j0i):j1V i = 1pM Xn ��+(n)ei�(n)��(n+ 1)� �+(n+ 1)e�i�(n)��(n)� j0i:(10)Ating several times with V on j1V i allows to obtain the \vetor"-statesHamiltonian matrix WV in the jkVi i basis.Obviously, the onstrution of the Hamiltonian basis an proeed indef-initely, sine eah site an be onneted to a neighbouring one by gaugelinks (ux lines) with arbitrary jL(n)j = 0; 1; 2; : : :. Therefore, we trunateat some �nite order N of SCE. We will show that a �nite N is enough toextrat the relevant physis. The value of N needed depends on the lattiespaing and grows as the ontinuum limit is approahed. A partiular role,to be disussed below, is played by losed ux lines, i.e. ux loops. Whenthe order of SCE N beomes equal to the number of sites M , the followinglass of states appears:j01�loopi = j#"#" � � � #"i
j1111 � � � 11i+j#"#" � � � #"i
j-1-1-1-1 � � � -1-1i; (11)with all spins pointing in the same diretion as in the ground state (noquarks or antiquarks and hene no mesons), but with a ux line onnetingall sites and hene forming a ux loop (the sign of `1' in the ladder spae partof a basis state orresponds to either a lokwise or antilokwise orientationof gauge links irulating around the loop). Inreasing N , one enountersstates with an inreasing number of ux loops { Eq. (11) with `1' replaedby an arbitrary Nloop (starting at SCE order N = NloopM).To summarize this part, let us shortly omment on the total size of thebasis and its saling with the lattie size. In the adopted approah, the sizeof the spin part of the basis grows muh slower than exponentially. Zeromagnetization setor for an M -site lattie onsists of �M2 � states. Group-ing states into lasses of states by using symmetry operations T2, C and Hfurther dereases the spin part basis size. The total basis size is then deter-mined by the value of the maximal allowed number of ux loops Nloop, i.e.by the ratio N=M . Note that some given maximal allowed Nloop does notimply in general that lmax = Nloop +1, as an be naively expeted5. There-fore, it is still unavoidable that inreasing the lattie size M and keeping�xed the ratio N=M , the total basis size grows (approximately) exponen-tially. We will give some expliit values of the total basis size in the nextsetion.In this paper, we are interested in three quantites: the ground stateenergy, the salar mass gap and the vetor mass gap. The i-th eigenvalue5This is most easily understood by looking e.g. at the following state: j "#"""###i 
j0-10-1-1-2-1-1i, whih does not have losed ux loops (i.e. it ours even if max. Nloop = 0),but still has l = �2 in the gauge part. 5



x � � lattie sizes M max. N dimension of WV2500 8, 10, 12, 14 150 334710000 8, 10, 12, 14 200 445440000 8, 10, 12, 14 250 5561250000 8, 10, 12, 14 350 77761000000 8, 10, 12, 14 600 133044000000 8, 10, 12, 14 1200 26597Table 1: Simulation parameters { inverse oupling x, lattie sizes M , maximum orderof SCE N . We also give the dimension of the \vetor" Hamiltonian matrix WV for ourlargest lattie size M = 14.(i = 0; 1; : : :) of the Hamiltonian W will be denoted by !i. We de�ne thefollowing quantites (and also inlude the exat values in the ontinuum limit,for the massless ase m = 0) :� GS energy:E0 = !02Mx a!0����!M!1 � 1� � �0:3183098862; (12)� salar mass gap:MSg = !1 � !02px a!0����!M!1 2p� � 1:1283791668; (13)� vetor mass gap:MVg = !V0 � !02px a!0����!M!1 1p� � 0:5641895836; (14)where !V0 stands for the lowest eigenvalue of the \vetor" HamiltonianWV .3. ResultsThe parameters of latties used for this work are presented in Tab. 1.We work very lose to the ontinuum limit and move towards it by hang-ing the inverse oupling x � � from 2500 to 4000000 6. The latties haveM = 8 to 14 sites. The order of SCE (denoted by N) is hosen suh thatits further inrease does not hange the results up to mahine preision. We6Note that typial values of � in Monte Carlo simulations for the Shwinger model areO(5{10). 6
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E0 MS=g MV =gexat -0.3183098862 1.1283791668 0.5641895836QUADRATIC FITS IN 1=M2F00 -0.3183103983 1.1283792781 0.5641898069F01 0.009812 -0.013058 -0.004361F02 0.121528 { {error 1:6 � 10�4% 9:8 � 10�6% 4:0 � 10�5%CUBIC FITS IN 1=M2F00 -0.3183098827 1.1283791671 0.5641895845F01 0.00793666 -0.010565 -0.003522F02 0.126465 -0.000144 {error 1:1 � 10�6% 2:9 � 10�8% 1:8 � 10�7%Table 2: Estimates of �tting oeÆients in Eq. (16). We quote values for 2 ases: thein�nite volume limit extrapolations of Eq. (15) are performed either with quadrati orubi �ts in 1=M2. The values of F00jont:;M=1 (denoted by F00 for shortness) are ourin�nite volume, ontinuum limit estimates and should be ompared with exat values.The error is j(F00 � exat)=exatj. The quadrati orretions in ag (F02) are statistiallyinsigni�ant for the mass gaps (and hene not given), exept for the ase of MS=g within�nite volume taken inluding a ubi term in 1=M2.the ubi term systematially improves our ontinuum limit value estimate.Visually, the \�ts" are straight lines in 1=M2 { the quadrati and ubiorretions are small, but still relevant from the point of extrapolation tothe ontinuum limit. Figs. 3, 4 and 5 show that the in�nite volume limit ofeah series of volumes approahes the ontinuum limit value as x is inreased.The in�nite volume values F0(ag)jM=1 for di�erent ouplings ag � 1=pxare then plotted against ag on the right insets of Figs. 3, 4 and 5. The �ttingansatz for the ontinuum limit ag ! 0 extrapolation is:F0(ag)jM=1 = F00jont:;M=1 + F01 � (ag) + F02 � (ag)2; (16)where the �tting parameters are F00jont:;M=1, F01, F02. In this way, theextrated values of F00jont:;M=1 are the in�nite volume, ontinuum resultsthat an be ompared to analytial formulae. The �tting urves for the massgaps, shown in Figs. 4 and 5, are to a very good approximation straightlines in ag, whereas the urve for the GS energy, Fig. 3, shows some mildurvature.The parameters of these �ts are given in Tab. 2. Indeed, the quadratiorretion F02 � (ag)2 is sizable only for E0. We observe systemati improve-ment of the ompatibility of our �nal ontinuum limit results F00jont:;M=1with the exat result when the term ubi in 1=M2 is introdued in the�tting ansatz of Eq. (15). It onstitutes a very small orretion, but at thislevel of preision it improves the in�nite volume estimates F0(ag)jM=1 suhthat the �nal ontinuum estimates F00jont:;M=1 are loser to the exat re-11



MS=g MV =gresult error result errorexat 1.1283791668 { 0.5641895836 {this work 1.1283791671 2:9 � 10�8% 0.5641895845 1:8 � 10�7%Ref. [11℄ 1.120 0.7% 0.560 0.7%Ref. [14℄ 1.128 0.03% 0.565 0.1%Ref. [18℄ (I) 1.25 11% 0.56 0.7%Ref. [18℄ (II) 1.14 1% 0.57 1%Ref. [20℄ (I) 1.11 1.6% 0.563 0.2%Ref. [20℄ (II) 1.1284 0.002% 0.56417 0.003 %Ref. [22℄ { { 0.56419 7 � 10�5%Table 3: Comparison of results for the salar and vetor mass gaps presented in this workand in seleted literature.sult by 1-2 orders of magnitude8. The best preision is reahed for the salarmass gap, where our estimate is only 2:9 �10�8% o� the exat value, i.e. thedi�erene is on the tenth deimal plae. The results for the vetor mass gapand GS energy are only slightly worse.4. Summary and disussionIt is lear that the preision of the �nal results, in the simultaneousin�nite volume limit (taken �rst) and the ontinuum limit, an be arbitrarilyinreased. By taking larger lattie sizes, one ould introdue a term quartiin 1=M2 (in Eq. (15)), whih would make it possible to observe sensitivity ofthe ontinuum limit �t (Eq. (16)) to a term quadrati or ubi in ag (for themass gaps or GS energy, respetively) and perform simulations even loserto the ontinuum limit.Obviously, sine exat results are known, this is rather pointless9. Webelieve, though, that the results presented in this paper are very interesting.Exat results are approahed with remarkable rapidity using only moder-ate lattie sizes { 8 to 14 lattie sites. The suess of the method shouldtherefore be attributed to working very lose to the ontinuum limit, atinverse oupling x � � a few orders of magnitude larger than in typiallattie simulations, using e.g. Monte Carlo methods. In earlier appliations8Introduing the quadrati term in 1=M2 (in Eq. (15)) is, of ourse, even more impor-tant, improving the ontinuum limit result by 2-3 orders of magnitude.9Note also that at our urrent level of preision for the quantities of interest, one is ap-proahing the problem of mahine preision, sine typial algorithms for �nding eigenvaluesan give their magnitudes aurate to O(10�10) with double preision numbers (severaliterations of an algorithm with many operations per iteration, aumulating O(10�15)errors per operation). Hene, inreasing preision beyond what we present in this paperwould need an inreased mahine preision.12



of Hamiltonian tehniques, it was also not realized that the ontinuum limitextrapolation an be performed using very high values of x. Using rathersmall values of x, exat results ould be approahed with a preision of theorder of 0.1-1% (see Tab. 3). The impressive improvement of this preisionwith the DMRG method [22℄ by 2-3 orders of magnitude10 seemed to setimpassable limits for lattie Hamiltonian methods. However, as we haveshown in this paper, this preision an be easily surpassed by another 3-4orders of magnitude, applying only very simple ideas.There is no straightforward way to extend the method presented in thispaper to the massive ase. The reason for this is the following. The massgap M�=g (� = V; S) at an arbitrary quark mass m=g an be expressed as:M�g �mg � = M (0)�g + Æ M�g �mg � ; (17)where the �rst term M (0)� =g is mass independent and given by the leadingorder term of mass perturbation theory of mass gap expansion [28, 29, 30℄,i.e. 1=p� or 2=p� for the vetor and salar ase, respetively. The seondterm ÆM�=g (m=g), the mass gap shift from massive quarks, depends onm=g and has been alulated in mass perturbation theory up to seondorder in m=g. Our data indiate that M (0)� =g an be alulated auratelyeven if the physial system size is very small with respet to the size of themeson under onsideration (whih is the ase in our analysis very lose tothe ontinuum limit, i.e. at very small lattie spaing, and with our rathersmall lattie sizes). However, the shift ÆM�=g (m=g), inorporating e�etsof quark masses, requires that the physial system size is large with respetto meson size. Our small physial system sizes are therefore large enoughto extrat M (0)� =g and �nite size e�ets for this quantity are auratelydesribed by Eq. (15). They are not enough to desribe the e�ets of massivequarks, though. This indiates that the nature of �nite size e�ets is di�erentfor the two terms in Eq. (17). Indeed, a naive appliation of the methoddesribed in this paper for m=g 6= 0 yields values for the mass gaps verylose to the ones in the massless ase, i.e. M (0)� =g is reprodued orretly,but ÆM�=g (m=g) is not.A possible solution is then to keep away from the ontinuum limit (workat muh smaller x), suh that the lattie spaing is oarse enough and thephysial extent of the lattie is large with respet to the meson size. Thisallows to trunate SCE at some small order N �M (with no or very few uxloops), whih is then enough to saturate the ground state energy and mass10In Tab. 3, the error of the �nal result for the vetor mass gap is 7 � 10�5%. However,taking into aount the estimated error, i.e. MV =g = 0:56419(4), the atual preisionlaimed by the Authors of Ref. [22℄ is of O(10�3)%.13
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