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AbstratWe show that a osmi string assoiated with spontaneous U(1)R symmetry breaking givesa onstraint for supersymmetri model building. In some models, the string an be viewedas a tube-like domain wall with a winding number interpolating a false vauum and a truevauum. Suh string auses inhomogeneous deay of the false vauum to the true vauumvia rapid expansion of the radius of the tube and hene its formation would be inonsistentwith the present Universe. However, we demonstrate that there exist metastable solutionswhih do not expand rapidly. Furthermore, when the true vaua are degenerate, the strutureinside the tube beomes involved. As an example, we show a \bamboo"-like solution, whihsuggests a possibility observing an information of true vaua from outside of the tube throughthe shape and the tension of the tube.
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1 IntrodutionThe global U(1)R symmetry plays an important role in supersymmetri �eld theories, in par-tiular in supersymmetry (SUSY) breaking [1{5℄ (See [6{8℄ for reviews and referenes therein).In [2, 3, 9℄, by exploiting the Nelson-Seiberg theorem [1℄, a onnetion between metastabilityand R-symmetry was demonstrated in the ontext of generalized Wess-Zumino models withgeneri superpotential. From more phenomenologial viewpoint, the U(1)R symmetry mustbe broken expliitly or spontaneously to generate Majorana gaugino masses. Gaugino massesare not indued by SUSY breaking without the U(1)R symmetry breaking.Indeed, several types of models for the U(1)R symmetry breaking have been studied [10{24℄. In some models, the vauum with both SUSY and U(1)R breaking may be a globalminimum. However, in many models suh vauum is a metastable minimum and there is aglobal minimum, where SUSY and U(1)R may be unbroken.Through the osmologial phase transition, there may appear solitoni objets suh asdomain walls, osmi strings and monopoles [25℄ through the Kibble-Zurek mehanism [26,27℄.When a global U(1) symmetry is spontaneously broken, a global string appears [28℄. Thus,when the U(1)R symmetry is broken spontaneously in SUSY models, there would appear aglobal string, whih we refer as an R-string.1 The R-string would be stable in those modelsin whih the U(1)R breaking vauum is a global minimum, and that would lead to severalosmologially interesting aspets [31℄.On the other hand, when the U(1)R breaking vauum is metastable and the model hasanother global minimum with SUSY and U(1)R unbroken, there may appear an R-string,whose ore orresponds to the true SUSY vauum, i.e., R-tube. One may think that suhan R-tube is unstable beause the energy density in the ore, whih is the SUSY vauum,is lower than one outside, whih is the SUSY breaking metastable vauum. Thus, it would\roll-over" and the true SUSY vauum would expand in the Universe [32{34℄. In this ase,the SUSY breaking ould not be realized suessfully. One may onlude that a senario withR-tube formation is ruled out by this mehanism.However, sine the domain wall tension works as a entripetal fore for R-tube, its radiusmay be stabilized if the domain wall tension is large enough and the energy disrepanybetween SUSY vauum and SUSY-breaking vauum is small enough. In suh a ase, theosmologial disaster an be avoided. The (in)stability of the R-tube soliton depends onparameters in the SUSY models. In priniple, we an have onstraints on SUSY-breakingmodels from this onsideraion beause (in)stability of the R-tube is determined by parameters1See also for another type of strings, whih appear through SUSY breaking [29, 30℄.1



of SUSY breaking models. Note that suh onstraints are independent of the requirementthat the metastable vauum deays slowly into the true vauum by the tunneling e�et [35℄,ompared with the Universe age. Therefore, it is quite important to study the R-string/R-tubeformation and its (in)stability. Some relevant studies have been arried out in Refs. [36, 37℄.In this paper, we study in detail the struture of the R-string/tube solution in SUSYmodels. In a simple but (semi)realisti SUSY breaking model, we study stability of theR-tube by exploiting a pieewise linear approximation and numerial solutions. By usinglinear approximation, we obtain onstraints for the stable R-tube. We also show examplesof (meta)stable/unstable R-tube on�gurations numerially. We emphasize that the windingnumber, whih is an important quantity to haraterize features of the R-tube solutions, isalso relevant to the stability of the R-tube.We also show that the ore of the R-tube an have more ompliated struture in ertainSUSY models where the true SUSY breaking vaua are degenerate. For example, supposethat the SUSY model has a Z2 symmetry and it is broken at the true SUSY vauum. Then,the ore of the R-tube would be separated into two vaua by a domain wall. Sine it lookslike a (gourd-shaped) bamboo, we refer it as the bamboo solution. We also study aspets ofthe bamboo solution. Other types of struture inside the ore of strings would be possible.This paper is organized as follows. In setion 2, we illustrate the R-string and tubesolutions in simple models as warm-up. In setion 3, we study the R-tube in a (semi)realistibut simple SUSY breaking model, that is, an O'Raifeartaigh-like model with non-anonialK�ahler metri. We analyze the (in)stability of the R-tube numerially at several parameters.In setion 4, by showing the bamboo solution, we demonstrate the fat that quantum numberin the SUSY vaua signi�antly a�ets the shape and the tension of the string. Setion 5is devoted to onlusion and disussion. In appendix A, we show basis of the relaxationmethod for solving a di�erential equation.2 Stable R-string and tube solutionsBefore going to detailed studies of metastable strings, whih will be shown in the next setion,we would like to present simple stable solutions as a warm-up. Here, we illustrate a stableR-string and a stable R-tube whih is a tube-like domain wall with winding number, by usingsingle omplex salar �eld models.
2



2.1 R-stringConsider the following simplest spontaneous R-symmetry breaking model. Superpotential islinear in a hiral super�eld X whih will be a trigger for SUSY breaking,W = fX:To stabilize the pseudo-moduli X in this SUSY breaking vauum, we introdue the followingnon-anonial K�ahler potential by hand,g�1X �X = 1� �2Xf 2 jXj2 + �X4f 2 jXj4: (2.1)Thus, the potential of this theory is given byV (X) = f 2 � �2X jXj2 + �X4 jXj4: (2.2)This model an be viewed as a low energy e�etive theory of one of the O'Raifeartaighmodels studied in [12℄: When the pseudo-moduli spae is stable everywhere along messengerdiretions, by integrating out the messengers, one obtains non-trivial orretions to the K�ahlerpotential. Expanding the K�ahler potential up to O(jXj6), one an reprodue a theory similarto (2.2). On the other hand, when the pseudo-moduli spae has a tahyoni diretion ata point in the spae, whih is phenomenologially interesting situation in gauge mediationmodels [3, 20℄, the existene of messengers is ruial and two-�eld model is required. This isthe main topi in the next setion.When �2X > 0 and �X > 0, the X �eld develops its vauum expetation value and the R-symmetry is broken (X has the R harge 2). The minimum of the potential V (X) is obtainedat jXj = Xmin � p2�2X=�X . Note that this vauum is the global minimum of the potentialV (X). Sine the global U(1)R symmetry is spontaneously broken, the R-string would beformed.Let us introdue dimensionless variables asX = XminT; x� =s 2�2X�Xf 2 ~x�; � = �Xf 24�4X > 0: (2.3)Then the e�etive Lagrangian is given byL = f 2 264���~��T ���2V(T ) � V(T )375 ; V(T ) � 1� jT j22� + jT j44� : (2.4)3
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Figure 1: The minimal winding solution of the R-string (solid line) for � = 1=2: the pro�lefuntion is shown in the left panel and the orresponding energy density is shown in the rightpanel. The broken lines stand for the standard global vortex whih is the solution of themodel with the minimal kineti term in Eq. (2.4).Here a positive de�nite metri at the minimum (T = 1) requires � > 1=4. We use thedimensionless ylindrial oordinate (�; �; ~z) for onstruting a straight R-string along thez-axis. We make the following standard Ansatz,T (�; �; ~z) = f(�)ein�; (2.5)where f(0) = 0 and f(�)! 1 at � !1. We numerially solve the equation of motion for aminimal winding solution (n = 1). The solution is shown in Fig. 1.For later onveniene, let us estimate a size of R-string, R, by using the following simpleapproximation f(�) = � �R�n for � � R and f(�) = 1 for � > R; (2.6)where the power of � is determined by requiring smoothness of the on�guration at � = 0.The total energy of this on�guration, E, per the string length �z is estimated as�X2�2X E2��z � n(�) + n2V(1) log��R� + 12V(1)�2 + 12 an4�R2; an = 2n21 + 3n+ 2n2 ; (2.7)where an R independent onstant n(�) whih should be numerially determined is intro-dued, and an IR-uto� � is also introdued in order to regularize a well-known logarithmidivergene of a global vortex. The above energy takes the minimum at R � Rstring,Rstring � 2npanmT � 2nmT ; m2T � 1� �1� 14�� ; (2.8)4
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Figure 2: The transverse sizes of the R-strings, RT , with the linear approximation (solid line)and numerial alulations (points) using the relaxation method reviewed in Appendix A.whih is the transverse size of the R-string. Here mT is the dimensionless mass of T in thevauum T = 1. For instane for � = 1=2 and n = 1, we obtain mT = 1 and Rstring = 2p3.To hek the approximation (2.6) by omparing with numerial alulations, we introdueanother de�nition of a transverse size of the R-string asRT � R10 d� �2KTR10 d� �KT ; KT = (f 0(�))2V(f(�)) : (2.9)Here KT gives a �nite ontribution from the kineti term along the � diretion into theenergy and is useful to de�ne the transverse size. Note that this quantity does not inludethe ut-o� dependene. We ompute this both analytially with the linear approximationand numerially, see Fig.2. For instane we observe RT = 1:95 for � = 1=2 by a numerialalulation. As an be seen in Fig. 2, the linear approximation niely reprodues the numerialresults (we need to pay attention to errors of 10% � 30% in the linear approximation).2.2 Tube solutionHere, in order to illustrate the tube solution, we study a non-supersymmetri bosoni theoryas a toy model. Let us study the model with the following salar potential,V (X) = jXj2M2 (jXj2 � v2)2; (2.10)and the anonial kineti term, where M and v are taken to be real. This model has aglobal U(1) symmetry (no longer U(1)R symmetry), under whih the �eld X transforms.This potential has two degenerate vaua, that is, jXj = 0 and v. At the former vauum, the5



Figure 3: The minimal winding solution of the string of the model given in Eq. (2.12). Thepro�le funtion is shown in the left panel and a slie at a �xed z of the orresponding energydensity is shown in the right panel.global U(1) symmetry is unbroken, while the U(1) symmetry is broken at the latter vauum.Then, a global string would be formed. Again, let us resale the �elds and oordinates asX = vT; x� = Mv2 ~x�; (2.11)then the Lagrangian beomesL = v6M2 ����~��T ���2 � jT j2 �1� jT j2�2� : (2.12)We make the Ansatz for the minimally winding string,T = f(r)ein�; (2.13)where f(0) = 0 and f(r)! 1 at r !1. The solution is again obtained numerially whih isshown in Fig. 3. As an be seen in Fig. 3, the string has a substruture that is a hole insidethe string. Thus, we refer it as the tube. It is the asymmetri phase (X 6= 0) outside the tubewhile it is the symmetri (X = 0) phase inside it.This tubelike string solution an be regarded as a tube of a domain wall. Indeed, therealso exists a domain wall in this model. For instane, a solution interpolating the two vauaT = 1 at x1 =1 and T = 0 at x1 = �1 is given byT = 1p1 + e�2~x1 ; (2.14)6
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Figure 4: Numerial results of a ratio RT=2n2 for higher winding solutions, by using therelaxation method with eÆiently large relaxation time, � > 20� n4.with a dimensionless tension Twall = 1=2. Thus, assuming that the �eld on�guration of thetube along the radial diretion is well desribed by this solution, the total energy E per thetube length �z of the tubelike solution with a radius � = R an be estimated by1v2 E2��z � TwallR + n2 log��R� ; (2.15)as long as the \thikness" of the wall is muh smaller than the radius R. Minimizing this, weget the transverse size of the tube solutionR � n2Twall = 2n2: (2.16)Note that the stabilization mehanism of the tube solution is di�erent from that of the R-string (without a hole) where the kineti energy and the potential energy are balaned. As aresult, the transverse sizes have di�erent dependenes on the winding number n as R / n forthe R-strings and R / n2 for the tubes, respetively.We an de�ne a transverse size RT of this tube-like string similar to Eq.(2.9) with KT =(f 0(�))2 and observe RT = 2:06 for the minimal winding tube by a numerial alulation.Ratios RT =2n2 with higher winding solutions are listed in Fig.4. It suggests that the aboveapproximation works well.3 R-tube and Vauum Instability3.1 Metastable R-tubeIn setion 2.1, we studied the single �eld SUSY breaking model as a toy model of one ofthe O'Raifeartaigh models disussed in [12℄ in whih lassial pseudo-moduli spae is stable7



everywhere. In this setion, we move on to phenomenologially interesting situation wherepseudo-moduli spae has a tahyoni diretion, in whih large gaugino masses are generatedby gauge mediation [20,38℄. In suh models, the R-symmetry breaking vauum is metastable,thus the R-string solution an be a tube-like domain wall with winding number as showed insetion 2.2.Here, we study the illustrating supersymmetri model with two super�elds, X and �.These super�elds have R-harges, R[X℄ = 2 and R[�℄ = 0, and the superpotential is given byW = X�2 � �2X: (3.1)In addition, we onsider the following e�etive K�ahler metri,g�1X �X = 1� 12m2 jXj2 + �4m4 jXj4; g�1��� = 1; g�1X �� = g�1� �X = 0: (3.2)This model has the Z2 symmetry, under whih X and � are Z2 even and odd, respetively.This model has the disrete SUSY vaua,X = 0; � = ��; (3.3)and the SUSY breaking vauum, X = mp�; � = 0; (3.4)where the U(1)R symmetry is also broken. The former is the true vauum, while the latter isthe metastable vauum whose vauum energy is V = �4V(1) = �4 �1� 14��.For later onveniene, let us introdue dimensionless variables byX = mp�T; � = �s; x� = mp��2 ~x�; � = p��m ; (3.5)then the Lagrangian is of the formL = �4 � 1V(T ) ���~��T ���2 + �2 ���~��s���2 � V(T )js2 � 1j2 � 4�2 jT j2jsj2� : (3.6)This Lagrangian is haraterized by two dimensionless parameters � and �. For instane, inthe SUSY breaking vauum (T; s) = (1; 0), dimensionless masses for T and s are wriiten bym2T = 1� �1� 14�� ; m2s = 2�2 � 2�2 + 14� � 1� ; (3.7)respetively, and that is, existene of the SUSY breaking vauum requires1 > 14� > 0; 2�2 + 14� > 1: (3.8)8



Figure 5: The minimal winding solution of the R-tube of the two-salar model for � = 1,� = 0:27 given in Eq. (3.6). The pro�le funtions (solid line for jT j and broken line for s) areshown in the left panel and a slie at a �xed z of the orresponding energy density is shownin the right panel. Here we hose the plus sign ( = +1).If one is interested in vauum seletion, a simple riterion is a ratio of tahyoni massesat the origin (T; s) = (0; 0) where we have(m0;T )2 = � 12�; (m0;s)2 = � 2�2 : (3.9)Sine in the early universe �eld values are assumed to be around the origin, if tahyonimass of T is larger, one may expet that supersymmetry breaking model is preferable2. Aninequality 2�2 < 12�; (3.10)is required for seleting the SUSY breaking vauum.Now we are ready to onstrut the R-tube in this two-salar model. To this end, we makethe Ansatz T = f(�)ein�; s =  h(�); (3.11)with  = �1. Beause of the Z2 symmetry, the solutions of f(�); h(�) are independent of .Similar to the model in setion 2.2, it is the symmetri phase inside the tube while it is theasymmetri phase outside the tube. A sharp ontrast among two models is that the outside2Here we have been studying a simple toy model. To disuss vauum seletion more seriously, one need togo bak to an original realisti model and speify a history of the early universe.9



is the true vauum in setion 2.2 and is the false vauum in this setion. One may guess thatstable solution does not exist sine the ore of the tube has lower energy than its outsideand hene larger radius would be favored energetially, whih auses the \roll-over" problem.However, beause the tension of the wall ats as a entripetal fore for the R-tube, we will�nd that there exist metastable tube-like �eld on�gurations. In order to see a typial R-tubenumerial solution in this model, here we show an example in Fig. 5 with � = 1; � = 0:27.Note that the pro�le funtion of the winding �eld T , whose mass is very small, has a very longtail ompared to that of the solution in setion 2.2. On the other hand, the unwinding �elds, whose dimensionless mass is of order 1, onverges exponentially. In the next subsetion,we will investigate stability of the R-tube by varying those parameters.3.2 Instability of R-string and Broken Z2 SymmetryIf we set s = 0 to keep the Z2 symmetry, the model disussed in this setion redues tojust the model disussed in setion 2.1 exept for an overall fator. Therefore the R-stringsolution (s = 0) without a hole inside is also a solution in this model. However, suh anR-string would be almost always unstable and transforms into an R-tube with non-zero sinside. Sine non-vanishing s means the broken Z2 symmetry, we observe below that the Z2symmetry inside the R-tube in this model is almost always broken.
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Figure 6: Tahyoni mass of s around R-string for � = 0:27 (the left panel) and � = 1=2(theright panel).Let us onsider an in�nitesimal utuation s(� 1) around the R-string solution disussedin setion 2.1 and study whether a diretion along s is tahyoni or not. A linearized equationfor s is given with an eigenvalue q2 as� 1�(�s0)0 + �� 2�2V(T ) + 4�4 jT j2� ���T=Tsol s = q2s: (3.12)10



For instane we observe tahyoni masses of s numerially for many sets of parameters f�; �gas shown in Fig.6. We therefore make a onjeture thatq2 < 0; (3.13)for almost all the winding number n and the almost whole parameter region of f�; �g satisfyingthe inequalities (3.8). This onjeture means that the R-string with s = 0 is always unstableand a stable R-tube solution, if it exists, must have the following propertysj�=0 6= 0: (3.14)In this paper we will assume this onjeture holds and will not onsider the onstraints fromthe stability of R-string on�guration.3.3 Rough Estimation for R-tubeIf the domain wall onsisting the R-tube is suÆiently thin and resides at � = R, its totalenergy E per the length �z an be estimated as�m2 E2��z � 12V(1)(�2 �R2) + TwallR + n2V(1) log��R� ; (3.15)as has been done in Se. 2.2. See Fig.7. Note that the total energy has divergene terms with
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Figure 7: Potential for a transverse size of R-tube with a rough estimation.an IR-uto� � proportional to �2 and log�. The former is the energy density V(1) = 1� 14�of the SUSY breaking vauum, and the latter is that for the well-known global string tension.Here, Twall is a (dimensionless) tension of the domain wall. This potential has a loal minimum(maximum) at � = Rtube(Rmax) withRmax = 2n2V(1)�Twall �pT 2wall � 4n2� > nV(1) ;11



Rtube = 2n2V(1)(Twall +pT 2wall � 4n2) < nV(1) ; (3.16)if the dimensionless tension Twall is suÆiently large asTwall > 2n: (3.17)This is, therefore, a neessary and suÆient ondition for existene of the R-tube as longas the approximation Eq. (3.15) is valid. Suh on�gurations that satisfy the inequalityR � Rmax an not avoid to spread out toward the in�nite of the spae. Note that omparinga thikness Lwall of the domain wall with Rtube, if Lwall � Rtube holds, the above estimation(3.15) works well and we will observe the SUSY vauum inside the R-tube, namelysj�=0 � 1: (3.18)Using an approximation disussed in the next subsetion, we an show the lower limit of theratio RtubeLwall > n2V(1)TwallLwall > n22(1 + �2V(1)) > n26 : (3.19)Therefore Rtube an not be very small. If Rtube is omparable with Lwall, a on�guration ofR-tube approahes one of the R-string, but sj�=0 keeps non-vanishing even there in almost allthe ases as we disussed.3.4 Linear Approximation for the Domain WallIn order to estimate the transverse size of the R-tube and its stability following the disussionin the previous subsetion, we need the data fTwall; Lwallg. We here evaluate them assumingthat the domain wall in the R-tube an be well approximated by a at domain wall inter-polating the SUSY vauum at x = �1 and the SUSY breaking vauum at x = 1. Let usonsider this on�guration in the following. Note that, however, there is an ambiguity forde�nition of Twall and pro�le funtions for the domain wall sine the at domain wall itself isunstable. It is natural to set a relation between the total energy of the system Ewall and thetension Twall of the domain wall sitting at x = hxi with IR-uto� �� asEwall = Z �+�� dx(K + V ) = Twall + (�+ � hxi)V(1); (3.20)whih gives a fore (pressure) from the SUSY vauum to the domain wall� dEwalld hxi = V(1) > 0: (3.21)12



Moreover, it is natural to require for the relation,Z �+�� dxK = Z �+�� dxV � (�+ � hxi)V(1); (3.22)is hold near the domain wall solution. When V(1) = 0 holds, the above relation an be derivedfrom Derrik's theorem [28℄. Then, we de�ne the tension Twall and a position hxi of the wallin terms of only kineti terms K without using a potential V asTwall � 2 Z �+�� dxK; hxi � 2Twall Z �+�� dx xK: (3.23)The equation (3.22) is enough to estimate data fTwall; Lwallg as the following. Let usapproximate the pro�le funtions (T; s) for the domain wall by pieewise-linear funtions asT = xLwall ; s = 1� xLwall for 0 � x � Lwall; (3.24)and (T; s) = (1; 0) for x � Lwall and (T; s) = (0; 1) for x < 0. By inserting this approximationto Eq.(3.22) we �nd that the l.h.s (r.h.s) is proportional to L�1wall(Lwall). Note that the tensionof the domain wall an be expressed asTwall = Z �+�� dxK + Z �+�� dxV � (�+ � hxi)V(1): (3.25)Minimizing it in terms of Lwall, we getLwall = s (A(�) + �2)2(A(�) + �2)B(�; �)� (A(�)� C(�) + �2=2)V(1) ;Twall = 2s(A(�) + �2)B(�; �2)� �A(�)� C(�) + �22 �V(1); (3.26)where A(�) = Z 10 dxV(x) = 8>>><>>>: 1 + 760� +O(��2) for �� 1�4p4�� 1 � 18 log(4�� 1) +O(1) for � � 14 ;B(�; �) = 115 �8� 23342 14� + 2�2� ; (3.27)C(�) = Z 10 xdxV(x) = 2�arotp4�� 1p4�� 1 = 8>>><>>>: 12 + 112� +O(��2) for �� 1�4p4�� 1 +O(1) for � � 14 :13



n=1

0.0 0.2 0.4 0.6 0.8 1.0

0

2

4

6

8

10

1

4 Λ

2 Ε2

n=2

n=1

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

1

4 Λ

2 Ε2

Figure 8: Stability of the R-tube with winding number. In the white region, all tube solutionsn � 1 are unstable. In the purple region,R-tube with n = 1 is stable but others n � 2 areunstable. In the light purple region, R-tubes with n = 1; 2 is stable but others n � 3 areunstable. The region below the red line represents (3.10). The SUSY breaking vauum isunstable in the yellow region (see (3.8)).Here we took �� < 0 and �+ > Lwall. Espeially we �nd inequalityTwallLwall = 2(A(�) + �2) < 2� 1V(1) + �2� : (3.28)We have used this for deriving the inequality in Eq. (3.19).Finally, using the result Twall in the linear approximation, we show the stability ondition(3.17) for the R-tube with winding number n in Fig 8.3.5 Numerial approah3.5.1 Numerial alulation for stabilityIn the previous subsetion, exploiting linear approximation, we found the stability onditionof the R-tube with winding number n. Here, we try to hek the parameter dependeneof the stability by numerial alulation. We adopt a kind of relaxation method to �nda on�guration of the R-tube. See Appendix A for details. Sine we are interested in aparameter region lose to borders of the stability of two winding numbers, so we have to treatrelatively unstable on�guration, whih require areful analysis. Beause of this omplexity,we fous on a ouple of examples for the numerial analysis.14



As a �rst example, we take a parameter � = 1, � = 27=100 where aording to the linearapproximation, winding number n = 1 is stable but n = 2 is unstable (see Fig 8). Followingthe relaxation method, we take an appropriate initial funtion and �nite relaxation time � ,then we alulate minimum energy on�gurations. As we show in Fig 9 and Fig 10, energyonvergenes of the on�gurations have a lear di�erene in two ases. Here we removed aontribution Evev of the vauum energy density from the total energy E and alulated thefollowing dimensionless energyE(�) � �m2 E � Evev2��z = �m2 E2��z � 12V(1)�2; (3.29)and we take the IR-uto� of the energy as � = 50. The on�guration with n = 2 is monoton-ially loosing the energy and in a suÆiently late relaxation time � , the energy dereases asa linear funtion, whih learly suggests instability of this on�guration. On the other hand,as for the on�guration with n = 1, the energy seems to onverge to a onstant value. Thissharp di�erene niely mathes with the result of the liner approximation.However, it is worth noting that our numerial analysis is done with a �nite preisionwhih is appropriately hosen by reasonable alulation time. Thus, beyond our alulationpreision, there may exist an unstable mode whih may yield slight energy loss. Thus, as longas we use a kind of relaxation method with a �xed initial ondition, it may be, in general,hard to onlude omplete stability of the on�guration. However, even if the small instabilityexists, the life-time of R-tube an be longer than the deay time of the R-tube originating froman expliit U(1)R breaking e�et. In many phenomenologial models, the global R-symmetryis already broken by adding gravity due to the onstant term in superpotential. Thus, at apoint of the early universe, R-tubes disappear by generating axion domain walls [31, 39{43℄.Therefore, as long as the stability is long enough ompared with its lifetime, we an treat theR-tube as a stable solution.As a seond example, we hoose � = 1=50 and � = 6=10. Small � is favorable in modelbuilding, partially beause the longevity of the false vauum. So from phenomenologialpoint of view, it is important to study a on�guration of R-tube with small winding numberin this parameter region. Again, using the relaxation method, we numerially alulate theenergy onvergene of two ases, n = 1 and n = 2. As shown in Fig 11, the total energyof R-tube with n = 2 onverges to a onstant value. Thus, within our alulation auray,the on�guration looks stable. Also, the on�turation with n = 1 is similarly stable. Withthese numerial results and linear approximation shown in the previous subsetion, it may beplausible that in small � region R-tubes are relatively stable and the roll-over proess doesnot our. 15
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Figure 9: Energy against the relaxation time � . Energy of the on�guration with windingnumber n = 1 for � = 1 and � = 27=100 onverges to a onstant value. � is the relaxationtime.
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Figure 10: Energy against the relaxation time � . Energy of the on�guration with windingnumber n = 2 for � = 1 and � = 27=100 dereases linearly at a later relaxation time.
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3.5.2 E�etive potential for light modeAs emphasized above, there may exist a very light mode whih may ause instability of aon�guration. Although treatment of suh light modes in the relaxation method is not aneasy task, but we would like to propose a method to unover the existene of a light mode.The most interesting mode is a utuation of the size of the R-tube. Generally speaking azero mode (moduli) around a solution is frozen in the relaxation method, and a light modeof whih dependene in the total energy is quite small, seems to be almost frozen even ifit exists. To detet suh light mode and searh the true stable solution, we need to take alot of di�erent initial onditions for the relaxation method. To be onrete, we show initialonditions for the �elds T; s, 3f(�) = 1 + tanh(2(�� �0))2 tanh(�); (3.30)h(�) = 1� tanh(2(�� �0))2 1 + tanh(2(�+ �0))2 :With various values for �0 whih roughly indiates a transverse size of R-tube, we alulateminimum energy on�gurations with �nite relaxation time. For any value of �0, the energyonverges like Figs. 9 and 11 for those values of n, � and �. However, �nal on�gurations anhave small di�erenes of the energy and the tube-size. To represent the size of the tube, itwould be useful to introdue the following de�nition similar to (2.9),RT � R10 d��2KTR10 d��KT ; Rs � R10 d��2s0(�)2R10 d��s0(�)2 : (3.31)Here we de�ned two sizes of the R-tube, RT and Rs. A reason for introduing two sizes an beseen in a disrepany between the linear approximation in setion 3.4 and numerial resultsshown below. As has mentioned in setion 2.1, these quantities do not inlude the ut-o�dependene and are well-de�ned andidates for the size of the tube.As an example, we take � = 27=100, � = 1. Varying the initial position �0, we alulatethe minimum energy on�guration with �nite relaxation time. First of all, we show a orre-spondene between the initial ondition �0 and the size Rs in Fig 12. Rs is evaluated with aonverged on�guration. Sine it is one-to-one orrespondene, varying the initial ondition�0 represents varying the size of the R-tube.Now let us show the low energy e�etive potential for the utuation mode of the size. Weplot the energy (3.29) at the relaxation time � = 50, whih we will denote as Ttube � 2�E(� =3 We set Dirihlet ondition f(0) = 0 and Neumann ondition h0(0) = 0 for T and s for respetively. Weneed to be sensitive for onsisteny between initial onditions and boundary onditions at � = 0.17
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Figure 15: The bamboo soliton (A slie at the enter): Juntion of the R-tubes with  = +1and  = �1. In the left panel, the red region is where s > 1=2 while the blue is the regionwhere s < �1=2, and the yellow stands for the region where 7=20 < jT j < 12=20. The rightpanel shows the potential density isosurfae with whih one an learly reognize the domainwall inside the tube.juntion of the R-tubes is a domain wall whih interpolates two di�erent SUSY vaua insidethe R-tube. We all this juntion the R-bamboo.A numerial solution for � = 1, � = 27=100 is shown in Figs. 15 and 16. Far away fromthe domain wall along the tube, the solution asymptotially goes to the R-tube solution. Atthe juntion, the transverse size of the tube beomes smaller sine the domain wall pulls thetube toward its inside, see Fig. 15.This R-bamboo solution may be reated when two R-tubes ollide. If the two tubes aredi�erent kind, the domain wall must be reated at the juntion of the two tubes. At thesame time, the anti R-bamboo may be reated. This is very similar phenomenon to monopoleand anti-monopole reation assoiated with the non-Abelian string reonnetion. This isinteresting issue but is beyond the sope of this paper, so we leave it as a future work.Finally, it is worthy to note that stability of bamboo on�guration is not guaranteed byour numerial approah. As emphasized in the previous setion, our analysis is a kind ofrelaxation method. Atually, if there is no domain wall inside the R-tube, the on�gurationseems to have a small instability shown in Fig 13. However, in the bamboo on�guration,the existene of the domain wall inreases the stability beause the energy of the domainwall is proportional to R2. Thus, if the number of the domain walls is large, the bamboo20



Figure 16: 3D plot of the Bamboo soliton for � = 1, � = 27=100.on�guration would be stabilized enough. In priniple, the same argument done in Fig 13would be appliable, however numerial alulation beomes quite involved beause one needsthe two-dimensional relaxation method.5 ConlusionIn this paper, we have demonstrated a fasinating role of a osmi R-string/R-tube by usingtwo toy models with spontaneous R-symmetry breaking. The �rst example shown in setion2.1 is a single �eld model. The model an be regarded as a toy model of one of O'Raifeartaighmodels studied in [12℄ in whih pseudo-moduli spae is stable everywhere. In this model,string-like defet generated by the Kibble-Zurek mehanism is stable and very lose to theknown global strings. Winding number dependene of the size of the string is linear in n. Onthe other hand, in the two-�eld model shown in setion 3, a string-like objet is a tube-likedomain wall interpolating a false vauum and a true SUSY vauum. One spei� feature oftwo-�eld model is existene of a tahyoni diretion at R-symmetry restoring point X = 0.Beause of this, the ore of the string is not stable under utuation toward the tahyonidiretion. Thus, inside the ore in whih R-symmetry is restored, an be �lled out by thetrue vauum through the tahyoni diretion. Naively, one may think that suh an R-tubeis unstable. However, as we shown in the main text numerially, there exist metastable R-tube solutions for ertain parameters. An interesting property of suh R-tube is the winding21



number dependene of the size. By the linear approximation, we estimated the dependeneand found that its dependene is n2 rather than n. Therefore, there is a tendeny that tubeon�guration with larger winding number is more unstable. Numerially, we heked thehigher winding instability at a sample parameter � = 1 and � = 27=100: We showed thatthe on�guration with winding number n = 2 is unstable and the total energy dereasesmonotonially.If an unstable R-tube is reated by the Kibble-Zurek mehanism, it rapidly expands andour universe will be ompletely �lled by the true vauum. This proess gives onstraintsfor models building. However, it is worthy to emphasize that suh roll-over proess an beproteted by D-term ontribution or thermal potential. As is demonstrated in [21, 45, 46℄,when a D-term ontribution annot be negligible, it an lift the tahyoni diretion andstabilize the pseudo-moduli spae. In suh models, the roll-over proess does not our. Also,when the amplitude of (tahyoni) messenger mass at the origin is suÆiently smaller thanthat of R-symmetry breaking �eld, the vauum seletion is suessfully realized by exploitingthe thermal potential or Hubble indued mass. If suh thermal potential keeps lifting thetahyoni diretion until the time of the R-string deay [31, 39{43℄, the roll-over proess anbe suessfully irumvented. However, even if suh an early stage senario is assumed, thereare sever osmologial onstraints on R-axion density as studied in [31℄.Finally we omment on our numerial analysis done in setion 3. Sine we adopted a kind ofrelaxation method with a �xed initial ondition to �nd energetially minimum on�gurations,it is not easy to onlude the stability of the on�guration sharply. There may exist a verylight mode whih does not hange the energy signi�antly. To unover the existene of thevery light mode, we proposed a method for studying the low energy e�etive potential for suhlight mode. By hanging the initial onditions and observing onverged on�gurations, wean estimate the e�etive potential. Using this method, at the parameter � = 1 � = 27=100,we �nd emergene of a light model and �nd a large plateau in the e�etive potential. It wouldbe important to apply the method to a wide range of parameter spae and study borders ofinstabilities of on�gurations with various winding numbers numerially. This is beyond theour sope, so we will leave it as a future work.AknowledgementThe authors would like to thank T. Hiramatsu and A. Ogasahara for useful disussions. KKwould like to thank Kyoto University for their hospitality where this work was at the earlystage. The work of M. E. is supported by Grant-in-Aid for Sienti� Researh from the Min-22
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If the energy has the global minimum, therefore, we an obtain, at least, one stati solution��sol by using the relaxation method. If there exists multiple loal minima of the energy, aninitial ondition of �� hooses one of them.In atual numerial omputation we need a uto� of the relaxation time at � = ��nand we regard ��(��n; xi) as a solution. A relation between ��n and preision of a solution�� = ��(��n; xi) an be disussed in the following. If deviations of �� from a solution ��sol areeÆiently small, they an be expanded as�� � ��sol � 1Xn=1 fn(xi)an(�); (A.6)with pro�le funtions fn(xi) for massive modes of mass mn around the on�guration ��sol.Eq.(A.2) gives development of oeÆients an(�) asan(�) = a0ne�m2n� ; (A.7)and behavior of the energy is ontrolled by the lightest mass m1 asE(�) � Esol + Ae�2m21� : (A.8)Here a onstant A 2 R>0 depends on an initial ondition we took and is assumed to be thesame order as Esol. To get preision 10�p, therefore, we have to take a time ��n for thisrelaxation method as ��n > pm21 ln 10; (A.9)where m1 an be roughly guessed by a typial mass sale of the system. With large � , wesometimes observe a random behavior of E(�) whih is a signal of the limit bound of mahinepreision. See Fig.17 for an example.If a on�guration of �� is aidentally near to a saddle point, we also observe an exponentialdeay of E(�), but after that it ollapses like a waterfall asE(�) � Esaddle + Ae�2m2� � ~Ae2j ~m2j � (A.10)with a tahyoni mass ~m2 = �j ~m2j. Therefore an exponential behavior of the energy do notalways guarantee that a stable solution is obtained. Taking multi initial onditions of �� anavoid this tehnial error.
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