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hya,b,�, Agnieszka Kujawa-Ci
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kiewi
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s,Umultowska 85, 61-614 Poznan, Poland
NOWNano DTC, University of Man
hester, Man
hester, M13 9PL, UKAbstra
tWe present results of applying the Hamiltonian approa
h to the masslessS
hwinger model. A �nite basis is 
onstru
ted using the strong 
ouplingexpansion to a very high order. Using exa
t diagonalization, the 
ontinuumlimit 
an be reliably approa
hed. This allows to reprodu
e the analyti
alresults for the ground state energy, as well as the ve
tor and s
alar massgaps to an outstanding pre
ision better than 10�6%.Keywords: S
hwinger model, latti
e �eld theory, Hamiltonian approa
h,ground state, mass gap1. Introdu
tionThe S
hwinger model [1℄, i.e. quantum ele
trodynami
s in 1+1 dimen-sions, is the simplest gauge theory. Sin
e its formulation in 1962, it has at-tra
ted mu
h attention. Notwithstanding its apparent simpli
ity, its physi
sis surprisingly ri
h and in several aspe
ts resembles mu
h more 
omplex theo-ries, in parti
ular quantum 
hromodynami
s (QCD). As su
h, the S
hwingermodel has be
ome the standard toy model for testing latti
e te
hniques1.In parti
ular, it was proposed to use latti
e Hamiltonian methods forinvestigation of its properties [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,19, 20, 21, 22℄. Using these te
hniques, several properties of the masslessand massive S
hwinger model were investigated and many interesting resultswere obtained.In this paper, we 
on
entrate on the massless 
ase for the 1-
avour model.Our main aim is to show that latti
e Hamiltonian methods 
an yield results�Corresponding author. Tel.: +49 33762 77306; fax: +49 33762 77419.Email addresses: krzysztof.
i
hy�desy.de (Krzysztof Ci
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hy), mszynisz�gmail.
om (Mar
in Szyniszewski)1See e.g. Refs. [2, 3, 4, 5, 6℄ and referen
es 
ited therein.Preprint submitted to Elsevier February 13, 2013

http://arxiv.org/abs/1211.6393v2


with unpre
edented pre
ision { a few orders of magnitude more pre
ise thantheir previous appli
ations. We 
on
entrate on three simple quantites { theground state (GS) energy, the s
alar mass gap and the ve
tor mass gap.In Se
. 2 we introdu
e the essentials of the Hamiltonian approa
h andthe latti
e method used. Se
. 3 presents our results. In Se
. 4, we sum-marize, 
ompare our results with previous estimates and shortly dis
uss theprospe
ts of the method.2. Model setupWe start with the Hamiltonian of the latti
e S
hwinger model in theKogut-Susskind (staggered) dis
retization [23, 7℄:H = � i2a MXn=1��y(n)ei�(n)�(n+ 1)� �y(n+ 1)e�i�(n)�(n)�++m MXn=1(�1)n�y(n)�(n) + ag22 MXn=1L2(n); (1)where �(n) is a single-
omponent fermion �eld2, de�ned on ea
h site of anM -site latti
e with periodi
 boundary 
onditions (i.e. on a 
ir
le) and obey-ing the anti
ommutation relations f�y(n); �(m)g = Ænm, f�(n); �(m)g = 0,f�y(n); �y(m)g = 0. m denotes the fermion (\quark") mass. The gauge �eldvariable �(n) is de�ned on the link between sites n and n+ 1 and is relatedto the spatial 
omponent of the Abelian ve
tor potential by �(n) = agA(n)(we work in the temporal gauge A0 = 0), where g is the gauge 
oupling anda is the latti
e spa
ing. The variable L(n) is related to the ele
tri
 �eld E(n)by the relation L(n) = E(n)=g and to the gauge �eld by the 
ommutationrelations: [�(n); L(m)℄ = iÆnm. The possible values of L(n) are quantized:L(n)jli = ljli, where l = 0;�1;�2; : : :. This implies the following a
tion ofe�i�(n) on the basis states: e�i�(n)jli = jl � 1i.For numeri
al treatment, it is 
onvenient to perform the Jordan-Wignertransformation [24℄ �(n) = Qp<n(i�3(p))��(n), where �i(n) are Pauli ma-tri
es (�� = �1 � i�2). This gives:HJW = 12a MXn=1��+(n)ei�(n)��(n+ 1) + �+(n+ 1)e�i�(n)��(n)�++ m2 MXn=1 �1 + (�1)n�3(n)�+ ag22 MXn=1L2(n): (2)2The staggered dis
retization 
an be viewed as starting with a two-
omponent fermion�eld on ea
h latti
e site and ignoring the upper 
omponent on odd sites and the lower
omponent on even sites. In this way, one avoids the fermion doubling problem and obtainsa well de�ned 
ontinuum limit in physi
al observables.2



Let us now 
onsider the 
hoi
e of the basis, whi
h is essential for numer-i
al investigations. The natural 
hoi
e is the dire
t produ
t of Ising basis,a
ted upon by Pauli spin operators, and the ladder spa
e of states fjlig,a
ted upon by the operator L(n) and the rising and lowering operatorse�i�(n). With an M -site latti
e, the dimension of the spin part is 2M , whilefor the gauge part the basis is in�nite-dimensional. Hen
e, the whole basisis in�nite-dimensional even on a �nite latti
e. Clearly, for numeri
al 
ompu-tation, some 
hoi
e of (a �nite number of) basis states has to be made. Onepossibility, motivated by the physi
s of the problem, is to trun
ate at some�nite �lmax. However, su
h an approa
h gives prohibitively large bases evenfor moderate latti
e sizes M , sin
e the region of physi
ally important valuesof l qui
kly in
reases as one approa
hes the 
ontinuum limit, adding to theexponential in
rease of the basis size from the spin part.Fortunately, a mu
h better trun
ation pro
edure exists, using the strong
oupling expansion (SCE) [23, 7℄. Rewrite the Hamiltonian in a dimension-less form: W = 2ag2HJW =W0 + xV; (3)with: W0 = mag2 MXn=1 �1 + (�1)n�3(n)�+ MXn=1L2(n); (4)V = MXn=1��+(n)ei�(n)��(n+ 1) + �+(n+ 1)e�i�(n)��(n)� (5)and x � � = 1=a2g2: (6)The 
ontinuum limit of the model 
orresponds to x!1, a! 0, M !1.The SCE parameter x is 
onventionally denoted � in latti
e gauge theoryliterature.Formally, the operator W0 
an be treated as an unperturbed part andV as a perturbation. It is easy to see that the ground state of W0, whi
hwe will denote by j0i, is given by:j0i = j#"#" � � � #"i 
 j0000 � � � 00i; (7)i.e. \antiferromagneti
" spin state and no gauge �eld ex
itations (L(n) = 0for all sites n), W0j0i = 0. The perturbation operator V 
ips two neigh-bouring spins3 and 
ouples them via a gauge �eld ex
itation (
ux line)L(n) = �1. For example, for a 4-site latti
e:V j0i = j#""#i
j000-1i+ j##""i
j0010i+ j"##"i
j0-100i+ j""##i
j1000i:(8)3Hen
e, all generated basis states have zero total magnetizationPn �3(n) for the spinpart. 3



Conventionally, a fermioni
 ex
itation on an odd site (subs
ript O; the sitesare numbered from right to left, n = 1; 2; : : : ;M), i.e. j #Oi (j "Oi means noex
itation, i.e. spin alignment 
orresponding to the ground state) is referredto as a \quark", whereas an ex
itation on an even site (subs
ript E), i.e. j"Eiis an \antiquark". Thus, j"E#Oi
j0-1i is a \meson"4 (quark-antiquark witha dire
ted gauge �eld link 
onne
ting them) and, 
orrespondingly j #O"Ei 
 j10i an \antimeson" (
ux line dire
ted in the other dire
tion).The above state V j0i � j1Si is hen
e a superposition of all possible 1-meson (\s
alar" { supers
ript S) states 
orresponding to one quark { oneantiquark ex
itation. We will 
all su
h a superposition a 
lass of states.A 
lass of states is translationally invariant, however, sin
e we are workingin the staggered latti
e formalism, a meson 
an only be translated by aneven number of sites, if an odd number of sites translation is performed, themeson is transformed to an antimeson (\
harge 
onjugation" operation).One additional symmetry operation that 
an be performed on ea
h 
lass ofstates is a 
hange of \heli
ity" H i.e. the 
lo
kwise numbering of latti
e sitesto an anti-
lo
kwise (and taking into a

ount the inequivalen
e of even andodd sites), or vi
e versa. Any of the following operations, or any 
ombinationof them { translation by two latti
e sites T2, \
harge 
onjugation" C and\heli
ity" H { leaves the 
lass of states j1Si (and any other 
lass) invariant.The 
onstru
tion of the dimensionless HamiltonianW basis is performedin the following way. One starts with the ground state j0i and a
ts with theperturbation operator V on it to obtain a 1-meson 
lass of states j1Si. Then,one a
ts again with V , obtaining a 2-meson 
lass of states and a 0-meson
lass of states (i.e. ground state) et
. In general, a k-meson 
lass of states,a
ted on with V , 
an produ
e several (k + 1)- and (k � 1)-meson 
lasses ofstates: V jkSi i =Xj aj j(k + 1)Sj i+Xj bj j(k � 1)Sj i; (9)where jkSi i is i-th k-meson 
lass of \s
alar" states and aj , bj are 
oeÆ
ientsthat have to be 
al
ulated for ea
h state. States belonging to a given 
lassof states are all states related by the operations T2, C and H. All generated
lasses of states are eigenstates of the unperturbed operator W0 (diagonalelements of W ), while states with di�erent numbers of mesons are relatedvia o�-diagonal matrix elements hkSi jV j(k + 1)Sj i.One 
an also 
onstru
t the Hamiltonian WV starting from the lowest4We use the standard 
onvention of naming the fermions in the S
hwinger model\quarks" or \antiquarks" and their pairs (
onne
ted by 
ux lines) \mesons" or \an-timesons". Of 
ourse, these parti
les have nothing to do with real-world quarks andmesons of QCD.
4



\ve
tor" (1-meson) 
lass of states (instead of the 0-meson state j0i):j1V i = 1pM Xn ��+(n)ei�(n)��(n+ 1)� �+(n+ 1)e�i�(n)��(n)� j0i:(10)A
ting several times with V on j1V i allows to obtain the \ve
tor"-statesHamiltonian matrix WV in the jkVi i basis.Obviously, the 
onstru
tion of the Hamiltonian basis 
an pro
eed indef-initely, sin
e ea
h site 
an be 
onne
ted to a neighbouring one by gaugelinks (
ux lines) with arbitrary jL(n)j = 0; 1; 2; : : :. Therefore, we trun
ateat some �nite order N of SCE. We will show that a �nite N is enough toextra
t the relevant physi
s. The value of N needed depends on the latti
espa
ing and grows as the 
ontinuum limit is approa
hed. A parti
ular role,to be dis
ussed below, is played by 
losed 
ux lines, i.e. 
ux loops. Whenthe order of SCE N be
omes equal to the number of sites M , the following
lass of states appears:j01�loopi = j#"#" � � � #"i
j1111 � � � 11i+j#"#" � � � #"i
j-1-1-1-1 � � � -1-1i; (11)with all spins pointing in the same dire
tion as in the ground state (noquarks or antiquarks and hen
e no mesons), but with a 
ux line 
onne
tingall sites and hen
e forming a 
ux loop (the sign of `1' in the ladder spa
e partof a basis state 
orresponds to either a 
lo
kwise or anti
lo
kwise orientationof gauge links 
ir
ulating around the loop). In
reasing N , one en
ountersstates with an in
reasing number of 
ux loops { Eq. (11) with `1' repla
edby an arbitrary Nloop (starting at SCE order N = NloopM).To summarize this part, let us shortly 
omment on the total size of thebasis and its s
aling with the latti
e size. In the adopted approa
h, the sizeof the spin part of the basis grows mu
h slower than exponentially. Zeromagnetization se
tor for an M -site latti
e 
onsists of �M2 � states. Group-ing states into 
lasses of states by using symmetry operations T2, C and Hfurther de
reases the spin part basis size. The total basis size is then deter-mined by the value of the maximal allowed number of 
ux loops Nloop, i.e.by the ratio N=M . Note that some given maximal allowed Nloop does notimply in general that lmax = Nloop +1, as 
an be naively expe
ted5. There-fore, it is still unavoidable that in
reasing the latti
e size M and keeping�xed the ratio N=M , the total basis size grows (approximately) exponen-tially. We will give some expli
it values of the total basis size in the nextse
tion.In this paper, we are interested in three quantites: the ground stateenergy, the s
alar mass gap and the ve
tor mass gap. The i-th eigenvalue5This is most easily understood by looking e.g. at the following state: j "#"""###i 
j0-10-1-1-2-1-1i, whi
h does not have 
losed 
ux loops (i.e. it o

urs even if max. Nloop = 0),but still has l = �2 in the gauge part. 5



x � � latti
e sizes M max. N dimension of WV2500 8, 10, 12, 14 150 334710000 8, 10, 12, 14 200 445440000 8, 10, 12, 14 250 5561250000 8, 10, 12, 14 350 77761000000 8, 10, 12, 14 600 133044000000 8, 10, 12, 14 1200 26597Table 1: Simulation parameters { inverse 
oupling x, latti
e sizes M , maximum orderof SCE N . We also give the dimension of the \ve
tor" Hamiltonian matrix WV for ourlargest latti
e size M = 14.(i = 0; 1; : : :) of the Hamiltonian W will be denoted by !i. We de�ne thefollowing quantites (and also in
lude the exa
t values in the 
ontinuum limit,for the massless 
ase m = 0) :� GS energy:E0 = !02Mx a!0����!M!1 � 1� � �0:3183098862; (12)� s
alar mass gap:MSg = !1 � !02px a!0����!M!1 2p� � 1:1283791668; (13)� ve
tor mass gap:MVg = !V0 � !02px a!0����!M!1 1p� � 0:5641895836; (14)where !V0 stands for the lowest eigenvalue of the \ve
tor" HamiltonianWV .3. ResultsThe parameters of latti
es used for this work are presented in Tab. 1.We work very 
lose to the 
ontinuum limit and move towards it by 
hang-ing the inverse 
oupling x � � from 2500 to 4000000 6. The latti
es haveM = 8 to 14 sites. The order of SCE (denoted by N) is 
hosen su
h thatits further in
rease does not 
hange the results up to ma
hine pre
ision. We6Note that typi
al values of � in Monte Carlo simulations for the S
hwinger model areO(5{10). 6
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NFigure 1: Eigenvalue 
ow with the order of strong 
oupling expansion N . The verti
als
ale is split into three regions, for better presentation. M = 8, x � � = 2500. Thedi�eren
e between the �rst ex
ited state energy and the ground state energy is the s
alarmass gap.also illustrate how the size of the Hamiltonian matrix WV grows with in-
reasing N , at �xed M , giving examples for our largest latti
e size M = 14.However, as we have mentioned above, the size of the Hamiltonian matrixgrows roughly exponentially when one in
reases M at a �xed ratio N=M {e.g. for N=M = 1200=14, the dimension of WV is: 1546, 3603, 9615, 26597for M = 8; 10; 12; 14, respe
tively.We �rst dis
uss the dependen
e of the results on the order of SCE Nand the maximal allowed number of 
ux loops taken into a

ount in the
omputation N=M . In Fig. 1, we illustrate the 
ow of eigenvalues with Nfor a small latti
e with 8 sites and a rather large 
oupling 1=px = 0:02.For better visibility, we split the verti
al s
ale into three regions. The mostdistin
tive feature of the plot is that the magnitude of i-th eigenvalue issaturated for some �nite value of N whi
h we denote by Ni. We observethat Ni in
reases as i is in
reased. Hen
e, the GS energy is qui
kly saturatedat order N1 (only a few 
ux loops are needed), while the s
alar mass gap issaturated at a larger value N2. Quantities involving higher eigenvalues will,of 
ourse, require even higher values of N .This is further illustrated in Fig. 2, where we show how the three quanti-ties of interest are saturated with in
reasing N . We 
ompare di�erent latti
esizes and di�erent values of the gauge 
oupling. It is 
lear from these plotsthat the GS energy saturates very rapidly, while the 
onvergen
e is not so7
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Figure 2: Dependen
e of s
alar mass gap (upper left), ve
tor mass gap (upper right) andground state energy (lower right). We also show (lower left) the 
onvergen
e of the s
alarmass gap to the asymptoti
 (N ! 1) value. The dotted lines 
orrespond to M = 8and solid lines to M = 12. Two values of the gauge 
oupling x � � = 2500 (red) andx � � = 1000000 (blue) are used. The exa
t 
ontinuum results (bla
k dotted lines) arealso shown.fast for the mass gaps (it is slightly faster for the ve
tor mass gap). Theobserved 
onvergen
e to the N ! 1 value is approximately exponential {see the lower left plot of Fig. 2 for the s
alar mass gap 
ase. This plot showsthat the saturation order N for some requested pre
ision is highly depen-dent on x and M . The 
ontribution of states with an in
reasing numberof allowed 
ux loops be
omes more important as one moves towards the
ontinuum limit (in
reasing x). We also observe that at �xed 
oupling x,the saturation order N grows approximately linearly with M , motivatingkeeping the ratio N=M , i.e. the maximal allowed number of 
ux loops, �xedwhen in
reasing M at �xed x.We now dis
uss the extrapolation of our �nite-latti
e results to the in-�nite volume and 
ontinuum limits. As pointed out in Ref. [13℄, it is im-portant to take these limits in the 
orre
t order { �rst the in�nite volume(bulk) limit and then the 
ontinuum limit. It was suggested in Ref. [11℄ thatthe approa
h to the M ! 1 limit may be performed using the �nite sizes
aling method of Fisher and Barber [25℄. However, it was later realized thatlatti
e data shows rather a power law behaviour 
lose to the 
ontinuum limit[18℄. In our data, we 
learly �nd that this is indeed the 
ase. The origin8
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e of our latti
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ording to Eq. (15). The left inset is the 
lose-up of the main plot in the region ofM ! 1. The right inset shows the extrapolation of in�nite volume results at di�erent
ouplings 1=px a

ording to Eq. (16). Cir
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h plot show the exa
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tor mass gap MV =g.of this behaviour7 was attributed [18℄ to the fa
t that the ex
itations have�nite momentum O(�=M) and their energies thus obtain a kineti
 energy
orre
tion term O((�=M)2). Approa
hing the 
ontinuum limit x!1, thepower law 
orre
tions be
ome in
reasingly important.We show our results for the extrapolation to the in�nite volume limitin the main plots of Fig. 3 (for the GS energy E0), Fig. 4 (for the s
alarmass gap MS=g) and Fig. 5 (for the ve
tor mass gap MV =g). The leftinsets show the neighbourhood of 1=M2 ! 0. In these plots, the 
ir
le at1=M2 = 0 indi
ates the exa
t in�nite volume 
ontinuum result. We �ttedour data using the following polynomial ansatz (
ubi
 in 1=M2) with �ttingparameters F0(ag)jM=1, F2, F4 and F6 :F (1=M2)jag = F0(ag)jM=1 + F2 � 1M2 + F4 � 1M4 + F6 � 1M6 ; (15)where F (1=M2)jag stands for either of the three 
onsidered quantities: E0,MS=g or MV =g at a �xed 
oupling ag and for latti
e size M . Thus, the�tting parameter F0(ag)jM=1 is the in�nite volume result at �xed 
oupling(i.e. at non-zero latti
e spa
ing). We also tried restri
ting the polynomial toa linear or quadrati
 one in 1=M2. Obviously, the 
ubi
 �t has 4 parametersand we �t 4 data points { hen
e the \�ts" go exa
tly through all points.However, our pre
ision is su
h that the in
lusion of the quadrati
 and then7Similar power law behaviour in small-volume QCD was observed in Refs. [26℄ and [27℄and models were proposed therein to explain it.10



E0 MS=g MV =gexa
t -0.3183098862 1.1283791668 0.5641895836QUADRATIC FITS IN 1=M2F00 -0.3183103983 1.1283792781 0.5641898069F01 0.009812 -0.013058 -0.004361F02 0.121528 { {error 1:6 � 10�4% 9:8 � 10�6% 4:0 � 10�5%CUBIC FITS IN 1=M2F00 -0.3183098827 1.1283791671 0.5641895845F01 0.00793666 -0.010565 -0.003522F02 0.126465 -0.000144 {error 1:1 � 10�6% 2:9 � 10�8% 1:8 � 10�7%Table 2: Estimates of �tting 
oeÆ
ients in Eq. (16). We quote values for 2 
ases: thein�nite volume limit extrapolations of Eq. (15) are performed either with quadrati
 or
ubi
 �ts in 1=M2. The values of F00j
ont:;M=1 (denoted by F00 for shortness) are ourin�nite volume, 
ontinuum limit estimates and should be 
ompared with exa
t values.The error is j(F00 � exa
t)=exa
tj. The quadrati
 
orre
tions in ag (F02) are statisti
allyinsigni�
ant for the mass gaps (and hen
e not given), ex
ept for the 
ase of MS=g within�nite volume taken in
luding a 
ubi
 term in 1=M2.the 
ubi
 term systemati
ally improves our 
ontinuum limit value estimate.Visually, the \�ts" are straight lines in 1=M2 { the quadrati
 and 
ubi

orre
tions are small, but still relevant from the point of extrapolation tothe 
ontinuum limit. Figs. 3, 4 and 5 show that the in�nite volume limit ofea
h series of volumes approa
hes the 
ontinuum limit value as x is in
reased.The in�nite volume values F0(ag)jM=1 for di�erent 
ouplings ag � 1=pxare then plotted against ag on the right insets of Figs. 3, 4 and 5. The �ttingansatz for the 
ontinuum limit ag ! 0 extrapolation is:F0(ag)jM=1 = F00j
ont:;M=1 + F01 � (ag) + F02 � (ag)2; (16)where the �tting parameters are F00j
ont:;M=1, F01, F02. In this way, theextra
ted values of F00j
ont:;M=1 are the in�nite volume, 
ontinuum resultsthat 
an be 
ompared to analyti
al formulae. The �tting 
urves for the massgaps, shown in Figs. 4 and 5, are to a very good approximation straightlines in ag, whereas the 
urve for the GS energy, Fig. 3, shows some mild
urvature.The parameters of these �ts are given in Tab. 2. Indeed, the quadrati

orre
tion F02 � (ag)2 is sizable only for E0. We observe systemati
 improve-ment of the 
ompatibility of our �nal 
ontinuum limit results F00j
ont:;M=1with the exa
t result when the term 
ubi
 in 1=M2 is introdu
ed in the�tting ansatz of Eq. (15). It 
onstitutes a very small 
orre
tion, but at thislevel of pre
ision it improves the in�nite volume estimates F0(ag)jM=1 su
hthat the �nal 
ontinuum estimates F00j
ont:;M=1 are 
loser to the exa
t re-11



MS=g MV =gresult error result errorexa
t 1.1283791668 { 0.5641895836 {this work 1.1283791671 2:9 � 10�8% 0.5641895845 1:8 � 10�7%Ref. [11℄ 1.120 0.7% 0.560 0.7%Ref. [14℄ 1.128 0.03% 0.565 0.1%Ref. [18℄ (I) 1.25 11% 0.56 0.7%Ref. [18℄ (II) 1.14 1% 0.57 1%Ref. [20℄ (I) 1.11 1.6% 0.563 0.2%Ref. [20℄ (II) 1.1284 0.002% 0.56417 0.003 %Ref. [22℄ { { 0.56419 7 � 10�5%Table 3: Comparison of results for the s
alar and ve
tor mass gaps presented in this workand in sele
ted literature.sult by 1-2 orders of magnitude8. The best pre
ision is rea
hed for the s
alarmass gap, where our estimate is only 2:9 �10�8% o� the exa
t value, i.e. thedi�eren
e is on the tenth de
imal pla
e. The results for the ve
tor mass gapand GS energy are only slightly worse.4. Summary and dis
ussionIt is 
lear that the pre
ision of the �nal results, in the simultaneousin�nite volume limit (taken �rst) and the 
ontinuum limit, 
an be arbitrarilyin
reased. By taking larger latti
e sizes, one 
ould introdu
e a term quarti
in 1=M2 (in Eq. (15)), whi
h would make it possible to observe sensitivity ofthe 
ontinuum limit �t (Eq. (16)) to a term quadrati
 or 
ubi
 in ag (for themass gaps or GS energy, respe
tively) and perform simulations even 
loserto the 
ontinuum limit.Obviously, sin
e exa
t results are known, this is rather pointless9. Webelieve, though, that the results presented in this paper are very interesting.Exa
t results are approa
hed with remarkable rapidity using only moder-ate latti
e sizes { 8 to 14 latti
e sites. The su

ess of the method shouldtherefore be attributed to working very 
lose to the 
ontinuum limit, atinverse 
oupling x � � a few orders of magnitude larger than in typi
allatti
e simulations, using e.g. Monte Carlo methods. In earlier appli
ations8Introdu
ing the quadrati
 term in 1=M2 (in Eq. (15)) is, of 
ourse, even more impor-tant, improving the 
ontinuum limit result by 2-3 orders of magnitude.9Note also that at our 
urrent level of pre
ision for the quantities of interest, one is ap-proa
hing the problem of ma
hine pre
ision, sin
e typi
al algorithms for �nding eigenvalues
an give their magnitudes a

urate to O(10�10) with double pre
ision numbers (severaliterations of an algorithm with many operations per iteration, a

umulating O(10�15)errors per operation). Hen
e, in
reasing pre
ision beyond what we present in this paperwould need an in
reased ma
hine pre
ision.12



of Hamiltonian te
hniques, it was also not realized that the 
ontinuum limitextrapolation 
an be performed using very high values of x. Using rathersmall values of x, exa
t results 
ould be approa
hed with a pre
ision of theorder of 0.1-1% (see Tab. 3). The impressive improvement of this pre
isionwith the DMRG method [22℄ by 2-3 orders of magnitude10 seemed to setimpassable limits for latti
e Hamiltonian methods. However, as we haveshown in this paper, this pre
ision 
an be easily surpassed by another 3-4orders of magnitude, applying only very simple ideas.There is no straightforward way to extend the method presented in thispaper to the massive 
ase. The reason for this is the following. The massgap M�=g (� = V; S) at an arbitrary quark mass m=g 
an be expressed as:M�g �mg � = M (0)�g + Æ M�g �mg � ; (17)where the �rst term M (0)� =g is mass independent and given by the leadingorder term of mass perturbation theory of mass gap expansion [28, 29, 30℄,i.e. 1=p� or 2=p� for the ve
tor and s
alar 
ase, respe
tively. The se
ondterm ÆM�=g (m=g), the mass gap shift from massive quarks, depends onm=g and has been 
al
ulated in mass perturbation theory up to se
ondorder in m=g. Our data indi
ate that M (0)� =g 
an be 
al
ulated a

uratelyeven if the physi
al system size is very small with respe
t to the size of themeson under 
onsideration (whi
h is the 
ase in our analysis very 
lose tothe 
ontinuum limit, i.e. at very small latti
e spa
ing, and with our rathersmall latti
e sizes). However, the shift ÆM�=g (m=g), in
orporating e�e
tsof quark masses, requires that the physi
al system size is large with respe
tto meson size. Our small physi
al system sizes are therefore large enoughto extra
t M (0)� =g and �nite size e�e
ts for this quantity are a

uratelydes
ribed by Eq. (15). They are not enough to des
ribe the e�e
ts of massivequarks, though. This indi
ates that the nature of �nite size e�e
ts is di�erentfor the two terms in Eq. (17). Indeed, a naive appli
ation of the methoddes
ribed in this paper for m=g 6= 0 yields values for the mass gaps very
lose to the ones in the massless 
ase, i.e. M (0)� =g is reprodu
ed 
orre
tly,but ÆM�=g (m=g) is not.A possible solution is then to keep away from the 
ontinuum limit (workat mu
h smaller x), su
h that the latti
e spa
ing is 
oarse enough and thephysi
al extent of the latti
e is large with respe
t to the meson size. Thisallows to trun
ate SCE at some small order N �M (with no or very few 
uxloops), whi
h is then enough to saturate the ground state energy and mass10In Tab. 3, the error of the �nal result for the ve
tor mass gap is 7 � 10�5%. However,taking into a

ount the estimated error, i.e. MV =g = 0:56419(4), the a
tual pre
ision
laimed by the Authors of Ref. [22℄ is of O(10�3)%.13



gaps. This, however, makes it ne
essary to perform a long extrapolationto the 
ontinuum limit and the amazing pre
ision of the �nal result is lost.Our analysis of the massive 
ase will be presented elsewhere.A
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