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Controlling in
lusive 
ross se
tions inparton shower + matrix element mergingSimon Pl�atzerDESY, Notkestrasse 85, D-22607 Hamburg, GermanyDe
ember 4, 2012Abstra
t. We propose an extension of matrix element plus parton shower merging at tree level to preservein
lusive 
ross se
tions obtained from the merged and showered sample. Implementing this 
onstraint gen-erates approximate next-to-leading order (NLO) 
ontributions similar to the LoopSim approa
h. We thenshow how full NLO, or in prin
iple even higher order, 
orre
tions 
an be added 
onsistently, in
luding 
on-straints on in
lusive 
ross se
tions to a

ount for yet missing parton shower a

ura
y at higher logarithmi
order. We also show how NLO a

ura
y below the merging s
ale 
an be obtained.PACS. 12.38.Bx Perturbative QCD 
al
ulations { 12.38.Cy Summation of QCD perturbation theory1 Introdu
tionParton shower event generators, [1{3℄, to name only few of the most re
ent general-purpose simulations, are by nowindispensable workhorses of experimental as well as theoreti
al studies for 
omparing (standard model) theoreti
alpredi
tions to measured observables in a most detailed way. Within re
ent years, tremendous progress has been madein improving the approximations underlying those simulations by exa
t 
al
ulations in perturbation theory. Startingfrom simple matrix element 
orre
tions on the one hand, improving the hardest parton shower emission to be drivenby the exa
t tree level matrix element [4,5℄, subsequently tree level matrix elements for n > 1 hardest emissions havebeen in
luded 
onsistently [6{13℄. These approa
hes of merging multileg matrix elements at tree level, i.e. leadingorder (LO), have been a

ompanied by e�orts of mat
hing parton shower simulations and perturbative 
al
ulationsat next-to-leading order (NLO), in
luding both matrix elements for additional hard emission at tree level as well asvirtual, one-loop 
orre
tions to the hard pro
ess of interest, [14{19℄. On the other hand, parton shower algorithmsthemselves have evolved from 
rude approximations of multiple parton emission to more and more re�ned and pre
isetools [20{26℄, eventually aiding attempts of 
ombining �xed-order 
al
ulations with shower resummation in a most
onsistent way.NLO mat
hing has been used to improve tree level merging algorithms, [27{30℄, but only re
ently, taking fulladvantage of developments in both merging, mat
hing and shower algorithms, �rst experien
e has been gained in
ombining NLO QCD 
orre
tions to multijet �nal states of di�erent multipli
ity with subsequent parton showeremissions [31{34℄. The aim of su
h approa
hes is to obtain an event sample whi
h will provide LO (NLO) pre
ision forobservables 
ontrolled by hard n-parton emission as long as exa
t QCD 
orre
tions are in
luded for up to n partonsat tree level (n partons at one loop and n+1 partons at tree level), while in
luding resummation by means of showersimulation at whatever a

ura
y is provided by these algorithms.While merging approa
hes at tree level have been proven to be amazingly powerful in des
ribing experimentaldata, and 
an now be 
onsidered to be well understood at a theoreti
al level (parti
ularly with respe
t to logarith-mi
 dependen
e on the merging s
ale separating hard, matrix element driven emissions from softer parton showeremissions), their generalization to in
lude NLO 
orre
tions yet su�ers from impa
t of the merging s
ale at a level oflogarithmi
 a

ura
y whi
h by no means 
an be provided by existing shower algorithms. The most striking signs ofthis dependen
e are expe
ted in in
lusive 
ross se
tions as predi
ted by su
h simulations, and proposals to 
ure theproblem by expli
it input of resummation results at higher a

ura
y have been made [35℄. In the present 
ontributionwe try to approa
h this problem from a rather pragmati
 point of view by setting up a formalism to systemati
allyin
lude higher oder 
orre
tions in parton shower simulations, while satisfying 
onstraints to obtain the proper in
lusive
ross se
tions at the respe
tive order of perturbative 
al
ulations available to the merging algorithm.
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2 Simon Pl�atzer: Controlling in
lusive 
ross se
tions in parton shower + matrix element merging2 Setting the s
eneWe will 
onsider a generi
 parton shower with an evolution variable q (all other kinemati
 variables of a splitting aresuppressed for the sake of readability), whi
h is driven by splitting kernels P (�n; q). Here and in the following, �ndenotes a partoni
 
on�guration (phase spa
e point) 
ontaining n additional partons with respe
t to the lowest orderpro
ess of interest, and P (�n; q) determines the dynami
s of emission at a s
ale q o� the partoni
 system �n. TheSudakov form fa
tor asso
iated to P (�n; q), evolving from a hard s
ale Q to a soft s
ale q, is given by�n(qjQ) = exp � Z Qq dk d�n+1d�ndk P (�n; k)! ; (1)with the phase spa
e Ja
obian d�n+1=d�n depending impli
itly on the shower kinemati
 variables. Partoni
 
on�g-urations �n are determined a

ording to di�erential 
ross se
tions d�(�n; qnj � � � jq0), where the sequen
e of s
alesqn < qn�1; :::; q0 is either dire
tly determined from shower evolution, or is assigned by a 
lustering pro
edure 
orre-sponding to the inverse of a possible shower evolution �0 ! �n, if the 
ross se
tion is determined by exa
t matrixelements.1 In the 
ase of exa
t matrix elements, reweighting to a

ount for 
ouplings and PDF fa
tors evaluated at the
lustering s
ales may as well be in
luded in this notation. For the sake of readability we will skip the whole sequen
eof s
ales and denote d�(�n; qnj:::jq0) = d�(�n; qn). The parton shower a
tion on 
ross se
tions for �n events is givenby2 PS� [d�(�n; qn)℄ = d�(�n; qn)�n(�jqn) + PS� �d�(�n; qn)d�n+1d�n P�(�n; qn+1)�n(qn+1jqn)� : (2)The �rst 
ontribution are events where no further radiation has been generated (� denotes the parton shower 
uto�and the splitting kernels P�(�n; qn+1) = P (�n; qn+1)�(qn+1 � �) vanish for s
ales below the 
uto�), while the se
ond
ontribution 
orresponds to at least one emission.Considering parton showering o� the lowest order tree level 
ross se
tion, d�(0)(�0; q0), we �nd that the �rst Niterations of the parton shower a
tion give rise toPS� hd�(0)(�0; q0)i = d�(0)(�0; q0)N�1Xk=0 d�kd�0 P�(�k�1; qk) � � �P�(�0; q1)�k(�jqkj � � � jq0) +PS� �d�(0)(�0; q0)d�Nd�0 P�(�N�1; qN ) � � �P�(�0; q1)�N�1(qN j � � � jq0)� ; (3)where �k(�jqkj � � � jq0) = �k(�jqk) � � ��0(q1jq0). Considering the ex
lusive and in
lusive 
ross se
tions for produ
ingexa
tly n or at least n partons, respe
tively, we have= n d�(0)(�0; q0)d�nd�0 P�(�n�1; qn) � � �P�(�0; q1)�n(�jqnj � � � jq0)� n d�(0)(�0; q0)d�nd�0 P�(�n�1; qn) � � �P�(�0; q1)�n�1(qnj � � � jq0) :Note that the latter expression is a dire
t impli
ation of the parton shower being unitary. In parti
ular, the totalin
lusive 
ross se
tion is not altered by the parton shower and determined by the lowest order `input' 
ross se
tiond�(0), as would be expe
ted from the very de�nition of an in
lusive 
ross se
tion.This property is a dire
t result of the fa
t that the emission 
ontribution of the parton shower at s
ale q is an exa
tdi�erential of the no emission probability down to q,Z qk�1q dqk d�kd�k�1dqk P (�k�1; qk)�k�1(qk jqk�1) = 1��k�1(qjqk�1) : (4)Introdu
ing P�j�(�k�1; qk) = P (�k�1; qk)�(��qk)�(qk��) with � > �, and asso
iating PS�j� as the asso
iated a
tion,we also have PS�[�℄ = PS�j� [PS�[�℄℄ ; (5)i.e. we 
an always split the shower evolution into two (or more) s
ale ranges. We illustrate the main formulae dis
ussedin this se
tion in a diagramati
 manner in �g. 1.1 Note that ordered histories may not always exist. In these 
ases we 
an assume that, for example, the history with thelongest ordered history from smaller to larger s
ales has been 
hosen. This will not pose a problem for the formalism outlinedhere, provided we set Sudakov form fa
tors with unordered s
ales equal to one, �n(Qjq) = 1 for Q > q. Also note that a
lustering down to the lowest order pro
ess may not always be possible, in 
ase of whi
h we terminate the 
lustering sequen
eat the last possible 
lustering step.2 For the following note that PS[�℄ is linear.
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(a) (b) (c)

= −

= +

Fig. 1. Main properties of parton showers illustrated in a diagrammati
 way. Ea
h box with a bla
k frame denotes a n-parton
ontribution, where n runs from top to bottom. Rows need to be summed to obtain the total 
ross se
tion driving a givenparton multipli
ity. The parton shower evolves along the verti
al red lines from larger (top) to smaller (bottom) s
ales. Doublered lines denote the Sudakov fa
tors asso
iated to a given evolution interval, horizontal arrows bran
hing o� denote emissionat a 
ertain s
ale. With the parton shower 
uto� at the bottom of ea
h box, part (a) shows ex
lusive 
ross se
tions for zero,one and two partons emitted, 
f. eq. 3. Part (b) illustrates the shower 
ross se
tion integrated over the 
ontributions of morethan two emissions, making use of eq. 4; the form of in
lusive 
ross se
tions is obvious, as ea
h 
olumn of two boxes integratesto zero. Part (
) illustrates how the shower splits up into two evolution intervals, 
f. eq. 5.3 Tree-level mergingHaving analyzed the ex
lusive and in
lusive 
ross se
tions for n-parton produ
tion by the shower, we will now reviewhow these predi
tions 
an be improved by in
luding higher multipli
ity tree-level matrix elements. Clearly, the desiredresult in terms of ex
lusive n-parton states is to repla
e the produ
t of splitting kernels approximating an exa
t tree-level matrix element by the full answer. To this extent, in the presen
e of a maximum number of N additional partonsto be des
ribed by matrix elements, we are therefore to satisfy a merging 
onditionPS� hd�mergedN;� i = N�1Xk=0 d�(0)� (�k ; qk)�k(�jqkj � � � jq0) + PS� hd�(0)� (�N ; qN )�N�1(qN j � � � jq0)i : (6)As is the 
ase for plain parton shower emissions, there are no emissions with a s
ale below the shower 
uto� �, whi
hwe here apply to regulate the divergen
es in the additional tree-level matrix elements 
onsidered. For this reason wehave introdu
ed d�(0)� (�n; qn) = d�(0)(�n; qn)�(qn � �).It is straightforward to show that the merging 
ondition 
an be satis�ed byd�mergedN;� = d�(�0; q0) + NXk=1�d�(0)� (�k ; qk)� d�kd�k�1 P�(�k�1; qk)d�(0)� (�k�1; qk�1)��k�1(qkj � � � jq0) : (7)



4 Simon Pl�atzer: Controlling in
lusive 
ross se
tions in parton shower + matrix element mergingNote that we are free to introdu
e a merging s
ale � > � by a
ting the parton shower on d�mergedN;� . The result is similarto eq. 6, upon repla
ingd�(0)� (�k; qk) ! d�(0)� (�k ; qk) + kXl=1 P�j�(�k�1; qk) � � �P�j�(�k�l; qk�l+1) d�kd�k�l d�(0)� (�k�l; qk�l) ; (8)i.e. emissions at s
ales smaller than � are purely driven by shower dynami
s, whereas above the exa
t tree level matrixelement is used. The merging s
ale at this point 
an be viewed as just an eÆ
ien
y tweak for not having to evaluateexa
t matrix elements in a region where they are well approximated by the shower.For later purposes, and to make the 
onne
tion to CKKW-type merging [6{13℄ expli
it, we rewrite the shower 
rossse
tion in presen
e of the merging s
ale � asPS� hd�mergedN;� i = N�1Xk=0 PS�j� hd�(0)� (�k ; qk)�k(�jqkj � � � jq0)i+PS� hd�(0)� (�N ; qN)�N�1(qN j � � � jq0)i : (9)Note that, ex
ept for the highest matrix element multipli
ity N present, shower emissions are 
on�ned to happenbelow the merging s
ale. Using eq. 5, the previous result is simply given byPS� hd�mergedN;� i = PS�j� "N�1Xk=0 d�(0)� (�k ; qk)�k(�jqkj � � � jq0) + PS� hd�(0)� (�N ; qN)�N�1(qN j � � � jq0)i# : (10)In the merged sample, 
ross se
tions for ex
lusive n � N parton 
on�gurations above the merging s
ale � are determinedby the respe
tive tree level matrix elements in
luding the proper Sudakov suppression, while ex
lusive 
ross se
tions forn partons down to the shower 
uto� are determined by a mixture of matrix elements and shower splitting fun
tionsdepending on whi
h part of the relevant s
ale sequen
e is below or above the merging s
ale. The proper Sudakovsuppression is as well retained in the latter 
ase.Note that the merged 
ross se
tion and its showered 
ounterpart, eq. 10, 
over several approa
hes to tree levelmerging so long as the merging resolution 
oin
ides with the parton shower resolution in 
ase of whi
h no issues withtrun
ated/vetoed showers [11, 12℄ do appear. Throughout the paper we will assume that this is always the 
ase; amismat
h between merging and shower resolution does not pose a 
on
eptual problem to the algorithm proposed inthe following. In the presen
e of a merging s
ale �, the formalism outlined here 
overs the standard merging algorithmsof reweighted tree level matrix elements with showering below the merging s
ale. In this 
ase, upon putting P� ! 0ex
ept for emissions o� the highest multipli
ity, the shower subtra
tions are absent in d�mergedN;� . If no merging s
aleis present, iterated matrix element 
orre
tions are 
ontained in the master formula upon repla
ing the shower splittingkernels for emissions o� a system of up to N � 1 partons by the respe
tive ratio of tree level matrix elements. In this
ase, the merged 
ross se
tion 
oin
ides with the lowest order 
ross se
tion. To work in a most generi
 setup, we willstay with the general solution to the merging 
ondition, whi
h does not require any modi�
ation to the shower a
tingdownstream the hard pro
esses obtained from the merged 
ross se
tion.For 
onvenien
e, let us introdu
e the fun
tionalPS�1� [d��(�n; qn)℄ = d��(�n; qn)�n(�jqn) � d�n+1d�n P�(�n; qn+1)d��(�n; qn)�n(�jqn+1) (11)whi
h satis�esPS� �PS�1� [d��(�n; qn)℄� = d��(�n; qn) and PS� �PS�1� [d��(�n; qn)℄� = PS�j� [d��(�n; qn)℄ : (12)Using this de�nition, we 
an rewrite the merged 
ross se
tion asd�mergedN;� = N�1Xk=0 PS�1� hd�(0)� (�k ; qk)�k(�jqkj � � � jq0)i+ d�(0)� (�N ; qN )�N�1(qN j � � � jq0) ; (13)whi
h summarizes the solution to the tree level merging 
ondition in a most transparent way. Being of purely formaluse for the present letter, it is worth noting that PS�1� fa
ilitates the subtra
tion of parton shower 
ontributionsabove the s
ale � at all orders. Turning this observation around, it 
an a
tually be used as a generating fun
tional forsubtra
tions needed to satisfy �xed-order mat
hing 
onditions upon expanding to the respe
tive order. Indeed,PS�1� [d��(�n; qn)℄ =d��(�n; qn)�1 + Z qn� dqn+1 d�n+1d�ndqn+1P�(�n; qn+1)�� d�n+1d�n P�(�n; qn+1)d��(�n; qn) +O(�2s) (14)
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Fig. 2. The left panel shows the solution to the merging 
ondition for N = 2, eq. 10, with in
onsisten
ies in in
lusive 
rossse
tions made expli
it. The right panel shows the 
ross se
tions obtained from the merged sample upon in
luding 
ounter termsto restore in
lusive 
ross se
tions as given by eq. 15. Here, emissions 
al
ulated a

ording to exa
t tree level matrix elementsare made expli
it by arrows bran
hing o� blue lines.is readily identi�ed as the 
orre
tions required for NLO mat
hing. Note also that the a
tion of PS�1� 
an a
tually beimplemented in a Monte Carlo simulation by performing the veto algorithm from smaller to larger s
ales while usinga simple pres
ription to exponentiate �P (�n; q) at the expense of introdu
ing weighted events [36℄.4 In
lusive 
ross se
tionsLet us now turn to in
lusive 
ross se
tions. We are free to split up the phase spa
e integration into a region ofs
ales below the merging s
ale �, and one above. Performing the integration over smaller s
ales �rst (or, equivalently,
onsidering jet 
ross se
tions in a jet measure exa
tly 
orresponding to inverting the parton shower), we e�e
tivelyremove the shower a
tion PS�j� from eq. 10.Looking at in
lusive 
ross se
tions of at least n � N jets, we fa
e essentially a non-unitary evolution due to thematrix elements not 
oin
iding with produ
ts of splitting kernels anymore. While for the highest multipli
ity we �ndthe same pattern as present in the parton shower by the very de�nition of the merging 
ondition,� N d�(0)� (�N ; qN )�N�1(qN j � � � jq0) ;the result for one parton less does not anymore resemble the fun
tional dependen
e present in the shower:3� N � 1 d�(0)� (�N�1; qN�1)�N�2(qN�1j � � � jq0) +Z qN�1� dqN  d�(0)� (�N ; qN )dqN � d�Nd�N�1dqN P�(�N�1; qN )d�(0)� (�N�1; qN�1)!�N�1(qN j � � � jq0) :In order to restore the form of the 
ross se
tion obtained by the shower, we need to subtra
t the se
ond termobtained for the in
lusive N � 1 jet 
ross se
tion. This pattern then 
ontinues, and one possibility to solve the issues3 We have added and subtra
ted the 
ontribution from a shower emission o� the N � 1 parton state, where the positive termhas been absorbed by the integration over the s
ale qN to yield the Sudakov form fa
tor in the �rst line.



6 Simon Pl�atzer: Controlling in
lusive 
ross se
tions in parton shower + matrix element mergingwith in
lusive 
ross se
tions is then given by the repla
ementd�mergedN;� !d�mergedN;� � N�1Xk=0 PS�1� "Z qk� dqk+1 d�(0)� (�k+1; qk+1)dqk+1 � d�k+1d�kdqk+1P (�k ; qk+1)d�(0)� (�k; qk)!�k(qk+1j � � � jq0)#= N�1Xk=0 PS�1� " d�(0)� (�k ; qk)� Z qk� dqk+1 d�(0)� (�k+1; qk+1)dqk+1 �k(qk+1jqk)!�k�1(qkj � � � jq0)#+ d�(0)� (�N ; qN )�N�1(qN j � � � jq0) : (15)The solution to the merging 
ondition as dis
ussed in se
tion 3, as well as the results obtained from the merged samplein
luding 
orre
tions for in
lusive 
ross se
tions are depi
ted in �g. 2. One remark is in order here: while we have nowa
hieved to retain the expe
ted form of in
lusive 
ross se
tions (in
luding the 
onstraint that the total in
lusive 
rossse
tion is given by the lowest order input 
ross se
tion) the ex
lusive 
ross se
tions with n � N partons above themerging s
ale take a seemingly di�erent form,PS�j� " d�(0)� (�n; qn)� Z qn� dqn+1 d�(0)� (�n+1; qn+1)dqn+1 �n(qn+1jqn)!�n�1(qnj � � � jq0)# :It is 
lear that su
h a 
hange will o

ur when trying to restore in
lusive 
ross se
tions. We stress however that theform en
ountered here does not pose a problem in terms of logarithmi
 a

ura
y, as long as the shower kernels aretruly 
apable of reprodu
ing the singly-unresolved limits of the tree level matrix elements. In this 
ase the dominant
ontributions of integral in the se
ond term will render those singularities to pre
isely integrate to d�(0)� (�n; qn)(1 ��n(�jqn)), restoring the expe
ted Sudakov suppression.5 Inje
ting NLO 
orre
tionsHaving improved the parton shower by tree level matrix elements, in
luding 
onstraints on in
lusive 
ross se
tions,we 
an now turn to the 
ase of in
luding NLO 
orre
tions, whi
h we assume are here available up to M additionalpartons with respe
t to the lowest order pro
ess.Before dis
ussing this in greater detail, let us 
onsider the respe
tive 
ontributions obtained from the mergedsample with 
orre
tions for in
lusive 
ross se
tions. The 
ross se
tions to be analyzed are the 
ontributions of exa
tlyn partons above the merging s
ale (integrated over phase spa
e below �), whi
h we will have to 
orre
t to be drivenby the respe
tive NLO 
ross se
tions. The ex
lusive 
ross se
tions for n partons above the merging s
ale are given byd�nLOn;ex
l = �n�1(qnj � � � jq0) d�(0)� (�n; qn)� Z qn� dqn+1 d�(0)� (�n+1; qn+1)dqn+1 �n(qn+1jqn)! : (16)Note that this does 
ontain the Sudakov form fa
tor for obtaining at least n partons above the merging s
ale. By thedis
ussion in the previous se
tion, the 
ontribution in bra
kets will also provide for the remaining Sudakov fa
tor downto the merging s
ale. Note also, that upon expanding the 
ontribution in bra
kets to �rst order in �s, we obtain theapproximated, ex
lusive NLO 
ross se
tion for n jets above a resolution � as given by the LoopSim pres
ription [37℄,whi
h motivated the label nLO.This observation dire
tly implies that, if we add a 
orre
tion 
ross se
tion given by the in
lusive NLO 
orre
tions,PS�1� ��d�(1)� (�n; qn) + Z qn0 dqn+1 d�(0)(�n+1; qn+1)dqn+1 �(qn � �)��n�1(qnj � � � jq0)� ;we will obtain NLO a

ura
y for ex
lusive n parton 
on�gurations above the merging s
ale,d�NLOn;ex
l = �n�1(qnj � � � jq0)�d�(0)� (�n; qn) + d�(1)� (�n; qn) + Z �0 dqn+1 d�(0)(�n+1; qn+1)dqn+1 �(qn � �) +O(�2s)� : (17)The Sudakov weight atta
hed to the 
orre
tion 
ross se
tion is not running down to the merging s
ale, as one wouldnaively expe
t. In this 
ase, a double 
ounting of logarithms of the merging s
ale would have happened between the nLO
ross se
tion and the full one-loop 
orre
tion. Indeed, the role of the 
orre
tion we apply here is to pre
isely repla
e
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lusive 
ross se
tions in parton shower + matrix element merging 7the �rst order virtual approximation stemming from expanding the Sudakov form fa
tor by its exa
t 
ounterpart.Ful�lling this 
ondition is at the heart of the merging e�orts at NLO presented so far, [31{34℄.Let us stress the importan
e of maintaining in
lusive 
ross se
tions in the 
ase of NLO 
orre
tions. The problemati

ontribution by whi
h the in
lusive 
ross se
tion di�ers from its expe
ted value in the 
ase of tree level merging, asdis
ussed in se
tion. 4, is given byÆ (d�n;in
l) = Z qn� dqn+1 d�(0)� (�n+1; qn+1)dqn+1 � d�n+1d�ndqn+1P�(�n; qn+1)d�(0)� (�n; qn)!�n(qn+1j � � � jq0) :This 
ross se
tion 
ould well be expe
ted not to 
ontribute logarithmi
ally enhan
ed terms, provided the shower is agood approximation to singly unresolved limits of tree level matrix elements. Upon repla
ing the LO ex
lusive 
rossse
tions above the merging s
ale by their NLO 
ounterparts, the above argument does not apply anymore owing tothe 
ase that NLO 
orre
tions to the shower splitting kernels are not 
onsidered. We therefore expe
t violations ofin
lusive 
ross se
tions at a level of logarithmi
 approximation whi
h is not 
overed by the shower anymore. Notethat if 
orre
tions are only available to the lowest order pro
ess n = 0, then the 
onstraints on merged in
lusive 
rossse
tions will in this 
ase ensure that also the in
lusive NLO 
ross se
tion is preserved. This is however not the 
asestarting from adding NLO 
orre
tions to the n = 1 pro
esses.As for the tree level 
ase, we 
an however provide 
orre
tion terms similar to the LoopSim nNLO 
orre
tions. Inthe presen
e of tree level matrix elements for up to N additional partons, and one-loop 
orre
tions for up to M < Nadditional partons we then arrive at the merged 
ross se
tion,d�mergedN;M;� = N�1Xk=0 PS�1� " d�(0)� (�k ; qk)� Z qk� dqk+1 d�(0)� (�k+1; qk+1)dqk+1 �k(qk+1jqk)!�k�1(qkj � � � jq0)# (18)+ d�(0)� (�N ; qN )�N�1(qN j � � � jq0)+ M�1Xk=0 PS�1� " d�(1;in
l)� (�k ; qk)� Z qk� dqk+1 d�(1;in
l)� (�k+1; qk+1)dqk+1 �k(qk+1jqk)!�k�1(qkj � � � jq0)#+ PS�1� hd�(1;in
l)� (�M ; qM )�M�1(qM j � � � jq0)iwhi
h, upon parton shower a
tion, will provide a merged sample with NLO a

ura
y for up to M -jet observables, LOa

ura
y for up to N -jet observables, in
luding resummation at whatever a

ura
y is provided by the parton shower.Here, we have denoted the NLO 
orre
tions to in
lusive 
ross se
tions asd�(1;in
l)� (�n; qn) = d�(1)� (�n; qn) + Z qn0 dqn+1 d�(0)(�n+1; qn+1)dqn+1 �(qn � �) : (19)Note that the a
tion of PS�1� integrates to one, whi
h 
lari�es on
e more that we are able to preserve in
lusive 
rossse
tions. Given the extensive dis
ussions on re
lustering, dynami
 s
ale 
hoi
es and the generation of the Sudakovweights in the 
ontext of merging approa
hes so far [7{13℄, we will not in
lude a detailed algorithmi
 de�nitionof the merging pro
edure here. Te
hni
al aspe
ts will be subje
t to ongoing and future work 
on
erned with theimplementation of the pro
edure outlined here.6 Corre
tions below the merging s
aleHaving derived the merged 
ross se
tion in the presen
e of both tree level and one loop matrix elements, note that wea
tually have solved a NLO mat
hing 
ondition for ea
h ex
lusive n-parton 
ontribution above the merging s
ale, 
f.eq. 17. More pre
isely,{ by preserving in
lusive 
ross se
tions in the presen
e of only tree level matrix elements, we have mat
hed ea
hex
lusive n-parton 
ontribution to a LoopSim approximated nLO, and{ by in
luding exa
t NLO 
orre
tions, we have ful�lled this mat
hing 
ondition at NLO, while �nally{ by preserving in
lusive 
ross se
tions in the latter 
ase, we start to generate approximate NNLO pie
es, whi
h
ould well be the basis for NNLO mat
hing.These 
onsiderations apply to 
ontributions with emissions above the merging s
ale. Below the merging s
ale, we arestill left with the shower approximation, and we will �nally give a simple pres
ription of how nLO (in the 
ase of treelevel merging) and NLO (in the 
ase of one loop merging) a

ura
y 
an be a
hieved also below the merging s
ale. To
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lusive 
ross se
tions in parton shower + matrix element mergingbe pre
ise, we 
onsider the 
ases of n partons above the merging s
ale and the �rst order 
ontribution to zero or oneemission below the merging s
ale. Demanding the required nLO or NLO a

ura
y, we obtain generalizations of thefamiliar NLO mat
hing 
orre
tions restri
ted to the phase spa
e for one emission below the merging s
ale,d�mat
hN;�j� = N�1Xk=0 PS�1� 240�d�(0);mat
h�j� (�k; qk)� Z �� dqk+1 d�(0);mat
h�j� (�k+1; qk+1)dqk+1 �k(qk+1jqk)1A�k�1(qkj � � � jq0)35 (20)+ d�(0);mat
h�j� (�N ; qN )�N�1(qN j � � � jq0)with d�(0);mat
h�j� (�n; qn) = d�(0)� (�n; qn)�(qn�1 � �)�(�� qn)� d�(0)� (�n�1; qn�1) d�nd�n�1P�j�(�n�1; qn) : (21)Note that these 
orre
tions do not 
hange in
lusive 
ross se
tions as is the 
ase for plain NLO mat
hing. Withinthese 
ontributions, the parton shower 
uto� 
an be sent to zero provided the singly unresolved limits are reprodu
edproperly; a �nite shower 
uto� will a
t similar to a phase spa
e sli
ing parameter in terms of whi
h the NLO 
rossse
tion is reprodu
ed.7 Con
lusions and outlookWe have presented an extension to multileg matrix element and parton shower merging, whi
h preserves in
lusive
ross se
tions at the level of the available a

ura
y, parti
ularly at tree and one-loop level. This 
onstraint is of utmostimportan
e parti
ularly for the latter 
ase, as NLO 
orre
tions to shower splitting kernels are so far out of rea
h.This la
k of shower a

ura
y manifests itself in terms of potentially large logarithmi
 
ontributions whi
h are of thesame order of magnitude as the NLO 
orre
tions ta
kled in re
ent approa
hes of 
ombining �xed order 
orre
tionsand parton shower resummation, thus spoiling NLO a

ura
y for lower jet multipli
ities.The formalism used to derive the modi�ed algorithm is general enough to study the in
lusion of even higherorder 
orre
tions by su

essively repla
ing virtual 
ontributions as approximated by the shower through their exa
t
ounterpart. The ingredients at for tree level and one loop merging, respe
tively, are given by fully di�erential LO
al
ulations and in
lusive NLO 
orre
tions di�erential in the respe
tive Born variables. An implementation of thealgorithm presented is subje
t to ongoing and future work.Note addedDuring 
ompletion of this work a very similar approa
h to the problem by L�onnblad and Prestel 
ame to the attentionof the author, �rst results of whi
h have been presented for the tree level 
ase in [38℄ and for the one-loop 
ase in [39℄.A
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