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MIT{CTP 4427DESY 12-222Jet Mass Spetra in Higgs + One Jet at NNLLTeppo T. Jouttenus,1 Iain W. Stewart,1 Frank J. Takmann,2 and Wouter J. Waalewijn31Center for Theoretial Physis, Massahusetts Institute of Tehnology, Cambridge, MA 02139, USA2Theory Group, Deutshes Elektronen-Synhrotron (DESY), D-22607 Hamburg, Germany3Department of Physis, University of California at San Diego, La Jolla, CA 92093, USAThe invariant mass of a jet is a benhmark variable desribing the struture of jets at the LHC.We alulate the jet mass spetrum for Higgs plus one jet at the LHC at next-to-next-to-leadinglogarithmi (NNLL) order using a fatorization formula. At this order, the ross setion beomessensitive to perturbation theory at the soft m2jet=pjetT sale. Our alulation is exlusive and uses the1-jettiness global event shape to implement a veto on additional jets. The dominant dependene onthe jet veto is removed by normalizing the spetrum, leaving residual dependene from non-globallogarithms depending on the ratio of the jet mass and jet veto variables. For our exlusive jet rosssetion these non-global logarithms are parametrially smaller than in the inlusive ase, allowingus to obtain a omplete NNLL result. Results for the dependene of the jet mass spetrum on thekinematis, jet algorithm, and jet size R are given. Using individual partoni hannels we illustratethe di�erene between the jet mass spetra for quark and gluon jets. We also study the e�etof hadronization and underlying event on the jet mass in Pythia. To highlight the similarity ofinlusive and exlusive jet mass spetra, a omparison to LHC data is presented.I. INTRODUCTIONThere has been a rapidly expanding theoretial andexperimental e�ort on tehniques that exploit the sub-struture of jets (for a reent review see Ref. [1℄). Jetsubstruture is of interest both for testing QCD and foridentifying new physis. Muh of the exitement in this�eld has been driven by the exellent performane of theATLAS and CMS detetors, and the sophistiated jetmeasurements this has made possible at the LHC. Jetsubstruture measurements an for example be used totag boosted heavy partiles, whose deay produts getollimated into a fat jet, or to test and tune Monte Carloprograms. Most theoretial work has foused on design-ing these tehniques and observables with the help ofMonte Carlo programs. At the same time, one wouldalso like to know that these methods are under theoreti-al ontrol and build on�dene that higher-order e�etsare not signi�ant. (For some reent progress in this di-retion see e.g. Refs. [2{7℄.)As our underlying hard proess we onsider pp! H+1jet with gluon fusion gg ! H as the underlying Higgsprodution mehanism. This proess is onvenient as itprovides a lean setup with a single quark or gluon jetin the �nal state via the three basi partoni hannelsgg ! Hg, gq ! Hq, and q�q ! Hg. Of ourse, it is alsoimportant in its own right for Higgs measurements at theLHC, whih rely on exlusive jet hannels.Here we fous on one of the simplest jet substrutures:the invariant mass of a jet. A suessful alulation ofthis benhmark observable will instill on�dene in ourability to arry out analogous alulations for other moreompliated jet substruture observables. Suh analysesrequire inorporating both a resummation of large loga-rithms �is lnj(m2J=pJ 2T ) where mJ is the jet mass and pJTis the transverse momentum of the jet, as well as �xed-order perturbative orretions. This is made intriate by

the dependene on multiple variables. There has been alot of reent work on the alulation (resummation) ofthe jet invariant mass spetrum for jets with a realistiangular size [2, 8{15℄ whih we will review in more detailbelow. Some of the key theoretial issues that must beaddressed for the LHC ase inlude:� Impat of summing large logarithms, ln(m2J=pJ 2T )� Soft radiation e�ets at the sale m2J=pJT� Impat of initial-state radiation� Color ow and hard proess dependene� Dependene on kinematis inluding rapidity uts� Jet algorithm and dependene on jet size R� Inlusive (� N jets) vs. exlusive (= N jets)� Impat of non-global logarithms (NGLs)� E�et of hadronization on the spetrum� E�et of underlying event on the spetrum� E�et of pile-up on the spetrum� Utility of using groomed jets with trimming [16℄,�ltering [17℄, or pruning [18℄We now elaborate on several of these items. For a jetwith pJT � 300GeV, the jet mass peaks at mJ � 50GeV,leading to large logarithms of m2J=pJ 2T � 36. Therefore,a desription of the peak region of the jet mass spetrumrequires the all-order resummation of these logarithms.Soft radiation with momentum k� � m2J=pJT is gener-ated by both initial and �nal-state partiles and on-tributes at leading order in the power expansion to the jetmass. Sine �xed-order orretions start to beome rele-vant for resummation at next-to-next-to-leading logarith-mi (NNLL) order, a proper treatment of the soft sale� m2J=pJT is ruial at this order [2, 19{21℄. Numerially,the importane of these �xed-order soft orretions is alsowell known from reent work up to N3LL for event shapes
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2in e+e�! jets [15, 22{24℄. For proesses with � 2 jets athadron olliders there are multiple olor strutures, andthe orresponding olor ow must be taken into aountstarting at next-to-leading-logarithmi (NLL) order [25℄.The available freedom in de�ning a jet introdues adependene of the jet mass spetrum on the hoie ofalgorithm/lustering method and the jet size parameterR. There is also a hoie of whether to use an inlusiveor exlusive jet ross setion, where the latter involvesa veto on additional jets. The inlusive ase has beenstudied at the LHC [26℄, and inlusive alulations tendto fous on the anti-kT algorithm [27℄. (Use of the anti-kT jet algorithm avoids issues assoiated to lustering ef-fets [28{31℄.) As we will emphasize further below, a keydi�erene between the inlusive and exlusive ases arethe form of the non-global logarithms [32, 33℄ that ariseat O(�2s) beyond the Born ross setion due to multiplerestritions on phase spae.Let us summarize how the above issues have been stud-ied so far in the literature on jet mass alulations. The�rst alulations were arried out for event shapes ine+e�! jets using hemisphere jet masses. Here fatoriza-tion theorems are well established and alulations existup to N3LL [15, 19, 21, 34{37℄. In Refs. [2, 8℄ a fa-torization formula for exlusive N -jet ross setions ate+e� olliders was derived, where the angularity of a jet(whih inludes the jet mass as a speial ase) is mea-sured. This result only depends on the lass of the jetalgorithm (suh as one or kT -type), but su�ers fromnon-global logarithms involving the jet veto and jet sizeR. The resummation of the jet mass in e+e�! 2 jetswith a jet veto was arried out at NLL in Ref. [10℄, whihinludes a resummation of NGLs in the large-N approx-imation. This same proess was onsidered in Ref. [11℄,where the dominant R dependene of asymmetri thrust(whih is related to jet mass) was obtained using a refa-torization of the soft funtion. In Ref. [12℄, this refator-ization was veri�ed at O(�2s) and the leading NGLs wereobtained at this order.For jet mass alulations in pp ollisions one onsidersjets with large transverse momentum, pJT , and with ra-pidities �J away from the beam axis. Reently, severalinlusive jet mass alulations have been arried out [13{15℄. In Ref. [13℄, the jet mass was alulated using only ajet funtion. This ignores important ontributions fromwide-angle soft radiation, whih ouples together multi-ple hard partons, depends on the hoie of jet algorithm,and ontains NGLs. In Ref. [14℄, the jet mass in pp! 2jets and Z+1 jet were alulated at NLL, inluding a re-summation of NGLs in the large-N approximation. Al-though this is an inlusive alulation (no jet veto), oneshould also note that hard emissions giving rise to addi-tional jets are beyond the NLL order onsidered. In thisase the dominant e�et of the NGLs is on the peak ofthe jet mass distribution. Another inlusive alulationof the jet mass was arried out to obtain partial NNLLresults in Ref. [15℄, by expanding around the thresholdlimit. Here dynamial threshold enhanement [38{40℄

was used to argue that additional hard emissions are sup-pressed. Although NGLs were not resummed, their sizewas estimated, and found to mainly e�et the peak regionof the jet mass, as in Ref. [14℄.Our alulation at NNLL is for the exlusive jet massspetrum, so it is useful to highlight di�erenes with theinlusive ase. At NLL, for a given partoni hannel and�xed momenta of the hard partons, the two ases simplydi�er by a multipliative fator, exept for their respe-tive NGLs. In both ases the leading NGLs involve termsof the form �2s ln2 �mut 2Jp2ut � : (1)for the umulant jet mass spetrum integrated up tomutJ . For the inlusive jet mass spetrum, put is ahard sale ' pJT and the NGLs are therefore large loga-rithms that are parametrially of the same size as other�is lnj(m2J=pJ 2T ) terms, and are thus part of the NLL re-sult. Hene, in this ase a omplete resummation atNLL (or beyond) requires the NGLs to be resummedto all orders, whih pratially is urrently only possi-ble in the large-N approximation. In ontrast, in theexlusive ase put is an adjustable parameter and is re-lated to the jet veto. Here we have both m2J � pJ 2T andp2ut � pJ 2T , so the logarithms in Eq. (1) are smaller thanin the inlusive ase. In partiular, for �xed put there isa point in the mJ spetrum where the NGLs vanish, andthere is a region about this point where the NGLs arenot large logarithms. An estimate for the size of this re-gion an be obtained from the series of three NGL terms(log-squared, log, and non-log) that are known for thehemisphere jet masses [41, 42℄. When all the terms inthis series are of similar magnitude the logarithmi en-hanement is not dominant, and the NGLs do not needto be resummed. This ours for 1=8 � mut 2J =p2ut � 8.We will numerially explore the size of this region in ourexlusive jet mass alulation, and demonstrate that theregion is large enough that we may onsider the non-global logarithms to not be large. This an be ontrastedwith Fig. 3 of Ref. [10℄, whih shows that the presene ofan unmeasured region of phase spae makes large NGLsunavoidable in the inlusive ase [14, 15℄.It should also be noted that although exlusive jet rosssetions are not neessary for jet mass spetra, they areimportant in their own right beause many Higgs andnew physis searhes ategorize the data by the numberof jets to improve their sensitivity. For example, the im-portane of the Higgs + 1 jet hannel in H ! �� andH !WW � was pointed out in Refs. [43, 44℄. Reently aNLL resummation of jet veto logarithms was arried outin the ontext of Higgs plus jets in Ref. [45℄.Our alulation of the jet mass is entered on usingthe N -jettiness global event shape [46℄ to de�ne jets, in-stead of a more traditional jet algorithm. For an eventwith N jets, N -jettiness assigns all partiles to N + 2regions, orresponding to the N jets and two beams. Wealulate the ross setion for pp! H + 1 jet at NNLL,



3fully di�erential in the ontributions of eah region to 1-jettiness. For the jet region, this ontribution yields thejet invariant mass. The ontribution from the remainingtwo beam regions are used to implement the jet veto. Ineah of these variables there is a series of large doublelogarithms that must be summed.An advantage of using N -jettiness is that the jet vetois made through a jet mass-type variable, rather than apT variable. Therefore, the struture of the perturbationtheory, whih is simultaneously di�erential in these twokinemati variables, is simpler. In partiular, there isa QCD fatorization formula for this ross setion [46,47℄, obtained by making use of Soft-Collinear E�etiveTheory (SCET) [20, 48{50℄. For the experimentally morerealisti ase of measuringmJ with a pT veto variable onemust simultaneously deal with a thrust-like resummationand a pT -type resummation.Returning to our list of theoretial issues from the be-ginning, the use of N -jettiness allows us to arry outthe summation of large logarithms at NNLL while prop-erly aounting for soft radiation e�ets and initial-stateradiation. We also use it to alulate the dependeneof the jet mass spetrum on the jet kinematis, the jetsize, and the de�nition of the jet region. Results areshown for individual partoni hannels, gg ! Hg andgq ! Hq, illustrating the di�erenes between quark andgluon jets, as well as the full pp ! H + 1 jet proessfrom the Higgs oupling through a top quark loop. Toinvestigate the di�erenes between exlusive and inlu-sive jet mass measurements we ompare our results withPythia and also to ATLAS jet mass data [26℄. We alsoanalytially explore the e�et of NGLs on the jet massspetrum, and the e�et of hadronization and underlyingevent with Pythia [51, 52℄.Thus, we address all items in the list of issues exeptfor the last two, for whih some brief omments are inorder. Methods for removing pile-up ontributions tojet observables have been disussed in e.g. Refs. [53, 54℄,and diret pile-up alulations are beyond the sope ofour work. Finally, it is known that grooming jets has alarge impat on their soft radiation and auses signi�anthanges to the jet mass spetrum. We do not attempt toanalytially ontrol the e�ets of jet-grooming methodshere.In alulating the jet mass we onsider both absoluteand normalized spetra. Normalizing the jet mass spe-trum redues the perturbative unertainty, and turns outto remove the dominant dependene on the jet veto vari-able. In partiular, the jet veto dependene anels upto NLL if we onsider a partiular partoni hannel and�xed jet kinematis. We will show that this anellationremains e�etive when summing over partoni hannelsand integrating over a range of jet momenta.In Se. II, we disuss the kinematis and several jetde�nitions based on N -jettiness, exploring their features.The tehnial details of our alulation are presented inSe. III. Here we disuss the fatorization formula forthe ross setion, the refatorization of the soft fun-

tion, non-global logarithms, and the hoie of runningsales. Se. IV and Se. V ontain our numerial resultsfor the individual partoni hannels and for pp! H + 1jet, showing the dependene of the jet mass spetrumon the jet veto ut, the order in perturbation theory,the jet kinematis, the jet de�nition, the jet area, ongluon versus quark jets, and on NGLs. Using Pythia8,in Se. VI we analyze the hard proess dependene forgluon jets, ompare inlusive versus exlusive jet massspetra, study the dependene on lassi jet algorithms,and look at the impat of hadronization and underlyingevent. We also ompare our NNLL exlusive jet resultswith Pythia for the same jet de�nition and kinemat-is, and ompare them with inlusive jets from the LHCdata. We onlude in Se. VII. Detailed ingredients forthe NNLL ross setion are summarized in appendies.II. KINEMATICS AND JET DEFINITIONSWe desribe the proess pp ! H + 1 jet using thetransverse momentum pJT of the jet, the pseudorapidity�J of the jet, and the rapidity Y of the hard ollisionrelative to the CM frame of the olliding protons. The1-jettiness event shape is de�ned as [46℄T1 =Xk minn2qJ � pkQJ ; 2qa � pkQa ; 2qb � pkQb o ; (2)where a; b denote the two beams and J the jet, the qi aremassless referene momenta and theQi are normalizationfators. For the referene momenta we takeq�J = EJ (1; ~nJ) ; q�a;b = xa;bEm2 (1;�ẑ) : (3)The jet energy EJ and jet diretion ~nJ an be predeter-mined with a suitable jet algorithm. The jet algorithmdependene this indues on T1 is power suppressed [46℄,and we will use anti-kT .1 The unit vetor ẑ points alongthe beam axis, and the momentum frations xa and xbare �xed in terms of the total invariant mass Q and ra-pidity Y ,xaxbE2m = Q2 = (qJ + qH)2 ;ln xaxb = 2Y = ln (1;�ẑ) � (qJ + qH)(1; ẑ) � (qJ + qH) ; (4)where q�H denotes the momentum of the Higgs. For lateronveniene we also introdue the notationsij = 2qi � qj : (5)1 If QJ = 2EJ then an equally good hoie would be to minimizeT1 with respet to the axis ~nJ . A fast algorithm to arry outthis minimization has been devised in Ref. [55℄, using a slightlydi�erent N-jettiness measure than the ones we use here.
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(b) Anti-kT and geometri R for R = 1.FIG. 1: Comparison of the jet regions for di�erent jet measures at di�erent � and �. The \+" marks the jet diretion ~nJ .The minimum in Eq. (2) divides the total phase spaeinto 3 regions, one for eah beam and one for the jet. Wedenote their ontributions to T1 as Ta and Tb for the twobeam regions, and TJ for the jet region, soT1 = TJ + Ta + Tb : (6)The ontribution of the jet, TJ , is diretly related to thejet's invariant mass mJm2J = p2J = (�nJ � pJ )(nJ � pJ)� ~p 2J?= 2qJ � pJ [1 +O(�2)℄= QJTJ [1 +O(�2)℄ ; (7)where p�J is the full jet momentum de�ned by summingall partiles in the TJ -region, n�J = (1; ~nJ) and �n�J =(1;�~nJ) are de�ned by the predetermined jet diretion~nJ , and the power ounting parameter � sales as �2 �TJ=EJ � m2J=E2J . In the seond line of Eq. (7) we usedthe fat that ~nJ and the exat diretion of theN -jettinessjet, ~pJ , di�er by very little, suh that pJ?=(�nJ �pJ ) � �2.The di�erene between these two jet diretions a�etsthe jet boundary, whih hanges the ontribution of softradiation to the jet pT , but only by a small amount � �2.We also used that the large jet momentum �nJ � pJ = �nJ �qJ [1 +O(�2)℄. For a jet with pJT � 300GeV these O(�2)power orretions are 1=36 � 3% in the peak region, andhene negligible relative to the perturbative unertaintiesat NNLL. Investigating the jet mass spetra for the exatm2J = p2J vs. using m2J = QJTJ in Pythia, we also �ndthat they are indistinguishable.The details of the beam and jet regions seleted by theminimum ondition in Eq. (2) depend on the normaliza-tion fators Qi. Sine their values a�et whih partilesare grouped into the beam and jet regions, they on-stitute a jet measure. They also impat the geometrishape of the jet area. Di�erenes between measures aretherefore similar to the di�erent hoies for jet-algorithms(anti-kT , Cambridge-Aahen, one, et.). We will on-sider a variety of hoies:

� invariant-mass measure:QJ = Qa = Qb = Q (8)� geometri pT measure:QJ = 2� j~qiT j = 2�EJ= osh�J (9)Qa;b = xa;bEm = e�YQ� geometri E measure:QJ = 2�EJ (10)Qa;b = xa;bEm = e�YQ� geometri R measure:QJ = 2�(R; �J)EJ (11)Qa;b = xa;bEm = e�YQwhere �(R; �J ) �xes the area of the jet in (�; �)-spae to be �R2.In all ases � is a dimensionless parameter that allowsone to hange the size of the jet region. In the geometriR ase � is �xed in terms of the jet radius parameter R.2The hoie of Qa;b in the geometri measures removes thedependene in q�a=Qa and q�b =Qb on the total rapidity Y .This is useful in the presene of missing energy, whihprohibits the measurement of the boost Y of the partonienter-of-mass frame. Sine for the geometri measuresQJ � EJ , they are all insensitive to the total jet energy.For the geometri pT ase we have expliitly2qi � pkqiT = pkT �2mkTpkT osh�yik�2 os��ik� (12)2 For the multijet ase we would use the same �(R; �J ) for eahjet that is determined when they do not overlap.
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FIG. 2: Numerial results for �(R; �J ) in the geometri R measure. Left: Dependene on R for �J = 0, whih is � R2 asexpeted. Right: Dependene on �J for R = 1. To solve for � we use a �t (solid line) to the true �J dependene (dots).where �yik = yi� yk, ��ik = �i��k are the di�erenesin rapidity and azimuthal angle between the diretion ofjet i and partile k, and m2kT = p2kT +m2 for a partileof mass m. For massless partiles we thus get2qi � pkqiT = pkT (2 osh�yik � 2 os��ik)� pkT �(�y)2 + (��ik)2� : (13)The jet regions for geometri pT and E are roughly iru-lar, as shown in Fig. 1(a). They beome smaller at largerapidities for geometri pT , while they stay of omparablesize for geometri E.For geometri R, numerial results for the parameter�(R; �J) as funtion of R and �J are shown in Fig. 2. Theleft panel shows that the dependene on the jet radius Ris approximately � � R2, as expeted. The right panelillustrates the dependene on �J for �xed R = 1, showingthat � approahes a onstant for large �J , i.e. when thejet beomes lose to the beam. When using geometriR in our results below, we use for onveniene a �t ofthe �J dependene for �xed value of R. For example, forR = 0:5; 1; 1:2 we have for j�J j � 2�(R = 0:5; �J) = 0:164+ 0:037�2J � 0:009�4J + 0:0008�6J ;�(R = 1; �J) = 0:834� 0:233�2J + 0:077�4J � 0:008�6J ;�(R = 1:2; �J) = 1:272� 0:376�2J + 0:101�4J � 0:010�6J :(14)Note that for R = 0:5 the parameter � inreases ratherthan dereases with �J . A omparison of the jet regionsfor geometri R with anti-kT jets is shown in Fig. 1(b).Although their areas are hosen to be the same, the geo-metri R jets are not perfetly irular and have an \o�-set" between the jet diretion and the enter of the jet

region. The former (latter) e�et dereases (inreases)with j�J j. For a smaller jet radius of R = 0:5 the geomet-ri R jets beome more irular also at entral rapiditiesand very lose to anti-kT jets. In Ref. [55℄ a modi�a-tion of N -jettiness was introdued that mathes anti-kTlosely for any R. However, this de�nition reintrodues aregion of phase spae that belongs neither to the jet northe beams, making it more ompliated for alulations.III. CALCULATIONA. Fatorization FormulaWe start by rewriting the phase spae integrals for thehard kinematis in terms of the rapidity �J and trans-verse momentum pJT of the jet and the total rapidity Y ,Z dxaxa Z dxbxb Z d3~qHEH Z d3~qJEJ (2�)4Æ4�qa + qb � qJ � q�= Z d�J dpJT dY 12� pJTQ2 +m2H : (15)The variables were de�ned in Se. II, and we used az-imuthal symmetry and the relationspJT = Q2 �m2H2Q osh(�J � Y ) ; (16)Q = pJT osh(�J � Y ) +qpJ 2T osh2(�J � Y ) +m2H :Most of our plots will be normalized and for �xed valuesof �J , pJT , and Y , in whih ase the phase spae fator inEq. (15) drops out.Our alulation relies on the N -jettiness fatorizationformula in Ref. [47℄, whih we here speialize to the aseof 1-jettiness:d3�H+1jd�J dpJT dY dTa dTb dTJ = pJT4�E2m(Q2 +m2H)X� H�(fq�i g; �) Z dtaB�a(ta; xa; �) Z dtbB�b(tb; xb; �)� Z dsJ J�J (sJ ; �)S��Ta � taQa ; Tb � tbQb ; TJ � sJQJ ;n q�iQio; �� : (17)



6hannel �a �b �Jgg! Hg g g ggq! Hq g q qqg! Hq q g qg�q! �Hq g �q �q�qg! �Hq �q g �qq�q ! Hg q �q g�qq ! Hg �q q gTABLE I: Values of � for the di�erent partoni hannels.The N -jettiness variables Ta, Tb, and TJ were de�ned inSe. II. The hard funtion H� ontains the short-distanematrix element for produing a Higgs plus a jet, the beamfuntions B�a and B�b desribe the ollinear initial-stateradiation and ontain the PDFs, the jet funtion J�Jharaterizes the ollinear �nal-state radiation, and thesoft funtion S� desribes soft radiation e�ets.3 Thesum over � = f�a; �b; �Jg runs over the possible avors�i 2 fg; u; �u; d; : : : g of the two inoming and one outgoingparton. The possible ombinations, orresponding to thevarious partoni hannels, are listed in Table I.The power of fatorization is that it allows one to eval-uate the various �xed-order piees at their natural sales,where they ontain no large logarithms. We then use theRG evolution of eah of these funtions to evolve them toa ommon sale �, resumming the logarithms of m2J=pJ 2Tand QiTi=pJ 2T . This evolution is impliit in Eq. (17), bywriting all funtions as evaluated at the ommon sale�. The fatorization formula with all evolution fatorswritten out expliitly is given in Eq. (28) below. Ourhoie of sales is disussed in Se. III C. Power orre-tions to Eq. (17) arise from so-alled nonsingular orre-tions, whih are suppressed by a relative O(m2J=Q2) inthis di�erential ross, and are not onsidered here.The ross setion in Eq. (17) is di�erential in the 1-jettiness ontributions from the jet and the beams TJ ,Ta, and Tb. As we will see, the shape of the jet massspetrum is independent of the jet veto for a reasonablerange of Ta;b values. For simpliity we impose a ommonut Ta;b � T ut. We also onvert TJ to the jet mass mJusing Eq. (7), and so onsider�(mutJ ; T ut) = Z T ut0 dTaZ T ut0 dTbZ mut 2J =QJ0 dTJ d3�dTa dTb dTJ :(18)The di�erential jet mass ross setion, d�=dmJ , is ob-tained by taking the numerial derivative of this umu-lant ross setion. We de�ne the normalized jet mass3 Note that we do not all Eq. (17) a fatorization theorem sinethe deoupling of Glauber gluons for hadron ollider proesseswith a spei� number of jets has not been proven.

mathing x �usp � PDFLL 0-loop - 1-loop 1-loop NLONLL 0-loop 1-loop 2-loop 2-loop NLONNLL 1-loop 2-loop 3-loop 3-loop NLOTABLE II: Perturbative ingredients at di�erent orders in re-summed perturbation theory.spetrum over the range [0;mutJ ℄ as d�̂=dmJ , sod�̂dmJ (mutJ ; T ut) � 1�(mutJ ; T ut) d�(T ut)dmJ : (19)The ingredients in the resummed ross setion areneeded at di�erent orders in perturbation theory, as sum-marized in Table II, where the olumns orrespond to the�xed-order mathing, non-usp anomalous dimension x,usp anomalous dimension �usp, the � funtion, and thePDFs. All ingredients neessary for a NNLL resumma-tion of the global logarithms are known and are olletedin App. A: The one-loop hard funtion for the three basiproesses gg ! Hg, gq ! Hq, and q�q ! Hg via gluonfusion (in the large mt limit) are obtained from the one-loop heliity amplitudes alulated in Ref. [56℄ followingthe proedure in Ref. [57℄. The one-loop quark and gluonjet funtion were alulated in Refs. [58{60℄, the one-loopquark and gluon beam funtions in Refs. [61{64℄, and theone-loop soft funtion in Ref. [47℄. We also require theusp anomalous dimension to three loops [65, 66℄, andthe non-usp anomalous dimensions to two loops, whihare known from Refs. [60, 62, 67{70℄.There is some freedom in how to treat produts of the�xed-order orretions in Eq. (17), spei�ally the higher-order ross terms that are generated, suh as the one-looporretion to H times the one-loop orretion to J , whihwe denote H(1)J (1). The series for the individual objetsare fairly onvergent, exept for the hard funtion whoseone-loop orretion is known to be rather large.4 Wetherefore expand the onvolutions of the �xed-order B,J , and S funtions order by order in �s to the orderneeded, but keep the hard funtion H(0) + H(1) as anoverall multipliative fator. We antiipate that the rossterms involving H(1) will aount for a large portion ofthe NNLO ross setion. Shematially, this means thatthe �xed-order omponents of our ross setion take theform(H(0)+H(1))h(B(0)B(0)J (0))
 S(0) (20)+ (B(1)B(0)J (0))
 S(0) + (B(0)B(1)J (0))
 S(0)+ (B(0)B(0)J (1))
 S(0) + (B(0)B(0)J (0))
 S(1)i :4 We �nd that the improvement of using a omplex sale �H forthe hard funtion is only marginal, beause some logarithms areminimized by a negative �2H and other by a positive �2H .



7The di�erene between expanding the hard funtion ortreating it as multipliative is within our perturbativeunertainty, being a <� 20% e�et for the unnormalizedmJ spetrum, and only a <� 2% e�et for the normalizedmJ spetrum.B. Refatorization of the Soft FuntionFor a proess with one or more jets there are multiplediretions for ollinear radiation and various kinemativariables so a few additional hierarhies beome possi-ble. The fatorization formula assumes that there are noadditional strong hierarhies beyond the ollinearity ofthe jet m2J � pJ 2T , and the absene of additional entraljets away from the beam diretions, namely QaTa � pJ 2Tand QbTb � pJ 2T . Physially, this orresponds to thefollowing four assumptions1) QiTi � QjTj ommensurate mJ and jet veto2) qi � qjEiEj � qi � qkEiEk well separated jet and beams3) Ei � Ej jet and beam-jets of similar energy4) Qi � Qj jet and beam regions of similar sizeAssumption 1) ensures that we are in the region whereNGLs are not large logarithms. Assumption 2) impliesthat the jet is not too lose to the beam diretion, andavoids having large angular logarithms, whih would re-quire an additional \ninja summation" [3℄.Three ombinations of these four assumptions are ne-essary to avoid introduing additional large logarithmsthat are not summed by the renormalization group evo-lution of terms in the fatorization formula, namelysijsik � 1 ; TiTj � 1 ; QiQj � 1 : (21)The �rst implies that the logarithms in the hard funtionan be minimized with a ommon sale �, and all threeombine to imply that a ommon sale also minimizesall logarithms in the soft funtion. One ombination ofassumptions, Ei=Qi � Ej=Qj , does not appear expliitlyin arguments of funtions in the fatorized ross setion,and hene does not show up in logarithms for the lead-ing power result. However, it is in general neessary aspart of the derivation of Eq. (17) to ensure that ertainnegleted terms are power suppressed.An important onsideration in arrying out the sum-mation of large logarithms is the order in �s and loga-rithms at whih violations of Eq. (21) �rst beome ap-parent. For the soft funtion the �rst terms that appearfor the various logarithms are�s ln2�QiT i QjT j�2sij � ; �s ln�sijQksikQj � ; �2s ln2�T iT j � ;(22)

where we integrate the soft funtion over Ti up to theumulant variable T i . The �rst of these is part of the LLseries. The seond is an angular logarithm. It is part ofthe NLL series if it ounts as a large logarithm. Other-wise, it is part of the � �s �xed-order terms that start toontribute at NNLL. The third is a NGL. It is part of theNLL series if it is a large logarithm. Otherwise it is partof the � �2s �xed-order terms that start to ontributeat N3LL. Therefore, there is a nontrivial onstraint onthe hoie of sales � in the soft funtion. The salesmust be hosen to minimize the �rst type of logarithm inEq. (22) without induing terms of the form of the seondand third types already at LL order. In partiular, thisimplies that a poor sale hoie ould introdue unphys-ial angular logarithms or NGLs into the LL series. Forour hoie of kinematis and Qi the seond type of angu-lar logarithm in Eq. (22) is never large. However, sinewe are exploring a spetrum in m2J = QJTJ the thirdterm in Eq. (22) will grow as the parameters are varied.To surmount this problem requires a refatorization ofthe soft funtion whih we will onsider below.For the hard funtion the series of leading double log-arithms involves terms of the form�s ln2��2sij � ; �s ln2� sijsik � : (23)For the hoie of jet kinematis explored in this paper wewill always satisfy the assumption sij � sik, so there isno additional onstraint on the sale assoiated with thehard funtion.The hierarhy between TJ and T ut leads to unphys-ial large logarithms if a single sale �S is used for theinitial onditions for the soft funtion evolution. Here weaddress how these an be removed by a refatorization ofthe soft funtion, with orretions from the true higherorder non-global logarithms (see Refs. [8, 12, 15, 37℄ forearlier refatorization disussions).In general, the all-order soft funtion has the formS(fkig; fq̂�i g; �)=Yi Si(ki; fq̂�i g; �) + SNGL(fkig; fq̂�i g; �) ; (24)where q̂�i = q�i =Qi. Here SNGL ontains all non-globalterms, and hene has an intrinsi dependene on the ra-tios ki=kj . At NLO there is only one soft gluon emitted,whih an ontribute to only one of the Ti at a time. Thusthe NLO soft funtion fatorizes, and SNGL � O(�2s).Trunating to O(�s) there is still some freedom in thede�nition of the Si. Whereas the terms with expliitki dependene in S(fkig; �) learly belong to Si(ki; �),the pure delta funtion terms Æ(kJ)Æ(ka)Æ(kb) an inpriniple be split in multiple ways between the variousSi(ki; �). We hoose to split these terms evenly, as de-tailed in App. A 4, and we introdue an additional pa-rameter r in the sale variation to estimate unertaintyfrom this freedom as disussed further below and in detailin Se. III C.



8Due to the onsisteny of the fatorization formula,the evolution of the soft funtion fatorizes exatly to allorders in perturbation theory,US(fkig; �; �0) = UH(�0; �)Yi QiUJi(Qiki; �0; �)=Yi USi(ki; �; �0) ; (25)(Here we used the fat that the beam and jet funtionshave the same evolution [62℄.) This involves the fator-ization of the evolution of the hard funtion H = CCy,whih follows from the form of the anomalous dimensionfor C [71, 72℄,bC(�) = �usp[�s(�)℄�Xi T2i ln ��0+Xi<j Ti �Tj ln��sij�20 �i0��+ bC [�s(�)℄ : (26)The sum on i and j runs over the olored partons parti-ipating in the short-distane interation and Ti denotesthe orresponding olor harge matrix. (For pp! H +1jet the olor spae is still trivial, so these olor matriesare just numbers.) To assoiate the ln� terms to individ-ual partons we introdued a dummy variable �0 and usedolor onservation. It is not a priori lear how to assoiatethe remaining terms within the Pi<j to eah USi , andwe hoose to split eah term evenly between i and j. Theexpliit expression for the fatorized hard funtion evolu-tion that we employ is given in App. A 5. Other potential

hoies of splitting up these terms are again probed bythe sale parameter r, whih is disussed in more detailaround Eq. (31), and the orresponding unertainty isfound to be small. The two-loop non-usp anomalous di-mension has the struture bC(�s) = nqq + ngg , whereng and nq are the number of gluon and (anti)quark legs,so it naturally fators.The fatorization of the evolution and �xed-order softfuntion in Eqs. (24) and (25) suggests that we an eval-uate the piee of the soft funtion orresponding to Ti ata sale �Si ,S(fkig; �) =Yi Z dk0i USi(ki � k0i; �; �Si)Si(fk0ig; �Si) :(27)This fatorization does not hold for all the terms at or-der �2s , sine there are diagrams that ontribute to mul-tiple Ti, leading to non-global logarithms of the form�2s ln2(ki =kj) appearing in SNGL in Eq. (24). We dis-uss in Se. III D how we estimate the size of these NGLontributions in the jet mass spetrum.In our implementation we �nd it simplest to run thehard, jet, and beam funtions, rather than the soft fun-tion, as summarized in Fig. 3, though the �nal resultsare ompletely independent of this hoie. Sine the uton both beams is the same, they have a ommon �B and�SB . We summarize the work in this setion by pre-senting the fatorization formula valid at NNLL whihinludes the evolution fators and refatorization of S,d3�H+1j(T ut)d�J dpJT dY dmJ = (2pJTmJ=QJ)4�E2m(Q2 +m2H)X� H�(fq�i g; �H)UH�a (fq�i g; �SB ; �H)UH�b (fq�i g; �SB ; �H)UH�J (fq�i g; �SJ ; �H)� Z dta dt0a UJ�a (ta � t0a; �SB ; �B)B�a(t0a; xa; �B) Z dtb dt0b UJ�b (tb � t0b; �SB ; �B)B�b(t0b; xb; �B)� Z dsJ ds0J UJ�J (sJ � s0J ; �SJ ; �J)J�J (s0J ; �J ) Z T ut0 dTa Sa�Ta � taQa ;n q�iQio; �SB�� Z T ut0 dTb Sb�Tb � tbQb ;n q�iQio; �SB�SJ�m2J � sJQJ ;n q�iQio; �SJ� : (28)All neessary perturbative results for H�, J�J , Si, andthe Ui are olleted in App. A.C. Choie of Running SalesThe fatorization formula in Eq. (28) sums the largelogarithms of QiTi=pJ 2T from the uts on the beams andof QJTJ=pJ 2T = m2J=pJ 2T from the jet mass measurement
by arrying out perturbation theory for the hard, beam,jet, and soft funtions at their natural sales�H ' pJT ; �i 'pQiTi ; �Si ' QiTi=pJT ; (29)and then running them to an arbitrary ommon sale.Here i = a; b; J , sine the situation for the beams and thejet are fully analogous. As disussed above we must usethe ombinationQiTi to ensure we have the orret lead-ing logarithms. The remaining dependene of the ross
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H

µH

µSB
µSJ

µB
µJ

JBFIG. 3: Illustration of the di�erent �xed-order sales appear-ing in the fatorized ross setion and our evolution strategy.setion on Qi ours due to its impat on the boundariesbetween the jet and beam regions. This is enoded in the�xed-order terms in the soft funtion that do not involvelarge logarithms.If any Ti beomes very small, � �QCD, the nonper-turbative orretions to the soft funtion beome impor-tant and the sales are �H ' pJT , �i � p�QCD pJT , and�Si >� �QCD. On the other hand, for large Ti � pJT theresummation of QiTi=pJ 2T is not important and is turnedo� by having the sales merge, �H = �i = �Si ' pJT .To onnet the various regions where the resummationmust be handled di�erently, we use Ti-dependent sales,whih are known as pro�le funtions [23, 73℄. A transi-tion between these three regions is given by the followingrunning sales, adopted from Ref. [64℄,�H = � ; (30)�i(�) = h1 + ei �(�3 � �)�1� ��3 �2 ip��run(�; �) ;�Si(�) = h1 + eSi �(�3 � �)�1� ��3�2 i�run(�; �) ;where � = QiTi=Q2. The expression for �run an befound in App. B, along with the hoie of parameters forthe entral values, and details on the variations of �, ei,and eSi used to estimate the perturbative unertaintiesin our preditions.To estimate the additional perturbative unertainty as-soiated with the refatorization of the soft funtion inSe. III B, we reintrodue orrelations between the softsales using a parameter r satisfying 0 � r � 1,�(r)SJ = (��S)r (�SJ )1�r ; �(r)SB = (��S)r (�SB )1�r ;ln ��S � (T 2a + T 2b ) ln�SB + T 2J ln�SJT 2a + T 2b + T 2J : (31)Here T 2i = CF for i = q and i = �q, and T 2i = CA fori = g. For r = 0 we have the original unorrelatedsoft sales. By inreasing r the sales move towards the\olor average" value ��S . At r = 1 they are all equalto this average soft sale, so the refatorization is turnedo� (whih as explained earlier auses unphysial NGLs inthe LL series). To estimate the size of the freedom in the

refatorization we take r = 0:2 as our default hoie andinlude r = 0 and r = 0:4 as separate sale variations inour unertainty estimate.D. Non-Global LogarithmsIf the NGLs are not large logarithms then they enterbeyond NNLL order, and should be of omparable size toother higher-order perturbative terms. This is obviouslyonly possible for some range of m2J=(pJTT ut), whih de-termines where our result is valid at NNLL order. Todetermine this range we inlude the leading O(�2s) NGLinto our resummed alulation and ompare the resultswith and without this term for various parameter hoies.In the fatorized ross setion all NGLs enter through thesoft funtion S. For simpliity we restrit this analysis ofthe size of non-global logarithms to the gg ! Hg han-nel, as the results for other hannels are similar.The leading NGL in the umulant soft funtion isSNGL(fki g; �S) =Yi �Z ki0 dki�SNGL(fkig; �S) (32)= ��2s(�S)C2A(2�)2 Xi<j Gij ln2 �kikj � :HereGij is a geometri fator that depends on the bound-aries of the jet and beam regions. Note the absene ofexpliit �-dependene in the NGLs. These expressionsfor SNGL follow from the known result for e+e� ! 2jets [32, 33, 41, 42℄, by replaing the olor fator CFCA !C2A. Unlike the global logarithms this ontribution doesnot fator, so we assign it a ommon soft sale whih wetake to be ��S given in Eq. (31).For the purpose of our numerial analysis we takeGij = �2=3, whih is the result for a hemisphere. Thismay be thought of as reasonable estimate and in realitythe values may di�er by about 15% to 30% [14℄. Con-verting the umulant spae result in Eq. (32) into a fulldistribution yieldsSNGL(fkig; ��S) ' ��2s(��S)C2A(2�)2 �23 hXi 4�0L1�ki�0�� 2Xi<j 1�0L0�ki�0� 1�0L0�kj�0 �i ; (33)where the Ln denote standard plus distributions as de-�ned in Eq. (A5). Note that the �0 dependene anelsout expliitly between the terms, so the hoie of thissale is arbitrary and irrelevant. It is introdued for od-ing purposes, sine it is onvenient to have the same typeof Ln distributions as in the non-NGL part of the softfuntion. When the NGLs are inluded in this manner,via the soft funtion in the fatorization, one automati-ally resums an in�nite series of global logarithms thatmultiply the NGL. In partiular, this inludes terms thatare shematially [�2s ln2℄[Pk(�s ln2)k℄ where the �rst ln2



10is non-global and the seond ln2 is a large global loga-rithm. The all-order struture of this series of terms isorretly predited by the fatorization.For our analysis we will mostly be interested in thenormalized spetrum in Eq. (19). Here in the numeratorthe two jet veto variables are in umulant spae and mJis in distribution spae, while in the denominator all thevariables are in umulant spae. This result has two typesof NGLs i) �2s(�S) ln2� mut 2JpJTT ut� ; (34)ii) �2s(�S) 2T utL1� m2JpJTT ut� :For the denominator the relevant form of the NGL log-arithms is as in Eq. (32), yielding the terms i). For thenumerator the form of the NGL is as in ii). The preseneof two types of NGLs in the normalized spetrum impliesa somewhat di�erent dependene than for the unnormal-ized ross setion. The e�et of NGLs in these two asesare analyzed in detail in Se. IVC. There we will showthat there is indeed a fairly large range of mutJ valueswhere the NGL terms in the exlusive jet ross setionare not large logarithms.IV. RESULTS FOR GLUON AND QUARK JETSIn this setion we fous on the individual quark andgluon hannels, leaving results for pp ! H + 1 jet to bedisussed in Se. V below. We �rst study the theoret-ial preditions for the mJ spetrum with and withoutnormalization, and show that normalizing substantiallyredues the perturbative unertainty. We also study theorder-by-order onvergene of this di�erential ross se-tion, and the size of various ontributions to the pertur-bative unertainty bands. Next, the dependene on thejet veto T ut is studied. Finally, we investigate the sizeof non-global logarithms as a funtion of mJ and T ut.A. Default Parameter ChoiesUnless indiated otherwise we use the following defaultparameter hoies for all plots in Ses. IV, V, and VI. Forthe Higgs mass we take mH = 125GeV [74, 75℄, and forthe LHC enter-of-mass energy we take Em = 7TeV.We always use the MSTW NLO PDFs [76℄ with theorresponding value of �s(mZ) = 0:1202 for the strongoupling onstant. As our default we use the geometriR = 1 measure for de�ning the jets, T ut = 25GeV forthe jet veto, and mutJ = 200GeV for the normalizationrange. Our default hard kinematis are pJT = 300GeV,�J = 0, and Y = 0. Finally, for the sale funtions�H , �B(�), �J (�), and �Si(�) de�ned in Se. III C, theentral parameter values are given in App. B. There we

also disuss the ombination of sale variations used forestimating the perturbative unertainties.B. Normalization and ConvergeneThe unnormalized jet mass spetrum at NNLL withour default inputs for the quark and gluon hannels areshown in Fig. 4(a). As one expets, the gluon jets peakat a muh higher jet mass than the quark jets. We alsosee that the perturbative unertainties are quite sizable,even at NNLL.Normalizing the jet mass spetrum allows one to studyits shape without ontamination from the slow onver-gene of the integrated 1-jet ross setion, and also re-dues the experimental unertainties signi�antly. Wedenote the normalized ross setion as d�̂=dmJ and al-ulate it using Eq. (19) where we normalize over the range0 � mJ � mutJ .We �rst study the impat of normalization on theperturbative unertainty. To preserve the normaliza-tion, we simultaneously vary the sales in the numera-tor and denominator of Eq. (19). Comparing the unnor-malized ross setion at NNLL for the gluon and quarkhannels shown in Fig. 4(a) to the normalized ones inFig. 4(b), we observe that a substantial portion of the un-ertainty is related to the integrated ross setion ratherthan the shape. In the peak region of the mJ spetrum,30GeV � mJ � 150GeV the normalized ross setionshave a quite reasonable remaining perturbative uner-tainty of ' 5{10%.A big part of the sizable unertainty in the unnormal-ized 1-jet ross setion is due to the poor onvergene ofthe hard funtion for pp ! H + 1 jet, and thus spei�to the Higgs proess. By keeping the hard funtion as anoverall multipliative fator as in Eq. (20), it anels ex-atly in the normalized ross setion for a given partonihannel and �xed phase spae point (whih we use formost of our plots). This anellation still takes plae ap-proximately for the integrated ross setion summed overpartoni hannels as we show below in Se. VB. Our re-sults with �xed kinematis are therefore representativeof results integrated over the jet phase spae.The order-by-order onvergene of our resummed jetmass alulation is displayed in Figs. 4() and 4(d) forthe gluon and quark jet hannels, where results at LL,NLL, and NNLL are shown. The various bands overlapwith those of lower orders, providing diret evidene thatour sale variations yield a reasonable estimate of thehigher-order perturbative unertainties.There are several lasses of perturbative sale uner-tainties, the \Fixed Order" sale variation that is or-related with the total ross setion, the \Beam" salevariation from varying �B and �SB that is related to thepresene of the jet veto, the \Jet" sale variation fromvarying �J and �SJ that is related to the jet mass mea-surement, and the unertainty from \r" that is relatedto the perturbative freedom in the refatorized formula
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(a) Unnormalized jet mass spetrum for quark and gluon jetsat NNLL. The unertainties are sizable even at NNLL. 0 50 100 150 200
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(b) Normalized jet mass spetrum for quark and gluon jets atNNLL. Compared to Fig. 4(a), the normalization signi�antlyredues the perturbative unertainties.
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(d) Convergene of the resummed alulation for quark jets.

0 50 100 150 200
-20

-15

-10

-5

0

5

10

15

20

mJ @GeVD

dΣ
�d

m
J

re
la

tiv
e

va
ri

at
io

ns
@%
D

Fixed order
Beam

Jet
r

gg®Hg, NNLL(e) Individual sale variations that enter the unertainty estimatefor gluon jets at NNLL. Shown are the variations relative tothe entral NNLL urve. 0 50 100 150 200
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gq®Hq, NNLL(f) Individual sale variations that enter the unertainty estimatefor quark jets at NNLL. Shown are the variations relative tothe entral NNLL urve.FIG. 4: Perturbative unertainties and onvergene for the jet mass spetrum in gg! Hg and gq ! Hq with default inputs.for the soft funtion. For the NNLL results, these indi-vidual sale variations are shown in Figs. 4(e) and 4(f)for gluon and quark jets respetively. For simpliity weombined the unertainty from varying the jet sale �J and the sale of the jet part of the soft funtion �SJ bytaking the envelope, and similarly for the beams. It is nottoo surprising that the unertainties assoiated with thehard and beam sale variations are smaller, sine they
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FIG. 5: E�et of using di�erent jet veto uts on the jet mass spetrum for gg ! Hg. While the unnormalized spetrum onthe left is diretly sensitive to the jet veto ut, this dependene almost ompletely anels in the normalized spetrum on theright. The same is true for the quark hannel, gq! Hq, and the sum over all partoni hannels.are mostly ommon to the numerator and denominatorof the normalized spetrum in Eq. (19). To obtain thetotal perturbative unertainty we take the envelope of\Jet", \Beam" and \r" unertainties and ombine it inquadrature with the \Fixed Order" unertainty. The to-tal unertainty in the jet mass spetrum is dominated bythat of the jet and by the soft funtion refatorization.C. Jet Veto and Non-Global LogarithmsNext we disuss the e�et of the jet veto on the jet massspetrum. Our veto is imposed through the variable T ut,rather than a more traditional putTJ , sine this simpli�esthe treatment of sales in the problem, and allows us tomake use of a known fatorization theorem. This jet vetorestrits the initial and �nal-state ollinear radiation aswell as soft radiation. It turns out that the normalizedjet mass spetrum is fairly insensitive to the value of thejet veto ut.We start by onsidering the e�et of the jet veto on theunnormalized jet mass spetrum, as shown for gg ! Hgin the left panel of Fig. 5. Dereasing T ut imposes astronger restrition on the initial-state radiation and re-dues the unnormalized ross setion. (This redutionis less strong for gq ! Hq, beause quarks radiate lessthan gluons.) As the right panel of Fig. 5 shows, the nor-malization removes the majority of the T ut dependene.Note that without the refatorization of the soft funtion(see Se. III B) this anellation would be spoiled by un-physial logarithms. This strong anellation is also thease for the other partoni hannels, as well as for theirsum in pp ! H + 1 jet. This insensitivity to T ut alsoremains valid after integrating over the jet phase spae,as we show below in Fig. 8. We have also studied thedependene on T ut as well as a standard putTJ jet vetowith Pythia, where we also �nd a similar insensitivityof the normalized jet mass spetrum to the details of the

used jet-veto variable and ut values.Next we turn to our analysis of NGLs, both in theunnormalized and normalized jet mass spetra. As ex-plained in Se. III D, we test for the size of the NGLsby omparing the ross setion with and without theseterms. The leading NGL is inluded in �xed-order per-turbation theory, on top of whih we sum an in�nite seriesof global logarithms through the fatorization formula.In the left panel of Fig. 6 we show the unnormalizedspetrum for various T ut values at NNLL (solid lines)and the same spetra inluding the NGL terms (dottedlines). As mentioned earlier, there is a point on the spe-trum where the NGLs exatly anel. This point is atmJ ' 50; 110; 165; 300 for T ut = 10; 25; 50; 150GeV re-spetively. For all values of mJ shown in this �gure thee�et of the NGL terms is well within the perturbativeunertainty [f. the unertainty bands shown in Fig. 4(a)℄.When we normalize the spetrum we are dividing bythe umulant with mutJ , and the jet-veto dependenedoes not anel out in the presene of the non-globallogarithms. There are two types of NGLs in the nor-malized result, terms involving ln[m2J=(pJTT ut)℄ fromthe numerator and terms involving ln[mut 2J =(pJTT ut)℄from the denominator. Therefore for a �xed T ut thereis no longer a value of mJ where all the NGLs willvanish. Results for the normalized spetrum with andwithout NGLs are shown in the right panel of Fig. 6.The orange band shows the NNLL result without NGLsalong with its perturbative unertainty, while the vari-ous blak lines show the entral values for NNLL resultsthat have the NGLs inluded. For the wide range of val-ues 25GeV � T ut � 150GeV the e�et of the NGLs isof the same size as the redued perturbative unertaintyin the normalized spetrum. This justi�es our assertionthat the NGLs do not have to be onsidered as large log-arithms for a signi�ant range of ut values, so that ourNNLL result is omplete at this order. In the small mJregion of the spetrum the resummation of global loga-rithms on top of the NGL term provides an appropriate
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FIG. 6: E�et of non-global logarithms on the NNLL jet mass spetrum for gg ! Hg for di�erent jet veto uts. Left panel:Inluding the leading NGLs (dashed lines) has a small e�et on the unnormalized spetrum, and is well within the perturbativeunertainty for a wide range of jet veto uts. Right panel: The e�et of inluding the leading NGLs (blak solid, dashed, anddotted urves) on the normalized NNLL spetrum (orange band) is still within the redued perturbative unertainty for a widerange of jet veto uts, but start to beome important for T ut = 10GeV.Sudakov suppression in the the ross setion. For othermJ values, and 25GeV � T ut � 150GeV, the argumentof the NGL remains between 1=8 and 8, whih is therange over whih we expet that the NGLs do not dom-inate over nonlogarithmi orretions, as mentioned inthe introdution. On the other hand, for T ut = 10GeVone observes that the NGLs beome large enough thatthey are no longer ontained within the perturbative un-ertainty, so this value is outside the range of validity ofour normalized NNLL results (though for this value theunnormalized results in the peak region are still valid).For this value the argument of the NGL involving mutJbeomes ' 13, whih is outside of the range mentionedabove.Although we have only explored the gg ! Hg hannelat a �xed kinemati point in this setion, we have alsoheked expliitly that the same onlusions about NGLshold when integrating over a kinemati range, and whenonsidering quark jets from gq ! Hq.
V. RESULTS FOR pp! H + 1 JETIn this setion we show results for the pp! H + 1 jetross setion at NNLL, summing the ontributions fromthe various partoni hannels: gg ! Hg, gq ! Hq, andthe (small) q�q ! Hg. We present results for the depen-dene of the jet mass spetrum on the jet kinematis, onthe hoie of jet de�nition whih a�ets the shape of thejets, and on the jet size R. We also ompare the mJspetrum obtained for a �xed point in the jet kinemat-is to that obtained from integrating over a range of jetmomenta.

A. Dependene on KinematisFor pp ! H + 1 jet there are three nontrivial kine-mati variables: the transverse momentum of the jet pJT ,rapidity of the jet �J , and the total rapidity Y of theombined Higgs+jet system. We show how eah of thesevariables a�et both the unnormalized and normalized jetmass spetrum, whih allows us to separate the impatof kinematis on the normalization and the shape.The fallo� of the PDFs at larger x values auses theross setion to strongly derease for inreasing pJT andfor inreasing j�J j (for Y = 0). This is shown in Figs. 7(a)and 7(). The dependene on pJT and �J in the orre-sponding normalized spetra are shown in Figs. 7(b) and7(d). Here we see that there is a derease in the height ofthe peak and a ompensating inrease in the tail heightas pJT or j�J j are inreased. Note that for these variablesthere is a marked di�erene between the total pp! H+1jet proess ompared to the individual partoni han-nels (whih are not shown). For eah partoni hannelthe peak position of the jet mass spetrum inreases asmpeakJ / ppJT and also inreases with inreasing j�J j.However, at the same time the ontribution of gq ! Hqrelative to gg ! Hg is enhaned, and the peak of thejet mass spetrum is at lower values for quark jets thanfor gluon jets [see Fig. 4(b)℄. These two e�ets largelyanel for pp ! H + 1 jet, suh that the peak positionis pratially unhanged with inreasing pJT , whereas forinreasing �J a small net inrease in the peak positionremains.Note that our ability to alulate the �J dependeneimplies that it is trivial to impose rapidity uts in ourframework.The main dependene on the total system rapidityY enters through the shape of the PDFs, ausing theross setion to strongly derease with inreasing jY j, asFig. 7(e) shows. (This is also the reason for taking en-
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(a) The ross setion dereases with inreasing pJT . 0 50 100 150 200
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(b) For pp! H + 1 jet the peak position remains stable and thespetrum slightly broadens with inreasing pJT .
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(d) For pp! H + 1 jet the peak position shifts slightly and thespetrum slightly broadens with inreasing �J .
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(e) The ross setion quikly dereases for larger Y . 0 50 100 150 200
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(f) For pp! H + 1 jet the peak position remains stable and thespetrum slightly broadens with inreasing Y .FIG. 7: Dependene on the kinemati variables pJT , �J , and Y for the unnormalized and normalized NNLL jet mass spetrafor pp! H + 1 jet.tral jets with Y = 0 for our default value when usinga single phase spae point.) The value of Y also a�etsthe shape of the jet mass spetrum, as an be seen inFig. 7(f). The jet rapidity relative to the partoni enter of mass is � � Y , so one would expet the shape hangeas funtion of Y to be similar to that as funtion of �J ,shown in Fig. 7(d). The agreement is lose but not exatbeause the Y dependene indued by the shape of the
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FIG. 8: Results for the normalized jet mass spetrum at NNLL for pp ! H + 1 jet after integrating over 300GeV < pJT <400GeV, j�J j < 2, and all Y . The left panel ompares the spetrum for integrated kinematis (dashed line) to those for �xedkinematis with Y = �J = 0 and pJT = 300; 360; 400GeV (solid lines from top to bottom at the peak). The right panel showsthe impat of T ut on the normalized spetrum for integrated kinematis, whih is the analog of the omparison in the rightpanel of Fig. 5 for �xed kinematis.PDFs di�ers hannel by hannel, and thus a�ets theirrelative weight in the sum over hannels.B. Integrated KinematisSo far we have shown the mJ spetra for a �xed pointin pJT , �J , and Y . We now onsider the impat of inte-grating the kinemati variables over a bin with j�J j < 2,300GeV < pJT < 400GeV, and any Y . These kinematiranges are realisti experimentally for jets at the LHC.In the left panel of Fig. 8 the jet mass spetrumfor integrated kinematis is shown by a blak dashedline, and is ompared to three spetra with �xed kine-matis shown by solid lines (with Y = �J = 0 andpJT = 300; 360; 400GeV from top to bottom at the peakof the spetrum). One observes that the mJ spetrum inthe integrated bin is very lose to the mJ spetrum withY = �J = 0 and near the enter of the pJT bin. Thus ouronlusions made from studies of a single kinemati pointdiretly arry over to the results obtained by integratingover a phase spae bin.The one situation where this is not immediately ob-vious is the dependene of the normalized ross setionon the jet-veto ut, T ut, shown for �xed kinematis inFig. 5. When we integrate over the kinemati bin thehard funtion, inluding its Sudakov form fator depend-ing on T ut, no longer exatly anels between the nu-merator and denominator. Nevertheless, omparing thespetra for integrated kinematis and di�erent values ofT ut, shown in Fig. 8, we see that the normalized spe-trum is still very insensitive to the details of the jet vetoalso after summing over partoni hannels and integrat-ing over a range of kinematis. (We have also on�rmedthat upon phase spae integration the size of the NGLe�et remains the same as shown in Fig. 6.)

C. Jet De�nitions and Jet AreaIn Se. II we disussed the various N -jettiness mea-sures (de�ned by the Qi) and illustrated the orrespond-ing size and shape of the jet regions for the geometriases. An illustration of the more irregular regions thatappear for the invariant mass measure an be found inRef. [47℄. We now study how the jet mass spetrum is af-feted by these di�erent jet de�nitions as well as by theirjet area (R dependene). We start by noting that in theN -jettiness fatorization only the soft funtion is sensi-tive to the boundaries of the jet regions. Sine the softfuntion only probes the boundaries starting at NLO, the�rst dependene on the jet de�nition appears at NNLL.The nontrivial Qi dependene at this order in the singu-lar terms is formally enhaned over the dependene onthe jet algorithm and jet area in the power-suppressednonsingular terms that are not part of Eq. (28).In Fig. 9 we ompare the invariant mass, geometripT , and geometri E measures (using � = 0:5 for thelatter two) for three di�erent kinemati on�gurationswith �J = f0; 1; 2g, Y = 0, and pJT = 300 GeV. For�J = 0 and �J = 1 the dependene of the jet mass onthe jet de�nition is fairly mild (for jets of similar area),with the largest visible e�et at small mJ . As we saw inFig. 1(a) the jet regions of these two geometri measuresagree exatly for �J = 0 and di�er progressively for moreforward jet rapidities. This is reeted in the jet massspetrum where the largest di�erenes are observed for�J = 2. The two bumps in the jet mass spetrum forgeometri pT at �J = 2 are aused by an inreased sep-aration between the peaks of the individual quark andgluon hannels [see Fig. 4(b)℄.In Fig. 10 we show the jet mass spetrum for the ge-ometri R measure for various values of the jet radiusR. A larger jet radius translates into a peak at slightly
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FIG. 9: Dependene of the NNLL jet mass spetrum for pp! H + 1 jet on the N -jettiness measure used to de�ne the jets.
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FIG. 10: Dependene of the NNLL jet mass spetrum forthe geometri R measure on the jet radius R. Only the Rdependene from singular terms in the fatorization formulais shown here.
higher mass and slightly larger tail. Note that the biggestdi�erene between the jet mass spetra for di�erent val-ues of R will be at large mJ in the tail of the spetrum,sine the size of the jet puts an e�etive upper bound-ary on its mass mJ <� pJTR=p2. 5 At this boundary thejet mass spetrum has to fall o� rapidly. This bound-ary is seen in Pythia and LHC data but is not inludedin our alulation, beause we have not yet inorporatedthe nonsingular ontributions to the ross setion whihare important for aounting for this e�et and makingrealisti preditions in this part of the tail of the distri-bution.5 For a jet of �xed three momentum entered at � = 0, the abso-lute bound on the jet mass is m2J < pJ 2T (1= os2 R � 1), whihis reahed when the jet onsists of two energeti narrow sub-jets loated at (�; �) = (0;�R). Assuming a uniform energydistribution in (�; �)-spae, leads to a more pratial boundm2J <� pJ 2T R2=2.

VI. MONTE CARLO COMPARISONSIn this setion we study various aspets of the jet massspetrum in Pythia. Although formally the perturba-tive auray of Pythia is signi�antly lower than thatof our NNLL alulation, it is also well known that aftersuÆient tuning Pythia is able to reprodue the shape ofmany jet observables. Here we are partiularly interestedin testing the impat on the jet mass spetrum from usingdi�erent hard proesses, using di�erent jet algorithms,and from adding hadronization and underlying event (thelatter being desribed by Pythia's multi-parton intera-tion model). We also perform a omparison between ouralulation and Pythia for the same geometri R = 1N -jettiness jets used in our analysis. Finally we ompareour exlusive 1-jet mJ alulation with the inlusive jetmass spetrum measured in pp! jets by ATLAS. We al-ways use Pythia8 with its default tune 5 (\Tune 4C"),whih as we will see provides a good desription of theATLAS jet mass data.A. Hard Proess and Jet Algorithm Dependene inPYTHIAWe start by investigating to what extent the jet massspetrum depends on the underlying hard proess inPythia. In Fig. 11 we show the spetrum for a gluonjet from gg ! gg (solid) and from gg ! Hg (dotted),demonstrating that in Pythia there is essentially negligi-ble proess dependene for individual partoni hannels.This is true both at the partoni level (blue urves withpeak on the left) and after inluding hadronization andmultiple interations (red urves with peak on the right).In reality one expets some di�erenes from the hard pro-ess due to the additional soft radiation produed withmore available olored partiles, and from the di�erentolor ow, where in partiular gg ! gg involves a matrixof olor hannels with nontrivial interferene. These ef-fets may not be suÆiently desribed by Pythia so oneshould not onlude that the hard proess dependene onthe jet mass spetrum is as small as is shown.Next, we look at the di�erene in Pythia betweenthe jet mass for exlusive and inlusive jet prodution.We use the proess gg ! Hg, imposing the jet veto
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FIG. 11: The gluon jet mass spetrum in Pythia does not de-pend on the underlying hard proess produing the jets. Thisis true both for partons (left peaks) and with hadronizationand underlying event (right peaks).
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FIG. 12: Comparison of the normalized jet mass spetra forexlusive and inlusive jet samples in Pythia.T ut = 10; 25 GeV to obtain two exlusive samples, andusing no jet veto for our inlusive sample. The resultingnormalized jet mass spetra are shown in Fig. 12. Thedi�erene between T ut = 25 GeV (our default value)and the inlusive ase is small, allowing our alulationto be ompared to inlusive spetra. The di�erene isslightly larger for T ut = 10 GeV and inreases signi�-antly for smaller values of T ut. However, we will notonsider suh strong jet vetos, as they lead to large NGLs(see Se. IVC).In Fig. 13 we ompare the jet mass spetrum fromPythia for di�erent jet algorithms, spei�ally our 1-jettiness R = 1-algorithm, Cambridge-Aahen with R =1, and anti-kT with R = 1 and R = 1:2 [77℄. To staylose to a alulation for a single phase spae point, werestrit the jet to a narrow pT and rapidity bin, and im-pose a veto using T ut = 25 GeV. The di�erenes be-tween the R = 1 urves are within the size of the uner-tainty band from our NNLL alulation in the same phasespae bin. This result agrees with the small di�erenesobserved in eah of the panels of Fig. 9 from omparing
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FIG. 13: Comparison of the anti-kT , CA, and geometri Rjet algorithms in Pythia.di�erent jet measures for 1-jettiness jets. The di�erenebetween R = 1 and R = 1:2 for anti-kT is larger thanthat observed in our alulation using geometri R jetsin Fig. 10. In Pythia the di�erene between R = 1and R = 1:2 beomes smaller when T ut is dereased,sine with a stronger jet veto less additional radiation ispresent that would be absorbed by larger jets. To be spe-i�, the 15% di�erene in the peak heights for anti-kTwith R = 1 and R = 1:2 for T ut = 25 GeV redues to 7%for T ut = 5 GeV. From these results we onlude thatin our NNLL alulation, the R dependene of the non-singular terms that are not inluded in our analysis maywell be numerially omparable or larger in size than theformally leading R dependene that we have omputed.B. Comparison of NNLL with PYTHIAA omparison between our NNLL alulation and par-toni Pythia results for gg ! Hg are shown in Fig. 14,both using the geometri R = 1 jet de�nition. The peakpositions in both ases agree very well. To ensure thatthis is not an aident and that the peak position inPythia does not depend on the PDF set used by our de-fault tune, we heked that an alternative tune (number10, whih is based on our default Pythia tune but usesMSTW2008 LO PDFs) only shifts the peak by a smallamount, similar to the small di�erene in peak positionsbetween Pythia and our NNLL alulation. However, asseen in Fig. 14, the NNLL alulation has a lower peakand a orrespondingly higher tail. Sine the spetrum isnormalized these two e�ets are related, namely highervalues in the tail must be ompensated by a lower peak.There are several possibilities that may aount for thisdi�erene. Due to the stability of our order-by-order re-sults in Fig. 4() it is unlikely to be related to the lowerorder auray of Pythia's LL parton shower resumma-tion. Most likely the di�erenes are related to the fatthat we have not yet inluded nonsingular ontributionsto the spetrum whih are important in the tail region,
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FIG. 14: Comparison between our NNLL alulation and par-toni Pythia for the gg ! Hg hannel. Both results usegeometri R = 1 jets and the same kinemati uts.in partiular for the spetrum to fall o� rapidly enough.Due to the fat that the results are normalized, this mis-math in the tail then also leads to a disagreement of thepeak heights. Thus we expet that the inlusion of thenonsingular ontributions will redue this di�erene.C. Hadronization in PYTHIAWe now explore the e�et of hadronization on the jetmass spetrum using Pythia. In the fatorization for-mula the hadronization is enoded through nonperturba-tive orretions in the soft funtion S at a sale � �QCD,whih must be separated from perturbative orretionsat the soft sale �S � m2J=pJT . For e+e�! 2 jets thereis an analyti understanding of the analogous nonpertur-bative orretions originating in Refs. [78{81℄ as well asa modern understanding in terms of �eld theory opera-tors [19, 82{84℄. For these proesses, as soon as the rel-evant soft sale �S is perturbative, the nonperturbativeorretions an be power expanded in �QCD=�S , and thedominant power orretion simply shifts the event shapedistribution, e ! e � 
e=Q. In the ase at hand, thenonperturbative soft funtion is built from more thantwo Wilson lines, so the desription of the power or-retions beomes more ompliated. Nevertheless, fora given kinemati on�guration we still expet that thedominant e�et will be desribed by a shift involving aparameter 
 � �QCD. For a jet mass m2J ' p+J p�J thisshift ours due to nonperturbative soft radiation aus-ing a shift in the small momentum p+J , so it takes theform m2J ! m2J � 2
 pJT R : (35)The fator of R aounts for the fat that there is a de-reased amount of soft momentum ontamination in thejet for dereasing R [85℄. It is straightforward to testwhether this shift agrees with the hadronization model
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FIG. 15: The nonperturbative hadronization orretion inPythia is well desribed by a shift in m2J .in Pythia, by omparing the results with and withouthadronization. As demonstrated in Fig. 15, a shift withthe hoie 
 = 0:8 GeV works very well, in reasonableagreement with the 
 = 1:0 GeV found earlier in Ref. [14℄for the inlusive � 1 jet ross setion.D. Underlying Event and ATLAS DataIn Pythia the e�et of the underlying event is mod-eled by multiple partoni interations, and its e�et onthe jet mass spetrum is more pronouned than thatof hadronization. This is shown in Fig. 16 where weplot the jet mass spetrum for inlusive pp ! jets fromPythia at parton level, inluding hadronization, and in-luding hadronization and multiple interations. Alsoshown are the orresponding ATLAS data from Ref. [26℄,where the unertainty bars are from linearly ombiningthe statistial and systemati unertainties. This han-nel is dominated by the opious pp ! dijet produtionat the LHC. We use the same inputs and uts as AT-LAS, namely Em = 7TeV, anti-kT jets with R = 1,j�J j � 2, and onsider both 300GeV � pJT � 400GeVand 500GeV � pJT � 600GeV. The shift to the peak lo-ation from hadronization is of similar magnitude as thatfor gg ! Hg in Fig. 15, namely ' 3:0GeV for gg ! Hgompared to ' 8:0GeV for the 300GeV � pJT � 400GeVinlusive jets whih have a slightly larger average pJT .For the inlusive pp ! jets in Pythia the additionalshift to the peak loation from the underlying event is' 17:4GeV. The �nal Pythia results agree well withthe ATLAS data for both pJT bins. In a NNLL alula-tion the e�et of hadronization and part of the e�et ofthe underlying event will be aptured by orretions tothe soft funtion, but it is not lear if hadroni orre-tions in the multi-jet soft funtion will fully apture thee�et of the underlying event.Given that Pythia agrees well with the ATLAS inlu-sive dijet spetrum, one might wonder what the purposeof a higher-order NNLL dijet alulation would be. An
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FIG. 17: Comparison of our exlusive NNLL alulation with ATLAS inlusive jet mass data [26℄. The peak position of ourgluon jets from gg ! Hg agrees remarkably well with the inlusive dijet data. For the ATLAS date there is presumably ashift to lower values due to quark jets whih is ompensated by a shift to higher values due to hadronization and multipleinterations.advantage of our alulational framework over Pythia isthat it follows from �rst priniples and does not involvethe modeling and tuning present in Pythia. Spei�ally,the input to our alulation is limited to �s(mZ), the par-ton distributions funtions, and simple soft funtion pa-rameters like 
 for the hadroni e�ets. Furthermore, wehave a rigorous estimate of the higher-order perturbativeunertainty from sale variation, as well as from order-by-order onvergene, whih enable us to fully asses thereliability of the result. Finally, it should be emphasizedthat our alulation is fully analyti (up to the numer-ial onvolution with the PDFs) and hene provides ananalyti QCD alulation of an LHC spetrum for jets.To the extent that the normalized jet mass spetrum isindependent of the hard proess and independent of usingan inlusive or exlusive jet sample, whih Pythia seemsto suggest in Figs. 11 and 12, a omparison between jetmass spetra involving di�erent hard proesses and withand without jet veto uts is appropriate. The approx-

imate hard proess independene only holds separatelyfor gluon or quark jets, whih themselves have fairly dif-ferent jet mass spetra, see Fig. 4(b). Therefore whenvarying the hard proess we expet the dominant hangein the jet mass spetrum to be related to the proessdependent fration of quark and gluon jets produed.In Fig. 17 we ompare our NNLL result for pp! H+1jet and for gg ! Hg to the ATLAS data for pp ! jets.Reall that the peak loation of the NNLLH+1 jet alu-lation mathes well with that from Pythia, see Fig. 14.Beause of the signi�ant ontribution from quark jetsthe H +1 jet spetrum peaks to the left of the spetrumfrom dijets. On the other hand, the peak loation withpure gluon jets (gg ! Hg) agrees remarkably well withthe data on dijets. From the results already obtainedabove, we expet only small di�erenes (omparable tothe ATLAS error bars) for e�ets related to the hoieof the jet algorithm, the hoie of inlusive versus exlu-sive jets, or the hoie of looking at gluon jets in dijets



20or in Higgs prodution. On the other hand there will bea more signi�ant shift of the spetrum to the left fromquark hannels in the dijet prodution, and a shift to theright from adding hadronization and underlying event,neither of whih is inluded in the solid red urve. Theagreement between peak loations seems to indiate thatthese two e�ets largely ompensate for one another. Fi-nally, there will be an e�et related to the fat that thereare nontrivial olor orrelations in gg ! gg whih arenot present in gg ! Hg (these e�ets are not apparentin Pythia, see Fig. 11).One may also look at the peak heights in Fig. 17, forwhih the agreement is not as good. As desribed earlier,this e�et is related to the fat that we have not yetinluded nonsingular orretions. These orretions areknown to derease the tail to enable it to rapidly fall o�by m2J � pJ 2T R2=2, and they also a�et the peak diretlythrough the normalization. Sine with additional workthese an be inluded in future results the di�erene inpeak heights is not of too muh onern.Finally one may also ompare the results in Figs. 16and 17 for the 300GeV � pJT � 400GeV and 500GeV �pJT � 600GeV bins. For dijets the peak loation movesto higher mJ with inreased pJT , unlike for pp ! H + 1jet, again indiating that gluon jets likely dominate. Theonlusions from the omparison with Pythia and theontrast to our NNLL alulation remains the same forthese two ranges of pJT .VII. CONCLUSIONSIn this paper we alulated the jet mass spetrum forpp ! H + 1 jet to NNLL order. For this exlusive 1-jetross setion we veto additional jets with the 1-jettinessevent shape, and used the 1-jettiness fatorization for-mula in terms of hard, beam, jet, and soft funtions toobtain our results. For the normalized jet mass spe-trum the remaining higher-order perturbative unertain-ties from sale variation are at the ' 5 � 10% level atNNLL order, and in addition our results exhibit exel-lent order-by-order onvergene.The normalized NNLL spetrum is quite insensitive tothe jet veto over a wide range of values, even when a-ounting for non-global logarithms. Thus in our frame-work non-global logarithms an be aurately treated as�xed-order ontributions to the soft funtion, upon whihadditional global logarithms are automatially resummedin the fatorization framework. An essential ingredient inthe resummation of the global logarithms was the refa-torization of the soft funtion, whih we demonstrate isrequired to avoid introduing spurious leading logarithmsin ertain regions of phase spae. Our treatment of theNNLL exlusive ross setion with a jet veto has signif-iantly smaller non-global logarithmi terms when om-pared to the size of these terms observed in the earlierinlusive NLL analysis in Ref. [10℄, and the earlier inlu-sive partial NNLL analysis in Ref. [31℄. Finally, we note

that in Pythia the inlusive jet mass spetrum and theexlusive jet mass spetrum with our default jet veto areessentially idential.Utilizing our alulation we investigated the depen-dene of the jet mass spetrum on various parametersof the exlusive jet ross setion. Part of the power ofour framework is that the fatorization formula is fullydi�erential in the jet kinematis (pJT , �J , and Y ), allow-ing us to vary the de�nition of the jets and the jet area,and an be easily separated into quark jet and gluon jethannels. As expeted we �nd that the spetrum peaksat largermJ values for gluon jets than for quark jets. Fora given partoni hannel the fatorization framework pre-dits little sensitivity to the underlying hard proess, andthis result is also found to be the ase in Pythia. Themain proess dependene is therefore the relative mix ofquark and gluon jets. The peak of our NNLL mJ spe-trum moves to the right for larger pJT and for larger j�J j,but more so for the individual partoni hannels than forpp ! H+1 jet, where the hange to the mix of quarksand gluons provides a ompensating e�et. The ompletedesription of the various kinemati variables also makesit trivial to implement rapidity uts. For a bin j�J j < 2and a not too large bin in pJT , we �nd that the integratedNNLL result is very onsistent with the NNLL result for�xed kinemati variables taken at the enter of the bin.Varying the jet de�nition with �xed jet area leads tovery little hange in the jet mass spetrum, both for var-ious jet de�nitions in our NNLL result and for anti-kT ,CA, and geometri-R jets in Pythia. This suggests thatthere are only small di�erenes between the spetrumfor 1-jettiness jets and traditional jet algorithms. On theother hand, Pythia exhibits a larger dependene on thejet radius R than our NNLL results. This is presumablydue to the fat that we have not inluded nonsingularterms in our analysis. These terms beome important inthe tail region and are also needed to ensure that the jetmass spetrum dies o� at mmaxJ � pJTR=p2. This leadsto a larger tail in our NNLL spetrum than in Pythia,and orrespondingly a smaller peak height in the nor-malized NNLL result. On the other hand, the peak lo-ation agrees very well between our NNLL alulationand Pythia. An analysis of these additional nonsingu-lar terms will be arried out in the future.We investigated the dependene of the jet massspetrum on hadronization and underlying event usingPythia. Hadronization is very well desribed by ashift to the mass spetrum, m2J ! m2J � (2RpJT )
 with
 � �QCD, whih is the antiipated result from non-perturbative soft gluon ontributions in our fatorizationformula's soft funtion. In Pythia the underlying eventis modeled by multiple partoni interations and leadsto a somewhat larger shift to the spetrum than forhadronization. It plays an important role in obtainingagreement with the ATLAS jet mass results for inlusivedijets. Comparing our results to ATLAS we �nd thatthe NNLL pp ! H+1 jet spetrum peaks to the left ofthe dijet data, whereas the NNLL gg ! Hg spetrum



21peaks in the same loation. The omparison made so farwith the ATLAS data is promising. The extension of ourNNLL alulation to pp ! dijets is ompletely feasibleusing 2-jettiness, and it will be interesting to see to whatextent the ontributions from quark hannels, olor mix-ing, and hadronization and underlying event will a�etthis omparison with the data. Theoretially, the only re-maining hallenge to a omplete omparison appears tobe inorporating the e�et of the underlying event from�rst priniples rather than relying on its modeling viaMonte Carlo. AknowledgmentsThis work was supported in part by the OÆe of Nu-lear Physis of the U.S. Department of Energy underGrants No. DE-FG02-94ER40818 and No. DE-FG02-90ER40546, and by the DFG Emmy-Noether grant TA867/1-1. T.J. was also supported by a LHC-TI grantunder the NSF grant PHY-0705682.

Appendix A: Perturbative InputsIn this setion we ollet the �xed-order ingredientsand evolution kernels for evaluating the jet mass rosssetion for pp! H + 1j in Eqs. (17) and (28) at NNLLorder. We �rst give expressions for the hard, jet, beamand soft funtions at next-to-leading order. This is fol-lowed by the evolution kernels and the oeÆients thatthey depend on.
1. Hard FuntionThe hard funtions H� for the various partoni han-nels � that ontribute to pp! H+1 jet an be obtainedfrom the �nite part of the heliity amplitudes A deter-mined in Ref. [56℄,Hggg(fq�i g; �H) = 16�s(�H)3C2ACF9�v2 1[2(N2 � 1)℄2 hjA(1+g ; 2+g ; 3+g ; 4H)j2 + jA(1+g ; 2+g ; 3�g ; 4H)j2+ jA(1+g ; 3+g ; 2�g ; 4H)j2 + jA(3+g ; 2+g ; 1�g ; 4H)j2i ;Hg�q�q(fq�i g; �H) = 8�s(�H )3CACF9�v2 12N 12(N2 � 1)hjA(1+g ; 2+q ; 3��q ; 4H)j2 + jA(1�g ; 2+q ; 3��q ; 4H)j2i ;H�qg�q(fq�i g; �H) = 8�s(�H )3CACF9�v2 12N 12(N2 � 1)hjA(2+g ; 1+q ; 3��q ; 4H)j2 + jA(2�g ; 1+q ; 3��q ; 4H)j2i ;Hq�qg(fq�i g; �H) = 8�s(�H )3CACF9�v2 1(2N)2 hjA(3+g ; 2+q ; 1��q ; 4H)j2 + jA(3�g ; 2+q ; 1��q ; 4H)j2i ;Hgqq(fq�i g; �H) = Hg�q�q(fq�i g; �H) ; Hqgq(fq�i g; �H) = H�qg�q(fq�i g; �H) ;H�qqg(fq�i g; �H) = Hq�qg(fq�i g; �H) : (A1)The fators of 1=(2N) and 1=[2(N2 � 1)℄ arise from averaging over the spins and olors of the olliding quarks andgluons. The arguments of a heliity amplitude A have the form iht , where i denotes the momentum q�i , t denotesthe parton type, and h denotes the heliity of this partile. Only in the heliity amplitudes will we use an outgoingonvention for all these quantities, to make rossing symmetry diret. This implies that if we want to onvert to theonvention used in the main text, then the sij 's in the heliity amplitudes below will pik up additional minus signsif one of the partiles i and j is in and the other is out. The amplitudes that enter in Eq. (A1) are given byA(1+g ; 2+g ; 3+g ; 4H) = m4Hp2js12s13s23j�1+�s(�H)4� hf(s12; s13; s23;m2H ; �H)+ 13(CA�2TFnf ) s12s13+s12s23+s13s23m4H i� ;A(1+g ; 2+g ; 3�g ; 4H) = s212p2js12s13s23j�1 + �s(�H )4� hf(s12; s13; s23;m2H ; �H) + 13(CA � 2TFnf ) s13s23s212 i� ;A(1+g ; 2+q ; 3��q ; 4H) = s12p2js23j�1 + �s(�H)4� hg(s12; s13; s23;m2H ; �H) + (CF � CA) s23s12 i� ;A(1�g ; 2+q ; 3��q ; 4H) = s13p2js23j�1 + �s(�H)4� hg(s12; s13; s23;m2H ; �H) + (CF � CA) s23s13 i� ;f(s12; s13; s23;m2H ; �H) = �CA�12(L212 + L213 + L223) + L12=HL13=H + L12=HL23=H + L13=HL23=H



22+ 2Li2�1� s12m2H �+ 2Li2�1� s13m2H �+ 2Li2�1� s23m2H �� 5� 3�24 �� 3CF ;g(s12; s13; s23;m2H ; �H) = CA��12(L212 + L213 � L223) + L12=HL13=H � (L12=H + L13=H)L23=H � 2Li2�1� s23m2H �+ 223 + �24 �+ CF ��L223 + 3L23 � 2L12=HL13=H � 2Li2�1� s12m2H �� 2Li2�1� s13m2H �� 11 + �22 �+ �0��L23 + 53� : (A2)Here we use the shorthand notationLij = ln�� sij�2H � i0� ;Lij=H = ln�� sij�2H � i0�� ln��m2H�2H � i0� : (A3)2. Jet FuntionsThe one-loop jet funtions are given by [58{60℄Jq(s; �J) = Æ(s) + �s(�J)CF2� h 2�2J L1� s�2J �� 32�2J L0� s�2J �� ��22 � 72�Æ(s)i ;Jg(s; �J) = Æ(s) + �s(�J)2� n2CA�2J L1� s�2J �� �02�2J L0� s�2J �+ h�23 � �22 �CA + 56�0iÆ(s)o ; (A4)where the plus distributions Ln are de�ned asLn(x) � ��(x) lnn xx �+

= lim�!0��(x � �) lnn xx + Æ(x � �) lnn+1�n+ 1 � :(A5)The Ln(x) integrate to zero if the range in x is [0; 1℄.3. Beam FuntionsThe beam funtions an be expressed in terms of stan-dard gluon and quark PDFs using an operator produtexpansion [61, 86℄,Bi(t; x; �B) = Xj=fg;q;�qgZ 1x d�� Iij�t; x� ; �B�fj(�; �B)� �1 +O��2QCDt �� : (A6)The one-loop mathing oeÆients are [62, 64℄ areIqq(t; z; �B) = Æ(t) Æ(1� z) + �s(�B)CF2� �(z)� 2�2B L1� t�2B �Æ(1� z) + 1�2BL0� t�2B �Pqq(z)+ Æ(t)�L1(1� z)(1 + z2)� Pqq(z) ln z � �26 Æ(1� z) + �(1� z)(1� z)�� ;Iqg(t; z; �B) = �s(�B)TF2� �(z)� 1�2BL0� t�2B �Pqg(z) + Æ(t)�Pqg(z)�ln 1� zz � 1�+ �(1� z)��Igg(t; z; �B) = Æ(t) Æ(1� z) + �s(�B)CA2� �(z)� 2�2BL1� t�2B �Æ(1� z) + 1�2BL0� t�2B �Pgg(z)+ Æ(t) hL1(1� z)2(1� z + z2)2z � Pgg(z) ln z � �26 Æ(1� z)i� ;Igq(t; z; �B) = �s(�B)CF2� �(z)� 1�2BL0� t�2B �Pgq(z) + Æ(t) hPgq(z) ln 1� zz + �(1� z)zi� : (A7)The splitting funtions in this equation are de�ned asPqq(z) = L0(1� z)(1 + z2) ; Pqg(z) = �(1� z)�(1� z)2 + z2� ;



23Pgg(z) = 2L0(1� z)z + 2�(1� z)h1� zz + z(1� z)i ;Pgq(z) = �(1� z) 1 + (1� z)2z : (A8)4. Fatorized Soft FuntionWe now give expressions for the N -jettiness soft fun-tion, showing expliitly how the fatorization in Eq. (24)is implemented. We remind the reader that their is some
freedom in this refatorization, and that the orrespond-ing unertainty is probed by varying the parameter r inEq. (31).Up to NLO the 1-jettiness soft funtion is given byS�(fkig; f�Sig) = Yi=a;b;J Si(ki; fq̂�i g; �Si) +O(�2s) :(A9)From the NLO alulation in Ref. [47℄ we obtain

Si(ki; fq̂�i g; �Si) = 1 Æ(ki) + �s(�Si)� Xj 6=i �Ti �Tjh 2pŝij �Si L1� kipŝij �Si �� �224 Æ(ki)i (A10)+ Xm 6=i;j �nTi �Tj I0� ŝjmŝij ; ŝimŝij ��Tm �Tj I0� ŝijŝmj ; ŝimŝmj �o 1�L0� ki�Si �+ 16nTi �TjhI0� ŝjmŝij ; ŝimŝij � ln ŝjmŝij + I1� ŝjmŝij ; ŝimŝij �i+ 5 permutations of (i; j; k)oÆ(ki)�� :Here the two integrals areI0(�; �) = 1� Z ���d� Z dyy ��y �p�=�� ��1=�� 1� y2 + 2y os�� ;I1(�; �) = 1� Z ���d� Z dyy ln(1 + y2 � 2y os�� ��y �p�=�� ��1=�� 1� y2 + 2y os�� ; (A11)andgg ! Hg : T2a = T2b = T2J = CA ;Ta �Tb = Ta �TJ = Tb �TJ = �CA2 ;gq ! Hq : T2a = CA ; T2b = T2J = CF ;Ta �Tb = Ta �TJ = �CA2 ;Tb �TJ = CA2 � CF : (A12)5. Evolution FatorsFollowing the disussion in Se. III B, we give expres-sions for the fatorized evolution of the hard funtion,H�(fq�j g; f�ig) = H�(fq�i g; �H) Yi=a;b;JUH�i(fq�j g; �H ; �i) ;UH�i (fq�j g; �H ; �i) = ����eKiH Yj 6=i��sij � i0�2H �Ti�Tj�H ���� ;KiH(�H ; �i) = �2K��i (�H ; �i) +K�iH (�H ; �i) ;�H(�H ; �i) = ���q (�H ; �i)CF = ���g (�H ; �i)CA : (A13)

Here the produts over i and j run over all olored par-tiles, with orresponding avor �i and �j . For eahhannel ontributing to pp ! H + 1j there is onlyone olor struture so Ti � Tj is simply a number [seeEq. (A12)℄. The funtions K�, �� and K are given be-low in Eq. (A16).The solution of the RG evolution of the jet funtion isgiven by [37, 73, 87, 88℄J�i(s; �) = Z ds0 J�i(s� s0; �J )UJ�i (s0; �J ; �) ;UJ�i (s; �J ; �) = eKiJ�E �iJ�(1 + �iJ ) � �iJ�2J L�iJ� s�2J �+ Æ(s)� ;KiJ(�J ; �) = 4K��i (�J ; �) +K�iJ (�J ; �) ;�iJ(�J ; �) = �2���i (�J ; �) : (A14)The plus distribution L� is de�ned asL�(x) � � �(x)x1�� �+= lim�!0��(x � �)x1�� + Æ(x� �) x� � 1� � : (A15)General relations for the resaling and onvolutions ofLn(x) in Eq. (A5) and L�(x) an be found in App. B



24of Ref. [73℄. The renormalization group evolution of thebeam funtions is idential [62℄ and an be obtained fromthe above expressions by replaing Ji(s; �)! Bi(t; x; �).We do not give the evolution of the soft funtion, as itis not needed for evaluating Eq. (28). It an be obtained from the evolution of the hard funtion and beam fun-tion by using the �-independene of the ross setion.The funtions K�(�0; �), ��(�0; �), K(�0; �) in theabove RGE solutions at NNLL are given by,
K�(�0; �) = � �04�20 � 4��s(�0) �1� 1r � ln r�+��1�0 � �1�0�(1� r + ln r) + �12�0 ln2 r+ �s(�0)4� ���21�20 � �2�0��1� r22 + ln r�+��1�1�0�0 � �21�20 �(1� r + r ln r)���2�0 � �1�1�0�0� (1� r)22 �� ;��(�0; �) = � �02�0 �ln r + �s(�0)4� ��1�0 � �1�0�(r � 1) + �2s(�0)16�2 ��2�0 � �1�1�0�0 + �21�20 � �2�0�r2 � 12 � ;K(�0; �) = � 02�0 �ln r + �s(�0)4� �10 � �1�0�(r � 1)� : (A16)Here, r = �s(�)=�s(�0) and the running oupling at thesale � is given in terms of that at the referene sale �0by the three-loop expression1�s(�) = X�s(�0) + �14��0 lnX + �s(�0)16�2 ��2�0�1� 1X �+ �21�20 � lnXX + 1X � 1�� ; (A17)where X � 1 + �s(�0)�0 ln(�=�0)=(2�).6. RGE CoeÆientsUp to three loops, the oeÆients of the beta fun-tion [89, 90℄ and usp anomalous dimension [65, 66℄ inMS are�0 = 113 CA � 43 TF nf ; (A18)�1 = 343 C2A � �203 CA + 4CF�TF nf ;�2 = 285754 C3A + �C2F � 20518 CFCA � 141554 C2A� 2TF nf+ �119 CF + 7954 CA� 4T 2F n2f ;�q0 = 4CF ;�q1 = 4CF h�679 � �23 �CA � 209 TF nfi ;�q2 = 4CF h�2456 � 134�227 + 11�445 + 22�33 �C2A+ ��41827 + 40�227 � 56�33 �CA TF nf+ ��553 + 16�3�CF TF nf � 1627 T 2F n2fi ;�gn = CACF �qn for n � 2 :

Up to two loops, the MS non-usp anomalous dimen-sion for the hard funtion [91, 92℄ and jet and beam fun-tions [60, 62, 64, 70℄ areqH 0 = �6CF ; (A19)qH 1 = �CF h�829 � 52�3�CA + (3� 4�2 + 48�3)CF+ �659 + �2��0i ;gH 0 = �2�0 ;gH 1 = �� 1189 + 4�3�C2A + �� 389 + �23 �CA �0 � 2�1 ;qJ 0 = 6CF ;qJ 1 = CF h�1469 � 80�3�CA + (3� 4�2 + 48�3)CF+ �1219 + 2�23 ��0i ;gJ 0 = 2�0 ;gJ 1 = �1829 � 32�3�C2A + �949 � 2�23 �CA �0 + 2�1 :Appendix B: Running SalesWe now present the remaining ingredients that enterin the running sales in Se. III C. First of all, �run isde�ned as�run(�; �) = 8>>><>>>:�0 + a�2=�1 � � �1 ;2a � + b �1 � � � �2 ;�� a(� � �3)2=(�3 � �2) �2 � � � �3 ;� � > �3 ;a = �0 � ��1 � �2 � �3 ; b = ��1 � �0(�2 + �3)�1 � �2 � �3 : (B1)



25The expressions for a and b follow from demanding that�run(�) is ontinuous and has a ontinuous derivative.For our entral sale hoie we use� = Q ; ei = eSi = 0 ; �0 = 2GeV ;�1 = 5GeVQ ; �2 = 0:4 ; �3 = 0:6 ; r = 0:2 : (B2)To estimate the perturbative unertainty we vary theabove parameters within reasonable ranges. Sine theross setion is most sensitive to �, ei, eSi and r, werestrit ourselves to the following separate variations,a) � = 2�1Q ; eJ = eB = eSJ = eSB = 0 ; r = 0:2 ;
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