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tra in Higgs + One Jet at NNLLTeppo T. Jouttenus,1 Iain W. Stewart,1 Frank J. Ta
kmann,2 and Wouter J. Waalewijn31Center for Theoreti
al Physi
s, Massa
husetts Institute of Te
hnology, Cambridge, MA 02139, USA2Theory Group, Deuts
hes Elektronen-Syn
hrotron (DESY), D-22607 Hamburg, Germany3Department of Physi
s, University of California at San Diego, La Jolla, CA 92093, USAThe invariant mass of a jet is a ben
hmark variable des
ribing the stru
ture of jets at the LHC.We 
al
ulate the jet mass spe
trum for Higgs plus one jet at the LHC at next-to-next-to-leadinglogarithmi
 (NNLL) order using a fa
torization formula. At this order, the 
ross se
tion be
omessensitive to perturbation theory at the soft m2jet=pjetT s
ale. Our 
al
ulation is ex
lusive and uses the1-jettiness global event shape to implement a veto on additional jets. The dominant dependen
e onthe jet veto is removed by normalizing the spe
trum, leaving residual dependen
e from non-globallogarithms depending on the ratio of the jet mass and jet veto variables. For our ex
lusive jet 
rossse
tion these non-global logarithms are parametri
ally smaller than in the in
lusive 
ase, allowingus to obtain a 
omplete NNLL result. Results for the dependen
e of the jet mass spe
trum on thekinemati
s, jet algorithm, and jet size R are given. Using individual partoni
 
hannels we illustratethe di�eren
e between the jet mass spe
tra for quark and gluon jets. We also study the e�e
tof hadronization and underlying event on the jet mass in Pythia. To highlight the similarity ofin
lusive and ex
lusive jet mass spe
tra, a 
omparison to LHC data is presented.I. INTRODUCTIONThere has been a rapidly expanding theoreti
al andexperimental e�ort on te
hniques that exploit the sub-stru
ture of jets (for a re
ent review see Ref. [1℄). Jetsubstru
ture is of interest both for testing QCD and foridentifying new physi
s. Mu
h of the ex
itement in this�eld has been driven by the ex
ellent performan
e of theATLAS and CMS dete
tors, and the sophisti
ated jetmeasurements this has made possible at the LHC. Jetsubstru
ture measurements 
an for example be used totag boosted heavy parti
les, whose de
ay produ
ts get
ollimated into a fat jet, or to test and tune Monte Carloprograms. Most theoreti
al work has fo
used on design-ing these te
hniques and observables with the help ofMonte Carlo programs. At the same time, one wouldalso like to know that these methods are under theoreti-
al 
ontrol and build 
on�den
e that higher-order e�e
tsare not signi�
ant. (For some re
ent progress in this di-re
tion see e.g. Refs. [2{7℄.)As our underlying hard pro
ess we 
onsider pp! H+1jet with gluon fusion gg ! H as the underlying Higgsprodu
tion me
hanism. This pro
ess is 
onvenient as itprovides a 
lean setup with a single quark or gluon jetin the �nal state via the three basi
 partoni
 
hannelsgg ! Hg, gq ! Hq, and q�q ! Hg. Of 
ourse, it is alsoimportant in its own right for Higgs measurements at theLHC, whi
h rely on ex
lusive jet 
hannels.Here we fo
us on one of the simplest jet substru
tures:the invariant mass of a jet. A su

essful 
al
ulation ofthis ben
hmark observable will instill 
on�den
e in ourability to 
arry out analogous 
al
ulations for other more
ompli
ated jet substru
ture observables. Su
h analysesrequire in
orporating both a resummation of large loga-rithms �is lnj(m2J=pJ 2T ) where mJ is the jet mass and pJTis the transverse momentum of the jet, as well as �xed-order perturbative 
orre
tions. This is made intri
ate by

the dependen
e on multiple variables. There has been alot of re
ent work on the 
al
ulation (resummation) ofthe jet invariant mass spe
trum for jets with a realisti
angular size [2, 8{15℄ whi
h we will review in more detailbelow. Some of the key theoreti
al issues that must beaddressed for the LHC 
ase in
lude:� Impa
t of summing large logarithms, ln(m2J=pJ 2T )� Soft radiation e�e
ts at the s
ale m2J=pJT� Impa
t of initial-state radiation� Color 
ow and hard pro
ess dependen
e� Dependen
e on kinemati
s in
luding rapidity 
uts� Jet algorithm and dependen
e on jet size R� In
lusive (� N jets) vs. ex
lusive (= N jets)� Impa
t of non-global logarithms (NGLs)� E�e
t of hadronization on the spe
trum� E�e
t of underlying event on the spe
trum� E�e
t of pile-up on the spe
trum� Utility of using groomed jets with trimming [16℄,�ltering [17℄, or pruning [18℄We now elaborate on several of these items. For a jetwith pJT � 300GeV, the jet mass peaks at mJ � 50GeV,leading to large logarithms of m2J=pJ 2T � 36. Therefore,a des
ription of the peak region of the jet mass spe
trumrequires the all-order resummation of these logarithms.Soft radiation with momentum k� � m2J=pJT is gener-ated by both initial and �nal-state parti
les and 
on-tributes at leading order in the power expansion to the jetmass. Sin
e �xed-order 
orre
tions start to be
ome rele-vant for resummation at next-to-next-to-leading logarith-mi
 (NNLL) order, a proper treatment of the soft s
ale� m2J=pJT is 
ru
ial at this order [2, 19{21℄. Numeri
ally,the importan
e of these �xed-order soft 
orre
tions is alsowell known from re
ent work up to N3LL for event shapes
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2in e+e�! jets [15, 22{24℄. For pro
esses with � 2 jets athadron 
olliders there are multiple 
olor stru
tures, andthe 
orresponding 
olor 
ow must be taken into a

ountstarting at next-to-leading-logarithmi
 (NLL) order [25℄.The available freedom in de�ning a jet introdu
es adependen
e of the jet mass spe
trum on the 
hoi
e ofalgorithm/
lustering method and the jet size parameterR. There is also a 
hoi
e of whether to use an in
lusiveor ex
lusive jet 
ross se
tion, where the latter involvesa veto on additional jets. The in
lusive 
ase has beenstudied at the LHC [26℄, and in
lusive 
al
ulations tendto fo
us on the anti-kT algorithm [27℄. (Use of the anti-kT jet algorithm avoids issues asso
iated to 
lustering ef-fe
ts [28{31℄.) As we will emphasize further below, a keydi�eren
e between the in
lusive and ex
lusive 
ases arethe form of the non-global logarithms [32, 33℄ that ariseat O(�2s) beyond the Born 
ross se
tion due to multiplerestri
tions on phase spa
e.Let us summarize how the above issues have been stud-ied so far in the literature on jet mass 
al
ulations. The�rst 
al
ulations were 
arried out for event shapes ine+e�! jets using hemisphere jet masses. Here fa
toriza-tion theorems are well established and 
al
ulations existup to N3LL [15, 19, 21, 34{37℄. In Refs. [2, 8℄ a fa
-torization formula for ex
lusive N -jet 
ross se
tions ate+e� 
olliders was derived, where the angularity of a jet(whi
h in
ludes the jet mass as a spe
ial 
ase) is mea-sured. This result only depends on the 
lass of the jetalgorithm (su
h as 
one or kT -type), but su�ers fromnon-global logarithms involving the jet veto and jet sizeR. The resummation of the jet mass in e+e�! 2 jetswith a jet veto was 
arried out at NLL in Ref. [10℄, whi
hin
ludes a resummation of NGLs in the large-N
 approx-imation. This same pro
ess was 
onsidered in Ref. [11℄,where the dominant R dependen
e of asymmetri
 thrust(whi
h is related to jet mass) was obtained using a refa
-torization of the soft fun
tion. In Ref. [12℄, this refa
tor-ization was veri�ed at O(�2s) and the leading NGLs wereobtained at this order.For jet mass 
al
ulations in pp 
ollisions one 
onsidersjets with large transverse momentum, pJT , and with ra-pidities �J away from the beam axis. Re
ently, severalin
lusive jet mass 
al
ulations have been 
arried out [13{15℄. In Ref. [13℄, the jet mass was 
al
ulated using only ajet fun
tion. This ignores important 
ontributions fromwide-angle soft radiation, whi
h 
ouples together multi-ple hard partons, depends on the 
hoi
e of jet algorithm,and 
ontains NGLs. In Ref. [14℄, the jet mass in pp! 2jets and Z+1 jet were 
al
ulated at NLL, in
luding a re-summation of NGLs in the large-N
 approximation. Al-though this is an in
lusive 
al
ulation (no jet veto), oneshould also note that hard emissions giving rise to addi-tional jets are beyond the NLL order 
onsidered. In this
ase the dominant e�e
t of the NGLs is on the peak ofthe jet mass distribution. Another in
lusive 
al
ulationof the jet mass was 
arried out to obtain partial NNLLresults in Ref. [15℄, by expanding around the thresholdlimit. Here dynami
al threshold enhan
ement [38{40℄

was used to argue that additional hard emissions are sup-pressed. Although NGLs were not resummed, their sizewas estimated, and found to mainly e�e
t the peak regionof the jet mass, as in Ref. [14℄.Our 
al
ulation at NNLL is for the ex
lusive jet massspe
trum, so it is useful to highlight di�eren
es with thein
lusive 
ase. At NLL, for a given partoni
 
hannel and�xed momenta of the hard partons, the two 
ases simplydi�er by a multipli
ative fa
tor, ex
ept for their respe
-tive NGLs. In both 
ases the leading NGLs involve termsof the form �2s ln2 �m
ut 2Jp2
ut � : (1)for the 
umulant jet mass spe
trum integrated up tom
utJ . For the in
lusive jet mass spe
trum, p
ut is ahard s
ale ' pJT and the NGLs are therefore large loga-rithms that are parametri
ally of the same size as other�is lnj(m2J=pJ 2T ) terms, and are thus part of the NLL re-sult. Hen
e, in this 
ase a 
omplete resummation atNLL (or beyond) requires the NGLs to be resummedto all orders, whi
h pra
ti
ally is 
urrently only possi-ble in the large-N
 approximation. In 
ontrast, in theex
lusive 
ase p
ut is an adjustable parameter and is re-lated to the jet veto. Here we have both m2J � pJ 2T andp2
ut � pJ 2T , so the logarithms in Eq. (1) are smaller thanin the in
lusive 
ase. In parti
ular, for �xed p
ut there isa point in the mJ spe
trum where the NGLs vanish, andthere is a region about this point where the NGLs arenot large logarithms. An estimate for the size of this re-gion 
an be obtained from the series of three NGL terms(log-squared, log, and non-log) that are known for thehemisphere jet masses [41, 42℄. When all the terms inthis series are of similar magnitude the logarithmi
 en-han
ement is not dominant, and the NGLs do not needto be resummed. This o

urs for 1=8 � m
ut 2J =p2
ut � 8.We will numeri
ally explore the size of this region in ourex
lusive jet mass 
al
ulation, and demonstrate that theregion is large enough that we may 
onsider the non-global logarithms to not be large. This 
an be 
ontrastedwith Fig. 3 of Ref. [10℄, whi
h shows that the presen
e ofan unmeasured region of phase spa
e makes large NGLsunavoidable in the in
lusive 
ase [14, 15℄.It should also be noted that although ex
lusive jet 
rossse
tions are not ne
essary for jet mass spe
tra, they areimportant in their own right be
ause many Higgs andnew physi
s sear
hes 
ategorize the data by the numberof jets to improve their sensitivity. For example, the im-portan
e of the Higgs + 1 jet 
hannel in H ! �� andH !WW � was pointed out in Refs. [43, 44℄. Re
ently aNLL resummation of jet veto logarithms was 
arried outin the 
ontext of Higgs plus jets in Ref. [45℄.Our 
al
ulation of the jet mass is 
entered on usingthe N -jettiness global event shape [46℄ to de�ne jets, in-stead of a more traditional jet algorithm. For an eventwith N jets, N -jettiness assigns all parti
les to N + 2regions, 
orresponding to the N jets and two beams. We
al
ulate the 
ross se
tion for pp! H + 1 jet at NNLL,



3fully di�erential in the 
ontributions of ea
h region to 1-jettiness. For the jet region, this 
ontribution yields thejet invariant mass. The 
ontribution from the remainingtwo beam regions are used to implement the jet veto. Inea
h of these variables there is a series of large doublelogarithms that must be summed.An advantage of using N -jettiness is that the jet vetois made through a jet mass-type variable, rather than apT variable. Therefore, the stru
ture of the perturbationtheory, whi
h is simultaneously di�erential in these twokinemati
 variables, is simpler. In parti
ular, there isa QCD fa
torization formula for this 
ross se
tion [46,47℄, obtained by making use of Soft-Collinear E�e
tiveTheory (SCET) [20, 48{50℄. For the experimentally morerealisti
 
ase of measuringmJ with a pT veto variable onemust simultaneously deal with a thrust-like resummationand a pT -type resummation.Returning to our list of theoreti
al issues from the be-ginning, the use of N -jettiness allows us to 
arry outthe summation of large logarithms at NNLL while prop-erly a

ounting for soft radiation e�e
ts and initial-stateradiation. We also use it to 
al
ulate the dependen
eof the jet mass spe
trum on the jet kinemati
s, the jetsize, and the de�nition of the jet region. Results areshown for individual partoni
 
hannels, gg ! Hg andgq ! Hq, illustrating the di�eren
es between quark andgluon jets, as well as the full pp ! H + 1 jet pro
essfrom the Higgs 
oupling through a top quark loop. Toinvestigate the di�eren
es between ex
lusive and in
lu-sive jet mass measurements we 
ompare our results withPythia and also to ATLAS jet mass data [26℄. We alsoanalyti
ally explore the e�e
t of NGLs on the jet massspe
trum, and the e�e
t of hadronization and underlyingevent with Pythia [51, 52℄.Thus, we address all items in the list of issues ex
eptfor the last two, for whi
h some brief 
omments are inorder. Methods for removing pile-up 
ontributions tojet observables have been dis
ussed in e.g. Refs. [53, 54℄,and dire
t pile-up 
al
ulations are beyond the s
ope ofour work. Finally, it is known that grooming jets has alarge impa
t on their soft radiation and 
auses signi�
ant
hanges to the jet mass spe
trum. We do not attempt toanalyti
ally 
ontrol the e�e
ts of jet-grooming methodshere.In 
al
ulating the jet mass we 
onsider both absoluteand normalized spe
tra. Normalizing the jet mass spe
-trum redu
es the perturbative un
ertainty, and turns outto remove the dominant dependen
e on the jet veto vari-able. In parti
ular, the jet veto dependen
e 
an
els upto NLL if we 
onsider a parti
ular partoni
 
hannel and�xed jet kinemati
s. We will show that this 
an
ellationremains e�e
tive when summing over partoni
 
hannelsand integrating over a range of jet momenta.In Se
. II, we dis
uss the kinemati
s and several jetde�nitions based on N -jettiness, exploring their features.The te
hni
al details of our 
al
ulation are presented inSe
. III. Here we dis
uss the fa
torization formula forthe 
ross se
tion, the refa
torization of the soft fun
-

tion, non-global logarithms, and the 
hoi
e of runnings
ales. Se
. IV and Se
. V 
ontain our numeri
al resultsfor the individual partoni
 
hannels and for pp! H + 1jet, showing the dependen
e of the jet mass spe
trumon the jet veto 
ut, the order in perturbation theory,the jet kinemati
s, the jet de�nition, the jet area, ongluon versus quark jets, and on NGLs. Using Pythia8,in Se
. VI we analyze the hard pro
ess dependen
e forgluon jets, 
ompare in
lusive versus ex
lusive jet massspe
tra, study the dependen
e on 
lassi
 jet algorithms,and look at the impa
t of hadronization and underlyingevent. We also 
ompare our NNLL ex
lusive jet resultswith Pythia for the same jet de�nition and kinemat-i
s, and 
ompare them with in
lusive jets from the LHCdata. We 
on
lude in Se
. VII. Detailed ingredients forthe NNLL 
ross se
tion are summarized in appendi
es.II. KINEMATICS AND JET DEFINITIONSWe des
ribe the pro
ess pp ! H + 1 jet using thetransverse momentum pJT of the jet, the pseudorapidity�J of the jet, and the rapidity Y of the hard 
ollisionrelative to the CM frame of the 
olliding protons. The1-jettiness event shape is de�ned as [46℄T1 =Xk minn2qJ � pkQJ ; 2qa � pkQa ; 2qb � pkQb o ; (2)where a; b denote the two beams and J the jet, the qi aremassless referen
e momenta and theQi are normalizationfa
tors. For the referen
e momenta we takeq�J = EJ (1; ~nJ) ; q�a;b = xa;bE
m2 (1;�ẑ) : (3)The jet energy EJ and jet dire
tion ~nJ 
an be predeter-mined with a suitable jet algorithm. The jet algorithmdependen
e this indu
es on T1 is power suppressed [46℄,and we will use anti-kT .1 The unit ve
tor ẑ points alongthe beam axis, and the momentum fra
tions xa and xbare �xed in terms of the total invariant mass Q and ra-pidity Y ,xaxbE2
m = Q2 = (qJ + qH)2 ;ln xaxb = 2Y = ln (1;�ẑ) � (qJ + qH)(1; ẑ) � (qJ + qH) ; (4)where q�H denotes the momentum of the Higgs. For later
onvenien
e we also introdu
e the notationsij = 2qi � qj : (5)1 If QJ = 2EJ then an equally good 
hoi
e would be to minimizeT1 with respe
t to the axis ~nJ . A fast algorithm to 
arry outthis minimization has been devised in Ref. [55℄, using a slightlydi�erent N-jettiness measure than the ones we use here.
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 R for R = 1.FIG. 1: Comparison of the jet regions for di�erent jet measures at di�erent � and �. The \+" marks the jet dire
tion ~nJ .The minimum in Eq. (2) divides the total phase spa
einto 3 regions, one for ea
h beam and one for the jet. Wedenote their 
ontributions to T1 as Ta and Tb for the twobeam regions, and TJ for the jet region, soT1 = TJ + Ta + Tb : (6)The 
ontribution of the jet, TJ , is dire
tly related to thejet's invariant mass mJm2J = p2J = (�nJ � pJ )(nJ � pJ)� ~p 2J?= 2qJ � pJ [1 +O(�2)℄= QJTJ [1 +O(�2)℄ ; (7)where p�J is the full jet momentum de�ned by summingall parti
les in the TJ -region, n�J = (1; ~nJ) and �n�J =(1;�~nJ) are de�ned by the predetermined jet dire
tion~nJ , and the power 
ounting parameter � s
ales as �2 �TJ=EJ � m2J=E2J . In the se
ond line of Eq. (7) we usedthe fa
t that ~nJ and the exa
t dire
tion of theN -jettinessjet, ~pJ , di�er by very little, su
h that pJ?=(�nJ �pJ ) � �2.The di�eren
e between these two jet dire
tions a�e
tsthe jet boundary, whi
h 
hanges the 
ontribution of softradiation to the jet pT , but only by a small amount � �2.We also used that the large jet momentum �nJ � pJ = �nJ �qJ [1 +O(�2)℄. For a jet with pJT � 300GeV these O(�2)power 
orre
tions are 1=36 � 3% in the peak region, andhen
e negligible relative to the perturbative un
ertaintiesat NNLL. Investigating the jet mass spe
tra for the exa
tm2J = p2J vs. using m2J = QJTJ in Pythia, we also �ndthat they are indistinguishable.The details of the beam and jet regions sele
ted by theminimum 
ondition in Eq. (2) depend on the normaliza-tion fa
tors Qi. Sin
e their values a�e
t whi
h parti
lesare grouped into the beam and jet regions, they 
on-stitute a jet measure. They also impa
t the geometri
shape of the jet area. Di�eren
es between measures aretherefore similar to the di�erent 
hoi
es for jet-algorithms(anti-kT , Cambridge-Aa
hen, 
one, et
.). We will 
on-sider a variety of 
hoi
es:

� invariant-mass measure:QJ = Qa = Qb = Q (8)� geometri
 pT measure:QJ = 2� j~qiT j = 2�EJ= 
osh�J (9)Qa;b = xa;bE
m = e�YQ� geometri
 E measure:QJ = 2�EJ (10)Qa;b = xa;bE
m = e�YQ� geometri
 R measure:QJ = 2�(R; �J)EJ (11)Qa;b = xa;bE
m = e�YQwhere �(R; �J ) �xes the area of the jet in (�; �)-spa
e to be �R2.In all 
ases � is a dimensionless parameter that allowsone to 
hange the size of the jet region. In the geometri
R 
ase � is �xed in terms of the jet radius parameter R.2The 
hoi
e of Qa;b in the geometri
 measures removes thedependen
e in q�a=Qa and q�b =Qb on the total rapidity Y .This is useful in the presen
e of missing energy, whi
hprohibits the measurement of the boost Y of the partoni

enter-of-mass frame. Sin
e for the geometri
 measuresQJ � EJ , they are all insensitive to the total jet energy.For the geometri
 pT 
ase we have expli
itly2qi � pkqiT = pkT �2mkTpkT 
osh�yik�2 
os��ik� (12)2 For the multijet 
ase we would use the same �(R; �J ) for ea
hjet that is determined when they do not overlap.
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FIG. 2: Numeri
al results for �(R; �J ) in the geometri
 R measure. Left: Dependen
e on R for �J = 0, whi
h is � R2 asexpe
ted. Right: Dependen
e on �J for R = 1. To solve for � we use a �t (solid line) to the true �J dependen
e (dots).where �yik = yi� yk, ��ik = �i��k are the di�eren
esin rapidity and azimuthal angle between the dire
tion ofjet i and parti
le k, and m2kT = p2kT +m2 for a parti
leof mass m. For massless parti
les we thus get2qi � pkqiT = pkT (2 
osh�yik � 2 
os��ik)� pkT �(�y)2 + (��ik)2� : (13)The jet regions for geometri
 pT and E are roughly 
ir
u-lar, as shown in Fig. 1(a). They be
ome smaller at largerapidities for geometri
 pT , while they stay of 
omparablesize for geometri
 E.For geometri
 R, numeri
al results for the parameter�(R; �J) as fun
tion of R and �J are shown in Fig. 2. Theleft panel shows that the dependen
e on the jet radius Ris approximately � � R2, as expe
ted. The right panelillustrates the dependen
e on �J for �xed R = 1, showingthat � approa
hes a 
onstant for large �J , i.e. when thejet be
omes 
lose to the beam. When using geometri
R in our results below, we use for 
onvenien
e a �t ofthe �J dependen
e for �xed value of R. For example, forR = 0:5; 1; 1:2 we have for j�J j � 2�(R = 0:5; �J) = 0:164+ 0:037�2J � 0:009�4J + 0:0008�6J ;�(R = 1; �J) = 0:834� 0:233�2J + 0:077�4J � 0:008�6J ;�(R = 1:2; �J) = 1:272� 0:376�2J + 0:101�4J � 0:010�6J :(14)Note that for R = 0:5 the parameter � in
reases ratherthan de
reases with �J . A 
omparison of the jet regionsfor geometri
 R with anti-kT jets is shown in Fig. 1(b).Although their areas are 
hosen to be the same, the geo-metri
 R jets are not perfe
tly 
ir
ular and have an \o�-set" between the jet dire
tion and the 
enter of the jet

region. The former (latter) e�e
t de
reases (in
reases)with j�J j. For a smaller jet radius of R = 0:5 the geomet-ri
 R jets be
ome more 
ir
ular also at 
entral rapiditiesand very 
lose to anti-kT jets. In Ref. [55℄ a modi�
a-tion of N -jettiness was introdu
ed that mat
hes anti-kT
losely for any R. However, this de�nition reintrodu
es aregion of phase spa
e that belongs neither to the jet northe beams, making it more 
ompli
ated for 
al
ulations.III. CALCULATIONA. Fa
torization FormulaWe start by rewriting the phase spa
e integrals for thehard kinemati
s in terms of the rapidity �J and trans-verse momentum pJT of the jet and the total rapidity Y ,Z dxaxa Z dxbxb Z d3~qHEH Z d3~qJEJ (2�)4Æ4�qa + qb � qJ � q�= Z d�J dpJT dY 12� pJTQ2 +m2H : (15)The variables were de�ned in Se
. II, and we used az-imuthal symmetry and the relationspJT = Q2 �m2H2Q 
osh(�J � Y ) ; (16)Q = pJT 
osh(�J � Y ) +qpJ 2T 
osh2(�J � Y ) +m2H :Most of our plots will be normalized and for �xed valuesof �J , pJT , and Y , in whi
h 
ase the phase spa
e fa
tor inEq. (15) drops out.Our 
al
ulation relies on the N -jettiness fa
torizationformula in Ref. [47℄, whi
h we here spe
ialize to the 
aseof 1-jettiness:d3�H+1jd�J dpJT dY dTa dTb dTJ = pJT4�E2
m(Q2 +m2H)X� H�(fq�i g; �) Z dtaB�a(ta; xa; �) Z dtbB�b(tb; xb; �)� Z dsJ J�J (sJ ; �)S��Ta � taQa ; Tb � tbQb ; TJ � sJQJ ;n q�iQio; �� : (17)
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hannel �a �b �Jgg! Hg g g ggq! Hq g q qqg! Hq q g qg�q! �Hq g �q �q�qg! �Hq �q g �qq�q ! Hg q �q g�qq ! Hg �q q gTABLE I: Values of � for the di�erent partoni
 
hannels.The N -jettiness variables Ta, Tb, and TJ were de�ned inSe
. II. The hard fun
tion H� 
ontains the short-distan
ematrix element for produ
ing a Higgs plus a jet, the beamfun
tions B�a and B�b des
ribe the 
ollinear initial-stateradiation and 
ontain the PDFs, the jet fun
tion J�J
hara
terizes the 
ollinear �nal-state radiation, and thesoft fun
tion S� des
ribes soft radiation e�e
ts.3 Thesum over � = f�a; �b; �Jg runs over the possible 
avors�i 2 fg; u; �u; d; : : : g of the two in
oming and one outgoingparton. The possible 
ombinations, 
orresponding to thevarious partoni
 
hannels, are listed in Table I.The power of fa
torization is that it allows one to eval-uate the various �xed-order pie
es at their natural s
ales,where they 
ontain no large logarithms. We then use theRG evolution of ea
h of these fun
tions to evolve them toa 
ommon s
ale �, resumming the logarithms of m2J=pJ 2Tand QiTi=pJ 2T . This evolution is impli
it in Eq. (17), bywriting all fun
tions as evaluated at the 
ommon s
ale�. The fa
torization formula with all evolution fa
torswritten out expli
itly is given in Eq. (28) below. Our
hoi
e of s
ales is dis
ussed in Se
. III C. Power 
orre
-tions to Eq. (17) arise from so-
alled nonsingular 
orre
-tions, whi
h are suppressed by a relative O(m2J=Q2) inthis di�erential 
ross, and are not 
onsidered here.The 
ross se
tion in Eq. (17) is di�erential in the 1-jettiness 
ontributions from the jet and the beams TJ ,Ta, and Tb. As we will see, the shape of the jet massspe
trum is independent of the jet veto for a reasonablerange of Ta;b values. For simpli
ity we impose a 
ommon
ut Ta;b � T 
ut. We also 
onvert TJ to the jet mass mJusing Eq. (7), and so 
onsider�(m
utJ ; T 
ut) = Z T 
ut0 dTaZ T 
ut0 dTbZ m
ut 2J =QJ0 dTJ d3�dTa dTb dTJ :(18)The di�erential jet mass 
ross se
tion, d�=dmJ , is ob-tained by taking the numeri
al derivative of this 
umu-lant 
ross se
tion. We de�ne the normalized jet mass3 Note that we do not 
all Eq. (17) a fa
torization theorem sin
ethe de
oupling of Glauber gluons for hadron 
ollider pro
esseswith a spe
i�
 number of jets has not been proven.

mat
hing 
x �
usp � PDFLL 0-loop - 1-loop 1-loop NLONLL 0-loop 1-loop 2-loop 2-loop NLONNLL 1-loop 2-loop 3-loop 3-loop NLOTABLE II: Perturbative ingredients at di�erent orders in re-summed perturbation theory.spe
trum over the range [0;m
utJ ℄ as d�̂=dmJ , sod�̂dmJ (m
utJ ; T 
ut) � 1�(m
utJ ; T 
ut) d�(T 
ut)dmJ : (19)The ingredients in the resummed 
ross se
tion areneeded at di�erent orders in perturbation theory, as sum-marized in Table II, where the 
olumns 
orrespond to the�xed-order mat
hing, non-
usp anomalous dimension 
x,
usp anomalous dimension �
usp, the � fun
tion, and thePDFs. All ingredients ne
essary for a NNLL resumma-tion of the global logarithms are known and are 
olle
tedin App. A: The one-loop hard fun
tion for the three basi
pro
esses gg ! Hg, gq ! Hq, and q�q ! Hg via gluonfusion (in the large mt limit) are obtained from the one-loop heli
ity amplitudes 
al
ulated in Ref. [56℄ followingthe pro
edure in Ref. [57℄. The one-loop quark and gluonjet fun
tion were 
al
ulated in Refs. [58{60℄, the one-loopquark and gluon beam fun
tions in Refs. [61{64℄, and theone-loop soft fun
tion in Ref. [47℄. We also require the
usp anomalous dimension to three loops [65, 66℄, andthe non-
usp anomalous dimensions to two loops, whi
hare known from Refs. [60, 62, 67{70℄.There is some freedom in how to treat produ
ts of the�xed-order 
orre
tions in Eq. (17), spe
i�
ally the higher-order 
ross terms that are generated, su
h as the one-loop
orre
tion to H times the one-loop 
orre
tion to J , whi
hwe denote H(1)J (1). The series for the individual obje
tsare fairly 
onvergent, ex
ept for the hard fun
tion whoseone-loop 
orre
tion is known to be rather large.4 Wetherefore expand the 
onvolutions of the �xed-order B,J , and S fun
tions order by order in �s to the orderneeded, but keep the hard fun
tion H(0) + H(1) as anoverall multipli
ative fa
tor. We anti
ipate that the 
rossterms involving H(1) will a

ount for a large portion ofthe NNLO 
ross se
tion. S
hemati
ally, this means thatthe �xed-order 
omponents of our 
ross se
tion take theform(H(0)+H(1))h(B(0)B(0)J (0))
 S(0) (20)+ (B(1)B(0)J (0))
 S(0) + (B(0)B(1)J (0))
 S(0)+ (B(0)B(0)J (1))
 S(0) + (B(0)B(0)J (0))
 S(1)i :4 We �nd that the improvement of using a 
omplex s
ale �H forthe hard fun
tion is only marginal, be
ause some logarithms areminimized by a negative �2H and other by a positive �2H .



7The di�eren
e between expanding the hard fun
tion ortreating it as multipli
ative is within our perturbativeun
ertainty, being a <� 20% e�e
t for the unnormalizedmJ spe
trum, and only a <� 2% e�e
t for the normalizedmJ spe
trum.B. Refa
torization of the Soft Fun
tionFor a pro
ess with one or more jets there are multipledire
tions for 
ollinear radiation and various kinemati
variables so a few additional hierar
hies be
ome possi-ble. The fa
torization formula assumes that there are noadditional strong hierar
hies beyond the 
ollinearity ofthe jet m2J � pJ 2T , and the absen
e of additional 
entraljets away from the beam dire
tions, namely QaTa � pJ 2Tand QbTb � pJ 2T . Physi
ally, this 
orresponds to thefollowing four assumptions1) QiTi � QjTj 
ommensurate mJ and jet veto2) qi � qjEiEj � qi � qkEiEk well separated jet and beams3) Ei � Ej jet and beam-jets of similar energy4) Qi � Qj jet and beam regions of similar sizeAssumption 1) ensures that we are in the region whereNGLs are not large logarithms. Assumption 2) impliesthat the jet is not too 
lose to the beam dire
tion, andavoids having large angular logarithms, whi
h would re-quire an additional \ninja summation" [3℄.Three 
ombinations of these four assumptions are ne
-essary to avoid introdu
ing additional large logarithmsthat are not summed by the renormalization group evo-lution of terms in the fa
torization formula, namelysijsik � 1 ; TiTj � 1 ; QiQj � 1 : (21)The �rst implies that the logarithms in the hard fun
tion
an be minimized with a 
ommon s
ale �, and all three
ombine to imply that a 
ommon s
ale also minimizesall logarithms in the soft fun
tion. One 
ombination ofassumptions, Ei=Qi � Ej=Qj , does not appear expli
itlyin arguments of fun
tions in the fa
torized 
ross se
tion,and hen
e does not show up in logarithms for the lead-ing power result. However, it is in general ne
essary aspart of the derivation of Eq. (17) to ensure that 
ertainnegle
ted terms are power suppressed.An important 
onsideration in 
arrying out the sum-mation of large logarithms is the order in �s and loga-rithms at whi
h violations of Eq. (21) �rst be
ome ap-parent. For the soft fun
tion the �rst terms that appearfor the various logarithms are�s ln2�QiT 
i QjT 
j�2sij � ; �s ln�sijQksikQj � ; �2s ln2�T 
iT 
j � ;(22)

where we integrate the soft fun
tion over Ti up to the
umulant variable T 
i . The �rst of these is part of the LLseries. The se
ond is an angular logarithm. It is part ofthe NLL series if it 
ounts as a large logarithm. Other-wise, it is part of the � �s �xed-order terms that start to
ontribute at NNLL. The third is a NGL. It is part of theNLL series if it is a large logarithm. Otherwise it is partof the � �2s �xed-order terms that start to 
ontributeat N3LL. Therefore, there is a nontrivial 
onstraint onthe 
hoi
e of s
ales � in the soft fun
tion. The s
alesmust be 
hosen to minimize the �rst type of logarithm inEq. (22) without indu
ing terms of the form of the se
ondand third types already at LL order. In parti
ular, thisimplies that a poor s
ale 
hoi
e 
ould introdu
e unphys-i
al angular logarithms or NGLs into the LL series. Forour 
hoi
e of kinemati
s and Qi the se
ond type of angu-lar logarithm in Eq. (22) is never large. However, sin
ewe are exploring a spe
trum in m2J = QJTJ the thirdterm in Eq. (22) will grow as the parameters are varied.To surmount this problem requires a refa
torization ofthe soft fun
tion whi
h we will 
onsider below.For the hard fun
tion the series of leading double log-arithms involves terms of the form�s ln2��2sij � ; �s ln2� sijsik � : (23)For the 
hoi
e of jet kinemati
s explored in this paper wewill always satisfy the assumption sij � sik, so there isno additional 
onstraint on the s
ale asso
iated with thehard fun
tion.The hierar
hy between TJ and T 
ut leads to unphys-i
al large logarithms if a single s
ale �S is used for theinitial 
onditions for the soft fun
tion evolution. Here weaddress how these 
an be removed by a refa
torization ofthe soft fun
tion, with 
orre
tions from the true higherorder non-global logarithms (see Refs. [8, 12, 15, 37℄ forearlier refa
torization dis
ussions).In general, the all-order soft fun
tion has the formS(fkig; fq̂�i g; �)=Yi Si(ki; fq̂�i g; �) + SNGL(fkig; fq̂�i g; �) ; (24)where q̂�i = q�i =Qi. Here SNGL 
ontains all non-globalterms, and hen
e has an intrinsi
 dependen
e on the ra-tios ki=kj . At NLO there is only one soft gluon emitted,whi
h 
an 
ontribute to only one of the Ti at a time. Thusthe NLO soft fun
tion fa
torizes, and SNGL � O(�2s).Trun
ating to O(�s) there is still some freedom in thede�nition of the Si. Whereas the terms with expli
itki dependen
e in S(fkig; �) 
learly belong to Si(ki; �),the pure delta fun
tion terms Æ(kJ)Æ(ka)Æ(kb) 
an inprin
iple be split in multiple ways between the variousSi(ki; �). We 
hoose to split these terms evenly, as de-tailed in App. A 4, and we introdu
e an additional pa-rameter r in the s
ale variation to estimate un
ertaintyfrom this freedom as dis
ussed further below and in detailin Se
. III C.



8Due to the 
onsisten
y of the fa
torization formula,the evolution of the soft fun
tion fa
torizes exa
tly to allorders in perturbation theory,US(fkig; �; �0) = UH(�0; �)Yi QiUJi(Qiki; �0; �)=Yi USi(ki; �; �0) ; (25)(Here we used the fa
t that the beam and jet fun
tionshave the same evolution [62℄.) This involves the fa
tor-ization of the evolution of the hard fun
tion H = CCy,whi
h follows from the form of the anomalous dimensionfor C [71, 72℄,b
C(�) = �
usp[�s(�)℄�Xi T2i ln ��0+Xi<j Ti �Tj ln��sij�20 �i0��+ b
C [�s(�)℄ : (26)The sum on i and j runs over the 
olored partons parti
-ipating in the short-distan
e intera
tion and Ti denotesthe 
orresponding 
olor 
harge matrix. (For pp! H +1jet the 
olor spa
e is still trivial, so these 
olor matri
esare just numbers.) To asso
iate the ln� terms to individ-ual partons we introdu
ed a dummy variable �0 and used
olor 
onservation. It is not a priori 
lear how to asso
iatethe remaining terms within the Pi<j to ea
h USi , andwe 
hoose to split ea
h term evenly between i and j. Theexpli
it expression for the fa
torized hard fun
tion evolu-tion that we employ is given in App. A 5. Other potential


hoi
es of splitting up these terms are again probed bythe s
ale parameter r, whi
h is dis
ussed in more detailaround Eq. (31), and the 
orresponding un
ertainty isfound to be small. The two-loop non-
usp anomalous di-mension has the stru
ture b
C(�s) = nq
q + ng
g , whereng and nq are the number of gluon and (anti)quark legs,so it naturally fa
tors.The fa
torization of the evolution and �xed-order softfun
tion in Eqs. (24) and (25) suggests that we 
an eval-uate the pie
e of the soft fun
tion 
orresponding to Ti ata s
ale �Si ,S(fkig; �) =Yi Z dk0i USi(ki � k0i; �; �Si)Si(fk0ig; �Si) :(27)This fa
torization does not hold for all the terms at or-der �2s , sin
e there are diagrams that 
ontribute to mul-tiple Ti, leading to non-global logarithms of the form�2s ln2(k
i =k
j) appearing in SNGL in Eq. (24). We dis-
uss in Se
. III D how we estimate the size of these NGL
ontributions in the jet mass spe
trum.In our implementation we �nd it simplest to run thehard, jet, and beam fun
tions, rather than the soft fun
-tion, as summarized in Fig. 3, though the �nal resultsare 
ompletely independent of this 
hoi
e. Sin
e the 
uton both beams is the same, they have a 
ommon �B and�SB . We summarize the work in this se
tion by pre-senting the fa
torization formula valid at NNLL whi
hin
ludes the evolution fa
tors and refa
torization of S,d3�H+1j(T 
ut)d�J dpJT dY dmJ = (2pJTmJ=QJ)4�E2
m(Q2 +m2H)X� H�(fq�i g; �H)UH�a (fq�i g; �SB ; �H)UH�b (fq�i g; �SB ; �H)UH�J (fq�i g; �SJ ; �H)� Z dta dt0a UJ�a (ta � t0a; �SB ; �B)B�a(t0a; xa; �B) Z dtb dt0b UJ�b (tb � t0b; �SB ; �B)B�b(t0b; xb; �B)� Z dsJ ds0J UJ�J (sJ � s0J ; �SJ ; �J)J�J (s0J ; �J ) Z T 
ut0 dTa Sa�Ta � taQa ;n q�iQio; �SB�� Z T 
ut0 dTb Sb�Tb � tbQb ;n q�iQio; �SB�SJ�m2J � sJQJ ;n q�iQio; �SJ� : (28)All ne
essary perturbative results for H�, J�J , Si, andthe Ui are 
olle
ted in App. A.C. Choi
e of Running S
alesThe fa
torization formula in Eq. (28) sums the largelogarithms of QiTi=pJ 2T from the 
uts on the beams andof QJTJ=pJ 2T = m2J=pJ 2T from the jet mass measurement
by 
arrying out perturbation theory for the hard, beam,jet, and soft fun
tions at their natural s
ales�H ' pJT ; �i 'pQiTi ; �Si ' QiTi=pJT ; (29)and then running them to an arbitrary 
ommon s
ale.Here i = a; b; J , sin
e the situation for the beams and thejet are fully analogous. As dis
ussed above we must usethe 
ombinationQiTi to ensure we have the 
orre
t lead-ing logarithms. The remaining dependen
e of the 
ross
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µH

µSB
µSJ

µB
µJ

JBFIG. 3: Illustration of the di�erent �xed-order s
ales appear-ing in the fa
torized 
ross se
tion and our evolution strategy.se
tion on Qi o

urs due to its impa
t on the boundariesbetween the jet and beam regions. This is en
oded in the�xed-order terms in the soft fun
tion that do not involvelarge logarithms.If any Ti be
omes very small, � �QCD, the nonper-turbative 
orre
tions to the soft fun
tion be
ome impor-tant and the s
ales are �H ' pJT , �i � p�QCD pJT , and�Si >� �QCD. On the other hand, for large Ti � pJT theresummation of QiTi=pJ 2T is not important and is turnedo� by having the s
ales merge, �H = �i = �Si ' pJT .To 
onne
t the various regions where the resummationmust be handled di�erently, we use Ti-dependent s
ales,whi
h are known as pro�le fun
tions [23, 73℄. A transi-tion between these three regions is given by the followingrunning s
ales, adopted from Ref. [64℄,�H = � ; (30)�i(�) = h1 + ei �(�3 � �)�1� ��3 �2 ip��run(�; �) ;�Si(�) = h1 + eSi �(�3 � �)�1� ��3�2 i�run(�; �) ;where � = QiTi=Q2. The expression for �run 
an befound in App. B, along with the 
hoi
e of parameters forthe 
entral values, and details on the variations of �, ei,and eSi used to estimate the perturbative un
ertaintiesin our predi
tions.To estimate the additional perturbative un
ertainty as-so
iated with the refa
torization of the soft fun
tion inSe
. III B, we reintrodu
e 
orrelations between the softs
ales using a parameter r satisfying 0 � r � 1,�(r)SJ = (��S)r (�SJ )1�r ; �(r)SB = (��S)r (�SB )1�r ;ln ��S � (T 2a + T 2b ) ln�SB + T 2J ln�SJT 2a + T 2b + T 2J : (31)Here T 2i = CF for i = q and i = �q, and T 2i = CA fori = g. For r = 0 we have the original un
orrelatedsoft s
ales. By in
reasing r the s
ales move towards the\
olor average" value ��S . At r = 1 they are all equalto this average soft s
ale, so the refa
torization is turnedo� (whi
h as explained earlier 
auses unphysi
al NGLs inthe LL series). To estimate the size of the freedom in the

refa
torization we take r = 0:2 as our default 
hoi
e andin
lude r = 0 and r = 0:4 as separate s
ale variations inour un
ertainty estimate.D. Non-Global LogarithmsIf the NGLs are not large logarithms then they enterbeyond NNLL order, and should be of 
omparable size toother higher-order perturbative terms. This is obviouslyonly possible for some range of m2J=(pJTT 
ut), whi
h de-termines where our result is valid at NNLL order. Todetermine this range we in
lude the leading O(�2s) NGLinto our resummed 
al
ulation and 
ompare the resultswith and without this term for various parameter 
hoi
es.In the fa
torized 
ross se
tion all NGLs enter through thesoft fun
tion S. For simpli
ity we restri
t this analysis ofthe size of non-global logarithms to the gg ! Hg 
han-nel, as the results for other 
hannels are similar.The leading NGL in the 
umulant soft fun
tion isSNGL(fk
i g; �S) =Yi �Z k
i0 dki�SNGL(fkig; �S) (32)= ��2s(�S)C2A(2�)2 Xi<j Gij ln2 �k
ik
j � :HereGij is a geometri
 fa
tor that depends on the bound-aries of the jet and beam regions. Note the absen
e ofexpli
it �-dependen
e in the NGLs. These expressionsfor SNGL follow from the known result for e+e� ! 2jets [32, 33, 41, 42℄, by repla
ing the 
olor fa
tor CFCA !C2A. Unlike the global logarithms this 
ontribution doesnot fa
tor, so we assign it a 
ommon soft s
ale whi
h wetake to be ��S given in Eq. (31).For the purpose of our numeri
al analysis we takeGij = �2=3, whi
h is the result for a hemisphere. Thismay be thought of as reasonable estimate and in realitythe values may di�er by about 15% to 30% [14℄. Con-verting the 
umulant spa
e result in Eq. (32) into a fulldistribution yieldsSNGL(fkig; ��S) ' ��2s(��S)C2A(2�)2 �23 hXi 4�0L1�ki�0�� 2Xi<j 1�0L0�ki�0� 1�0L0�kj�0 �i ; (33)where the Ln denote standard plus distributions as de-�ned in Eq. (A5). Note that the �0 dependen
e 
an
elsout expli
itly between the terms, so the 
hoi
e of thiss
ale is arbitrary and irrelevant. It is introdu
ed for 
od-ing purposes, sin
e it is 
onvenient to have the same typeof Ln distributions as in the non-NGL part of the softfun
tion. When the NGLs are in
luded in this manner,via the soft fun
tion in the fa
torization, one automati-
ally resums an in�nite series of global logarithms thatmultiply the NGL. In parti
ular, this in
ludes terms thatare s
hemati
ally [�2s ln2℄[Pk(�s ln2)k℄ where the �rst ln2



10is non-global and the se
ond ln2 is a large global loga-rithm. The all-order stru
ture of this series of terms is
orre
tly predi
ted by the fa
torization.For our analysis we will mostly be interested in thenormalized spe
trum in Eq. (19). Here in the numeratorthe two jet veto variables are in 
umulant spa
e and mJis in distribution spa
e, while in the denominator all thevariables are in 
umulant spa
e. This result has two typesof NGLs i) �2s(�S) ln2� m
ut 2JpJTT 
ut� ; (34)ii) �2s(�S) 2T 
utL1� m2JpJTT 
ut� :For the denominator the relevant form of the NGL log-arithms is as in Eq. (32), yielding the terms i). For thenumerator the form of the NGL is as in ii). The presen
eof two types of NGLs in the normalized spe
trum impliesa somewhat di�erent dependen
e than for the unnormal-ized 
ross se
tion. The e�e
t of NGLs in these two 
asesare analyzed in detail in Se
. IVC. There we will showthat there is indeed a fairly large range of m
utJ valueswhere the NGL terms in the ex
lusive jet 
ross se
tionare not large logarithms.IV. RESULTS FOR GLUON AND QUARK JETSIn this se
tion we fo
us on the individual quark andgluon 
hannels, leaving results for pp ! H + 1 jet to bedis
ussed in Se
. V below. We �rst study the theoret-i
al predi
tions for the mJ spe
trum with and withoutnormalization, and show that normalizing substantiallyredu
es the perturbative un
ertainty. We also study theorder-by-order 
onvergen
e of this di�erential 
ross se
-tion, and the size of various 
ontributions to the pertur-bative un
ertainty bands. Next, the dependen
e on thejet veto T 
ut is studied. Finally, we investigate the sizeof non-global logarithms as a fun
tion of mJ and T 
ut.A. Default Parameter Choi
esUnless indi
ated otherwise we use the following defaultparameter 
hoi
es for all plots in Se
s. IV, V, and VI. Forthe Higgs mass we take mH = 125GeV [74, 75℄, and forthe LHC 
enter-of-mass energy we take E
m = 7TeV.We always use the MSTW NLO PDFs [76℄ with the
orresponding value of �s(mZ) = 0:1202 for the strong
oupling 
onstant. As our default we use the geometri
R = 1 measure for de�ning the jets, T 
ut = 25GeV forthe jet veto, and m
utJ = 200GeV for the normalizationrange. Our default hard kinemati
s are pJT = 300GeV,�J = 0, and Y = 0. Finally, for the s
ale fun
tions�H , �B(�), �J (�), and �Si(�) de�ned in Se
. III C, the
entral parameter values are given in App. B. There we

also dis
uss the 
ombination of s
ale variations used forestimating the perturbative un
ertainties.B. Normalization and Convergen
eThe unnormalized jet mass spe
trum at NNLL withour default inputs for the quark and gluon 
hannels areshown in Fig. 4(a). As one expe
ts, the gluon jets peakat a mu
h higher jet mass than the quark jets. We alsosee that the perturbative un
ertainties are quite sizable,even at NNLL.Normalizing the jet mass spe
trum allows one to studyits shape without 
ontamination from the slow 
onver-gen
e of the integrated 1-jet 
ross se
tion, and also re-du
es the experimental un
ertainties signi�
antly. Wedenote the normalized 
ross se
tion as d�̂=dmJ and 
al-
ulate it using Eq. (19) where we normalize over the range0 � mJ � m
utJ .We �rst study the impa
t of normalization on theperturbative un
ertainty. To preserve the normaliza-tion, we simultaneously vary the s
ales in the numera-tor and denominator of Eq. (19). Comparing the unnor-malized 
ross se
tion at NNLL for the gluon and quark
hannels shown in Fig. 4(a) to the normalized ones inFig. 4(b), we observe that a substantial portion of the un-
ertainty is related to the integrated 
ross se
tion ratherthan the shape. In the peak region of the mJ spe
trum,30GeV � mJ � 150GeV the normalized 
ross se
tionshave a quite reasonable remaining perturbative un
er-tainty of ' 5{10%.A big part of the sizable un
ertainty in the unnormal-ized 1-jet 
ross se
tion is due to the poor 
onvergen
e ofthe hard fun
tion for pp ! H + 1 jet, and thus spe
i�
to the Higgs pro
ess. By keeping the hard fun
tion as anoverall multipli
ative fa
tor as in Eq. (20), it 
an
els ex-a
tly in the normalized 
ross se
tion for a given partoni

hannel and �xed phase spa
e point (whi
h we use formost of our plots). This 
an
ellation still takes pla
e ap-proximately for the integrated 
ross se
tion summed overpartoni
 
hannels as we show below in Se
. VB. Our re-sults with �xed kinemati
s are therefore representativeof results integrated over the jet phase spa
e.The order-by-order 
onvergen
e of our resummed jetmass 
al
ulation is displayed in Figs. 4(
) and 4(d) forthe gluon and quark jet 
hannels, where results at LL,NLL, and NNLL are shown. The various bands overlapwith those of lower orders, providing dire
t eviden
e thatour s
ale variations yield a reasonable estimate of thehigher-order perturbative un
ertainties.There are several 
lasses of perturbative s
ale un
er-tainties, the \Fixed Order" s
ale variation that is 
or-related with the total 
ross se
tion, the \Beam" s
alevariation from varying �B and �SB that is related to thepresen
e of the jet veto, the \Jet" s
ale variation fromvarying �J and �SJ that is related to the jet mass mea-surement, and the un
ertainty from \r" that is relatedto the perturbative freedom in the refa
torized formula
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trum for quark and gluon jets atNNLL. Compared to Fig. 4(a), the normalization signi�
antlyredu
es the perturbative un
ertainties.
0 50 100 150 200

0.000

0.005

0.010

0.015

mJ @GeVD

dΣ
`
�d

m
J
@n

or
m

al
iz

ed
D

NNLL
NLL
LL

Y=0, ΗJ=0, pT
J
=300 GeV, T

cut
= 25 GeV

gg®Hg, Geometric R=1

(
) Convergen
e of the resummed 
al
ulation for gluon jets. 0 50 100 150 200
0.000

0.005

0.010

0.015

0.020

mJ @GeVD

dΣ
`
�d

m
J
@n

or
m

al
iz

ed
D

NNLL
NLL
LL

Y=0, ΗJ=0, pT
J
=300 GeV, T

cut
= 25 GeV

gq®Hq, Geometric R=1

(d) Convergen
e of the resummed 
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ulation for quark jets.
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gg®Hg, NNLL(e) Individual s
ale variations that enter the un
ertainty estimatefor gluon jets at NNLL. Shown are the variations relative tothe 
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gq®Hq, NNLL(f) Individual s
ale variations that enter the un
ertainty estimatefor quark jets at NNLL. Shown are the variations relative tothe 
entral NNLL 
urve.FIG. 4: Perturbative un
ertainties and 
onvergen
e for the jet mass spe
trum in gg! Hg and gq ! Hq with default inputs.for the soft fun
tion. For the NNLL results, these indi-vidual s
ale variations are shown in Figs. 4(e) and 4(f)for gluon and quark jets respe
tively. For simpli
ity we
ombined the un
ertainty from varying the jet s
ale �J and the s
ale of the jet part of the soft fun
tion �SJ bytaking the envelope, and similarly for the beams. It is nottoo surprising that the un
ertainties asso
iated with thehard and beam s
ale variations are smaller, sin
e they
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FIG. 5: E�e
t of using di�erent jet veto 
uts on the jet mass spe
trum for gg ! Hg. While the unnormalized spe
trum onthe left is dire
tly sensitive to the jet veto 
ut, this dependen
e almost 
ompletely 
an
els in the normalized spe
trum on theright. The same is true for the quark 
hannel, gq! Hq, and the sum over all partoni
 
hannels.are mostly 
ommon to the numerator and denominatorof the normalized spe
trum in Eq. (19). To obtain thetotal perturbative un
ertainty we take the envelope of\Jet", \Beam" and \r" un
ertainties and 
ombine it inquadrature with the \Fixed Order" un
ertainty. The to-tal un
ertainty in the jet mass spe
trum is dominated bythat of the jet and by the soft fun
tion refa
torization.C. Jet Veto and Non-Global LogarithmsNext we dis
uss the e�e
t of the jet veto on the jet massspe
trum. Our veto is imposed through the variable T 
ut,rather than a more traditional p
utTJ , sin
e this simpli�esthe treatment of s
ales in the problem, and allows us tomake use of a known fa
torization theorem. This jet vetorestri
ts the initial and �nal-state 
ollinear radiation aswell as soft radiation. It turns out that the normalizedjet mass spe
trum is fairly insensitive to the value of thejet veto 
ut.We start by 
onsidering the e�e
t of the jet veto on theunnormalized jet mass spe
trum, as shown for gg ! Hgin the left panel of Fig. 5. De
reasing T 
ut imposes astronger restri
tion on the initial-state radiation and re-du
es the unnormalized 
ross se
tion. (This redu
tionis less strong for gq ! Hq, be
ause quarks radiate lessthan gluons.) As the right panel of Fig. 5 shows, the nor-malization removes the majority of the T 
ut dependen
e.Note that without the refa
torization of the soft fun
tion(see Se
. III B) this 
an
ellation would be spoiled by un-physi
al logarithms. This strong 
an
ellation is also the
ase for the other partoni
 
hannels, as well as for theirsum in pp ! H + 1 jet. This insensitivity to T 
ut alsoremains valid after integrating over the jet phase spa
e,as we show below in Fig. 8. We have also studied thedependen
e on T 
ut as well as a standard p
utTJ jet vetowith Pythia, where we also �nd a similar insensitivityof the normalized jet mass spe
trum to the details of the

used jet-veto variable and 
ut values.Next we turn to our analysis of NGLs, both in theunnormalized and normalized jet mass spe
tra. As ex-plained in Se
. III D, we test for the size of the NGLsby 
omparing the 
ross se
tion with and without theseterms. The leading NGL is in
luded in �xed-order per-turbation theory, on top of whi
h we sum an in�nite seriesof global logarithms through the fa
torization formula.In the left panel of Fig. 6 we show the unnormalizedspe
trum for various T 
ut values at NNLL (solid lines)and the same spe
tra in
luding the NGL terms (dottedlines). As mentioned earlier, there is a point on the spe
-trum where the NGLs exa
tly 
an
el. This point is atmJ ' 50; 110; 165; 300 for T 
ut = 10; 25; 50; 150GeV re-spe
tively. For all values of mJ shown in this �gure thee�e
t of the NGL terms is well within the perturbativeun
ertainty [
f. the un
ertainty bands shown in Fig. 4(a)℄.When we normalize the spe
trum we are dividing bythe 
umulant with m
utJ , and the jet-veto dependen
edoes not 
an
el out in the presen
e of the non-globallogarithms. There are two types of NGLs in the nor-malized result, terms involving ln[m2J=(pJTT 
ut)℄ fromthe numerator and terms involving ln[m
ut 2J =(pJTT 
ut)℄from the denominator. Therefore for a �xed T 
ut thereis no longer a value of mJ where all the NGLs willvanish. Results for the normalized spe
trum with andwithout NGLs are shown in the right panel of Fig. 6.The orange band shows the NNLL result without NGLsalong with its perturbative un
ertainty, while the vari-ous bla
k lines show the 
entral values for NNLL resultsthat have the NGLs in
luded. For the wide range of val-ues 25GeV � T 
ut � 150GeV the e�e
t of the NGLs isof the same size as the redu
ed perturbative un
ertaintyin the normalized spe
trum. This justi�es our assertionthat the NGLs do not have to be 
onsidered as large log-arithms for a signi�
ant range of 
ut values, so that ourNNLL result is 
omplete at this order. In the small mJregion of the spe
trum the resummation of global loga-rithms on top of the NGL term provides an appropriate
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FIG. 6: E�e
t of non-global logarithms on the NNLL jet mass spe
trum for gg ! Hg for di�erent jet veto 
uts. Left panel:In
luding the leading NGLs (dashed lines) has a small e�e
t on the unnormalized spe
trum, and is well within the perturbativeun
ertainty for a wide range of jet veto 
uts. Right panel: The e�e
t of in
luding the leading NGLs (bla
k solid, dashed, anddotted 
urves) on the normalized NNLL spe
trum (orange band) is still within the redu
ed perturbative un
ertainty for a widerange of jet veto 
uts, but start to be
ome important for T 
ut = 10GeV.Sudakov suppression in the the 
ross se
tion. For othermJ values, and 25GeV � T 
ut � 150GeV, the argumentof the NGL remains between 1=8 and 8, whi
h is therange over whi
h we expe
t that the NGLs do not dom-inate over nonlogarithmi
 
orre
tions, as mentioned inthe introdu
tion. On the other hand, for T 
ut = 10GeVone observes that the NGLs be
ome large enough thatthey are no longer 
ontained within the perturbative un-
ertainty, so this value is outside the range of validity ofour normalized NNLL results (though for this value theunnormalized results in the peak region are still valid).For this value the argument of the NGL involving m
utJbe
omes ' 13, whi
h is outside of the range mentionedabove.Although we have only explored the gg ! Hg 
hannelat a �xed kinemati
 point in this se
tion, we have also
he
ked expli
itly that the same 
on
lusions about NGLshold when integrating over a kinemati
 range, and when
onsidering quark jets from gq ! Hq.
V. RESULTS FOR pp! H + 1 JETIn this se
tion we show results for the pp! H + 1 jet
ross se
tion at NNLL, summing the 
ontributions fromthe various partoni
 
hannels: gg ! Hg, gq ! Hq, andthe (small) q�q ! Hg. We present results for the depen-den
e of the jet mass spe
trum on the jet kinemati
s, onthe 
hoi
e of jet de�nition whi
h a�e
ts the shape of thejets, and on the jet size R. We also 
ompare the mJspe
trum obtained for a �xed point in the jet kinemat-i
s to that obtained from integrating over a range of jetmomenta.

A. Dependen
e on Kinemati
sFor pp ! H + 1 jet there are three nontrivial kine-mati
 variables: the transverse momentum of the jet pJT ,rapidity of the jet �J , and the total rapidity Y of the
ombined Higgs+jet system. We show how ea
h of thesevariables a�e
t both the unnormalized and normalized jetmass spe
trum, whi
h allows us to separate the impa
tof kinemati
s on the normalization and the shape.The fallo� of the PDFs at larger x values 
auses the
ross se
tion to strongly de
rease for in
reasing pJT andfor in
reasing j�J j (for Y = 0). This is shown in Figs. 7(a)and 7(
). The dependen
e on pJT and �J in the 
orre-sponding normalized spe
tra are shown in Figs. 7(b) and7(d). Here we see that there is a de
rease in the height ofthe peak and a 
ompensating in
rease in the tail heightas pJT or j�J j are in
reased. Note that for these variablesthere is a marked di�eren
e between the total pp! H+1jet pro
ess 
ompared to the individual partoni
 
han-nels (whi
h are not shown). For ea
h partoni
 
hannelthe peak position of the jet mass spe
trum in
reases asmpeakJ / ppJT and also in
reases with in
reasing j�J j.However, at the same time the 
ontribution of gq ! Hqrelative to gg ! Hg is enhan
ed, and the peak of thejet mass spe
trum is at lower values for quark jets thanfor gluon jets [see Fig. 4(b)℄. These two e�e
ts largely
an
el for pp ! H + 1 jet, su
h that the peak positionis pra
ti
ally un
hanged with in
reasing pJT , whereas forin
reasing �J a small net in
rease in the peak positionremains.Note that our ability to 
al
ulate the �J dependen
eimplies that it is trivial to impose rapidity 
uts in ourframework.The main dependen
e on the total system rapidityY enters through the shape of the PDFs, 
ausing the
ross se
tion to strongly de
rease with in
reasing jY j, asFig. 7(e) shows. (This is also the reason for taking 
en-



14

0 50 100 150 200
0.

0.1

0.2

0.3

0.4

0.5

0.6

mJ @GeVD

dΣ
�d

m
J
@p

b�
T

eV
2
D

pT
J
=300 GeV

pT
J
=350 GeV

pT
J
=400 GeV

Y=0, ΗJ=0, T
cut
=25 GeV

pp®H+1 j, Geometric R=1, NNLL

(a) The 
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(b) For pp! H + 1 jet the peak position remains stable and thespe
trum slightly broadens with in
reasing pJT .
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(
) The 
ross se
tion de
reases with in
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(d) For pp! H + 1 jet the peak position shifts slightly and thespe
trum slightly broadens with in
reasing �J .
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(e) The 
ross se
tion qui
kly de
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(f) For pp! H + 1 jet the peak position remains stable and thespe
trum slightly broadens with in
reasing Y .FIG. 7: Dependen
e on the kinemati
 variables pJT , �J , and Y for the unnormalized and normalized NNLL jet mass spe
trafor pp! H + 1 jet.tral jets with Y = 0 for our default value when usinga single phase spa
e point.) The value of Y also a�e
tsthe shape of the jet mass spe
trum, as 
an be seen inFig. 7(f). The jet rapidity relative to the partoni
 
enter of mass is � � Y , so one would expe
t the shape 
hangeas fun
tion of Y to be similar to that as fun
tion of �J ,shown in Fig. 7(d). The agreement is 
lose but not exa
tbe
ause the Y dependen
e indu
ed by the shape of the
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FIG. 8: Results for the normalized jet mass spe
trum at NNLL for pp ! H + 1 jet after integrating over 300GeV < pJT <400GeV, j�J j < 2, and all Y . The left panel 
ompares the spe
trum for integrated kinemati
s (dashed line) to those for �xedkinemati
s with Y = �J = 0 and pJT = 300; 360; 400GeV (solid lines from top to bottom at the peak). The right panel showsthe impa
t of T 
ut on the normalized spe
trum for integrated kinemati
s, whi
h is the analog of the 
omparison in the rightpanel of Fig. 5 for �xed kinemati
s.PDFs di�ers 
hannel by 
hannel, and thus a�e
ts theirrelative weight in the sum over 
hannels.B. Integrated Kinemati
sSo far we have shown the mJ spe
tra for a �xed pointin pJT , �J , and Y . We now 
onsider the impa
t of inte-grating the kinemati
 variables over a bin with j�J j < 2,300GeV < pJT < 400GeV, and any Y . These kinemati
ranges are realisti
 experimentally for jets at the LHC.In the left panel of Fig. 8 the jet mass spe
trumfor integrated kinemati
s is shown by a bla
k dashedline, and is 
ompared to three spe
tra with �xed kine-mati
s shown by solid lines (with Y = �J = 0 andpJT = 300; 360; 400GeV from top to bottom at the peakof the spe
trum). One observes that the mJ spe
trum inthe integrated bin is very 
lose to the mJ spe
trum withY = �J = 0 and near the 
enter of the pJT bin. Thus our
on
lusions made from studies of a single kinemati
 pointdire
tly 
arry over to the results obtained by integratingover a phase spa
e bin.The one situation where this is not immediately ob-vious is the dependen
e of the normalized 
ross se
tionon the jet-veto 
ut, T 
ut, shown for �xed kinemati
s inFig. 5. When we integrate over the kinemati
 bin thehard fun
tion, in
luding its Sudakov form fa
tor depend-ing on T 
ut, no longer exa
tly 
an
els between the nu-merator and denominator. Nevertheless, 
omparing thespe
tra for integrated kinemati
s and di�erent values ofT 
ut, shown in Fig. 8, we see that the normalized spe
-trum is still very insensitive to the details of the jet vetoalso after summing over partoni
 
hannels and integrat-ing over a range of kinemati
s. (We have also 
on�rmedthat upon phase spa
e integration the size of the NGLe�e
t remains the same as shown in Fig. 6.)

C. Jet De�nitions and Jet AreaIn Se
. II we dis
ussed the various N -jettiness mea-sures (de�ned by the Qi) and illustrated the 
orrespond-ing size and shape of the jet regions for the geometri

ases. An illustration of the more irregular regions thatappear for the invariant mass measure 
an be found inRef. [47℄. We now study how the jet mass spe
trum is af-fe
ted by these di�erent jet de�nitions as well as by theirjet area (R dependen
e). We start by noting that in theN -jettiness fa
torization only the soft fun
tion is sensi-tive to the boundaries of the jet regions. Sin
e the softfun
tion only probes the boundaries starting at NLO, the�rst dependen
e on the jet de�nition appears at NNLL.The nontrivial Qi dependen
e at this order in the singu-lar terms is formally enhan
ed over the dependen
e onthe jet algorithm and jet area in the power-suppressednonsingular terms that are not part of Eq. (28).In Fig. 9 we 
ompare the invariant mass, geometri
pT , and geometri
 E measures (using � = 0:5 for thelatter two) for three di�erent kinemati
 
on�gurationswith �J = f0; 1; 2g, Y = 0, and pJT = 300 GeV. For�J = 0 and �J = 1 the dependen
e of the jet mass onthe jet de�nition is fairly mild (for jets of similar area),with the largest visible e�e
t at small mJ . As we saw inFig. 1(a) the jet regions of these two geometri
 measuresagree exa
tly for �J = 0 and di�er progressively for moreforward jet rapidities. This is re
e
ted in the jet massspe
trum where the largest di�eren
es are observed for�J = 2. The two bumps in the jet mass spe
trum forgeometri
 pT at �J = 2 are 
aused by an in
reased sep-aration between the peaks of the individual quark andgluon 
hannels [see Fig. 4(b)℄.In Fig. 10 we show the jet mass spe
trum for the ge-ometri
 R measure for various values of the jet radiusR. A larger jet radius translates into a peak at slightly



16
0 50 100 150 200

0.000

0.005

0.010

0.015

mJ @GeVD

dΣ
`
�d

m
J
@n

or
m

al
iz

ed
D

Invariant mass
Geometric pT
Geometric E

Y=0, ΗJ=0, pT
J
=300 GeV, T

cut
=25 GeV

pp®H+1 j, NNLL

0 50 100 150 200
0.000

0.005

0.010

0.015

mJ @GeVD

dΣ
`
�d

m
J
@n

or
m

al
iz

ed
D

Invariant mass
Geometric pT
Geometric E

Y=0, ΗJ=1, pT
J
=300 GeV, T

cut
=25 GeV

pp®H+1 j, NNLL

0 50 100 150 200
0.000

0.005

0.010

0.015

mJ @GeVD

dΣ
`
�d

m
J
@n

or
m

al
iz

ed
D

Invariant mass
Geometric pT
Geometric E

Y=0, ΗJ=2, pT
J
=300 GeV, T

cut
=25 GeV

pp®H+1 j, NNLL

FIG. 9: Dependen
e of the NNLL jet mass spe
trum for pp! H + 1 jet on the N -jettiness measure used to de�ne the jets.
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=25 GeV

pp®H+1 j, Geometric R, NNLL

FIG. 10: Dependen
e of the NNLL jet mass spe
trum forthe geometri
 R measure on the jet radius R. Only the Rdependen
e from singular terms in the fa
torization formulais shown here.
higher mass and slightly larger tail. Note that the biggestdi�eren
e between the jet mass spe
tra for di�erent val-ues of R will be at large mJ in the tail of the spe
trum,sin
e the size of the jet puts an e�e
tive upper bound-ary on its mass mJ <� pJTR=p2. 5 At this boundary thejet mass spe
trum has to fall o� rapidly. This bound-ary is seen in Pythia and LHC data but is not in
ludedin our 
al
ulation, be
ause we have not yet in
orporatedthe nonsingular 
ontributions to the 
ross se
tion whi
hare important for a

ounting for this e�e
t and makingrealisti
 predi
tions in this part of the tail of the distri-bution.5 For a jet of �xed three momentum 
entered at � = 0, the abso-lute bound on the jet mass is m2J < pJ 2T (1= 
os2 R � 1), whi
his rea
hed when the jet 
onsists of two energeti
 narrow sub-jets lo
ated at (�; �) = (0;�R). Assuming a uniform energydistribution in (�; �)-spa
e, leads to a more pra
ti
al boundm2J <� pJ 2T R2=2.

VI. MONTE CARLO COMPARISONSIn this se
tion we study various aspe
ts of the jet massspe
trum in Pythia. Although formally the perturba-tive a

ura
y of Pythia is signi�
antly lower than thatof our NNLL 
al
ulation, it is also well known that aftersuÆ
ient tuning Pythia is able to reprodu
e the shape ofmany jet observables. Here we are parti
ularly interestedin testing the impa
t on the jet mass spe
trum from usingdi�erent hard pro
esses, using di�erent jet algorithms,and from adding hadronization and underlying event (thelatter being des
ribed by Pythia's multi-parton intera
-tion model). We also perform a 
omparison between our
al
ulation and Pythia for the same geometri
 R = 1N -jettiness jets used in our analysis. Finally we 
ompareour ex
lusive 1-jet mJ 
al
ulation with the in
lusive jetmass spe
trum measured in pp! jets by ATLAS. We al-ways use Pythia8 with its default tune 5 (\Tune 4C"),whi
h as we will see provides a good des
ription of theATLAS jet mass data.A. Hard Pro
ess and Jet Algorithm Dependen
e inPYTHIAWe start by investigating to what extent the jet massspe
trum depends on the underlying hard pro
ess inPythia. In Fig. 11 we show the spe
trum for a gluonjet from gg ! gg (solid) and from gg ! Hg (dotted),demonstrating that in Pythia there is essentially negligi-ble pro
ess dependen
e for individual partoni
 
hannels.This is true both at the partoni
 level (blue 
urves withpeak on the left) and after in
luding hadronization andmultiple intera
tions (red 
urves with peak on the right).In reality one expe
ts some di�eren
es from the hard pro-
ess due to the additional soft radiation produ
ed withmore available 
olored parti
les, and from the di�erent
olor 
ow, where in parti
ular gg ! gg involves a matrixof 
olor 
hannels with nontrivial interferen
e. These ef-fe
ts may not be suÆ
iently des
ribed by Pythia so oneshould not 
on
lude that the hard pro
ess dependen
e onthe jet mass spe
trum is as small as is shown.Next, we look at the di�eren
e in Pythia betweenthe jet mass for ex
lusive and in
lusive jet produ
tion.We use the pro
ess gg ! Hg, imposing the jet veto
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FIG. 11: The gluon jet mass spe
trum in Pythia does not de-pend on the underlying hard pro
ess produ
ing the jets. Thisis true both for partons (left peaks) and with hadronizationand underlying event (right peaks).
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FIG. 12: Comparison of the normalized jet mass spe
tra forex
lusive and in
lusive jet samples in Pythia.T 
ut = 10; 25 GeV to obtain two ex
lusive samples, andusing no jet veto for our in
lusive sample. The resultingnormalized jet mass spe
tra are shown in Fig. 12. Thedi�eren
e between T 
ut = 25 GeV (our default value)and the in
lusive 
ase is small, allowing our 
al
ulationto be 
ompared to in
lusive spe
tra. The di�eren
e isslightly larger for T 
ut = 10 GeV and in
reases signi�-
antly for smaller values of T 
ut. However, we will not
onsider su
h strong jet vetos, as they lead to large NGLs(see Se
. IVC).In Fig. 13 we 
ompare the jet mass spe
trum fromPythia for di�erent jet algorithms, spe
i�
ally our 1-jettiness R = 1-algorithm, Cambridge-Aa
hen with R =1, and anti-kT with R = 1 and R = 1:2 [77℄. To stay
lose to a 
al
ulation for a single phase spa
e point, werestri
t the jet to a narrow pT and rapidity bin, and im-pose a veto using T 
ut = 25 GeV. The di�eren
es be-tween the R = 1 
urves are within the size of the un
er-tainty band from our NNLL 
al
ulation in the same phasespa
e bin. This result agrees with the small di�eren
esobserved in ea
h of the panels of Fig. 9 from 
omparing
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FIG. 13: Comparison of the anti-kT , CA, and geometri
 Rjet algorithms in Pythia.di�erent jet measures for 1-jettiness jets. The di�eren
ebetween R = 1 and R = 1:2 for anti-kT is larger thanthat observed in our 
al
ulation using geometri
 R jetsin Fig. 10. In Pythia the di�eren
e between R = 1and R = 1:2 be
omes smaller when T 
ut is de
reased,sin
e with a stronger jet veto less additional radiation ispresent that would be absorbed by larger jets. To be spe-
i�
, the 15% di�eren
e in the peak heights for anti-kTwith R = 1 and R = 1:2 for T 
ut = 25 GeV redu
es to 7%for T 
ut = 5 GeV. From these results we 
on
lude thatin our NNLL 
al
ulation, the R dependen
e of the non-singular terms that are not in
luded in our analysis maywell be numeri
ally 
omparable or larger in size than theformally leading R dependen
e that we have 
omputed.B. Comparison of NNLL with PYTHIAA 
omparison between our NNLL 
al
ulation and par-toni
 Pythia results for gg ! Hg are shown in Fig. 14,both using the geometri
 R = 1 jet de�nition. The peakpositions in both 
ases agree very well. To ensure thatthis is not an a

ident and that the peak position inPythia does not depend on the PDF set used by our de-fault tune, we 
he
ked that an alternative tune (number10, whi
h is based on our default Pythia tune but usesMSTW2008 LO PDFs) only shifts the peak by a smallamount, similar to the small di�eren
e in peak positionsbetween Pythia and our NNLL 
al
ulation. However, asseen in Fig. 14, the NNLL 
al
ulation has a lower peakand a 
orrespondingly higher tail. Sin
e the spe
trum isnormalized these two e�e
ts are related, namely highervalues in the tail must be 
ompensated by a lower peak.There are several possibilities that may a

ount for thisdi�eren
e. Due to the stability of our order-by-order re-sults in Fig. 4(
) it is unlikely to be related to the lowerorder a

ura
y of Pythia's LL parton shower resumma-tion. Most likely the di�eren
es are related to the fa
tthat we have not yet in
luded nonsingular 
ontributionsto the spe
trum whi
h are important in the tail region,
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FIG. 14: Comparison between our NNLL 
al
ulation and par-toni
 Pythia for the gg ! Hg 
hannel. Both results usegeometri
 R = 1 jets and the same kinemati
 
uts.in parti
ular for the spe
trum to fall o� rapidly enough.Due to the fa
t that the results are normalized, this mis-mat
h in the tail then also leads to a disagreement of thepeak heights. Thus we expe
t that the in
lusion of thenonsingular 
ontributions will redu
e this di�eren
e.C. Hadronization in PYTHIAWe now explore the e�e
t of hadronization on the jetmass spe
trum using Pythia. In the fa
torization for-mula the hadronization is en
oded through nonperturba-tive 
orre
tions in the soft fun
tion S at a s
ale � �QCD,whi
h must be separated from perturbative 
orre
tionsat the soft s
ale �S � m2J=pJT . For e+e�! 2 jets thereis an analyti
 understanding of the analogous nonpertur-bative 
orre
tions originating in Refs. [78{81℄ as well asa modern understanding in terms of �eld theory opera-tors [19, 82{84℄. For these pro
esses, as soon as the rel-evant soft s
ale �S is perturbative, the nonperturbative
orre
tions 
an be power expanded in �QCD=�S , and thedominant power 
orre
tion simply shifts the event shapedistribution, e ! e � 
e=Q. In the 
ase at hand, thenonperturbative soft fun
tion is built from more thantwo Wilson lines, so the des
ription of the power 
or-re
tions be
omes more 
ompli
ated. Nevertheless, fora given kinemati
 
on�guration we still expe
t that thedominant e�e
t will be des
ribed by a shift involving aparameter 
 � �QCD. For a jet mass m2J ' p+J p�J thisshift o

urs due to nonperturbative soft radiation 
aus-ing a shift in the small momentum p+J , so it takes theform m2J ! m2J � 2
 pJT R : (35)The fa
tor of R a

ounts for the fa
t that there is a de-
reased amount of soft momentum 
ontamination in thejet for de
reasing R [85℄. It is straightforward to testwhether this shift agrees with the hadronization model
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FIG. 15: The nonperturbative hadronization 
orre
tion inPythia is well des
ribed by a shift in m2J .in Pythia, by 
omparing the results with and withouthadronization. As demonstrated in Fig. 15, a shift withthe 
hoi
e 
 = 0:8 GeV works very well, in reasonableagreement with the 
 = 1:0 GeV found earlier in Ref. [14℄for the in
lusive � 1 jet 
ross se
tion.D. Underlying Event and ATLAS DataIn Pythia the e�e
t of the underlying event is mod-eled by multiple partoni
 intera
tions, and its e�e
t onthe jet mass spe
trum is more pronoun
ed than thatof hadronization. This is shown in Fig. 16 where weplot the jet mass spe
trum for in
lusive pp ! jets fromPythia at parton level, in
luding hadronization, and in-
luding hadronization and multiple intera
tions. Alsoshown are the 
orresponding ATLAS data from Ref. [26℄,where the un
ertainty bars are from linearly 
ombiningthe statisti
al and systemati
 un
ertainties. This 
han-nel is dominated by the 
opious pp ! dijet produ
tionat the LHC. We use the same inputs and 
uts as AT-LAS, namely E
m = 7TeV, anti-kT jets with R = 1,j�J j � 2, and 
onsider both 300GeV � pJT � 400GeVand 500GeV � pJT � 600GeV. The shift to the peak lo-
ation from hadronization is of similar magnitude as thatfor gg ! Hg in Fig. 15, namely ' 3:0GeV for gg ! Hg
ompared to ' 8:0GeV for the 300GeV � pJT � 400GeVin
lusive jets whi
h have a slightly larger average pJT .For the in
lusive pp ! jets in Pythia the additionalshift to the peak lo
ation from the underlying event is' 17:4GeV. The �nal Pythia results agree well withthe ATLAS data for both pJT bins. In a NNLL 
al
ula-tion the e�e
t of hadronization and part of the e�e
t ofthe underlying event will be 
aptured by 
orre
tions tothe soft fun
tion, but it is not 
lear if hadroni
 
orre
-tions in the multi-jet soft fun
tion will fully 
apture thee�e
t of the underlying event.Given that Pythia agrees well with the ATLAS in
lu-sive dijet spe
trum, one might wonder what the purposeof a higher-order NNLL dijet 
al
ulation would be. An
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FIG. 16: Comparison of the Pythia jet mass spe
trum for in
lusive pp ! jets to the 
orresponding ATLAS data [26℄.Pythia results are shown at parton level (dotted), in
luding hadronization (dashed), and in
luding hadronization and multipleintera
tions (solid). The �nal Pythia results reprodu
e the data well.
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FIG. 17: Comparison of our ex
lusive NNLL 
al
ulation with ATLAS in
lusive jet mass data [26℄. The peak position of ourgluon jets from gg ! Hg agrees remarkably well with the in
lusive dijet data. For the ATLAS date there is presumably ashift to lower values due to quark jets whi
h is 
ompensated by a shift to higher values due to hadronization and multipleintera
tions.advantage of our 
al
ulational framework over Pythia isthat it follows from �rst prin
iples and does not involvethe modeling and tuning present in Pythia. Spe
i�
ally,the input to our 
al
ulation is limited to �s(mZ), the par-ton distributions fun
tions, and simple soft fun
tion pa-rameters like 
 for the hadroni
 e�e
ts. Furthermore, wehave a rigorous estimate of the higher-order perturbativeun
ertainty from s
ale variation, as well as from order-by-order 
onvergen
e, whi
h enable us to fully asses thereliability of the result. Finally, it should be emphasizedthat our 
al
ulation is fully analyti
 (up to the numer-i
al 
onvolution with the PDFs) and hen
e provides ananalyti
 QCD 
al
ulation of an LHC spe
trum for jets.To the extent that the normalized jet mass spe
trum isindependent of the hard pro
ess and independent of usingan in
lusive or ex
lusive jet sample, whi
h Pythia seemsto suggest in Figs. 11 and 12, a 
omparison between jetmass spe
tra involving di�erent hard pro
esses and withand without jet veto 
uts is appropriate. The approx-

imate hard pro
ess independen
e only holds separatelyfor gluon or quark jets, whi
h themselves have fairly dif-ferent jet mass spe
tra, see Fig. 4(b). Therefore whenvarying the hard pro
ess we expe
t the dominant 
hangein the jet mass spe
trum to be related to the pro
essdependent fra
tion of quark and gluon jets produ
ed.In Fig. 17 we 
ompare our NNLL result for pp! H+1jet and for gg ! Hg to the ATLAS data for pp ! jets.Re
all that the peak lo
ation of the NNLLH+1 jet 
al
u-lation mat
hes well with that from Pythia, see Fig. 14.Be
ause of the signi�
ant 
ontribution from quark jetsthe H +1 jet spe
trum peaks to the left of the spe
trumfrom dijets. On the other hand, the peak lo
ation withpure gluon jets (gg ! Hg) agrees remarkably well withthe data on dijets. From the results already obtainedabove, we expe
t only small di�eren
es (
omparable tothe ATLAS error bars) for e�e
ts related to the 
hoi
eof the jet algorithm, the 
hoi
e of in
lusive versus ex
lu-sive jets, or the 
hoi
e of looking at gluon jets in dijets



20or in Higgs produ
tion. On the other hand there will bea more signi�
ant shift of the spe
trum to the left fromquark 
hannels in the dijet produ
tion, and a shift to theright from adding hadronization and underlying event,neither of whi
h is in
luded in the solid red 
urve. Theagreement between peak lo
ations seems to indi
ate thatthese two e�e
ts largely 
ompensate for one another. Fi-nally, there will be an e�e
t related to the fa
t that thereare nontrivial 
olor 
orrelations in gg ! gg whi
h arenot present in gg ! Hg (these e�e
ts are not apparentin Pythia, see Fig. 11).One may also look at the peak heights in Fig. 17, forwhi
h the agreement is not as good. As des
ribed earlier,this e�e
t is related to the fa
t that we have not yetin
luded nonsingular 
orre
tions. These 
orre
tions areknown to de
rease the tail to enable it to rapidly fall o�by m2J � pJ 2T R2=2, and they also a�e
t the peak dire
tlythrough the normalization. Sin
e with additional workthese 
an be in
luded in future results the di�eren
e inpeak heights is not of too mu
h 
on
ern.Finally one may also 
ompare the results in Figs. 16and 17 for the 300GeV � pJT � 400GeV and 500GeV �pJT � 600GeV bins. For dijets the peak lo
ation movesto higher mJ with in
reased pJT , unlike for pp ! H + 1jet, again indi
ating that gluon jets likely dominate. The
on
lusions from the 
omparison with Pythia and the
ontrast to our NNLL 
al
ulation remains the same forthese two ranges of pJT .VII. CONCLUSIONSIn this paper we 
al
ulated the jet mass spe
trum forpp ! H + 1 jet to NNLL order. For this ex
lusive 1-jet
ross se
tion we veto additional jets with the 1-jettinessevent shape, and used the 1-jettiness fa
torization for-mula in terms of hard, beam, jet, and soft fun
tions toobtain our results. For the normalized jet mass spe
-trum the remaining higher-order perturbative un
ertain-ties from s
ale variation are at the ' 5 � 10% level atNNLL order, and in addition our results exhibit ex
el-lent order-by-order 
onvergen
e.The normalized NNLL spe
trum is quite insensitive tothe jet veto over a wide range of values, even when a
-
ounting for non-global logarithms. Thus in our frame-work non-global logarithms 
an be a

urately treated as�xed-order 
ontributions to the soft fun
tion, upon whi
hadditional global logarithms are automati
ally resummedin the fa
torization framework. An essential ingredient inthe resummation of the global logarithms was the refa
-torization of the soft fun
tion, whi
h we demonstrate isrequired to avoid introdu
ing spurious leading logarithmsin 
ertain regions of phase spa
e. Our treatment of theNNLL ex
lusive 
ross se
tion with a jet veto has signif-i
antly smaller non-global logarithmi
 terms when 
om-pared to the size of these terms observed in the earlierin
lusive NLL analysis in Ref. [10℄, and the earlier in
lu-sive partial NNLL analysis in Ref. [31℄. Finally, we note

that in Pythia the in
lusive jet mass spe
trum and theex
lusive jet mass spe
trum with our default jet veto areessentially identi
al.Utilizing our 
al
ulation we investigated the depen-den
e of the jet mass spe
trum on various parametersof the ex
lusive jet 
ross se
tion. Part of the power ofour framework is that the fa
torization formula is fullydi�erential in the jet kinemati
s (pJT , �J , and Y ), allow-ing us to vary the de�nition of the jets and the jet area,and 
an be easily separated into quark jet and gluon jet
hannels. As expe
ted we �nd that the spe
trum peaksat largermJ values for gluon jets than for quark jets. Fora given partoni
 
hannel the fa
torization framework pre-di
ts little sensitivity to the underlying hard pro
ess, andthis result is also found to be the 
ase in Pythia. Themain pro
ess dependen
e is therefore the relative mix ofquark and gluon jets. The peak of our NNLL mJ spe
-trum moves to the right for larger pJT and for larger j�J j,but more so for the individual partoni
 
hannels than forpp ! H+1 jet, where the 
hange to the mix of quarksand gluons provides a 
ompensating e�e
t. The 
ompletedes
ription of the various kinemati
 variables also makesit trivial to implement rapidity 
uts. For a bin j�J j < 2and a not too large bin in pJT , we �nd that the integratedNNLL result is very 
onsistent with the NNLL result for�xed kinemati
 variables taken at the 
enter of the bin.Varying the jet de�nition with �xed jet area leads tovery little 
hange in the jet mass spe
trum, both for var-ious jet de�nitions in our NNLL result and for anti-kT ,CA, and geometri
-R jets in Pythia. This suggests thatthere are only small di�eren
es between the spe
trumfor 1-jettiness jets and traditional jet algorithms. On theother hand, Pythia exhibits a larger dependen
e on thejet radius R than our NNLL results. This is presumablydue to the fa
t that we have not in
luded nonsingularterms in our analysis. These terms be
ome important inthe tail region and are also needed to ensure that the jetmass spe
trum dies o� at mmaxJ � pJTR=p2. This leadsto a larger tail in our NNLL spe
trum than in Pythia,and 
orrespondingly a smaller peak height in the nor-malized NNLL result. On the other hand, the peak lo-
ation agrees very well between our NNLL 
al
ulationand Pythia. An analysis of these additional nonsingu-lar terms will be 
arried out in the future.We investigated the dependen
e of the jet massspe
trum on hadronization and underlying event usingPythia. Hadronization is very well des
ribed by ashift to the mass spe
trum, m2J ! m2J � (2RpJT )
 with
 � �QCD, whi
h is the anti
ipated result from non-perturbative soft gluon 
ontributions in our fa
torizationformula's soft fun
tion. In Pythia the underlying eventis modeled by multiple partoni
 intera
tions and leadsto a somewhat larger shift to the spe
trum than forhadronization. It plays an important role in obtainingagreement with the ATLAS jet mass results for in
lusivedijets. Comparing our results to ATLAS we �nd thatthe NNLL pp ! H+1 jet spe
trum peaks to the left ofthe dijet data, whereas the NNLL gg ! Hg spe
trum



21peaks in the same lo
ation. The 
omparison made so farwith the ATLAS data is promising. The extension of ourNNLL 
al
ulation to pp ! dijets is 
ompletely feasibleusing 2-jettiness, and it will be interesting to see to whatextent the 
ontributions from quark 
hannels, 
olor mix-ing, and hadronization and underlying event will a�e
tthis 
omparison with the data. Theoreti
ally, the only re-maining 
hallenge to a 
omplete 
omparison appears tobe in
orporating the e�e
t of the underlying event from�rst prin
iples rather than relying on its modeling viaMonte Carlo. A
knowledgmentsThis work was supported in part by the OÆ
e of Nu-
lear Physi
s of the U.S. Department of Energy underGrants No. DE-FG02-94ER40818 and No. DE-FG02-90ER40546, and by the DFG Emmy-Noether grant TA867/1-1. T.J. was also supported by a LHC-TI grantunder the NSF grant PHY-0705682.

Appendix A: Perturbative InputsIn this se
tion we 
olle
t the �xed-order ingredientsand evolution kernels for evaluating the jet mass 
rossse
tion for pp! H + 1j in Eqs. (17) and (28) at NNLLorder. We �rst give expressions for the hard, jet, beamand soft fun
tions at next-to-leading order. This is fol-lowed by the evolution kernels and the 
oeÆ
ients thatthey depend on.
1. Hard Fun
tionThe hard fun
tions H� for the various partoni
 
han-nels � that 
ontribute to pp! H+1 jet 
an be obtainedfrom the �nite part of the heli
ity amplitudes A deter-mined in Ref. [56℄,Hggg(fq�i g; �H) = 16�s(�H)3C2ACF9�v2 1[2(N2
 � 1)℄2 hjA(1+g ; 2+g ; 3+g ; 4H)j2 + jA(1+g ; 2+g ; 3�g ; 4H)j2+ jA(1+g ; 3+g ; 2�g ; 4H)j2 + jA(3+g ; 2+g ; 1�g ; 4H)j2i ;Hg�q�q(fq�i g; �H) = 8�s(�H )3CACF9�v2 12N
 12(N2
 � 1)hjA(1+g ; 2+q ; 3��q ; 4H)j2 + jA(1�g ; 2+q ; 3��q ; 4H)j2i ;H�qg�q(fq�i g; �H) = 8�s(�H )3CACF9�v2 12N
 12(N2
 � 1)hjA(2+g ; 1+q ; 3��q ; 4H)j2 + jA(2�g ; 1+q ; 3��q ; 4H)j2i ;Hq�qg(fq�i g; �H) = 8�s(�H )3CACF9�v2 1(2N
)2 hjA(3+g ; 2+q ; 1��q ; 4H)j2 + jA(3�g ; 2+q ; 1��q ; 4H)j2i ;Hgqq(fq�i g; �H) = Hg�q�q(fq�i g; �H) ; Hqgq(fq�i g; �H) = H�qg�q(fq�i g; �H) ;H�qqg(fq�i g; �H) = Hq�qg(fq�i g; �H) : (A1)The fa
tors of 1=(2N
) and 1=[2(N2
 � 1)℄ arise from averaging over the spins and 
olors of the 
olliding quarks andgluons. The arguments of a heli
ity amplitude A have the form iht , where i denotes the momentum q�i , t denotesthe parton type, and h denotes the heli
ity of this parti
le. Only in the heli
ity amplitudes will we use an outgoing
onvention for all these quantities, to make 
rossing symmetry dire
t. This implies that if we want to 
onvert to the
onvention used in the main text, then the sij 's in the heli
ity amplitudes below will pi
k up additional minus signsif one of the parti
les i and j is in and the other is out. The amplitudes that enter in Eq. (A1) are given byA(1+g ; 2+g ; 3+g ; 4H) = m4Hp2js12s13s23j�1+�s(�H)4� hf(s12; s13; s23;m2H ; �H)+ 13(CA�2TFnf ) s12s13+s12s23+s13s23m4H i� ;A(1+g ; 2+g ; 3�g ; 4H) = s212p2js12s13s23j�1 + �s(�H )4� hf(s12; s13; s23;m2H ; �H) + 13(CA � 2TFnf ) s13s23s212 i� ;A(1+g ; 2+q ; 3��q ; 4H) = s12p2js23j�1 + �s(�H)4� hg(s12; s13; s23;m2H ; �H) + (CF � CA) s23s12 i� ;A(1�g ; 2+q ; 3��q ; 4H) = s13p2js23j�1 + �s(�H)4� hg(s12; s13; s23;m2H ; �H) + (CF � CA) s23s13 i� ;f(s12; s13; s23;m2H ; �H) = �CA�12(L212 + L213 + L223) + L12=HL13=H + L12=HL23=H + L13=HL23=H



22+ 2Li2�1� s12m2H �+ 2Li2�1� s13m2H �+ 2Li2�1� s23m2H �� 5� 3�24 �� 3CF ;g(s12; s13; s23;m2H ; �H) = CA��12(L212 + L213 � L223) + L12=HL13=H � (L12=H + L13=H)L23=H � 2Li2�1� s23m2H �+ 223 + �24 �+ CF ��L223 + 3L23 � 2L12=HL13=H � 2Li2�1� s12m2H �� 2Li2�1� s13m2H �� 11 + �22 �+ �0��L23 + 53� : (A2)Here we use the shorthand notationLij = ln�� sij�2H � i0� ;Lij=H = ln�� sij�2H � i0�� ln��m2H�2H � i0� : (A3)2. Jet Fun
tionsThe one-loop jet fun
tions are given by [58{60℄Jq(s; �J) = Æ(s) + �s(�J)CF2� h 2�2J L1� s�2J �� 32�2J L0� s�2J �� ��22 � 72�Æ(s)i ;Jg(s; �J) = Æ(s) + �s(�J)2� n2CA�2J L1� s�2J �� �02�2J L0� s�2J �+ h�23 � �22 �CA + 56�0iÆ(s)o ; (A4)where the plus distributions Ln are de�ned asLn(x) � ��(x) lnn xx �+

= lim�!0��(x � �) lnn xx + Æ(x � �) lnn+1�n+ 1 � :(A5)The Ln(x) integrate to zero if the range in x is [0; 1℄.3. Beam Fun
tionsThe beam fun
tions 
an be expressed in terms of stan-dard gluon and quark PDFs using an operator produ
texpansion [61, 86℄,Bi(t; x; �B) = Xj=fg;q;�qgZ 1x d�� Iij�t; x� ; �B�fj(�; �B)� �1 +O��2QCDt �� : (A6)The one-loop mat
hing 
oeÆ
ients are [62, 64℄ areIqq(t; z; �B) = Æ(t) Æ(1� z) + �s(�B)CF2� �(z)� 2�2B L1� t�2B �Æ(1� z) + 1�2BL0� t�2B �Pqq(z)+ Æ(t)�L1(1� z)(1 + z2)� Pqq(z) ln z � �26 Æ(1� z) + �(1� z)(1� z)�� ;Iqg(t; z; �B) = �s(�B)TF2� �(z)� 1�2BL0� t�2B �Pqg(z) + Æ(t)�Pqg(z)�ln 1� zz � 1�+ �(1� z)��Igg(t; z; �B) = Æ(t) Æ(1� z) + �s(�B)CA2� �(z)� 2�2BL1� t�2B �Æ(1� z) + 1�2BL0� t�2B �Pgg(z)+ Æ(t) hL1(1� z)2(1� z + z2)2z � Pgg(z) ln z � �26 Æ(1� z)i� ;Igq(t; z; �B) = �s(�B)CF2� �(z)� 1�2BL0� t�2B �Pgq(z) + Æ(t) hPgq(z) ln 1� zz + �(1� z)zi� : (A7)The splitting fun
tions in this equation are de�ned asPqq(z) = L0(1� z)(1 + z2) ; Pqg(z) = �(1� z)�(1� z)2 + z2� ;



23Pgg(z) = 2L0(1� z)z + 2�(1� z)h1� zz + z(1� z)i ;Pgq(z) = �(1� z) 1 + (1� z)2z : (A8)4. Fa
torized Soft Fun
tionWe now give expressions for the N -jettiness soft fun
-tion, showing expli
itly how the fa
torization in Eq. (24)is implemented. We remind the reader that their is some
freedom in this refa
torization, and that the 
orrespond-ing un
ertainty is probed by varying the parameter r inEq. (31).Up to NLO the 1-jettiness soft fun
tion is given byS�(fkig; f�Sig) = Yi=a;b;J Si(ki; fq̂�i g; �Si) +O(�2s) :(A9)From the NLO 
al
ulation in Ref. [47℄ we obtain

Si(ki; fq̂�i g; �Si) = 1 Æ(ki) + �s(�Si)� Xj 6=i �Ti �Tjh 2pŝij �Si L1� kipŝij �Si �� �224 Æ(ki)i (A10)+ Xm 6=i;j �nTi �Tj I0� ŝjmŝij ; ŝimŝij ��Tm �Tj I0� ŝijŝmj ; ŝimŝmj �o 1�L0� ki�Si �+ 16nTi �TjhI0� ŝjmŝij ; ŝimŝij � ln ŝjmŝij + I1� ŝjmŝij ; ŝimŝij �i+ 5 permutations of (i; j; k)oÆ(ki)�� :Here the two integrals areI0(�; �) = 1� Z ���d� Z dyy ��y �p�=�� ��1=�� 1� y2 + 2y 
os�� ;I1(�; �) = 1� Z ���d� Z dyy ln(1 + y2 � 2y 
os�� ��y �p�=�� ��1=�� 1� y2 + 2y 
os�� ; (A11)andgg ! Hg : T2a = T2b = T2J = CA ;Ta �Tb = Ta �TJ = Tb �TJ = �CA2 ;gq ! Hq : T2a = CA ; T2b = T2J = CF ;Ta �Tb = Ta �TJ = �CA2 ;Tb �TJ = CA2 � CF : (A12)5. Evolution Fa
torsFollowing the dis
ussion in Se
. III B, we give expres-sions for the fa
torized evolution of the hard fun
tion,H�(fq�j g; f�ig) = H�(fq�i g; �H) Yi=a;b;JUH�i(fq�j g; �H ; �i) ;UH�i (fq�j g; �H ; �i) = ����eKiH Yj 6=i��sij � i0�2H �Ti�Tj�H ���� ;KiH(�H ; �i) = �2K��i (�H ; �i) +K
�iH (�H ; �i) ;�H(�H ; �i) = ���q (�H ; �i)CF = ���g (�H ; �i)CA : (A13)

Here the produ
ts over i and j run over all 
olored par-ti
les, with 
orresponding 
avor �i and �j . For ea
h
hannel 
ontributing to pp ! H + 1j there is onlyone 
olor stru
ture so Ti � Tj is simply a number [seeEq. (A12)℄. The fun
tions K�, �� and K
 are given be-low in Eq. (A16).The solution of the RG evolution of the jet fun
tion isgiven by [37, 73, 87, 88℄J�i(s; �) = Z ds0 J�i(s� s0; �J )UJ�i (s0; �J ; �) ;UJ�i (s; �J ; �) = eKiJ�
E �iJ�(1 + �iJ ) � �iJ�2J L�iJ� s�2J �+ Æ(s)� ;KiJ(�J ; �) = 4K��i (�J ; �) +K
�iJ (�J ; �) ;�iJ(�J ; �) = �2���i (�J ; �) : (A14)The plus distribution L� is de�ned asL�(x) � � �(x)x1�� �+= lim�!0��(x � �)x1�� + Æ(x� �) x� � 1� � : (A15)General relations for the res
aling and 
onvolutions ofLn(x) in Eq. (A5) and L�(x) 
an be found in App. B



24of Ref. [73℄. The renormalization group evolution of thebeam fun
tions is identi
al [62℄ and 
an be obtained fromthe above expressions by repla
ing Ji(s; �)! Bi(t; x; �).We do not give the evolution of the soft fun
tion, as itis not needed for evaluating Eq. (28). It 
an be obtained from the evolution of the hard fun
tion and beam fun
-tion by using the �-independen
e of the 
ross se
tion.The fun
tions K�(�0; �), ��(�0; �), K
(�0; �) in theabove RGE solutions at NNLL are given by,
K�(�0; �) = � �04�20 � 4��s(�0) �1� 1r � ln r�+��1�0 � �1�0�(1� r + ln r) + �12�0 ln2 r+ �s(�0)4� ���21�20 � �2�0��1� r22 + ln r�+��1�1�0�0 � �21�20 �(1� r + r ln r)���2�0 � �1�1�0�0� (1� r)22 �� ;��(�0; �) = � �02�0 �ln r + �s(�0)4� ��1�0 � �1�0�(r � 1) + �2s(�0)16�2 ��2�0 � �1�1�0�0 + �21�20 � �2�0�r2 � 12 � ;K
(�0; �) = � 
02�0 �ln r + �s(�0)4� �
1
0 � �1�0�(r � 1)� : (A16)Here, r = �s(�)=�s(�0) and the running 
oupling at thes
ale � is given in terms of that at the referen
e s
ale �0by the three-loop expression1�s(�) = X�s(�0) + �14��0 lnX + �s(�0)16�2 ��2�0�1� 1X �+ �21�20 � lnXX + 1X � 1�� ; (A17)where X � 1 + �s(�0)�0 ln(�=�0)=(2�).6. RGE CoeÆ
ientsUp to three loops, the 
oeÆ
ients of the beta fun
-tion [89, 90℄ and 
usp anomalous dimension [65, 66℄ inMS are�0 = 113 CA � 43 TF nf ; (A18)�1 = 343 C2A � �203 CA + 4CF�TF nf ;�2 = 285754 C3A + �C2F � 20518 CFCA � 141554 C2A� 2TF nf+ �119 CF + 7954 CA� 4T 2F n2f ;�q0 = 4CF ;�q1 = 4CF h�679 � �23 �CA � 209 TF nfi ;�q2 = 4CF h�2456 � 134�227 + 11�445 + 22�33 �C2A+ ��41827 + 40�227 � 56�33 �CA TF nf+ ��553 + 16�3�CF TF nf � 1627 T 2F n2fi ;�gn = CACF �qn for n � 2 :

Up to two loops, the MS non-
usp anomalous dimen-sion for the hard fun
tion [91, 92℄ and jet and beam fun
-tions [60, 62, 64, 70℄ are
qH 0 = �6CF ; (A19)
qH 1 = �CF h�829 � 52�3�CA + (3� 4�2 + 48�3)CF+ �659 + �2��0i ;
gH 0 = �2�0 ;
gH 1 = �� 1189 + 4�3�C2A + �� 389 + �23 �CA �0 � 2�1 ;
qJ 0 = 6CF ;
qJ 1 = CF h�1469 � 80�3�CA + (3� 4�2 + 48�3)CF+ �1219 + 2�23 ��0i ;
gJ 0 = 2�0 ;
gJ 1 = �1829 � 32�3�C2A + �949 � 2�23 �CA �0 + 2�1 :Appendix B: Running S
alesWe now present the remaining ingredients that enterin the running s
ales in Se
. III C. First of all, �run isde�ned as�run(�; �) = 8>>><>>>:�0 + a�2=�1 � � �1 ;2a � + b �1 � � � �2 ;�� a(� � �3)2=(�3 � �2) �2 � � � �3 ;� � > �3 ;a = �0 � ��1 � �2 � �3 ; b = ��1 � �0(�2 + �3)�1 � �2 � �3 : (B1)



25The expressions for a and b follow from demanding that�run(�) is 
ontinuous and has a 
ontinuous derivative.For our 
entral s
ale 
hoi
e we use� = Q ; ei = eSi = 0 ; �0 = 2GeV ;�1 = 5GeVQ ; �2 = 0:4 ; �3 = 0:6 ; r = 0:2 : (B2)To estimate the perturbative un
ertainty we vary theabove parameters within reasonable ranges. Sin
e the
ross se
tion is most sensitive to �, ei, eSi and r, werestri
t ourselves to the following separate variations,a) � = 2�1Q ; eJ = eB = eSJ = eSB = 0 ; r = 0:2 ;
b) � = Q ; eJ = �0:5 ; eB = eSJ = eSB = 0 ; r = 0:2 ;
) � = Q ; eB = �0:5 ; eJ = eSJ = eSB = 0 ; r = 0:2 ;d) � = Q ; eSJ = �0:5 ; eJ = eB = eSB = 0 ; r = 0:2 ;e) � = Q ; eSB = �0:5 ; eJ = eB = eSJ = 0 ; r = 0:2 ;f) � = Q ; eJ = eB = eSJ = eSB = 0 ; r = 0:2� 0:2 :(B3)Following our dis
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