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Abstra
tWe show that a 
osmi
 string asso
iated with spontaneous U(1)R symmetry breaking givesa 
onstraint for supersymmetri
 model building. In some models, the string 
an be viewedas a tube-like domain wall with a winding number interpolating a false va
uum and a trueva
uum. Su
h string 
auses inhomogeneous de
ay of the false va
uum to the true va
uumvia rapid expansion of the radius of the tube and hen
e its formation would be in
onsistentwith the present Universe. However, we demonstrate that there exist metastable solutionswhi
h do not expand rapidly. Furthermore, when the true va
ua are degenerate, the stru
tureinside the tube be
omes involved. As an example, we show a \bamboo"-like solution, whi
hsuggests a possibility observing an information of true va
ua from outside of the tube throughthe shape and the tension of the tube.
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1 Introdu
tionThe global U(1)R symmetry plays an important role in supersymmetri
 �eld theories, in par-ti
ular in supersymmetry (SUSY) breaking [1{5℄ (See [6{8℄ for reviews and referen
es therein).In [2, 3, 9℄, by exploiting the Nelson-Seiberg theorem [1℄, a 
onne
tion between metastabilityand R-symmetry was demonstrated in the 
ontext of generalized Wess-Zumino models withgeneri
 superpotential. From more phenomenologi
al viewpoint, the U(1)R symmetry mustbe broken expli
itly or spontaneously to generate Majorana gaugino masses. Gaugino massesare not indu
ed by SUSY breaking without the U(1)R symmetry breaking.Indeed, several types of models for the U(1)R symmetry breaking have been studied [10{24℄. In some models, the va
uum with both SUSY and U(1)R breaking may be a globalminimum. However, in many models su
h va
uum is a metastable minimum and there is aglobal minimum, where SUSY and U(1)R may be unbroken.Through the 
osmologi
al phase transition, there may appear solitoni
 obje
ts su
h asdomain walls, 
osmi
 strings and monopoles [25℄ through the Kibble-Zurek me
hanism [26,27℄.When a global U(1) symmetry is spontaneously broken, a global string appears [28℄. Thus,when the U(1)R symmetry is broken spontaneously in SUSY models, there would appear aglobal string, whi
h we refer as an R-string.1 The R-string would be stable in those modelsin whi
h the U(1)R breaking va
uum is a global minimum, and that would lead to several
osmologi
ally interesting aspe
ts [31℄.On the other hand, when the U(1)R breaking va
uum is metastable and the model hasanother global minimum with SUSY and U(1)R unbroken, there may appear an R-string,whose 
ore 
orresponds to the true SUSY va
uum, i.e., R-tube. One may think that su
han R-tube is unstable be
ause the energy density in the 
ore, whi
h is the SUSY va
uum,is lower than one outside, whi
h is the SUSY breaking metastable va
uum. Thus, it would\roll-over" and the true SUSY va
uum would expand in the Universe [32{34℄. In this 
ase,the SUSY breaking 
ould not be realized su

essfully. One may 
on
lude that a s
enario withR-tube formation is ruled out by this me
hanism.However, sin
e the domain wall tension works as a 
entripetal for
e for R-tube, its radiusmay be stabilized if the domain wall tension is large enough and the energy dis
repan
ybetween SUSY va
uum and SUSY-breaking va
uum is small enough. In su
h a 
ase, the
osmologi
al disaster 
an be avoided. The (in)stability of the R-tube soliton depends onparameters in the SUSY models. In prin
iple, we 
an have 
onstraints on SUSY-breakingmodels from this 
onsideraion be
ause (in)stability of the R-tube is determined by parameters1See also for another type of strings, whi
h appear through SUSY breaking [29, 30℄.1



of SUSY breaking models. Note that su
h 
onstraints are independent of the requirementthat the metastable va
uum de
ays slowly into the true va
uum by the tunneling e�e
t [35℄,
ompared with the Universe age. Therefore, it is quite important to study the R-string/R-tubeformation and its (in)stability. Some relevant studies have been 
arried out in Refs. [36, 37℄.In this paper, we study in detail the stru
ture of the R-string/tube solution in SUSYmodels. In a simple but (semi)realisti
 SUSY breaking model, we study stability of theR-tube by exploiting a pie
ewise linear approximation and numeri
al solutions. By usinglinear approximation, we obtain 
onstraints for the stable R-tube. We also show examplesof (meta)stable/unstable R-tube 
on�gurations numeri
ally. We emphasize that the windingnumber, whi
h is an important quantity to 
hara
terize features of the R-tube solutions, isalso relevant to the stability of the R-tube.We also show that the 
ore of the R-tube 
an have more 
ompli
ated stru
ture in 
ertainSUSY models where the true SUSY breaking va
ua are degenerate. For example, supposethat the SUSY model has a Z2 symmetry and it is broken at the true SUSY va
uum. Then,the 
ore of the R-tube would be separated into two va
ua by a domain wall. Sin
e it lookslike a (gourd-shaped) bamboo, we refer it as the bamboo solution. We also study aspe
ts ofthe bamboo solution. Other types of stru
ture inside the 
ore of strings would be possible.This paper is organized as follows. In se
tion 2, we illustrate the R-string and tubesolutions in simple models as warm-up. In se
tion 3, we study the R-tube in a (semi)realisti
but simple SUSY breaking model, that is, an O'Raifeartaigh-like model with non-
anoni
alK�ahler metri
. We analyze the (in)stability of the R-tube numeri
ally at several parameters.In se
tion 4, by showing the bamboo solution, we demonstrate the fa
t that quantum numberin the SUSY va
ua signi�
antly a�e
ts the shape and the tension of the string. Se
tion 5is devoted to 
on
lusion and dis
ussion. In appendix A, we show basi
s of the relaxationmethod for solving a di�erential equation.2 Stable R-string and tube solutionsBefore going to detailed studies of metastable strings, whi
h will be shown in the next se
tion,we would like to present simple stable solutions as a warm-up. Here, we illustrate a stableR-string and a stable R-tube whi
h is a tube-like domain wall with winding number, by usingsingle 
omplex s
alar �eld models.
2



2.1 R-stringConsider the following simplest spontaneous R-symmetry breaking model. Superpotential islinear in a 
hiral super�eld X whi
h will be a trigger for SUSY breaking,W = fX:To stabilize the pseudo-moduli X in this SUSY breaking va
uum, we introdu
e the followingnon-
anoni
al K�ahler potential by hand,g�1X �X = 1� �2Xf 2 jXj2 + �X4f 2 jXj4: (2.1)Thus, the potential of this theory is given byV (X) = f 2 � �2X jXj2 + �X4 jXj4: (2.2)This model 
an be viewed as a low energy e�e
tive theory of one of the O'Raifeartaighmodels studied in [12℄: When the pseudo-moduli spa
e is stable everywhere along messengerdire
tions, by integrating out the messengers, one obtains non-trivial 
orre
tions to the K�ahlerpotential. Expanding the K�ahler potential up to O(jXj6), one 
an reprodu
e a theory similarto (2.2). On the other hand, when the pseudo-moduli spa
e has a ta
hyoni
 dire
tion ata point in the spa
e, whi
h is phenomenologi
ally interesting situation in gauge mediationmodels [3, 20℄, the existen
e of messengers is 
ru
ial and two-�eld model is required. This isthe main topi
 in the next se
tion.When �2X > 0 and �X > 0, the X �eld develops its va
uum expe
tation value and the R-symmetry is broken (X has the R 
harge 2). The minimum of the potential V (X) is obtainedat jXj = Xmin � p2�2X=�X . Note that this va
uum is the global minimum of the potentialV (X). Sin
e the global U(1)R symmetry is spontaneously broken, the R-string would beformed.Let us introdu
e dimensionless variables asX = XminT; x� =s 2�2X�Xf 2 ~x�; � = �Xf 24�4X > 0: (2.3)Then the e�e
tive Lagrangian is given byL = f 2 264���~��T ���2V(T ) � V(T )375 ; V(T ) � 1� jT j22� + jT j44� : (2.4)3
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Figure 1: The minimal winding solution of the R-string (solid line) for � = 1=2: the pro�lefun
tion is shown in the left panel and the 
orresponding energy density is shown in the rightpanel. The broken lines stand for the standard global vortex whi
h is the solution of themodel with the minimal kineti
 term in Eq. (2.4).Here a positive de�nite metri
 at the minimum (T = 1) requires � > 1=4. We use thedimensionless 
ylindri
al 
oordinate (�; �; ~z) for 
onstru
ting a straight R-string along thez-axis. We make the following standard Ansatz,T (�; �; ~z) = f(�)ein�; (2.5)where f(0) = 0 and f(�)! 1 at � !1. We numeri
ally solve the equation of motion for aminimal winding solution (n = 1). The solution is shown in Fig. 1.For later 
onvenien
e, let us estimate a size of R-string, R, by using the following simpleapproximation f(�) = � �R�n for � � R and f(�) = 1 for � > R; (2.6)where the power of � is determined by requiring smoothness of the 
on�guration at � = 0.The total energy of this 
on�guration, E, per the string length �z is estimated as�X2�2X E2��z � 
n(�) + n2V(1) log��R� + 12V(1)�2 + 12 an4�R2; an = 2n21 + 3n+ 2n2 ; (2.7)where an R independent 
onstant 
n(�) whi
h should be numeri
ally determined is intro-du
ed, and an IR-
uto� � is also introdu
ed in order to regularize a well-known logarithmi
divergen
e of a global vortex. The above energy takes the minimum at R � Rstring,Rstring � 2npanmT � 2nmT ; m2T � 1� �1� 14�� ; (2.8)4
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Figure 2: The transverse sizes of the R-strings, RT , with the linear approximation (solid line)and numeri
al 
al
ulations (points) using the relaxation method reviewed in Appendix A.whi
h is the transverse size of the R-string. Here mT is the dimensionless mass of T in theva
uum T = 1. For instan
e for � = 1=2 and n = 1, we obtain mT = 1 and Rstring = 2p3.To 
he
k the approximation (2.6) by 
omparing with numeri
al 
al
ulations, we introdu
eanother de�nition of a transverse size of the R-string asRT � R10 d� �2KTR10 d� �KT ; KT = (f 0(�))2V(f(�)) : (2.9)Here KT gives a �nite 
ontribution from the kineti
 term along the � dire
tion into theenergy and is useful to de�ne the transverse size. Note that this quantity does not in
ludethe 
ut-o� dependen
e. We 
ompute this both analyti
ally with the linear approximationand numeri
ally, see Fig.2. For instan
e we observe RT = 1:95 for � = 1=2 by a numeri
al
al
ulation. As 
an be seen in Fig. 2, the linear approximation ni
ely reprodu
es the numeri
alresults (we need to pay attention to errors of 10% � 30% in the linear approximation).2.2 Tube solutionHere, in order to illustrate the tube solution, we study a non-supersymmetri
 bosoni
 theoryas a toy model. Let us study the model with the following s
alar potential,V (X) = jXj2M2 (jXj2 � v2)2; (2.10)and the 
anoni
al kineti
 term, where M and v are taken to be real. This model has aglobal U(1) symmetry (no longer U(1)R symmetry), under whi
h the �eld X transforms.This potential has two degenerate va
ua, that is, jXj = 0 and v. At the former va
uum, the5



Figure 3: The minimal winding solution of the string of the model given in Eq. (2.12). Thepro�le fun
tion is shown in the left panel and a sli
e at a �xed z of the 
orresponding energydensity is shown in the right panel.global U(1) symmetry is unbroken, while the U(1) symmetry is broken at the latter va
uum.Then, a global string would be formed. Again, let us res
ale the �elds and 
oordinates asX = vT; x� = Mv2 ~x�; (2.11)then the Lagrangian be
omesL = v6M2 ����~��T ���2 � jT j2 �1� jT j2�2� : (2.12)We make the Ansatz for the minimally winding string,T = f(r)ein�; (2.13)where f(0) = 0 and f(r)! 1 at r !1. The solution is again obtained numeri
ally whi
h isshown in Fig. 3. As 
an be seen in Fig. 3, the string has a substru
ture that is a hole insidethe string. Thus, we refer it as the tube. It is the asymmetri
 phase (X 6= 0) outside the tubewhile it is the symmetri
 (X = 0) phase inside it.This tubelike string solution 
an be regarded as a tube of a domain wall. Indeed, therealso exists a domain wall in this model. For instan
e, a solution interpolating the two va
uaT = 1 at x1 =1 and T = 0 at x1 = �1 is given byT = 1p1 + e�2~x1 ; (2.14)6
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Figure 4: Numeri
al results of a ratio RT=2n2 for higher winding solutions, by using therelaxation method with eÆ
iently large relaxation time, � > 20� n4.with a dimensionless tension Twall = 1=2. Thus, assuming that the �eld 
on�guration of thetube along the radial dire
tion is well des
ribed by this solution, the total energy E per thetube length �z of the tubelike solution with a radius � = R 
an be estimated by1v2 E2��z � TwallR + n2 log��R� ; (2.15)as long as the \thi
kness" of the wall is mu
h smaller than the radius R. Minimizing this, weget the transverse size of the tube solutionR � n2Twall = 2n2: (2.16)Note that the stabilization me
hanism of the tube solution is di�erent from that of the R-string (without a hole) where the kineti
 energy and the potential energy are balan
ed. As aresult, the transverse sizes have di�erent dependen
es on the winding number n as R / n forthe R-strings and R / n2 for the tubes, respe
tively.We 
an de�ne a transverse size RT of this tube-like string similar to Eq.(2.9) with KT =(f 0(�))2 and observe RT = 2:06 for the minimal winding tube by a numeri
al 
al
ulation.Ratios RT =2n2 with higher winding solutions are listed in Fig.4. It suggests that the aboveapproximation works well.3 R-tube and Va
uum Instability3.1 Metastable R-tubeIn se
tion 2.1, we studied the single �eld SUSY breaking model as a toy model of one ofthe O'Raifeartaigh models dis
ussed in [12℄ in whi
h 
lassi
al pseudo-moduli spa
e is stable7



everywhere. In this se
tion, we move on to phenomenologi
ally interesting situation wherepseudo-moduli spa
e has a ta
hyoni
 dire
tion, in whi
h large gaugino masses are generatedby gauge mediation [20,38℄. In su
h models, the R-symmetry breaking va
uum is metastable,thus the R-string solution 
an be a tube-like domain wall with winding number as showed inse
tion 2.2.Here, we study the illustrating supersymmetri
 model with two super�elds, X and �.These super�elds have R-
harges, R[X℄ = 2 and R[�℄ = 0, and the superpotential is given byW = X�2 � �2X: (3.1)In addition, we 
onsider the following e�e
tive K�ahler metri
,g�1X �X = 1� 12m2 jXj2 + �4m4 jXj4; g�1��� = 1; g�1X �� = g�1� �X = 0: (3.2)This model has the Z2 symmetry, under whi
h X and � are Z2 even and odd, respe
tively.This model has the dis
rete SUSY va
ua,X = 0; � = ��; (3.3)and the SUSY breaking va
uum, X = mp�; � = 0; (3.4)where the U(1)R symmetry is also broken. The former is the true va
uum, while the latter isthe metastable va
uum whose va
uum energy is V = �4V(1) = �4 �1� 14��.For later 
onvenien
e, let us introdu
e dimensionless variables byX = mp�T; � = �s; x� = mp��2 ~x�; � = p��m ; (3.5)then the Lagrangian is of the formL = �4 � 1V(T ) ���~��T ���2 + �2 ���~��s���2 � V(T )js2 � 1j2 � 4�2 jT j2jsj2� : (3.6)This Lagrangian is 
hara
terized by two dimensionless parameters � and �. For instan
e, inthe SUSY breaking va
uum (T; s) = (1; 0), dimensionless masses for T and s are wriiten bym2T = 1� �1� 14�� ; m2s = 2�2 � 2�2 + 14� � 1� ; (3.7)respe
tively, and that is, existen
e of the SUSY breaking va
uum requires1 > 14� > 0; 2�2 + 14� > 1: (3.8)8



Figure 5: The minimal winding solution of the R-tube of the two-s
alar model for � = 1,� = 0:27 given in Eq. (3.6). The pro�le fun
tions (solid line for jT j and broken line for s) areshown in the left panel and a sli
e at a �xed z of the 
orresponding energy density is shownin the right panel. Here we 
hose the plus sign (
 = +1).If one is interested in va
uum sele
tion, a simple 
riterion is a ratio of ta
hyoni
 massesat the origin (T; s) = (0; 0) where we have(m0;T )2 = � 12�; (m0;s)2 = � 2�2 : (3.9)Sin
e in the early universe �eld values are assumed to be around the origin, if ta
hyoni
mass of T is larger, one may expe
t that supersymmetry breaking model is preferable2. Aninequality 2�2 < 12�; (3.10)is required for sele
ting the SUSY breaking va
uum.Now we are ready to 
onstru
t the R-tube in this two-s
alar model. To this end, we makethe Ansatz T = f(�)ein�; s = 
 h(�); (3.11)with 
 = �1. Be
ause of the Z2 symmetry, the solutions of f(�); h(�) are independent of 
.Similar to the model in se
tion 2.2, it is the symmetri
 phase inside the tube while it is theasymmetri
 phase outside the tube. A sharp 
ontrast among two models is that the outside2Here we have been studying a simple toy model. To dis
uss va
uum sele
tion more seriously, one need togo ba
k to an original realisti
 model and spe
ify a history of the early universe.9



is the true va
uum in se
tion 2.2 and is the false va
uum in this se
tion. One may guess thatstable solution does not exist sin
e the 
ore of the tube has lower energy than its outsideand hen
e larger radius would be favored energeti
ally, whi
h 
auses the \roll-over" problem.However, be
ause the tension of the wall a
ts as a 
entripetal for
e for the R-tube, we will�nd that there exist metastable tube-like �eld 
on�gurations. In order to see a typi
al R-tubenumeri
al solution in this model, here we show an example in Fig. 5 with � = 1; � = 0:27.Note that the pro�le fun
tion of the winding �eld T , whose mass is very small, has a very longtail 
ompared to that of the solution in se
tion 2.2. On the other hand, the unwinding �elds, whose dimensionless mass is of order 1, 
onverges exponentially. In the next subse
tion,we will investigate stability of the R-tube by varying those parameters.3.2 Instability of R-string and Broken Z2 SymmetryIf we set s = 0 to keep the Z2 symmetry, the model dis
ussed in this se
tion redu
es tojust the model dis
ussed in se
tion 2.1 ex
ept for an overall fa
tor. Therefore the R-stringsolution (s = 0) without a hole inside is also a solution in this model. However, su
h anR-string would be almost always unstable and transforms into an R-tube with non-zero sinside. Sin
e non-vanishing s means the broken Z2 symmetry, we observe below that the Z2symmetry inside the R-tube in this model is almost always broken.
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Figure 6: Ta
hyoni
 mass of s around R-string for � = 0:27 (the left panel) and � = 1=2(theright panel).Let us 
onsider an in�nitesimal 
u
tuation s(� 1) around the R-string solution dis
ussedin se
tion 2.1 and study whether a dire
tion along s is ta
hyoni
 or not. A linearized equationfor s is given with an eigenvalue q2 as� 1�(�s0)0 + �� 2�2V(T ) + 4�4 jT j2� ���T=Tsol s = q2s: (3.12)10



For instan
e we observe ta
hyoni
 masses of s numeri
ally for many sets of parameters f�; �gas shown in Fig.6. We therefore make a 
onje
ture thatq2 < 0; (3.13)for almost all the winding number n and the almost whole parameter region of f�; �g satisfyingthe inequalities (3.8). This 
onje
ture means that the R-string with s = 0 is always unstableand a stable R-tube solution, if it exists, must have the following propertysj�=0 6= 0: (3.14)In this paper we will assume this 
onje
ture holds and will not 
onsider the 
onstraints fromthe stability of R-string 
on�guration.3.3 Rough Estimation for R-tubeIf the domain wall 
onsisting the R-tube is suÆ
iently thin and resides at � = R, its totalenergy E per the length �z 
an be estimated as�m2 E2��z � 12V(1)(�2 �R2) + TwallR + n2V(1) log��R� ; (3.15)as has been done in Se
. 2.2. See Fig.7. Note that the total energy has divergen
e terms with

Rtube Rmax R

E

2 ΠDz

Figure 7: Potential for a transverse size of R-tube with a rough estimation.an IR-
uto� � proportional to �2 and log�. The former is the energy density V(1) = 1� 14�of the SUSY breaking va
uum, and the latter is that for the well-known global string tension.Here, Twall is a (dimensionless) tension of the domain wall. This potential has a lo
al minimum(maximum) at � = Rtube(Rmax) withRmax = 2n2V(1)�Twall �pT 2wall � 4n2� > nV(1) ;11



Rtube = 2n2V(1)(Twall +pT 2wall � 4n2) < nV(1) ; (3.16)if the dimensionless tension Twall is suÆ
iently large asTwall > 2n: (3.17)This is, therefore, a ne
essary and suÆ
ient 
ondition for existen
e of the R-tube as longas the approximation Eq. (3.15) is valid. Su
h 
on�gurations that satisfy the inequalityR � Rmax 
an not avoid to spread out toward the in�nite of the spa
e. Note that 
omparinga thi
kness Lwall of the domain wall with Rtube, if Lwall � Rtube holds, the above estimation(3.15) works well and we will observe the SUSY va
uum inside the R-tube, namelysj�=0 � 1: (3.18)Using an approximation dis
ussed in the next subse
tion, we 
an show the lower limit of theratio RtubeLwall > n2V(1)TwallLwall > n22(1 + �2V(1)) > n26 : (3.19)Therefore Rtube 
an not be very small. If Rtube is 
omparable with Lwall, a 
on�guration ofR-tube approa
hes one of the R-string, but sj�=0 keeps non-vanishing even there in almost allthe 
ases as we dis
ussed.3.4 Linear Approximation for the Domain WallIn order to estimate the transverse size of the R-tube and its stability following the dis
ussionin the previous subse
tion, we need the data fTwall; Lwallg. We here evaluate them assumingthat the domain wall in the R-tube 
an be well approximated by a 
at domain wall inter-polating the SUSY va
uum at x = �1 and the SUSY breaking va
uum at x = 1. Let us
onsider this 
on�guration in the following. Note that, however, there is an ambiguity forde�nition of Twall and pro�le fun
tions for the domain wall sin
e the 
at domain wall itself isunstable. It is natural to set a relation between the total energy of the system Ewall and thetension Twall of the domain wall sitting at x = hxi with IR-
uto� �� asEwall = Z �+�� dx(K + V ) = Twall + (�+ � hxi)V(1); (3.20)whi
h gives a for
e (pressure) from the SUSY va
uum to the domain wall� dEwalld hxi = V(1) > 0: (3.21)12



Moreover, it is natural to require for the relation,Z �+�� dxK = Z �+�� dxV � (�+ � hxi)V(1); (3.22)is hold near the domain wall solution. When V(1) = 0 holds, the above relation 
an be derivedfrom Derri
k's theorem [28℄. Then, we de�ne the tension Twall and a position hxi of the wallin terms of only kineti
 terms K without using a potential V asTwall � 2 Z �+�� dxK; hxi � 2Twall Z �+�� dx xK: (3.23)The equation (3.22) is enough to estimate data fTwall; Lwallg as the following. Let usapproximate the pro�le fun
tions (T; s) for the domain wall by pie
ewise-linear fun
tions asT = xLwall ; s = 1� xLwall for 0 � x � Lwall; (3.24)and (T; s) = (1; 0) for x � Lwall and (T; s) = (0; 1) for x < 0. By inserting this approximationto Eq.(3.22) we �nd that the l.h.s (r.h.s) is proportional to L�1wall(Lwall). Note that the tensionof the domain wall 
an be expressed asTwall = Z �+�� dxK + Z �+�� dxV � (�+ � hxi)V(1): (3.25)Minimizing it in terms of Lwall, we getLwall = s (A(�) + �2)2(A(�) + �2)B(�; �)� (A(�)� C(�) + �2=2)V(1) ;Twall = 2s(A(�) + �2)B(�; �2)� �A(�)� C(�) + �22 �V(1); (3.26)where A(�) = Z 10 dxV(x) = 8>>><>>>: 1 + 760� +O(��2) for �� 1�4p4�� 1 � 18 log(4�� 1) +O(1) for � � 14 ;B(�; �) = 115 �8� 23342 14� + 2�2� ; (3.27)C(�) = Z 10 xdxV(x) = 2�ar

otp4�� 1p4�� 1 = 8>>><>>>: 12 + 112� +O(��2) for �� 1�4p4�� 1 +O(1) for � � 14 :13
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Figure 8: Stability of the R-tube with winding number. In the white region, all tube solutionsn � 1 are unstable. In the purple region,R-tube with n = 1 is stable but others n � 2 areunstable. In the light purple region, R-tubes with n = 1; 2 is stable but others n � 3 areunstable. The region below the red line represents (3.10). The SUSY breaking va
uum isunstable in the yellow region (see (3.8)).Here we took �� < 0 and �+ > Lwall. Espe
ially we �nd inequalityTwallLwall = 2(A(�) + �2) < 2� 1V(1) + �2� : (3.28)We have used this for deriving the inequality in Eq. (3.19).Finally, using the result Twall in the linear approximation, we show the stability 
ondition(3.17) for the R-tube with winding number n in Fig 8.3.5 Numeri
al approa
h3.5.1 Numeri
al 
al
ulation for stabilityIn the previous subse
tion, exploiting linear approximation, we found the stability 
onditionof the R-tube with winding number n. Here, we try to 
he
k the parameter dependen
eof the stability by numeri
al 
al
ulation. We adopt a kind of relaxation method to �nda 
on�guration of the R-tube. See Appendix A for details. Sin
e we are interested in aparameter region 
lose to borders of the stability of two winding numbers, so we have to treatrelatively unstable 
on�guration, whi
h require 
areful analysis. Be
ause of this 
omplexity,we fo
us on a 
ouple of examples for the numeri
al analysis.14



As a �rst example, we take a parameter � = 1, � = 27=100 where a

ording to the linearapproximation, winding number n = 1 is stable but n = 2 is unstable (see Fig 8). Followingthe relaxation method, we take an appropriate initial fun
tion and �nite relaxation time � ,then we 
al
ulate minimum energy 
on�gurations. As we show in Fig 9 and Fig 10, energy
onvergen
es of the 
on�gurations have a 
lear di�eren
e in two 
ases. Here we removed a
ontribution Evev of the va
uum energy density from the total energy E and 
al
ulated thefollowing dimensionless energyE(�) � �m2 E � Evev2��z = �m2 E2��z � 12V(1)�2; (3.29)and we take the IR-
uto� of the energy as � = 50. The 
on�guration with n = 2 is monoton-i
ally loosing the energy and in a suÆ
iently late relaxation time � , the energy de
reases asa linear fun
tion, whi
h 
learly suggests instability of this 
on�guration. On the other hand,as for the 
on�guration with n = 1, the energy seems to 
onverge to a 
onstant value. Thissharp di�eren
e ni
ely mat
hes with the result of the liner approximation.However, it is worth noting that our numeri
al analysis is done with a �nite pre
isionwhi
h is appropriately 
hosen by reasonable 
al
ulation time. Thus, beyond our 
al
ulationpre
ision, there may exist an unstable mode whi
h may yield slight energy loss. Thus, as longas we use a kind of relaxation method with a �xed initial 
ondition, it may be, in general,hard to 
on
lude 
omplete stability of the 
on�guration. However, even if the small instabilityexists, the life-time of R-tube 
an be longer than the de
ay time of the R-tube originating froman expli
it U(1)R breaking e�e
t. In many phenomenologi
al models, the global R-symmetryis already broken by adding gravity due to the 
onstant term in superpotential. Thus, at apoint of the early universe, R-tubes disappear by generating axion domain walls [31, 39{43℄.Therefore, as long as the stability is long enough 
ompared with its lifetime, we 
an treat theR-tube as a stable solution.As a se
ond example, we 
hoose � = 1=50 and � = 6=10. Small � is favorable in modelbuilding, partially be
ause the longevity of the false va
uum. So from phenomenologi
alpoint of view, it is important to study a 
on�guration of R-tube with small winding numberin this parameter region. Again, using the relaxation method, we numeri
ally 
al
ulate theenergy 
onvergen
e of two 
ases, n = 1 and n = 2. As shown in Fig 11, the total energyof R-tube with n = 2 
onverges to a 
onstant value. Thus, within our 
al
ulation a

ura
y,the 
on�guration looks stable. Also, the 
on�turation with n = 1 is similarly stable. Withthese numeri
al results and linear approximation shown in the previous subse
tion, it may beplausible that in small � region R-tubes are relatively stable and the roll-over pro
ess doesnot o

ur. 15
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Figure 9: Energy against the relaxation time � . Energy of the 
on�guration with windingnumber n = 1 for � = 1 and � = 27=100 
onverges to a 
onstant value. � is the relaxationtime.
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3.5.2 E�e
tive potential for light modeAs emphasized above, there may exist a very light mode whi
h may 
ause instability of a
on�guration. Although treatment of su
h light modes in the relaxation method is not aneasy task, but we would like to propose a method to un
over the existen
e of a light mode.The most interesting mode is a 
u
tuation of the size of the R-tube. Generally speaking azero mode (moduli) around a solution is frozen in the relaxation method, and a light modeof whi
h dependen
e in the total energy is quite small, seems to be almost frozen even ifit exists. To dete
t su
h light mode and sear
h the true stable solution, we need to take alot of di�erent initial 
onditions for the relaxation method. To be 
on
rete, we show initial
onditions for the �elds T; s, 3f(�) = 1 + tanh(2(�� �0))2 tanh(�); (3.30)h(�) = 1� tanh(2(�� �0))2 1 + tanh(2(�+ �0))2 :With various values for �0 whi
h roughly indi
ates a transverse size of R-tube, we 
al
ulateminimum energy 
on�gurations with �nite relaxation time. For any value of �0, the energy
onverges like Figs. 9 and 11 for those values of n, � and �. However, �nal 
on�gurations 
anhave small di�eren
es of the energy and the tube-size. To represent the size of the tube, itwould be useful to introdu
e the following de�nition similar to (2.9),RT � R10 d��2KTR10 d��KT ; Rs � R10 d��2s0(�)2R10 d��s0(�)2 : (3.31)Here we de�ned two sizes of the R-tube, RT and Rs. A reason for introdu
ing two sizes 
an beseen in a dis
repan
y between the linear approximation in se
tion 3.4 and numeri
al resultsshown below. As has mentioned in se
tion 2.1, these quantities do not in
lude the 
ut-o�dependen
e and are well-de�ned 
andidates for the size of the tube.As an example, we take � = 27=100, � = 1. Varying the initial position �0, we 
al
ulatethe minimum energy 
on�guration with �nite relaxation time. First of all, we show a 
orre-sponden
e between the initial 
ondition �0 and the size Rs in Fig 12. Rs is evaluated with a
onverged 
on�guration. Sin
e it is one-to-one 
orresponden
e, varying the initial 
ondition�0 represents varying the size of the R-tube.Now let us show the low energy e�e
tive potential for the 
u
tuation mode of the size. Weplot the energy (3.29) at the relaxation time � = 50, whi
h we will denote as Ttube � 2�E(� =3 We set Diri
hlet 
ondition f(0) = 0 and Neumann 
ondition h0(0) = 0 for T and s for respe
tively. Weneed to be sensitive for 
onsisten
y between initial 
onditions and boundary 
onditions at � = 0.17
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Figure 13: Monotoni
ally de
reasing potential of Rs with � = 27=100; � = 1(the left panel).Ttube � 2�E(� = 50). Gradients in the energy with respe
ts to � at � = 50(the right panel).Finite gradients indi
ate instability of 
on�gurations and noises for small Rs imply the limitbound of pre
ision of 
al
ulations.50), with respe
t to the position of Rs in Fig.13. Surprisingly, we observe a monotoni
allyde
reasing potential in terms of Rs for the model with � = 27=100; � = 1 whi
h we explained.A large plateau with tiny gradient in Fig.13 is 
onsistent with Fig.9 where Rs 
an be almostregarded as a massless mode. Fig.13 implies that the R-tube in this 
ase is unstable and willexpand to the in�nity. This 
learly suggests that the border line of instability of minimumwinding R-tube shown in Fig 8 does not mat
h with the numeri
al analysis above. We �ndthat for small Rs the two sizes behave di�erently as shown in Fig.14 and this fa
t tells us whythe estimation (3.15) with a single size shown in se
tion 3.4 does not work for small Rs. Itwould be interesting to study two-s
ale linear approximation for better approximation.Here, we proposed a way to analyze the low energy e�e
tive theory for a very light mode18
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reasing for small Rs whereas RT for large Rs is proportional to Rs. Therefore RT is not agood quantity for parametrizing the potential.
orresponding to the 
u
tuation of the tube-size and 
he
ked the instability of the mode.However, this light mode is signi�
antly a�e
ted by various 
orre
tions su
h as thermal e�e
ts,supergravity e�e
ts and quantum 
orre
tions. We would study these 
orre
tions elsewhere.4 Bamboo solution: Tube jun
tionIn the previous se
tion, we showed that an R-string 
an form a tube-like domain wall withwinding number and inside of the wall is in the SUSY preserving va
uum. It would bewonderful if we 
ould extra
t any eviden
es of the existen
e of the SUSY va
uum from outsideof the tube4. Toward this goal, in this se
tion we demonstrate that quantum number in theSUSY va
ua signi�
antly a�e
ts the shape and the tension of the string. Con
retely, we
onstru
t a jun
tion of the R-tube. To the best of our knowledge, this kind of soliton hasnot been known so far. In order to demonstrate an expli
it solution, let us again take thetwo-s
alar model in Eq. (3.6). As shown in Eq. (3.11), re
e
ting the Z2 symmetry of themodel, there are two di�erent R-tubes5. The one has 
 = +1 and the other has 
 = �1. Theskin of the R-tube, namely the pro�le of T �eld, is independent of the 
hoi
e of 
, so that one
an naturally imagine that the two R-tubes with di�erent 
 
an be smoothly 
onne
ted. The4The global R-symmetry is expli
itly broken when gravity is 
oupled to the theory. In this 
ase, whenthe Hubble parameter H be
omes the mass s
ale of the R-axion, a domain wall interpolating the stringsis generated and string and walls disappear [31, 39{43℄. Thus, one 
annot observe a global R-string in thepresent age. However if we repla
e the R symmetry with another lo
al U(1) symmetry, then a similar tube-likesolution existing in the present age 
an be generated.5This is reminis
ent of the monopole jun
tion of two 
osmi
 strings studied in [44℄. It would be interestingto study further our jun
tion in light of this similarity.19



Figure 15: The bamboo soliton (A sli
e at the 
enter): Jun
tion of the R-tubes with 
 = +1and 
 = �1. In the left panel, the red region is where s > 1=2 while the blue is the regionwhere s < �1=2, and the yellow stands for the region where 7=20 < jT j < 12=20. The rightpanel shows the potential density isosurfa
e with whi
h one 
an 
learly re
ognize the domainwall inside the tube.jun
tion of the R-tubes is a domain wall whi
h interpolates two di�erent SUSY va
ua insidethe R-tube. We 
all this jun
tion the R-bamboo.A numeri
al solution for � = 1, � = 27=100 is shown in Figs. 15 and 16. Far away fromthe domain wall along the tube, the solution asymptoti
ally goes to the R-tube solution. Atthe jun
tion, the transverse size of the tube be
omes smaller sin
e the domain wall pulls thetube toward its inside, see Fig. 15.This R-bamboo solution may be 
reated when two R-tubes 
ollide. If the two tubes aredi�erent kind, the domain wall must be 
reated at the jun
tion of the two tubes. At thesame time, the anti R-bamboo may be 
reated. This is very similar phenomenon to monopoleand anti-monopole 
reation asso
iated with the non-Abelian string re
onne
tion. This isinteresting issue but is beyond the s
ope of this paper, so we leave it as a future work.Finally, it is worthy to note that stability of bamboo 
on�guration is not guaranteed byour numeri
al approa
h. As emphasized in the previous se
tion, our analysis is a kind ofrelaxation method. A
tually, if there is no domain wall inside the R-tube, the 
on�gurationseems to have a small instability shown in Fig 13. However, in the bamboo 
on�guration,the existen
e of the domain wall in
reases the stability be
ause the energy of the domainwall is proportional to R2. Thus, if the number of the domain walls is large, the bamboo20



Figure 16: 3D plot of the Bamboo soliton for � = 1, � = 27=100.
on�guration would be stabilized enough. In prin
iple, the same argument done in Fig 13would be appli
able, however numeri
al 
al
ulation be
omes quite involved be
ause one needsthe two-dimensional relaxation method.5 Con
lusionIn this paper, we have demonstrated a fas
inating role of a 
osmi
 R-string/R-tube by usingtwo toy models with spontaneous R-symmetry breaking. The �rst example shown in se
tion2.1 is a single �eld model. The model 
an be regarded as a toy model of one of O'Raifeartaighmodels studied in [12℄ in whi
h pseudo-moduli spa
e is stable everywhere. In this model,string-like defe
t generated by the Kibble-Zurek me
hanism is stable and very 
lose to theknown global strings. Winding number dependen
e of the size of the string is linear in n. Onthe other hand, in the two-�eld model shown in se
tion 3, a string-like obje
t is a tube-likedomain wall interpolating a false va
uum and a true SUSY va
uum. One spe
i�
 feature oftwo-�eld model is existen
e of a ta
hyoni
 dire
tion at R-symmetry restoring point X = 0.Be
ause of this, the 
ore of the string is not stable under 
u
tuation toward the ta
hyoni
dire
tion. Thus, inside the 
ore in whi
h R-symmetry is restored, 
an be �lled out by thetrue va
uum through the ta
hyoni
 dire
tion. Naively, one may think that su
h an R-tubeis unstable. However, as we shown in the main text numeri
ally, there exist metastable R-tube solutions for 
ertain parameters. An interesting property of su
h R-tube is the winding21



number dependen
e of the size. By the linear approximation, we estimated the dependen
eand found that its dependen
e is n2 rather than n. Therefore, there is a tenden
y that tube
on�guration with larger winding number is more unstable. Numeri
ally, we 
he
ked thehigher winding instability at a sample parameter � = 1 and � = 27=100: We showed thatthe 
on�guration with winding number n = 2 is unstable and the total energy de
reasesmonotoni
ally.If an unstable R-tube is 
reated by the Kibble-Zurek me
hanism, it rapidly expands andour universe will be 
ompletely �lled by the true va
uum. This pro
ess gives 
onstraintsfor models building. However, it is worthy to emphasize that su
h roll-over pro
ess 
an beprote
ted by D-term 
ontribution or thermal potential. As is demonstrated in [21, 45, 46℄,when a D-term 
ontribution 
annot be negligible, it 
an lift the ta
hyoni
 dire
tion andstabilize the pseudo-moduli spa
e. In su
h models, the roll-over pro
ess does not o

ur. Also,when the amplitude of (ta
hyoni
) messenger mass at the origin is suÆ
iently smaller thanthat of R-symmetry breaking �eld, the va
uum sele
tion is su

essfully realized by exploitingthe thermal potential or Hubble indu
ed mass. If su
h thermal potential keeps lifting theta
hyoni
 dire
tion until the time of the R-string de
ay [31, 39{43℄, the roll-over pro
ess 
anbe su

essfully 
ir
umvented. However, even if su
h an early stage s
enario is assumed, thereare sever 
osmologi
al 
onstraints on R-axion density as studied in [31℄.Finally we 
omment on our numeri
al analysis done in se
tion 3. Sin
e we adopted a kind ofrelaxation method with a �xed initial 
ondition to �nd energeti
ally minimum 
on�gurations,it is not easy to 
on
lude the stability of the 
on�guration sharply. There may exist a verylight mode whi
h does not 
hange the energy signi�
antly. To un
over the existen
e of thevery light mode, we proposed a method for studying the low energy e�e
tive potential for su
hlight mode. By 
hanging the initial 
onditions and observing 
onverged 
on�gurations, we
an estimate the e�e
tive potential. Using this method, at the parameter � = 1 � = 27=100,we �nd emergen
e of a light model and �nd a large plateau in the e�e
tive potential. It wouldbe important to apply the method to a wide range of parameter spa
e and study borders ofinstabilities of 
on�gurations with various winding numbers numeri
ally. This is beyond theour s
ope, so we will leave it as a future work.A
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h, KyotoUniversity.A Relaxation methodIn this se
tion we review a kind of relaxation methods applied to 
onstru
ting numeri
alsolutions in this paper. Let us 
onsider the following general Lagrangian for s
alars �� inRd+1 with 
oordinates fx�g = ft; xig,L = 12g���������� � V (�); (A.1)where g�� is the metri
 for the �eld spa
e. Our goal is to �nd an numeri
al stati
 solution��(t; xi) = ��sol(xi) for this system. The shooting method is a good strategy for a system witha single s
alar �elds and a single spatial 
oordinate x1, but only in that 
ase. For systemswith multi �elds in higher dimensions, the shooting method does not work very well and weneed the relaxation method explained bellow. Let us introdu
e a `relaxation time' � insteadof the real time t and suppose that �� depend on � as ��(�; xi). Then � dependen
e of �� isde�ned by, �i ÆLÆ�i�� � ÆLÆ�� = �g�� ����� ; (A.2)with Neumann 
ondition at the boundary of the region � � Rdni�i�����xi2�� = 0: (A.3)The added term in the r.h.s of Eq.(A.2) i the so-
alled fri
tion term. A
tually, due to this termwe 
an show that the ordinary total energy E with integral region � is no longer 
onstantbut a monotoni
 de
reasing fun
tion E = E(�) of � asdE(�)d� = � Z� ddxg�� ����� ����� < 0: (A.4)If we observe the energy 
onverges, we �nd a solution ��sol aslimt!1E(�) = Esol , lim�!1 ���(�; xi)�� = 0 , lim�!1��(�; xi) = ��sol(xi): (A.5)23



If the energy has the global minimum, therefore, we 
an obtain, at least, one stati
 solution��sol by using the relaxation method. If there exists multiple lo
al minima of the energy, aninitial 
ondition of �� 
hooses one of them.In a
tual numeri
al 
omputation we need a 
uto� of the relaxation time at � = ��nand we regard ��(��n; xi) as a solution. A relation between ��n and pre
ision of a solution�� = ��(��n; xi) 
an be dis
ussed in the following. If deviations of �� from a solution ��sol areeÆ
iently small, they 
an be expanded as�� � ��sol � 1Xn=1 fn(xi)an(�); (A.6)with pro�le fun
tions fn(xi) for massive modes of mass mn around the 
on�guration ��sol.Eq.(A.2) gives development of 
oeÆ
ients an(�) asan(�) = a0ne�m2n� ; (A.7)and behavior of the energy is 
ontrolled by the lightest mass m1 asE(�) � Esol + Ae�2m21� : (A.8)Here a 
onstant A 2 R>0 depends on an initial 
ondition we took and is assumed to be thesame order as Esol. To get pre
ision 10�p, therefore, we have to take a time ��n for thisrelaxation method as ��n > pm21 ln 10; (A.9)where m1 
an be roughly guessed by a typi
al mass s
ale of the system. With large � , wesometimes observe a random behavior of E(�) whi
h is a signal of the limit bound of ma
hinepre
ision. See Fig.17 for an example.If a 
on�guration of �� is a

identally near to a saddle point, we also observe an exponentialde
ay of E(�), but after that it 
ollapses like a waterfall asE(�) � Esaddle + Ae�2m2� � ~Ae2j ~m2j � (A.10)with a ta
hyoni
 mass ~m2 = �j ~m2j. Therefore an exponential behavior of the energy do notalways guarantee that a stable solution is obtained. Taking multi initial 
onditions of �� 
anavoid this te
hni
al error.
24
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al behavior of an energy in the relaxation method. Here we get a

ura
y of10�7:5 for a solution. Cal
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