
*H
EP
-P
H/
07
03
0∣
3*

 TTP07-05
 SFB/CPP-07-07

 DESY 07-024

ar
X

iv
:h

ep
-p

h/
07

03
01

3v
1 

  1
 M

ar
 2

00
7

TTP07-05SFB/CPP-07-07DESY 07-024Two-Loop Formfators in Theories with Mass Gapand Z-Boson ProdutionA. Kotikova;b, J.H. K�uhn and O. Veretinb;daBogoliubov Laboratory of Theoretial Physis,JINR, 141980 Dubna, RussiabII Institute f�ur Theoretishe Physik,Universit�at Hamburg, 22761 Hamburg, GermanyInstitut f�ur Theoretishe Teilhenphysik,Universit�at Karlsruhe, 76128 Karlsruhe, GermanydUniversity of Petrozavodsk,185910 Petrozavodsk, Karelia, RussiaAbstratThe two-loop formfator both for a U(1) � U(1) and a SU(2) � U(1) gauge theory withmassive and massless gauge bosons respetively is evaluated at arbitrary momentum transferq2. The asymptoti behaviour for q2 ! 1 is ompared to a reent alulation of Sudakovlogarithms. The result is an important ingredient for the alulation of radiative orretionsto Z-boson prodution at hadron and lepton olliders.
1 IntrodutionPreise measurements of ross setions for the prodution of massive and massless gauge bosonswere one of the entral topis of LEP experiments. At the LHC similar reations, namely theprodution of W and Z-bosons, singly or in pairs, with or without additional quark or gluon1
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jets, will be ruial for preise studies of the eletroweak and strong interations. SingleW - and Z-boson prodution will be used for the determination of parton distributions andeventually even for luminosity alibrations. A future linear ollider, operating in the GIGA-Zmode, will measure the properties of the Z-resonane with unpreedented preision. All thesemeasurements will rely on the theoretial knowledge of radiative orretions to better than oneperent aurray, perhaps even down to the level of several permille. QCD and eletroweakradiative orretions, as well as their interplay, thus will be ruial for the interpretation ofthese results.QCD orretions to single W - and Z-prodution are idential to those for the Drell{Yanproess and have been evaluated in two-loop approximation in [1, 2℄, those for Higgs bosonprodution in [3℄. Eletroweak orretions for the on-shell proess were omputed some timeago (see e.g. [4℄ and referenes therein). The next step evidently requires to ombine QCDand eletroweak e�ets, resulting in non-fatorizable terms of order �weak�s. For the inlusiveZ deay rate these terms have been alulated for �nal states with up-, down-, and bottom-quarks [5, 6, 7℄ and turned out to be relevant for the preise determination of the strongoupling onstant. However, these results annot be diretly applied to the prodution proessand to more di�erential distributions. For the Z-boson suh orretions for high pT distributionhave been obtained in [8℄.In the present paper we desribe oneptial developments and onrete results whih areimportant ingredients for the omplete evaluation of these non-fatorizable terms of order�weak�s. In partiular we onsider those amplitudes whih orrespond to vertex diagramswith a virtual gluon attahed to one-loop eletroweak orretions. These are relevant forthe \mixed" orretions of order �weak�s to Z-boson prodution, and for hadroni Z deay.Essentially the same diagrams are also important ingredients for the ombination of photoniand weak orretions to Z prodution in eletron-positron ollisions and to leptoni Z deays.Our study identi�es the infrared singular as well as the �nite parts, investigates the stru-ture of these singularities and shows how they an be ombined with real radiation to arriveat a �nite result. The infrared �nite remainder will be presented in analytial form in termsof generalized polylogarithms.The form fator will also be investigated in the Sudakov limit M2=q2 � 1. In the speialase of an Abelian theory the result oinides with the one of [9℄ (see also [10℄) and allows toontrast the logarithmi approximation with the omplete result. The alulational methodrelies on an approah that has already been suessfully employed in a number of ases [11, 12℄.General onsiderations restrit the struture of the �nal result to a sum of \basis funtions"(in our ase|generalized \harmoni" polylogarithms up to fourth degree) with spei� argu-ments and prefators. Calulating on one hand diretly a large number of terms in the low q2expansion with the tehnique of large mass expansion, expanding the basis funtions on theother hand, and equating the results, the oeÆients in front of the basis funtions an be2



determined. In a �nal step most of the basis funtions are transformed into Nielsen polylog-arithms, leading to a fairly ompat result whose asymptoti behaviour an be analyzed in astraightforward manner.To failitate the disussion, we present, in a �rst step, in setion 2, the results for a U(1)�U(1) theory with one of the gauge bosons taken to be massive, the other one massless. Theexpliit analytial result on�rms the fatorization of the infrared singularities and allows toidentify the infrared-�nite remainder. In setion 3 the formalism will be extended to a massivenonabelian theory and applied to the omplete set of virtual orretions of order �weak�s,ontributing to Z-boson prodution and deay. The triple-boson oupling leads to additionaldiagrams with additional generalized polylogarithms, whih annot easily be transformed intoNielson's polylogarithms. However, they an be evaluated numerially with high preision [13℄and their asymptoti behaviour is under ontrol. The paper onludes with a brief summary.Muh of the formulae and alulational details will be olleted in the Appendies.2 Abelian TheoryFor de�niteness and simpliity we will, in a �rst step, onsider the form fator in a �tiiousU(1)�U(1) theory with one massive and one massless gauge boson and with oupling onstants� and �0 respetively.For the Abelian theory the form fator F will be de�ned as matrix element of an externalurrent �F (q;M) = Z dxe�ixqh 0jJ�(x)j i: (1)Here  and  0 denote on-shell massless fermions of momenta p and p0 = p+ q, respetively, Mthe mass of the gauge boson.In a perturbative expansionF (�; �0; q;M; ") = 1Xm;n=0� �4��m � �04��n f (m;n)(q;M; ") (2)one needs to evaluate the expansion oeÆients f (m;n). In Born and one-loop approximationthey are given byf (0;0) = 1 ; (3)f (1;0) = �72 � 2z + 2 + 3zz log(�z) + 2(1 + z)2z2 �Li2(1 + z)� �26 � ; (4)f (0;1) =  ��2�q2!" �� 2"2 � 3" � 8 + �2 + "�� 16 + 32�2 + 143 �3�� ; (5)where z = q2=M2 + i0, �n = �(n) is the Riemann �-funtion and the infrared singularities areontrolled by dimensional regularization in d = 4 � 2" dimensions. In the eulidean regionq2 < 0, so that no imaginary parts appear in the above formulae.3



The two-loop result for the massless ase, f (0;2), an be found e.g. in [14, 15℄. The two-loopresult for the fully massive ase, f (2;0), is only known in the large q2 limit [16℄. The evaluationof the mixed orretions is drastially simpli�ed by the fat that the infrared singularitiesfatorize within infrared evolution equation approah [17, 16℄, whih gives in our aseF (�; �0; q2=M2; ") = Fmassless(�0; q; ") ~F (�; �0; q2=M2) ; (6)with Fmassless = P(�0=4�)nf (0;n)(q; ") denoting the formfator for the massless theory and ~Fbeing free from infrared singularities. The funtion ~F an again be expressed as double series,and the oeÆients depend on the ratio z = q2=M2 only. The terms ~F (m;0) = f (m;0) oinide byde�nition with those valid for the massive U(1)-theory. The evaluation of the nonfatorizablepart of the two-loop ontribution ~F (1;1) � �(q2=M2) (7)will be the entral result of this setion.The Feynman diagrams neessary for this omputation have two thresholds: at q2 = 0and at q2 = M2. The analytial struture of vertex diagrams of this type has been exploredin [11℄. The oeÆients of an expansion in q2=M2 (and M2=q2) an always be expressed asombinations of so-alled harmoni sums [18℄ or more generally | nested harmoni sums [19℄.These sums orrespond to (generalized) polylogarithms ([20℄) [21℄ of arguments �q2=M2 andtheir generalizations | harmoni polylogarithms [22℄ (see also [23℄). This struture suggeststhe following method for the evaluation of Feynman integrals. First, using the method of largemass expansion [24℄, one alulates a large number of oeÆients of the series in q2=M2. Fromthe basis funtions (polylogarithms) one then onstruts an Ansatz with unknown oeÆientsxi. Equating Ansatz and series one obtains a unique answer for parameters xi. This methodhas been applied earlier [25, 11℄ to various salar vertex masterintegrals. (In a di�erent ontextthe method has also been applied in [26℄). Here it is applied to amplitudes dedued from a aset of realisti Feynman diagrams representing a physial proess and leading to amplitudeswith irreduible numerators and shrunken lines.A few omments on this proedure are in order. First, the main problem is to write downthe orret prefators in the Ansatz. Empirially one �nds that the presene of a numeratoror the absene of a line may lead to the additional fators M2=q2 or (M2=q2)2 in front ofpolylogarithms1. Therefore suh fators should also be inluded in the Ansatz. Seond, only�ve funtions ould not be represented as Nielsen polylogarithms with the argument q2=M2.These remaining funtions belong to the lass of harmoni polylogarithms [22℄ disussed inmore detail in the Appendix.1 In a series representation suh multipliations lead to shifts of the summation index in n. Indeed, if z = q2=M2then, e.g. 1z Pn=1 nzn = 1 +Pn=1 n+1zn and so on. 4



Instead of expanding the amplitude in q2=M2 one ould �nd the di�erential equation (see[27℄) for a diagram and again apply an Ansatz based on polylogarithms. This approah hasreently been used for similar two-loop vertex diagrams in [28℄.Altogether 16 one-partile-irreduible two-loop vertex diagrams ontribute to the formfa-tor. These diagrams an be obtained from the one-loop one shown in Fig. 1a by adding onegluon line. The two-loop, one-partile reduible diagrams whih are obviously produts ofone-loop diagrams ontribute to the term ��0f (0;1)f (1;0) and are not repeated here. We alsodo not display the ontributions to the fermioni wave funtion renormalization, whih reeivesontributions from additional 6 diagrams. For the generation of the input the program DIANA[29℄ has been used, for the evaluation and expansion a program written in FORM [30℄. Theevaluation of the Dira traes has lead to about 700 di�erent integrals. For most of them theasymptoti expansion was performed up to order 45 whih required in total several hours ofCPU time on a Pentium IV proessor. For the remaining, most ompliated ases (nonplanardiagram) up to 60 expansion oeÆients had to be omputed. For this purpose the parallelversion of FORM [31℄, running on an SGI mahine with multiproessor SMP arhiteture, wasused.The funtion �(z) an be ast into the following form (here and below z = q2=M2 + i0)�(z) = (1 + z)2z2  (6L2 + 24�2 � 24�3) log(1 + z) + (�4L2 � 6L� 20�2) log2(1 + z)+83 log3(1 + z)L+ 8 log2(1 + z)Li2(�z)� 12 log(1 + z)Li2(�z)�16 log(1 + z)Li3(�z) + 16 log(1 + z)S1;2(�z)� 16Li2(�z)�2 � 4Li2(�z)L2�8Li22(�z) + 16Li3(�z)L� 24Li4(�z)� 12S1;2(�z) + 16S1;2(�z)L+ 16S1;3(�z)�16S2;2(�z) + 24h(z) � 48H3(z) + 8H2(z) + 32H4(z)!+1 + 3z + z2z2  �32Li2(z)�2 � 8Li2(z)L2 � 8Li2(z)Li2(z) + 32Li3(z)L�48Li4(z) + 32S2;2(z)!+ 1� z2z2  72 log(1� z)�2 + 18 log(1� z)L2+36 log(1� z)Li2(z) + 36Li2(z)L + 72S1;2(z)!+ 2 + 3zz (32�2 + 12�3)�34 + 51zz L+ 16 + 23zz L2 � 2(1 � z)(13 + 27z)z2 log(1� z) + 4(3 + 4z)z2 Li2(�z)L�2(1 + z)(3 + 5z)z2 �log(1 + z)L+ Li2(�z)�+ 4(11 + 9z)z Li2(z)�4(3 + 2z � 3z2)z2 Li3(�z)� 4(9 + 4z � 6z2)z2 Li3(z) + 2(8� z)z ; (8)where L = log(�q2=M2), �a = �(a) is the Riemann �-funtion, Sa;b(z) are Nielsen polyloga-rithms [20℄. The funtions h(z) and Hj(z) are de�ned and disussed in Appendix A.5



3 Z-ProdutionFor de�nitenes and simpliity, onsider, in the next step, Z-boson prodution in quark-antiquarkannihilation. To �x the notation, we reapitulate the one-loop results. The weak orretions tothe Born term an be split into those involving the exhange of W - and Z-bosons, (Fig.1(a))and those involving the triple-boson oupling (Fig.1(b)). The ombination of photoni andQCD orretions follows essentially from the two-loop QED or QCD results and will not beaddressed here.For a light quark the form fator an be deomposed as followsF (q2)� = � 1 + 52 FR(q2) + � 1� 52 FL(q2) : (9)At the Born level the expressions for the form fators FR and FL are given byFR = i esW gR ; FL = i esW gL ; (10)with gR = �Qs2W=W and gL = (I3 � Qs2W )=W being the right- and left- handed ouplingsof a quark to the Z-boson. Here I3 is the third omponent of the isospin of a quark, Q itseletri harge and sW = sin �W and W = os �W denote sine and osine of the weak mixingangle, respetively.Inluding radiative orretions and adopting a form similar to eq.6 the formfators an beast into the following formFR = i esW �1 + CF �s4�f (0;1)�"gR + �4�s2W g3R�A(q2=m2Z ;m2Z) + CF �s4� �4�s2W g3R�A(q2=m2Z)# ;FL = i esW �1 + CF �s4�f (0;1)�"gL+ �4�s2W  g3L�A(q2=m2Z ;m2Z) + gL2 �A(q2=m2W ;m2W ) + W I32 �NA(q2=m2W ;m2W )!+ CF �s4� �4�s2W  g3L�A(q2=m2Z) + gL2 �A(q2=m2W ) + W I32 �NA(q2=m2W )!# ; (11)where �rst fators in the brakets in the above equations represent the QCD orretions. Termsgiven by �A and �NA aount for the one-loop eletroweak orretions. The abelian part �Ais de�ned by the diagram of the abelian type (Fig. 1a) and obviously losely related to f (1;0)de�ned in eq.4. The unrenormalized result2 is given by�A(z;M2) = 1" � ln(M2=��2)� 4� 2z + 2 + 3zz log(�z) + 2(1 + z)2z2 �Li2(1 + z)� �26 � : (12)2We shall not disuss issues related to renormalization, sine the non-fatorizable part, whih is the quantity ofinterest in this paper, is independent of the renormalization sheme.6



The nonabelian part �NA(z;M2) reeives orretions from both diagrams of Fig.1a and Fig.1b.It is given by�NA(z;M2) = �2�A(z;M2)� 2�(z;M2) ; (13)�(z;M2) = �3" + 3 ln(M2=��2)� 2 + 2z � �1 + 2z �r1� 4z l � �1 + 12z�4z l2 (14)with l = ln p1� 4=z + 1 + i0p1� 4=z � 1 + i0! : (15)The funtion �(z) an be taken from [33℄ (see also [34, 35, 36℄ and referenes therein for one-loopalulations in the Standard Model). We do not inlude the terms from the renormalizationof the oupling and the Z-boson wave funtion3 whih follow from textbook presriptions andwill not be onsidered in this work.Evaluated for arbitrary q2 6=M2Z , the above results are gauge dependent and are presentedin Feynman gauge. For the o�shell ase they an be onsidered as building bloks for a ompletealulation.The funtions �A(z) and �NA(z), representing the non-fatorizable terms of O(��s ), arewritten in a form ompletely analogous to the eletroweak one-loop terms. The funtion �A(z)has been given in the previous setion. The nonabelian part �NA(z) involves new funtions |generalized polylogarithms. Our result in Feynman gauge reads
WW

Z,W,γ

(a) (b)Figure 1: Diagrams, ontributing to the vertex Zq�q (a) and (b). The two-loop diagrams are obtainedby attahing one virtual gluon in all possible ways. The ase (b) represents nonabelian part. Thatgives ontribution �NA(z) in the text. Diagram (a) with W exhange also ontributes to �NA(z).�A(z) = �(z) ; (16)�NA(z) = �2�A(z)+48� 5zz + 481 + 2zz2 H0;�r;�r;�1(�z)� 12H�r;�r;�1(�z) + 8H0;�r;�r(�z)3Hene the funtion �(z) onsidered in [33℄ di�ers by subtrating the term 3="�3 ln(M2=��2)�1=2. Furthermore,a typo in [33℄ has been orreted, ipping the signs of the terms proportional to l and l27



+46 + 2z � 3z2z2 H�r;�r(�z)� 6(4� z)(4 + 3z)z2 gH�r;�1(�z)�2(4� z)(6 + 7z)z2 gH�r(�z) + 16 + 23zz �8�2 + 2L2�� 412 � 11z2z2 Li3(z)+266 + 49zz Li2(z)� 4(1� z)(13 + 34z)z2 log(1� z)� 165 + 9zz L+(1� z2)z2  96 log(1� z)�2 + 24 log(1� z)L2+48 log(1� z)Li2(z) + 48Li2(z)L+ 96S1;2(z)!+(1 + 4z + z2)z2  �32Li2(z)�2 � 8Li2(z)L2 � 8Li22(z)+32Li3(z)L� 48Li4(z) + 32S2;2(z)! : (17)The funtion �NA(z) reeives ontributions not only from digrams of Fig. 1(b) but also fromthose of Fig. 1(a) with the exhange of W -boson. The funtions H::: are onsidered in moredetail in Appendix B. For the speial ase q2 =M2 one �nds�A(1 + i0) = 14 + 72�2l2 � 64�2l22 � 163 l42 + 22�2 � 28�3 + 16�4 � 128Li4(12)+i�(85 + 32l2 + 24l22 � 323 l32 + 14�2 � 120�3) (18)=�2:1073 � 19:0331i ; (19)�NA(1 + i0) =�16� 144�2l2 + 128�2l22 + 323 l42 + 703 �2 + 1843 �3 � 236�4+26 �p3 + 256Li4(12 )� 84 1p3Ls2(�3 )� 163 �Ls2(�3 ) + 96�Ls2(�3 )�2+i�(54 � 64l2 � 48l22 + 643 l32 � 28�2 + 48�3) (20)=�7:5880 + 16:7194i ; (21)with l2 = log 2. Substituting the atual masses of the W - and Z-bosons (z = m2Z=m2W =1:2856) we �nd: �A(1:2856 + i0) =�1:3598 � 30:4095i ; (22)�NA(1:2856 + i0) =�10:1248 + 35:0336i : (23)In the limit q2 ! 1 the funtion �, as given by Eq. (8) oinides with the result of [9℄where the power unsupressed logarithmi and onstant part have been evaluated. For theleading and the �rst power suppressed term we �nd�(z) = (3� 24�2 + 48�3) log(�z)� 2 + 40�2 � 84�3 + 14�4+ 1z�(�26 + 8�2) log2(�z) + (�120 � 16�2 + 128�3) log(�z)�188� 8�2 � 8�3 + 116�4�+O� 1z2� (24)8



In Fig. 2 the exat result is ompared with the Sudakov approximation and with the approx-imation inluding the �rst power-suppressed term. For eletroweak interations the mass ofthe gauge boson an be taken to be of order 100 GeV, the harateristi energy of order one totwo TeV. For one TeV the relative error of the Sudakov approximation (the logarithmi plusonstant term) amounts to 15%, at 2TeV it is redued to 2.5%.
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Figure 2: Non-fatorizable two-loop orretion to the abelian formfator in the eulidean regime(z = q2=m2). The solid line represents the exat result, the dashed line the Sudakov approximationand the dash-dotted line inludes the power suppressed terms.4 ConlusionsUsing the tehnique of asymptoti expansions and the knowledge of the general struture ofintegrals we evaluated analytially the two-loop formfator in a U(1) � U(1) theory with onemassive and one massless gauge boson. In the Sudakov limit full agreement is abtained with[9℄, where the logarithmi and onstant terms had been evaluated obtained. We furthermoreperform the same aldulation for a SU(2)� U(1) theory and derive the non-fatorizable partof the two-loop formfator in the Standard Model. As an appliation we evaluate the mixed9



virtual O(��s) radiative orretion for Drell{Yan prodution of the Z-boson.Aknowlegments. We thank M. Kalmykov for useful omments and disussions and M. Ten-tyukov for his help with DIANA. We aknowledge T. Gehrmann for information about thenumerial program hplog. This work was supported by BMBF under grants No. 05HT6VKA,05HT4GUA4 and HGF grant No. NG-VH-008. A.K. is supported in part by an Alexandervon Humboldt Foundation (a renewed aademi stay in Germany).5 Appendix AIn this Appendix we onsider the asymptoti behaviour of the most ompliated basis funtionsin the limit z = q2=m2 ! 1. Most of basis funtions an be expressed in terms of Nielsenpolylogarithms and then the standard transformations formulae an be applied to go fromargument z to 1=z (see [20, 21℄). Therefore we will onsider here only the �ve speial ases,mentioned previously, where ompliations arise.In our alulation the following funtions appear in addition to usual Nielsen polyloga-rithms: h(z) =H�1;0;1(z) ;H1(z) =H�1;0;1;1(z) ;H2(z) =H�1;0;0;1(z) ;H3(z) =H�1;�1;0;1(z) ;H4(z) =H0;�1;0;1(z) ;where Ha;:::;d(z) are harmoni polylogarithms de�ned in [22℄.These funtions orrespond to the alternating Taylor series in z:h(z) =� 1Xn=1 S�2(n� 1)n (�z)n ;H1(z) =� 1Xn=1 S�2;1(n� 1)n (�z)n ;H2(z) =� 1Xn=1 S�3(n� 1)n (�z)n ;H3(z) =� 1Xn=1 S�3(n� 1) + S�2;1(n� 1)� S1(n� 1)S�2(n� 1)n (�z)n ;H4(z) =� 1Xn=1 S�2(n� 1)n2 (�z)n ;with �nite harmoni sums Sa(n) = Pnj=1 1=ja and S�a(n) = Pnj=1(�1)j=ja and S�2;1(n) =Pnj=1(�1)jS1(j)=j2. It is interesting to note that the funtion H1 anels in the �nal result(8) for the formfator but is present in the partiular integrals.10



Following [11℄ it is not diÆult to write down simple integral representations for the aboveseries, e.g. h(z) = zZ0 dx1 + x Li2(x) ; (1)H1(z) = zZ0 dx1 + x S1;2(x) ; (2)H2(z) = zZ0 dx1 + x Li3(x) ; (3)H3(z) = log(1 + z)h(z) � zZ0 dx1 + x Li2(x) log(1 + x) ; (4)H4(z) = log(z)h(z) � zZ0 dx1 + x Li2(x) log(x) : (5)Now the integrals an be expressed in terms of Nielsen polylogarithms of nonlinear ar-guments and only one harmoni polylogarithm funtion H2 (this hoie being not unique,however). We haveh(z) = 12S1;2(z2)� S1;2(z)� S1;2(�z) + ln(1 + z)Li2(z); (6)H1(z) = log(1 + z)S1;2(z) + 14S1;3(z2)� S1;3(�z) + 12�(z); (7)H3(z) = log(1 + z)�12S1;2(z2)� S1;2(z)� S1;2(�z)�+12 log2(1 + z)Li2(z) + 14S1;3(z2)� S1;3(z)� 12�(z); (8)H4(z) = 14S2;2(z2)� S2;2(z)� S2;2(�z) + log(1 + z)Li3(z)�H2(z); (9)where �(z) =�158 �4 + 16 log3 s log z + 12 log2 s�Li2(s)� Li2(�s)�� log s�Li3(s)� Li3(�s)�+ Li4(s)� Li4(�s);with s = (1� z)=(1 + z).In order to �nd the asymptoti behaviour for z !1 one needs to use the standard formulaefor polylogarithms and for the funtion H2(z) � H�1;0;0;1(z) the inversion formula (A.6) from[32℄. It is important to take are of imaginary parts, therefore we approah the ut in q2-planefrom above, whih means that z is replaed by z + i0. Thus we obtainh(z + i0) = �16 log3 z + 2�2 log z � 32�3 + 1z�� 12 log2 z � log z + 2�2�+ i� �12 log2 z � 12�2 + 1z log z + 1z�+O� 1z2�; (10)11



H1(z + i0) = 124 log4 z � 32�2 log2 z + �3 log z + 5716�4+ 1z�16 log3 z + 12 log2 z � 3�2 log z + �3 � 3�2 � 1�+ i� ��16 log3 z + �2 log z � 78�3 + 1z�� 12 log2 z � log z + �2��+O� 1z2�;(11)H2(z + i0) = � 124 log4 z + �2 log2 z � 58�4+ 1z�� 16 log3 z � 12 log2 z + (2�2 � 1) log z + 2�2 � 2�+ i� �16 log3 z � 34�3 + 1z�12 log2 z + log z + 1��+O� 1z2�; (12)H3(z + i0) = � 124 log4 z + �2 log2 z � 32�3 log z � 316�4+ 1z�� 16 log3 z + (2�2 + 1) log z � 32�3 + 1�+ i� �16 log3 z � 12�2 log z + 78�3 + 1z�12 log2 z � 12�2 � 1��+O� 1z2�; (13)H4(z + i0) = � 124 log4 z + �2 log2 z � 32�3 log z + 78�4+ 1z�12 log2 z + 2 log z � 2�2 + 2�+ i� �16 log3 z � 12�2 log z + 32�3 + 1z�� log z � 2��+O� 1z2�: (14)Finally we used the program hplog [13℄ to hek numerially the asymptoti behaviour of theH-funtions.6 Appendix BIn this appendix we onsider the H-funtions ontributing to the nonabelian part of the form-fator. For the de�nitions and reursive onstrutions of these funtions we refer to [28℄.However, for ompleteness we give here expliitly the de�nitions of the funtions whih appearin our alulation. The following six new funtions arise in the evaluation of the two-loopnonabelian formfator:H�r(z) = zZ0 dt1pt1(t1 + 4) ; (15)H�r;�r(z) = zZ0 dt2pt2(t2 + 4) t2Z0 dt1pt1(t1 + 4) ; (16)H�r;�1(z) = zZ0 dt2pt2(t2 + 4) t2Z0 dt11 + t1 ; (17)
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H�r;�r;�1(z) = zZ0 dt3pt3(t3 + 4) t3Z0 dt2pt2(t2 + 4) t2Z0 dt11 + t1 ; (18)H0;�r;�r(z) = zZ0 dt31 + t3 t3Z0 dt2pt2(t2 + 4) t2Z0 dt1pt1(t1 + 4) ; (19)H0;�r;�r;�1(z) = zZ0 dt4t4 t4Z0 dt3pt3(t3 + 4) t3Z0 dt2pt2(t2 + 4) t2Z0 dt11 + t1 : (20)In the formula (17) for the nonabelian part the funtions with odd number of indies \�r"appear always with the fator g(�z) = 1p1� 4=z : (21)It is easy to hek that H�r and H�r;�1 annot be expanded in the Taylor series of smallarguments (they have a branhe point at zero), but the ombinations gH�r and gH�r;�1 an.The integral representations given above are not very suitable for the analysis and numeris.The ultimate task would be to relate them to the usual (harmoni) polilogarithms. In orderto do this one should hoose a \right" variable. From the previous expiriene [11℄ it is knownthat for the diagrams, posessing a branh point at q2 = 4m2, the appropriate variable is givenby (z = q2=m2) y = 1�pz=(z � 4)1 +pz=(z � 4) : (22)In terms of y the g-fator (21) is expressed asg(�z) = 1� y1 + y ; (23)and the required H-funtions take formH�r(�z) =� log y ; (24)H�r;�r(�z) = 12 log2 y ; (25)H�r;�1(�z) = 12 log2 y + 13Li2(�y3)� Li2(�y)� 13�2 ; (26)H0;�r;�r(�z) =�16 log3 y + log(1� y) log2 y � 2Li3(y) + 2 log yLi2(y) + 2�3 ; (27)H�r;�r;�1(�z) =�16 log3 y + 13�2 log y + 23�3 + Li3(�y)� 19Li3(�y3) ; (28)H0;�r;�r;�1(�z) = 124 log4 y � 16�2 log2 y � 23�3 log y + 89108�4 � Li4(�y) + 127Li4(�y3)+ 2S1;3(1� y)� 23�2Li2(1� y) + 2 ln(1� y)�23�3 + Li3(�y)� 19Li3(�y3)�+2Li2(y)�Li2(�y)� 13Li2(�y3)�+ 2N1(1)� 2N1(y) ; (29)where N1(y) = yZ0 dtt Li2(t) ln(1� t+ t2); N1(1) = �1154�4 : (30)13



As it is seen from the above fomulae, the H-funtions with index \�r" an be rewritten interms of harmoni polylogarithms but of nonlinear argument y.In the limit when z ! +1+ i0 we obtaing(�z)H�r(�z) = log z + 1z (2 log z � 2) + i� ��1� 2z�+O� 1z2� ; (31)g(�z)H�r;�1(�z) = 12 log2 z � 103 �2 + �log2 z � 2 log z � 203 �2 � 1�+i��� log z � 1z (2 log z � 2)�+O� 1z2� ; (32)H�r;�r(�z) = 12 log2 z � 3�2 � 2 log zz + i� �� log z + 2z�+O� 1z2� ; (33)H0;�r;�r(�z) = 16 log3 z � 3�2 log z + 2�3 + 1z (2 log z + 2)+i���12 log2 z + �2 � 2z�+O� 1z2� ; (34)H�r;�r;�1(�z) = 16 log3 z � 103 �2 log z + 23�3 + 1z �� log2 z + 203 �2 + 1�+i���12 log2 z + 43�2 + 2z log z�+O� 1z2� ; (35)H0;�r;�r;�1(�z) = 124 log4 z � 53�2 log2 z + 23�3 log z + 7�4+1z� log2 z + (2 + 23�2 � 23�3) log z + 1� 203 �2�+i��� 16 log3 z + 43�2 log z � 23�3+1z�� 2 log z � 2� 23�2 + 23�3 � 2 log z��+O � 1z2� : (36)And �naly we give the values of H-funtions at the partiular point z = 1:g(�1)H�r(�1) =� �3p3 ; (37)g(�1)H�r;�1(�1) = 23 Ls2(�3 )p3 ; (38)H�r;�r(�1) =�13�2 ; (39)H0;�r;�r(�1) = 43�3 � 23�Ls2(�3 ) ; (40)H�r;�r;�1(�1) = 19�3 ; (41)H0;�r;�r;�1(�1) =� 712�4 + 23�Ls2(�3 )�2 ; (42)where �n is the Riemann �-funtion and Lsn(x) is the log-sine integral de�ned asLsn(x) = � xZ0 logn�1�2 sin t2�dt : (43)14
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