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Controlling inlusive ross setions inparton shower + matrix element mergingSimon Pl�atzerDESY, Notkestrasse 85, D-22607 Hamburg, GermanyDeember 4, 2012Abstrat. We propose an extension of matrix element plus parton shower merging at tree level to preserveinlusive ross setions obtained from the merged and showered sample. Implementing this onstraint gen-erates approximate next-to-leading order (NLO) ontributions similar to the LoopSim approah. We thenshow how full NLO, or in priniple even higher order, orretions an be added onsistently, inluding on-straints on inlusive ross setions to aount for yet missing parton shower auray at higher logarithmiorder. We also show how NLO auray below the merging sale an be obtained.PACS. 12.38.Bx Perturbative QCD alulations { 12.38.Cy Summation of QCD perturbation theory1 IntrodutionParton shower event generators, [1{3℄, to name only few of the most reent general-purpose simulations, are by nowindispensable workhorses of experimental as well as theoretial studies for omparing (standard model) theoretialpreditions to measured observables in a most detailed way. Within reent years, tremendous progress has been madein improving the approximations underlying those simulations by exat alulations in perturbation theory. Startingfrom simple matrix element orretions on the one hand, improving the hardest parton shower emission to be drivenby the exat tree level matrix element [4,5℄, subsequently tree level matrix elements for n > 1 hardest emissions havebeen inluded onsistently [6{13℄. These approahes of merging multileg matrix elements at tree level, i.e. leadingorder (LO), have been aompanied by e�orts of mathing parton shower simulations and perturbative alulationsat next-to-leading order (NLO), inluding both matrix elements for additional hard emission at tree level as well asvirtual, one-loop orretions to the hard proess of interest, [14{19℄. On the other hand, parton shower algorithmsthemselves have evolved from rude approximations of multiple parton emission to more and more re�ned and preisetools [20{26℄, eventually aiding attempts of ombining �xed-order alulations with shower resummation in a mostonsistent way.NLO mathing has been used to improve tree level merging algorithms, [27{30℄, but only reently, taking fulladvantage of developments in both merging, mathing and shower algorithms, �rst experiene has been gained inombining NLO QCD orretions to multijet �nal states of di�erent multipliity with subsequent parton showeremissions [31{34℄. The aim of suh approahes is to obtain an event sample whih will provide LO (NLO) preision forobservables ontrolled by hard n-parton emission as long as exat QCD orretions are inluded for up to n partonsat tree level (n partons at one loop and n+1 partons at tree level), while inluding resummation by means of showersimulation at whatever auray is provided by these algorithms.While merging approahes at tree level have been proven to be amazingly powerful in desribing experimentaldata, and an now be onsidered to be well understood at a theoretial level (partiularly with respet to logarith-mi dependene on the merging sale separating hard, matrix element driven emissions from softer parton showeremissions), their generalization to inlude NLO orretions yet su�ers from impat of the merging sale at a level oflogarithmi auray whih by no means an be provided by existing shower algorithms. The most striking signs ofthis dependene are expeted in inlusive ross setions as predited by suh simulations, and proposals to ure theproblem by expliit input of resummation results at higher auray have been made [35℄. In the present ontributionwe try to approah this problem from a rather pragmati point of view by setting up a formalism to systematiallyinlude higher oder orretions in parton shower simulations, while satisfying onstraints to obtain the proper inlusiveross setions at the respetive order of perturbative alulations available to the merging algorithm.
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2 Simon Pl�atzer: Controlling inlusive ross setions in parton shower + matrix element merging2 Setting the seneWe will onsider a generi parton shower with an evolution variable q (all other kinemati variables of a splitting aresuppressed for the sake of readability), whih is driven by splitting kernels P (�n; q). Here and in the following, �ndenotes a partoni on�guration (phase spae point) ontaining n additional partons with respet to the lowest orderproess of interest, and P (�n; q) determines the dynamis of emission at a sale q o� the partoni system �n. TheSudakov form fator assoiated to P (�n; q), evolving from a hard sale Q to a soft sale q, is given by�n(qjQ) = exp � Z Qq dk d�n+1d�ndk P (�n; k)! ; (1)with the phase spae Jaobian d�n+1=d�n depending impliitly on the shower kinemati variables. Partoni on�g-urations �n are determined aording to di�erential ross setions d�(�n; qnj � � � jq0), where the sequene of salesqn < qn�1; :::; q0 is either diretly determined from shower evolution, or is assigned by a lustering proedure orre-sponding to the inverse of a possible shower evolution �0 ! �n, if the ross setion is determined by exat matrixelements.1 In the ase of exat matrix elements, reweighting to aount for ouplings and PDF fators evaluated at thelustering sales may as well be inluded in this notation. For the sake of readability we will skip the whole sequeneof sales and denote d�(�n; qnj:::jq0) = d�(�n; qn). The parton shower ation on ross setions for �n events is givenby2 PS� [d�(�n; qn)℄ = d�(�n; qn)�n(�jqn) + PS� �d�(�n; qn)d�n+1d�n P�(�n; qn+1)�n(qn+1jqn)� : (2)The �rst ontribution are events where no further radiation has been generated (� denotes the parton shower uto�and the splitting kernels P�(�n; qn+1) = P (�n; qn+1)�(qn+1 � �) vanish for sales below the uto�), while the seondontribution orresponds to at least one emission.Considering parton showering o� the lowest order tree level ross setion, d�(0)(�0; q0), we �nd that the �rst Niterations of the parton shower ation give rise toPS� hd�(0)(�0; q0)i = d�(0)(�0; q0)N�1Xk=0 d�kd�0 P�(�k�1; qk) � � �P�(�0; q1)�k(�jqkj � � � jq0) +PS� �d�(0)(�0; q0)d�Nd�0 P�(�N�1; qN ) � � �P�(�0; q1)�N�1(qN j � � � jq0)� ; (3)where �k(�jqkj � � � jq0) = �k(�jqk) � � ��0(q1jq0). Considering the exlusive and inlusive ross setions for produingexatly n or at least n partons, respetively, we have= n d�(0)(�0; q0)d�nd�0 P�(�n�1; qn) � � �P�(�0; q1)�n(�jqnj � � � jq0)� n d�(0)(�0; q0)d�nd�0 P�(�n�1; qn) � � �P�(�0; q1)�n�1(qnj � � � jq0) :Note that the latter expression is a diret impliation of the parton shower being unitary. In partiular, the totalinlusive ross setion is not altered by the parton shower and determined by the lowest order `input' ross setiond�(0), as would be expeted from the very de�nition of an inlusive ross setion.This property is a diret result of the fat that the emission ontribution of the parton shower at sale q is an exatdi�erential of the no emission probability down to q,Z qk�1q dqk d�kd�k�1dqk P (�k�1; qk)�k�1(qk jqk�1) = 1��k�1(qjqk�1) : (4)Introduing P�j�(�k�1; qk) = P (�k�1; qk)�(��qk)�(qk��) with � > �, and assoiating PS�j� as the assoiated ation,we also have PS�[�℄ = PS�j� [PS�[�℄℄ ; (5)i.e. we an always split the shower evolution into two (or more) sale ranges. We illustrate the main formulae disussedin this setion in a diagramati manner in �g. 1.1 Note that ordered histories may not always exist. In these ases we an assume that, for example, the history with thelongest ordered history from smaller to larger sales has been hosen. This will not pose a problem for the formalism outlinedhere, provided we set Sudakov form fators with unordered sales equal to one, �n(Qjq) = 1 for Q > q. Also note that alustering down to the lowest order proess may not always be possible, in ase of whih we terminate the lustering sequeneat the last possible lustering step.2 For the following note that PS[�℄ is linear.



Simon Pl�atzer: Controlling inlusive ross setions in parton shower + matrix element merging 3

(a) (b) (c)

= −

= +

Fig. 1. Main properties of parton showers illustrated in a diagrammati way. Eah box with a blak frame denotes a n-partonontribution, where n runs from top to bottom. Rows need to be summed to obtain the total ross setion driving a givenparton multipliity. The parton shower evolves along the vertial red lines from larger (top) to smaller (bottom) sales. Doublered lines denote the Sudakov fators assoiated to a given evolution interval, horizontal arrows branhing o� denote emissionat a ertain sale. With the parton shower uto� at the bottom of eah box, part (a) shows exlusive ross setions for zero,one and two partons emitted, f. eq. 3. Part (b) illustrates the shower ross setion integrated over the ontributions of morethan two emissions, making use of eq. 4; the form of inlusive ross setions is obvious, as eah olumn of two boxes integratesto zero. Part () illustrates how the shower splits up into two evolution intervals, f. eq. 5.3 Tree-level mergingHaving analyzed the exlusive and inlusive ross setions for n-parton prodution by the shower, we will now reviewhow these preditions an be improved by inluding higher multipliity tree-level matrix elements. Clearly, the desiredresult in terms of exlusive n-parton states is to replae the produt of splitting kernels approximating an exat tree-level matrix element by the full answer. To this extent, in the presene of a maximum number of N additional partonsto be desribed by matrix elements, we are therefore to satisfy a merging onditionPS� hd�mergedN;� i = N�1Xk=0 d�(0)� (�k ; qk)�k(�jqkj � � � jq0) + PS� hd�(0)� (�N ; qN )�N�1(qN j � � � jq0)i : (6)As is the ase for plain parton shower emissions, there are no emissions with a sale below the shower uto� �, whihwe here apply to regulate the divergenes in the additional tree-level matrix elements onsidered. For this reason wehave introdued d�(0)� (�n; qn) = d�(0)(�n; qn)�(qn � �).It is straightforward to show that the merging ondition an be satis�ed byd�mergedN;� = d�(�0; q0) + NXk=1�d�(0)� (�k ; qk)� d�kd�k�1 P�(�k�1; qk)d�(0)� (�k�1; qk�1)��k�1(qkj � � � jq0) : (7)



4 Simon Pl�atzer: Controlling inlusive ross setions in parton shower + matrix element mergingNote that we are free to introdue a merging sale � > � by ating the parton shower on d�mergedN;� . The result is similarto eq. 6, upon replaingd�(0)� (�k; qk) ! d�(0)� (�k ; qk) + kXl=1 P�j�(�k�1; qk) � � �P�j�(�k�l; qk�l+1) d�kd�k�l d�(0)� (�k�l; qk�l) ; (8)i.e. emissions at sales smaller than � are purely driven by shower dynamis, whereas above the exat tree level matrixelement is used. The merging sale at this point an be viewed as just an eÆieny tweak for not having to evaluateexat matrix elements in a region where they are well approximated by the shower.For later purposes, and to make the onnetion to CKKW-type merging [6{13℄ expliit, we rewrite the shower rosssetion in presene of the merging sale � asPS� hd�mergedN;� i = N�1Xk=0 PS�j� hd�(0)� (�k ; qk)�k(�jqkj � � � jq0)i+PS� hd�(0)� (�N ; qN)�N�1(qN j � � � jq0)i : (9)Note that, exept for the highest matrix element multipliity N present, shower emissions are on�ned to happenbelow the merging sale. Using eq. 5, the previous result is simply given byPS� hd�mergedN;� i = PS�j� "N�1Xk=0 d�(0)� (�k ; qk)�k(�jqkj � � � jq0) + PS� hd�(0)� (�N ; qN)�N�1(qN j � � � jq0)i# : (10)In the merged sample, ross setions for exlusive n � N parton on�gurations above the merging sale � are determinedby the respetive tree level matrix elements inluding the proper Sudakov suppression, while exlusive ross setions forn partons down to the shower uto� are determined by a mixture of matrix elements and shower splitting funtionsdepending on whih part of the relevant sale sequene is below or above the merging sale. The proper Sudakovsuppression is as well retained in the latter ase.Note that the merged ross setion and its showered ounterpart, eq. 10, over several approahes to tree levelmerging so long as the merging resolution oinides with the parton shower resolution in ase of whih no issues withtrunated/vetoed showers [11, 12℄ do appear. Throughout the paper we will assume that this is always the ase; amismath between merging and shower resolution does not pose a oneptual problem to the algorithm proposed inthe following. In the presene of a merging sale �, the formalism outlined here overs the standard merging algorithmsof reweighted tree level matrix elements with showering below the merging sale. In this ase, upon putting P� ! 0exept for emissions o� the highest multipliity, the shower subtrations are absent in d�mergedN;� . If no merging saleis present, iterated matrix element orretions are ontained in the master formula upon replaing the shower splittingkernels for emissions o� a system of up to N � 1 partons by the respetive ratio of tree level matrix elements. In thisase, the merged ross setion oinides with the lowest order ross setion. To work in a most generi setup, we willstay with the general solution to the merging ondition, whih does not require any modi�ation to the shower atingdownstream the hard proesses obtained from the merged ross setion.For onveniene, let us introdue the funtionalPS�1� [d��(�n; qn)℄ = d��(�n; qn)�n(�jqn) � d�n+1d�n P�(�n; qn+1)d��(�n; qn)�n(�jqn+1) (11)whih satis�esPS� �PS�1� [d��(�n; qn)℄� = d��(�n; qn) and PS� �PS�1� [d��(�n; qn)℄� = PS�j� [d��(�n; qn)℄ : (12)Using this de�nition, we an rewrite the merged ross setion asd�mergedN;� = N�1Xk=0 PS�1� hd�(0)� (�k ; qk)�k(�jqkj � � � jq0)i+ d�(0)� (�N ; qN )�N�1(qN j � � � jq0) ; (13)whih summarizes the solution to the tree level merging ondition in a most transparent way. Being of purely formaluse for the present letter, it is worth noting that PS�1� failitates the subtration of parton shower ontributionsabove the sale � at all orders. Turning this observation around, it an atually be used as a generating funtional forsubtrations needed to satisfy �xed-order mathing onditions upon expanding to the respetive order. Indeed,PS�1� [d��(�n; qn)℄ =d��(�n; qn)�1 + Z qn� dqn+1 d�n+1d�ndqn+1P�(�n; qn+1)�� d�n+1d�n P�(�n; qn+1)d��(�n; qn) +O(�2s) (14)
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Fig. 2. The left panel shows the solution to the merging ondition for N = 2, eq. 10, with inonsistenies in inlusive rosssetions made expliit. The right panel shows the ross setions obtained from the merged sample upon inluding ounter termsto restore inlusive ross setions as given by eq. 15. Here, emissions alulated aording to exat tree level matrix elementsare made expliit by arrows branhing o� blue lines.is readily identi�ed as the orretions required for NLO mathing. Note also that the ation of PS�1� an atually beimplemented in a Monte Carlo simulation by performing the veto algorithm from smaller to larger sales while usinga simple presription to exponentiate �P (�n; q) at the expense of introduing weighted events [36℄.4 Inlusive ross setionsLet us now turn to inlusive ross setions. We are free to split up the phase spae integration into a region ofsales below the merging sale �, and one above. Performing the integration over smaller sales �rst (or, equivalently,onsidering jet ross setions in a jet measure exatly orresponding to inverting the parton shower), we e�etivelyremove the shower ation PS�j� from eq. 10.Looking at inlusive ross setions of at least n � N jets, we fae essentially a non-unitary evolution due to thematrix elements not oiniding with produts of splitting kernels anymore. While for the highest multipliity we �ndthe same pattern as present in the parton shower by the very de�nition of the merging ondition,� N d�(0)� (�N ; qN )�N�1(qN j � � � jq0) ;the result for one parton less does not anymore resemble the funtional dependene present in the shower:3� N � 1 d�(0)� (�N�1; qN�1)�N�2(qN�1j � � � jq0) +Z qN�1� dqN  d�(0)� (�N ; qN )dqN � d�Nd�N�1dqN P�(�N�1; qN )d�(0)� (�N�1; qN�1)!�N�1(qN j � � � jq0) :In order to restore the form of the ross setion obtained by the shower, we need to subtrat the seond termobtained for the inlusive N � 1 jet ross setion. This pattern then ontinues, and one possibility to solve the issues3 We have added and subtrated the ontribution from a shower emission o� the N � 1 parton state, where the positive termhas been absorbed by the integration over the sale qN to yield the Sudakov form fator in the �rst line.



6 Simon Pl�atzer: Controlling inlusive ross setions in parton shower + matrix element mergingwith inlusive ross setions is then given by the replaementd�mergedN;� !d�mergedN;� � N�1Xk=0 PS�1� "Z qk� dqk+1 d�(0)� (�k+1; qk+1)dqk+1 � d�k+1d�kdqk+1P (�k ; qk+1)d�(0)� (�k; qk)!�k(qk+1j � � � jq0)#= N�1Xk=0 PS�1� " d�(0)� (�k ; qk)� Z qk� dqk+1 d�(0)� (�k+1; qk+1)dqk+1 �k(qk+1jqk)!�k�1(qkj � � � jq0)#+ d�(0)� (�N ; qN )�N�1(qN j � � � jq0) : (15)The solution to the merging ondition as disussed in setion 3, as well as the results obtained from the merged sampleinluding orretions for inlusive ross setions are depited in �g. 2. One remark is in order here: while we have nowahieved to retain the expeted form of inlusive ross setions (inluding the onstraint that the total inlusive rosssetion is given by the lowest order input ross setion) the exlusive ross setions with n � N partons above themerging sale take a seemingly di�erent form,PS�j� " d�(0)� (�n; qn)� Z qn� dqn+1 d�(0)� (�n+1; qn+1)dqn+1 �n(qn+1jqn)!�n�1(qnj � � � jq0)# :It is lear that suh a hange will our when trying to restore inlusive ross setions. We stress however that theform enountered here does not pose a problem in terms of logarithmi auray, as long as the shower kernels aretruly apable of reproduing the singly-unresolved limits of the tree level matrix elements. In this ase the dominantontributions of integral in the seond term will render those singularities to preisely integrate to d�(0)� (�n; qn)(1 ��n(�jqn)), restoring the expeted Sudakov suppression.5 Injeting NLO orretionsHaving improved the parton shower by tree level matrix elements, inluding onstraints on inlusive ross setions,we an now turn to the ase of inluding NLO orretions, whih we assume are here available up to M additionalpartons with respet to the lowest order proess.Before disussing this in greater detail, let us onsider the respetive ontributions obtained from the mergedsample with orretions for inlusive ross setions. The ross setions to be analyzed are the ontributions of exatlyn partons above the merging sale (integrated over phase spae below �), whih we will have to orret to be drivenby the respetive NLO ross setions. The exlusive ross setions for n partons above the merging sale are given byd�nLOn;exl = �n�1(qnj � � � jq0) d�(0)� (�n; qn)� Z qn� dqn+1 d�(0)� (�n+1; qn+1)dqn+1 �n(qn+1jqn)! : (16)Note that this does ontain the Sudakov form fator for obtaining at least n partons above the merging sale. By thedisussion in the previous setion, the ontribution in brakets will also provide for the remaining Sudakov fator downto the merging sale. Note also, that upon expanding the ontribution in brakets to �rst order in �s, we obtain theapproximated, exlusive NLO ross setion for n jets above a resolution � as given by the LoopSim presription [37℄,whih motivated the label nLO.This observation diretly implies that, if we add a orretion ross setion given by the inlusive NLO orretions,PS�1� ��d�(1)� (�n; qn) + Z qn0 dqn+1 d�(0)(�n+1; qn+1)dqn+1 �(qn � �)��n�1(qnj � � � jq0)� ;we will obtain NLO auray for exlusive n parton on�gurations above the merging sale,d�NLOn;exl = �n�1(qnj � � � jq0)�d�(0)� (�n; qn) + d�(1)� (�n; qn) + Z �0 dqn+1 d�(0)(�n+1; qn+1)dqn+1 �(qn � �) +O(�2s)� : (17)The Sudakov weight attahed to the orretion ross setion is not running down to the merging sale, as one wouldnaively expet. In this ase, a double ounting of logarithms of the merging sale would have happened between the nLOross setion and the full one-loop orretion. Indeed, the role of the orretion we apply here is to preisely replae



Simon Pl�atzer: Controlling inlusive ross setions in parton shower + matrix element merging 7the �rst order virtual approximation stemming from expanding the Sudakov form fator by its exat ounterpart.Ful�lling this ondition is at the heart of the merging e�orts at NLO presented so far, [31{34℄.Let us stress the importane of maintaining inlusive ross setions in the ase of NLO orretions. The problemationtribution by whih the inlusive ross setion di�ers from its expeted value in the ase of tree level merging, asdisussed in setion. 4, is given byÆ (d�n;inl) = Z qn� dqn+1 d�(0)� (�n+1; qn+1)dqn+1 � d�n+1d�ndqn+1P�(�n; qn+1)d�(0)� (�n; qn)!�n(qn+1j � � � jq0) :This ross setion ould well be expeted not to ontribute logarithmially enhaned terms, provided the shower is agood approximation to singly unresolved limits of tree level matrix elements. Upon replaing the LO exlusive rosssetions above the merging sale by their NLO ounterparts, the above argument does not apply anymore owing tothe ase that NLO orretions to the shower splitting kernels are not onsidered. We therefore expet violations ofinlusive ross setions at a level of logarithmi approximation whih is not overed by the shower anymore. Notethat if orretions are only available to the lowest order proess n = 0, then the onstraints on merged inlusive rosssetions will in this ase ensure that also the inlusive NLO ross setion is preserved. This is however not the asestarting from adding NLO orretions to the n = 1 proesses.As for the tree level ase, we an however provide orretion terms similar to the LoopSim nNLO orretions. Inthe presene of tree level matrix elements for up to N additional partons, and one-loop orretions for up to M < Nadditional partons we then arrive at the merged ross setion,d�mergedN;M;� = N�1Xk=0 PS�1� " d�(0)� (�k ; qk)� Z qk� dqk+1 d�(0)� (�k+1; qk+1)dqk+1 �k(qk+1jqk)!�k�1(qkj � � � jq0)# (18)+ d�(0)� (�N ; qN )�N�1(qN j � � � jq0)+ M�1Xk=0 PS�1� " d�(1;inl)� (�k ; qk)� Z qk� dqk+1 d�(1;inl)� (�k+1; qk+1)dqk+1 �k(qk+1jqk)!�k�1(qkj � � � jq0)#+ PS�1� hd�(1;inl)� (�M ; qM )�M�1(qM j � � � jq0)iwhih, upon parton shower ation, will provide a merged sample with NLO auray for up to M -jet observables, LOauray for up to N -jet observables, inluding resummation at whatever auray is provided by the parton shower.Here, we have denoted the NLO orretions to inlusive ross setions asd�(1;inl)� (�n; qn) = d�(1)� (�n; qn) + Z qn0 dqn+1 d�(0)(�n+1; qn+1)dqn+1 �(qn � �) : (19)Note that the ation of PS�1� integrates to one, whih lari�es one more that we are able to preserve inlusive rosssetions. Given the extensive disussions on relustering, dynami sale hoies and the generation of the Sudakovweights in the ontext of merging approahes so far [7{13℄, we will not inlude a detailed algorithmi de�nitionof the merging proedure here. Tehnial aspets will be subjet to ongoing and future work onerned with theimplementation of the proedure outlined here.6 Corretions below the merging saleHaving derived the merged ross setion in the presene of both tree level and one loop matrix elements, note that weatually have solved a NLO mathing ondition for eah exlusive n-parton ontribution above the merging sale, f.eq. 17. More preisely,{ by preserving inlusive ross setions in the presene of only tree level matrix elements, we have mathed eahexlusive n-parton ontribution to a LoopSim approximated nLO, and{ by inluding exat NLO orretions, we have ful�lled this mathing ondition at NLO, while �nally{ by preserving inlusive ross setions in the latter ase, we start to generate approximate NNLO piees, whihould well be the basis for NNLO mathing.These onsiderations apply to ontributions with emissions above the merging sale. Below the merging sale, we arestill left with the shower approximation, and we will �nally give a simple presription of how nLO (in the ase of treelevel merging) and NLO (in the ase of one loop merging) auray an be ahieved also below the merging sale. To
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