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Abstract:

We extend the lowest-order matching of tree-level matrix elements with parton showers

to give a complete description at the next higher perturbative accuracy in αs at both small

and large jet resolutions, which has not been achieved so far. This requires the combination

of the higher-order resummation of large Sudakov logarithms at small values of the jet reso-

lution variable with the full next-to-leading order (NLO) matrix-element corrections at large

values. As a by-product, this combination naturally leads to a smooth connection of the NLO

calculations for different jet multiplicities. In this paper, we focus on the general construction

of our method and discuss its application to e+e− and pp collisions. We present first results of

the implementation in the Geneva Monte Carlo framework. We employ N -jettiness as the jet

resolution variable, combining its next-to-next-to-leading logarithmic resummation with fully

exclusive NLO matrix elements, and Pythia 8 as the backend for further parton showering

and hadronization. For hadronic collisions, we take Drell-Yan production as an example to

apply our construction. For e+e− → jets, taking αs(mZ) = 0.1135 from fits to LEP thrust

data, together with the Pythia 8 hadronization model, we obtain good agreement with LEP

data for a variety of 2-jet observables.
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1 Introduction

Accurate and reliable theoretical predictions for measurements at collider experiments require

the inclusion of QCD effects beyond the lowest perturbative accuracy in the strong coupling

αs. This is especially important in the complex environment of the LHC, which requires

precise predictions for a broad spectrum of observables. Higher-order corrections in αs are

important to predict total cross sections and other inclusive observables. Exclusive jet observ-

ables, such as jet-vetoed cross sections, require the all-order resummation of logarithmically

enhanced contributions. For many observables, an accurate description across phase space

demands a combination of both types of corrections. For experimental analyses to benefit

from these advances, it is crucial to provide the best possible theoretical predictions in the

context of fully exclusive Monte Carlo event generators.

The goal of modern Monte Carlo programs is to provide a proper description of the physics

at every jet resolution scale. This is the motivation for the by-now standard combination

of matrix elements with parton showers (ME/PS). [1, 2] Here, the parton shower provides

the correct lowest-order description at small jet resolution scales, where the resummation

of large Sudakov logarithms is needed, while at large jet resolution scales the exact tree-

level matrix elements are needed to provide the correct lowest-order description. Hence, the

ME/PS merging provides theoretical predictions at the leading O(1) accuracy relative to the

lowest meaningful perturbative order. Once one has a consistent matching between these two

limits of phase space, the possibility to include exact tree-level matrix elements for several

jet multiplicities follows almost automatically by iteration.

Given the necessity of higher-order perturbative corrections to make accurate predic-

tions, it is important to extend the perturbative accuracy of the Monte Carlo description

to αs accuracy relative to the lowest order. This requires including the next higher-order

corrections that are relevant at each scale. At small scales, i.e., small values of the jet resolu-

tion variable, this requires improving the leading-logarithm (LL) parton shower resummation

with higher-order logarithmic resummation, while at large scales this requires including the

fully differential next-to-leading order (NLO) matrix elements. It is important to realize that

typically a large part of phase space, often including the experimentally relevant region, is

characterized by intermediate scales, i.e., by a transition from small to large scales. In the

end, providing an accurate description of this transition region requires a careful combination

of both types of corrections.

Such a Monte Carlo description at relative O(αs) accuracy across phase space has never

been achieved and is the subject of our paper. (We briefly summarize the existing efforts

to combine NLO corrections with parton showers in section 1.1 below.) The crucial starting

point in our approach is that all perturbative inputs to the Monte Carlo are formulated in
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terms of well-defined physical jet cross sections [3, 4]. This allows us to systematically increase

the perturbative accuracy by incorporating results for the relevant ingredients to the desired

order in fixed-order and resummed perturbation theory.

An essential aspect of any higher-order prediction is a reliable estimate of its perturbative

uncertainty due to neglected higher-order corrections. To the extent that parton shower

Monte Carlos provide perturbative predictions, they should be held to the same standards.

An important benefit in our approach is that we have explicit control of the perturbative

uncertainties and are able to estimate reliable fixed-order and resummation uncertainties. As

a result, in Geneva each event comes with an estimate of its perturbative uncertainty, i.e.,

Geneva provides event-by-event theory uncertainties.

In our approach, the Monte Carlo not only benefits from the resummation, but in turn also

provides important benefits to analytic resummed predictions. For one, it greatly facilitates

the comparison with experimental data, as it allows easy application of arbitrary kinematic

selection cuts, which can often be tedious to take into account in analytic predictions. More

importantly, resummed predictions require nonperturbative inputs which can be treated as

power corrections at intermediate scales but become O(1) corrections at very small scales.

Here, these are provided “on-the-fly” by the nonperturbative hadronization model. In essence,

we are able to combine the precision and theoretical control offered by higher-order resummed

predictions with the versatility and flexibility offered by fully exclusive Monte Carlos.

In this paper, we focus on the theoretical construction. We leave a discussion of the

implementation details of the Geneva Monte Carlo framework to a dedicated publication.1

We will however highlight some of the main technical issues we had to overcome and discuss

some implementation details in the application sections. In the remainder of this section,

we briefly summarize the existing efforts to include NLO corrections in parton shower Monte

Carlos and give a short overview of our basic construction. In section 2, we discuss in

detail the requirements to obtain full αs accuracy as well as our method to achieve it. In

section 3, we discuss the application to e+e− → jets, where we combine next-to-next-to-

leading logarithmic (NNLL) resummation with NLO matrix elements, and present results

from the implementation in Geneva together with a comparison to LEP measurements. In

section 4, we discuss the application to hadronic collisions and show first results for Drell-Yan

production, pp→ Z/γ∗ → `+`−+ jets, obtained with Geneva. We conclude in section 5.

1.1 Previous Approaches Combining NLO Corrections with Parton Showers

Over the past decade, many steps have been taken to include NLO corrections into Monte

Carlo programs [5–21]. By now, the MC@NLO [9, 10] and Powheg [15–17] methods are

routinely able to consistently combine the fixed NLO calculation of an inclusive jet cross

section for a given jet multiplicity with additional parton showering. These methods have also

been extended to include the full tree-level matrix elements for additional jet multiplicities [3,

22, 23].

1The current Geneva framework and implementation is new and independent of the earlier work in Refs. [3,

4].
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Recently, efforts have been made to extend these approaches in order to combine NLO

matrix elements for several jet multiplicities with parton showers [24–29]. We will discuss

some issues faced by some of these approaches in section 2.1.5. Here, we would like to stress

that including several NLO matrix elements by itself does not provide a full extension of

the lowest-order ME/PS matching to relative O(αs) perturbative accuracy, since the fixed

NLO corrections only suffice to increase the perturbative accuracy in the region of large jet

resolution scales. To the same extent that the inclusion of the LL Sudakov factors in the

ME/PS merging are needed to get meaningful results at intermediate and small jet scales,

higher-order resummation is necessary to improve the perturbative accuracy in this region.

In our approach, the full information from NLO matrix elements for several jet multi-

plicities is automatically included as follows: For a given Born process with N partons, a

small jet scale corresponds to the exclusive N -jet region, and here the N -parton virtual NLO

corrections are incorporated in conjunction with the higher-order resummation; in fact, they

are a natural ingredient of it. On the other hand, a large jet scale corresponds to the inclu-

sive (N + 1)-jet region with additional hard emissions. Here, the (N + 1)-parton virtual NLO

corrections are included in the usual way by the fixed NLO calculation for N + 1 jets.

1.2 Brief Overview of Our Construction

The starting point of our approach is the separation of the inclusive N -jet cross section into

an exclusive N -jet region and an inclusive (N + 1)-jet region:

σ≥N =

∫
dΦN

dσ

dΦN
(T cut) +

∫
dΦN+1

dσ

dΦN+1
(T ) θ(T > T cut) , (1.1)

where dσ/dΦN+1(T ) denotes the differential cross section for a given value of T . Here T ≡
T (ΦN+1) is a suitable resolution variable, which is a function of ΦN+1, and dσ/dΦN+1(T )

denotes the fully differential cross section for a given T . In ME/PS merging, this role is

played by the variable that determines the merging scale. The parameter T cut serves as an

infrared cutoff for the calculation of dσ/dΦN+1(T ) and ideally is taken as small as possible.

In the N -jet region at small T (both above and below T cut), logarithms of T become

large and must be resummed to maintain consistent perturbative accuracy to some order in

αs. On the other hand, in the (N + 1)-jet region at large T , a fixed-order expansion in αs
will suffice. To consistently match the resummed and fixed-order calculations, we use the

following prescription for the jet cross sections entering in eq. (1.1):

dσ

dΦN
(T cut) =

dσresum

dΦN
(T cut) +

[
dσFO

dΦN
(T cut)− dσresum

dΦN
(T cut)

∣∣∣∣
FO

]
,

dσ

dΦN+1
(T ) =

dσFO

dΦN+1
(T )

[
dσresum

dΦNdT

/
dσresum

dΦN dT

∣∣∣∣
FO

]
. (1.2)

The superscript “resum” indicates an analytically resummed calculation and “FO” indicates

a fixed-order calculation or expansion. This construction properly reproduces the fixed-order
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calculation at large T , the resummed calculation at small T , and smoothly interpolates

between them.

It is straightforward to extend our formulation to combine higher jet multiplicities at NLO

with higher-order resummation, as we will show. This is done by replacing dσFO/dΦN+1 in

eq. (1.2) with an inclusive (N + 1)-jet cross section separated into the exclusive (N + 1)-jet

and inclusive (N + 2)-jet cross sections and iteratively applying eq. (1.2).

The key ingredients in our approach are the higher-order resummation of the jet resolution

variable, the fully differential fixed-order calculation, and the parton shower and hadroniza-

tion. While each of these components are known, there is a sensitive interplay of constraints

between them that must be satisfied to achieve a consistent combination. This is precisely

what is accomplished in the Geneva framework and is the focus of this paper.

2 General Construction

In this section, we derive our theoretical construction in a process-independent manner. We

start in section 2.1 with a slightly simplified setup, considering the singly differential spectrum

in the jet resolution variable. We use this to discuss in detail the perturbative structure and

the accuracy in the different phase space regions. In section 2.2, we discuss the extension

to the fully differential case and how to combine the fixed-order expansion and resummation

in this situation. In section 2.3, we further generalize these results to include several jet

multiplicities by iteration. Finally, in section 2.4, we discuss the Monte Carlo implementation

and how to attach parton showering and hadronization.

2.1 What Resummation Can Do for Monte Carlo

2.1.1 Basic Setup

The basic idea of Monte Carlo integration is to randomly generate points in phase space

(“events”) that are distributed according to some differential (probability) distribution. By

summing over all points that satisfy certain selection criteria, we are able to perform arbitrary

integrals of the distribution. In our case, that distribution is the fully differential cross section,

allowing one to compute arbitrary observables. For simplicity, we will first focus on the singly

differential cross section in some phase space resolution (or jet resolution) variable T of

dimension one. The precise definition of T is not important at the moment, so we keep it

generic for now. We use the convention that the limit T → 0 corresponds to Born kinematics,

i.e., the tree-level cross section is ∼ δ(T ). We also require that T is an IR-safe observable,

such that the differential cross section dσ/dT can in principle be well defined to all orders in

perturbation theory and for T > 0 contains no IR divergences.

To give an example, for our application to e+e− → 2/3 jets in section 3, we will use

2-jettiness T2 = Ecm(1−T ), where T is the usual thrust [30]. Alternatives include other 2-jet

event shapes. For Drell-Yan in section 4, we will use beam thrust [31]. An alternative would
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be the pT of the leading jet. If the Born cross section we are interested in has N signal jets,2

then T could be N -jettiness or the largest pT of any additional jet. The important point

is that we can think of T as a resolution variable which determines the scale of additional

emissions in the Φ≥N+1 phase space, such that for T ≤ T cut there are no emissions above the

scale T cut. For later convenience, we also define the dimensionless equivalent of T as

τ =
T
Q
. (2.1)

Here, Q is the relevant hard-interaction scale in the Born process, e.g., Q ≡ Ecm for e+e− →
jets or Q ≡ m`+`− for Drell-Yan pp → Z/γ∗ → `+`−. In terms of τ , the limit τ � 1

corresponds to the exclusive limit close to Born kinematics. For τ ∼ 1, there are additional

emissions at the hard scale T ∼ Q, which means we are far away from Born kinematics and we

should switch the description to consider the corresponding Born process with one additional

hard jet.

To describe the differential T spectrum, we want the Monte Carlo to generate events at

specific values of T , which are distributed according to the differential cross section dσ/dT .

The total cross section is then simply given by summing over all events,

σ =

∫
dT dσ

dT
. (2.2)

The essential problem every Monte Carlo generator faces is that in perturbation theory the

differential cross section dσ/dT contains IR divergences from real emissions for T → 0,

which only cancel against the corresponding virtual IR divergences upon integration over the

T → 0 region. As a result, the perturbative spectrum for T → 0 can only be defined in a

distributional sense in terms of plus and delta distributions [see eq. (2.6) below]. To deal with

this, we have to introduce a small cutoff T cut and define the cumulant of the spectrum as

σ(T cut) =

∫
dT dσ

dT
θ(T < T cut) . (2.3)

In the Monte Carlo, the total cross section is then obtained by combining the cumulant and

spectrum as

σ = σ(T cut) +

∫
dT dσ

dT
θ(T > T cut) . (2.4)

In practice, this is implemented by generating two distinct types of events: (i) events that

have T = 0 and relative weights given by σ(T cut), and (ii) events that have nonzero values

T > T cut and relative weights given by dσ/dT . The first type of events have Born kinematics

and represents the tree-level and virtual corrections together with the corresponding real

emissions integrated below T cut. The second type of events contains one or more partons in

the final state, since the real-emission corrections determine the shape of the spectrum for

nonzero T . We now have two basic conditions:
2As usual, we assume that the Born cross section is defined with appropriate cuts on the N signal jets, so

that it does not contain any IR divergences by itself.

– 6 –



1. From a numerical point of view, we want the value of T cut to be as small as possible,

so as to describe as much differential information as possible. In practice, our ability to

reliably compute the cumulant σ(T cut) in perturbation theory sets a lower limit on the

possible value of T cut.

2. Since T cut is an unphysical parameter, the dependence on it should drop out (to the

order one is working). In practice, this is equivalent to including the corresponding

dominant higher-order corrections in the cumulant and spectrum.

2.1.2 Perturbative Expansion and Order Counting

In perturbation theory, the differential cross section in τ and the cumulant in τ cut have the

general form

dσ

dτ
=

dσsing

dτ
+

dσnons

dτ
, σ(τ cut) =

∫ τcut

0
dτ

dσ

dτ
= σsing(τ cut) + σnons(τ cut) , (2.5)

where we have distinguished “singular” and “nonsingular” contributions. For τ → 0, the

singular terms in dσsing/dτ scale like 1/τ , while the nonsingular terms in dσnons/dτ contain

at most integrable singularities. For the cumulant, this means that σsing(τ cut) contains all

terms in σ(τ cut) enhanced by logarithms lnk(τ cut), while σnons(τ cut = 0) = 0.

The singular part of the spectrum is given by

dσsing

dτ
= σB

[
C−1(αs) δ(τ) +

∑
n≥0

Cn(αs)Ln(τ)
]
, (2.6)

where σB denotes the Born cross section, and we denote the usual plus distributions as

Ln(x) =

[
θ(x) lnn(x)

x

]
+

,

∫ xcut

0
dxLn(x) =

lnn+1(xcut)

n+ 1
. (2.7)

They encode the cancellation between real and virtual IR divergences. The corresponding

singular contribution to the cumulant cross section integrated up to τ ≤ τ cut is

σsing(τ cut) = σB

[
C−1(αs) +

∑
n≥0

Cn(αs)
lnn+1(τ cut)

n+ 1

]
. (2.8)

At O(αks), only the coefficients Cn(αs) with n ≤ 2k − 1 contribute, so dσ/dτ has logarithms

up to αnsL
2n−1/τ , while σ(τ cut) has logarithms up to αnsL

2n
cut, where we use the abbreviations

L ≡ ln(τ) , Lcut ≡ ln(τ cut) . (2.9)

The αs expansion of the coefficients C−1(αs) and Cn(αs) in the singular contributions

can be written as

C−1(αs) = 1 +
∑
k≥1

ck,−1 α
k
s , Cn(αs) =

∑
2k≥n+1

ckn α
k
s . (2.10)
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TT cut

Peak Transition Tail

O(αs) from
fixed order

O(αs) from
resummationresummation

O(αs) from

+ fixed order

excl. N jet incl. N+1 jet

Figure 1. Illustration of the different parametric regions in the jet resolution.

Similarly, the αs expansion of the nonsingular contributions can be written as

dσnons

dτ
= σB

∑
k≥1

fnonsk (τ)αks , F nons
k (τ cut) =

∫ τcut

0
dτ fnonsk (τ) . (2.11)

Using eqs. (2.10) and (2.11), the spectrum and cumulant up to O(α2
s) are given by

1

σB

dσ

dτ

∣∣∣∣
τ>0

=
αs
τ

[
c11L + c10 + τfnons1 (τ)

]
+
α2
s

τ

[
c23L

3 + c22L
2 + c21L+ c20 + τfnons2 (τ)

]
+O(α3

s) (2.12)

1

σB
σ(τ cut) = 1 + αs

[c11
2
L2
cut + c10Lcut + c1,−1 + F nons

1 (τ cut)
]

+ α2
s

[c23
4
L4
cut +

c22
3
L3
cut +

c21
2
L2
cut + c20Lcut + c2,−1 + F nons

2 (τ cut)
]

+O(α3
s) ,

Note that the ck,−1 constant term in the singular corrections, which contains the finite virtual

corrections to the Born process, only appears in the cumulant.

We now distinguish three parametrically different regions in τ , which are illustrated in

figure 1:

• Resummation (“peak”) region τ � 1: In this limit, the logarithms in the singular

contributions are large, such that parametrically one has to count3

αsL
2 ∼ 1 , αsL

2
cut ∼ 1 . (2.13)

3In analytic resummation, the counting and resummation of logarithms is performed in the exponent of

the cross section, where one counts αsL ∼ 1. For the purpose of our argument in this section, it is sufficient

to adopt the weaker scaling in eq. (2.13) and only count logarithms in the cross section. In our results, we

always perform the full resummation in the exponent, as discussed in section 3.1.1.
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This means one has to resum the towers of logarithms (αsL
2)n in the spectrum and

(αsL
2
cut)

n in the cumulant in eq. (2.12) to all orders in αs to obtain a meaningful per-

turbative approximation at some order. At the same time, the nonsingular corrections

can be regarded as power suppressed, since they are of relative O(τ).

• Fixed-order (“tail”) region τ ∼ 1: In this limit, the logarithms are not enhanced, and

a fixed-order expansion in αs is applicable. The singular and nonsingular contributions

are equally important and both must be included at the same order in αs. In particular,

there are typically large cancellations between these for τ ∼ 1, so it is actually crucial

not to resum the singular contributions in this region, since otherwise this cancellation

would be spoiled.

• Transition region: The transition between the resummation and fixed-order regions.

There are of course no strict boundaries between the different regions. This is why it is

important to have a proper description not just in the two limits but also in the transition

region, which connects the resummation and fixed-order regions. In fact, in practice the

experimentally relevant region is often somewhere in the transition region, where both types

of perturbative corrections can be important.

2.1.3 Lowest Perturbative Accuracy

For the Monte Carlo to provide a proper description at all values of T , it has to include at

least the lowest-order terms relevant for each region. Keeping only these, and dropping all

other terms, the spectrum and the cumulant are given by

1

σB

dσ

dτ

∣∣∣∣
τ>0

=
αs
τ

[
Lf0(αsL

2) + f1(αsL
2) + τfnons1 (τ)

]
,

1

σB
σ(τ cut) = 1 + αs

[
L2
cut F0(αsL

2
cut) + Lcut F1(αsL

2
cut)
]
. (2.14)

where the functions f0,1 and F0,1 are given in terms of the coefficients cij in eq. (2.10) as

LLσ : f0(αsL
2) =

∑
n≥0

cn+1,2n+1(αsL
2)n , F0(αsL

2) =
∑
n≥0

cn+1,2n+1

2(n+ 1)
(αsL

2
cut)

n ,

NLLσ : f1(αsL
2) =

∑
n≥0

cn+1,2n(αsL
2)n , F1(αsL

2) =
∑
n≥0

cn+1,2n

2n+ 1
(αsL

2
cut)

n . (2.15)

The f0 and F0 resum the leading-logarithmic series in the cross section, which we denote

as LLσ. The functions f1 and F1 resum the next-to-leading-logarithmic series in the cross

section, which we denote as NLLσ.

In the resummation region at τ � 1, the LLσ terms in the spectrum scale as L ∼ 1/
√
αs

(relative to the overall αs/τ scaling) and provide the lowest level of approximation. The NLLσ
terms scale as ∼ 1, and one can argue about whether they are needed as well in order to get

a meaningful lowest-order prediction. Formally, they are necessary to obtain the spectrum
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at ∼ αs/τ , which one might consider the natural leading-order scaling of the spectrum (or

equivalently if one does not want to rely on the ∼ 1/
√
αs enhancement of the LL series).

Experience shows that the NLL terms are indeed numerically important. For example, in

analytic resummations, one rarely gets a sensible prediction without going at least to NLL.

Similarly, to obtain sensible predictions from a parton shower, it is almost mandatory to

include important physical effects such as momentum conservation in the parton splitting

and the choice of αs scale [32]. In the cumulant, the LLσ series in F0 scales as ∼ 1 and must

be included. The NLLσ series in F1 scales as ∼ √αs and, for consistency, should be included

in the cumulant if it is included in the spectrum.

In the fixed-order region at τ ∼ 1, the lowest meaningful order in the spectrum is given

by the complete O(αs) terms, requiring one to include the c11 and c10 terms, which are part

of the f0 and f1 functions, as well as the nonsingular corrections fnons1 (τ). Since we take

τ cut to be small, the cumulant is always in the resummation region. Hence, its nonsingular

corrections F nons
1 (τ) [see eq. (2.12)] are suppressed by O(αsτ

cut) and can be safely neglected.

The leading level of accuracy in eq. (2.14) closely corresponds to what is achieved in

the standard ME/PS matching. In this case, the LL resummation is provided by the parton

shower Sudakov factors (either generated by the shower or multiplied by hand), where the

jet resolution variable corresponds to the shower evolution variable, since that is the variable

for which the shower directly resums the correct LLσ series. The LLσ series has a well known

and simple exponential structure,

cn+1,2n+1 =
cn+1
11

2nn!
⇒ f0(αsL

2) = exp
[c11

2
αsL

2
]
, (2.16)

such that

1

σB

dσ

dτ

∣∣∣∣
τ>0

= c11 αs
L

τ
exp
[c11

2
αsL

2
]
,

1

σB
σ(τ cut) = exp

[c11
2
αsL

2
cut

]
. (2.17)

The resummation exponent at LLσ is given by the integral over the leading c11 αs ln(τ)/τ term

in the spectrum. This is precisely what the standard parton shower veto algorithm exploits

to generate the resummation exponent. The analogous structure does not hold at NLLσ,

which is why the parton shower cannot resum the NLLσ series by exponentiating the integral

of the c10 αs/τ term. As already mentioned, in practice, parton showers include important

partial NLL effects, so practically this provides a numerically close approximation to the

correct NLLσ series. The nonsingular corrections in the spectrum, fnons1 (τ), are obtained by

including the full tree-level matrix element for one additional emission. Since the full matrix

element also includes the c11 and c10 terms, this requires a proper matching procedure to

avoid double counting these terms. At LLσ, a simple way to do this is to multiply the full

fixed-order result from the matrix element with the shower’s LLσ resummation exponent,

1

σB

dσ

dτ

∣∣∣∣
τ>0

=
αs
τ

[
c11L+ c10 + τfnons1 (τ)

]
exp
[c11

2
αsL

2
]
, (2.18)
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which corresponds to the CKKW-L [1, 2, 33, 34] procedure. The reason this gives the spectrum

correctly at LLσ is the simple structure in eq. (2.17), where the LLσ exponent multiplies the

c11 term in the spectrum.4 At large τ ∼ 1, the exponent in eq. (2.18) can be expanded as

1 +O(αs), so eq. (2.18) gives the correct leading fixed-order result.

Compared to eq. (2.14), the NLO matching performed in MC@NLO and Powheg

amounts to adding to the cumulant the c1,−1 singular constant, containing the O(αs) vir-

tual corrections, as well as the nonsingular contributions F nons
1 (τ). Assuming the same set of

NLL terms are included in the cumulant and spectrum, this achieves that inclusive quantities

that are integrated over a large range of τ , such as the total cross section, are correctly re-

produced at fixed NLO, which provides them with O(αs) accuracy. In these approaches, the

goal is not to improve the perturbative accuracy of the spectrum (or the cumulant at small

τ cut), which has the same leading accuracy as in eq. (2.18).

2.1.4 Next-To-Lowest Perturbative Accuracy

We now want to improve the Monte Carlo description in eq. (2.4) from the lowest-order

accuracy, given by eq. (2.14), to the next-to-lowest perturbative accuracy in αs. This requires

us to include the appropriate higher-order corrections in each region, which gives

1

σB

dσ

dτ

∣∣∣∣
τ>0

=
αs
τ

[
Lf0(αsL

2) + f1(αsL
2) + τfnons1 (τ)

]
+
α2
s

τ

[
Lf2(αsL

2) + f3(αsL
2) + τfnons2 (τ)

]
,

1

σB
σ(τ cut) = 1 + αs

[
L2
cut F0(αsL

2
cut) + Lcut F1(αsL

2
cut) + c1,−1 + F nons

1 (τ cut)
]

+ α2
s

[
L2
cut F2(αsL

2
cut) + Lcut F3(αsL

2
cut)
]
, (2.19)

where we denote the series of logarithms resummed by the functions f2 and F2 by NLL′σ and

the series resummed by f3 and F3 by NNLLσ. They can again be written in terms of the cij
coefficients in eq. (2.10) as

NLL′σ : f2(αsL
2) =

∑
n≥0

cn+2,2n+1(αsL
2)n , F2(αsL

2) =
∑
n≥0

cn+2,2n+1

2(n+ 1)
(αsL

2
cut)

n ,

NNLLσ : f3(αsL
2) =

∑
n≥0

cn+2,2n(αsL
2)n , F3(αsL

2) =
∑
n≥0

cn+2,2n

2n+ 1
(αsL

2
cut)

n . (2.20)

In the resummation region, the NLL′σ series in the spectrum scales as ∼ α
3/2
s and thus

provides the ∼ αs correction to the LLσ series in f0. Similarly, the NNLLσ series scales as

∼ α2
s providing the ∼ αs correction to the NLLσ series in f1. They can again be obtained

by performing the standard resummation in the exponent of the cross section to NLL′ and

4As before, since this simple LLσ structure does not hold at NLLσ, this procedure does not yield the

resummed spectrum at NLLσ, even if one were to multiply the spectrum with the NLLσ resummation exponent

as originally proposed in Ref. [1].
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NNLL respectively. (Here, NLL′ refers to those parts of the full NNLL resummation that

arise from the combination of the one-loop matching corrections with the NLL resummation,

see section 3.1.1 and table 2.)

In the fixed-order region, increasing the perturbative accuracy by ∼ αs requires the

complete O(α2
s) corrections, including the fnons2 (τ) nonsingular corrections. Similarly, for the

cumulant, F2 and F3 resum the NLL′σ and NNLLσ series of logarithms, which scale as ∼ αs
and ∼ α

3/2
s , respectively, and provide the ∼ αs improvement over the LLσ and NLLσ series

in F0 and F1. In addition, going to the next-higher order in the cumulant requires including

the full singular constant c1,−1
5 as well as the nonsingular corrections F nons

1 (τ), which both

scale as ∼ αs.
It is instructive to see where the information from the virtual NLO matrix elements enters

in eq. (2.19). As already mentioned, the virtual NLO corrections to the Born process are given

by c1,−1. In addition, by multiplying the LL series it contributes part of f2 and F2. Hence,

consistently combining the virtual corrections with the resummation requires one to go to

at least NLL′. The virtual NLO corrections with one extra emission (plus the integral over

the two-emission tree-level matrix element) yield the full O(α2
s) corrections in the spectrum,

i.e., both the singular c2k terms as well as the nonsingular fnons2 terms in eq. (2.12). Adding

these corrections again requires one to avoid double counting the singular c2k terms that are

already included in the resummation. In analytic resummation, it is well known how to do

this, namely by simply adding the nonsingular corrections. These are obtained by taking

the difference of the full NLO corrections and the singular NLO corrections, where the latter

are given by expanding the resummed result to fixed order. Since this construction involves

the virtual contribution to both the Born process with one extra emission, we see that going

consistently to higher order in both the resummation and fixed-order regions naturally leads

to a combination of the information from two successive NLO matrix elements.

2.1.5 Merging NLO Matrix Elements with Parton Shower Resummation Only

We stress that for a description at the next-higher perturbative accuracy across the whole

range in τ , it is not sufficient to include the fixed NLO corrections to the spectrum and take

care of the double counting with the parton shower resummation. This only provides the

proper NLO description in the fixed-order region at large τ . In the transition and resummation

regions, a proper higher-order description necessitates higher-order resummation. Of course,

this is not a problem if the only goal is to improve the fixed-order region at large τ as is the

case for example in a recent MC@NLO publication [28].

However, including the fixed NLO corrections outside the fixed-order region, as is done in

Sherpa’s recent NLO merging [26, 27], can actually make things worse in two respects: First,

numerically this will typically force the spectrum to shift toward the fixed-order result and

away from the resummed one. Since this can shift the spectrum in the wrong direction, it can

5Formally, c1,−1 belongs to the NLL′σ series in the cumulant, but for the sake of discussion, we keep it

explicit.
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potentially make the result less accurate.6 At the same time, the perturbative uncertainties

from fixed-order scale variation decrease, which only aggravates this problem. Multiplying the

NLO corrections to the spectrum with LL parton shower Sudakov factors (see, e.g., Ref. [35])

can mitigate this to some extent but does not solve the problem. The only consistent way

to include the fixed NLO corrections to the spectrum outside the fixed-order region, and

in particular obtain reliable perturbative uncertainties, is to properly combine them with a

higher-order resummation.

Second, this explicitly spoils the formal O(αs) accuracy of the inclusive cross section.

To see this, consider adding the fixed NLO corrections to the lowest-order spectrum and

cumulant in eq. (2.14), properly taking care of the double counting at O(α2
s), which gives

1

σB

dσ

dτ

∣∣∣∣
τ>0

=
αs
τ

[
Lf0(αsL

2) + f1(αsL
2) + τfnons1 (τ)

]
+
α2
s

τ

[
c21L+ c20 + τfnons2 (τ)

]
,

1

σB
σ(τ cut) = 1 + αs

[
L2
cut F0(αsL

2
cut) + Lcut F1(αsL

2
cut) + c1,−1 + F nons

1 (τ cut)
]
. (2.21)

Using these expressions yields for the inclusive cross section,

1

σB
σ =

1

σB
σ(τ cut) +

∫ 1

τcut
dτ

1

σB

dσ

dτ

= 1 + αs

[
c1,−1 + F nons

1 (1)
]
− α2

s

[c21
2
L2
cut + c20Lcut

]
. (2.22)

While the first two terms give the correct NLO inclusive cross section, the O(α2
s) terms

induced by the fixed NLO corrections in the spectrum formally scale as αs and α
3/2
s and

therefore spoil the formal O(αs) perturbative accuracy for the inclusive cross section and in

fact for any inclusive observable. This directly contradicts the claim in Refs. [26, 27] that this

description maintains the higher-order accuracy of the underlying matrix elements in their

respective phase space range. It only preserves the fixed O(αs) terms, which in the context

of combining fixed-order corrections with a logarithmic resummation is necessary but not

sufficient to preserve the higher perturbative accuracy.

This problem cannot be avoided by multiplying the α2
s corrections in the spectrum with

the LL parton shower Sudakov factors, since this does not provide the proper NLL′σ and

NNLLσ series. Note also that we have already assumed in eq. (2.22) that the full NLLσ series

is included in the spectrum and cumulant. In general, the parton shower cannot provide this,

which means there will be even α2
sL

3
cut ∼

√
αs terms induced in eq. (2.22).

Pragmatically, the inclusive cross section can be restored to formal O(αs) accuracy by

either explicitly including the corresponding α2
s corrections in the cumulant to cancel these

terms, where numerical methods to do so have been described very recently in Refs. [29, 36],

6One can see this for example in the case of 2-jettiness in figure 3 in section 3. Here, the NLL′+LO3 result

is much closer to the slightly higher NNLL′+NLO3 best prediction than the fixed NLO3 result. We have

checked that in this case, adding the NLO3 to the NLL′+LO3 by expanding it to O(α2
s) forces the result to

move in the wrong direction toward the lower NLO3.
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or alternatively by explicitly restricting the fixed NLO corrections in the spectrum to the

fixed-order region at large τ , such that the induced O(α2
s) terms in the total cross section are

not logarithmically enhanced and are formally O(α2
s). This is essentially the approach taken

in Ref [28]. However, neither of these approaches improves the perturbative accuracy in the

spectrum outside the fixed-order region.

2.2 What Monte Carlo Can Do for Resummation

For T being the resolution variable between N and more than N jets, we showed in the

previous subsection that combining the NLO matrix-element corrections for N and N + 1

partons at the level of the singly differential T spectrum is equivalent to combining the NNLL

resummation of the singular contributions with the higher-order nonsingular contributions.

Our goal now is to extend this singly differential description to the fully differential case, in

order to use the full N -parton and (N + 1)-parton information of the matrix elements. We

will use the notation (N)LON or (N)LON+1 to indicate up to which fixed order in αs the

N -parton or (N + 1)-parton matrix elements are included.

To start with, it is straightforward to generalize the jet resolution spectrum dσ/dT and

its cumulant σ(T cut) to include the full dependence on the N -body Born phase space,

dσ

dT
→ dσ

dΦNdT

σ(T cut) → dσ

dΦN
(T cut) =

∫
dT dσ

dΦNdT
θ(T < T cut) , (2.23)

such that eq. (2.4) becomes

dσincl
dΦN

=
dσ

dΦN
(T cut) +

∫
dT dσ

dΦNdT
θ(T > T cut) . (2.24)

Here, dσincl/dΦN is the inclusive N -jet cross section. The discussion in section 2.1 can be

precisely repeated in this case, since the perturbative structure of the differential spectrum

dσ/dΦNdT with respect to T is precisely the same as in eqs. (2.5) and (2.6). Namely, we can

write it as the sum of singular and nonsingular contributions,

dσ

dΦNdT
=

dσsing

dΦNdT
+

dσnons

dΦNdT
. (2.25)

The nonsingular contributions are general functions of ΦN and T , but as before are integrable

in T for T → 0. The singular contributions have the structure

dσsing

dΦNdT
=

dσB
dΦN

[
C−1(ΦN , αs) δ(T ) +

∑
n≥0

Cn(ΦN , αs)
1

Q
Ln
(T
Q

)]
, (2.26)

where dσB/dΦN is now the fully differential Born cross section. Since the singular contribu-

tions arise from the cancellation between virtual and real IR singularities, which only know

about ΦN , their T dependence naturally factorizes from the ΦN kinematics of the underlying
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hard process. This is what allows the resummation of the singular terms to higher orders

for a given point in ΦN . At LL, the entire ΦN dependence is that of the Born cross section.

At higher logarithmic orders this is not the case anymore, since the coefficients Cn can have

nontrivial ΦN dependence. In addition, the precise definition of T also becomes important.

Depending on its definition, the higher-order singular coefficients can depend on clustering

effects or other types of nonglobal logarithms [37–42] which can be difficult to resum to high

enough order with currently available methods. Therefore, it is important to choose a res-

olution variable with simple resummation properties. An example is N -jettiness for which

the complete NNLL resummation for arbitrary N is known [43, 44]. For the purpose of our

discussion below, we will assume that a resummed result for the spectrum and its cumulant

in eq. (2.24) at sufficiently high order is available to us.

We can think of the cumulant dσ/dΦN (Tcut) in eq. (2.24) as the exclusive N -jet cross sec-

tion with no additional emissions (jets) above the scale T cut, while the spectrum dσ/dΦNdT
for T > T cut is the corresponding inclusive (N + 1)-jet cross section. While the cumulant

dσ/dΦN (T cut) is differential in dΦN , and thus already as differential as it can be, the spec-

trum contains a projection from the full dΦ≥N+1 phase space down to dΦNdT . To also be

fully differential in the (N + 1)-jet phase space, we can generalize eq. (2.24) to

dσincl
dΦN

=
dσ

dΦN
(T cut) +

∫
dΦN+1

dΦN

dσ

dΦN+1
(T ) θ(T > T cut) , (2.27)

where dσ/dΦN+1(T ) denotes the fully differential spectrum for a given T ≡ T (ΦN+1). We

explicitly denote the dependence on T and T cut to clearly distinguish the spectrum from the

cumulant. We have also used the short-hand notation

dΦN+1

dΦN
≡ dΦN+1δ(ΦN − ΦN (ΦN+1)) , (2.28)

where ΦN (ΦN+1) denotes a projection from an (N + 1)-body phase space point to an N -

body phase space point. This projection defines what we mean by N jets at higher orders in

perturbation theory. Note that beyond LO, both the cumulant dσ/dΦN (T cut) and spectrum

dσ/dΦN+1(T ) must be well-defined jet cross sections, i.e., they require a specific IR-safe

projection from Φ≥k+1 to Φk for both k = N and k = N + 1. We will see below where this

definition enters. Using eq. (2.27) at the next-higher perturbative accuracy requires us to

combine the higher-order resummation in T for the cumulant and spectrum with the fully

exclusive N -jet and (N + 1)-jet fixed-order calculations at NLON and NLON+1. To achieve

this we have to construct appropriate expressions for the cumulant, dσ/dΦN (T cut), and the

spectrum, dσ/dΦN+1(T ), which we do in the next two subsections.

2.2.1 Matched Cumulant

We start by discussing the cumulant in eq. (2.27). Since the resummation is naturally differ-

ential in the dΦN of the underlying Born process, we can combine the resummed result with
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the fixed-order one by adding the fixed-order nonsingular contributions to it,

dσ

dΦN
(T cut) =

dσresum

dΦN
(T cut) +

[
dσFO

dΦN
(T cut)− dσresum

dΦN
(T cut)

∣∣∣∣
FO

]
. (2.29)

The first term contains the resummed contributions, while the difference of the two terms in

square brackets provides the remaining nonsingular corrections that have not already been

included in the resummation. The NLON fixed-order result is given by

dσNLO

dΦN
(T cut) = BN (ΦN ) + VN (ΦN ) +

∫
dT θ(T < T cut)

∫
dΦN+1

dΦNdT
BN+1(ΦN+1) , (2.30)

where BN , BN+1 are the N -parton and (N + 1)-parton tree-level (Born) contributions, VN is

the N -parton one-loop virtual correction, and we abbreviated

dΦN+1

dΦNdT
≡ dΦN+1 δ[T − T (ΦN+1)] δ[ΦN − ΦN (ΦN+1)] . (2.31)

Here, T (ΦN+1) implements the definition of T . The NLON result also depends on the

projection from ΦN+1 to ΦN , i.e., the precise NLO definition of ΦN . However, this dependence

only appears in the nonsingular corrections. For a given definition of T , the singular NLO

corrections do not depend on how the remaining ΦN+1 phase space is projected onto ΦN ,

since they arise from the IR limit in which all (IR-safe) definitions agree. In eq. (2.29), the

singular contributions inside the full fixed-order cumulant, dσFO/dΦN (T cut) are canceled by

the NLO expansion of the resummed result at NLL′σ or higher, leaving only the nonsingular

fixed-order contributions in square brackets.

2.2.2 Matched Spectrum

To properly combine the higher-order resummation in T with the fully differential (N+1)-jet

fixed-order calculation, the inclusive (N + 1)-jet spectrum dσ/dΦN+1(T ) in eq. (2.27) has to

fulfill two basic matching conditions,

Condition 1:

∫
dΦN+1

dΦNdT
dσ

dΦN+1
(T ) =

dσ

dΦN dT
, (2.32)

Condition 2:
dσ

dΦN+1
(T )

∣∣∣∣
FO

=
dσFO

dΦN+1
. (2.33)

The first condition states that integrating the fully differential spectrum over the additional

radiative phase space has to reproduce the correct spectrum in T including the desired resum-

mation and fixed-order nonsingular corrections, such that eq. (2.27) reproduces eq. (2.24).

The second condition states that the fixed-order expansion of the fully differential spectrum

has to reproduce the full (N + 1)-jet fixed-order calculation, where at NLON+1

dσNLO

dΦN+1
= BN+1(ΦN+1) + VN+1(ΦN+1) +

∫
dΦN+2

dΦN+1
BN+2(ΦN+2) . (2.34)
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Here, BN+1 and BN+2 are the (N + 1)-parton and (N + 2)-parton tree-level (Born) contri-

butions, and VN+1 is the (N + 1)-parton one-loop virtual correction. Integrating over dΦN+2

in the last term now requires a projection from ΦN+2 to ΦN+1,

dΦN+2

dΦN+1
≡ dΦN+2 δ[ΦN+1 − ΦN+1(ΦN+2)] , (2.35)

analogous to eq. (2.28), which now defines precisely what we mean by N + 1 jets at NLO.

In principle, there is some freedom to construct an expression for dσ/dΦN+1(T ) that

satisfies both conditions to the order one is working. Our master formula to combine the

resummed spectrum dσresum/dΦNdT with the fully differential dσFO/dΦN+1 is given by

dσ

dΦN+1
(T ) =

dσFO

dΦN+1

[
dσresum

dΦNdT

/
dσresum

dΦN dT

∣∣∣∣
FO

]
. (2.36)

Expanding the right-hand side to a given fixed order, we can see immediately that Condition

2 is satisfied by construction. Imposing Condition 1 yields the consistency (or “matching”)

condition
dσ

dΦNdT
=

[
dσFO

dΦNdT

/
dσresum

dΦNdT

∣∣∣∣
FO

]
dσresum

dΦNdT
. (2.37)

If the resummed result already has the nonsingular contributions at the desired fixed order

added in, then the term in brackets is by construction equal to unity for any value of T .

Otherwise, the expansion of the resummed result reproduces the singular terms of the full

fixed-order result, leaving the nonsingular fixed-order contributions, such that we get

dσ

dΦNdT
=

dσsing,resum

dΦNdT
+

dσnons

dΦNdT

[
dσsing,resum

dΦNdT

/
dσsing

dΦNdT

]
. (2.38)

Here dσsing,resum denotes the pure resummed result only containing the resummation of the

singular contributions. Hence, eq. (2.36) not only multiplies in the additional dependence on

ΦN+1/ΦN at fixed order, but if needed also adds the nonsingular corrections to the spectrum

multiplied by the higher-order resummation factor. (Note that for the expansion of the

resummed result to indeed reproduce all the singular terms at the desired fixed order, the

resummation has to be carried out to sufficiently high order, which we have already seen in

section 2.1.)

To apply Condition 1 we have to integrate eq. (2.34) using the projection onto ΦN and

T in eq. (2.31). Therefore, to get the correct T spectrum at NLON+1, the projection in

eq. (2.35) has to satisfy

T [ΦN+1(ΦN+2)] = T (ΦN+2) , (2.39)

i.e., it has to preserve the value of T when constructing the projected ΦN+1 point. Usually, the

simplest way to handle this would be to use the left-hand side to define T (ΦN+2). However,

in our case eq. (2.39) provides a very nontrivial condition on the projection, since T (ΦN+2)

is already defined by our choice of jet resolution variable, which in particular has to be
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inclusive N -jet exclusive N -jet inclusive (N + 1)-jet

notation fixed order accuracy log. order accuracy fixed order accuracy

LLT +LON+1 LON ∼ 1 LL ∼ α−1/2s LON+1 ∼ 1

NLLT LON ∼ 1 NLL ∼ 1 - -

NLLT +LON+1 LON ∼ 1 NLL ∼ 1 LON+1 ∼ 1

NLL′T +LON+1 NLON ∼ αs NLL′ ∼ α1/2
s LON+1 ∼ 1

NNLLT +NLON+1 NLON ∼ αs NNLL ∼ αs NLON+1 ∼ αs
NNLL′T +NLON+1 NLON ∼ αs NNLL′ ∼ α3/2

s NLON+1 ∼ αs

Table 1. Fixed and resummation orders and their achieved accuracy in αs.

resummable. This turns out to be a nontrivial technical challenge one has to overcome to be

able to satisfy Condition 1. We will see where this enters in section 3.1.2 and section 4.1.2.

Note that to ensure that the resummation factor in square brackets in eq. (2.36) is well

behaved in the fixed-order region at large T , it is important to turn off the resummation such

that the ratio of the resummed spectrum and its expansion becomes O(1) up to higher fixed-

order correction. In principle, the fixed-order result in the denominator can also become

negative at very small values of T . This is not a problem in practice, since this region is

explicitly avoided by imposing the cut T > T cut.

2.2.3 Perturbative Accuracy and Order Counting

The appropriate order counting in the resummation and fixed-order regions is precisely the

same as in section 2.1, so there is no need to repeat it here. Applying eq. (2.36) at the very

lowest order, namely LLσ resummation with LON+1 fixed-order corrections, we get

dσ≥N+1

dΦN+1

∣∣∣∣
T >0

= BN+1(ΦN+1) exp
[c11

2
αsL

2
]
, (2.40)

where BN+1(ΦN+1) scales as αs/T relative to BN (ΦN ) at small T , and we used that at LLσ
the ratio in brackets in eq. (2.36) is just the resummation exponent. This directly corresponds

to the CKKW-L procedure [1, 2, 33, 34], which multiplies the tree-level matrix elements with

the shower Sudakov factors. Hence, we can think of our master formula eq. (2.36) as a

consistent extension of this to higher orders.

As demonstrated in section 2.1, going to the next higher perturbative accuracy in all

phase space regions requires the NLL′σ and NNLLσ series of logarithms. We obtain these by

performing the full NLL′ and NNLL resummation in the exponent, as well as the fixed NLON

and NLON+1 corrections in the cumulant and spectrum, respectively. The resummation

naturally connects both jet multiplicities, since the NLON corrections are included in the

cumulant and are part of the resummation for the spectrum starting at NLL′, where they

effectively predict the singular NLON+1 contributions, and the full NLON+1 corrections are
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obtained by adding the nonsingular corrections to the spectrum. In the following, we will

use the notation (N)NLL′T +(N)LON+1 to indicate the resummation order for the employed

jet resolution variable together with the (N + 1)-jet fixed order. For simplicity we do not

explicitly denote the N -jet fixed order and keep it implicit in the resummation order, i.e.,

LON at (N)LL and NLON at NLL′ and above. This is summarized in Table 1.

An immediate and important question to ask is to what accuracy resummed spectra for

jet resolution variables other than T are predicted in our approach. A detailed theoretical

investigation of the formal resummation order one attains for other variables would be very

interesting, but is beyond the scope of the present work. What is certainly clear is that

other variables will not be resummed at the same formal level as the primary jet resolution

variable T itself. However, we know that other variables are correct to NLON+1, while at the

same time the inclusive cross section is not changed, as it is independent of which variable

one integrates over. This implies that the NLON+1 corrections for other variables do not

induce uncanceled higher-order logarithmic terms as in eq. (2.22), and hence some higher-

order resummation must be partially retained for other observables as well. Numerically, the

higher-order resummation in T provides an improved weighting of the IR region of phase

space, from which other variables are expected to benefit as well. We can validate to what

accuracy other variables are obtained by comparing predictions from our highest order to the

analytically resummed results for other observables, which we do in section 3.3.

2.3 Extension to More Jet Multiplicities

The method proposed in this paper is completely general and can be extended to more jet

multiplicities, essentially by iterating the procedure discussed in section 2.2. We start by

introducing separate jet resolution variables TN to distinguish N vs N + 1 jets, TN+1 to

distinguish N + 1 vs N + 2 jets, and so on. One can choose any IR-safe observable that

goes to zero in the limit of N pencil-like jets. For each N the inclusive N -jet cross section is

obtained by combining the cumulant and spectrum for TN as in eq. (2.27),

dσincl
dΦN

=
dσ

dΦN
(T cut
N ) +

∫
dΦN+1

dΦN

dσ

dΦN+1
(TN ) θ(TN > T cut

N ) ,

dσincl
dΦN+1

=
dσ

dΦN+1
(T cut
N+1) +

∫
dΦN+2

dΦN+1

dσ

dΦN+2
(TN+1) θ(TN+1 > T cut

N+1) ,

...

dσincl
dΦNmax

=
dσ

dΦNmax

(T cut
Nmax

→∞) . (2.41)

The exception is the highest jet multiplicity, Nmax, for which T cut
Nmax

= ∞, corresponding to

the fact that no additional jets are resolved.

For the cumulants in eq. (2.41), the discussion in section 2.2.1 applies separately for each

N , so the cumulants matched to higher resummed and fixed order are given as in eq. (2.29)
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by
dσ

dΦN
(T cut
N ) =

dσresum

dΦN
(T cut
N ) +

[
dσFO

dΦN
(T cut
N )− dσresum

dΦN
(T cut
N )

∣∣∣∣
FO

]
. (2.42)

The fully differential TN spectra dσ/dΦN+1(TN ) are now obtained recursively as follows.

We start with the highest jet multiplicity, Nmax, for which no resummation is needed since

T cut
Nmax

is essentially removed. Furthermore, the highest jet multiplicity is by construction only

required at leading order, where the result is simply given by the Born contribution,

dσ

dΦNmax

(T cut
Nmax

→∞) =
dσLO

dΦNmax

= BNmax(ΦNmax) . (2.43)

For each N < Nmax we apply the discussion in section 2.2.2. To combine the resumma-

tion in TN with the (N + 1)-jet fixed-order calculation, the fully differential TN spectrum

dσ/dΦN+1(TN ) must satisfy the matching conditions as in eqs. (2.32) and (2.33),∫
dΦN+1

dΦNdTN
dσ

dΦN+1
(TN ) =

dσ

dΦNdTN
, (2.44)

dσ

dΦN+1
(TN )

∣∣∣∣
FO

=
dσFO

dΦN+1
. (2.45)

These can be satisfied by a straightforward generalization of eq. (2.36),

dσ

dΦN+1
(TN ) =

dσincl
dΦN+1

[
dσresum

dΦNdTN

/
dσresum

dΦNdTN

∣∣∣∣
FO

]
. (2.46)

The prefactor on the right-hand side is now the inclusive (N + 1)-jet cross section from

eq. (2.41). This is what ties together the different jet multiplicities. The condition in eq. (2.45)

now leads to the consistency condition

dσincl
dΦN+1

∣∣∣∣
FO

=
dσFO

dΦN+1
, (2.47)

which states that for each N the cumulant and spectrum in TN+1 must be included to suffi-

ciently high order such as to reproduce the (N + 1)-jet fixed order that is required by the TN
spectrum. Imposing the condition in eq. (2.44) yields the consistency condition for the TN
spectrum

dσ

dΦNdTN
=

[ ∫
dΦN+1

dΦNdTN
dσincl

dΦN+1

/
dσresum

dΦNdTN

∣∣∣∣
FO

]
dσresum

dΦNdTN
, (2.48)

which is the generalization of eq. (2.37). To satisfy eq. (2.47) at NLON+1 it requires that

TN [ΦN+1(ΦN+2)] = TN (ΦN+2) , (2.49)

as in eq. (2.39). That is, for each N the projection from ΦN+2 to ΦN+1 which defines the

(N + 1)-jet cross section at NLO has to preserve the value of TN . In addition, eq. (2.48)
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requires that upon integration the TN+1 resummation contained in dσincl/dΦN+1 does not

interfere with the TN resummation, e.g., by inducing higher-order logarithms in TN . Since

eq. (2.41) relates the dσincl/dΦN to dσ/dΦN+1(TN ), the relationship in eq. (2.46) gives rise

to a recursive definition, which combined with the result for the highest jet multiplicity in

eq. (2.43) determines dσ/dΦN+1(TN ) for all N .

In the Monte Carlo implementation, the phase space is split up recursively as

dσmc≥N
dΦN

=
dσmcN
dΦN

(T cut
N ) +

∫
dΦN+1

dΦN

dσmc≥N+1

dΦN+1
θ(TN > T cut

N ) ,

dσmc≥N+1

dΦN+1
=

dσmcN+1

dΦN+1
(T cut
N+1) +

∫
dΦN+2

dΦN+1

dσmc≥N+2

dΦN+2
θ(TN+1 > T cut

N+1) , (2.50)

... ,

where in each step, the total cross section for N or more jets is separated into an exclusive

N -jet cross section, which is assigned to partonic events with N final-state partons, and the

integral over the remaining cross section for N+1 and more jets. For the highest multiplicity,

Nmax, the remaining cross section for Nmax or more jets is represented by events with Nmax

final-state partons.

Note that the structure of eq. (2.50) is very similar to eq. (2.41). The crucial difference

is that in eq. (2.50) each inclusive cross section on the left-hand side is the same that appears

under the integral on the right-hand side in the line above. By comparing eq. (2.50) with

eq. (2.41) and repeatedly inserting eq. (2.46) we obtain the higher-order “fully-resummed”

exclusive N -jet cross sections that serve as inputs to the Monte Carlo. Abbreviating the

resummation factor in eq. (2.46) as

UN (ΦN , TN ) =
dσresum

dΦNdTN

/
dσresum

dΦNdTN

∣∣∣∣
FO

, (2.51)

we obtain

dσmcN
dΦN

(T cut
N ) =

dσ

dΦN
(T cut
N ) ,

dσmcN+1

dΦN+1
(T cut
N+1) =

dσ

dΦN+1
(T cut
N+1)UN (ΦN , TN ) ,

...

dσmc≥Nmax

dΦNmax

=
dσ

dΦNmax

(T cut
Nmax

→∞)UN (ΦN , TN )UN+1(ΦN+1, TN+1)

× · · · × UNmax−1(ΦNmax−1, TNmax−1) . (2.52)

The careful reader will have noticed that the above is in one-to-one correspondence to the

structure generated by a parton shower with up to Nmax emissions. The crucial difference is

that in our case all ingredients are well-defined physical jet cross sections defined in terms
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of a global jet resolution variable. This allows us to systematically increase the perturbative

accuracy by computing the relevant ingredients to higher order in resummed and fixed-order

perturbation theory as well as to systematically estimate the perturbative uncertainties. The

analogous parton-shower-like structure underlies the CKKW-L ME/PS merging, which re-

places the splitting functions in the shower with the full tree-level matrix elements. Restrict-

ing eq. (2.52) to the lowest order as in eq. (2.40), it reduces to the ME/PS merging as a

special case.

In principle the above construction allows us go to even higher fixed and resummation

order, as long as the fixed-order ingredients are available and the resummation is known to

a correspondingly high enough order. It also lets us combine as many jet multiplicities as

we like at the order they are available. In particular, it is straightforward to add additional

multiplicities at the lowest accuracy in a CKKW-L-like fashion.

2.4 Attaching Parton Showering and Hadronization

In the Monte Carlo, a point in ΦN is represented by N (massless) four-vectors together with

the appropriate flavor information. We then generate events with N to Nmax partons and

assign the N -parton events the weight dσmcN /dΦN (T cut
N ), the (N+1)-parton events the weight

dσmcN+1/dΦN+1(T cut
N+1), and so on. The events with Nmax partons are assigned the weight

dσmc≥Nmax
/dΦNmax = BNmax(ΦNmax). The θ(TN > T cut

N ) functions in eq. (2.50) are included

in the weight, which means that all events with ≥ N + 1 partons that have TN < T cut
N get

zero weight.7 In this way, summing up the weights of all events we can integrate up the

cross sections in eq. (2.50), including arbitrary kinematic cuts in ΦN , ΦN+1, etc. What is

important is that although the events contain massless partons, they represent the exclusive

jet cross sections of eq. (2.52). (From the resummation point of view, the massless partons

represent the kinematics of the hard function.)

In the next step, the events are given as a starting point to a parton shower, whose

purpose it is to fill up the jets with additional emissions inside the jets. Formally, this

means that the shower should not be allowed to change the underlying distribution in the jet

resolution variable, since this has already been computed at the higher perturbative accuracy.

For example, starting from an event with N + 1 partons with kinematics ΦN+1 and weight

dσmcN+1/dΦN+1(T cut
N+1), the fully showered event should have the same jet kinematics ΦN+1 as

the unshowered event from which it originated. Most importantly, the showered event should

have the same value of TN (ΦN+1) and should have TN+1 < T cut
N+1, so it still has the correct

weight dσmcN+1/dΦN+1(T cut
N+1). (The shower itself does not change the weight of the event.) In

practice, this is quite a nontrivial constraint on the shower. The easiest way to enforce this is

to repeatedly run the shower on the same event until it produces an acceptable showered event,

where we allow the value of TN to be changed at most by a small numerical amount consistent

with a power correction. This method is of course computationally intensive (though it is

7Technically, the split up of phase space is usually flavor-aware. This means that an event with TN < T cut
N

is only set to zero if the closest two partons produce a QCD singularity.

– 22 –



not computationally prohibitive), since one may have to rerun the shower many times, and

it would be interesting to develop a more efficient way of constraining the shower for this

purpose. Notice that in this procedure no events are discarded so the cross section is not

changed.

In the final step, the showered event is passed to the hadronization routine. In this case,

there are no constraints on the kinematics of the hadronized event, i.e., the hadronization is

allowed to smear out the TN spectrum. The reason is that our perturbative calculation does

not take into account nonperturbative effects, but are instead supplied by the hadronization.

This is discussed in more detail in section 3.1.3.

3 Application to e+e− Collisions

In this section, we apply the framework described in section 2 to e+e− → 2/3 jets, imple-

mented in the Geneva Monte Carlo. The higher-order resummation for 2-jet event shapes in

e+e− collisions is very well understood and many precise measurements from LEP exist, which

are used, for example, for precise determinations of the strong coupling constant αs [45–51].

In this context, one important aspect is the interplay between both resummed and fixed-

order perturbative contributions with the nonperturbative corrections. Here, the Geneva

framework provides an important development by being able to combine the perturbative

higher-order resummation with the nonperturbative information provided by Pythia’s hadroniza-

tion model [52, 53]. For example, this allows us to use a common theoretical framework to

make predictions for different phase space regions and different observables.

The e+e− implementation also provides an important and powerful validation of our

approach and its practical feasibility, while avoiding the additional complications arising for

hadronic collisions, such as initial-state radiation and parton distribution functions (PDFs).

The implementation and first results for pp collisions are presented in section 4.

In our e+e− implementation, we use 2-jettiness, T2, as the 2-jet resolution variable, which

is defined as [43]

T2 = Ecm

(
1−maxn̂

∑
k|n̂ · ~pk|∑
k|~pk|

)
, (3.1)

and is simply related to thrust T [30] by T2 = Ecm(1− T ). Its kinematic limits are 0 ≤ T2 ≤
Ecm/2. In the limit T2 → 0, there are precisely 2 pencil-like jets in the final state, while for

T2 ∼ Ecm, there are 3 or more jets. We perform the resummation in T2 to NNLL′ and include

the full NLO2, NLO3, and LO4 fixed-order matrix elements, i.e., we obtain NNLL′T +NLO3

predictions.

The default running parameters for our e+e− studies are Ecm = 91.2 GeV, αs(mZ) =

0.1135, and Pythia 8.170 with e+e− tune 1.8 Using this value of αs(mZ) is motivated by

the fact that it was obtained from fits to the thrust spectrum using N3LL′ resummation.

8The αs value used inside Pythia’s parton shower is not changed from the value set in the tune. This

is not inconsistent, since here the strong coupling functions as a phenomenological parameter, regulating the

amount of showering.
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These fits were performed in a region (corresponding to 6 GeV ≤ T2 ≤ 30 GeV for our Ecm)

where the nonperturbative corrections due to hadronization are power suppressed and can

be described by a single nonperturbative parameter, which leads to a shift in the spectrum

and is included in the fit in Ref. [49]. We find that this value of αs(mZ), in conjunction with

Pythia’s tune 1, provides overall the best description of the data, including the peak region

below T2 ≤ 6 GeV and other 2-jet event shapes. For comparison, we show results using the

world average αs(mZ) = 0.1184 [54] as well as from using Pythia tune 3.

In the next subsection, we summarize the various ingredients that go into the master

formula, with the intention of giving a concise and informative overview, while leaving a de-

tailed discussion of our implementation to a separate publication. In section 3.2, we discuss

the T2 spectrum, validating our implementation using analytic predictions as well as compar-

ing our results to LEP data. In section 3.3, we present our results for other 2-jet variables,

namely C-parameter, heavy jet mass, and jet broadening, comparing Geneva’s predictions

at NNLL′T +NLO3 to the analytic higher-order resummation for each variable as well as to

the experimental measurements. In all cases, we find good consistency and agreement with

the data.

3.1 Ingredients

The master formula is given by

dσincl
dΦ2

=
dσ

dΦ2
(T cut

2 ) +

∫
dΦ3

dΦ2

dσ

dΦ3
(T2) θ(T2 > T cut

2 ) , (3.2)

where

dσ

dΦ2
(T cut

2 ) =
dσresum

dΦ2
(T cut

2 ) ,

dσ

dΦ3
(T2) =

dσincl
dΦ3

(
dσresum

dΦ2dT2

/
dσresum

dΦ2 dT2

∣∣∣∣
FO

)
. (3.3)

Its three key ingredients are the higher-order resummation of 2-jettiness, which we include

at NNLL′T +LO3, the full fixed-order matrix elements at NLO2, NLO3, and LO4, and the

interface to parton showering and hadronization, for which we use Pythia 8.

Following the construction in section 2.3 with Nmax = 4, the inclusive 3-jet cross section

is separated into 3 and 4 or more jet contributions using 3-jettiness, T3, as our 3-jet resolution

variable,

dσincl
dΦ3

=
dσ

dΦ3
(T cut

3 ) +

∫
dΦ4

dΦ3

dσ

dΦ4
(T3) θ(T3 > T cut

3 ) . (3.4)

For e+e− collisions, N -jettiness is defined by [43]

TN =
∑
k

min
i

(
Ek − n̂i · ~pk

)
, (3.5)
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Fixed-order corrections Resummation input

singular nonsingular γx Γcusp β

LL LO2 - - 1-loop 1-loop

NLL LO2 - 1-loop 2-loop 2-loop

NLL′ NLO2 - 1-loop 2-loop 2-loop

NLL′+LO3 NLO2 LO3 1-loop 2-loop 2-loop

NNLL+LO3 NLO2 LO3 2-loop 3-loop 3-loop

NNLL′ NNLO2 - 2-loop 3-loop 3-loop

NNLL′+NLO3 NNLO2 NLO3 2-loop 3-loop 3-loop

Table 2. Perturbative inputs included at a given order in resummed and fixed-order perturbation

theory. The columns in the resummation input refer to the noncusp anomalous dimension (γx), the

cusp anomalous dimension (Γcusp), and the QCD beta function (β).

where i = 1, · · · , N and n̂i is a unit vector along the direction of the ith jet, where the jet

directions can be determined by a jet algorithm or by directly minimizing TN .9 There are N

pencil-like jets in the limit TN → 0 and N or more jets in the limit TN ∼ Ecm.

As discussed in section 2.3, the master formula naturally incorporates the resummation of

the 3-jet resolution variable in eq. (3.4) and extends to higher jet multiplicities, i.e., Nmax > 4.

However, since our current focus is on the main conceptual development of combining the

higher-order resummation with the fixed NLO matrix elements for 2 and 3 jets, we leave these

extensions to future work. As we will not be interested in the T3 spectrum or other exclusive

3-jet observables, it is sufficient for our purposes to calculate the two terms on the right-hand

side of eq. (3.4) at fixed order. Thus, we use

dσ

dΦ3
(T cut

3 ) =
dσFO

dΦ3
(T cut

3 ) ,
dσ

dΦ4
= B4(Φ4) . (3.6)

In the results that follow, we use T cut
3 = 2 GeV and a T cut

2 value between 0.5−1 GeV, which is

selected randomly from a flat distribution. This smoothing out of T cut
2 avoids small numerical

discontinuities that can arise with a sharp cutoff.

3.1.1 Resummation

Our jet resolution variable, T2, has the important property that it can be factorized. The

factorization theorem for the T2 spectrum provides the resummed prediction that is one of the

primary inputs to our master formula in eq. (3.3). It is obtained by using the framework of Soft

Collinear Effective Theory (SCET) [57–60] and allows the resummation to be systematically

9This definition agrees with T2 in eq. (3.1) for massless final state particles, which is the limit in which

resummation is carried out. It does affect the nonperturbative corrections when including hadron masses [55,

56]. We use the definition of T2 in eq. (3.1) to be able to directly compare to the experimental data for thrust.
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carried out to higher orders and combined with the nonsingular fixed-order result. Our

highest-order resummed input to the master formula has NNLL′ resummation. We use the

standard resummation formalism, where the large logarithms are resummed in the exponent

of the cross section, with the corresponding resummation orders summarized in table 2.

We write the jet resolution distribution in T2 as

dσresum2

dΦ2 dT2
=

dσsing2

dΩ2 dT2
+

dσnons2

dΩ2 dT2
, (3.7)

where the separation into singular and nonsingular contributions was discussed in section 2.2

(see eq. (2.25)). The singular contribution is given by [61, 62]

dσsing2

dΩ2 dT2
=

dσB
dΩ2

H2(E
2
cm, µ)

∫
ds1ds2 J1(s1, µ) J2(s2, µ)S2

(
T2 −

s1
Ecm

− s2
Ecm

, µ
)
. (3.8)

Here dΦ2 = dΩ2 = d cos θdφ is the angular phase space for the orientation of the thrust axis

with respect to the beam and dσB/dΩ2 is the tree-level 2-parton cross section. Note that

the overall dependence on Ω2 here is that of the Born cross section, which is correct in the

limit T2 → 0 in which the eq. (3.8) is obtained. The hard function H2 in eq. (3.8) contains

the fixed-order 2-parton matrix elements, which describe the short-distance corrections at

the scale Ecm. The jet functions J1 and J2 describe the back-to-back collinear final-state

radiation along the thrust axis and the soft function S2 describes the soft radiation between

the jets. The soft function contains perturbative and nonperturbative components, which can

be separated as [63–65]

S2(T2, µ) =

∫
dk Spert

2 (T2 − k, µ) f(k, µ) , (3.9)

where Spert
2 (T2 − k, µ) is the perturbative soft function, while the shape function f(k, µ) de-

scribes the nonperturbative hadronization corrections. For T2 ∼ ΛQCD, the shape function

gives an O(1) contribution to the cross section, while for T2 � ΛQCD, it can be expanded

and only the leading O(ΛQCD/T2) nonperturbative power correction is relevant. For further

discussion and the derivation of the factorization theorem, see Refs. [61, 62]. The resummed

prediction used in Geneva only includes the perturbative soft function, while the nonpertur-

bative corrections are provided by the hadronization in Pythia.

The nonsingular contribution in eq. (3.7) is given by the spectrum at fixed order with the

singular terms subtracted. It includes all O(T2/Ecm) corrections to the singular distribution

to a given order in αs. TheO(αs) nonsingular corrections in T2 are known analytically and can

be taken from Ref. [49], so we include them in our resummed result. Each function in eq. (3.8)

depends on the renormalization scale µ and the characteristic scale of the physics it describes.

These are µH ∼ Ecm, µJ ∼
√
T2Ecm, and µS ∼ T2 for the hard, jet, and soft functions,

respectively. Renormalization group evolution (RGE) between the soft, collinear, and hard

scales resums the logarithms of the form lnµS/µH ∼ ln T2/Ecm and lnµ2J/µ
2
H ∼ ln T2/Ecm
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in the factorized singular distribution in eq. (3.8). The anomalous dimensions and singular

fixed-order corrections required at a given resummation order are summarized in table 2.

The resummed cumulant in eq. (3.3) is obtained in an analogous way to the resummed

T2 distribution. It is given by a singular and nonsingular component

dσresum2

dΦ2
(T cut

2 ) =
dσsing2

dΩ2
(T cut

2 ) +
dσnons2

dΩ2
(T cut

2 ) , (3.10)

where the singular contribution is obtained by integrating eq. (3.8) over T2 from 0 to T cut
2 . The

nonsingular contribution to the cumulant is given by the difference between the fixed-order

result and the resummed singular terms expanded to fixed order.

The perturbative uncertainties in the resummed spectrum are estimated by scale vari-

ation and receive a contribution from two distinct sources, the fixed-order corrections and

the higher-order logarithmic resummation. The fixed-order uncertainties are estimated by a

correlated overall variation of all scales by factors of two. The resummation uncertainties are

instead estimated by varying the lower scales µJ(T2) and µS(T2), which are functions of T2,
and are referred to as profile scales [49, 65, 66]. The profile scales satisfy the criteria that

in the resummation region, µJ,S(T2) have their canonical scaling (given above) and in the

fixed-order region, µJ,S(T2) ∼ µH , which turns off the resummation. In the transition region

the profile scales provide a smooth interpolation between the resummation and fixed-order

regions. These three regions are determined based on where the fixed-order singular contribu-

tions dominate over the nonsingular ones. The variations in the profile scales subject to the

above constraints determine the resummation uncertainty, where we take the largest absolute

variation from the central scale. The resummation uncertainties are combined in quadrature

with the fixed-order uncertainties to generate our theory uncertainty estimate. For a given

partonic event in Geneva each profile scale variation gives rise to a different event weight,

which is computed analytically. Hence, we can provide each event with its own perturbative

uncertainty estimate by assigning it several weights from the profile scale variation in addition

to its central weight.

3.1.2 Fixed Order

As we can see from eqs. (3.4) and (3.6), we need the 3-jet cumulant dσ/dΦ3(T cut
3 ), as well

as the Born 4-parton cross section B4(Φ4). The Born 4-parton cross section is trivial and

requires no further discussion. To calculate the 3-jet cumulant at NLO3, we use the generic

formula given in eq. (2.34)

dσ

dΦ3
= B3(Φ3) + V3(Φ3) +

∫
dΦ4

dΦ3
B4(Φ4) θ(T3 < T cut

3 ) , (3.11)

where
dΦ4

dΦ3
≡ dΦ4 δ[Φ3 − ΦT3 (Φ4)] . (3.12)
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The projection ΦT3 (Φ4) defines what we mean by Φ3 at NLO3. It implicitly depends on our

choice of resolution variable, since eq. (2.39) requires it to satisfy

T2[ΦT3 (Φ4)] = T2(Φ4) . (3.13)

To deal with the IR singularities that are present both in V3 and in the integral of B4

over Φ4, we use the FKS subtraction method [67]. We introduce a set of projecting functions,

θTm(Φ4), that partition the phase space into nonoverlapping regions, such that
∑

m θ
T
m(Φ4) = 1.

In our case this partition is effectively determined by the resolution variable, which is indicated

by the superscript. The resulting partition must be such that each region m contains at most

one collinear and one soft singularity. Then, we can write

dΦ4 =
∑
m

dΦ3 dΦm
rad θ

T
m(Φ3,Φrad) , (3.14)

where Φm
rad denotes the radiative phase space describing a 1→ 2 splitting in each region.

For each region m we define a mapping that identifies which particle in Φ3 is undergoing

the 1→ 2 splitting which generates the

Φm
4 ≡ Φm

4 (Φ3,Φ
m
rad) (3.15)

phase space point. It also unequivocally defines how the recoil is shared amongst the remaining

particles in the event, which is needed to enforce total momentum conservation. Notice that

our definition of the θTm-functions leaves us the freedom to include phase space regions in the

partition which do not contain any IR singularity. This freedom is in fact essential to be able

to satisfy Condition 1 in eq. (2.32), namely, to ensure that in each phase space region the

correct functional form for the resolution variable T2(Φ4) is used. For example, in e+e− → qq̄g

production, the region in which the quark and antiquark are closest to each other does not

contain any QCD singularity. Nevertheless, it must be treated as a separate region in the

phase space partition, since in this region the invariant mass between the quark and antiquark

determines the value of T2.
With this notation, one can write

dσ

dΦ3
= B3(Φ3) + V3(Φ3) +

∑
m

∫
dΦm

radB4(Φ
m
4 )θTm(Φ3,Φ

m
rad)θ(T3 < T cut

3 ) . (3.16)

If the region m contains an IR divergence, the FKS subtraction requires one to define the

soft, collinear, and soft-collinear limits of Φm
rad, which we denote as Φm,s

rad , Φm,c
rad , and Φm,cs

rad ,

respectively, together with the resulting points in the 4-body phase space Φm,s
4 , Φm,c

4 , and

Φm,cs
4 . We can then write

dσ

dΦ3
=B3(Φ3) + V3(Φ3) + I(Φ3) +

∑
m

∫
dΦm

rad

[
B4(Φ

m
4 )θTm(Φ3,Φ

m
rad)θ(T3 < T cut

3 )

−
dΦm,s

rad

dΦm
rad

B4(Φ
m,s
4 )θsm(Φ3,Φ

m,s
rad )−

dΦm,c
rad

dΦm
rad

B4(Φ
m,c
4 ) +

dΦm,cs
rad

dΦm
rad

B4(Φ
m,cs
4 )

]
(3.17)

– 28 –



where θsm encodes the soft limit of the θTm-functions and we have used the fact that in the

collinear and soft-collinear limits the θTm-functions are trivially satisfied. Also, since in each

of these limits T3 ≡ 0, the θ(T3 < T cut
3 ) functions are satisfied by construction.

If m is not singular, in principle no such subtraction is needed and one could simply

evaluate the 4-parton tree-level matrix element B4(Φ
m
4 ). However, given that the integral

of the subtraction counterterms over the whole phase space is known analytically for both

massless and massive partons [17, 67, 68]

I(Φ3) =
∑
m

[ ∫
dΦm,s

radB4(Φ
m,s
4 )θsm(Φ3,Φ

m,s
rad ) +

∫
dΦm,c

radB4(Φ
m,c
4 )

−
∫

dΦm,cs
rad B4(Φ

m,cs
4 )

]
, (3.18)

we found it easier not to restrict the integration of the subtraction counterterms only in the

singular regions of phase space but to extend it across all of phase space.10 This ensures the

complete cancellation of and the independence of the final results from the subtraction terms.

The procedure outlined above takes care of all IR divergences, making the integrand in the

square brackets of eq. (3.17), as well as the sum of V (Φ3) + I(Φ3), IR finite.

The crucial point, discussed in section 2.2.2, is that our construction requires the phase

space map that generates Φm
4 (Φ3,Φ

m
rad) to preserve the value of T2, i.e.

T2[Φm
4 (Φ3,Φ

m
rad)] = T2(Φ3) . (3.19)

Comparing this to eq. (3.13) we see that the map Φm
4 (Φ3,Φ

m
rad) must be precisely the inverse

of ΦT3 (Φ4) in the region m. In principle, this condition can be relaxed to only hold up to

power corrections. Additionally, the map can fail to preserve T2 in a region of phase space

that gives a power suppressed contribution to the cross section. The phase space maps used

in the standard FKS implementations [16, 67] were not designed to preserve the value of

T2, and thus they change its value by an O(T3/T2) amount over a large region of phase

space11. Since 4-parton events with T3 < T cut
3 and T2 > T cut

2 are the only real emission

contributions included in the NLO calculation for the 3-jet cumulant, eq. (3.11), one can

impose the restriction T cut
3 � T cut

2 and use the standard FKS phase space maps. However,

this hierarchy strongly restricts T cut
3 , and it is preferable to define a map that is specifically

designed for our goals. We have constructed such a map, which preserves the exact value

of T2 up to power corrections, except in a region of phase space whose contribution to the

cross section scales as O(T2/Ecm). In this region, the value of T2 is altered by an O(T3/T2)
amount, meaning the net correction scales as O(T3/Ecm). Therefore, enforcing the much

looser constraint T cut
3 � Ecm is sufficient to achieve our purposes. We postpone the detailed

discussion of this map to a dedicated publication describing the implementation of Geneva.

10These integrals can also easily be defined by restricting the integration on the FKS variable ξ up to some

ξcut value. These are however not in direct correspondence to the partition of phase space we are considering.
11Generically, an emission that takes a 3-parton event to a 4-parton event will change T2 by the scaling

T2(Φ4)− T2(Φ3) ∼ T3.
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3.1.3 Parton Shower and Hadronization

The phase space points Φ2 and Φ3 represent jet kinematics, which are defined by the jet

resolution variable, 2-jettiness. As discussed in section 2.4, we require that the parton shower

does not change the underlying hard jet distribution so that the higher-order weights we

calculate, dσ/dΦ2(T cut
2 ) and dσ/dΦ3(T2), are correctly assigned. The parton shower, however,

does not preserve the value of T2. We address this problem in our current implementation

in a physically motivated way. For small T2 the resummed singular jet resolution spectrum

dominates and is determined up to power corrections of order λ ∼ T2/Ecm. We require that

for Φ≥3 events, the change in T2 due to showering, ∆T2, satisfies ∆T2/T2 < λ. This represents

a power correction to the 2-jettiness spectrum, which scales as 1/T2 for small T2. We also

require that Φ2 events, which have T2 = 0 when unshowered, remain in the 2-jet bin after

showering up to a power suppressed correction, with T2 < T cut
2 (1 + λ′). The results shown in

this section use λ = 2λ′ = 0.05.

Furthermore, the shower must also be restricted to not change the NLO3 result. This

requires that for 3-parton events we effectively only allow showers to start from T cut
3 . Likewise

we limit the showering of 4-partons events down from their T3(Φ4) value. This can be seen

as a proxy for what would be the correct approach in a TN -ordered shower.

We use Pythia 8.170 with e+e− tune 1 for showering and hadronization. The choice of

tune for e+e− data in Pythia affects both the time-like showering and hadronization model.

However, since in our implementation we restrict the shower from changing the T2 spectrum,

the effect of changing the tune in Pythia primarily reflects the uncertainty from hadroniza-

tion in Geneva. We have checked that this is also the case for observables other than T2, by

verifying that the effect of the tune on the showered Geneva predictions is very small com-

pared to the change due to hadronization. The uncertainty from hadronization is associated

with the nonperturbative contribution to the soft function in eq. (3.9) in our framework and

is not included in our event-by-event perturbative uncertainties. As an indication of the size

of the uncertainty from hadronization we also show Geneva hadronized results using e+e−

tune 3.

It is important to note that we use the standard tunes in Pythia, without changing any

internal parameters. Since in our approach the shower evolution in standalone Pythia 8 is

substituted with higher-order resummation above the 2-jet resolution scale, we advocate that

a separate tuning of Geneva + Pythia 8 should be employed to obtain the best results.

3.2 Validation Using the Jet Resolution Spectrum

Before comparing the Geneva prediction for various e+e− spectra to analytic predictions

and LEP data, we first validate the implementation of our procedure to combine higher-order

resummation and full NLO matrix-element corrections by using the jet resolution spectrum.

At the level of the singly differential T2 spectrum only, the standard approach to resummation

achieves the same matching between resummation and fixed order by adding the nonsingular

contribution to the resummed result. This provides a nontrivial cross check of the mas-
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ter formula and in particular validates the event-by-event theory uncertainties generated by

Geneva. For each comparison in this section, we show the peak, transition, and, tail regions,

described in section 2.1, at the LEP center-of-mass energy Ecm = 91.2 GeV. In all cases the

error bars or bands on the Geneva histograms are built from its event-by-event perturbative

uncertainties. The statistical uncertainties from Monte-Carlo integration are much smaller

and not shown.

3.2.1 Partonic Results

The analytic resummed T2 spectrum is shown in figure 2 at successively higher orders: NLL,

NLL′+LO3, and NNLL′+NLO3 (see table 2 for the order counting definitions). The per-

turbative uncertainties are generated by using the same profile scale variations employed in

Geneva and discussed in section 3.1.1. The theory uncertainties decrease at increasing order

and demonstrate excellent convergence at all values of T2. Below T2 < 0.5 GeV, we enter

the purely nonperturbative region and the scale uncertainties diverge since even resummed

perturbation theory breaks down. In the far tail the scale uncertainties also grow rapidly,

which reflects missing higher fixed-order corrections. The uncertainties in the NNLL′+NLO3

prediction diverge past the 3 parton endpoint at Ecm/3, where the fixed-order prediction

is only correct at leading order for 4 partons. In the transition region there is a smooth

interpolation between the resummation and fixed-order regions.

In figure 3 we compare the partonic T2 spectrum from Geneva with T cut
2 = 1 GeV to the

analytic resummed results from figure 2. To illustrate the interpolation between resummed

and fixed-order results we also show the pure resummed results at NLL′ and NNLL′ and the

pure fixed-order contribution at LO3 and NLO3. The latter are calculated using Event2 [69,

70] which serves as an independent cross check of our NLO3 implementation. Using the

NLL′+LO3 resummation of T2 and the LO3 fixed-order contribution as inputs to our master

formula for the spectrum in eq. (3.3), the dσFO/dΦ3 and dσresum/dΦ2dT2
∣∣
FO

contributions

exactly cancel for the T2 spectrum. As a result, we see precise agreement between Geneva

and the analytic NLL′+LO3 result in figure 3(a)-3(c) in the peak, transition, and tail regions.

This result agrees well with the pure NLL′ resummed contribution in the peak, while in

the tail it is consistent within uncertainties with the LO3 result, where the latter clearly

underestimates the full perturbative uncertainties.

At next higher order using as inputs to the master formula the NNLL′+LO3 resummation

of T2 and the NLO3 fixed-order calculation, we see that the central value and event-by-event

uncertainties in Geneva agree very well with the full analytic NNLL′+NLO3 resummed

prediction in the peak and transition regions, as shown in figures 3(d) and 3(e). In the tail

region, figure 3(f), Geneva has significantly smaller uncertainties of the same size as the pure

fixed-order contribution. This is because there is a substantial cancellation between singular

and nonsingular contributions in this region, which is incorporated differently in the analytic

resummation and the master formula at NNLL′+NLO3. For the former, the nonsingular α2
s

contribution are added. This preserves the absolute size of residual resummation uncertain-

ties, which are very small relative to the singular contributions but large relative to the total
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Figure 2. Analytic resummation of T2 matched to fixed order. The central value is shown along

with the band from scale uncertainties, as discussed in section 3.1.1, at NLL, NLL′+LO3, and

NNLL′+NLO3.

result after cancellation. In the master formula in eq. (3.3), the nonsingular contributions are

incorporated multiplicatively through the ratio of dσFO/dΦ3 and dσresum/dΦ2dT2
∣∣
FO

. This

preserves the relative size of residual resummation uncertainties, thus leading to much smaller

absolute variations when compared to the final result. Comparing the Geneva prediction

with the pure NNLL′ resummed and NLO3 fixed-order results, we see that the master formula

precisely interpolates as expected between the fixed-order and resummation regions, with the

transition region properly describing the transition between the two, including uncertainties.

Combining the exclusive 2-jet cross section with the integral of the inclusive 3-jet cross

section, the Geneva prediction at NNLL′+NLO3 formally reproduces the total inclusive cross

section at NLO. Numerically, we have σNLO
tot = 44.1 ± 0.2 nb. With T cut

2 smeared between

0.5− 1 GeV the total inclusive cross section in Geneva is σGeneva
tot = 42.5± 1.6 nb, where the

uncertainties are given by integrating over the different profile scale variations. The central

value is 3.8% low and agrees within the uncertainties of ±3.8%. The uncertainty in Geneva
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Figure 3. The Geneva partonic NLL′+LO3 result is shown compared to the analytic resummation

of T2 matched to fixed order at NLL′+LO3 in the (a) peak, (b) transition, and (c) tail regions. Also

shown for comparison is the pure resummed result at NLL′ and the fixed-order LO3 contribution.

Figures (d), (e), and (f) show the Geneva partonic result at NNLL′+NLO3 compared to the analytic

resummation of T2 matched to fixed order at NNLL′+NLO3. The pure NNLL′ resummation and

fixed-order NLO3 result are also shown for comparison.

that comes from integrating the spectrum over T2 > T cut
2 as in eq. (2.4) is much larger than the

fixed-order uncertainty. The reason is that at any given point in the spectrum, but especially

in the peak region, the relative uncertainties, reflecting both shape and normalization, are

larger than in the total cross section. Hence, when integrating the spectrum to obtain the

total cross section the uncertainties in the spectrum must cancel each other, meaning there is a

negative correlation in the uncertainties between different regions in the spectrum. When the

resummation and matching to fixed order is performed for the spectrum, this correlation and

cancellation is numerically not exact for the total cross section. This is a well-known limitation

of analytic resummation [49]. In fact, the result from Geneva is completely consistent with

the inclusive cross section obtained using the analytic resummed result in eq. (2.4) with

σ(T cut
2 ) calculated at NNLL′+LO3 and the dσ/dT2 calculated at NNLL′+NLO3. In this

case, with T cut
2 = 1 GeV, the central value is 2.9% low with uncertainties of ±3.7%. One

way to solve this problem would be to enforce a (highly nontrivial) constraint on the profile

scale variation to reproduce the required correlation exactly, in which case also the total

cross section would come out exactly right. In practice, a simpler way to enforce this is to

compute the result for the resummed cumulant as the difference between total cross section

and integrated resummed spectrum. (This is similar in spirit to the method proposed in
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Figure 4. The T2 distribution at NNLL′+NLO3 from Geneva before and after showering with

Pythia 8 in the (a) peak, (b) transition, and (c) tail regions of the distribution. The analytic

resummed result at NNLL′+NLO3 and the fixed-order NLO3 contribution are shown for comparison.

Refs. [29, 36].) Since our focus in this paper is the differential spectrum, which serves as the

primary input to the Monte Carlo, rather than the total cross section, we leave this for future

improvement.

3.2.2 Showered Results

Next we validate our interface with the parton shower. In figure 4, we compare the NNLL′+NLO3

partonic and showered Geneva predictions with T cut
2 smeared between 0.5−1 GeV. We also

show the analytic resummed NNLL′+NLO3 and pure fixed-order NLO3 spectra for compari-

son. Before showering, the cumulant dσ/dΦ2(T cut
2 ) is in the T2 = 0 GeV bin and we see the

effect of the smeared T cut
2 on the spectrum in the Geneva partonic histogram in figure 4(a).

The parton shower generates emissions inside the 2-jet bin, which fills out and determines the

shape of the Geneva showered result in the region below T cut
2 and agrees remarkably well

with analytic resummed spectrum below the cut. We can see this explicitly in figure 5 from
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Figure 5. The peak region of the T2 distribution from Geneva after showering with Pythia 8. The

contribution from showered events originating from 2-, 3-, and 4-parton events is shown along with

their sum, including scale variation (blue band histogram).

the separate contribution of 2-, 3-, and 4-parton events after showering for the central value

in the peak region. The shape of the 2-parton showered histogram is determined by Pythia

and the area under the histogram is the cumulant dσ/dΦ2(T cut
2 ) calculated at NNLL′+LO3.

The relative contribution of 3-parton and 4-parton events is determined by T cut
3 = 2 GeV,

for which the 4-parton contribution is well behaved, giving 15% of the total cross section

and no large cancellation with 3-parton events. These contributions all combine smoothly to

generate the total Geneva showered result.

The action of the shower on 3-parton and 4-parton events, which make up the spectrum

above T cut
2 , is restricted to not change T2 by more than a power suppressed amount λ T2,

as discussed in section 3.1.3. This controls the allowed shift from the Geneva partonic to

showered histograms in figure 4. We can see that there is excellent agreement, including

uncertainties, between the two in the peak and transition regions. This validates that with

our choice of λ, the higher-order accuracy of the resummed T2 spectrum is not compromised

by the shower. (Increasing λ, we do observe at some point a shift of showered results away

from partonic.) The showering does shift the T2 spectrum in the far tail away from the

partonic result which matches the NLO3 curve, as can be see in figure 4(c). This is allowed,

since our partonic prediction in this region becomes only leading order for 4 partons.

3.2.3 Hadronized Results and Comparison to Data

The full prediction for the jet resolution spectrum is obtained by turning on the hadronization

in Pythia. This gives rise to a shift in the T2 spectrum, shown in figure 6, where “default”

refers to the default running parameters αs(mZ) = 0.1135 and Pythia e+e− tune 1. As

discussed in section 3.1.3, we use the standard Pythia 8 tunes without modifying any internal

parameters. For comparison we show the Geneva hadronized result for tune 3 as well as

for tune 1 with the world average value αs(mZ) = 0.1184. We also show a comparison to
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Figure 6. The showered NNLL′+NLO3 Geneva prediction with and without hadronization using

the default values Pythia 8 e+e− tune 1 and αs(mZ) = 0.1135 compared to data from ALEPH [71] in

the (a) peak, (b) transition, and (c) tail regions and to OPAL [72] in the peak and transition regions.

The ratio of Geneva predictions to the ALEPH data is shown in (d). Also shown is the Geneva

prediction at the central scale with αs(mZ) = 0.1184 and e+e− tune 3.

experimental data from ALEPH [71] and OPAL [72]. We only show ALEPH data in the tail,

since the OPAL data in this region is sparse. These measurements are fully corrected to the

particle level, allowing us to directly compare to our hadronized predictions. Since the data

are normalized to the total cross section, we rescale them to the total NNLO cross section

and convert from thrust T to T2 = Ecm(1− T ). This allows us to directly compare the data

to the absolute cross section predictions in Geneva, unlike a comparison between normalized

spectra which would only test the shape. The Geneva prediction at the default values agrees

impressively well with the data within uncertainties across the peak and transition regions

and into the tail. The difference in the far tail is expected since here fixed-order contributions

beyond LO4 are important, which are not yet included in our results.

The partonic Geneva prediction does not include nonperturbative effects in the soft
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function of O(ΛQCD/T2), nor power corrections of the form O(ΛQCD/Ecm). Since we strongly

constrain the action of the Pythia parton shower to not change the analytic resummed

NNLL′+NLO3 result as discussed in section 3.1.3 and demonstrated in figure 4, we expect the

hadronization in Pythia to supply these missing nonperturbative effects. In effect, Pythia

provides a well-tested model of the nonperturbative soft function in eq. (3.9). We show the

hadronized Geneva result with Pythia e+e− tune 3 at the central scale in figure 6 as a

measure of the uncertainty from hadronization. Tune 3 turns out to give a smaller shift due

to hadronization than tune 1, which makes a significant difference in the peak below . 3 GeV,

where nonperturbative corrections are O(1) and depend on the details of the hadronization

model. In the transition and tail regions, we see a smaller difference with tune 3 being

systematically lower than tune 1. This is consistent with the fact that the transition and tail

regions are sensitive to only the first nonperturbative power correction in the soft function of

O(ΛQCD/T2).
There is an important interplay between the effect of hadronization and the value of

αs(mZ), as discussed in Ref. [49] where a simultaneous fit to αs(mZ) and the first nonper-

turbative correction to the soft function of O(ΛQCD/T2) was carried out. Generically, larger

nonperturbative corrections shift the partonic spectrum to larger values of T2, while a smaller

value of αs(mZ) shifts the 2-jettiness spectrum downwards. This gives rise to compensating

effects. Since tune 3 gives a smaller shift due to hadronization than tune 1, the combination

of tune 3 with αs(mZ) = 0.1135 gives an estimate of the lower bound on the combined un-

certainty of these two effects in the transition and tail region, while the combination of tune

1 and αs(mZ) = 0.1184 gives an estimate of the upper bound. This is illustrated very well

in the ratio of Geneva to ALEPH data in figure 6(d). Both are, however, still within the

perturbative uncertainties from Geneva across most of the transition and tail regions.

We have also checked that the nonperturbative shift from Pythia tune 1 is of similar

size as expected from the fit results in Ref. [49]. This is consistent with the fact that it gives

a good description of the data when used together with their fitted value of αs(mZ). Hence,

we use tune 1 with αs(mZ) = 0.1135 as the default since it agrees best with the data in the

peak and provides a consistent description of the data across larger values of T2.

3.3 Predictions for Other Event Shapes

In this section we present Geneva’s predictions for a variety of dijet event shape variables.

Examining observables other than the jet resolution variable we use as input serves to validate

our master formula at the fully differential Φ2,3 level [see eq. (3.2)] rather than its projection

onto the T2 spectrum [see eq. (2.24)]. Event shapes are particularly useful to consider because

there exist both higher-order resummed results and precision LEP data with which we can

compare.

By construction Geneva correctly predicts other observables at NLO3, while maintaining

the correct inclusive cross section. However, as discussed in section 2.2.3, it is an important

open question to what extent the NNLL′T +NLO3 resummation of the T2 spectrum increases

the accuracy of resummed predictions for the other observables (beyond the partial NLL order
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naively expected by interfacing with the parton shower). While other observables will not be

predicted at the same resummed order as T2, the accuracy of the predictions for event shapes

is expected to increase as a function of their correlation with 2-jettiness. The comparison

of Geneva to the higher-order analytic resummation of event shapes plays a crucial role in

numerically testing the accuracy achieved in our approach and validating the event-by-event

perturbative uncertainties we predict.

We present results for the C-parameter [73–75], heavy jet mass (ρ) [76, 77] and jet

broadening (B) [78, 79] event shapes. These are defined as follows:

C =
3

2

1

(
∑

k|~pk|)
2

∑
i,j

|~pi||~pj | sin2 θij ,

ρ =
1

E2
cm

max
(
M2

1 ,M
2
2

)
, where M2

i =

( ∑
k∈hemii

pk

)2

for i = 1, 2 ,

B =
1

2
∑

k|~pk|
∑
i

|~pi × n̂T | , (3.20)

where n̂T is the thrust axis and is used in heavy jet mass to divide the event into two

hemispheres, hemi1,2, with respect to which the masses M1,2 are measured. C, ρ, and B

provide a useful range of event shapes to compare to since their resummation structure is

increasingly different from that of T2. The resummation of C-parameter is precisely the

same as T2 to NLL and has the same convolution structure as eq. (3.8) beyond. Heavy jet

mass has a different convolution structure from T2. Both ρ and T2 are projections of the

same doubly differential spectrum dσ/dM2
1dM2

2 , where T2 is related to the sum and heavy

jet mass to the maximum of the hemisphere masses. Of the event shapes we consider, jet

broadening is most different from T2; it measures momentum transverse to the thrust axis

and in the dijet limit is sensitive to the recoil of the thrust axis due to soft emissions [80],

unlike T2. This complicates the higher-order resummation of jet broadening, which was only

recently extended to NNLLB [81] and gives a logarithmic structure that is very different to

T2. As a result, jet broadening provides a highly nontrivial test of the accuracy and theory

uncertainties of the Geneva prediction.

For each of these observables we compare to analytic resummed predictions as well as

the NLO3 fixed-order contribution from Event2. We present new results for the analytic

resummation of C-parameter at NNLL′C+NLO3, extending the previous NLLC resummation

of [82]12. Note the subscript on the order of resummation indicates the observable for which

analytic resummation was carried out. Since resummed results for jet broadening do not

exist at NNLL′B, we compare to the highest available resummation NNLLB+LO3, where we

use the results of [81], which we extend to include fixed-order matching that is necessary to

describe the tail and transition regions. Finally for heavy jet mass N3LLρ resummed results

12We thank Vicent Mateu and Iain Stewart for pointing out to us the relationship between thrust and

C-parameter in SCET.
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exist [48], however we show the NNLL′ρ+NLO3 resummation since this is consistent with the

highest T2 resummation we use.

It is important to note that all running parameters were set based on the T2 spectrum

alone and no further optimization was carried out for other observables. This ensures that

our results for other observables are true predictions of the Geneva framework.

3.3.1 C-parameter

In figure 7 we show the Geneva prediction for C-parameter both at the partonic level and

showered, using NLL′T +LO3 resummation as input to our master formula in figures 7(a) and

7(b) and at next higher order NNLL′T +NLO3 in figures 7(c) and 7(d). We compare this to

the analytic resummed C-parameter prediction at the same order as the T2 resummation we

input, as well as one order lower. The comparison of the Geneva prediction at different orders

in the peak and transition regions is useful because it highlights the features of resummation

that are consistently captured by our implementation. In the tail region, figure 7(e), where

the comparison to the NLO3 fixed-order result is most relevant, we only show our highest

order NNLL′T +NLO3 Geneva result.

We see the effect of the cut on 2-jettiness of T cut
2 = 0.5− 1 GeV up to C = 0.066 in the

partonic prediction from Geneva in figures 7(a) and 7(c) since C ≤ 6T2/Q [82]. Interfacing

with the shower generates emissions inside the jets and fills out the region below C = 0.066.

The action of the parton shower is restricted based on the constraints on T2 discussed in

section 3.1.3. This effectively constrains the C-parameter distribution as well, giving very

little change from the partonic to showered predictions at both resummation orders, except

in the multijet region of the far tail. Here the constraints on the shower are looser, reflecting

the fact that our prediction is correct at LO4. The size of the shift from the partonic to the

showered result in the peak and transition regions is a measure of the correlation between the

C and T2 event shapes, where although the two differ beyond NLL, their logarithmic structure

is the same. It is worth noting however, that despite the similarity of the resummation

structure between C and T2, the shape of the C-parameter spectrum is very different, with

the singular terms dominating the nonsingular for a much larger region of the spectrum.

One might naively expect that the accuracy of the resummation achieved in Geneva for

any observable other than T2 would only be the partial NLL of the parton shower. However it

is clear that the Geneva prediction at NLL′T +LO3 in the peak and into the transition region,

figures 7(a) and 7(b), is much more consistent with NLL′C+LO3 than NLLC resummation,

both in its central value and the size of the perturbative uncertainties it predicts. This appears

to hold even in the peak region below C ∼ 0.05 where the parton shower determines the shape

of the spectrum. Going to one higher order in figures 7(c) and 7(d) we see that the same

pattern holds: the Geneva prediction is consistent with the higher-order NNLL′C+NLO3

resummation rather than NLL′C+LO3, including uncertainties. This is particularly clear

in the peak region where the central values of the two analytic resummation orders are

significantly different and Geneva tracks the NNLL′C+NLO3 prediction. The convergence of

the Geneva result for C-parameter from NLL′T +LO3 to NNLL′T +NLO3 demonstrates the
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consistency of the Geneva implementation including the event-by-event uncertainties for this

observable. Although the accuracy of the Geneva prediction for C-parameter is not formally

of the same order as the T2 resummation we used as input to the master formula, the fact

that it matches the analytic C-parameter resummation remarkably well both at NLL′C+LO3

and at NNLL′C+NLO3 shows that numerically the accuracy achieved is very close.

The Geneva uncertainties in the transition region start to shrink relative to the analytic

resummation as we interpolate to the fixed-order NLO3 result. In the tail region the par-

tonic Geneva prediction matches smoothly to the fixed-order NLO3 result past the Sudakov

shoulder at C = 0.75 [83], demonstrating the validity of the multiplicative implementation of

dσ/dΦ3(T2) in eq. (3.3) in this limit.

The Geneva prediction including hadronization with the default running values of Pythia

e+e− tune 1 and αs(mZ) = 0.1135 is shown in figure 8 compared to ALEPH and OPAL data

rescaled to the NNLO inclusive cross section. Geneva agrees with the data remarkably

well across the entire distribution up to the multijet region in the tail. We show the ef-

fect of αs(mZ) = 0.1135 with tune 3, which gives a smaller correction from hadronization

than tune 1, as seen from the size of the shift from the Geneva unhadronized result to the

hadronized in figure 8. We also show the Geneva prediction at the central scale using the

world average αs(mZ) = 0.1184 and tune 1. These two combinations provide an estimate of

the upper and lower bounds on the combined uncertainty of the nonperturbative effect and

αs(mZ) value in the transition and tail regions, as discussed in section 3.2. The ratio of the

Monte Carlo to data in figure 8(d) shows that they are both largely within the perturbative

uncertainties from Geneva in these regions. Of the values we consider, the default tune 1

with αs(mZ) = 0.1135 gives the best agreement with the data across the C spectrum and is

consistent with our findings for the T2 distribution.

3.3.2 Heavy Jet Mass

The Geneva prediction for heavy jet mass is shown in figure 9, where we compare the partonic

and showered results using NLL′T +LO3 resummation in the master formula in figures 9(a)

and 9(b) to the analytic resummation of ρ at NLLρ and NLL′ρ+LO3. In figures 9(c) and 9(d)

we show the same results at one order higher, comparing NNLL′T +NLO3 Geneva results to

NLL′ρ+LO3 and NNLL′ρ+NLO3 analytic ρ resummation. In the tail we show only the highest

order Geneva and resummed results along with the pure fixed-order NLO3 contribution,

since this is sufficient to demonstrate the behavior in this region.

In the peak region, figures 9(a) and 9(c), we see the effect of T cut
2 on the partonic ρ

spectrum up to ρ = 1 GeV/Ecm = 0.011, which is smoothly filled out by interfacing with the

parton shower. The Geneva showered prediction in figure 9(a) shows impressive agreement

with the NLL′ρ+LO3 resummed result in the peak region, including uncertainties. The im-

provement in accuracy of the Geneva prediction for heavy jet mass over the partial NLL

resummation provided by the parton shower is clear. Going to one higher order in figure 9(c)

the Geneva prediction is more consistent with the NNLL′ρ+NLO3, with which it agrees

within uncertainties, rather than NLL′ρ+LO3 result. The perturbative uncertainties of the
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Geneva showered prediction are larger than those at NNLL′ρ+NLO3 and smaller than at

NLL′ρ+LO3. This is consistent with the fact that while the Geneva prediction for ρ is not

formally of the same order as the T2 resummation that is input into the master formula, there

is a gain in accuracy going from Geneva at NLL′T +LO3 to NNLL′T +NLO3 that is transferred

to the ρ prediction.

In the transition region, both at NLL′T +LO3 and NNLL′T +NLO3, adding the parton

shower gives rise to a larger shift from the partonic spectrum than for the C-parameter,

because heavy jet mass is less correlated with T2 than C. This shift is necessary to obtain

agreement with the NNLL′ρ+NLO3 resummation within uncertainties in figure 9(d). The

partonic Geneva prediction in this region is more consistent with NLL′ρ+LO3 analytic re-

summation, which is higher than the NNLL′ρ+NLO3 result. By restricting the change in T2
due to the shower, we are constraining the sum of the hemisphere masses, M2

1,2 in eq. (3.20).

For a given value of T2, ρ is largest when either hemisphere mass is zero and so ρ = T2.
Adding the parton shower tends to make this mass nonzero (while constraining the sum) and

therefore gives an overall shift of the spectrum to lower values of ρ. In the tail region the

partonic spectrum interpolates to the fixed-order NLO3 result, as expected, with the shower

giving rise to a larger shift in the multijet region where our constraints are looser.

In figure 10 we show the showered Geneva prediction with and without hadronization,

with our default parameters. As before we compare to ALEPH and OPAL data, which shows

impressive agreement with the data within uncertainties across all 3 regions of the ρ spectrum,

with the expected deviation in the multijet region of the far tail. As discussed previously,

tune 3 with αs(mZ) = 0.1135 and tune 1 with αs(mZ) = 0.1184 provide bounds on the

estimate of the combined uncertainty from these two inputs. It is interesting to note that

heavy jet mass is relatively insensitive to hadronization in the transition and tail regions. This

is demonstrated by the shift from the shower only to the full hadronized result in figures 10(b)

and 10(c), as well as the small change in the default central value from using tune 1 to tune

3 above ρ ∼ 0.1 seen in figure 10(d). This breaks the coupling in some respect between the

nonperturbative effects and the value of αs in this region and suggests that αs(mZ) = 0.1135

provides better agreement with the data.

3.3.3 Jet Broadening

Finally we turn to the results of Geneva for jet broadening, which is the most orthogonal

event shape to our jet resolution variable that we consider. In figure 11 we show the Geneva

partonic and showered results using NLL′T +LO3 resummation in figures 11(a) and 11(b) and

NNLL′T +NLO3 resummation in figures 11(c) and 11(d). We compare these to the analytic

NLLB and the best available NNLLB+LO3 resummed prediction. Note that we would like

to compare the NLL′T +LO3 resummation in Geneva to the resummation of B at the same

order. However, since going from NLL′B to NNLLB, which incorporates α2
s lnB terms into

the resummation, is a comparatively small effect in this case, we will find it useful to compare

the NLL′T +LO3 prediction with the analytic NNLLB+LO3 result. In the tail we compare
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to the fixed-order NLO3 result from Event2, which is the more relevant comparison in this

region.

The effect of the cut on T2 extends up to B ' 0.055 in the peak region and is smoothly

removed by attaching the parton shower. Both at NLL′T +LO3 and NNLL′T +NLO3 there is

a significant shift induced by the parton shower across the jet broadening spectrum towards

larger values of B. The size of this shift is a measure of the the lack of correlation between B

and T2, the variable used to constrain the parton shower, and is therefore progressively larger

for C, ρ, and B as we have seen. As discussed in section 2.2.3, in the IR limit where both

T2, B → 0 one might expect to see some improved accuracy of the Geneva prediction over the

partial NLL of the parton shower, since the higher-order resummation of T2 provides a better

description in this region. This is consistent with figure 11(a) where the showered Geneva

prediction agrees well with the NNLLB+LO3 resummed result, including uncertainties in the

peak region. In the transition region in figure 11(b), the central value of the Geneva showered

prediction agrees with the NNLLB+LO3 resummed result within uncertainties; however, the

uncertainties from Geneva are smaller than the corresponding analytic ones, which suggests

that in this region they may be underestimated.

In the far transition region and into the tail, the uncertainties in Geneva generically are

smaller than the corresponding analytic resummation and of order the NLO3 scale variation,

as seen for example in the T2, C, and ρ spectra. This difference arises because Geneva

multiplicatively interpolates to the fixed-order result, while the analytic resummation does

an additive matching, as discussed in section 3.2.1. For an observable such as jet broadening,

the lack of correlation with T2 means that larger values of the T2 spectrum contribute at

smaller values of B. This can lead to an underestimate of the uncertainties from Geneva at

intermediate values of B where the resummation is still important.

Going to higher order in Geneva in figures 11(c) and 11(d) the uncertainties of the

showered prediction decrease and overlap with the NNLLB+LO3 uncertainties over much of

the peak and transition regions. It would be interesting to compare the Geneva prediction

to the next higher order analytic resummed jet broadening prediction to numerically test

the accuracy achieved, however this is not yet available. Determining the formal accuracy of

the Geneva prediction for a given observable and systematically including the uncertainty

associated to the lack of correlation with T2 are next steps that we leave for future work.

The partonic Geneva jet broadening prediction interpolates smoothly to the fixed-order

NLO3 result in the tail, with uncertainties that match the fixed-order result in this region.

As for other observables, this validates the behavior of the fully differential master formula

in eq. (3.3) in this limit.

In figure 12 we show the hadronized Geneva prediction for jet broadening compared

to data from ALEPH and OPAL, which shows good agreement within uncertainties across

the peak and transition regions, and is low as expected in the far tail. The uncertainty

from the Pythia tune and value of αs are indicated by the central values of the tune 3

and αs = 0.1184 histograms, which agree within the perturbative uncertainties of the default

Geneva prediction across most of the transition and tail regions. As for the other observables
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we see better agreement in the peak (below B ∼ 0.1) with Pythia tune 1 and αs = 0.1135.
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Figure 7. The C-parameter partonic and showered Geneva predictions are shown compared to

the analytic resummation of C-parameter at different orders. The Geneva result at NLL′T +LO3 is

compared to NLLC and NLL′C+LO3 in (a) and (b). In (c) and (d) the Geneva prediction at one

order higher, NNLL′T +NLO3, is compared to NLL′C+LO3 and NNLL′C+NLO3, while in the tail (e)

we also show the fixed-order NLO3 prediction from Event2.
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Figure 8. The C-parameter distribution comparing Geneva with and without hadronization using

Pythia 8 e+e− tune 1 and αs(mZ) = 0.1135 is shown compared to ALEPH data in the (a) peak, (b)

transition, and (c) tail regions and to OPAL data in the peak and transition regions. The ratio of the

Geneva predictions to ALEPH data is shown in (d). Also shown are the Geneva predictions at the

central scale with αs(mZ) = 0.1184 and e+e− tune 3.
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Figure 9. The heavy jet mass partonic and showered Geneva predictions are shown compared to

the analytic resummation of ρ at different orders. The Geneva result at NLL′T +LO3 is compared

to NLLρ and NLL′ρ+LO3 in (a) and (b). In (c) and (d) the Geneva prediction at one order higher,

NNLL′T +NLO3, is compared to NLL′ρ+LO3 and NNLL′ρ+NLO3, while in the tail (e) we also show

the fixed-order NLO3 prediction from Event2.
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Figure 10. The heavy jet mass distribution comparing Geneva with and without hadronization using

Pythia 8 e+e− tune 1 and αs(mZ) = 0.1135 is shown compared to ALEPH data in the (a) peak, (b)

transition, and (c) tail regions and to OPAL data in the peak and transition regions. The ratio of the

Geneva predictions to ALEPH data is shown in (d). Also shown are the Geneva predictions at the

central scale with αs(mZ) = 0.1184 and e+e− tune 3.
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Figure 11. The jet broadening partonic and showered Geneva predictions are shown compared to

the analytic resummation of B at NLLB and NNLLB+LO3. The Geneva result at NLL′T +LO3 is

shown in (a) and (b), and at one order higher, NNLL′T +NLO3, in (c) and (d). In the tail (e) we also

show the fixed-order NLO3 prediction from Event2.
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(d) Ratio of Geneva to Data

Figure 12. The jet broadening distribution comparing Geneva with and without hadronization using

Pythia 8 e+e− tune 1 and αs(mZ) = 0.1135 is shown compared to ALEPH data in the (a) peak, (b)

transition, and (c) tail regions and OPAL data in the peak and transition regions. The ratio of the

Geneva predictions to ALEPH data is shown in (d). Also shown are the Geneva predictions at the

central scale with αs(mZ) = 0.1184 and e+e− tune 3.
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4 Application to Hadronic Collisions

In this section, we apply the framework developed in section 2 to hadronic collisions and

present first results from the implementation in the Geneva Monte Carlo. To accommodate

hadrons in the initial state, special consideration is required for each component of our master

formula. Our goal is to demonstrate that the same methods can be applied in a hadronic

environment to obtain a consistent description at the next higher perturbative accuracy. We

use Drell-Yan production pp→ Z/γ → `+`− as a concrete example to study the framework,

deferring a detailed comparison with Tevatron and LHC data to later work.

In hadronic collisions N -jettiness can be used as a jet resolution variable, with the ob-

servable taking the initial states into account. The theoretical framework exists to resum

N -jettiness at hadron colliders, and this resummation has been applied to several processes

[66, 84, 85]. Similarly, the techniques required to perform the next-to-leading order calcula-

tions at hadron colliders are known. A phenomenological study additionally requires Geneva

to be interfaced with a parton shower and hadronization model that includes multiple parton

interactions.

In the Drell-Yan example the 0-jet resolution variable is beam thrust, T0, which is the

analog to 2-jettiness, T2, used in the e+e− application13. The resummation of beam thrust is

performed to NNLL, and the jet multiplicities at fixed order are calculated at NLO0 and LO1.

The prediction of Geneva is compared to the analytic resummation of T0 at NNLL+LO1

as a demonstration that the program correctly describes the matching between 0- and 1-jet

multiplicities. Finally, we discuss how the accuracy of these ingredients can be improved and

the challenges present in applying Geneva to hadron collisions.

Beam thrust is defined as a sum of contributions from particles in the final state [43]:

T0 =
∑
k

min
{
na · pk, nb · pk

}
, (4.1)

where the observable is evaluated in the center-of-mass frame of the hard partonic collision.

The na,b are light cone vectors along the beam (ẑ) axis, with na = (1, ẑ) and nb = (1,−ẑ).
Beam thrust can be evaluated in any frame by performing a longitudinal boost on eq. (4.1).

With the addition of more final state jets, the N -jettiness definition can be generalized

from the 0-jet case:

TN =
∑
k

min
{
na · pk, nb · pk, n1 · pk, . . . , nN · pk

}
. (4.2)

As for beam thrust, this observable is evaluated in the partonic center-of-mass frame. The

ni = (1, n̂i) for i = 1, . . . , N are light cone vectors along the jet directions. Note that the

above definition of TN is a simple extension of the observable for e+e− collisions, which has

no contribution from the beam directions but is otherwise identical.

13Since we are mainly interested in QCD corrections, we have chosen the subscript on T to indicate the

multiplicity of jets in the final state.

– 50 –



4.1 Master Formula and Ingredients for Hadronic Collisions

As in the e+e− case, the master formula for the cross section in Geneva is given by eq. (2.27),

eq. (2.29), and eq. (2.36). To match the 0- and 1-jet multiplicities for a general process, the

master formula is

dσincl
dΦ0

=
dσ

dΦ0
(T cut

0 ) +

∫
dΦ1

dΦ0

dσ

dΦ1
(T0) θ(T0 > T cut

0 ) , (4.3)

where the 0-jet cumulant, dσ/dΦ0(T cut
0 ) and the 1-jet spectrum, dσ/dΦ1(T0), are

dσ

dΦ0
(T cut

0 ) =
dσresum

dΦ0
(T cut

0 ) +

[
dσFO

dΦ0
(T cut

0 )− dσresum

dΦ0
(T cut

0 )

∣∣∣∣
FO

]
,

dσ

dΦ1
(T0) =

dσincl
dΦ1

[
dσresum

dΦ0dT0

/
dσresum

dΦ0 dT0

∣∣∣∣
FO

]
. (4.4)

Φ0 is the phase space for the hard scattering that produces the 0-jet final state, and Φ1

includes the additional phase space for the final state jet.

In Geneva, the contributions to these cross sections are calculated separately for each

parton subprocess. Because the fixed-order matching in the 0-jet cumulant is performed

additively, the net weight in the 0-jet cumulant after summing over events is the same as

the flavor-summed cumulant. In the 1-jet spectrum the fixed-order matching is performed

multiplicatively, meaning the sum over all events for a given T0 has a different cross section

than if we used flavor-summed components for the different terms in the matching formula.

The two approaches agree up to higher order corrections, but the former approach is natural

in the Monte Carlo. In the following subsections, we will discuss how the resummed and

fixed-order contributions to the master formula are obtained.

4.1.1 Resummation

Like T2 for e+e− collisions, beam thrust can be factorized in SCET and the resummation

can be carried out systematically to higher orders. The factorized beam thrust spectrum for

Drell-Yan is given by [31]

dσ

dΦ0dT0
=

dσB
dΦ0

∑
ij

Hij(Q,µ)

∫
dtadtbBi(ta, xa, µ)Bj(tb, xb, µ)Sij

(
T0 −

ta + tb
Q

,µ
)
, (4.5)

where Q is the dilepton invariant mass, and Φ0 is the phase space for the qq̄ → `+`− hard

scattering. The momentum fractions xa,b are defined in terms of the total rapidity Y of the

final state from the hard scattering,

xa =
Q

Ecm
eY , xb =

Q

Ecm
e−Y . (4.6)

Comparing eq. (4.5) to the e+e− analog, eq. (3.8), it is clear that the factorization theorems are

structurally similar. The chief difference is that while the jet functions in eq. (3.8) parametrize
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the collinear evolution of final state jets, the beam functions in eq. (4.5) parametrize the

collinear evolution of the incoming partons as well as the nonperturbative process of extracting

high energy partons from the proton. The beam functions can be further factorized into

a convolution between the parton distribution functions, fj , and perturbatively calculable

Wilson coefficients, Iij [31, 86]

Bi(t, x, µ) =
∑
j

∫ 1

x

dξ

ξ
Iij
(
t,
x

ξ
, µ
)
fj(ξ, µ) . (4.7)

Note that due to initial state radiation, the xa,b are distinct from the Bjorken variable ξ

appearing in the convolution above that give the momentum fraction of the energetic partons

that are liberated from the proton. The sum over partons i, j in eq. (4.5) is a sum over

flavor singlet quark-antiquark combinations, such as uū or b̄b. For each flavor, the beam

functions are different, and the hard function Hij differs for up- and down-type quarks due

to the different electroweak couplings with the gauge boson. This flavor sum is an important

consideration when implementing the master formula in Geneva, since the Monte Carlo

generates events for each flavor combination, and the flavor sum is performed in the sum over

events.

For processes with final state jets, the extension of the beam thrust factorization theorem

to N -jettiness is known and has the schematic form [43, 44]

dσ

dΦNdTN
=

dσB
dΦN

Tr
∑
κ

Hκ

[(
Bκ
a B

κ
b J

κ
1 · · · JκN

)
⊗ SκN+2

]
(TN ) . (4.8)

The trace is over the non-trivial color structures that can exist in the hard and soft functions.

Additionally, there is a sum over parton channels for the hard scattering that are labeled by

the index κ. The additional jets are associated with additional collinear sectors in SCET, and

the factorization theorem reflects this by including additional jet functions. The soft function

also changes to account for the soft radiation between the final-state jets and the initial-state

radiation from the colliding partons.

The factorization theorems in eqs. (4.5) and (4.8) can be used to perform the resummation

for both the spectrum and cumulant. Although these factorization theorems directly describe

the spectrum in T0 or TN , they can be integrated over the observable to obtain the cumulant.

The perturbative part of each function in the factorization theorem is calculable, and for

many processes the functions are known to high order. Each function is associated with a

scale that is connected to the physical degrees of freedom that the function describes. As in

the e+e− case, renormalization group evolution resums the large logarithms of ratios of these

scales (see table 2).

4.1.2 Fixed Order

Following eq. (4.3) we need to define the 0-jet cumulant dσ/dΦ0(T cut
0 ) and the 1-jet spectrum

dσ/dΦ1(T0). At the order we are interested in, the 1-jet spectrum will be given by the tree-

level cross section B1(Φ1) for the process pp → Z/γ∗ → `+`−j. The 0-jet cumulant is given

by
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dσ

dΦ0
(T cut

0 ) = B0(Φ0) + V0(Φ3) +

∫
dΦ1

dΦ0
B1(Φ1)θ(T0 < T cut

0 ) +∫
dΦ1,a

dΦ0
Ga(Φ1,a)θ(T0 < T cut

0 ) +

∫
dΦ1,b

dΦ0
Gb(Φ1,b)θ(T0 < T cut

0 ) , (4.9)

where the corresponding parton distribution functions have been included into the definitions

of the Born, virtual, and real emission cross sections,

BN (ΦN ) = fa(xa, µF )fb(xb, µF )BN (ΦN ) ,

VN (ΦN ) = fa(xa, µF )fb(xb, µF )VN (ΦN ) . (4.10)

In addition, in order to account for the incomplete cancellations of initial-state collinear

singularities, we have included one collinear counterterm Ga,b for each initial state parton,

Ga(ΦN ) = fa(xa, µF )fb(xb, µF )Ga(ΦN ) ,

Gb(ΦN ) = fa(xa, µF )fb(xb, µF )Gb(ΦN ) . (4.11)

Assuming the UV divergences of V0 have already been taken care of by a proper renormal-

ization procedure, the remaining divergences present in B1, V0, and Ga,b are of IR origin. We

handle these divergences with the FKS subtraction procedure. After having partitioned the

phase space into nonoverlapping regions m which contain at most one collinear and one soft

singularity, by means of a set of θTm-functions, the final formula, including the subtraction

counterterms, is

dσ

dΦ0
(T cut

0 ) = B0(Φ0) + V0(Φ0) + I(Φ0) +
∑
m

∫
dΦm

rad

[
B1(Φ

m
1 )θTm(Φ0,Φ

m
rad)θ(T0 < T cut

0 )

−
dΦm,s

rad

dΦm
rad

B1(Φ
m,s
1 )θsm(Φ0,Φ

m,s
rad )−

dΦm,c
rad

dΦm
rad

B1(Φ
m,c
1 ) +

dΦm,cs
rad

dΦm
rad

B1(Φ
m,cs
1 )

]
+

∫
dΦrad,a Ga(Φ1,a) +

∫
dΦrad,b Gb(Φ1,b) . (4.12)

As mentioned in section 3.1.2 we choose to partition the phase space by means of

θTm-functions that depend on the jet resolution variable. It is therefore crucial to evalu-

ate the jet resolution variable and the subtraction in the same frame. This ensures the proper

cancellation of IR singularities by subtraction counterterms. The preferred frame for the

fixed-order calculations is the partonic center-of-mass frame, since the subtraction is most

naturally expressed in terms of variables defined in that frame. Also, the jet resolution vari-

able, eq. (4.1), is defined in this frame and resummation can be performed in it. Therefore,

our approach is to perform the entire calculation in the partonic center-of-mass frame.

At this point all the ingredients of eq. (4.12) are known and available in the literature [17,

67]. Note that additional complications arise when extending this construction to higher
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multiplicities, because one must use a map that preserves the value of T0 (up to power

corrections), just as for T2 in the e+e− → 3 jet case. For our pp → Z/γ∗ → `+`− study,

this problem can be avoided, since we currently include only up to one extra parton and,

consequently, the T0(Φ1) value is well-defined. In order to obtain T0(ΦN ) with N > 1 in

general, this issue may be addressed in a similar fashion to what has been done for e+e−.

4.2 Application to Drell-Yan Production

We study Drell-Yan production in pp collisions at Ecm = 8 TeV in Geneva, sampling the

invariant mass Q of the `+`− pair around the Z pole, between MZ − 10ΓZ and MZ + 10ΓZ ,

where MZ = 91.1876 GeV is the mass of the Z and its width is ΓZ = 2.4952 GeV [54]. The

dominant contribution in this range of Q comes from Z exchange, although the photon does

contribute. Profile scales identical to those used in the e+e− T2 resummation are used, which

is justified since the logarithmic structure is the same between the two observables. The

resummation is turned off just above T0 ∼MZ/2, and for greater T0 the spectrum reproduces

the fixed-order distribution.

In figure 13, we show the analytic beam thrust resummation at NLL and NNLL+LO1

in the peak, transition, and tail regions. In the peak and transition regions the resummed

result converges well. At the end of the transition region and in the tail region, the pure

NLL resummed distribution goes to 0 as the resummation is turned off but the NNLL+LO1

distribution moves into the fixed order result..

Implementing the Drell-Yan process in Geneva allows us to study the feasibility of the

multiplicative matching for the spectrum in eq. (4.4) and compare with the analytic resummed

distribution. We show this comparison in figure 14, where the analytic curve is evaluated at

NNLL+LO1. Additionally, we show the NNLL and LO1 distributions separately. Overall, the

partonic Geneva distribution is quite close to the NNLL+LO1 distribution, both in terms of

the central values and the size of uncertainties. In the peak region, the spectra match closely

and agree well with the pure NNLL resummed distribution. At the low end of the transition

region, the resummed spectra are still in fair agreement while moving to higher T0 values

the Geneva partonic prediction and the NNLL+LO1 distributions begin to systematically

deviate from the NNLL distribution. This deviation arises from the LO1 nonsingular terms

that are present in the matched spectrum but absent in the pure resummed one. In the tail

region, the Geneva partonic and NNLL+LO1 predictions move into the LO1 spectrum. After

the resummation has been turned off, these spectra match the LO1 precisely in central value

and uncertainties, as expected. Note that in the corresponding comparison in the e+e− case,

shown in figure 3(a)-3(c), the analytic and the partonic Geneva distributions are in closer

agreement because the resummed components of the multiplicative matching in eq. (2.36)

include the nonsingular terms at LO3, which are known analytically. These are not included

in the Drell-Yan case, and so the difference between the analytic and Geneva distributions in

figure 14 is more sensitive to the subleading corrections that the nonsingular terms generate.

As in the e+e− case, the uncertainty bands for the resummed curves and Geneva predic-

tions in figures 13 and 14 are obtained by adding the fixed-order and resummation uncertain-
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Figure 13. Analytic resummation of T0 matched to fixed order in the (a) peak, (b) transition, and

(c) tail regions. The central value is shown along with the band from scale uncertainties, as discussed

in section 4.2, at NLL and NNLL′+LO1.

ties in quadrature. In the peak and transition regions of the distribution, the resummation

uncertainties dominate, while the fixed-order uncertainty dominates as the resummation is

being turned off in the tail region. Comparing the uncertainty of the resummed distributions

with that of the LO1 distribution, which is much smaller, one can see that the fixed-order un-

certainty is an underestimate of the missing higher-order terms. The reason for this is twofold:

the missing large logarithmic corrections at higher orders, whose associated uncertainties are

instead included in the resummed distribution, and the partial cancellation between the renor-

malization and factorization scale dependence, whose variation are correlated in the results

we show.

In both the e+e− and Drell-Yan processes, the partonic Geneva spectrum is determined

by eq. (2.46), which for an event multiplies the fully exclusive fixed-order cross section by

the ratio of the resummed cross section for the jet resolution variable divided by the fixed-
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Figure 14. The Geneva partonic NNLL+LO1 result is shown compared to the analytic resummation

of T0 matched to fixed order at NNLL+LO1 in the (a) peak, (b) transition, and (c) tail regions. Also

shown for comparison is the pure resummed result at NNLL and the fixed-order LO1 contribution.

order expansion of that resummation. Compared to the e+e− case, where each subprocesss

contributing to the cross section is trivially proportional, in Drell-Yan the convolution with

the PDFs requires treating every possible qq̄ initial state separately, both in the fixed-order

and the resummed cross sections. In Geneva, the flavor sum is performed in the Monte Carlo

sense, since every event has a definite flavor for the initial-state quarks and the correct flavor-

summed cross section is obtained after a sum over all events. This means that the separate

factors in eq. (2.46) are evaluated for an individual flavor, and the entire expression is summed

over flavors. In the analytic resummation, since the matching between the resummed and

fixed-order cross sections is additive, there is instead only one way to perform the sum over

flavors.

A version of the master formula where both the resummed and the resummed-expanded

are separately flavor summed before entering eq. (4.4) would be equally valid. We have
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checked, however that this is has a very minor effect and is not the main contribution to the

apparent differences of the Geneva predictions with the analytic resummed cross section.

In fact, the reason of the discrepancy is in the difference of higher order terms which are

included in the Geneva multiplicative approach with respect to the additive matching used

in the analytical calculation. This can also be seen as an indication of the relative freedom in

implementing the master formula in equation eq. (2.46) at a given perturbative accuracy. As

one can evince from figure 3(d)-3(f), should the resummation and fixed-order calculations be

evaluated at the next order in perturbative accuracy, the size of the yet-missing terms would

decrease and, consequently, the difference between Geneva and the analytic results would

be reduced.

The Geneva implementation in this example can be extended to higher accuracy both

in terms of fixed-order matrix elements and resummation. An equivalent accuracy to the

e+e− results shown in section 3 can be achieved if the fixed-order matrix elements for the

1-jet multiplicity are calculated at NLO, the 2-jet multiplicity are calculated at LO, and the

resummation of beam thrust is continued to NNLL′. Although this is beyond the scope of this

work, we nonetheless demonstrate that the Geneva framework is capable of merging matrix

elements of different jet multiplicities beyond the lowest order. As in the e+e− case, jet

multiplicities are defined using a physical jet resolution variable, which allows for a consistent

extension of the entire framework to O(αs) perturbative accuracy.

In section 3, we found that NNLL′ resummation of the jet resolution variable T2, when

combined with the parton shower, was capable of describing the spectrum in other two-jet

observables with an accuracy that clearly exceeded NLL, the naive accuracy of the parton

shower. The resummation of T2 captures an important set of logarithms that are correlated

with other two-jet observables, and when combined with the fully exclusive, all-orders de-

scription of the parton shower, the accuracy of other observables can be improved beyond

NLL. At a hadron collider, the effective dynamic range of observables is much larger, meaning

the correlation between the jet resolution variable and another observable of interest may be

small. In this case, the parton shower may play a greater role in determining the spectrum,

and hence the accuracy, of other observables. We will investigate these features in a future

work.

5 Conclusions

In this paper we have shown how to combine higher-order resummation of a jet resolution

variable with fully differential next-to-leading order calculations to extend the perturbative

accuracy of cross sections beyond the lowest order for all values of the jet resolution scale.

This framework has been interfaced with a parton shower and hadronization to give the

Geneva Monte Carlo program.

Our framework provides both the versatility of fixed-order calculations and the accuracy

of higher-order analytic resummation. From the point of view of Monte Carlo generators, the

Geneva approach allows the combination of higher-order resummations with higher fixed-
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order calculations. From the point of view of resummed calculations, it allows one to obtain

a fully differential cross section that correctly resums the jet resolution variable to higher

logarithmic accuracy. Since this construction maintains the higher perturbative accuracy

for all values of the jet resolution scale, it naturally allows NLO calculations of different jet

multiplicities to be combined with one another.

The higher logarithmic resummation of the jet resolution scale allows us to use a low

cut on the jet resolution scale, much lower than the point where fixed-order perturbation

theory breaks down but above the nonperturbative regime. This is a major difference to

other approaches [26–28], where the merging scale has to be chosen much larger, such that

αs ln2 τ cut � 1.

In this paper we have concentrated on the theoretical construction, which is valid for

any number of jets, and for both e+e− and hadron colliders. We have shown that one has to

carefully choose a jet resolution variable that is resummable to higher logarithmic accuracy.

The presence of IR divergences led us to divide the inclusive N -jet cross section into an

exclusive N -jet and inclusive (N+1)-jet cross section, and we have given expressions for both

of these that properly combine the higher logarithmic resummation with a higher fixed-order

calculation.

This approach has been implemented in the Geneva Monte Carlo. As a first application,

we have presented results for e+e− collisions. The jet resolution variable for this case was

chosen to be 2-jettiness, which is directly related to thrust, and we combined its NNLL′

resummation with the fully differential 3-jet rate at NLO3. Varying the profile scales and the

renormalization scale has allowed us to obtain event-by-event uncertainties. As a final step,

we have interfaced our perturbative result with Pythia 8, which added a parton shower and

hadronization to our results. The parton shower adds additional radiation beyond the highest

jet multiplicity in Geneva, and has been restricted to only fill out the jets of the exclusive jet

cross sections at lower jet multiplicity. Since the cut on the jet resolution variable could be

chosen to be very small, the effect of the perturbative shower (without hadronization) is rather

small, and different tunes in Pythia do not affect the resulting distributions significantly.

Hadronization has a significant effect, and the difference in final results due to different

hadronization parameters is more manifest.

We have shown that Geneva correctly reproduces the higher-order resummation of the

thrust spectrum, even after showering, which serves as a nontrivial validation of our ap-

proach. Using αs(mZ) = 0.1135, as obtained in Ref. [49] from fits to the thrust spectrum

using higher-order resummation, together with tune 1 of Pythia 8, we obtain an excellent

description of ALEPH and OPAL data. The same setup was then used to predict other event

shape variables, namely C-parameter, heavy jet mass, and jet broadening. In all cases our

results agree remarkably well with the explicit analytical resummations, even though only

the thrust resummation was used as an input. This comparison shows numerically that we

achieve a higher resummation accuracy than NLL, which is what one would naively expect

to obtain from the parton shower. This is especially remarkable for jet broadening, where

the resummation formula has a completely different structure from the thrust resummation.
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Comparing our results after hadronization to the data we again find excellent agreement for

these other observables.

Finally, we have presented first results toward a implementation for hadron colliders in

Geneva. Choosing the Drell-Yan process at the LHC, with beam thrust as the jet resolution

variable, we combined the resummation of beam thrust at NNLL with the leading-order

matrix element for the emission of an extra jet. The results from Geneva agree well with

analytical results, which shows the applicability of the framework to hadron colliders.

As we have shown, our theoretical framework to combine higher-order resummation with

fixed-order matrix elements and parton shower Monte Carlos is very general, and there are

many avenues to pursue in the future. Obvious next steps for e+e− collisions are to include

NLO calculations for 4 jets, which would require including the logarithmic resummation for

3-jettiness [87], as well as additional tree-level matrix elements. In addition one can consider

the resummation for other jet resolution variables. For hadronic collisions, next steps are to

include the resummation and NLO calculations for higher jet multiplicities, as well as adding

parton showering and hadronization using the different available programs.
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[36] L. Lönnblad and S. Prestel, Unitarising Matrix Element + Parton Shower merging,

arXiv:1211.4827.

[37] M. Dasgupta and G. Salam, Resummation of nonglobal QCD observables, Phys. Lett. B 512

(2001) 323–330, [hep-ph/0104277].

[38] M. Dasgupta and G. P. Salam, Accounting for coherence in interjet E(t) flow: A Case study,

JHEP 0203 (2002) 017, [hep-ph/0203009].

[39] Y. Delenda, R. Appleby, M. Dasgupta, and A. Banfi, On QCD resummation with k(t)

clustering, JHEP 0612 (2006) 044, [hep-ph/0610242].

[40] A. Hornig, C. Lee, J. R. Walsh, and S. Zuberi, Double Non-Global Logarithms In-N-Out of Jets,

JHEP 1201 (2012) 149, [arXiv:1110.0004].

[41] R. Kelley, J. R. Walsh, and S. Zuberi, Abelian Non-Global Logarithms from Soft Gluon

Clustering, JHEP 1209 (2012) 117, [arXiv:1202.2361].

[42] R. Kelley, J. R. Walsh, and S. Zuberi, Disentangling Clustering Effects in Jet Algorithms,

arXiv:1203.2923.

[43] I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn, N-Jettiness: An Inclusive Event Shape to

– 61 –

http://arXiv.org/abs/1009.1127
http://arXiv.org/abs/0811.2912
http://arXiv.org/abs/1108.0909
http://arXiv.org/abs/1207.5030
http://arXiv.org/abs/1207.5031
http://arXiv.org/abs/1209.6215
http://arXiv.org/abs/1211.5467
http://arXiv.org/abs/0910.0467
http://arXiv.org/abs/hep-ph/0205283
http://arXiv.org/abs/hep-ph/0503293
http://arXiv.org/abs/1206.3572
http://arXiv.org/abs/1211.4827
http://arXiv.org/abs/hep-ph/0104277
http://arXiv.org/abs/hep-ph/0203009
http://arXiv.org/abs/hep-ph/0610242
http://arXiv.org/abs/1110.0004
http://arXiv.org/abs/1202.2361
http://arXiv.org/abs/1203.2923


Veto Jets, Phys. Rev. Lett. 105 (2010) 092002, [arXiv:1004.2489].

[44] T. T. Jouttenus, I. W. Stewart, F. J. Tackmann, and W. J. Waalewijn, The Soft Function for

Exclusive N-Jet Production at Hadron Colliders, Phys. Rev. D 83 (2011) 114030,

[arXiv:1102.4344].

[45] G. Dissertori, A. Gehrmann-De Ridder, T. Gehrmann, E. Glover, G. Heinrich, et. al., First

determination of the strong coupling constant using NNLO predictions for hadronic event

shapes in e+ e- annihilations, JHEP 0802 (2008) 040, [arXiv:0712.0327].

[46] T. Becher and M. D. Schwartz, A Precise determination of αs from LEP thrust data using

effective field theory, JHEP 0807 (2008) 034, [arXiv:0803.0342].

[47] G. Dissertori, A. Gehrmann-De Ridder, T. Gehrmann, E. Glover, G. Heinrich, et. al.,

Determination of the strong coupling constant using matched NNLO+NLLA predictions for

hadronic event shapes in e+e- annihilations, JHEP 0908 (2009) 036, [arXiv:0906.3436].

[48] Y.-T. Chien and M. D. Schwartz, Resummation of heavy jet mass and comparison to LEP data,

JHEP 1008 (2010) 058, [arXiv:1005.1644].

[49] R. Abbate, M. Fickinger, A. H. Hoang, V. Mateu, and I. W. Stewart, Thrust at N3LL with

Power Corrections and a Precision Global Fit for alphas(mZ), Phys. Rev. D 83 (2011) 074021,

[arXiv:1006.3080].

[50] S. Bethke, A. H. Hoang, S. Kluth, J. Schieck, I. W. Stewart, et. al., Workshop on Precision

Measurements of αs, arXiv:1110.0016.

[51] R. Abbate, M. Fickinger, A. H. Hoang, V. Mateu, and I. W. Stewart, Precision Thrust

Cumulant Moments at N3LL, Phys. Rev. D 86 (2012) 094002, [arXiv:1204.5746].
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