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Abstract

Measurements are presented of differential dijet cross sections in diffractive photoproduc-
tion (Q2 < 0:01 GeV2) and deep-inelastic scattering processes (DIS,4 < Q2 < 80 GeV2).
The event topology is given byep ! eXY , in which the systemX, containing at least
two jets, is separated from a leading low-mass proton remnant systemY by a large rapidity
gap. The dijet cross sections are compared with NLO QCD predictions based on diffrac-
tive parton densities previously obtained from a QCD analysis of inclusive diffractive DIS
cross sections by H1. In DIS, the dijet data are well described, supporting the validity of
QCD factorisation. The diffractive DIS dijet data are more sensitive to the diffractive gluon
density at high fractional parton momentum than the measurements of inclusive diffractive
DIS. In photoproduction, the predicted dijet cross sectionhas to be multiplied by a factor
of approximately0:5 for both direct and resolved photon interactions to describe the mea-
surements. The ratio of measured dijet cross section to NLO prediction in photoproduction
is a factor0:5 � 0:1 smaller than the same ratio in DIS. This suppression is the first clear
observation of QCD hard scattering factorisation breakingat HERA. The measurements are
also compared to the two soft colour neutralisation models SCI and GAL. The SCI model
describes diffractive dijet production in DIS but not in photoproduction. The GAL model
fails in both kinematic regions.
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1 Introduction

It can be shown in Quantum Chromodynamics (QCD) that the cross section for diffractive
processes in deep-inelasticep scattering (DIS) factorises into universal diffractive parton density
functions (DPDFs) of the proton and process-dependent hardscattering cross sections (QCD
factorisation) [1]. Diffractive parton densities have been determined from QCD fits to inclusive
diffractive cross section measurements in DIS by H1 [2, 3]. It was found that most of the
momentum of the diffractive exchange is carried by gluons.

Final state configurations for which a partonic cross section is perturbatively calculable
include dijet and heavy quark production, which are directly sensitive to the diffractive gluon
distribution. Previous measurements of diffractive dijetproduction in DIS [4, 5] have been
found to be described by leading order (LO) Monte Carlo (MC) QCD calculations based on
the factorisation approach that use the diffractive partondensities from [2] and include parton
showers to simulate higher order effects. However, using the same diffractive parton densities
in LO QCD calculations overestimates the cross section for single-diffractive dijet production
in p�p collisions at the Tevatron by approximately one order of magnitude [6]. This discrepancy
has been attributed to the presence of the additional beam hadron remnant inp�p collisions,
which leads to secondary interactions. The suppression, often characterised by a ‘rapidity gap
survival probability,’ cannot be calculated perturbatively but has been parameterised in various
ways (see, e.g., [7–11]).

An alternative approach to diffractive scattering is takenby soft colour neutralisation models
in which diffraction is described by partonic hard scattering processes with subsequent recon-
figuration of colour between the final state partons. One of these models is the Soft Colour In-
teraction model [12] which, when tuned to describe inclusive diffractive HERA measurements,
also gives a reasonable description [13] of diffractive Tevatron data [6,14–18].

The transition from deep-inelastic scattering to hadron-hadron scattering can be studied at
HERA by comparing scattering processes in DIS and in photoproduction. In photoproduc-
tion, the beam lepton emits a quasi-real photon which interacts with the proton (p collision).
Processes in which the photon participates directly in the hard scattering are expected to be
similar to the deep-inelastic scattering of highly virtualphotons (‘point-like photon’). In con-
trast, processes in which the photon is first resolved into partons which then engage in the hard
scattering resemble hadron-hadron scattering. These resolved photon processes can produce
gluon-gluon and gluon-quark final states, which are presentin p�p collisions but negligible in
DIS. Furthermore, they have an additional hadronic remnantwhich opens up the possibility of
remnant-remnant interactions. QCD factorisation is proven for diffractive DIS, is also expected
to hold for direct photon interactions in diffractive photoproduction [1], but not for resolved
processes. Previous comparisons of diffractive photoproduction dijet data with LO MC models
showed consistency with QCD factorisation within large uncertainties [4].

Measurements of diffractive D� meson (charm) production are well described by next-to-
leading order (NLO) QCD calculations and by LO Monte Carlo models based on diffractive
parton densities in both DIS [19–22] and photoproduction [22]. However, these measurements
suffer from large statistical uncertainties of the data.
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In this paper, a more precise test of QCD factorisation for diffractive dijet production in DIS
and photoproduction is presented. Measurements of diffractive dijet cross sections are com-
pared with NLO QCD predictions based on recently published diffractive parton densities [3]
from H1. In addition, the dijet cross sections are also compared with two versions of the LO soft
colour interaction model. The data were collected with the H1 detector at HERA in the years
1996 and 1997. For photoproduction the integrated luminosity is increased by one order of mag-
nitude with respect to previous results. For DIS, the same data sample is used as in a previous
measurement [5]. Jets are defined using the inclusivekT cluster algorithm [23] with asymmet-
ric cuts on the jet transverse energies to facilitate comparisons with NLO predictions [24, 25].
Apart from the different ranges for the photon virtuality, the DIS and photoproduction measure-
ments are performed in the same kinematic range to allow the closest possible comparison of
the results.

2 Kinematics

The generic diffractive positron-proton interactionep ! eXY is illustrated in Figure 1. The
positron (4-momentumk) exchanges a photon (q) which interacts with the proton (P ). The
produced final state hadrons are, by definition, divided intothe systemsX andY , separated
by the largest gap in the hadron rapidity distribution relative to the(�)p collision axis in the
photon-proton centre-of-mass frame. The systemY lies in the outgoing proton beam direction.

Examples of direct and resolved photon processes with dijets in the final state are depicted
in Figure 2. Resolved processes give a large contribution inphotoproduction but are suppressed
in DIS. The diffractive exchange in these diagrams is depicted as a pomeron (IP).

X

Y

{

{γ

(pX)

(pY)

Largest rapidity gap
in event

(P)

*( )

e

p

t

(q)

(k)

s
W

Figure 1: Illustration of the generic diffractive processep ! eXY . The systemsX andY are
separated by the largest gap in the rapidity distribution ofthe final state hadrons.

The usual DIS kinematic variables are defined as:Q2 � �q2 ; y � q � Pk � P ; x � Q22P � q : (1)
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Figure 2: Leading order diagrams for diffractive dijet production at HERA with the diffrac-
tive exchange depicted as a pomeron (IP). a) Direct (point-like) photon process (photon-gluon
fusion), b) resolved (hadron-like) photon process.

These three variables are related throughQ2 � sxy, in which s � (k + P )2 is the fixedep
centre-of-mass energy squared. The invariant mass of the photon-proton systemW is given byW =p(q + P )2 �py s�Q2 : (2)

With pX andpY representing the 4-momenta of the systemsX andY , we defineM2X � p2X ; M2Y � p2Y ; t � (P � pY )2 ; xIP � q � (P � pY )q � P : (3)

The quantitiesMX andMY are the invariant masses of the systemsX andY , t is the squared
four-momentum transferred at the proton vertex andxIP represents the fraction of the proton
beam momentum transferred to the systemX. Diffractive events are characterised by small
values ofxIP ( �< 0:05). With u andv denoting the four-momenta of the two partons (Figure 2b)
or photon and parton (Figure 2a) entering the hard subprocess, the dijet system has squared
invariant mass M212 = (u+ v)2 : (4)

The fractional longitudinal momenta carried by the partonsfrom the photon (x) and the diffrac-
tive exchange (zIP ) are given byx = P � uP � q ; zIP = q � vq � (P � pY ) : (5)

The measurements are performed in the regionxIP < 0:03, �t < 1 GeV2 andMY < 1:6 GeV,
where the cross section is dominated by scattering processes in which the proton stays intact.
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3 Diffractive Dijet Production in the Factorisation Approach

In the QCD factorisation approach, diffractiveep dijet cross sections are calculated according
to the formula d�(ep! e+ 2 jets +X 0 + Y ) =Xi;j Z dy f=e(y) Z dx fj=(x ; �2F ) �� Z dt Z dxIP Z dzIP d�̂(ij ! 2 jets) fDi (zIP ; �2F ; xIP ; t); (6)

in which the sum runs over all contributing partons,f=e is the photon flux from the positron
andfj= are the photon parton densities. For direct photon interactions, fj= = Æ(1 � x).
The partonic cross sections are denoted by�̂ andfDi are the diffractive parton densities of the
proton. The factorisation scale�F is assumed to be identical at the photon and proton vertices.
In the present analysis, the jet transverse energy is largerthanQ for most of the data and is
therefore used as the factorisation scale and as the renormalisation scale both in DIS and in
photoproduction. The variableX 0 denotes the part of the hadronic systemX which is not
contained in the two jets.

The H1 Collaboration has determined diffractive parton densities from QCD fits to inclusive
diffractive DIS data in [2, 3]. In the parameterisations used for these fits, thexIP andt depen-
dences of the diffractive parton distributions were factorised from the dependences on the scale�F and the fractional parton momentumzIP :fDi (zIP ; �2F ; xIP ; t) = fIP (xIP ; t) fi;IP (zIP ; �2F ): (7)

The factorfIP (xIP ; t) was parameterised as suggested by Regge theory. The dependence onzIP was parameterised at a starting scale and evolved to the scale at which the inclusive data
were measured using the DGLAP evolution equations [26, 27].The inclusive diffractive DIS
data [2,3] are well described using this approach. ForxIP > 0:01, small additional contributions
from sub-leading meson (‘reggeon’) exchange have to be taken into account to describe the data.

The H1 Collaboration has published QCD fits to two different data sets of inclusive diffrac-
tive DIS events. In a first analysis [2], data taken in the year1994 were used to extract the LO
‘H1 fit 2’ parton densities which have been used previously incomparisons with diffractive dijet
production in DIS at HERA and at the Tevatron. A second analysis was based on the larger data
samples of the years 1997–2000 [3]. The fit in [3] led to the NLO‘H1 2006 Fit A’ and NLO
‘H1 2006 Fit B’ DPDFs which both give a good description of inclusive diffraction, and which
are the basis of the dijet predictions in this paper. The two sets of parton densities differ mainly
in the gluon density at high fractional parton momentum, which is poorly constrained by the
inclusive diffractive scattering data. The gluon density of Fit A is peaked at the starting scale at
high fractional momentum and that of Fit B is flat.

4 Next-to-leading Order QCD Calculations

Existing programs which calculate NLO QCD partonic cross sections for dijet production in
inclusive DIS and photoproduction can be adapted to calculate cross sections in diffraction.
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For DIS, the DISENT [28] program is used, as suggested in [29]. It was demonstrated in
[24,30,31] that dijet calculations using this program agree very well with the results from other
programs [31–34]. The program by Frixione et al. [35] is usedfor photoproduction.

The two NLO programs are adapted to calculate diffractive cross sections according to the
following procedure. The cross section at fixedxIP and t = 0 is calculated by reducing the
nominal proton beam energy by a factorxIP . Since thexIP andt dependences of the DPDFs
are assumed to factorise from thezIP and�F dependences, the proton PDFs can be replaced by
the parton densities of the diffractive exchangefi;IP (zIP ; �2F ). The cross sections are multiplied
by fIP (xIP ; t), integrated betweent = �1 GeV2 and the maximum kinematically allowed value
of t. In the same way, a� 3% contribution from Reggeon exchange is calculated. Kinematic
effects on the partonic configurations arising from finite values oft are neglected. To compare
the results with the measured cross sections in the regionxIP < 0:03, the results are integrated
overxIP .

The diffractive dijet cross sections of the modified programs have been compared at the LO
tree level with predictions of the Monte Carlo generator RAPGAP [36] (see also Section 6.4).
Good agreement has been found for both DIS and photoproduction, indicating that the diffrac-
tive extension works correctly. The diffractive NLO predictions agree with independent calcu-
lations in both DIS and photoproduction [37,38].

For the NLO predictions in this paper, the recent H1 2006 DPDFs are used and the 2-loop
strong coupling�s(MZ) is set to0:118; the same value is used in the evolution of the parton
densities [3]. The renormalisation scale is set to the transverse energy of the leading parton jet
in the photon-proton centre-of-mass frame. In DISENT it is not possible to change the factori-
sation scale on an event-by-event basis. It is therefore setto the averageET of the leading jet
observed in the DIS measurement (6:2 GeV). Variations of the QCD renormalisation scale by
factors0:5 and2 in DISENT result in changes of the predicted dijet cross section by approx-
imately+24% and�17%, respectively, integrated over the DIS kinematic range specified in
Table 1. Varying the factorisation scale by factors0:5 and2 leads to changes of the predicted
dijet cross section by approximately+8% and�7%, respectively. In the Frixione program for
photoproduction, the factorisation and renormalisation scales are fixed to be equal. Variations
of the scales by factors0:5 and2 change the predicted cross section by approximately+33%
and�21%, respectively, integrated over the photoproduction kinematic range specified in Ta-
ble 1. In photoproduction, the GRV HO photon PDFs [39] are used. Photon parton densities
are not used in DISENT.

The calculated NLO parton jet cross sections are corrected for the effects of hadronisation.
The corrections, defined as (1 + Æhad)i =  �hadrondijet�partondijet !i ; (8)

are determined for both DIS and photoproduction in every measurement bini using the two
Monte Carlo generators RAPGAP with Lund string fragmentation and HERWIG [40] with
cluster fragmentation. The HERWIG program was extended to diffraction in the manner de-
scribed above for the NLO programs and uses LO diffractive parton densities. For the parton
level cross section�partondijet the jet algorithm operates on the final state partons after the parton
shower cascade. The hadronisation correction is calculated as the mean of the corrections ob-
tained from RAPGAP and HERWIG. The difference between the two corrections serves as an
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error estimate. In DIS, the hadron level dijet cross sectiondoes not differ significantly from
the cross section at the parton level. In photoproduction, the hadron level cross section is lower
than the parton level cross section by10% on average. The correction is particularly large at
highx where contributions withx � 1 at the parton level are smeared towards lower values
due to hadronisation. The estimated uncertainty on(1 + Æhad) is 20% for zjetsIP > 0:8 in DIS and
less than10% in all other measurement bins. It is listed in Tables 2–5.

The uncertainty on the parton densities arising from experimental and theoretical uncertain-
ties in the fit to inclusive diffractive data are much smallerthan the QCD scale uncertainties of
the dijet predictions and are neglected. The NLO corrections increase the LO cross section by
factors1:9 and1:7 on average in DIS and photoproduction, respectively. This large correction
is due to the low transverse energy of the jets.

5 Soft Colour Neutralisation

An approach conceptually different from that of diffractive parton densities is provided by soft
colour neutralisation models. In these models, diffractive scattering is described by DIS or
photoproduction hard scattering processes with subsequent colour rearrangements between the
final state partons. This soft reconfiguration leaves the parton momenta unchanged and can
produce colour singlet systems which are separated by a large rapidity gap.

The Soft Colour Interaction model (SCI) [12] contains one free parameter, the colour rear-
rangement probability, which was fitted toFD2 measurements. A refined version of the model
(GAL) [41] uses a generalised area law for the colour rearrangement probability. Both ver-
sions of the model give a reasonably good description [13] ofHERA inclusive diffractive cross
sections and of diffractive processes at the Tevatron [6,14–18].

Predictions for diffractive dijet production in the SCI andGAL models are obtained using
the LO generator programs LEPTO [42] and PYTHIA [43] for the DIS and photoproduction
kinematic regions, respectively. Higher order QCD effectsare simulated using parton showers.
The calculations are based on the CTEQ5L LO parton densitiesof the proton [44].

6 Experimental Procedure

6.1 H1 detector

A detailed description of the H1 detector can be found in [45]. Here, a brief account of the
components most relevant to the present analysis is given. The H1 coordinate system conven-
tion defines the outgoing proton beam direction as the positive z axis, also referred to as the
‘forward’ direction. The polar angle� is measured relative to this axis and the pseudorapidity
is defined as� � � ln tan(�=2).

The centralep interaction region is surrounded by two large concentric jet drift cham-
bers, twoz chambers, and two multi-wire proportional chambers (MWPCs), located inside
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a1:15 T solenoidal magnetic field. Charged particle momenta are measured by the drift cham-
bers in the range�1:5 < � < 1:5 with a resolution of�(pT )=pT ' 0:005 pT=GeV� 0:015. The
MWPCs provide fast trigger information based on the signalsof charged particles. In the cen-
tral and forward region the track detectors are surrounded by a finely segmented Liquid Argon
calorimeter (LAr). It consists of an electromagnetic section with lead absorbers and a hadronic
section with steel absorbers and covers the range�1:5 < � < 3:4. The energy resolution is�(E)=E ' 0:11=pE=GeV for electromagnetic showers and�(E)=E ' 0:50=pE=GeV for
hadrons, as measured in test beams. The backward region�4 < � < �1:4 is covered by
a lead/scintillating fibre calorimeter (SPACAL) [46] consisting of an electromagnetic and a
hadronic section. The electromagnetic part is used to identify and measure the scattered positron
in DIS events with an energy resolution of�(E)=E ' 0:07=pE=GeV � 0:01. In front of
the SPACAL, the Backward Drift Chamber (BDC) provides tracksegments of charged particles
with a resolution of�(r) = 0:4 mm andr�(�) = 0:8 mm.

The forward region is instrumented with the Forward Muon Detector (FMD) and the Proton
Remnant Tagger (PRT). Three double layers of drift chambersof the FMD are used to detect
particles with pseudorapidities in the range1:9 < � < 3:7. The FMD can also detect particles
from larger pseudorapidities which reach the detector after undergoing secondary scattering
with the beam-pipe. The PRT consists of a set of scintillators surrounding the beam pipe atz = 26 m and covers the region6 < � < 7:5.

Theep luminosity is measured with a precision of1:5% via the Bethe-Heitler Bremsstrahlung
processep! ep, the photon being detected in a crystal calorimeter atz = �103 m. A further
crystal calorimeter atz = �33 m is used as a small angle positron detector to measure the
scattered positron in photoproduction events.

6.2 Event selection

The data correspond to an integrated luminosity of18 pb�1 and were taken in the 1996 and
1997 running periods, in which HERA collided820 GeV protons with27:5 GeV positrons. The
measurements are described in detail in [47].

The photoproduction data are collected using a trigger which requires the scattered positron
to be measured in the small angle positron detector, at leastthree tracks to be reconstructed in
the central jet chambers and an event vertex to be identified.A veto cut requiring less than0:5 GeV of energy deposited in the photon detector of the luminosity system suppresses initial
state radiation and coincidences with Bremsstrahlung events. The geometrical acceptance of
the small scattering angle positron detector limits the photon virtuality toQ2 < 0:01 GeV2 and
the photon-proton centre-of-mass energy to165 < W < 242 GeV.

DIS events are collected using a trigger which requires the scattered positron to be detected
in the backward electromagnetic calorimeter (SPACAL), an event vertex to be identified and at
least one high transverse momentum track (pT > 0:8 GeV) to be measured in the central jet
chambers. Several cuts are applied on the SPACAL positron candidate to reduce background
from photons and hadrons. The electromagnetic cluster energy is required to be larger than8 GeV and requirements are imposed on the width of the electromagnetic shower, the con-
tainment in the electromagnetic section of the SPACAL and anassociated track segment in
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the BDC. DIS events with initial state QED radiation are suppressed by requiring the summedE � pz of all final state particles including the positron to be greater than35 GeV. The range
in the photon virtuality is restricted to4 < Q2 < 80 GeV2. The photon-proton centre-of-mass
energyW is restricted to the same range as for photoproduction.

Diffractive events are selected in the same way as for the inclusive diffractive cross section
measurement [3] used for the extraction of the DPDFs. No signals above noise thresholds are
allowed in the FMD or PRT. In the LAr, no cluster with an energyof more than400 MeV is
allowed in the region� > 3:2. These selection criteria ensure that the gap between the systemsX andY spans at least the region3:2 < � < 7:5, and restrictMY andt to approximatelyMY <1:6 GeV and�t < 1 GeV2. A cutxIP < 0:03 further reduces non-diffractive contributions.

The hadronic systemX is measured in the LAr and SPACAL calorimeters and the central
tracking system. Calorimeter cluster energies and track momenta are combined into hadronic
objects using an algorithm which avoids double counting [48]. Jets are formed from the hadronic
objects, using the inclusivekT cluster algorithm [23] with a distance parameter of unity inthe
photon-proton rest frame, which is identical to the laboratory frame for photoproduction up to
a Lorentz boost along the beam axis. ThepT recombination scheme is used, which leads to
massless jets. At least two jets are required, with transverse energiesE�;jet1T > 5 GeV andE�;jet2T > 4 GeV for the leading and sub-leading jet, respectively.1 The jet axes of the two
leading jets are required to lie within the region�1 < �labjet < 2, well within the acceptance of
the LAr calorimeter. The final selection yields1365 events in photoproduction and322 events
in DIS.

6.3 Kinematic reconstruction

6.3.1 Reconstruction of DIS events

In the DIS analysis, the energyEe and the polar angle�e of the scattered positron are measured
in the backward calorimeter SPACAL andy andQ2 are reconstructed according toy = 1� EeE0e sin2 �e2 ; Q2 = 4E0eEe os2 �e2 ; (9)

in whichE0e is the positron beam energy. The invariant massMX of the hadronic systemX is
reconstructed from the energiesEi and the momenta~pi of all hadronic objects:M2X = (Xi2X Ei)2 � (Xi2X ~pi)2 : (10)

The photon-proton centre-of-mass energyW is reconstructed according to Eq. (2) and the vari-
ablexIP is given by xIP = Q2 +M2XQ2 +W 2 : (11)

The estimatorsxjets andzjetsIP of the fractional momenta of the partons entering the hard sub-
process are reconstructed asxjets = P2i=1 �E�jet i � p�z;jet i�Pi2X �E�i � p�z;i� ; zjetsIP = Q2 +M212Q2 +M2X : (12)

1The ‘*’ denotes variables in the photon-proton rest frame.
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6.3.2 Reconstruction of photoproduction events

In the photoproduction analysis, the energyEe of the scattered positron is measured in the small
scattering angle positron detector andy is reconstructed according toy = 1� Ee=E0e : (13)

The estimatorsxjets andzjetsIP are reconstructed asxjets = P2i=1 (Ejet i � pz;jet i)2 y E0e ; zjetsIP = P2i=1 (Ejet i + pz;jet i)2 xIP Ep ; (14)

in whichEp is the incident proton beam energy. The variablexIP is reconstructed according toxIP = Pi2X (Ei + pz;i)2Ep : (15)

The reconstruction ofzjetsIP andxIP is different from the DIS case due to the large contribution
of resolved photon processes.

6.4 Monte Carlo simulations

Monte Carlo programs are used in the analysis to correct the measured distributions for detector
effects. The H1 detector response is simulated using detailed detector simulation programs
based on GEANT [49]. The Monte Carlo events are subjected to the same analysis chain as the
data.

The main Monte Carlo generator used to correct the data distributions is RAPGAP [36].
Events are generated according to a convolution of LO diffractive parton densities with LO
QCD matrix elements for the hard2 ! 2 subprocess. The ‘H1 fit 2’ DPDFs of [2] are used.
RAPGAP includes resolved photon processes for which the partonic cross sections are also
convoluted with the parton densities of the photon. In photoproduction, the leading order GRV
’94 parton distribution functions [39] are used, which werefound to give a good description
of the effective photon structure function as measured by H1[50]. For DIS, processes with
a resolved virtual photon are generated using the SAS-2D parameterisation [51], which leads
to a reasonable description of inclusive dijet production [52] in a similarQ2 andET range to
that studied here. The PDFs are taken at the scale�2F = p̂2T + 4m2q, wherep̂T is the transverse
momentum of the emerging hard partons andmq is the mass of the quarks produced. Higher
order effects are simulated using parton showers [53] in theleading log(�) approximation. The
Lund string model [54] is used for hadronisation. Photon radiation from the positron lines is
simulated using the program HERACLES [55]. The used RAPGAP version simulates only
processes in which the proton stays intact.
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6.5 Cross section measurement

The data are first corrected for losses at the trigger level. The trigger efficiency is approximately90% in DIS, the losses being mainly due to the tracking requirements. In photoproduction the
efficiency also depends on the energy of the positron detected in the small scattering angle de-
tector and varies between� 90% at lowy and� 50% at highy. Non-diffractive background mi-
grating into the measurement region fromMY > 5 GeV and largexIP is statistically subtracted
using inclusive dijet production simulations (RAPGAP in DIS and PYTHIA in photoproduc-
tion). The subtracted background amounts to3% in photoproduction and5% in DIS. Due to
the limited geometrical detector acceptance in the forwarddirection it is not possible to distin-
guish an intact final state proton from one which dissociatesinto a low-mass systemY . Thus
the measured cross section is defined to include proton dissociation withMY < 1:6 GeV. The
correction factor for migrations about the measurement boundaryMY = 1:6 GeV is determined
using the DIFFVM [56] simulation of proton dissociation in the rangemp < MY < 5 GeV. In
the simulation, the ratio of elastic proton to proton dissociation cross sections is assumed to
be unity, in accordance with the inclusive measurements of [3, 57]. The correction factors are
found to be0:96 � 0:04 for the 1996 running period and0:92 � 0:05 in 1997, the difference
resulting from the degrading performance of the detectors used to veto proton dissociation. An
additional factor1:055�0:014 is applied to account for the loss of diffractive events due to noise
fluctuations in the FMD. This factor is determined using randomly triggered events. A correc-
tion of 5% is applied to compensate for the removal of dijet events in which a bremsstrahlung
process is overlaid. A small correction (< 1%) is applied to the measured DIS cross section to
account for QED radiation effects.

The final jet cross sections are given at the hadron level. Themeasured distributions at
the detector level are corrected for detector inefficiencies, acceptances and migrations between
measurement intervals in the reconstruction using the RAPGAP Monte Carlo program and ap-
plying a bin-to-bin correction. The simulation gives a gooddescription of the shapes of all data
distributions and of the energy flow in the events. Figure 3 shows the transverse energy flow
around the axis of the leading jet for the selected diffractive dijets in DIS (Figure 3a,b) and pho-
toproduction (Figure 3c,d). A clear back-to-back structure is visible in the��� distribution.
The transverse energy flow in the jets as well as in the region between the jets is reasonably
well described by the simulation.

According to the simulations, the detector level observables are well correlated with the
hadron level quantities. Purities and stabilities2 are larger than25%, the main source of migra-
tions being the jet transverse energy measurements.

The cross sections are measured in the kinematic region specified in Table 1. The pseudo-
rapidity range�3 < �� < 0 in the photon-proton rest frame used for the DIS measurement
corresponds approximately to the range�1 < � < 2 in the laboratory frame.

2‘Purity’ is defined as the fraction of Monte Carlo simulated events reconstructed in a certain measurement
interval that are also generated in that bin. ‘Stability’ isdefined as the fraction of events generated in a bin that are
also reconstructed in that bin.
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Figure 3: Average transverse energy flow per event around theleading jet axis for diffractive
dijets at the detector level in DIS (a and b) and photoproduction (c and d). The variables���
and��� denote the distances from the axis of the leading jet in pseudorapidity and azimuth in
the photon-proton rest frame, respectively. In a) and c) only energy within one unit of pseudo-
rapidity around the jet axis is included whereas the profilesb) and d) include energy within one
unit in azimuth around the axis.

6.6 Analysis of systematic uncertainties

The following systematic errors on the measured cross sections arise from experimental sources
such as detector calibration uncertainties. The cross section errors are estimated by repeating
the analysis with variations in the reconstruction of detector-simulated Monte Carlo events.� A 4% uncertainty in the absolute energy scale of the hadronic LArcalorimeter in the jetET range considered here [58] affects the reconstruction of the hadronic final state. The

resulting uncertainty on the measured cross section is4% in DIS and8% in photoproduc-
tion and is strongly correlated between the data points. Theinfluence of this uncertainty
in DIS and in photoproduction is different due to the different reconstruction ofxIP . A7% uncertainty in the SPACAL hadronic energy scale affects thecross sections by1%.
The uncertainty in the fraction of the energy of the reconstructed hadronic objects which
is carried by tracks is3% and gives rise to errors on the cross section of4% in photopro-
duction and3% in DIS, again strongly correlated between data points.
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Photoproduction DISQ2 < 0:01 GeV2 4 < Q2 < 80 GeV2165 < W < 242 GeV

inclusivekT jet algorithm, distance parameter= 1Njet � 2E�;jet1T > 5 GeVE�;jet2T > 4 GeV�1 < �jet(1;2) < 2 �3 < ��jet(1;2) < 0xIP < 0.03MY < 1:6 GeV�t < 1 GeV2
Table 1: The kinematic ranges of the measured hadron levelep cross sections.� The absolute SPACAL electromagnetic energy scale is known to 0:3% for scattered posi-

trons withEe = 27:5 GeV and2:0% atEe = 8 GeV. The polar scattering angle of the
positron is measured to1 mrad precision. The uncertainties of the positron energy and
angle measurements in DIS result in cross section errors in the range of4 to 5% for the
energy uncertainty and2% for the scattering angle. In photoproduction, the uncertainty
in the knowledge of the acceptance and efficiency of the smallangle positron detector
results in a cross section error of5% on average.� The uncertainties on the trigger efficiencies and the luminosity measurement give rise to
cross section uncertainties of6% and1:5%, respectively.� An uncertainty of25% in the fraction of events lost due to noise in the FMD translates
into a1:3% normalisation error on the cross section.

Systematic errors arising from uncertainties in the acceptance and migration corrections
are estimated by repeating the measurements with variations in the kinematic dependences and
other details of the Monte Carlo models within experimentally allowed limits.� The shapes of the following distributions in the RAPGAP simulation have been varied:

a) thezIP distribution in photoproduction has been reweighted by factors zIP�0:3 and(1� zIP )�0:3; b) theEjet1T distribution byp̂�0:5T in both photoproduction and DIS; c) thexIP distribution byxIP�0:2 in photoproduction andxIP�0:3 in DIS; d) thex distribution
by x�0:3 and(1�x)�0:3 in both kinematic regions and e) they distribution byy�0:5 and(1� y)�0:5 in both kinematic regions. In DIS, the largest deviation (9%) is due to thexIP
reweighting. In photoproduction the largest error (6%) arises from thêpT reweighting.
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� The t distribution is varied by factorse�2t=GeV2
as constrained by inclusive measure-

ments [57,59] leading to cross section errors of2 to 3%.� The estimated number of non-diffractive background eventswhich migrate into the sam-
ple from the unmeasured regionxIP > 0:03 orMY > 5 GeV is varied by�50%, leading
to a mean cross section uncertainty of2% in photoproduction and3% in DIS.� A 7% error arises from uncertainties in the migrations about theMY boundary of the
measurement. It is estimated by varying the simulated efficiencies of the forward detec-
tors FMD and PRT by�4% and�25%, respectively, and by variations in the DIFFVM
simulation of a) the ratio of elastic proton to proton dissociation cross sections between1 : 2 and2 : 1, b) the generatedMY distribution withinM�2:0�0:3Y , c) thet dependence in
the proton dissociation simulation by factorse�t=GeV2

.� The loss of diffractive events due to the�max cut and the cuts on the FMD and PRT is
corrected using the RAPGAP simulation. By studying jet events with an elastically scat-
tered proton (measured in a Roman pot detector) in the rangexIP < 0:05, it is established
that the RAPGAP simulation describes the loss seen in the data within a10% and14%
statistical uncertainty for photoproduction and DIS, respectively [60]. This uncertainty is
used to estimate the uncertainty on the rapidity gap selection in the present analysis and
translates into cross section errors of1% in both photoproduction and DIS.

The largest errors in photoproduction arise from the uncertainty in the LAr energy scale and
the migrations about theMY boundary. In DIS, the largest error arises from thexIP reweighting
of RAPGAP. The uncertainties due to the LAr hadronic energy scale, the energy contribution
of tracks, the luminosity, the FMD noise, the estimated number of background events and the
positron energy in the SPACAL for DIS are correlated betweencross section bins. Both for
the bin-to-bin correlated and the uncorrelated errors all individual contributions are added in
quadrature to obtain the full uncertainties.

7 Results

The measurement results are presented in Figures 4–12 and are listed in Tables 2–5 as bin-
averaged differential hadron level cross sections for a setof kinematic variables which charac-
terise the scattering process. The measurements are compared with next-to-leading order QCD
predictions based on the factorisation approach in Sections 7.1–7.4 and to leading order soft
colour neutralisation models in Section 7.5.

7.1 Diffractive dijet production in DIS

In Figures 4 and 5, the differential cross sections are shownas functions ofzjetsIP , log10(xIP ), W ,Q2, E�;jet1T , h�labjet i, and
�����jet��. The data are compared with NLO QCD predictions obtained

using the DISENT program with the ‘H1 2006 Fit A’ and ‘H1 2006 Fit B’ diffractive parton
densities.
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The NLO prediction based on the ‘H1 2006 Fit A’ parton densities (only shown in Figure 4)
overestimates the measured cross section, in particular athigh zjetsIP . The NLO prediction based
on the ‘H1 2006 Fit B’ parton densities agrees well with the distributions of all variables within
the given errors. Hence the dijet cross sections distinguish between the two parton density sets
which describe inclusive diffractive DIS similarly well. The good description of the differential
cross section as a function oflog10(xIP ) indicates that thexIP dependence offIP (xIP ; t) is com-
patible with the dijet production mechanism within the shown errors. The agreement between
predicted and measured differential cross sections as functions ofE�;jet1T and

�����jet�� suggests
that the NLO QCD matrix element describes the hard scatter correctly within the uncertain-
ties shown. The good description of both inclusive diffractive scattering and diffractive dijet
production obtained from the ‘H1 2006 Fit B’ parton densities supports the validity of QCD
hard scattering factorisation in diffractive DIS. In the following discussion of diffractive dijet
photoproduction, only the ‘H1 2006 Fit B’ densities are considered.

7.2 Diffractive photoproduction of dijets

Differential cross sections measured for photoproductionare shown in Figure 6 as functions
of zjetsIP andxjets . The measurements are compared with NLO predictions obtained with the
Frixione et al. program, interfaced to the ‘H1 2006 Fit B’ diffractive parton densities.

The NLO prediction overestimates the measured dijet cross section by a factor of approxi-
mately2. Diffractive dijet photoproduction thus cannot be described using the parton densities
which lead to a good description of diffractive scattering in DIS. QCD hard scattering factorisa-
tion is therefore broken in photoproduction. A more detailed comparison of the cross sections
in DIS and photoproduction is given in the next section.

7.3 Ratio of dijet cross sections in diffractive photoproduction and DIS

A reliable method to test QCD factorisation is obtained by dividing the ratio of measured to
predicted cross sections in photoproduction by the corresponding ratio in DIS. In this double
ratio many experimental errors and also theoretical scale errors cancel to a large extent. The
double ratio is shown in Figure 7 as a function of the photon-proton centre-of-mass energyW .
The two NLO calculations are based on the ‘H1 2006 Fit B’ diffractive parton densities and are
corrected for hadronisation. The double ratio is rather insensitive to the detailed shape of the
diffractive gluon density and the conclusions remain unchanged if the ‘H1 2006 Fit A’ parton
densities are used.

The double ratio is� 0:5 throughout the measuredW range, indicating a suppression factor
which is independent of the centre-of-mass energy within the uncertainties. Integrated over
the measured kinematic range the ratio of data to NLO expectation for photoproduction is a
factor0:5� 0:1 smaller than the same ratio in DIS where the error includes scale uncertainties.
This confirms that QCD hard scattering factorisation is broken for diffractive dijet production in
photoproduction with respect to the same process in DIS. Thesuppression in photoproduction
is much smaller than the suppression in diffractive dijet production at the Tevatron [6].
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7.4 Study of QCD factorisation breaking in photoproduction

The simple assumption that the suppression factor in photoproduction does not depend on any
kinematic variable is studied by scaling the NLO predictions by an overall suppression factor0:5. Using such a global factor for both resolved and direct photon processes leads to a good
description of all measured distributions as shown in Figures 8 and 9.

Whilst a suppression of resolved photoproduction is generally expected, a suppression of the
direct photon contribution is in contradiction to theoretical expectations [1]. At NLO, the con-
tributions of direct and resolved photon processes to the dijet cross section cannot be calculated
separately. The following discussion therefore focuses onthe dependence of the suppression
on the variablexjets;PL, reconstructed at the parton level (PL) from parton jets before hadroni-
sation, which is related to the fraction of the photon energyentering the jet system. In events
with xjets;PL > 0:9 almost the entire photon energy enters the jet system, whereas for events

with xjets;PL < 0:9 a significant photon remnant system is present which may leadto secondary
interactions and rapidity gap destruction. A fit of the NLO prediction to the cross section dif-
ferential inxjets with two free normalisation parameters for contributions fromxjets;PL < 0:9 andxjets;PL > 0:9 yields suppression factors of0:47� 0:16 and0:53� 0:14, respectively. This result

indicates again that the suppression is independent ofxjets;PL and that both direct and resolved
contributions have to be suppressed by the same factor.

Finally an investigation is performed of how well the data can be described under the as-
sumption that the NLO calculation withxjets;PL > 0:9 is not suppressed. The best agreement in a�2 fit is reached for a suppression factor0:44 for the NLO calculation withxjets;PL < 0:9 and the

resulting distributions are shown forxjets , W , h�jeti andEjet1T in Figure 10. This prediction is
incompatible with the measured cross sections. The assumption that the direct part obeys QCD
factorisation is therefore strongly disfavoured by the present analysis.

7.5 Leading order soft colour neutralisation models

The predictions of the soft colour interaction models SCI and GAL using the CTEQ5L LO
parton densities of the proton are compared with the measurements in Figure 11 in the DIS
kinematic region. The SCI model describes the dijet cross section reasonably well. If the
GRV ’94 HO proton parton densities [61] are used the cross sections are underestimated by a
factor of approximately2 in agreement with the conclusions drawn in [5]. The GAL model
overestimates the dijet rate by about65% on average. It gives a good description of the shapes
of the differential cross sections as functions ofW andh�labjet i but not as functions ofzjetsIP andlog10(xIP ).

The predictions for photoproduction are shown in Figure 12.The normalisation of the cross
section is underestimated by factors of approximately2:2 for the SCI model and1:5 in the case
of the GAL model. Both models describe the shapes of the differential cross sections reasonably
well for log10(xIP ), W andxjets but fail for zjetsIP .

In summary, neither of the two models which describe diffractive dijet production inp�p
collisions is able to describe it in both DIS and photoproduction.
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8 Summary

Diffractive dijet production is measured in deep-inelastic scattering and photoproduction in the
same kinematic range165 < W < 242 GeV,xIP < 0:03,E�;jet1T > 5 GeV andE�;jet2T > 4 GeV,
with limits on the photon virtuality4 < Q2 < 80 GeV2 for DIS andQ2 < 0:01 GeV2 for
photoproduction. The inclusivekT cluster algorithm is used in the definition of the jets.

In DIS, diffractive dijet production is well described within the experimental and theoretical
uncertainties by NLO calculations based on diffractive parton densities determined from QCD
fits to inclusive diffractive DIS data. QCD factorisation therefore holds within present uncer-
tainties in diffractive DIS. The dijet measurements clearly favour the ‘H1 2006 Fit B’ over the
‘H1 2006 Fit A’ parton densities, both of which lead to a good description of inclusive diffrac-
tion. The gluon densities from the two sets differ mainly forhigh fractional momentum. In this
region, the dijet cross section is more sensitive to the diffractive gluon density than the inclusive
scattering cross section.

In photoproduction, NLO calculations based on the ‘H1 2006 Fit B’ parton densities over-
estimate the measured cross section. The ratio of measured cross section to NLO prediction is
a factor0:5 � 0:1 smaller than the same ratio in DIS, indicating a clear break-down of QCD
factorisation. A fit to the photoproduction data yields suppression factors of0:47� 0:16 for the
part of the NLO calculation for whichxjets;PL < 0:9 and0:53�0:14 for xjets;PL > 0:9, wherexjets;PL
is the fraction of the photon momentum entering the hard scatter and is reconstructed at the
parton level from parton jets before hadronisation. The twofactors are compatible with each
other, indicating that the suppression is independent ofxjets;PL. Direct photon processes con-

tribute primarily at highest values ofxjets;PL and the present analysis therefore indicates that they
are suppressed by a similar factor as resolved photon processes. A suppression of direct photon
processes cannot be explained by models which base the rapidity gap survival probability on
the presence of photon spectator interactions.

The dijet cross sections are also compared with predictionsof two soft colour neutralisation
models. The SCI model which describes diffractive structure functions at HERA and diffractive
dijet production at the Tevatron reproduces DIS dijet crosssections reasonably well but fails for
photoproduction both in normalisation and in the shape of the differential cross section inzjetsIP .
The GAL model is incompatible with both data sets.
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Diffractive DIS Dijet Cross SectionszjetsIP d�=dzjetsIP (pb) �stat (pb) �orr (pb) �tot (pb) 1 + Æhad[0:1; 0:4) 59 5 5 10 1:00� 0:03[0:4; 0:6) 34 4 3 8 0:97� 0:02[0:6; 0:8) 16 3 2 4 0:95� 0:02[0:8; 1) 5:2 1:2 0:6 2:0 1:0� 0:2log10(xIP ) d�=dlog10(xIP ) (pb) �stat (pb) �orr (pb) �tot (pb) 1 + Æhad[�2:3;�1:9) 20:3 2:6 1:5 4:3 1:01� 0:02[�1:9;�1:7) 43 5 3 7 0:99� 0:01[�1:7;�1:5) 62 7 8 13 0:98� 0:04W (GeV) d�=dW �stat �orr �tot 1 + Æhad
(pb GeV�1) (pb GeV�1) (pb GeV�1) (pb GeV�1)[165; 185) 0:45 0:06 0:04 0:10 0:95� 0:03[185; 205) 0:40 0:05 0:03 0:08 1:00� 0:03[205; 225) 0:37 0:05 0:03 0:07 1:00� 0:02[225; 242) 0:33 0:05 0:04 0:07 1:03� 0:02Q2 (GeV2) d�=dQ2 �stat �orr �tot 1 + Æhad
(pb GeV�2) (pb GeV�2) (pb GeV�2) (pb GeV�2)[4; 6) 3:4 0:5 0:2 0:7 0:97� 0:02[6; 8) 2:4 0:4 0:2 0:5 0:99� 0:02[8; 12) 0:83 0:17 0:08 0:21 0:98� 0:02[12; 20) 0:63 0:10 0:06 0:14 1:01� 0:06[20; 30) 0:47 0:08 0:06 0:12 0:96� 0:03[30; 40) 0:18 0:05 0:02 0:06 1:03� 0:05[40; 80) 0:081 0:021 0:009 0:026 1:03� 0:02

Table 2: The hadron level differential cross section of diffractive dijet production inep collisions
in the DIS kinematic range specified in Table 1. The quoted cross section is the average value
over the bin specified in the first column. The quantity�stat is the statistical uncertainty,�orr
the bin-correlated systematic uncertainty and�tot the total quadratic sum of statistical and
systematic errors including�orr. The quantity1 + Æhad is the factor by which the parton level
NLO calculation is multiplied to correct for hadronisationeffects.
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Diffractive DIS Dijet Cross SectionsE�;jet1T (GeV) d�=dE�;jet1T �stat �orr �tot 1 + Æhad
(pb GeV�1) (pb GeV�1) (pb GeV�1) (pb GeV�1)[5; 7) 9:3 0:8 0:6 1:5 1:03� 0:01[7; 9) 4:1 0:5 0:4 0:9 0:96� 0:01[9; 11) 1:0 0:2 0:2 0:4 0:91� 0:09h�labjet i d�=dh�labjet i (pb) �stat (pb) �orr (pb) �tot (pb) 1 + Æhad[�0:7;�0:4) 21 3 2 5 0:97� 0:06[�0:4;�0:1) 29 4 3 6 1:06� 0:03[�0:1; 0:2) 21 3 2 5 1:03� 0:02�����jet�� d�=d�����jet�� (pb) �stat (pb) �orr (pb) �tot (pb) 1 + Æhad[0; 0:5) 30 3 2 5 0:96� 0:04[0:5; 1) 15 2 2 3 1:06� 0:05[1; 2) 5:9 0:8 0:5 1:3 1:01� 0:06

Table 3: The hadron level differential cross section of diffractive dijet production inep collisions
in the DIS kinematic range specified in Table 1 (continued). For details see the caption of
Table 2.
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Diffractive Photoproduction Dijet Cross SectionszjetsIP d�=dzjetsIP (pb) �stat (pb) �orr (pb) �tot (pb) 1 + Æhad[0:1; 0:4) 290 20 30 50 0:85� 0:01[0:4; 0:6) 340 20 40 70 0:86� 0:02[0:6; 0:8) 310 20 30 50 0:95� 0:06[0:8; 1) 150 10 10 30 1:00� 0:04xjets d�=dxjets (pb) �stat (pb) �orr (pb) �tot (pb) 1 + Æhad[0:1; 0:4) 150 10 20 30 0:69� 0:02[0:4; 0:6) 250 20 20 50 0:80� 0:02[0:6; 0:8) 370 20 20 40 1:36� 0:05[0:8; 1) 350 20 60 70 0:81� 0:02log10(xIP ) d�=dlog10(xIP ) (pb) �stat (pb) �orr (pb) �tot (pb) 1 + Æhad[�2:3;�2:1) 110 10 10 30 1:13� 0:05[�2:1;�1:9) 200 10 20 30 0:94� 0:02[�1:9;�1:7) 350 20 30 50 0:88� 0:02[�1:7;�1:5) 550 30 60 100 0:84� 0:01W (GeV) d�=dW �stat �orr �tot 1 + Æhad
(pb GeV�1) (pb GeV�1) (pb GeV�1) (pb GeV�1)[165; 185) 3:8 0:2 0:4 0:6 0:87� 0:02[185; 205) 3:5 0:2 0:3 0:5 0:92� 0:02[205; 225) 3:0 0:2 0:3 0:4 0:93� 0:02[225; 242) 2:4 0:2 0:2 0:4 0:85� 0:02

Table 4: The hadron level differential cross section of diffractive dijet production inep collisions
in the photoproduction kinematic range specified in Table 1.For details see the caption of
Table 2.
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Diffractive Photoproduction Dijet Cross SectionsEjet1T (GeV) d�=dEjet1T �stat �orr �tot 1 + Æhad
(pb GeV�1) (pb GeV�1) (pb GeV�1) (pb GeV�1)[5; 7) 85 3 7 12 0:85� 0:01[7; 9) 28 2 3 4 0:98� 0:03[9; 11) 7:3 0:8 1:0 1:9 1:02� 0:05h�labjet i d�=dh�labjet i (pb) �stat (pb) �orr (pb) �tot (pb) 1 + Æhad[�0:7;�0:4) 140 10 20 30 0:88� 0:02[�0:4;�0:1) 230 10 20 30 1:01� 0:02[�0:1; 0:2) 190 10 20 30 0:99� 0:02[0:2; 0:8) 89 6 7 13 0:79� 0:02j��jetj d�=dj��jetj (pb) �stat (pb) �orr (pb) �tot (pb) 1 + Æhad[0; 0:5) 179 9 19 29 0:88� 0:01[0:5; 1) 157 9 14 21 0:90� 0:02[1; 1:5) 88 6 7 13 0:90� 0:02[1:5; 2) 55 5 6 9 0:90� 0:03M12 (GeV) d�=dM12 �stat �orr �tot 1 + Æhad
(pb GeV�1) (pb GeV�1) (pb GeV�1) (pb GeV�1)[9; 17) 25:6 0:9 2:3 3:9 0:88� 0:01[17; 27) 3:8 0:3 0:4 0:7 0:97� 0:03

Table 5: The hadron level differential cross section of diffractive dijet production inep collisions
in the photoproduction kinematic range specified in Table 1 (continued). For details see the
caption of Table 2.

26
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Figure 4: Differential cross sections for the diffractive production of two jets in DIS in the
kinematic region specified in Table 1 as a function of a)zjetsIP , b) log10(xIP ), c) W and d)Q2.
The inner error bars represent the statistical errors. The outer error bars include the uncorrelated
systematic errors added in quadrature. The shaded band around the data points indicates an
additional systematic uncertainty which is correlated between the data points. The predictions
based on the QCD program DISENT, using the ‘H1 2006 Fit A’ diffractive parton densities and
corrected for hadronisation effects are shown as the dash-dotted lines. The predictions based
on the ‘H1 2006 Fit B’ DPDFs are shown both with hadronisationcorrections (solid white line)
and at the parton level (solid black line). The inner band around the Fit B predictions indicates
the uncertainty resulting from the variation of the renormalisation scale by factors0:5 and2 and
the full band includes the uncertainty due to the hadronisation corrections added linearly.
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Figure 5: Differential cross sections for the diffractive production of two jets in DIS in the
kinematic region specified in Table 1 as a function of the variables a)E�;jet1T , b) h�labjet i and c)�����jet��. The DISENT prediction based on the ‘H1 2006 Fit B’ DPDFs at NLO with (white line)
and without (black line) hadronisation corrections is alsoshown. For details about the errors
see the caption of Figure 4.
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H1 Diffractive Dijet Photoproduction
H1 Data
correlated
uncertainty

H1 2006 Fit B DPDF
FR NLO×(1+δhad)
FR NLO

0

200

400

600

800

1000

0.2 0.4 0.6 0.8 1

zIP
  jets

d
σ/

d
z IP  j

et
s    

(p
b

)

H1 a)

0

250

500

750

1000

0.2 0.4 0.6 0.8 1

xγ
     jets

d
σ/

d
x γ

   
  j

et
s    
 (

p
b

)

H1 b)

Figure 6: Differential cross sections for the diffractive production of two jets in photoproduc-
tion in the kinematic region specified in Table 1 as a functionof a) zjetsIP and b)xjets . The inner
error bars represent the statistical errors, the outer error bars include the uncorrelated system-
atic errors added in quadrature. The shaded band around the data points indicates an additional
systematic uncertainty which is correlated between the data points. The NLO QCD predictions
based on the Frixione et al. program (FR) and using the ‘H1 2006 Fit B’ diffractive parton den-
sities are shown with hadronisation corrections (white line) and at the parton level (black line).
The inner band around the NLO prediction indicates the uncertainty resulting from simultane-
ous variations of the renormalisation and factorisation scales by factors0:5 and2 and the full
band includes the uncertainty due to the hadronisation corrections added linearly.
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Figure 7: Cross section double ratio of data to NLO prediction for photoproduction and DIS as
a function of the photon-proton centre-of-mass energyW . The error bars indicate uncorrelated
experimental uncertainties. The error bands around the ratio points show systematic uncertain-
ties which are correlated between the ratio points. The inner band shows experimental uncer-
tainties. The full band shows the quadratic sum of the correlated experimental uncertainties
and NLO QCD uncertainties, estimated from variations of thefactorisation and renormalisation
scales. The nominal QCD scaleET is varied by the same factors (0:5 and2) and simultaneously
in the same direction for the DIS and photoproduction calculations. The two NLO predictions
are based on the same ‘H1 2006 Fit B’ diffractive parton densities and are corrected for hadro-
nisation effects.
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Figure 8: Differential cross sections for the diffractive production of two jets in the photopro-
duction kinematic region specified in Table 1 as a function ofa) zjetsIP , b) xjets , c) log10(xIP ) and
d) W . The NLO prediction of the Frixione et al. program interfaced to the ‘H1 2006 Fit B’
DPDFs with and without hadronisation corrections, scaled by an overall normalisation factor0:5 is also shown. For details about the errors see the caption ofFigure 6.
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Figure 9: Differential cross sections for the diffractive production of two jets in photoproduc-
tion in the kinematic region specified in Table 1 as a functionof the jet variables a)Ejet1T , b)h�labjet i, c) j��jetj and d)M12. The NLO prediction of the Frixione et al. program interfaced to
the ‘H1 2006 Fit B’ DPDFs with and without hadronisation corrections, scaled by an overall
normalisation factor0:5 is also shown. For details about the errors see the caption ofFigure 6.
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Figure 10: Differential cross sections for the diffractiveproduction of two jets in photoproduc-
tion in the kinematic region specified in Table 1 as a functionof a) xjets , b) W , c) h�jeti and
d) Ejet1T . The NLO prediction of the Frixione et al. program interfaced to the ‘H1 2006 Fit B’
DPDFs with hadronisation corrections is also shown. The part of the NLO calculation for whichxjets;PL < 0:9 at the parton level is scaled by0:44. For details about the errors see the caption of
Figure 6.
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H1 Data
correl. uncert. LEPTO SCI LEPTO GAL

0

0.2

0.4

0.6

0.8

1

180 200 220 240
W  (GeV)

d
σ/

d
W

 (
p

b
 G

eV
-1

)

H1 a)

0

10

20

30

40

50

60

-0.7 -0.4 -0.1 0.2
〈η

jet

lab〉

d
σ/

d
〈η

je
t

la
b
〉 (

p
b

)

H1 b)

0

20

40

60

80

0.2 0.4 0.6 0.8 1

zIP
  jets

d
σ/

d
z IP  j

et
s   (

p
b

)

H1 c)

0

10

20

30

40

50

60

70

80

-2.3 -2.1 -1.9 -1.7 -1.5
log10(xIP)

d
σ/

d
lo

g
10

(x
IP

) 
(p

b
)

H1 d)

Figure 11: Differential cross sections for the diffractiveproduction of two jets in DIS in the
kinematic region specified in Table 1 as a function of the variables a)W , b) h�labjet i, c) zjetsIP and
d) log10(xIP ). Leading order predictions of the soft colour neutralisation models SCI and GAL
as implemented in LEPTO are also shown, based on the CTEQ5L leading order proton parton
densities. For details about the errors see the caption of Figure 4.
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H1 Diffractive Dijet Photoproduction
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Figure 12: Differential cross sections for the diffractiveproduction of two jets in photopro-
duction in the kinematic region specified in Table 1 as a function of the variables a)zjetsIP , b)log10(xIP ), c)W and d)xjets . Leading order predictions of the soft colour neutralisation models
SCI and GAL as implemented in PYTHIA are also shown, based on the CTEQ5L leading order
proton parton densities.
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